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ABSTRACT 

Application and Modeling of Frequency-domain Lifetime Spectroscopy for 

Microsphere-based Optical Glucose Sensors. (December 2006) 

Feng Liang, B.S., China University of Petroleum; 

M.S., China University of Petroleum 

Chair of Advisory Committee: Dr. Eva Sevick-Muraca 

 

A new glucose affinity sensor based on a homogeneous fluorescence resonance 

energy transfer (FRET) assay system was developed to monitor the competitive binding 

between concanavalin A (ConA) and dextran.  The FRET quenching kinetics of the 

donor were analyzed from frequency-domain (FD) measurements as functions of both 

glucose and acceptor-protein concentrations using a Förster-type decay kinetics model.  

The results showed that the FD measurements and donor decay kinetics can indicate 

quantitative changes in the presence of glucose at concentrations ranging from 0 to 224 

mg/dL. 

The second set of experiments proved the feasibility of performing analyte 

sensing with FD lifetime spectroscopy using microsphere-based sensors in multiple 

scattering solutions.  A well characterized pH-sensitive fluorophore was entrapped in 

poly(ethylene glycol) microspheres.  The particles were then immersed in a buffered 

polystyrene solution of various pH.  Measurements of phase shift and modulation of the 

generated and multiply scattered fluorescent light were acquired as the modulation 

frequency of the incident excitation light varied from 10 to 120 MHz.  After the 
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measured data were analyzed with the coupled diffusion equations, the obtained 

lifetimes from the scattering measurements matched values from non-scattering 

measurements.  

Lastly, a new two-speed Monte Carlo (MC) simulation was developed to predict 

light propagation through the sensors and thus was used to evaluate these sensors and to 

design these sensors for implantation.  The model used random packing structure and 

considered geometric optics and two light propagation speeds.  Experimental 

measurements of phase-shift and modulation of excitation light were made on a cubic 

phantom with non-fluorescent resin microspheres of 74 µm diameter, and compared to 

those computed from the MC simulation.  The results showed that the mean phase shift 

(PS) deviation was 0.736˚ and the mean amplitude deviation was 42%.  Quantitative 

changes in detected fluorescence phase-shift and modulation were investigated for 

microsphere diameter, volume fraction, refractive index, and fluorophore lifetime.  We 

also found that even though the sensitivity of PS change in the presence of scattering 

was the same as the value without scattering, the values of PS were magnified due to the 

scattering effects. 
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1. INTRODUCTION  

1.1 Motivation 

1.1.1 The Importance of Continuous Glucose Sensing  

The daily routine for a diabetes patient currently involves pricking the skin and 

drawing blood 4 to 8 times a day measure the blood glucose level.  According to the 

Centers for Disease Control and Prevention, 20.8 million people, or about 7% of the total 

population in the U.S. had either type I or type II diabetes in 2005 (1) . The World 

Health Organization estimates the number of diabetes patients worldwide to be 300 

million by the year 2025 (2).  Currently, diabetics are directly treated by either pancreas 

transplantation or islet cell transplantation.  There are many technical difficulties 

associated with both approaches, such as transplantable organ shortage, immune 

complications, and organ or cell failure (3).  The recent interest in stem cell research has 

attracted public interest but the hope of large scale, cell-based treatment of diabetes has a 

long way from fruition (4).  An alternative approach to treat diabetes is based upon the 

idea of an artificial beta cell (5).  The artificial beta cell could measure glucose 

concentration and then automatically deliver insulin needed.  Therefore, the most 

important component of the artificial beta cell is the continuous glucose-sensing unit. 

___________ 
 This dissertation follows the style of Photochemistry and Photobiology. 
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Continuous glucose monitoring would allow diabetics to immediately, accurately, 

and conveniently control their glucose levels, thereby reducing the most serious 

complications of diabetes, including heart disease, blindness, amputations of extremities, 

and early death.  Diabetes has an annual economic cost in the U.S. of more than 132 

billion dollars, making the continuous glucose sensor the “holy grail” of all biomedical 

sensor development efforts.  

Glucose is represented as C6H12O6.  It has a molecular weight (MW) of 180 Da 

and a molecular size less than 5 Å.  In solution, the molecules are not open chains but 

rings as shown in Figure 1.1 (6).  Glucose levels in normal blood range from 90 mg/dL 

to 120 mg/dL (7,8)).  In diabetes, blood glucose levels may fluctuate between 40 mg/dL 

and 400 mg/dL (8).  The “gold standard” for glucose measurement requires the patient to 

extract a drop of blood (typically by pricking the fingertip or the forearm).  The glucose 

in the blood reacts with the oxygen in the air and is catalyzed by the glucose oxidase 

(GOX) enzyme to produce hydrogen peroxide.  The hydrogen peroxide is then detected, 

providing an indirect measurement of glucose concentration.   

2 2 2 2
GOXD glucose O H O D gluconate H O− + + ⎯⎯⎯→ − +                        (1.1) 

 

 
 

Figure 1.1. The molecule structure of glucose in aqueous solution. 
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The finger-pricking enzymatic measurement method consumes blood and has 

several severe limitations such as low accuracy, constant calibration, poor compliance 

from diabetic patients, and most importantly, the inability to continuously monitor 

changing glucose levels.  It has been reported that a tighter control of blood glucose in 

insulin-dependent diabetics could reduce the severity of long-term complications such as 

retinopathy, nephropathy, and neuropathy (9).  Therefore, a new glucose monitoring 

system capable of continuous measurement is needed.  Currently the three commercially 

available mini-invasive glucose sensors which perform continuous monitoring based on 

enzymatic analysis, are: MiniMed-Medtronic Continuous Glucose Monitoring System 

(CGMS) (Northridge, CA, USA); GlucoWatch biographer (Animas, West Chester, PA), 

and GlucoDay microdialysis system (Menarini, Medulla, Italy).  None of these systems 

are adequate due to a lack of biocompatibility and significant signal drifts (10,11).   

1.1.2 Fluorescence Lifetime Spectroscopy as an Emerging Tool for Glucose Sensing 

A number of minimally invasive or noninvasive techniques have been 

investigated for glucose monitoring during the last decades.  The optical sensing 

methods which are promising for physiological glucose sensing include near-infrared 

(NIR) absorption spectroscopy (12-14), Raman spectroscopy (15), surface plasmon 

spectroscopy (16-18), polarimetric measurement of eye fluids (19), light scattering 

measurement (20-22), optical coherence tomography (OCT, (23)), and fluorescence 

spectroscopy (24,25).  In Section 2.1, a review of optical glucose sensing techniques is 

provided. 
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In light of the difficulties associated with conventional glucose meters, 

fluorescence spectroscopy may provide a feasible and robust way to create a new type of 

implantable glucose sensor (7).  The concept of fluorescence is shown in the Jabłoński 

diagram at Figure 1.2.  The fluorophore lifetime, τ0, which is typically on the order of 

10-9 seconds, is defined as the average time the fluorophore spends in its excitation state 

and is shown mathematically as Equation 1.2:  

0
1

nr r

τ
κ κ

=
+

                                             (1.2) 

 
where the κnr and κr refer to the rate of non-radiative relaxation and radiative relaxation 

of the fluorophore. The fluorescence quantum efficiency Q is defined as the ratio of the 

number of fluorescent photons emitted to the number of excitation photons absorbed by 

the fluorophore:   

   1

1 nr

r

Q κ
κ

=
+

      (1.3) 

Both lifetime and quantum efficiency of fluorophores are known to be sensitive 

to the local biological and chemical environments (26).  There are many intra- and 

intermolecular interactions which influence the fluorophore lifetime such as collision 

quenching and FRET.  Therefore the measured fluorescence lifetime τ is usually shorter 

than τ0. Thus the measured fluorescence lifetime is the inverse of the total rate of all 

relaxation processes that cause deactivation from the excitation state.   
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Figure 1.2. Jabłoński diagram illustrating absorption, fluorescence and non-radiative 
relaxation and collisional quenching, where κr and κnr correspond to the rate of radiative 
and non-radiative relaxation.  The term κq is the Stern-Volmer constant for collisional 
quenching . [Cq] is the quencher concentration.  S0 is the electronic ground state and S1 
is the first excited singlet state.  Adapted from Richards-Kortum and Sevick-Muraca (27). 

 

 
 

In the presence of collisional quenching and FRET, the measured fluorescence 

lifetime is given as Equation 1.4: 

1
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where the κq is the Stern-Volmer constant; κT refers to the rate of FRET; and [Cq] is the 

quencher concentration.  

While the fluorescence intensity measurements are technologically simple and 

straightforward, they can suffer from distortion of emission spectra because of the 
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wavelength dependent scattering and absorption properties of tissues.  Fluorescence 

lifetime measurement provides more intrinsic advantages as compared to fluorescence 

intensity measurement. The lifetime measurement is not influenced by fluorophore 

photobleaching (28), fluorophore concentration fluctuation (29), and instrumentation 

artifacts (30).  Lifetime-based chemical sensing has been proposed by several groups for 

the quantitation of pO2 (31), pH (32) , Ca2+ (33), Cu+ (34), Zn2+ (35), and other 

metabolites. 

For a sensor implanted in tissue, scattering and absorption of tissue will attenuate 

the intensity of the fluorescent signal and add nanosecond “time-of-flight” to the photon 

propagation in the tissue (27).  Both signal attenuation and photon “time-of-flight” must 

be accounted for in order to achieve quantitative in vivo analyte sensing in tissue.  

Fluorescence lifetime measurements can be made independently of tissue scattering and 

absorption properties (36).  Most importantly, previous work has shown that the 

combination of (i) fluorescence lifetime spectroscopy, (ii) models of fluorescence 

lifetime decay kinetics, and (iii) models of time-resolved light propagation enabled 

quantitative biomedical sensing in tissue phantoms (30).  In this work, the feasibility of 

using lifetime measurement to detect glucose concentrations within the physiological 

range is presented. 

1.1.3 Implantable Polymer Microsphere-based Glucose Sensors  

The idea of implantable glucose sensors was initially reported in 1974 by 

Alibisser et al. (37).  Drs. Cote and Pishko’s research groups first investigated using a 

“smart tattoo” consisting of small polymer microsphere-based implantable sensors for 
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monitoring glucose (38-42).  The idea was to physically or chemically immobilize the 

fluorophores and glucose-sensitive affinity system inside a polymer matrix for protection 

of the fluorophore.  The polymer protection also increased the stability of glucose 

sensitive affinity system in biological samples and decreased toxicity.  After the 

microsphere-based sensors were implanted in the skin, fluorescence intensity spectra 

were obtained by noninvasively scanning the skin surface and were analyzed for the 

glucose concentration (41).  Their results showed feasibility for qualitative glucose 

monitoring with fluorescence intensity measurements (40).  Initially in their study, 

alginate-poly-L-lysine microparticles were used.  Subsequent work employed PEG due 

to its biocompatibility and porous structure, which removed transport limitations.  

Recent experimentation has explored alternate polymer types, including Sephadex(43), 

Sepharose(44), polystyrene(45,46), and polyelectrolyte-coated alginate microbeads 

(38,47).  All of these studies measured changes in fluorescence intensity with glucose 

concentration.  The work presented in this dissertation sought to measure florescence 

lifetime changes arising from physiological glucose concentrations in a microsphere-

based sensor.  Figure 1.3 illustrates a possible scheme for implantable polymer 

microsphere-based, fluorescence glucose sensors. 
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Figure 1.3. A potential scheme for continuous glucose sensing using fluorescence and 
implantable polymer microspheres.  In this case, a portable continuous detector provides 
laser light and detects the fluorescence signal change with glucose level in the interstitial 
fluid.  The polymer microspheres are implanted underneath the skin.   
 
 
 

1.1.4 Using Protein-dextran Affinity System and FRET to Measure Glucose 

Concentration 

Many efforts to develop noninvasive glucose sensors have focused upon the 

ConA–dextran affinity system for FRET-based sensing of glucose as an alternative to 

conventional enzymatic glucose sensors (24,32,40,41,44,48-54).  In this scheme, the 

sugar-binding plant lectin, ConA, is labeled with fluorescent dyes acting either as donor 

or acceptor and competitively binds glucose and dextran (48,50).  Competitive binding 

can be followed if the dextran is also conjugated with a fluorescent dye which acts as the 

corresponding acceptor or donor.  The change of FRET between donor and acceptor due 

to competitive binding can be monitored to determine the concentration of glucose (48).  

For this affinity system, the acceptor, which itself might not necessarily be fluorescent 
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(50,51), has been labeled to either ConA or dextran without any clear advantage of one 

over another (44,50,51).   

1.2 Goals of the Research 

The goal of the research is to apply fluorescence lifetime spectroscopy to the 

development of an implantable, polymer microsphere-based optical sensor for glucose.  

Despite the current progress of development of polymer-based implantable glucose 

sensors (38,40,41,55,56), three elusive questions remain to be answered for the 

development of microsphere-based fluorescence implantable sensor: 

1. Could FD lifetime measurements be used to determine glucose concentration 

in the physiological range?  If so, what is the relationship between fluorescence decay 

kinetics and binding affinity? 

2. Could fluorescence lifetime sensing using frequency-domain photon migration 

(FDPM) techniques be applied to detect fluorescence lifetime for implantable glucose 

sensors in scattering tissues? 

3. How should the implantable polymer microsphere-based sensors be designed 

for lifetime measurement? 

The specific aims of this research are: 

1. To develop a new glucose-sensitive affinity system based upon FRET, then to 

measure the glucose concentration in non-scattering solution using FD lifetime 

spectroscopy, finally to assess changing FRET decay kinetics with glucose 

concentrations. 
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2. To explore the feasibility of fluorescence lifetime sensing in microsphere-

based implantable sensors in tissue-mimicking scattering phantoms. 

3. To develop and experimentally validate a new Monte Carlo model for light 

propagation in microsphere-based implantable sensors.  

1.3 Organization of Dissertation 

The flowchart in Figure 1.4 provides the sequences of sections and the topics 

presented. 

Section 2 provides a detailed review of various optical techniques used in 

glucose sensing and highlights the fluorescence spectroscopic methods.  The theories 

and application of FRET are introduced and previous applications of FRET 

measurements in glucose sensing are detailed.  Finally, an introduction to the glucose 

sensitive ConA-dextran affinity sensor is introduced and reviewed. 

In Section 3, time-dependent light propagation, its theory, and the incorporation 

of fluorescence decay kinetics are presented. 

Section 4 contains published work towards this thesis demonstrating 

measurement of FRET for a new glucose-sensitive affinity system and analysis of FRET 

decay kinetics (57). 

In Section 5, the results are presented for implantable pH sensors in the tissue-

mimicking scattering solution using FD lifetime measurement (58). 

Section 6 details the development of a new MC simulation of fluorescence light 

propagation capable of predicting fluorescence lifetime measurements.  The simulation 

method was experimentally validated in a resin-packed, three dimensional phantom.  
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Then the influence of optical/physical properties of the microspheres is discussed using 

the simulation results. 

In Section 7, the major results of the research are summarized and possible future 

studies are presented. 
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Figure 1.4. Organization of the dissertation. 

Section 2: Reviews of optical techniques used for glucose sensing, 
FRET theory and application in glucose sensing, and ConA-dextran 

affinity system

Section 3: Fluorescence decay kinetics and measurement 

Section 6:  Monte Carlo modeling of fluorescence photon migration in 
microsphere-based sensor

Section 5: Microsphere-based implantable sensors for pH 
“Fluorescence lifetime spectroscopy of a pH-sensitive dye encapsulated 

in hydrogel beads,” Biotechnology Progress, vol. 20, p. 1561-1566, 
2004. 

Section 4: Construction and measurement of FRET in a glucose-
sensitive affinity system 

“Measurements of FRET in a glucose-sensitive affinity system with 
Frequency-domain lifetime spectroscopy,” Photochemistry and 

Photobiology, vol. 81, p.1386-1394, 2005 

Section 1: Motivation, goals of research, and thesis organization 

Section 7: Summary of results and presentation of future work 
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2. BACKGROUND: OPTICAL GLUCOSE SENSING TECHNIQUES, FRET 

THEORY, AND CONA-DEXTRAN AFFINITY SYSTEM 

To preface the application of fluorescence lifetime spectroscopy in glucose 

sensing, a complete summary is provided below describing optical glucose sensing 

techniques, FRET theory and its application to glucose sensing, and the ConA-dextran 

affinity sensor.  

2.1 Optical Techniques Used to Monitor Glucose Concentration in vivo 

Optical techniques for glucose monitoring are promising and are one of the 

fastest growing biomedical areas because: (i) optical sensing may provide noninvasive 

measurements without detectors physically contacting the body, for patients leading to 

less pain and more convenience; (ii) fast reading of signal changes should allow 

continuous glucose monitoring; (iii) when used non-invasively, optical signal is not 

subject to ambient electrical interference; and (iv) optical sensors do not consume 

glucose or blood in the body. 
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Typically optical glucose measurement techniques focus on measuring the 

change in optical properties with change in blood glucose levels.  Change in blood 

glucose level will change the scattering coefficients, µs, isotropic or reduced scattering 

coefficient, µs’, the absorption coefficients of tissue, µa’, and polarization of the 

transmitted or backscattered light.  The isotropic or reduced scattering coefficient µs’ is 

define as: ( )' 1s s gµ µ= − , where the parameter g is the mean of the cosine of the 

scattering angle.   

Table 2.1 provides an overview of the influence of glucose concentration on 

measured tissue optical properties.  In this review, we classify the bulk of recent research 

on optical glucose sensing techniques into two different groups: (i) non-fluorescence 

glucose sensing optical methods, which include light scattering, NIR and Raman 

spectroscopy, photonic crystal method, OCT, and polarimetry; and (ii) fluorescence-

based glucose sensing optical methods.  The review of each technique will start by 

introducing its optical/physical principles, and discussing recent results and difficulties 

which still remain to be overcome.  The optical glucose monitoring techniques can be 

classified as shown in the following Figure 2.1. 
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Table 2.1. A summary of the effect of glucose concentration change upon measured 
optical properties of tissues, measured diffraction signal, and measured Raman intensity. 

 

Increasing glucose 
concentration  Methodology 

Change in absorption 

Water absorption 
coefficient µa

w(λ)  ↓ 

Intrinsic glucose absorption 
coefficient µa

g(λ)  ↑ 

NIR and mid-IR 
spectroscopy Photoacoustic 

spectroscopy 

Change in scattering 

Scattering or Isotropic 
scattering coefficient g ↑ µs(λ) ↓ µs

’(λ)  ↓ Light scattering 
measurements, OCT 

Change in polarization 

Observed rotation φ(λ) ↑ polarimetry 

Change in photonic crystal 

Observed diffraction Blue-shift ↑ (59) 
or red-shift ↑ (60) 

Photonic crystal 
measurement 

Change in Raman scattering 

Observed Raman Intensity Intensity ↑ Raman spectroscopy 
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Figure 2.1. The various optical glucose sensing techniques reviewed in this section. 
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2.1.1 Non-fluorescence Glucose Sensors 

2.1.1.1 Light Scattering Methods 

Light scattering methods rely on the refractive-index change caused by glucose 

concentration changes.  Therefore the measured optical isotropic scattering coefficient of 

tissue, µs’, changes with the concentration of glucose in the extracellular fluid.  For a 

simple model of scattering spherical particles, the isotropic scattering coefficient,  µs’ can 

be related to the refractive index of the scattering medium based on the Mie theory as 

shown in the following  equation (23,61):               

2.090.37
' 220.34 1p
s p

m

nrr
n

µ ρ
λ

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

   (2.1) 

where r is the spherical particle radius; ρp is the volume density of the particles; λ is the 

wavelength of incident light; and np , nm are the refractive indices of particles and the 

medium.  Increased glucose concentration will increase the refractive index of the 

medium, nm and thus decrease the isotropic scattering coefficient. 

The refractive-index increment of an aqueous glucose solution ∆nm for visible 

wavelength is 2.5×10-5 /mM glucose (20-22).  By using polystyrene and lyposyn aqueous 

phantoms, two research groups have shown that the presence of glucose dissolved in an 

aqueous solution increased the refractive index of the solution and therefore influenced 

the scattering properties of particles suspended within it (20,21).  Kohl et al. measured 

the fractional change of the isotropic scattering coefficient ∆µs
’
 (cm-1) caused by glucose 

to be -0.016%/mM glucose (22).  Maier et al. demonstrated that the small change in 
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scattering coefficient made it difficult to measure glucose level in biological tissues due 

to confounding factors from other tissue substances and organelles, and blood glucose 

distribution.  He used a FD reflectance system on the thigh of a normal volunteer (21).  

Bruulsema et al. evaluated the sensitivity of the isotropic scattering coefficient for 

monitoring change of blood glucose levels in 41 diabetic volunteers (62).  They used a 

charged-coupled device (CCD) detection system to measure the tissue reflectance.  Their 

results showed qualitatively that they could relate tissue reflectance with blood glucose 

concentration on the patients.  However, the unclear drifts in measured µs’ prevented the 

quantitative correlation between µs’ and blood glucose level.   

Extensive work explored using OCT to measure the changes in scattering 

coefficient, µs (63).  This method was first studied in animals and then in healthy 

volunteers (64).  Larin et al. used OCT to measure scattering coefficient changes in the 

skin of Yucatan micropigs and New Zealand rabbits (23).  In the human study, a 

difference of 10 mg/dL glucose corresponded to 1.2-2% change in the slope of the linear 

fit of OCT signals (64). 

2.1.1.2 NIR Spectroscopy 

IN the last decade most of the research in this field has focused on NIR 

spectroscopy. This method has been used to extract glucose concentrations from 

reflectance or transmission spectra with wavelengths from 600 to 1300nm or even longer 

than 2µm.  This method is based upon the fact  that (i) increasing glucose concentration 

will increase the intrinsic absorption of glucose bands, and (ii) increasing glucose 
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concentration will decrease the intrinsic absorption of water bands by the volume 

displacement of water with glucose (65).  Using multivariate analysis techniques to relate 

NIR responses and glucose concentrations to the spectral changes, models can be derived 

in which there is a good correlation between NIR readings and blood glucose 

concentrations (12,14,66-69). Unfortunately, poor precision due to interference from 

several confounding factors such as (i) background noise, (ii) change of temperature, pH, 

and scattering, (iii) skin pigmentation, (iv) blood flow variation, and (v) probe placement 

and probe pressure have slowed clinical development.  Raman spectroscopy, based on the 

inelastic scattering of incident light, also has similar difficulties (70). 

2.1.1.3 Photonic Crystal Method 

The photonic crystal method involved diffraction of light from polymerized 

crystalline colloidal arrays (PCCAs) that swell with changes in glucose concentration 

(59,71).  The PCCA is polymerized within a hydrogel film that includes GOX or 

phenylboronic acids.  When GOX reacts with glucose or when the boronic acids 

reversibly bind glucose, the pH of the hydrogel is reduced and the hydrogel expands.  

The expansion caused an increase in the spacing between the spherical polystyrene 

colloids (~10 µm in diameter) bound to the hydrogel.  This caused the angle at which 

light is diffracted off of the spherical colloids to increase, enabling detection of glucose 

concentration changes (72).  The photonic crystal sensor was tested recently with 

artificial tear fluids and is intended to be worn as a contact lens (73).  The sensitivity and 

specificity of this sensor primarily depend on the glucose recognition group, which is 
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either GOX or boronic acid.  Therefore, it faced the similar problems as found with other 

GOX or boronic acid-based glucose sensing methods, as discussed below in section 2.1.2. 

2.1.1.4 Polarimetric Method 

The polarimetric method is based on the fact that glucose, as an optically active 

molecule, will rotate the plane of linearly polarized light passing through the solution 

(24).  The relationship between glucose concentration [C] and measured rotation φ(λ) in 

solution is shown as follows (65): 

( )
( )cos

1[ ] measured
glu e

specific

C
L

φ λ
φ λ

=       (2.2) 

where  φ(λ)specific is the specific rotation of the glucose at a given wavelength λ.  Αt 589 

nm, φ(λ)specific is equal to 52.6˚.  The term L is the path length, and φ(λ)measured is the 

observed rotation in degrees.  φ(λ)measured is also the function of temperature and pH. 

Within physiological concentrations and when the pathlength L is equal to 1 cm, 

glucose will rotate the linear polarization of a light beam about 0.4 millidegrees per 10 

mg/dL.  Cameron  et al. presented in vivo results from a laser-based optical polarimetry 

system using the anterior chamber of rabbit eyes to demonstrate the potential non-

invasive glucose monitoring method (19).  Challenges with polarimetric glucose sensing 

in the eye include other optical rotations due to the cornea, birefringence of the cornea, 

movement of the eyes, and the presence of other optically active components in the 

aqueous humor (7). 
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2.1.1.5 Photoacoustic Spectroscopy 

The photoacoustic technique involves the creation of acoustic wave by the 

absorption of light energy.  The ultrasonic pressure generates a pulse that propagates and 

can be detected by a piezoelectric detector (74).  For a weak absorbing sample, the 

generated pressure increase can be described by the following equation (75): 

2

a
P

vP
C
β µ

⎛ ⎞
∆ = Φ⎜ ⎟

⎝ ⎠
     (2.3) 

 

where β is the coefficient of thermal expansion;  v is the speed of sound in the medium; 

Cp is the specific heat of the medium; Φ is the light fluence; and µa is the absorption 

coefficient of the medium.  As it can be seen from the above Equation 2.3, the pressure 

increase is the proportional to the absorption coefficient of the irradiated medium.  

Eqation 2.3 represents the principle of photoacoustic spectroscopy for glucose sensing.  

Mackenzie et al. reported in vitro and in vivo experimental photoaccoustic results using 

the wavelength range from 800 nm to 1200 nm (75).   Their in vitro experiments 

investigated the interference effects from sodium chloride, cholesterol, and bovine serum 

albumin and showed that they did not influence the photoacoustic signal due to the 

change of glucose concentration.  A study with 53 volunteers showed good correlation 

between the photoacoustic measurements and the measured blood glucose concentrations.  

Kinnunen et al. conducted photoacoustic measurement in 1% intralipid and whole blood 

of swine at the wavelengths of 532 nm and 1064 nm (74).  The sensitivity of 

photoacoustic signals to change in glucose concentration was higher in blood samples 
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(11.4%/500 mg.dL-1) than the intralipid sample (1.35%/500 mg.dL-1).  There is however, 

a potential problem in the non-invasive photoacoustic measurement which lies in the 

confounding effects of temperature change. 

2.1.2 Fluorescence-based Glucose Sensor 

Fluorescence-based glucose measurement methods have involved fluorescence 

spectroscopy to measure fluorescence intensity, anisotropy, or lifetime change with 

glucose concentration change.  Based on different transduction mechanism and 

recognition elements for glucose, these approaches fall into five categories listed below:   

(i) The lectin ConA – dextran affinity system,  

(ii) GBP based glucose sensing system,  

(iii) Apo-glucose oxidase or glucokinase sensor,  

(iv) Boronic acid – based glucose sensing systems, and  

(v) Gold or silver nanoparticles, quantum-dot, PEBBLEs, and nanotube based 

glucose sensing systems.  

The lectin ConA-dextran affinity system is the most intensively studied system.  It 

is reviewed in section 2.3.  The brief review of the rest of these techniques in the 

following section will focus on answering three questions:  (i) what is the basic 

mechanism of these fluorescent sensing methods? (ii) are the fluorescent decay 

mechanisms investigated and if so, how are the fluorescent lifetime changes related to 

glucose concentration change?  And finally, (iii) what are the measurement methods and 

choice of wavelengths?  
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2.1.2.1 GBP based Glucose Sensing System  

A variety of well characterized GBPs have been isolated from Escherichia coli 

and other bacteria.  The proteins have been engineered such that glucose binding events 

could be traced by site specifically attached fluorophores, either through conformational 

change-induced FRET between donor-acceptor pairs on the protein or by fluorescent 

changes from an environmentally sensitive single fluorophore (76,77).  Tolosa et al. 

demonstrated a mutated GBP with a single cysteine residue and an environmentally 

sensitive fluorophore 2-(4-iodoacetamidoanilino)naphthalene-6-sulfonic acid (I-ANS) 

(77).  In the experiments, the excitation wavelength was 325 nm and emission 

wavelength was 450 nm.  The response to glucose displayed a twofold decrease in 

intensity but no change in fluorescence lifetime.  Ye and Schultz fused two fluorescent 

reporter proteins (green fluorescent protein (GFP) as the FRET donor and yellow 

fluorescent protein (YFP) as the FRET acceptor) to each end of a GBP (76).  Glucose 

binding resulted in a conformation change and reduced FRET.  Both GBP systems have 

narrow glucose sensing ranges (up to 0.18 mg/dL) and the measurement wavelength is in 

the UV range (<400 nm) where tissue penetration of light is minimal.  All of these results 

were obtained from measuring intensity in free solutions.  Another recent study using 

GBP and surface plasmon resonance (SPR) has reported a the low sensing range of 

glucose concentration (up to 36 mg/dL) (78). 
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2.1.2.2 Apo-glucose Oxidase and Glucokinase Sensors 

An inactivated form of GOX has been developed without the ability to oxidize 

glucose wile maintaining the ability to bind glucose (79).  In the study carried out by 

D’Auria et al., the fluorophore, 8-anilino-1-naphthalene sulfonic acid (ANS) was non-

covalently bound to the apo-glucose oxidase (80,81).  The addition of glucose (from 0 to 

60 mM) caused ∼ 25% decrease in fluorescence intensity from ANS and a 25% decrease 

in lifetime as found using FD lifetime measurements in free solution (80).  In this 

research, the excitation wavelength was 335 nm while the emission wavelength was 535 

nm.  The same research group also explored using thermostable glucokinase from the 

thermophilic microorganism Bacillus stearothermophilus (BSGK) (82).  The ANS-

labeled glucokinase displayed about a 25% decrease in the emission intensity but no 

change in lifetime. The excitation wavelength in their study was 295 nm.  The McShane 

group used apo-glucose oxidase conjugated with TRITC and FITC-dextran to develop a 

competitive binding assay (83).  The competitive binding system was encapsulated into 

polyelectrolyte microspheres (~5 µm in diameter).  The sensitive study showed 67% 

change in fluorescence intensity signal as the glucose concentration ranged between 0 to 

720 mg/dL (55,84).  The toxicity and the stability of this apo-glucose oxidase sensor have 

not yet been reported. 

2.1.2.3 Boronic Acid-based Glucose Sensors 

Boronic acid binds covalently to diols to form five- or six-membered cyclic esters 

in aqueous basic media (85).  James et al. first synthesized derivatives of boronic acid 
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which were linked to a fluorophore which coupled molecular recognition of glucose to a 

fluorescence change (86-88).  They introduced the photoinduced electron transfer (PET) 

as a tool for the transduction of the fluorescence signal.  PET glucose sensors generally 

consist of a fluorophore and a boric acid receptor linked by a short spacer. In the absence 

of glucose, the fluorescence intensity of the anthracene fluorophore (EX/EM = 370/423 

nm) was quenched by the nitrogen atom within the PET sensor.  Upon binding of glucose 

to the boronic acid receptor, PET was suppressed, resulting in the recovery of the 

fluorescence intensity of anthracene.  The glucose sensing range was from 0.03 mM to 1 

mM in a 33% MeOH/H2O solution (pH=7.7).  Camara et al. developed a boronic acid 

receptor by combining another fluorophore pyranine with a boronic acid substituted with 

benzyl viologen as a quencher (89).  In the absence of glucose, the fluorophore/quencher 

complex is nonfluorescent.  Upon binding of glucose, the complex dissociates, resulting 

in increased fluorescence intensity.  DiCesare and Lakowicz  have also studied 

fluorescence lifetime changes with glucose binding to boronic acid derivatives, including 

an anthracene derivative which showed an increase in mean lifetime from 6.4 ns to 11.5 

ns with the addition of 10 mM glucose (90,91).  In their recent study, the Lakowicz group 

developed glucose sensing contact lenses by embedding several boronic acid containing 

fluorophores (92).  The approach may be suitable for continuous monitoring of tear 

glucose levels in the range of 0.05-1 mM.   However, glucose measurement using boronic 

acid is subject to several difficulties (85):  (i) many boronic acid-based sensors are not 

water-soluble; (ii) the selectivity for glucose among similar compounds (such as fructose, 
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galactose and mannose) is comparably lower than ConA-dextran affinity glucose sensor;  

and (iii) the sensitivity of the boronic acid-based sensors is influenced strongly by pH.  

2.1.2.4 Nanoparticle or Nanotube-based Glucose Sensors 

Aslan et al. reported using ConA-aggregated dextran-coated gold colloids and 

dextran with boronic acid-capped silver colloids to measure glucose concentration 

(16,93).  They measured the change of SPR by changing the size of the nanostructure 

geometry due to the competitive binding between glucose and dextran to ConA or 

boronic acid.   

Quantum dots (QDs) have been used in maltose sensing by Clapp et al (94,95), 

but have not yet been investigated for glucose sensing.  In the maltose-sensing research, 

maltose-binding proteins labeled with Cy3 as the FRET acceptor were immobilized on a 

CdSe-ZnS core-shell QD.  Change of QD lifetime owing to change of the immobilized 

maltose binding protein was measured using time-domain methods as discussed in 

section 3.2.  The advantage of using quantum dots may rely on the size-dependent 

absorption and high photostability.   

Barone et al. loaded Fe(CN)6
3-/GOX-suspended carbon nanotubes into a 200 µm 

× 1 cm (MWCO =13 kDa) microdialysis capillary tube (96).  The carbon nanotubes were 

tuned to have near-infrared (NIR) fluorescence emission.  Upon placing the capillary 

beneath human epidermal tissue samples, they measured the fluorescence intensity 

change of carbon nanotubes with glucose concentration change at an excitation 
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wavelength of 785 nm.  However, the detection limit of this sensing system was shown to 

be 34.7 µM.   

Xu et al.  presented an innovative polyacrylamide (PAA) PEBBLE glucose 

sensors (Probes Encapsulated by Biologically Localized Embedding) using ratiometric 

measurements (97).  Using an emulsion polymerization process, the PEBBLE 

nanoparticles (~45 nm in diameter) incorporated GOX, an oxygen-sensitive fluorophore, 

(Ru[dpp(SO3Na)2]3)Cl2,  and a reference dye, Oregon Green 488-dextran or Texas Red-

dextran.  The oxygen sensitive ruthenium dye was used to detect oxygen concentration 

change from an enzymatic reaction.  The PAA hydrogel eliminated the interferences such 

as protein binding or membrane/organelle sequestration.  The hydrogel matrix also 

minimized the dye toxicity to cells (98).  The glucose sensing range of this sensor is up to 

8 mM for fluorescence intensity measurement in PBS buffer solution (pH =7.2).  This 

method has a response time of 100 s and has only been tested with in vitro microscopy 

studies, thus the feasibility of using this sensor for in vivo sensing is not known.  The 

excitation wavelength in their study was 488 nm. 

As discussed in this section, while glucose sensing based on intensity change has 

been studied in some depth, the potential of fluorescence lifetime measurements has yet 

to be investigated in any detail (10).  Given that lifetime measurements have intrinsic 

advantages for in vivo sensing such as freedom from artifacts due to (i) light scattering, (ii) 

fluorophore concentration, and (iii) photobleaching, this research will explore frequency-

domain technique by measuring FRET effects change in the ConA-dextran affinity sensor. 
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2.2 Review of FRET Theory and FRET Application in Glucose Sensing 

2.2.1 Simplified FRET Theory 

The theory of FRET is quite complicated; therefore the section focuses on a 

comprehensive description of (i) FRET basic theory, (ii) FRET decay kinetics, and (iii) 

FRET decay kinetics measurements.  FRET is a physical process in which part of the 

energy from an excited fluorescent donor (D) molecule, nonradiatively transfers to 

another closely positioned molecule, defined as acceptor (A) located within 3-10 nm 

distance of the donor (26). The acceptor is not necessarily fluorescent (26).  In this 

nonradiative energy transfer process, the donor does not emit a photon and acceptor does 

not re-absorb a photon from donor.  Figure 2.2 illustrates the diagram of FRET and the 

Jabłoński diagram.  the following schematic equation describes the FRET process (99): 

D + hνE →  excited D + A 
Tk⎯⎯→ D + excited A   (2.4) 

 
where νE is the frequency of excitation; h is the Planck constant (6.626×10-34 J·s); and kT 

is the energy transfer rate.  The essential requirements for FRET to occur are: (i) adequate 

overlap in the emission spectrum of D and the absorption spectrum A; (ii) sufficiently 

high the quantum yield of D; (iii) a non-perpendicular relative orientation of the D-A 

transition dipoles (26); and (iv) the distance between D and A molecules should between 

~10 Å and ~100 Å. 
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Figure 2.2. Illustration of the process of FRET (upper figure) and Jabłoński diagram 
(lower figure) illustrates the FRET process.  D is the donor molecule and A is the 
acceptor molecule. r is the distance between donor and acceptor molecules. The 
parameters κr, κnr and κT correspond to the radiative relaxation, non-radiative relaxation, 
and fluorescence resonance energy transfer rate.  S0 is the electronic ground state and S1 
is the first excited singlet state.  A0 and A1 correspond to the ground and excited 
electronic state of the acceptor, respectively. 
 

 
If the donor and acceptor are assumed to be separated a constant distance (r), then with 

the dipole-dipole interaction, the non-radiative energy transfer rate is given by, 
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where 0τ  is the unquenched donor fluorescence lifetime, and 0R is the Förster distance. 

The Förster distance is defined as (92): 

       
2

6 4
0 5 4 0

161.9 ( ) ( )D A
A

QR F d
n N

κ λ ε λ λ λ
π

∞
= ∫             (2.6) 

 
where Q is the donor quantum yield in the absence of acceptor;  n is the refractive index 

of solvent, for water, n is 1.33; ( )DF λ is the normalized fluorescence spectra of the donor; 

( )Aε λ  is the extinction coefficient of the acceptor;  NA is Avogadro’s number 

(6.0221415×1023); and 2κ  is the orientation factor.   The integral in Equation 2.6 is 

defined as the overlap integral J(λ) and it can be calculated from the overlap of the donor 

emission spectra and acceptor absorption spectra as well as from PhotochemCAD 

software (100) . 

( ) ( ) ( ) 4

0 D AJ F dλ λ ε λ λ λ
∞

= ∫      (2.7) 

 
The overlap integral J(λ) indicates the degree of spectral overlap between the 

donor emission and acceptor absorption.  Figure 2.3 illustrates the spectra overlap of one 

FRET pair studied in this research.  The acceptor, QSY21 is a non-fluorescent quencher 

while the donor is AF647. Both were obtained from Molecular Probes (Eugene, OR).  It 

has to be emphasized that the spectral overlap is a necessary, but not a sufficient 

condition for FRET to be happen.  
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Figure 2.3. The absorption spectra of QSY21 (the dashed line) and the emission spectra 
of AF647 (the solid line) in PBS buffer (pH= 7.2).  The shadow area in the figure shows 
the spectral overlap between donor (AF647) emission and acceptor (QSY21) absorption.  
The acceptor molecule, QSY21 is a non-fluorescent quencher. 

 

 
Upon substituting Equation 2.7 into 2.6, and express the wavelength in 

nanometers, the Förster distance in Å is given can be written: 

( ){ }6 5 2 4
0 8.79 10R n QJκ λ− −= ×      (2.8) 

The orientation factor 2κ  is equal to: 

 ( )( ) ( )
2 22 3 cos 3cos cosA D D A T D AR Rκ µ µ µ µ θ θ θ= − = −

uuruur uurur uurur
        (2.9) 

where the 
Aµ

uur  and 
Dµ

uur  are the unit vectors of the acceptor and donor transition moments 

and R
ur

 is the unit vector joining the donor and the acceptor.  θΤ is the angle between the 

emission dipole of the donor and the absorption dipole of the acceptor.  θD and θΑ are the 

angles between these dipoles and the vector R
ur

 (26).  The value of 2κ  can vary from 0 to 

4, but the orientation factor is rather difficult to determine in experimental systems.  It is 
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normally assumed that 2κ  equals to 2/3 for randomly oriented D and A in bulk solutions 

(26).  However, for immobilized systems, the orientation factor must be determined using 

Equation 2.9.  Obtaining exact 2κ  is difficult and it has been suggested that the resulting 

uncertainty in 2κ  contributes a ~10% error in the Förster distance (101). 

As shown in Equations 2.5-2.9, if the overlap integral J(λ); the orientation factor 

2κ ; the donor quantum yield Q; the distance between donor and acceptor r; and the 

donor unquenched lifetime are known, then we may calculate the Förster distance 
0R  and 

the energy transfer rate kT.   

The observed donor lifetime, τF, decreases with increasing energy transfer rate as 

shown in the follow equation:  

0
6

0

1

1
F

nr r T R
r

ττ
κ κ κ

= =
+ + ⎛ ⎞+ ⎜ ⎟

⎝ ⎠

              (2.10) 

The FRET efficiency, E is defined as the ratio of energy transfer rate kT to the 

total decay rate of the donor and can be computed as follows: 

( ) 6

0
0

1
1

1

T T

nr r T T

E r
r

R

κ κ
κ κ κ κτ

= = =
+ + + ⎛ ⎞ +⎜ ⎟

⎝ ⎠

            (2.11) 
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The FRET efficiency is the fraction of energy absorbed by D that is 

nonradiatively transferred to the A. Therefore E could be used as the indicator of 

“strength of FRET.”  Equations 2.10–2.11 are valid only when the distance, r between D 

and A is constant.  Both equations show that τF and E are strongly dependent on the 

distance between D and A.  Figure 2.4 illustrates the simulation results of FRET 

efficiency as a function of D-A distance at different Förster distances and shows how the 

FRET efficiency is influenced by the change in the D-A distance.  For example, if the 

Förster distance is 40 Å, the FRET efficiency approaches zero when the D-A distance is 

90 Å.  When the D-A distance is less than 20 Å, the FRET efficiency approaches 100% 

and will not change by further reducing the D-A distance.  The observed FRET efficiency 

dependence on the D-A distance embodies the principle of FRET optical sensing 

techniques.  The unique feature of FRET technique is its capability to quantitatively 

measure molecular interaction within 10-100 Å distance (101) . In a well studied 

allphycocyanin (APC, as D)-ConA and malachite green (MG, as A)-dextran affinity 

system, the computed D-A distance distribution curve had two maxima at 45 Å and 75 Å 

(102).  With changing glucose concentrations, the calculated D-A distances also change 

significantly. 
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Figure 2.4. Dependence of FRET efficiency on the distance between D and A.  The 
legend in the figure shows the different Förster distances, 0R , in nanometers.  All the 
curves in this figure are the simulation results from Equation 2.11.   
 
 
 

2.2.2 Summary of FRET Application in Glucose Sensing 

FRET has been widely used to investigate: (i) protein structure, protein folding, 

and protein interactions (103); (ii) carbohydrate structure and conformation (104); (iii) 

metal ions sensing (Zn2+, Cu2+) (34);  (iv) enzyme activity and kinetics (26); (v) nucleic 

acid structure and interaction (105); (vi) molecular interactions in membranes;  and (vii) 

affinity sensors for quantitatively detecting gene, antigen, protein, and glucose 

concentration (106).   This section focuses on reviewing the application of FRET 

specifically for glucose sensing.  Table 2.2 provides a cumulative summary of the 

literature using FRET to measure glucose concentration in vitro.   
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Table 2.2. Review of literature involving glucose sensing based on FRET competitive-binding affinity system*. 

Reference Donor/ Acceptor FRET affinity 
system R0 (Å) λ, EX/ EM 

Measurement 
methods/instru

mentation 

Glucose 
sensing range Comments 

Meadows 
and 

Schultz 
(1988) 
(107) 

FITC/rhodamine 
donor-dextran 
(MW=70,000)/ 
acceptor-ConA 

N/A 470 /520 nm fluorescence 
intensity change 

up to 200 
mg/dL 

demonstrated glucose 
sensing based on the level 
of FITC fluorescence in a 

homogeneous solution 

Meadows 
and 

Schultz 
(1993) 
(108) 

FITC/TRITC 

donor- dextran 
(MW=70,000)/ 

acceptor-
succinylated-

ConA 

N/A 480 /540 nm fluorescence 
intensity change 

detection limit 
was 0.05 µg/ml 

and glucose 
concentration 

up to 1600 
mg/dl, response 

time was 10 
mins 

demonstrated reduction of  
aggregation and improved 

sensitivity of FRET 
system over previous 

study 

Lakowicz 
and 

Maliwal 
(1993) 
(54) 

AMCA or CB or 
FITC/Texas Red 
or TRITC/MG 

donor-ConA or 
donor-

succinylated-
ConA /acceptor-

mannoside or 
acceptor-
dextran 

(MW=10,000) 

40~65 

360/435 nm, 
AMCA-ConA 
360/430 nm, 
CB-ConA) 

442nm , FITC-
ConA 

570 or 576 nm, 
Texas Red-

ConA 

frequency-
domain 

(modulation 
frequency from 
10 to 500 MHz) 

up to 4500 
mg/dL 

demonstrated the use of 
phase-modulation 

measurements for glucose 
assays using a variety of  

FRET pair 
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Table 2.2 Continued. 

Reference Donor/ 
Acceptor 

FRET affinity 
system 

R0 
(Å) λ, EX/ EM 

Measurement 
methods/instru

mentation 

Glucose 
sensing range Comments 

Lakowicz 
and 

Szmacinski 
(1993) (32) 

AMCA/TRITC 
donor-ConA 

/acceptor-
mannoside 

42 360 nm / ~450 
nm 

frequency-
domain at 200 

MHz 

up to 4500 
mg/dL 

qualitatively 
demonstrated the ability 

to perform lifetime 
measurements for glucose 

sensing 

Tolosa et al. 
(1997) 
(109) 

Ruthenium 
MLC/MG 

donor-ConA 
/acceptor-

insulin-maltose 
42 488/633±40 nm 

frequency-
domain 

(modulation 
frequency from 
10-1000 KHz) 

up to 1800 
mg/dL. 

demonstrated the use of 
long lifetime dyes 
(average ~500ns to 

enable blue LED as light 
source 

Tolosa et al. 
(1997) (51) Cy5/MG 

donor- 
ConA/maltose-
Insulin-acceptor 

35 580/620 nm time-domain up to 1800 
mg/dL 

demonstrated the use of 
longer wavelength dyes 

and red laser diodes 

Ballerstadt 
and Schultz 
(1997) (52) 

FITC/RITC 

donor- dextran 
(MW=2,000k) 
and acceptor-

Dextran 

N/A 495/ 520 nm fluorescence 
intensity change 

up to 300 
mg/mL 

demonstrated a new 
sandwich-like affinity 

assay based on the use of  
two groups of polymers 
which consisted of the 
same type of affinity 
ligands but different 

indicator tags 
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Table 2.2 Continued. 

Reference Donor/ Acceptor FRET affinity 
system R0 (Å) λ, EX/EM 

Measurement 
methods/instru

mentation 

Glucose 
sensing range Comments 

Russell et 
al. (1999) 

(40) 
FITC/TRITC 

donor- dextran 
(MW2, 000k)/ 
acceptor-ConA  

two dyes 
immobilized 

into 
Poly(ethylene 

glycol) hydrogel 
microspheres 

N/A 488/500-660 
nm 

fluorescence 
intensity change 

up to 600 
mg/dL 

demonstrated 
immobilization of FRET 
pair into PEG hydrogel 

Rolinski et 
al. (2000, 
2001,2004

) 
(50,110,11

1) 

APC/MG 
donor-ConA/ 

acceptor-dextran 
(MW=70,000) 

59.3 670/>715 nm time-domain up to 540 
mg/dL 

demonstrated a long 
wavelength FRET system 

using time-domain 
measurements.  the 

distribution function was 
used to determine glucose 

concentrations 
McCartne

y et al. 
(2001) 
(53) 

APC/MG 
donor-ConA / 

acceptor-dextran 
(MW=70,000) 

59.3 650/>695 nm time-domain 45-540 mg/dL 
investigated performance 
in serum and interference 

by albumin 

D’Auria et 
al. (2002) 

(82) 

Tryptophan/o-
nitrophen-β-D-

glucopyranoside 

Bacillus 
Stearothermophi

lus / o-
Nitrophen-β-D-
glucopyranoside 

(acceptor) 

N/A 290/340 nm anistropy 
measurement 

up to 108 
mg/dL 

demonstrated the use of  a 
thermostabe glucokinase 

and use of anisotropy 
measurement 
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Table 2.2 Continued. 

Reference Donor/ Acceptor FRET affinity 
system R0 (Å) λ, EX/EM 

Measurement 
methods/instru

mentation 

Glucose 
sensing range Comments 

Arimouri 
et al. 

(2002) 
(112) 

Phenanthrene/pyr
ene 

donor-boronic 
acid-acceptor N/A 

299 or 342 
nm/397 or  417 

nm 

fluorescence 
intensity change N/A 

demonstrated the use of a 
modular design approach 
to build an intramolecular 

energy transfer glucose 
sensor.  The preliminary 
experiments were carried 

out in a basic solution 
(pH=8.2), glucose 

sensing range was not 
shown 

Ye and 
Schultz 
(2003) 
(76) 

GFP/YFP 

donor-glucose 
binding protein 
(from E. coli)-

acceptor 

N/A 395/527 nm fluorescence 
intensity 

10% change 
over 0-0.18 

mg/dL; 
response time 
less than 100s 

demonstrated the use of a 
novel genetically 

engineered glucose 
indicator protein 

Ballerstadt 
et al. 

(2004) 
(113) 

AF647/QSY21 

donor- dextran 
(MW 70,000) / 

acceptor- ConA-
Sepharose 

80 645/675 nm ratiometric 
measurement 

13% change 
over 45-270 

mg/dL 

demonstrated the use of a 
long wavelength dye and 
immobilized ConA within 

Sepharose beads 
Chinnayel

ka and 
McShane 

(2004) 
(55) 

FITC/TRITC 
donor-

dextran/accepor-
ConA 

55 488/ 560 nm fluorescence 
intensity 

27% change 
over 0-1800 

mg/dL 

demonstrated the use of 
layer-by-layser self 

assembly of dextran and 
ConA into polymer 

microparticles 
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Table 2.2 Continued. 

Reference Donor/ Acceptor FRET affinity 
system R0 (Å) λ, EX/EM 

Measurement 
methods/instru

mentation 

Glucose 
sensing range Comments 

Chinnayel
ka and 

McShane 
(2005) 
(83) 

FITC/TRITC 
donor-dextran/ 
acceptor- apo-

glucose oxidase 
N/A 480/ 500-625 

nm 
fluorescence 

intensity 

67% change 
over 0-720 

mg/dL 

demonstrated the use of 
apo-glucose oxidase and 
polymer microcapsule 

Ibey et 
al.(2005) 

(114) 
AF594/AF647 

donor-
glycodendrimer/
acceptor-ConA 

N/A 610/ 610-835 
nm 

fluorescence 
intensity 

67% change 
over 0-600 

mg/dL 

demonstrated the 
feasibility of using a 
glycodendrimer to 

replace dextran in the 
competitive binding 

system 

Liang et 
al. (2005) 

(57) 
AF568/AF647 

donor-
dextran/accepto

r-ConA 
82 568/600 nm Frequency-

domain 

67% change 
over 0-

224mg/dL 

demonstrated that 
frequency-domain 

measurement can be used 
to extract FRET decay 

kinetics 

Blagoi et 
al. 

(2005)(46) 
FITC/Texas Red 

donor-ConA-
polystyrene 

particles/accept
or-dextran 

N/A 470/490-
700nm 

Fluorescence 
intensity N/A 

demonstrated the use of 
polystyrene particles 

labeling with FITC-ConA 
for screen carbohydrates 

Chinnayel
ka and 

McShane 
(2006)(11

5) 

Cy5/TRITC 
donor-apo-

GOX/acceptor-
dextran 

N/A 543/560-725 
nm 

Fluorescence 
intensity 0-720 mg/dL 

demonstrated the use of a 
long-wavelength Cy5 dye 
replacing previous FITC 

dyes 

* part of the table is reproduced from Liang et al.(57)  
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2.3 ConA-dextran FRET Affinity Sensor 

2.3.1 Properties of ConA and Dextran 

At physiological pH, 7.4, ConA is a tetramer of four identical subunits.  ConA 

exists as a dimer at low pH, <5.5.  Each subunit (MW= 26,000) has 237 amino acid 

residues and one sugar binding site specific to glucose-, mannose-, and fructose-like 

saccharides.  The cross section of each subunit in ConA is about 40×39 Å in cross 

section and each subunit is 42 Å high (116).  The tetramer (MW= 104,000) has four 

independent sugar binding sites.  The binding clefts are located 65 Å apart (117).   

Excess Mn2+, Ca2+ (1mM) is necessary for the sugar binding ability of ConA.  Table 2.3 

lists the specificity of ConA to different sugar molecules.  Although maltose and 

fructose have higher binding affinities than glucose, only glucose is presenting a 

significant amount in blood plasma and interstitial fluid (70-140mg/dL (118) ).  

 

 

Table 2.3. Association constants of  some sugar molecules to ConA (49) 
Sugar Kb (L/mol) 

Maltose* 2880 
Fructose* 1370 
Glucose# 400 
Sucrose* 526 
Dextran# 15000 

* at pH=6.2, 2˚C 
# at pH=7.2, 27˚C 
b [ ]

[ ][ ]
ConA sugarK
ConA sugar

−
=  

 
 



41 

 

Succinylated ConA (Succinyl-ConA) was also tested for glucose sensing studies 

(108).  By reacting lysine residues on ConA with succinic anhydride, the resultant, 

Succinyl-ConA exists as a dimer in neutral environment.  Changing from ConA to 

Succinyl-ConA did not show significant improvement in sensitivity and sensing range of 

glucose sensing (108,119). 

There may be a toxicity concern when using ConA within in vivo implantable 

sensors because it has been found that ConA is a T-cell mitrogen (120).  The lethal dose 

of ConA in 50% of tested animals is 41.5 mg/kg delivered intraperitoneally and 50 

mg/kg delivered intravenously.  In the study by Ballerstadt et al. (44), the amount of 

ConA in the implantable sensors was less than 0.12 µg/kg of body weight.   For the 

ConA-dextran system used in this study in a 1 cm3 implantable cubic phantom, the 

concentration was less than 12 µg/kg of body weight.  It is reasonable to expect that the 

ConA-dextran system, once implanted, will pose a minimal risk to the diabetic patients, 

especially since ConA will be immobilized and sequestered. 

Dextran is a long-chain polysaccharide with many external branches.  Dextran 

molecular weight ranges from 3000 Da to 5,000,000 Da.  Dextran is a biocompatible and 

biodegradable polymer that is widely used in surgery and medicine (121).  The 

multivalent binding between dextran and ConA are still not fully understood even 

though some published work exists to explain this receptor-ligand interaction (122). 

2.3.2 ConA-dextran Affinity System 

The principle of the ConA-dextran affinity sensor is the competitive and 

reversible binding of ConA to dextran and glucose in solution. 
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Figure 2.5 illustrates the FRET effects in ConA-dextran affinity system. The 

following reversible reaction takes place in the sensing system: 

1kConA glucose ConA- glucose⎯⎯→+ ←⎯⎯     (2.12) 

                     (receptor)   (analyte) 

2kConA dextran ConA dextran⎯⎯→+ −←⎯⎯    (2.13) 

                    (receptor)   (multivalent ligand) 

 

 

 
Figure 2.5. ConA-dextran affinity sensing system in presence of glucose in solution. 
 
 
 

The first use of ConA-dextran affinity system to monitor glucose concentration 

was pioneered by Schultz et al.(48) As shown in Table 2.2, followed research by other 

groups focused on how to improve the sensitivity, stability, reversibility, and sensing 

ranging, of the system in several different ways such as: (i) changing the donor-acceptor 

FRET pairs (32,109); (ii) replacing the dextran with other sugar molecule or dendrimers 

(51,114); (iii) introducing microspheres into the system as “hosts” for the protein ConA 
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and dextran (40,41); (iv) applying time-resolved measurements instead of intensity 

measurements (50,54); and (v) carrying out in vivo measurements using implantable 

microspheres (41).  This research focused on analysis of the FRET decay kinetics within 

the affinity system using FD measurements.  Presented next are methodologies for 

fluorescence decay kinetics and light propagation in scattering media as a prelude to the 

results.  
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3. METHODS: FLUORESCENCE DECAY KINETICS, LIGHT 

PROPAGATION IN FDPM 

3.1 Fluorescence Decay Kinetics with and without FRET Process 

3.1.1 Fluorescence Decay Kinetics without FRET 

Fluorescence decay kinetics describes the general process of fluorescence 

emission when fluorophores return from the excited energy states to the ground energy 

states.  Table 3.1 provides an overview of fluorescence decay kinetics without FRET and 

shows that, different fluorophores follow different decay kinetics.  Two-exponential 

decay kinetics are widely employed in fluorescence sensing systems (123).  Our 

previous results showed that the average lifetime τavg, which could be easily extracted 

from experimental measurements, can be used to describe multi-exponential or 

stretched-exponential decay kinetics (123).  

3.1.2 FRET Decay Kinetics 

In a homogenous solution, the distance distribution of acceptors around a donor 

can be described as the probability function ρ(r), where ( )
0

R
r drρ∫  is the number of 

acceptor molecules in a spherical volume of radius R. 
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Table 3.1. Overview of fluorescence decay kinetics model without presence of FRET in 
non-scattering solution.  All the models are normalized to the incident intensity I0 at time 
zero. 

Decay 
kinetics Equation Comments Example/

reference 

Single-
exponential 

 the simplest 
decay kinetics 

model 

DTTCI 
(124) ICG 

Multiple-
exponential  

fluorophores 
resides in 
different 

environments 
aj is the pre-
exponential 

factor 

(26) 

Two-
exponential  

fluorophore 
molecules exist 
two different 

form in solution 

SNAFL 
SNARF 

(125) 

Stretched-
exponential  

fluorophore 
dyes are 

quenched by a 
non-fluorescent 
agent. α and β 
are functions of 

the diffusion 
coefficients of 
the fluorophore 
and quencher 

collagen 
elastin 

(126,127) 

Single-
stretched-

exponential 
 

potential 
fluorescence 
quenching of 

one fluorophore 
by another 

(123) 
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t
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−

=

( ) 1 2
1 2

t t
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− −
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stI t e α β− −=
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single-st 1 1 2( ) exp( / ) exp( )I t a t a t tτ α β= − + − −
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/
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n
j
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τ
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= ∑
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If the donor fluorophore has a single lifetime, τ0, and it follows the single-

exponential decay, then in the presence of acceptors, the donor fluorescence, I(t), in 

response to an incident excitation pulse I0 at time zero, can be described as follows:  

                     (3.1) 

 

where kT(r) is the distance-dependent energy transfer rate as defined in Equation 2.5.  

Combining Equation 2.5 with the above equation, the donor fluorescence can be written 

as follows: 

          dr
r
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               (3.2) 

To date, most FRET studies for sensing and imaging still estimate a single D-A 

distance and assume ρ(r) is equal to unity (128).   Only a few studies have provided 

analytical evaluation of ρ(r) (34).  For a random, homogenous, three-dimensional 

distribution of acceptors (no diffusion and very low donor concentration), the well-

known Förster model predicts the time-dependent donor fluorescence, I(t) (26): 

1/ 2
0 0( ) / ( / )I t exp t tτ γ τ⎡ ⎤= − −⎣ ⎦      (3.3) 

where ACA /][=γ , [A] is the acceptor concentration and CA is the critical acceptor 

concentration, ( )2 3 3
03 2A AC N Rπ= .   

 When the energy transfer between two donors is considered, the Huber’s model 

modified the expression of  time-dependent donor fluorescence (129): 

1
2

0 0( ) / ( / 2 )( / )DI t exp t tτ γ γ τ⎡ ⎤= − − +⎣ ⎦     (3.4) 

[ ]}{( )0 0
( ) / ( ) 1 ( )TI t exp t dr r exp tk rτ ρ

∞
= − − − −∫
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where  3
00.135 ( )DD

D AC N R= , [D] is the acceptor concentration, and CD is the critical donor 

concentration,  [ ] /D DD Cγ = .  R0
DD is the critical energy transfer distance for donor-donor 

energy transfer. 

Gosele and Hausers’ model considered the diffusion of donor and acceptor 

molecules in solution and resulting in the following expressions for time-dependent 

donor fluorescence (130): 

 (3.5) 

  (3.6) 

where D is the sum of diffusion coefficients of the acceptor and donor molecules; *r  is 

the interaction radius; and rAD is the collision distance. 

 In solid and liquid media where the donor and acceptors are embedded in 

restricted geometries, Klafter and Blumen proposed a 3D fractal FRET decay model 

(131): 

1
2

0 0( ) / ( / )I t exp t B tτ τ⎡ ⎤= − −⎣ ⎦     (3.7) 

where B is a time-dependent factor.  All these derived models can be summarized as a 

generalized Förster model as shown in Table 3.2: 

1 1( ) 2I t exp t t
β

γ
α α

⎡ ⎤⎛ ⎞= − −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

     (3.8) 

where α (ns) is the unquenched lifetime of the donor, and the parameter β is related to 

dimensionality of the affinity system (1/2 for three dimensional and 1/3 for two 

dimensional systems). 

1
2*

0 0( ) / 4 [ ] ( / )AI t exp t D r A N t tτ π γ τ⎡ ⎤= − − −⎣ ⎦
*

D Ar r>

1
22

0( ) / 4 [ ] 8 [ ] ( )D A A D A AI t exp t D r A N t r A N D tτ π π⎡ ⎤= − − −⎣ ⎦
*
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Table 3.2. Summary of FRET decay kinetics models in homogenous, non-scattering 
medium. 

FRET 
decay 
model 

Description α 2γ β 

Förster 
(26) 

3D, no diffusion, 
homogeneous τ0 γ 1/2 or 1/3 

Huber 
(129) 

Donor-donor 
energy transfer was 

also considered 
τ0 

 
1/2 

Gösele 
(130) 

Added donor-
acceptor diffusion 

influence 

τ0 
 

N/A 
 

N/A 

1/2 
 

1/2 
Blumen 

and 
Klafter 
(131) 

Solid or liquid, 
condensed media τ0 B 1/2 

 

 
Rolinski et al. recently pioneered an approach to invert Equation 3.1 in order to 

determine the D-A distance distribution function (102,110,111,132).  They transformed 

Equation 3.1 into a Fredholm equation and solved for the D-A distribution subject to the 

constraint that the distance between the D-A pair cannot be less than that allowable by 

their molecular structures.  They expanded the unknown ρ(r) into a finite series (as 

shown in Equation 3.9) of orthonormal Laguerre polynomials and optimized the solution 

for the coefficient of the polynomial which provides the best fit to I(t) from time-domain 

measurements (133).  

( ) ( )1
0 0

0

0 0

s s
i i

i

r d
r

R a L r R r d
ρ ∞

−

=

≤ ≤⎧
⎪= ⎨ ≥⎪⎩

∑
    (3.9) 

2
Dγ γ⎛ ⎞+⎜ ⎟

⎝ ⎠
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where ( )0
s
iL r R  is the infinite series of orthonormal Laguerro polynomials and s

ia are the 

coefficients.  The parameter d is the minimum donor-acceptor distance.   

Using time-domain measurements, Rolinski et al. showed that the distribution 

function can be used to monitor glucose concentration in a solution-based FRET system 

of APC and MG (134,135).  Recently they compared ρ(r) from APC-MG FRET system 

with rhodamine 123-MG FRET system (110).  The two systems have similar Förster 

distances but different molecule sizes and therefore should have different ρ(r).  However 

their simulated ρ(r) from time-domain experiments showed similar trends in both 

systems.  The discrepancy between simulation results and biophysical theory indicates 

more work should be done in the future to improve the inverse solution technique.  

3.2 Measurement of Fluorescence Decay Kinetics with or without FRET 

Fluorescence decay kinetics can be measured using one of three broad classes of 

measurements: (i) continuous wave (CW); (ii) time-domain measurements which 

involve a pulse of excitation light; or (iii) FD measurements which involve a modulated 

light.  The latter two measurements are shown in Figure 3.1 and consist of monitoring 

the time-response of the fluorescence emission.   
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Figure 3.1. Illustration of time-domain (upper figure) and FD (lower figure) to measure 
fluorescence decay kinetics with or without the presence of FRET. 
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In time-domain measurements, a pulse of excitation light contacts the sample and 

the pulse generating a fluorescence light which is recorded, and whose width indicates 

the distribution of activated states.  Typically the measurement of I(t) can be fit to one of 

a number of decay kinetics models as discussed above.  Difficulties with time-domain 

measurements involve: (i) a reduced signal to noise ratio (SNR) in the fluorescence 

detected; and (ii) long data acquisition time.  FD approaches represent a time-resolved 

measurement conducted in frequency-space.  Intensity modulated excitation light 

produces fluorescent light modulated at the same frequency as the incident excitation 

light, but phase-shifted and amplitude attenuated relative to the incident light.  Upon 

conducting measurements across a range of modulation frequencies (kHz – GHz), the 

same temporal information obtained from time-domain techniques can be achieved using 

FD or “phase-modulation” approaches.  The drawback to conventional phase modulation 

approaches is the need for a “reference” dye in order to accurately report the phase-delay 

independent of instrument responses (32).  The advantage of conducting time-dependent 

measurements, whether in time- or frequency-domains, is that they are independent of 

the amount of fluorophore present, thereby enabling an accurate sensing approach for 

fluorescence decay kinetics without the issue of fluorophore loading.  However, without 

proper analysis of time-dependent measurements, the presence of tissue-like scattering 

creates a photon “time-of-flight” which impacts the phase and amplitude of FD 

measurements as well as the breadth of the re-emitted fluorescence pulse in time-domain 

measurements.  Previous research in our group has demonstrated that the presence of 

scattering can be properly taken into account and eliminate the need for a “reference” 
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measurement using conventional phase modulation approaches (30,123).  In this 

research, we used FD measurement to analysis the FRET decay kinetics.  A more 

rigorous discussion of FD measurement is provided in section 3.3 

3.3 Decay Kinetics Analysis in Non-scattering and Scattering Solutions 

3.3.1 Decay Kinetics Analysis in Non-scattering Solutions 

Frequency-domain fluorescence lifetime measurement in non-scattering solution 

involves: (i) excitation of a fluorophore by a light source whose intensity is modulated at 

frequency ω, and (ii) detection of the resulting fluorescence light perpendicular to the 

incident light.  Figure 3.2 (a) illustrates the physical process of FD measurement of 

decay kinetics in dilute, non-scattering solution.  In dilute solution, the measured 

fluorescence phase shift (θ) and modulation ( ( )
( )

( )
( )

ac AC
M

dc DC
ω ω
ω ω

= ) relative to the source 

are functions of the fluorophore decay kinetics model.   Here are three situations: 
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(1) For fluorophores which follow single-exponential decay kinetics as shown in 

Table 3.1, the phase shift and modulation can be directly related with fluorophore 

lifetime as shown: 

( )M arctanθ ωτ=     (3.10) 

( )21 1
M

M ωτ= +                             (3.11) 

where ω is the modulation frequency (usually in MHz); τ  is the lifetime of the 

fluorophore (usually several nanoseconds).  In the experiment, the choice of modulation 

frequency is very important for choosing RF frequency synthesizer.  As shown in Figure 

3.3, for lifetime change from 1.0 to 0.5 ns (e.g. Cy5 dye), the useful frequency range can 

be from 30 MHz to 1000 MHz.  For lifetime change from 10 ns to 20 ns, the useful 

frequency range will be from 0 MHz to 100 MHz.   In my research, the fluorophore we 

used are (1) pH sensitive C-SNAFL-1 with lifetime 3.65 ns at pH = 7.0 (136); and (2) 

AF568 with lifetime 3.6 ns (57).   Therefore the suitable modulation frequency range is 

within 0-200 MHz. 
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Figure 3.2. Frequency-domain lifetime measurement in (a) non-scattering solution; and 
(b) scattering solution. Figure (c) illustrates the amplitude attenuation AC/ac, phase shift 
θ, and the mean intensity DC/dc. 
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Figure 3.3. Phase shift change (upper figure) as the function of modulation frequency at 
different fluorescence lifetimes. Modulation (lower figure) as the function of modulation 
frequency at different fluorophore lifetimes. The two figures come from simulation 
results of Equation 3.10 and 3.11. 
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(2) For fluorophore which follows multi- or stretched- exponential decay kinetics 

as shown in Table 3.1, the measured phase shift and modulation can related to the 

lifetime as shown in the following equations: 

( )

∫

∫
∞

∞

=

0

0

)(

)(
)(

dttI

dttsintI
N

ω
ω     (3.12) 

( )

∫

∫
∞

∞

=

0

0

)(

)(
)(

dttI

dttcostI
P

ω
ω    (3.13) 

 

( ) ( )
( )M

N
arctan

P
ω

θ ω
ω

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
   (3.14) 

( ) ( )2 2( ) ( )MM N Pω ω ω= +    (3.15) 

where N(ω) is the imaginary part of Fourier transform of the decay kinetics, I(t) and the 

P(ω) is the real part of the Fourier transform.  The phase-shift and modulation ratio can 

be related to those unknown parameters in decay kinetics models through N(ω) and P(ω).   

Those unknown parameters can be determined from the best fit between model predicted 

values (θp(ω) and Mp(ω)) and experimental measured (θM(ω) and MM(ω)) as indicated by 

χ2, 

( ) ( ) ( ) ( )2 2

2 1 M p M pM M
M

θ ω θ ω ω ω
χ

ν δθ δ

⎧ ⎫− −⎛ ⎞ ⎛ ⎞⎪ ⎪= +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

∑ ∑   (3.16) 

where δθ and δM are the estimated uncertainties in the phase shift and modulation results 

at each modulation frequency.  The value of χ2 is expected to be close to one for the 
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correct model, and depending upon the estimated δθ and δM (26).  In this research, the 

MatLab optimization toolbox (The Mathworks Inc., Natick, MA) was used to minimize 

χ2.   

(3) For fluorophores which follow FRET decay kinetics model, e.g. ConA-

dextran affinity glucose sensing system, a generalized Förster model shown in Equation 

3.8 is applied by taking a Fourier transform of Equation 3.8 as shown in Equation 3.17,  

                       ( ) ( ) ( )
0 0

1 12F I t exp i t dt exp t t i t dt
β

ω ω γ ω
α α

∞ ∞ ⎡ ⎤⎛ ⎞= = − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∫ ∫                       (3.17)  

The θ(ω) and M(ω) can be obtained from F(ω) as: 

( ) ( )
( )P

IMAG F
arctan

REAL F
ω

θ ω
ω

⎧ ⎫⎡ ⎤⎪ ⎪⎣ ⎦= ⎨ ⎬⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭
    (3.18) 

( ) [ ]( ) [ ]( )2 2
( ) ( )pM IMAG F REAL Fω ω ω= +    (3.19) 

The parameters of α, β, and γ can be determined from the best fit between model 

predicted values (θp(ω) and Mp(ω)) and experimental values (θM(ω) and MM(ω) ) as 

indicated by χ2. 
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3.3.2 Decay Kinetics Analysis in Scattering Solution 

As illustrated in Figure 3.2 (b), fluorescence measurements in the presence of 

tissue-like scattering need to take into account: (i) the propagation of excitation light, (ii) 

the fluorescence lifetime of the dye, and (iii) the propagation of the fluorescence light 

emitted by the dye before being detected.  Therefore, the detected phase-shift and 

modulation (θM(ω) and MM(ω)) depend upon the medium optical properties (µs
’ and µa) 

as well as the fluorescent decay kinetics.  Previously we successfully employed the 

diffusion approximation to the radiative transfer equation to predict the fluorescence 

photon density measured with FD techniques (30,58,123,124,136).  The details of the 

optical diffusion equation, the generated fluorescence photon density, and the 

relationships between the photon-density and the measurable quantities (θM and MM) 

have been discussed in the previous papers (30,124,137).  Below, a brief synopsis is 

provided. 

3.3.2.1 Optical Diffusion Equation and Generated Fluorescence Photon Density 

When light launches onto scattering solutions or tissue surface, the propagation 

of light is attenuated and scattered due to sample scattering and absorption.  When 

photons of excitation light activate the fluorophores inside the sample, the generated 

fluorescence light is again attenuated and scattered due to the scattering and absorption 

of the sample.  Figure 3.4 illustrates this physical process.   
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Figure 3.4. Illustration of fluorescence light propagation in scattering media. When 
scattered photons of the excitation light hit the fluorophores, the generated fluorescence 
light is again attenuated and scattered by the scattering media. 

 

 

The following two coupled optical diffusion equation can be used to describe for 

the propagation of fluorescence light for a homogenous scattering media: 

2 (r, ) (r, ) (r, )x x ax x x
iD U U Sωω µ ω ω
ν

∇ ⎛ ⎞− + + =⎜ ⎟
⎝ ⎠

  (3.20) 

( ) ( ) ( )2
am

ir, + µ + r, = r,m m m mD U U Sωω ω ω
ν

⎛ ⎞− ∇ ⎜ ⎟
⎝ ⎠

  (3.21) 

Where the subscript x represents the excitation and the subscript m represents the 

emission.  Accordingly µax is the absorption coefficient at the excitation wavelength.  

µam is the absorption coefficient at the emission wavelength.  µaxf is the absorption 

coefficient owing to fluorophores at the excitation wavelength.  v is the speed of light in 

the solution, cv
n

= , n is the refractive index of the medium.  D is the diffusion coefficient 

which is related to the isotropic scattering coefficient µs’ and absorption coefficient µa, 
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through the relationship: ( ) 1,3 a sD µ µ
−

⎡ ⎤= +⎣ ⎦ .  The diffusion coefficients at the excitation 

and emission wavelength are denoted by Dx and the Dm respectively.  Sx(r,ω) is the 

excitation source term.  Sm(r,ω) is the emission source term due to the generation of 

fluorescent photons based on the excitation photon density Ux(r,ω) weighted by 

fluorescence decay kinetics.  Um(r,ω) is generated fluorescence photon-density.  The 

emission source in frequency domain for single, multi-, and stretched exponential decay 

kinetics and FRET exponential decay are: 

1( , ) ( , )
1m afx x mS r v U r Q

i
ω µ ω ζ

ωτ
=

−
   (3.22) 

( , ) ( , )
1

j
m afx x m

j j

a
S r v U r Q

i
ω µ ω ζ

ωτ
⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠
∑    (3.23) 

exp
0

( , ) ( ) ( ) ( , )m afx st x mS r v I t exp iwt dt U r Qω µ ω ζ
∞

−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫    (3.24) 

0

1 1( , ) 2 ( , )m afx x mS r v exp t t i t dt U r Q
β

ω µ γ ω ω ζ
α α

∞⎛ ⎞⎡ ⎤⎛ ⎞= − − +⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦⎝ ⎠
∫   (3.25) 

where mζ  is the detection efficiency factor of the system at the emission wavelength 

(which contains the system spectral response and the fluorophore spectral emission 

efficiency (30)). Q is the quantum efficiency of the fluorophore.  

Upon using Equations 3.22-3.25, the generated fluorescence photon-density 

Um(r,ω) can then be solved for single, multi- and stretched-exponential, and FRET decay 

kinetics in an infinite scattering medium: 
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( )
( )

[ ] [ ]{ }, 2
1( , )

4 1
afx m

m single
x m

Q S
U r A B i B A

D D r
µ ξ ω

ω ωτ ωτ
πν ωτ

⎡ ⎤
= − + +⎢ ⎥

+⎢ ⎥⎣ ⎦
  (3.26) 

( ) ( ), ( , )
4 1
afx jm

m multi
x m j j

aQ S
U r Α i

D D r iw
µ ξ ω

ω Β
πν τ

⎧ ⎫⎛ ⎞⎪ ⎪= + ⎜ ⎟⎨ ⎬⎜ ⎟−⎪ ⎪⎝ ⎠⎩ ⎭
∑    (3.27) 

 

( ) ( ){ } ( )
0

, ( , ) ( )
4
afx m

m stretched
x m

Q S
U r i I t exp i t dtst expD D r

µ ξ ω
ω Α Β ω

πν

∞ ⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= + ∫ −
  (3.28) 

( ) ( ){ }
0

.
1( , ) 2

4
afx m

m FRET
x m

Q S tU r i exp t i t dt
D D r

βµ ξ ω
ω Α Β γ ω

πν α α

∞
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞= + − − +⎜ ⎟∫ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  (3.29) 

 
where S(ω) is the source strength (in photons per second). i is a complex number 

( 1i = − ). The terms A and B are functions of optical properties (µsx
’, µax, µsm

’ and µam), 

v and ω (30,137). 

( ) ( ) ( ) ( )
( ) 22

, ,
,

r r
A r

η ω ξ ζ ω ρ ω
ω

ξ ρ ω

+
=

+ ⎡ ⎤⎣ ⎦
    (3.30) 

( ) ( ) ( ) ( )
( ) 22

, ,
,

r r
B r

ζ ω ξ η ω ρ ω
ω

ξ ρ ω

−
=

+ ⎡ ⎤⎣ ⎦
    (3.31) 

         ( ) ( ) ( ) ( ) ( ), x x m mr exp r cos r exp r cos rη ω β ω γ ω β ω γ ω= − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦   (3.32) 

( ) ( ) ( ) ( ) ( ), x x m mr exp r sin r exp r sin rζ ω β ω γ ω β ω γ ω= − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦   (3.33) 
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am ax

m xD D
µ µξ = −      (3.34) 

( ) ( )x m

x m

D D
D D

ω
ρ ω

ν
−

= −    (3.35) 

3.3.2.2 Relationships between Photon Density and Measurable Quantities (θM and mM) 

For fluorophores undergoing single-exponential decay kinetics, the relationship 

between fluorescence photon-density to the measured phase shift, θM, and modulation 

ratio MM, are shown in the following Equations 3.36 and 3.37.  For fluorophores 

undergoing multi-exponential, the measured phase shift, θM, and modulation ratio, MM, 

are shown in following Equation 3.38 and 3.39. 

 ( ), ,M single
B Ar arctan
A B

ωτθ ω
ωτ

+⎡ ⎤= ⎢ ⎥−⎣ ⎦
    (3.36) 

 ( )
( ) ( )( )2 2

, ,M single

A B B A
m r

A

ωτ ωτ
ω

− + +
=    (3.37) 

( )
2 2 2 2

,

2 2 2 2

1 1
,

1 1

j j j

j jj j
M multi j j j

j jj j

a aB A
r arctan a aA B

ωτ
ω τ ω τ

θ ω ωτ
ω τ ω τ

⎛ ⎞+⎜ ⎟+ +
⎜ ⎟=
⎜ ⎟−⎜ ⎟+ +⎝ ⎠

∑ ∑

∑ ∑
   (3.38) 

( )

1
2 2 2

2 2 2 2 2 2 2 2

,

1 1 1 1
,

j j j j j j

j j j jj j j j

M multi

a a a aA B B A

m r
A

ωτ ωτ
ω τ ω τ ω τ ω τ

ω

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪− + +⎨ ⎬⎢ ⎥ ⎢ ⎥+ + + +⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭=

∑ ∑ ∑ ∑

 

(3.39) 

For fluorophores exhibiting stretched-exponential or FRET decay kinetics, 

numerical integration is needed to evaluate the integral in both equations 3.28 and 3.29.  
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The relationship between fluorescence photon-density to the measured phase shift θM 

and modulation ratio MM can be obtained by substitution of equations 3.28 and 3.29 into 

equations 3.18 and 3.19. 
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4. MEASUREMENTS OF FRET IN A GLUCOSE-SENSITIVE AFFINITY 

SYSTEM WITH FREQUENCY-DOMAIN LIFETIME SPECTROSCOPY∗ 

4.1 Introduction 

Most quantitative measurements of FRET optical glucose sensors utilize 

intensity-based methods (24,40,44,48,52).  Unfortunately, intensity measurements are 

functions of not only glucose concentration, but also of fluorophore concentration.  The 

measurement of intensity may also be influenced by photobleaching as well as 

instrumentation response function.  Furthermore, when used within tissues for in vivo 

sensing, the attenuation of intensity depends upon the varying optical properties of the 

tissue.  As a consequence, intensity-based measurements of FRET for a clinically 

relevant and implantable glucose sensor would require frequent in situ calibrations (24).  

As an alternative method, time-dependent measurement techniques offer an opportunity 

to assess FRET affects not simply from the amount of light collected, but from the 

temporal decay kinetics.  Both time- and frequency-domain fluorescence lifetime 

spectroscopy approaches enable direct time assessment of decay kinetics but both can 

also be impacted by photon “time-of-flight” in tissues.   

___________ 
∗ Part of this section is reproduced from “Measurements of FRET in a glucose-sensitive affinity system 
with frequency-domain lifetime spectroscopy,” by Feng Liang, Tianshu Pan, and Eva Sevick-Muraca, 
Photochemistry and Photobiology, 2005, 81, 1386-1394. with the permission of the American Society for 
Photobiology. 
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Previously, we and others have demonstrated the ability to measure simple decay 

kinetics using frequency-domain approaches to assess the lifetime of fluorophores in 

tissue-like scattering solutions (30,123,124,136,137) as well as of fluorophores 

immobilized within hydrogels (58).  The framework for extracting fluorophore decay 

kinetics from multiple scattered light is found in references (30,123,124,136,137).  Yet 

to date, there have been no reports to extend quantitative, time-dependent FRET sensing 

under conditions of tissue-like scattering.  There are, however, few reports in the 

literature which employ time-dependent techniques to monitor FRET of the ConA 

dextran affinity system in scatter-free solutions (50,53,132). 

In the first use of time dependent measurements for FRET sensing found in the 

literature, Lakowicz and Maliwal (54) employed frequency-domain measurement of 

phase-shift to infer FRET changes associated with glucose binding to ConA.  Using 

time-domain methods and a two-exponential decay model, Tolosa et al. (51) 

subsequently measured the average lifetime change in order to assess glucose 

concentration changes.  Using the red-shifted FRET pair system interrogated with time 

domain measurements, Rolinski and his coworkers (50,53,102,110,111,132,138) used a 

Förster-type equation in order to extract the changes in the distribution of donor-acceptor 

distances as a function of glucose concentration and as a direct measure of the 

competitive binding between ConA and dextran.   Their results represented the first use 

of time-dependent measurements to directly elucidate physical parameters which govern 

FRET decay kinetics. 
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In this work, we seek to apply FRET sensing using frequency-domain 

approaches in order to relate parameters from a Förster-type equation in a scatter-free 

medium for validation of the donor/acceptor ConA/dextran affinity system for 

characterization of competitive glucose binding prior to its immobilization for 

implantation in tissues.  To date, FRET decay kinetics of the ConA/dextran affinity 

system have not been quantitatively analyzed from frequency-domain measurements.  In 

the following, we first describe the affinity system, measurement approach, and decay 

kinetic analyses from frequency-domain measurements and then compare our results 

with those using time-domain measurements reported in the literature. 

4.2 Materials and Methods 

4.2.1 Donor-dextran/acceptor-ConA Affinity System. 

The protein, ConA, conjugated with AF647 at a labeling ratio of 2.8, was 

purchased from Molecular Probes (Eugene, OR).   MOPS (0.1 M, pH = 7.4) buffer 

consisting of 1mM Mn2+, Ca2+, and 2mM NaN3 was used to dissolve the acceptor-ConA 

conjugate as it has been shown that Mn2+ and Ca2+ need to be present in the ConA 

solution to maintain the saccharide binding properties (139).  The acceptor-ConA 

solution was then centrifuged to remove precipitates.  The final acceptor-ConA 

concentration was determined by subtracting the weight of precipitate from the total 

weight of ConA.  D-glucose (Sigma-Aldrich, St. Louis, MO) was dissolved into MOPS 

buffer solution at the concentration of 300 mg/mL and stored prior to experiments. 
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Amino dextran (MW 2 000 000; Helix Research Company, Springfield, OR) and 

AF568 carboxylic acid with succinimidyl ester (Molecular Probes, Eugene, OR) were 

conjugated following the Inman method (140).  Briefly, prior to incubation of dextran 

with AF568 succinimidyl ester, 10 mg amino dextran was dissolved in 0.4 mL sodium 

bicarbonate buffer (pH = 8.3) and then vortexed continuously for 5 mins.  AF 568 (1 mg) 

was dissolved in 0.1 mL DMSO (dimethyl sulfoxide, Sigma-Aldrich, St. Louis, MO) and 

then mixed with dextran solution. After 4 hrs incubation, the resulting conjugate was 

separated from the unreacted dye by overnight dialysis using Slide-A-Lyzer™ dialysis 

cassette (MWCO = 3 000; Pierce Inc. Rockford, IL).  The AF568 to dextran ratio was 

demonstrated to be between 66 and 68 on the basis of the known dextran concentration, 

the assumption of 15% loss of dextran, and the AF568 excitation spectra.  For 

simplification, in the remainder of this contribution, the dextran-donor or acceptor-ConA 

concentrations are denoted on the basis of moles of dextran or ConA. 

4.2.2 Excitation and Emission Spectra. 

Steady-state fluorescence measurements were made using a SPEX Fluorolog II 

spectrofluormeter (HORIBA Jobin Yvon Inc. Edison, NJ).  The excitation wavelength 

was 568 nm and emission was collected from 588 nm to 720 nm in 2 nm increments and 

with a 1 sec integration time.  The sample solution was held in semi-micro cells (Starna 

Cells Inc., Atascadero, CA) with right-angle observation and central illumination. 
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4.2.3 Frequency-domain Lifetime Spectroscopy Measurements.   

Lifetime measurements were conducted with a frequency-domain lifetime 

spectroscopy system previously described (30,136).  Briefly, a continuous wave (CW) 

light (568 nm) from a wavelength tunable Ar-Kr mixed gas laser (model 643, Melles 

Griot, Boulder, CO) was modulated by an external electro-optic modulator (EOM) 

(model 350-160, Conoptics, Danbury, CT).  The photodetectors were two 

photomultiplier tubes (PMT, model H6573, Hamamatsu, Tokyo, Japan) that were gain-

modulated by an amplified RF signal from a master frequency synthesizer (PTS310, PTS 

Inc., Littleton, MA).  The master frequency synthesizer was phase locked to another 

slave frequency synthesizer (Marconi Instruments Signal Generator 2022A, Mountain 

View, CA) which drove the EOM at the same frequency plus an offset of 100 Hz for 

heterodyne detection.  A portion of the incident excitation light was directed to a 

reference PMT which was outfitted with a long pass filter (LPF550, CVI laser, 

Albuquerque, NM) which slightly improved the measurement of the reference excitation 

signal.  The sample PMT was outfitted with long pass filter (LPF500, CVI laser) and 

band-pass filter (600 nm, 8 nm FWHM, CVI laser) to collect the fluorescence light from 

the sample.  For each sample of varying acceptor-ConA or glucose concentration, the 

phase-shift and modulation-ratio were taken at the sample PMT as a function of 

modulation frequency (45 to 135 MHz) and reported relative to the reference PMT.  For 

the fluorophores employed, the useful modulation frequency range of 35-145 MHz 

enabled collection of sufficient data for evaluation of decay kinetics (30).  The reference 

fluorophore of AF568 (with lifetime of 3.6 ns (141)) was used to correct the 
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instrumentation response function according to the methods described elsewhere (123).  

We measured the lifetime of free and conjugated AF568 and found that the AF568 

lifetime remained constant at 3.6 nsec and was unchanged with conjugation.  

4.2.4 Optimization of FRET Affinity System.   

One of the advantages of the ConA-dextran system is the flexibility of (i) 

measuring either donor or acceptor emission, (ii) changing the donor-dextran 

concentration; and (iii) changing the acceptor-ConA concentration in order to change the 

sensitivity and sensing range (48,52,108).  To optimize the AF568/AF647 dextran-ConA 

FRET system for maximum sensitivity to glucose concentrations ranging from 0 to 200 

mg/dL and sensing range up to 700 mg/dL, we (i) evaluated changes in donor-dextran 

and acceptor-ConA fluorescence intensities as a function of glucose concentration up to 

500 mg/dL in order to choose the most sensitive FRET measurement wavelength for 

monitoring changes in glucose, and once determined, (ii) assessed its emission intensity 

as a function of concentration in order to maximize measurement sensitivity and 

minimize attenuation owing to inner filter effects.  Next, at the optimal concentration of 

the conjugated FRET dye, we evaluated the most sensitive concentration of the 

corresponding conjugated FRET dye needed to achieve the desired sensing range and 

sensitivity by monitoring the changes in phase-shift from frequency-domain lifetime 

spectroscopy.   From all of these intensity and frequency-domain measurements, we 

determined the optimal emission wavelength as well as the optimal donor-dextran and 

acceptor-ConA concentrations for evaluating the FRET decay kinetics as described 

below. 
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4.2.5 Evaluations of FRET Decay Kinetics from Frequency-domain Measurement.   

At the optimal donor-dextran concentration determined from the above 

procedures, aliquots of 46.24 µM acceptor-ConA solution were added in six increments 

to render the final optimal acceptor-ConA concentration determined from the above 

procedures.  Thirty seconds after each aliquot addition, frequency-domain fluorescence 

lifetime measurements were conducted.   Measurements were performed with duplicate 

samples and each measurement was conducted 4 times on each sample.    

At the optimal donor-dextran and acceptor-ConA concentrations, aliquots of 300 

mg/dL glucose solution were added in five increments to render a final glucose 

concentration of 224 mg/dL.  Thirty seconds after each aliquot addition of glucose, 

frequency-domain fluorescence lifetime measurements were conducted.   Measurements 

were performed with duplicate samples and each measurement was conducted 4 times 

on each sample.    

In this study, we assumed FRET decay kinetics model follows the generalized 

Förster model as shown in Equation 3.8. By taking the Fourier transform of Equation 3.8 

and taking the real and imaginary parts to predict the frequency-domain measurements 

of phase and amplitude modulation (26), the measurements can be related in terms of a 

function of α, β, and γ.  These parameters were determined from the best fit between 

model predicted values (θP and MP) and experimental values (θM and MM ) as indicated 

by χ2 (142).  
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While Equation 3.8 was used to evaluate the FRET decay kinetics, we also 

evaluated the FRET changes in terms of an average lifetime, τavg (30).  

4.3 Results 

4.3.1 Donor and Acceptor Characterization   

Figure 4.1 illustrates the excitation and emission spectra for the AF568 and the 

absorption and emission spectra for AF647 dye pairs.  The Förster distance for the dye 

pair is 82 Å (141) and is larger than that for all other dye pairs previously reported in 

literature (4,5,10)  as shown in Table 4.1.  In addition, the molecular weight of both 

AF568 and AF674 is less than 1300 Da and more consistent with the “point dipole” 

assumption of Förster theory (99) than that of other studies employing high molecular 

weight dye pairs found in the literature (110,138).   Finally, we found the Alexa Fluor 

dyes to be most photo-stable and pH insensitive, with good solubility in aqueous 

solutions (141). Table 4.1 presents the fluorescence properties of the AF568/AF647 

donor-acceptor pair. 

 

 

 

 

 



72 

 

wavelength(nm)
500 550 600 650 700

re
la

tiv
e 

in
te

ns
ity

 (a
.u

)

0.0

0.2

0.4

0.6

0.8

1.0

AF647EX
AF647EM
AF568EX
AF568EM

 

Figure 4.1. Normalized excitation (dashed line) and fluorescence (dashed dotted line) 
spectra of AF568-dextran (donor-dextran) and the normalized absorption (solid line) and 
fluorescence (dotted line) spectra of AF647-ConA (acceptor-ConA).  For clarification 
and simplification, the donor or acceptor concentrations were denoted as the 
concentration of dextran or ConA in the entire dissertation.  
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Table 4.1. Fluorescence properties for different donor-acceptor FRET pairs used in our 
experiments and other literature: 

D-A 
Pairs Ex/Em(nm) є (M-1cm-1, 

peak value)e 
τ (ns) MW R0 (Å) Labeling 

ratio 

AF633 
(D) 632/646 159000 3.2d 1200e 1.6:1 = D: 

Con A 

QSY21 
(A) 704/NA 89600 NA 815e 

73a 
6.1 = A: 
dextran 

AF568 
(D) 578/602 88,000 3.6d 791e 66:1 = D: 

dextran 

AF647 
(A) 649/666 250,000 1.4d 1300e 

82a 
2.8:1 = A: 

Con A 

Cy5 (D) 646/664b 2.5×105 1.4b 1200b 1:1 = D: Con 
Ab 

MIMG 
(A) 584/NAb 30,000 NA NA 

35b 
1.5: 1 =A: 
dextranb 

APC (D) 650/670 2.4×106 1.8c 104,000c 1.1:1 = D: 
Con Ac 

MG (A) 620/NAc 78500 NA 485e 

59c 
1:1=A: 
dextranb 

AF647 
(D) 649/666 250000 1.4d ~1400e NA 

QSY21 
(A) 704/NA 89600 NA 815e 

80a 

NA 

a used PhotochemCAD software; bdata were provided by Tolosa et al. (51);cdata were 
provided by Rolinski et al. (50); dlifetime data were provided by Molecular Probes Inc; 
eextinction coefficient and molecular weight data were provided by Molecular Probes 
Inc. (141) 
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4.3.2 Optimization of the ConA and Dextran Affinity System 

Figure 4.2 illustrates the donor fluorescence intensity (diamonds) and acceptor 

fluorescence intensity (squares) for a solution of 3.75×10-2 µM dextran-donor and 4.95 

µM acceptor-ConA concentrations as a function of added glucose in the solution.   The 

results show that as the glucose competitively replaces the dextran from ConA binding, 

the transfer of energy from the donor decreases resulting in increased donor fluorescence.   

Unexpectedly, but similar to the results obtained by Meadows and Shultz (108), the 

acceptor emission increased, due perhaps to reduction of self-quenching.  Upon 

comparing the intensity change of donor and acceptor emission with varying glucose 

concentration, it is seen that the measurement at the donor emission wavelength has 

greater sensitivity to glucose concentration than measurement of the acceptor emission.  

For this reason, the donor fluorescence was monitored in all subsequent measurements. 

Figure 4.3 is a plot of the donor fluorescence at 602 nm as a function of the 

donor-dextran concentration in the absence of acceptor or glucose.  As the concentration 

of donor-dextran increases beyond 0.09 µM, fluorescence decreases.  We hypothesize 

that this effect is owing to the inner filter effects which distort the fluorescence spectra at 

higher concentrations.  It is also noteworthy that a limitation in the concentration of 

donor-dextran is reached in this free, non-immobilized system by precipitation of the 

conjugate due to a strong multivalency interaction (122).  Consequently, the donor-

dextran concentration in this affinity system should be 0.09 µM or lower for optimal 

measurement sensitivity.  All subsequent measurements were conducted at a donor-

dextran concentration of 0.09 µM or lower. 
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Figure 4.2. Donor (left) and acceptor (right) fluorescence intensity change (a.u.) at 602 
and 680 nm resulting from excitation at 568 nm as a function of glucose concentration 
(mg/dL).  The donor concentration was 0.0375 µM; and the acceptor concentration was 
4.95 µM.   Symbols denote measurements while the trend lines connect measurements.  
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Figure 4.3. Normalized donor fluorescence intensity (a.u.) at 602 nm following 
excitation at 568 nm as a function of donor-dextran concentration (×100 µM). The 
symbols denote experimental measurements and the dotted line is the linear fit at low 
donor concentrations. At donor-dextran concentrations above 0.09 µM (denoted by 
dotted line), inner filter effects distort the fluorescence spectra.   

 

 

Figure 4.4 illustrates an example of the phase-delay measured at 110 MHz of the 

donor fluorescence as a function of glucose concentration for two different acceptor-

ConA concentrations of 4.95 and 8.25 µM at a constant donor-dextran concentration of 

0.0375 µM.  These results show that upon increasing the acceptor-ConA concentration 

from 4.95 (open circles) to 8.25 µM (closed circles), the glucose sensing range is 

expanded but with reduced sensitivity at the lower glucose concentration which might 

better detect the life-threatening hypoglycemia.  Our findings differ from previous 

reports which show no change in sensitivity with increasing ConA concentration (48).   
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Figure 4.4. The phase-shift (degrees) at 110 MHz of donor emission at 600 nm in 
response to excitation at 568 nm as a function of glucose concentration (mg/dL). 
Symbols denote measurements for acceptor concentration of 4.95 µM (open circles) and 
8.25 µM (filled circles) at a donor-dextran concentration of 0.0375 µM.  The lines 
connecting the measurements indicate the trend lines. 
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Error bars were calculated using the standard deviation of eight measurement results.  

Measurements were conducted with concentration ratios of acceptor-ConA to donor-
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donor molecule.    If one considers a mean lifetime change in which we used an average 

lifetime decay kinetics model ( 1 1
0tan ( ) tan ( )avgθ ωτ ωτ− −∆ = − (26)), then a ~21% 

increase in donor lifetime (i.e. ( ) /o avg oτ τ τ− ) occurs when the acceptor-ConA 

concentration increases from 0 to 10.67 µM.  Here we define 0τ as the unquenched 

donor lifetime (3.6 ns) and τ  as the donor lifetime at certain acceptor-ConA 

concentration. 
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Figure 4.5. The phase-shift (degree) at 600 nm in response to excitation at 568 nm as a 
function of modulated frequency (MHz) with increasing acceptor-ConA concentrations 
as indicated in the legend. The symbols denote the average of n=8 measurements at 
various acceptor-ConA concentrations; the error bar denotes standard deviations; and the 
dotted line denotes a trend line. The donor-dextran concentration was 0.09 µM. 
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Figure 4.6. The modulation ratio at 600 nm in response to excitation at 568 nm as a 
function of modulated frequency (MHz) with increasing acceptor-ConA concentrations 
as indicated in the legend. The symbols denote the average of n=8 measurements at 
various acceptor-ConA concentrations; the error bar denotes standard deviations. The 
donor-dextran concentration was 0.09 µM. 

 

 
In our second experimental step, glucose concentrations were increased to 

competitively replace the dextran binding to ConA and thus change the distance between 

the donor and acceptor in the system (50).  Figure 4.7 and Figure 4.8 illustrate the phase-

shift and modulation ratio of the donor emission as a function of modulation frequency 

at increasing glucose concentrations for a solution with donor-dextran concentration at 

0.09 µM and the acceptor-ConA concentration at 10.67 µM.  As the glucose 

concentration increases, dextran binding to ConA is displaced by glucose which (i) 

increases the average distance between donor and acceptor molecules, (ii) decreases 
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energy transfer between the FRET pair, and (iii) increases the lifetime of the donor 

molecule.   If one considers a mean lifetime change, then a ~13% increase in donor 

lifetime occurs when the glucose concentration increases from 0 to 224 mg/dL.  While 

the refractive index as well viscosity of highly concentrated ConA-dextran solution 

could impact decay kinetics (20,143,144), the influences of viscosity and refractive 

index change are negligible at the concentrations used herein.  Based on the 

experimental results shown in Figure 4.7 and Figure 4.8, we extracted parameters α, β, 

and γ in the donor decay kinetics model using Equations 3.8 and 3.16. 

4.3.4 FRET Decay Kinetics of Donor-dextran in Response to Increasing Acceptor-ConA 

and Glucose Concentrations   

Figure 4.9 illustrates the parameter estimates of γ, β, and α as a function of 

acceptor-ConA concentration for the fluorescence lifetime phase-shift data presented in 

Figure 4.5 as well as the modulation ratio data presented in Figure 4.6.  Figure 4.9(a) 

shows an increase in the parameter γ with increasing acceptor-ConA concentration 

consistent with enhanced FRET.  Table 4.2 (a) lists the change of average donor lifetime, 

τavg, and parameter γ at increasing acceptor-ConA concentration.  We find the percentage 

change of the mean lifetime (∆τ/τ0~21%) is smaller than the percentage change of γ with 

increasing acceptor concentration (~70%, ∆γ/γmax, where γmax is parameter value at 10.67 

µM of acceptor-ConA concentration).  Figure 4.9(b) demonstrates that parameter β does 

not appear to systematically vary with acceptor concentration, but differs from the values 

expected for freely diffusible donor and acceptor encountered in two and three 

dimensions (0.27 ± 0.18).  Figure 4.9(c) also shows that the value of α does not vary 
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with acceptor concentration.  The average value of α in Figure 4.9(c) is 3.76 ± 0.13 ns 

which is close to the unquenched lifetime of 3.6 ns.  The small difference may be due to 

change of donor lifetime after conjugation with dextran.  
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Figure 4.7. The phase-shift (degree) at 600 nm in response to excitation at 568 nm 
versus modulation frequency (MHz) as a function of increasing glucose concentration 
(mg/dL) as indicated in the legend.  The symbols denote the average of n=8 
measurements at various glucose concentrations; the error bar denotes standard 
deviations; and the short-dash line denotes a trend line.  The donor-dextran concentration 
was 0.09 µM, and the acceptor-ConA concentration was 10.67 µM. 
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Figure 4.8. The modulation ratio at 600 nm in response to excitation at 568 nm versus 
modulation frequency (MHz) as a function of increasing glucose concentration (mg/dL) 
as indicated in the legend.  The symbols denote the average of n=8 measurements at 
various glucose concentrations; the error bar denotes standard deviations.  The donor-
dextran concentration was 0.09 µM, and the acceptor-ConA concentration was 10.67 µM. 
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Figure 4.9. Parameter estimates of (a) γ (dimensionless), (b) β (dimensionless) and (c) α 
(ns) as a function of acceptor-ConA concentration, based on the concentration of dextran 
is equal to 0.09 µM.  The symbols denote the average values calculated from calculated 
average phase-shifts and modulation-ratios.  The error bars denote standard deviations 
determined from the standard deviations of phase-shifts and modulation-ratios.  The 
dotted lines are the linear fits. 
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Table 4.2. Comparison of the change of donor average lifetime and the change of 
parameter γ with (a) increasing acceptor-ConA concentration; (b) increasing glucose 
concentration.  Average lifetime values are calculated from phase-shift data, assuming 
single-exponential decay kinetics. 

(a)   

acceptor-ConA 
concentration (µM) 

average lifetime 
(τavg, ns) γ 

0 3.60 0 

2.20 3.39 0.07 

4.20 3.12 0.17 

6.03 3.02 0.21 

7.70 2.89 0.52 

9.25 2.84 0.35 

10.67 2.79 0.37 

(b)     

glucose concentration 
(mg/dL) 

average lifetime 
(τavg, ns) γ 

0 2.79 0.37 

32 2.87 0.28 

64 3.03 0.05 

96 3.05 0.19 

160 3.15 0.13 

224 3.16 0.12 
 

 

Figure 4.10 illustrates the parameter estimates of γ, β, and α as a function of 

glucose concentration for the fluorescence lifetime phase-shift data presented in Figure 
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4.7 as well as the modulation ratio data presented in Figure 4.8.  Figure 4.10(a) shows 

that γ decreases with increasing glucose concentration, consistent with decreased FRET 

associated with competitive displacement of dextran from ConA.  Table 4.2 (b) lists the 

average donor lifetime, τavg, and parameter γ at increasing glucose concentration.  Upon 

comparing with the percentage change in mean lifetime (∆τ/τ0~13%), one finds that the 

percentage change of γ with increasing glucose concentration from 0 to 224 mg/dL is 

approximately 67% (∆γ/γmax).  Figure 4.10(b) demonstrates that parameter β does not 

systematically vary with glucose concentration, but expectedly differs from the values 

expected for freely diffusible donor and acceptor encountered in two and three 

dimensions (0.30 ± 0.11).  Apparently the dimensionality of the affinity system has been 

changed.  However more experiments data are required to explain the change in β.  The 

average value of the term α in Figure 4.10(c) is also 3.76 ± 0.18 ns, again consistent with 

the unquenched lifetime of the donor. 
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Figure 4.10. Parameter estimates of (a) γ (dimensionless), (b) β (dimensionless), and (c) 
α (ns) as a function of glucose concentration, based on the concentration of dextran is 
equal to 0.09 µM and the concentration of ConA is equal to 10.67 µM respectively.  The 
symbols denote the average values calculated from calculated average phase-shifts and 
modulation-ratios.  The error bars denote standard deviations determined from the 
standard deviations of phase-shifts and modulation-ratios.  The dotted lines are the linear 
fits. 
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Both Figure 4.9 and Figure 4.10 show that parameter γ may be used to 

quantitatively measure the FRET effects.  While phase-shift could be used to directly 

determine changes of glucose concentration as shown by others, we find that γ as 

opposed to phase-shift change at a single modulation-frequency (i.e. Figure 4.6) may 

increase the sensitivity of measurements of glucose concentration.  Our observation is in 

agreement with Rolinski and coworkers (50).  More results are needed to understand the 

changes in β, as the dimensionality of the pair distribution function of the conjugated 

acceptor and donor cannot be assumed to be a random in three-dimensions (50).  

In contrast to previous reports by Rolinski et al. (50) in which they found binding 

equilibrium at long times after addition of MG-dextran  to APC-ConA, we did not find a 

change of FRET decay kinetics with time using frequency-domain measurements 30 

seconds after adding AF647-ConA to AF568-dextran.  This observation indicates that 

the ConA-dextran complex forms immediately after addition as described by Tolosa, et 

al. (51).  In another system employing Rhodamine 6G and MG as a FRET pair, Porter, et 

al. (145) also found rapid equilibrium of binding as indicated by FRET decay parameters. 

Thus, dynamic change of FRET in the APC-MG system seen by Rolinski, et al. (50), 

could indicate that the FRET between APC and MG is due not only to the binding of 

ConA to dextran, but perhaps due to interactions between APC and MG. 

We also evaluated the existence of FRET effects between free AF568 and AF647 

in solution and found none, again an inconsistent result compared to that reported by 

Rolinski et al. (138).  Considering the smaller size and lower concentration of our 

donor/acceptor pair in comparison to the APC/MG FRET pair, this result is not 
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surprising.  However our findings confirm the lack of molecular interaction between 

AF568 and AF647 that may have existed between free APC and MG (110).   

4.4 Summary 

We have shown that frequency-domain measurements can be used to extract 

FRET decay kinetic parameters to quantify glucose concentration using the ConA-

dextran affinity system in a non-scattering solution over the range of 0 – 224 mg/dL.   

While using parameter γ could possibly provide better sensitivity for evaluating glucose 

concentration than the raw measurement of phase-shift, it is the simplicity of frequency-

domain measurements which promises a potential, low-cost sensing instrument using 

long-lived fluorophores as proposed by others (146,147) as well as short-lived 

fluorophores whose lifetimes are on the same order of magnitude as the photon “time-of-

flight” in tissues.  In order to deploy frequency-domain techniques with an implantable 

ConA-dextran sensing device, the time delays attributable to the decay kinetics of the 

ConA-dextran fluorescence affinity system will need to be distinguished from photon 

“time-of-flights” that arise from the optical properties of tissue.  Our work continues to 

accurately extract the kinetic decay parameters γ from multiply scattered donor 

fluorescence emanating from an implanted sensor in order to quantify glucose 

concentrations in vivo. 
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5. MICROSPHERE-BASED IMPLANTABLE OPTICAL SENSORS FOR PH∗ 

5.1 Introduction 

Optical methods offer unique opportunities for in situ, biomedical sensing of 

tissue analytes and metabolites owing to economics, avoidance of sample contamination, 

and in the case of fluorescence, exquisite sensitivity.  Fluorescence lifetime spectroscopy 

techniques furthermore possess advantageous insensitivity to sensing fluorophore 

concentration, photobleaching, and instrument artifacts (142), yet have not been widely 

deployed as a means for ultrasensitive detection of analytes and toxins. 

Fluorescence lifetime spectroscopy consists of exciting a fluorophore, whose 

lifetime is sensitive to an analyte (e.g. pH, Ca2+, O2, glucose, etc.) of interest, with 

intensity-modulated excitation light.  Upon activation, the fluorophore remains in an 

excited state for a mean period of time known as its 'fluorescent lifetime' (τ) before 

relaxation to the ground state either non-radiatively, or radiatively through the release of 

a fluorescent photon.  Owing to the picosecond/nanosecond lifetime of most 

fluorophores, the fluorescence signal generated in response to the intensity modulated 

excitation light is modulated at the same frequency as the excitation light, (i.e., in the 

order of 100 MHz), but is phase-shifted (θ) by as much as ninety degrees and amplitude-

attenuated (M).   

___________ 
∗ Part of this section is reproduced in part with permission form “Fluorescence lifetime spectroscopy of a 
pH-sensitive dye encapsulated in hydrogel beads,” by Eddy Kuwana, Feng Liang, and Eva Sevick-Muraca, 
Biotechnology Progress, 2004, 20, 1561-1566. Copyright 2004 American Chemical Society. 
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Typically, these frequency-domain or 'phase-modulation' measurements are 

conducted on diluted, non-scattering samples (54,125) and require a 'reference' 

measurement in order to account for temporal instrument artifacts (142).  Fluorescence 

intensity and lifetime-based measurements are the basis of chemical sensor or 

‘minimally invasive’ biosensor design employing exogenous fluorophores.  These 

designs generally consist of fluorescent dye embedded within a polymer matrix or semi 

permeable membrane placed at the tip of an optical fiber (148-150).  Immobilization of 

sensing fluorophores for in vivo diagnostics is necessary owing to their potential toxicity 

as well as the need to make repeated analyte/metabolite measurements.  PEG-based 

polymers, which are potential candidates for immobilizing sensing fluorophores, have 

previously been investigated as in vivo protein drug delivery devices, preventive agents 

for post surgical adhesion formation, and biocompatible membranes over 

electrochemical sensors (151). 

Russell et al. successfully synthesized optically transparent PEG hydrogel 

spheres in order to encapsulate a glucose sensitive FRET fluorophore system (40).  They 

studied the FRET fluorescence intensity response from this immobilized system at 

various glucose concentrations in buffered solutions.  However, intensity-based 

fluorescence measurements are susceptible to variations in fluorophore loading and 

when implanted in situ within tissues, they are sensitive to variations in tissue optical 

properties.  Since fluorescence lifetime is an intrinsic property of the fluorophore 

molecule, it is insensitive to the fluorophore concentration and excitation source 

intensity.  Nevertheless, determination of fluorescence lifetime in scattering media (such 
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as tissues) is distorted due to the “time-of-flight” associated with the migration of light.  

Hence, fluorescence lifetime spectroscopy of implantable sensors requires a model 

which accounts not only for fluorescence decay kinetics, but also photon propagation 

due to the tissue scattering. 

In previous work, we have demonstrated the enhanced sensitivity of fluorescence 

lifetime spectroscopy in the presence of multiple scattering that occurs in the NIR 

regime by means of the FDPM technique (123).  Specifically upon using a mixture of 

long lifetime DTTCI (1.33 ns) and shorter lived ICG (0.5 ns) dyes, we demonstrated that 

the small differences in frequency-domain or phase-modulation measurements of phase-

shift and amplitude-attenuation of generated fluorescence light can be amplified by the 

presence of multiple scattering caused by tissue mimicking scattering.  Furthermore, 

upon adapting a coupled photon diffusion equation to describe (i) the stochastic 

excitation and emission light propagation and (ii) the kinetics of fluorescence generation, 

we have demonstrated the ability to measure fluorescence lifetime from phase-shift 

measurements in multiply scattering solution.  In another study, we have demonstrated 

the proof of principle by successfully obtaining average lifetime in tissue-like scattering 

solutions of a pH sensing fluorophore, carboxy seminaphthofluorescein-1 (C-SNAFL-1) 

(136).  In this present study, we seek to develop implantable biosensor consisting of C-

SNAFL-1 immobilized in PEG hydrogel and perform fluorescence lifetime measurement 

within multiply scattering solutions.   
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5.2 Materials and Methods 

5.2.1 Dyes and Solutions 

The pH sensitive fluorescence dye, C-SNAFL-1 ester was obtained form 

Molecular Probes (Eugene, OR) and used as received.  C-SNAFL-1 has been shown to 

exhibit single-exponential and two-exponential decay kinetics at solution pH of 4.9 and 

9.3, respectively (125).  MOPS (3-(N-morpholino) propanesulfonic, Sigma-Aldrich, 

Milwaukee, WI) buffer solution was used to condition the sample pH, and in the case of 

measurements within a scattering medium, polystyrene (dialyzed Dow 788, particle size 

143 ± 22 nm, Dow Chemical Co., Midland, MI) was added.  By employing different 

MOPS salt concentrations, we varied the pH between 7 and 9 in both dilute MOPS (non-

scattering) and MOPS/polystyrene (scattering) solutions, while 5 mM buffer strength 

was maintained.  Carboxy seminaphthofluorescein-2 (C-SNAFL-2) (Molecular Probes, 

Eugene, OR) dissolved in PBS buffer at pH 4.9 (± 0.1) was employed as a reference dye 

for phase-modulation measurements in the non-scattering solutions. 

We conjugated SNAFL to a sugar binding protein, ConA, which was covalently 

bond to PEG prior to photopolymerization to form hydrogel beads containing the 

immobilized pH sensing fluorophore.  

Poly(ethylene glycol) diacrylate (PEG-DA) with a molecular weight of 575; 2-

hydroxy-2-methylpropiophenone (HMP, photoinitiator); Trimethylolpropane triacrylate 

(TPT, crosslinker); ConA (Type V); and DMSO were obtained from Sigma-Aldrich 

(Milwaukee, WI).  Acryl-PEG-NHS (α-acryloyl ω-N-hydroxysuccinimidyl ester of 

PEG-propionic acid) with a molecular weight of 3400 was obtained from Nektar 
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Therapeutics (Birmingham, AL).  Light and heavy paraffin oil and n-heptane were 

purchased from Fisher Scientific Inc. (Pittsburgh, PA).  All the reagents were used as 

received.  Phosphate-buffered saline (PBS, 1L, pH=7.2) consisted of 8 g NaCl, 0.2 g 

KCl, 1.44 g Na2HPO4 and 0.24 g KH2PO4.  Sodium bicarbonate buffer (NaB, 1L, titrated 

with HCl until pH=8.3) consisted of 8.4 g NaHCO3 and 29.2 g of NaCl.   

5.2.2 Synthesis of SNAFL-ConA 

The primary reagents for SNAFL-ConA conjugate consist of C-SNAFL-1 ester 

and ConA.  Prior to incubation, 10 mg of ConA was dissolved in 1 mL NaB (continuous 

shaking for 20 mins) and 1mg of C-SNAFL-1 ester was dissolved in 0.1mL DMSO.  The 

conjugation performed was similar to Haugland by mixing the dissolved ConA and C-

SNAFL-1 ester and incubating the mixture at room temperature for 4 hrs (141).  

SNAFL-ConA (labeling ratio was approximately 5) was produced due to the ester-amine 

reaction between ester of C-SNAFL-1 with the lysine present in ConA (141). 

5.2.3 Immobilization of SNAFL-ConA into Clear PEG Hydrogel 

The synthesis protocol for SNAFL immobilized in PEG was similar to that used 

by Russell et al. (40).  The primary reagents for immobilization of SNAFL-ConA in 

optically transparent PEG hydrogel (SNAFL-ConA-PEG) consisted of SNAFL-ConA, 

acryl-PEG-NHS, PEG-DA, TPT, and HMP.  The procedure to prepare the precursor 

solution was as follows: (i) SNAFL-ConA solution and 24 mg of Acryl-PEG-NHS were 

added to 8mL PEG-DA and the resultant mixtures were dissolved for 2 hrs while 

shaking (Daigger shaker, model 22406A, Vernon Hills, IL).  The ester of acryl-PEG-
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NHS reacted with the lysine present in SNAFL-ConA; (ii) 160 µL HMP and 960 µL 

TPT were added and the solution was mixed and shaken for another 30 mins; and (iii) 

the resulting precursor solution was then extruded through a 26G syringe needle (10 mL, 

Becton Dickinson, Franklin Lakes, NJ) using a syringe pump (model 100, KDScientific, 

New Hope, PA).  Compressed air was sprayed upon the solution droplets and to break 

the droplets apart into finer droplets.  The fine droplets fell into a bath of 1L mineral oil 

mixture (volumetric ratio of light oil to heavy oil was 1 to 3). The light and heavy oil 

mixtures were used to prevent agglomeration at the bottom section of the bath and to 

avoid long exposure to UV light (EFOS Ultacure 100SS Plus, output of 20 W/cm2) at the 

top section.  The photo-initiator photo-fragmented upon exposure to the UV light 

resulting in the production of highly reactive radicals.  These radicals induced gelation 

of the PEG chains into a hydrogel network by activating the acrylate groups.  Exposure 

to UV light was limited to seconds to minimize exposure and to complete 

polymerization as the precursor droplets descended down the mineral oil.  The resulting 

PEG spheres (SNAFL-PEG) were then rinsed with heptane and PBS.  The size of the 

particle can be controlled by proper adjustments of syringe pump volumetric rate and 

compressed air spray pressure.  The set-up for the polymerization process is shown in 

Figure 5.1. 
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Figure 5.1. Hydrogel preparation set-up where droplets of precursor solution were 
extruded through a syringe pump, sprayed with compressed air resulting into fine 
droplets that fell into mineral oil bath, and photopolymerized upon exposure to UV light 
at 365nm. 

 

 
Approximately 200 mL of SNAFL-PEG beads (35% void fraction) were 

produced.  The average diameter of the hydrogel particles was found to be 160 µm 

(Figure 5.2), as measured by a random sampling of 300 microsphere beads using Nikon 

microscope (Optiphot2-UD, Nikon, Melville, NY) equipped with stage micrometer.  The 

hydrogel product was then repetitively washed and dialyzed (in PBS) every 12 hours for 

a period of 3 days to remove the un-reacted SNAFL dye present in the hydrogel.  After a 

period of 10 days submersion in PBS, less than 1% of leakage in the SNAFL-PEG was 

found based on spectra intensity comparison between the hydrogel and the supernatant.  

The degree of penetrant diffusivities into cross-linked PEG hydrogel networks depends 
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 PEG hydrogel
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upon the cross-linker concentration, size of PEG microspheres, and size of the penetrant 

molecules (42,152).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. (Top figure) PEG microspheres under Nikon microscope and (Bottom figure) 
size distribution of the PEG microspheres.  The bars in the size distribution plot indicate 
the fraction of the 300 randomly sampled beads with the corresponding diameter size.  
The line plot suggests that a normal size distribution with positive skew was attained.   
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In addition to SNAFL-PEG, we also prepared additional PEG hydrogels without 

SNAFL.  The gel samples for measurements in polystyrene scattering solutions 

consisted of 115 mL of SNAFL-PEG beads mixed with 85 mL PEG beads.  

Measurements in scattering polystyrene solutions were conducted within 200 mL sample 

containing 0.5% (by volume) polystyrene and MOPS buffers at various, measured pH 

values (7.7, 8.2, and 8.8).  Prior to performing measurements at a particular pH value, 

the hydrogels were washed with DI water and rinsed with the corresponding pH buffer.  

Excess of liquid was removed by vacuum filtration flask setup before addition of 

polystyrene and MOPS buffer having the desired pH value.   

5.2.4 Phase Shift and Modulation Measurements 

Measurements were performed using the FDPM method, as described elsewhere. 

(30,123)  Briefly, a continuous wave (CW) light from a wavelength tunable Ar-Kr mixed 

gas laser (Model 643; Melles Griot, Boulder, Colorado) at 514 or 647 nm wavelengths 

was modulated by an external electro-optic modulator (EOM) (Model 350-160, 

Conoptics, Danbury, CT) at modulation frequencies between 10 and 130 MHz.  The 

detectors consisted of two photomultiplier-tubes (PMT, Model H6573, Hamamatsu, 

Tokyo Japan) which were gain-modulated by a second oscillator for heterodyne 

operation.   

The PMT’s were outfitted with focusing lens assemblies as well as neutral-

density (CVI Laser, Albuquerque, NM) and narrow-bandpass interference filters (10 nm 

FWHM, CVI Laser) in order to optimize the amount of light detected at the incident 

wavelengths for excitation and emission measurements.  In addition, a long pass filter 
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(LPF 550, CVI Laser) was used to collect fluorescence in response to illumination at 514 

nm for measurement of fluorescence phase and modulation ratio (θM and MM) in 

scattering and non-scattering solutions. 

5.2.5 Measurements in Non-scattering Solutions 

For measurements in non-scattering solutions, light at 514 nm was used and 

fluorescence light was detected at right angles to the sample at 650 nm.  The fluorescent 

phase-shift and modulation-ratio (θf and Mf) of SNAFL-PEG submerged in MOPS buffer 

at differing pH, were measured as a function of modulation frequency (10 to 130 MHz).  

To correct for the instrument response, lifetime determination from phase-shift and 

modulation-ratio measurements in non-scattering solutions required 0.5 µM of carboxy 

seminaphthofluorescein-2 (C-SNAFL-2) in PBS buffer at pH 4.9 (±. 0.1) as a reference.  

The lifetime of C-SNAFL-2 at pH 4.9 is known to be 4.59 ns (125).   
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The phase-shift and modulation-ratio (θM and MM) of a dye that exhibits multi-

exponential decay kinetics in non-scattering media are functions of multi-exponential 

decay parameters as follows: 
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where aj is a pre-exponential factor representing the fractional contribution to the time-

resolved decay of the component with a lifetime τj.  For the case of two-exponential, n is 

equal to 2.  The values of aj and τj for a given sample can be estimated from 

measurements of phase-shift θ(ω) and modulation-ratio M(ω) by minimizing χ2, which is 

the error-weighted sum of the squared deviations between the measured and predicted 

values (142).  The Nelder-Mead method (153) can be used in order to minimize χ2 with 

respect to the parameters aj and τj. 

5.2.6 Measurements in Scattering Solutions 

For fluorescence measurements in scattering polystyrene solutions, fluorescence 

light at 650 nm was collected from a submerged fiber optic (1000 µm diameter, Thorlabs, 

Newton, NJ) located 1 cm and 1.6 cm away from a submerged fiber optic delivery of 
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modulated excitation light at 514 nm (123).  The multiplexing method described by 

Mayer et al. (30) was performed to eliminate instrument response functions for 

fluorescence measurements in the polystyrene scattering solutions.  Unlike non-

scattering measurements of lifetime, no reference dye was required.  In our study, the 

response time of SNAFL-PEG for changes of pH from 7.6 to 8.6 was found to be 

approximately 5 mins. 

In addition, using the same submerged collection and delivery fiber optics, 

measurements of phase-delay and amplitude-attenuation were made following 

illumination at both the excitation wavelength at 514 nm (θx and Mx) and emission 

wavelength (θm and Mm) at 650 nm.  Measurements were conducted as a function of 

modulation frequency as the distance between the illuminating and collecting fiber 

optics, (∆r), varied between 1.2 cm to 1.6 cm.  From these measurements, the optical 

properties of the scattering samples at the excitation (µax and µ'sx) and emission 

wavelength (µam and µ’sm) were determined for each scattering solution (123).  

The relationship between phase-shift θM detected at position r relative to the 

incident point of excitation light and average lifetime τavg
scat of the sensing fluorophore 

has been derived from the optical diffusion equation in an infinite medium, and is shown 

as Equation 5.3: 

( , )
scat

avg
f scat

avg

B A
tan r

A B
ωτ

θ ω
ωτ

+
=

−
     (5.3) 

where the terms A and B are defined as Equations 3.30-3.35. 
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5.3 Results and Discussions 

Figure 5.3 shows the spectra of C-SNAFL-1 ester, SNAFL-ConA, and SNAFL-

PEG in PBS (pH 7.2) were obtained by SPEX FLUOROLOG II (HORIBA Jobin Yvon 

Inc., Edison, NJ).  The excitation spectrum was obtained with emission monochromator 

set at 650 nm; while in the case of emission spectra, the excitation monochromator was 

stationed at 514 nm.  While C-SNAFL-1 ester and SNAFL-ConA spectra are similar, 

SNAFL-PEG spectra are shifted to longer wavelengths. 

5.3.1 Fluorescence Multi-exponential Decay in Non-scattering Solutions 

The θM and MM values of SNAFL-PEG in non-scattering solutions are plotted in 

Figure 5.4 and 5.5 on pages 104 and 105 as a function of solution pH.  Similar to the free 

SNAFL, the decrease in phase and increase in modulation with increasing pH values is 

due to the increased relative contribution of the short-lived or de-protonated dye species 

at longer wavelengths (136).  It was found that the two-exponential decay kinetic model 

adequately fit the data.  The average lifetime for two-exponential fits, τavg, was 

calculated from the regressed parameters aj and τj from the following relationship: 
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a a
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Figure 5.3. Excitation (emission at 570 nm) and emission (excitation at 514 nm) spectra 
of C-SNAFL-1 ester, SNAFL-ConA, and SNAFL-PEG in PBS (pH 7.2). 

 

 

5.3.2 Model Predictions of Multi-exponential Lifetime Decay in Scattering Polystyrene 

Solutions 

The θM and MM values of immobilized SNAFL-PEG in buffer/polystyrene 

solutions are plotted in Figure 5.4 and Figure 5.5.  The plots show a similar trend with 

pH as those observed in absence of scattering.  However, comparison of scattering and 

non-scattering plots shows that scattering contributes significantly to the phase-shift and 

modulation-ratio values.  The change in phase-shift and amplitude-attenuation with pH 
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was found in presence of scattering to be between 2 and 2.5 times larger than those 

changes in absence of scattering.  This result is consistent with our previous study using 

free SNAFL-1 (136) in scattering and non-scattering solutions. 

Comparison of non-scattering and scattering data also shows that scattering 

contributes significantly to the phase-shift values.  The solid lines in Figure 5.4 and 

Figure 5.5 denote the predictions using the two-exponential decay model incorporating 

the time delay of τavg and the regressed optical properties from excitation and emission 

measurements.  The plots show that the predicted values of θM and MM exhibit the same 

trend as that shown by the experimental data.  

Since the fluorescence data measured in the presence of scattering are in good 

agreement with the average lifetime model, fluorescence lifetime sensing of dyes 

exhibiting multiple decays may be performed by obtaining the average lifetime.  For the 

experimental scattering systems studied herein, the average lifetime of fluorescent dyes 

in scattering solutions can be most accurately predicted when the modulation frequency 

is in the order of 100 MHz.  It should be noted that consistent results were obtained (also 

shown in Table 5.1 as τavg
scat (repeat)) when the experiment was repeated using the same 

hydrogels after one month storage at 5оC, confirming the reversibility and stability of 

immobilized C-SNAFL-1 dye in PEG hydrogels.  Approximately within two months of 

storage, less fluorescence signal could be detected and lifetime measurements were no 

longer repeatable. 
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Figure 5.4. The values of  fluorescence phase-shift, as a function of modulation 
frequency for SNAFL-PEG, where the plots in each figure consist of corrected 
experimental measurements (dotted lines) in non-scattering (bottom) and scattering 
solution (top) at various pH, and those predicted by the propagation model incorporating 
average lifetime (solid lines).  Samples were excited at 514 nm and the emission was 
observed at 650 nm. 
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Figure 5.5. The values of modulation-ratio, as a function of modulation frequency for 
SNAFL-PEG, where the plots in each figure consist of corrected experimental 
measurements (dotted lines) in non-scattering (bottom) and scattering solution (top) at 
various pH, and those predicted by the propagation model incorporating average lifetime 
(solid lines).  Samples were excited at 514 nm and the emission was observed at 650 nm. 

 

 
 

 
It should be noted that in the absence of scattering, sub-nanosecond lifetime 

detection is difficult at these low modulation frequencies (10-130 MHz).  The presence 

of scattering however, magnifies the measured phase-shift value, and hence increases the 

sensitivity of lifetime sensing at low modulation frequencies, given that the optical 
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properties of the medium can be accurately predicted.  Figure 5.6 depicts the 

fluorescence phase-shift values at different pH for both non-scattering and scattering 

measurement at 100 MHz.  The figure confirms that measurements in presence of 

scattering were not only magnified, but resulted in better resolution compared to those in 

absence of scattering.  Table 5.1 shows average lifetime values τavg
scat that were 

recovered from phase-shift data acquired in presence of scattering, at 100 MHz using 

Equation 5.3.  The values are in agreement with the values of τavg obtained from phase-

shift measurements of C-SNAFL-1 in MOPS (non-scattering). 

 

Table 5.1. Average lifetime values calculated from phase-shift data (τavg
scat) and from 

the repeated experimental data (τavg
scat (repeat))  in presence of scattering, assuming two-

exponential decay kinetics, at a fixed frequency of 100 MHz, in comparison with the 
values obtained in dilute non-scattering solutions (τavg).  

pH τavg ± 0.05 
(ns)  τavg

scat ± 0.05 (ns) τavg
scat ± 0.05 (ns)  
(repeat) 

7.7 2.89  2.86 2.91 
8.2 2.73  2.69 2.69 
8.8 2.50  2.47 2.49 
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Figure 5.6. Average standard deviation of phase-shift data in non-scattering and 
scattering, calculated over a range of modulation frequencies from 30 to 130 MHz in 5 
MHz increments with 3 measurements replicates experiment, at each pH value. 
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5.4 Summary 

We have demonstrated, for the first time, the applicability of FDPM for 

fluorescence lifetime spectroscopy of immobilized fluorophore in multiply scattering 

solutions.  The propagation of excitation and fluorescence light of a pH sensing dye, C-

SNAFL-1, immobilized within a PEG hydrogel, in scattering polystyrene solution could 

be well predicted from the average lifetime.  As a result, the measurement approach for 

conducting NIR fluorescence lifetime spectroscopy of immobilized dyes by means of 

light propagation model for is greatly simplified.  In addition, owing to the stability of 

the immobilized fluorescence sensor as well as the reliability of fluorescence lifetime 

measurement, the method presented in this study may provide a new approach for 

analyte or toxin screening.     
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6. MONTE CARLO MODELING OF FLUORESCENCE PHOTON 

MIGRATION IN MICROSPHERE-BASED IMPLANTABLE SENSORS 

6.1 Introduction 

Many efforts to develop noninvasive glucose sensors have focused upon 

microsphere-based implantable fluorescent optical sensors.  In this schema, (i) a glucose 

competitive binding ConA-dextran affinity system, or(ii) glucose oxidase and an 

oxygen-sensitive fluorophore are either chemically immobilized into the microsphere 

network or attached on the microsphere surface and then confined inside a sealed 

dialysis membrane (38,42,44).  The microspheres protect the fluorophore from 

interaction with other possible interfering substances from blood plasma or interstitial 

fluids.  They also increase the stability of affinity or glucose oxidase system and reduce 

potential toxicity by compartmentalizing the toxic dyes.  The microspheres applied in 

previous studies were PEG hydrogel (40), alginate-poly-L-lysine (119), Sephadex (43), 

Sepharose (44), polystyrene (46), and polyelectrolyte-coated alginate microparticles 

(55,115).   

Table 6.1 provides a cumulative summary of microsphere-based fluorescent 

optical sensors for glucose measurements.  All these studies used intensity-based 

fluorescence measurements.  However, other studies and our previous studies showed 

that lifetime measurements can provide an alternative measurement that might be 

advantageous over intensity measurements in several ways (30).  The lifetime-

measurements are not influenced by several confounding factors, such as: (i) variation of 
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immobilized fluorophore concentrations; (ii) fluorophore photobleaching; and (iii) 

instrumentation response function.  In our study, fluorescence lifetime measurements are 

carried out by using FDPM techniques (154).  Briefly, an intensity sinusoidally 

modulated laser light source is launched onto the surface of tissue or tissue-mimicking 

phantoms through an optical fiber.  Then the light is scattered and absorbed due to the 

absorption and scattering of the media.  The generated fluorescence light is again 

scattered and absorbed.  Finally the detected fluorescence signal through a detecting 

optical fiber is phase-delayed and amplitude attenuated relative to the incident excitation 

light.  The phase-shift and amplitude are the measured quantities as shown in Figure 3.2. 

In the first use of FDPM techniques for microsphere-based implantable sensor, 

we immobilized a pH sensitive dye into PEG hydrogel via ester-amine reaction and then 

placed the PEG microparticles (average particle size 160µm) into tissue-mimicking 

phantoms (58).  Measurements of phase-shift and amplitude of the multiply scattered 

fluorescent light were successfully obtained as a function of modulation frequency of the 

incident excitation light.  The results showed that at the presence of tissue scattering and 

absorption, the measured phase-shift value was magnified while the amplitude was 

decreased.  Since the experiments were carried out in a large volume of tissue-

mimicking phantom comparing with the size of PEG microparticles, a couple optical 

diffusion equations were applied to account for the photon propagation and to extract the 

lifetime change of this pH sensor. 
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Table 6.1. Review of literature involving microsphere-based fluorescence glucose sensor 

Reference Material Indicating 
fluorophore 

Particle 
size, 

diameter 

Immobilized 
system 

Wavelength 
(ex/em),nm Comments 

Russell et al. 
(1999) (40) PEG FITC 2 mm 

FITC-
ConA/TRITC-

dextran 
488/500-660 

demonstrated entrapment of FRET 
affinity system into PEG-based 

hydrogel 

McShane et al 
(2000) (41) PEG FITC N/A 

FITC-
ConA/TRITC-

dextran 
488/500-600 

demonstrated a fiber-optic system 
for delivery and collection of 

intensity signal 

McShane et al 
(2000) (155) PEG FITC N/A 

FITC-
ConA/TRITC-

dextran 
N/A 

demonstrated Monte Carlo 
simulation result of light 

propagation through human skin 
with an implantable fluorescent 

sensor 

Russell et al 
(2000) (119) 

Poly-L-lysine 
and calcium 

alginate 
FITC 2.5-3.5 mm 

FITC-Succinyl-
ConA/TRITC-

dextran 
488/>500 

demonstrated the use of calcium 
alginate gel and poly-L-lysine 

coating for entrapment of 
ConA/dextran 

Ballerstadt and 
Shultz (2000) 

(43) 

Sephadex G200 
and G150 with 

hollow fiber 
memberane 

(MWCO 10000) 

Alexa488 20-50 µm 
Alexa488-

ConA/Safranin 
O/Pararosanilin 

488/520 demonstrated the use of Sephadex 
and dialysis membrane 

Xu et al (2002) 
(97) 

PEBBLE 
nanoparticles 

Ru[dpp(SO3N
a)2]3Cl2 

45 nm 

GOX/ 
Ru[dpp(SO3Na)2]

3Cl2/Oregon 
Green 488-

dextran 

488 nm/>550 

demonstrated the use of PEEBLEs 
incorporating GOX, oxygen 

sensitive fluorophores, and oxygen-
insensitive fluorophores for 

intracellular glucose imaging.  The 
study used ratiometric measurement 
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Table 6.1 Continued. 

Reference Material Indicating 
fluorophore 

Particle 
size, 

diameter 

Immobilized 
system 

Wavelength 
(ex/em),nm Comments 

Ballerstadt et al 
(2004) (113) 

Sephadex G200 
and G150 with 

cellulose 
membranes 

(MWCO 6000-
8000) 

Alexa647 20-50 µm Alexa647-ConA 633/670 demonstrated increasing stability of 
ConA by immobilization of it on 
Sephadex, temperature influence, 
photobleaching activities of this 

sensor 

Ballerstadt et al 
(2004) (44) 

Sepharose with 
hollow dialysis 
fiber (o.d.215 

µm, wall 
thickness 20 µm 

Alexa647 45-165 µm Alexa647-
ConA/QSY21-

dextran 

647/670 demonstrated the use of long 
wavelength dye and immobilized 

ConA within Sepharose beads 

Chinnayelka 
and McShane 
(2004) (55) 

Layer-by-layer 
(LbL) self-
assembling 

polyelectrolyte 
microsphere 

FITC 5 µm FITC-
ConA/TRITC-

dextran 

488/500-600 demonstrated the use of LbL self-
assembling multiple-layer 

polyelectrolyte microsphere for 
immobilization of ConA-dextran 

affinity system 
Rossi et al 

(2004) (156) 
Fe3O4 

nanoparticles 
Ru(phen)3 20 nm GOX/Ru(phen)3 460/610 demonstrated the use of magnetite 

nanoparticle entrapping the GOX 
and oxygen-sensitive dyes. The 

study showed improved stability of 
GOX 
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Table 6.1 Continued. 

Reference Material Indicating 
fluorophore 

Particle 
size, 

diameter 

Immobilized 
system 

Wavelength 
(ex/em),nm Comments 

Yadavalli et al 
(157)(2005) 

PEG FITC ~100 µm FITC-
dextran/TRITC-

ConA 

488/>500 demonstrated MC simulation results 
for predicting optimum hydrogel 

optical properties, e.g. sphere size, 
gel chemistry, and scattering 

anisotropy 
Chinnayelka 
and McShane 

(83)(2005) 

Polyelectrode FITC 2.2-5.8 µm FITC-apo-
GOX/TRITC-

dextran 

488 />500 demonstrated the use of apoenzymes 
encapsulated into polyelectrolyte 

microbeads 
Brown et al 
(38)(2005) 

Polyelectrode 
coated calcium 

alginate 

Ru(dpp)/Alex
a488 

20-30  µm Alexa488/Ru(dp
p)/GOX 

460/500-640 demonstrated experimental results of 
calcium alginate microsphere 
entrapping oxygen-sensitive 

fluorophore and GOX 
Brown and 
McShane 

(47)(2006) 

Polyelectrode 
coated calcium 

alginate 

Ru(dpp)/Alex
a488 

N/A Alexa488/Ru(dp
p)/GOX 

460 nm/500-
640 

demonstrated a two-substrate math 
model for predicting the impact of 

several sensor parameters, e.g. 
sphere size, film thickness 

Chinnayelka 
and McShane 
(115)(2006) 

LbL-
polyelectrode 

Cy5 5 µm Cy5-apo-
GOX/TRITC-

dextran 

543/560-725 demonstrated the use of long 
wavelength Cy5 dye to replace 

previous FITC dye 
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In an actual implant of glucose sensing microparticles, Pishko and his coworkers 

showed that implanted polystyrene particles (15 µm in diameter) could be fairly dense 

packed in a small area at the dermis using insulin needles to inject (157).  The implanted 

microparticles were randomly distributed but closely packed between the dermis and 

epidermis.  The detected fluorescence light signal was influenced not only by the tissue 

scattering and absorption but also by the microsphere optical properties. Other 

parameters, such as particle volume fraction, particle size, particle refractive index, and 

particle configuration, also impacted the measurements. 

There are two unique features that exist in this implantable sensing system 

involving micrometer-sized particles:  

(i) Light propagation in this sensing area has two different speeds.  Outside 

microspheres, light travels at a velocity of c/ntis, where ntis is the refractive index of the 

tissue or tissue phantom; inside microspheres, light travels at a velocity of c/npar, where 

npar is the refractive index of the microspheres.  Table 6.2 lists the refractive index 

difference between different skin layers and polymer microspheres.  Figure 6.1 

illustrates the scheme of light propagation in ensemble of these densely packed 

microspheres.  

(ii) The particle size of implantable microspheres (dp) is much larger than the 

wavelength of incident light (λ).  It is well known that the near-infrared light has the 

potential to penetrate the skin deeply owing to the low absorption of blood, melanin, and 

water.  The wavelength of incident light used in this implantable sensor is preferably 

around 600-900 nm (27).  However, the size of microspheres may be from several 



 

 

115

micrometers to several millimeters (40,157).  When particle size is 20 or more times 

larger than the wavelength, geometric optics may be used to account for light 

propagation (158).  In contrast to the use of Mie theory for small particles (159), where 

dp << λ, geometric optics can be used to describe light propagation when dp> λ.  

 
 

Table 6.2. The refractive index of different skin layers, polymer microspheres and TiO2. 
Name of layer/polymer microsphere Refractive index (n) 

stratum corneum 1.5 (160) 

living epidermis 1.34 (160) 

papillary dermis 1.4 (160) 

upper blood net dermis 1.39 (160) 

reticular dermis 1.4 (160) 

deep blood net dermis 1.38 (160) 

subcutaneous fat 1.44 (160) 

PEG microsphere 1.37 (155) or 1.57 (157) 

polystyrene microsphere 1.59 (161) 

titanium dioxide (TiO2) particle 2.4 (162) 
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Figure 6.1. Illustration of light propagation in large, densely-packed microspheres with 
significant refractive index difference with skin layers.  The light speed in the 
microspheres is c/npar, where npar is the refractive index of the microspheres; while 
outside microspheres, light travels at a velocity of c/ntis, where ntis is the refractive index 
of the tissue or tissue-mimicking media.  The reflection and refraction of light on the 
boundary follow geometric optics rules. 

 

 
Monte Carlo computational methods have been applied to a number of problems 

in light propagation problems where analytical solutions are not available due to 

complex geometries or boundary conditions as shown in Figure 6.1.  McShane and his 

coworkers applied MC modeling for time-invariant light propagation in an implanted 

slab of polymer sensor (155).  Their model was simply based upon a multi-layered MC 

code by Wang et al.(163) with added fluorescence generation into the program.  An 

eight-layer skin tissue model is used in the simulation.  Instead of considering as 

individual microspheres, the implanted sensor was modeled as a homogenous slab layer 

of polymer between epidermis and dermis.  The output fluorescence intensity was 

recorded as a function of tissue and sensor optical properties, and thickness of tissue and 
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of sensor layers.  The spatial distribution of the fluorescence intensity signal was also 

investigated.  Even though no experimental results were compared with the generated 

MC results,   the simulation provided useful information for designing an appropriate 

optical detection system.  Yadavalli and his coworkers first developed a MC model to 

address the impact of microsphere characteristics such as particle size, scattering, 

fluorescent concentration on detected fluorescence intensity signal (157).   They 

experimentally measured the PEG microsphere isotropic scattering and absorption 

coefficients using an integrating sphere.  The microsphere packing followed a strict Face 

Centered Cubic (FCC) configuration with volume fraction of 0.74.   The time-invariant 

MC model considered: (i) the light propagation inside and outside the particle; (ii) 

generated fluorescence light inside the particle; and (iii) reduced fluorescence photon 

weight after FRET.  The model was again not validated by experimental results.  

Moreover, the refractive index difference between inside and outside microsphere sensor 

was not addressed.   

In this contribution, we describe a novel MC simulation that takes into account: 

(ii) two different light propagation speeds; (ii) geometric optics; and (iii) fluorescence 

lifetime within the implantable sensing system.  The MC simulation tracks the time-

resolved light propagation of both excitation and fluorescence light, and transforms the 

results into the frequency-domain using Fourier transform. As will be shown herein, 

FDPM experimental measurements of randomly packed resin particles confirm the 

simulation results of excitation light propagation.  This MC simulation was then used to 

examine the impact of particle physical properties and fluorophore lifetime on the 
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measurable fluorescence signals in frequency-domain, namely PS and amplitude (AC).  

The MC simulation employed a random packed microsphere configuration which was 

generated from a dynamic simulation (161). 

The organization of this section is as follows: In the Materials and Methods 

section, the new MC model for time-resolved light propagation is described in detail.  

Then the FDPM experimental set-up using resin microspheres for validation of the MC 

model is presented.  In the Results section, we first present experimental results which 

validated the MC simulation of excitation light propagation.  Then, the influences of 

particle size, volume fraction, refractive index, fluorescence lifetime on simulated 

frequency-domain measurements are presented and discussed. 

6.2 Materials and Methods 

6.2.1 Phantom and Microsphere Structure for MC Simulation 

For the purpose of simulation and experimental validation, the microspheres 

were packed into a cubic volume (4.3 cm×1 cm×1 cm).  The size of the cubic is same as 

the cuvette (Starna Cells Inc., Atascadero, CA).  The packing structure was generated by 

a dynamic simulation program which was developed by Pan et al. (161) and described 

elsewhere by Yang and his coworkers (164,165).  Briefly, in this dynamic simulation 

code, the Newton’s second law of motion was solved numerically to track the 

translational and rotational motion of each numbered particle as it interacted with 

surrounding neighboring particles.  Subsequently, the randomly packed particle structure 

at equilibrium was used to generate different particle configurations with varying 
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volume fractions and/or particle sizes by uniform expansion as described elsewhere 

(166).  It was well accepted that simulation of 1024 microspheres with periodic 

boundary condition could provide a statistically stable structure (165).  Based upon the 

generated microsphere structure, we simulated 4000 microspheres within a 40dp ×10dp 

×10dp cubic with periodic boundary conditions along x, y, and z directions. 

6.2.2 Descriptions of the MC Model with Geometric Optics 

Our MC model was modified from a previous MC model which tracked the 

excitation photon trajectories in an infinite and densely packed powder bed (161,166).  

The code for the Monte Carlo simulations was programmed in Fortran 77 and executed 

with a SUSE Linux operating system.  An infinitely narrow beam with 108 photons was 

launched in each simulation conducted on an AMD dual-CPU and dual-core Opteron 

2.8GHz workstation with 8GB RAM.  For 109 photons, the computational time was 

around 1.2×106 seconds. 

In the MC simulation, the information about a photon includes: (i) the photon 

position vector ( r
r

), (ii) its direction ( v
r

), (iii) its photon weight (w), (iv) net propagation 

time (t), and (v) the refractive index of the medium on which the photon is located (ntis 

or npar).  The program tracked the photon trajectories one by one.  A flowchart outlining 

the simulation is presented in Figure 6.2.  Briefly, the process of tracking a photon 

package is described below. 

Each excitation photon package, with unity weight, is launched on the surface of 

the cubic phantom.  The step size, s of the photon is decided by (i) the photon moving 
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direction , v
r

, (ii) positions of random-packed microspheres, and (iii) the boundary of the 

phantom.  

For both excitation and fluorescence photons, when the photon moves to the 

surface of a particle, the program decides whether the photon undergoes reflectance or 

refraction at each boundary.  The probability for reflection is determined from the 

Fresnel’s reflection coefficient R(θi): 

2 2

2 2

1 ( ) ( )( )
2 ( ) ( )

i t i t
i

i t i t

sin tanR
sin tan

θ θ θ θθ
θ θ θ θ

⎡ ⎤− −
= +⎢ ⎥+ +⎣ ⎦

  (6.1) 

where the subscripts i and t denotes the incidence and transmission.  θi and θt are the 

angles of incidence and transmission of photon on the boundary of particle, respectively. 

The angle θt is obtained from the Snell’s law: 

sin sini
t i

t

n
n

θ θ=     (6.2) 

The random number generator used the routine ran2 described by Press et al. 

(153), which provides more than 2×1018 random numbers.  The separately generated 

random numbers (ς1- ς4 ) between 0.0 and 1.0 were used to decide:  

(i) Whether the photon underwent reflectance or refraction.  If ς1< R(θi), then the 

photon undergoes the reflection on the boundary. Otherwise, the photon underwent the 

refraction;  
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Figure 6.2. Flowchart of MC simulation  

At cuvette boundary?

Out of 
phantom?

Reflection/refraction on microsphere 
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No 
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No
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(ii) Whether an excitation photon is relabeled as a fluorescence photon when 

inside the microsphere.  If ς2< P, then the excitation photon is relabeled as fluorescence 

photon, where P is probability of fluorescence generation (range from 0 to 1).  

Otherwise, the photon maintains it identity as excitation photon.  The probability, P,  is 

the function of quantum efficiency of the fluorophore, Q; the extinction coefficients 

owing to fluorophores at the excitation wavelength,  ξaxf; and the fluorophore 

concentration  within the microsphere [C] (167): 

[ ]( )exp axfP Q C sξ= −     (6.3) 

(iii) The time delay td during the process of fluorescence is given by (168).   

( )3lnd avgt ς τ= −      
 (6.4) 

where the average fluorescence lifetime is defined as τavg; 

(iv) The propagation direction of the generated fluorescence photon.  Since 

fluorescence is isotropic, there is no preferential direction.  The random number ς4 is 

used to provide the isotropic fluorescence photon propagation: 

( ) ( )4 4x sin cosµ ς π ς π=     (6.5) 

( ) ( )4 4y sin sinµ ς π ς π=       (6.6) 

( )4z cosµ ς π=      
  (6.7) 

This simulation makes the following major assumptions which are applicable to 

previous experimental results of implantable, microsphere-based fluorescence sensors 

(40,58):  
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(i) The fiber optic light source is modeled as an infinite-narrow, unidirectional 

collimated source.  The source light is launched perpendicularly onto the phantom 

surface.  However, our program can simulate arbitrary direction of incident light as well;  

(ii) The fluorophores are immobilized inside the microsphere.  There is no free 

fluorophore or fluorophore conjugates in the surrounding medium;  

(iii) The absorption from the surrounding tissue is much less than the absorption 

of the microsphere.  Therefore the influence of absorption from the surrounding tissue is 

not addressed in this treatment. 

(iv) The photon weight, w , after each ith scattering step is attenuated by (161)  

( ) , ,    in the particle
ln

0                      in the surrounding medium

a x m i
pari

c t
nw

µ⎛ ⎤− ⋅ ⋅⎜ ⎥∆ = ⎜ ⎥
⎜ ⎥⎝ ⎦

      (6.8) 

where the subscript x,m represents excitation and emission. The term µa is the absorption 

coefficient, and  it , represents the “time-of-flight” associated with the photon scattering 

step length;   

(v) The average lifetime of fluorophore, τavg, is used in the simulation; and  

(vi) The generated fluorophore photon can not be used to regenerate another 

fluorescent photon. 

As shown in Figure 6.3, every surface of the cubic phantom is divided into 

10×10 elements.  The MC simulation stores the location, time, position, and weight of 

both excitation and fluorescence photons that reach each detection element.  
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Figure 6.3. Schematic of the phantom for implantable cubic phantom used in MC 
simulation.  The dimension of the phantom is 43×10×10 mm3.  In the MC code, each of 
the six surfaces on the cubic phantom is divided into 10×10 elements.  MC simulation 
stores the detected both excitation and fluorescence photons with the “time-of-flight” of 
photon that reach each element.  Particularly, PS and AC at elements (1,5) to (10,5) on 
the detection surface as shown in the top figure are analyzed.  The source-detector 
distance for three positions (positions 4, 6, and 8) are r4≈10.7 mm, r6≈7.22 mm, r8≈12 
mm.  
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6.3 Experimental Section 

6.3.1  Materials  

Resin microspheres were chosen for the validation experiment because they have 

spherical shape and are nearly mono-disperse.  Resin samples were obtained from Bio-

Rad Lab (type AG 1-X8, Hercules, CA) without modification.  Figure 6.4 illustrates the 

micrographs of resin samples under a Nikon microscope (Optiphot2-UD, Nikon, 

Melville, NY).  The average diameter of the dry microspheres was found to be 74 µm 

(Figure 6.5).  Table 6.3 lists the physical properties of resin microspheres used in this 

study.  The absorption coefficient for random close packing (RCP) of resin microspheres 

was calculated from six times’ measurements in a large container (volume> 150mL) 

using FDPM measurements described by Sun et al. (154). 

 

 

 
Figure 6.4. Resin microspheres under Nikon microscope.  The average particle size is 
74 µm ±4 µm as found by measuring 300 randomly sampled beads.  

0.1mm
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Figure 6.5. Size distribution of the resin microspheres.  The bars in the size distribution 
indicate the fraction of the 300 randomly sampled particles with the corresponding 
diameter size.  The line plot suggests that a normal size distribution was attained. 
 
 
 
Table 6.3. Details of physical properties of resin samples 

Name Shape Average 
size (µm) 

Refractive 
index 

Absorption 
coefficient for 

RCP (cm-1) 

Volume fraction 
for RCP 

resin Spherical 74 1.59 (161) 0.0129 0.64 (161,169) 
 
 
 

6.3.2 Phantom for Implantable Optical Sensors  

A glass cuvette (Starna Cells Inc., Atascadero, CA, dimension 4.3×1×1cm) was 

covered with black tape on all the surfaces except the area for the source and detection 

fibers as shown in Figure 6.6.  Resin microspheres are densely packed in the cuvette. 
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Figure 6.6. Schematic of source and detection fibers’ position on the phantom.  The 
source fiber is located in the center of the surface with 23mm distance to the bottom of 
the cuvette.  The detection fiber moves alone the middle line on the detection surface 
from 2.8 mm to 32.3 mm in increments of 0.5 mm.   
 
 
 

6.3.3 FDPM Experiments 

The MC simulations were validated using resin measurements were conducted 

with a FDPM system previously described (159,170).  Briefly, intensity modulated light 

which is emitted from a 785 nm Laser diode (Model# DL7140-201, Thorlabs Inc., 

Newton, NJ) was directed to a beamsplitter (660-1000 nm, Newport, Irvine, CA).  A 

portion of incident light was directed to a reference PMT (R928, Hamamatsu, Japan) 

through a 1000 µm-diameter multimode optical fiber (Thorlabs, Inc.), which was 

outfitted with a band-pass filter (785nm, CVI Laser, Albuquerque, NM).  The sampling 

beam was delivered to the surface of the cubic phantom with a source fiber which 
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touched the surface perpendicularly.  The light propagated through the densely packed 

resin microspheres and was collected with a detection fiber on the detection surface 

which was 90˚ from the source fiber as shown in Figures 6.6 and 6.7.  The sample signal 

then passed through a sample PMT (R928, Hamamatsu) which is also outfitted with a 

785 band-pass filter.  Using a motion controller (ESP300, Newport), the detection fiber 

was moved on the detection surface in increments of 0.5 mm from 6 mm to 36 mm to the 

bottom side as shown in Figure 6.6.  The sample and reference PMTs were operated at 

the same modulation frequency plus an offset of 100 Hz for heterodyne detection. Two 

frequency synthesizers (Marconi Instruments, Mountain view, CA) were phase-locked 

and provided the modulation frequency for the laser diode and the reference and 

detection PMTs.  The phase-shift and modulation-ratio were taken as a function of 

modulation frequency (70-100 MHz with a step-size of 5 MHz).  Labview 7.0 (National 

Instruments, Austin, TX) was used to communicate with GPIB card (National 

instruments) and data acquisition hardware.  Six experiments were performed to collect 

the θ, AC, and DC values.  The physical meanings of the θ, AC, and DC are described in 

section 3.3.  The standard deviations of acquired θ, AC, and DC were less than 1% for 

all the measurements.  
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Figure 6.7. (Top) Schematic of FDPM instrumentation set up.  (Bottom) picture of the 
set-up for resin measurements.    
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6.4 Results and Discussions 

6.4.1 FDPM Experimental Validation of the MC Model 

Figure 6.8 and Figure 6.9 illustrate the phase-shifts (top figure) and AC (bottom 

figure) versus the detector position on the detection surface at four different modulation 

frequencies (70 MHz and 100 MHz, 80 MHz and 90 MHz) for both FDPM experimental 

and MC simulation results.  The amplitude ACs are normalized by the maximum 

amplitude AC in the elements from the element (1,5) to (10,5) at each modulation 

frequency.  That location of minimum phase shift and maximum amplitude corresponds 

to the shortest source-detector distance (7.07 mm).  If one recalls the physical meaning 

of the excitation phase shift, θx(ω), it is related to the mean “time-of-flight” <t> (171). It 

then follows that: 

( ) s d
x x

rt
v

θ ω ω ω −≈ ∝     (6.9) 

where <tx> is the mean transit time of excitation photons from the source to the detector.  

The term rs-d is separation distance between source and detection fiber.  The term v  is 

the mean speed of photon. Hence the phase shift increases with rs-d as shown in both MC 

simulation and FDPM experimental results.   
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Figure 6.8. (Top) Excitation Phase-shifts and amplitudes at different modulation 
frequency (70 MHz and 100MHz) as the function of detector position on the detection 
surface (shown in Figure 6.6).  The symbols without lines denote the FDPM experiments 
results.  The lines with symbols denote the MC simulation results.  The simulated 
amplitude AC is normalized by the maximum amplitude AC at each modulation 
frequency. 
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Figure 6.9. (Top) Excitation Phase-shifts and amplitudes at different modulation 
frequency (70 MHz and 100MHz) as the function of detector position on the detection 
surface (shown in Figure 6.6).  The symbols without lines denote the FDPM experiments 
results.  The lines with symbols denote the MC simulation results.  The simulated 
amplitude AC is normalized by the maximum amplitude AC at each modulation 
frequency. 
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To evaluate the difference between MC simulation and FDPM experimental 

results, we define the phase shift deviation, δθx which is calculated as: 

∆θx = θx(FD) – θx(MC)   (6.10) 
 

where θx(FD) is the FDPM experimental results and θx(MC) is MC simulation results 

with a cubic spline interpolation scheme decided by the Matlab (Mathworks Inc. Natick, 

MA).  Figure 6.10 shows the change of δθx (degree) at different modulation frequencies 

(70-100MHz) as the function of sixty detector positions on the surface.  When detector 

position was within the range of 1.5-3.5 cm, the δθx is less than 1 degree.  Table 6.4 

demonstrates that the mean δθx values at each modulation frequency are 0.3076, 0.7856, 

0.9366, and 1.0254 degrees respectively and overall average of δθx is only 0.7638˚.  

Figure 6.11 presents the ACx deviation, δACx between the MC simulation and FDPM 

experimental results. 

δACx =[ACx(FD) – ACx(MC)]/ACx(FD)×100%  (6.11) 

When detector position was moved between 1.8 cm and 3.1 cm on the detection 

surface as shown in Figure 6.3, the δACx was less than 40%.  Table 6.4 demonstrates that 

the mean δACx values at each modulation frequency are 39.75%, 43.48%, 44.47%, 

41.46%, and 42.29% respectively and overall average of δACx is 42%.   

The differences between MC simulation and FDPM experimental results may 

result from: (i) the MC simulation model assumes the resin microspheres are 

monodisperse but in reality, as shown in Figure 6.5, the resin particle exists a normal 

size- distribution ; (ii) the MC simulation model assumes the surface of the microsphere 
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are perfectly smooth.  However, the resin is made of polystyrene divinylbenzene and is 

not perfectly smooth on the surface.  Therefore the directions for refraction and 

reflection of each photon package could be a different between the MC simulation and 

the real packing of the microsphere; (iii) the MC simulation model assumes a perfect 

uniform volume fraction within the phantom but this might not be realistic; (iv) PS and 

AC are obtained with a Fourier Transform program using a numerical integration 

method which approximates the Fourier integral (153).  

 
 
 

 
Figure 6.10. Phase shift deviation δθ (degree) at different modulation frequencies (70-
100MHz) as the function of sixty detector position on the surface.  δθ=θ(FD)-θ(MC).  
The mean δθ values at each modulation frequency are 0.3076, 0.7856, 0.9366, and 
1.0254 degree respectively.  The overall average of δθ is 0.7638 as shown in Table 6.4. 
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Figure 6.11. AC deviation δAC (%) at different modulation frequencies (70-100MHz) as 
the function of sixty detector position on the surface.  δAC=[AC(FD)-AC(MC)]/AC(FD).  
The mean δAC values at each modulation frequency are 39.75%, 43.48%, 44.47%, and 
41.46% respectively.  The overall average of δAC is 42.29% as shown in Table 6.4. 
 
 
 
Table 6.4. List of averages of δPS and δAC at different modulation frequencies. 

 Modulation frequency (MHz) 
deviation average 70 80 90 100 overall average 
δθ  (degree) 0.3076 0.7856 0.9366 1.0254 0.7638 
δAC (%) 41.75 43.48 44.47 41.46 42.29 

 
 

 

 

 



 

 

136

6.4.2 MC Computational Results for Fluorescence  

6.4.2.1 Influence of Microsphere Size 

Figures 6.12 and 6.13 show that the fluorescence phase shift θf and ACf versus 

microsphere size ranging from 26 µm to 180 µm in the cubic phantom at different 

detection positions and different modulation frequencies.  Other simulation conditions 

are listed in Table 6.5, where fv is the volume fraction which is equal to the ratio of 

volume of packed microspheres to the total volume of the cubic phantom (4.3 cm3).  P is 

the probability for generation of fluorescence. τavg is the average of lifetime of the 

fluorophores. 

As particle diameter increases, θf decreases while ACf increases.  Under this 

simulation condition, when particle diameter changes from 26 to 100 µm, a ~27-49% 

decrease in θf occurs.  When particle size is more than 100 µm, only 5.8%~13% 

decrease in θf occurs.  Interestingly, Figure 6.14 demonstrates that θf can be described to 

be proportional to 1/sqrt(dpar).  One may recall that the isotropic scattering coefficient 

µ’s for microspheres with large particle size (dpar >>λ) is proportional to the dpar 

(172,173): 

' 1
s

pard
µ

⎛ ⎞
∝ ⎜ ⎟⎜ ⎟

⎝ ⎠
     (6.12) 

Our pervious FDPM experiments validated the linear relationship between µ’s 

and dpar (172).  The θf may be derived from the solution of the coupled fluorescence 

diffusion equations as: 
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( )' , , , , ,f a s a s df v r Qθ µ µ µ ω τ−∝ ⋅      (6.13) 

where v  is the mean photon speed.  The phase shift can be further related to dpar from 

equations 6.12 and 6.13: 

( )
1

f
parsqrt d

θ ∝       (6.14) 

The MC simulation results in Figure 6.14 validate the linear relationship between 

θf and 1/sqrt(dpar).  As we know from Mie theory, particles with size larger than λ will 

scatter less and hence, scattering coefficients become minimal.  Figure 6.13 illustrates 

the fluorescence amplitude ACf increases linearly with the particle diameter.   

 

 
Table 6.5. Simulation conditions for the study of particle size influence on θf  and 
amplitude ACf.  

 
 

fv P τavg  (ns) ntis npar 
µa, par, x 
(cm-1) 

µa, par,m 
(cm-1) 

0.64 0.5 1.4 1.33 1.59 0.02 0.02 
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Figure 6.12. Simulation results of fluorescence phase shift θf (radius) versus 
microsphere diameter (µm) at different detection position and different modulation 
frequencies (MHz).  The symbols represent simulation results whereas the trend lines 
connect simulation results.  The error bars denote the uncertainty in simulation for 108 
photons.  The uncertainty was calculated as the standard deviation of the simulation 
results of three data sets each containing 108 photons.  



 

 

139

 

 
Figure 6.13. Simulation results of normalized fluorescence amplitude ACf (a.u) versus 
microsphere diameter (µm) at different detection positions and different modulation 
frequencies (MHz).  The simulated amplitude AC is normalized by the maximum 
amplitude AC at each modulation frequency.  The symbols represent simulation results 
whereas the solid lines are the linear fits.  The uncertainty in simulation for 108 photons 
is 2%. 
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Figure 6.14. Simulation results of fluorescence phase shift θf (radius) as a function of 
1/sqrt (dpar (in diameter, µm)) at different detection position and different modulation 
frequency (MHz). The symbols represent simulation results whereas the dotted lines are 
the linear fits.  The error bars denote the uncertainty in simulation for 108 photons. 
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6.4.2.2 Influence of Refractive Index of Microspheres 

Figures 6.15 and 6.16 illustrated θf  and ACf change as a function of refractive 

index of microspheres ranging from 1.37 to 2.4 at a modulation frequency of 100 MHz.  

The simulation conditions are listed in Table 6.6.   

 

 

Table 6.6. Simulation conditions for the study of refractive index influence on θf  and 
amplitude ACf.  

 dpar 
(µm) fv P τavg 

(ns) ntis 
µa, par, x 
(cm-1) 

µa, par,m 
(cm-1) 

frequency 
(MHz) 

1 74 0.64 0.5 1.4 1.00 0.02 0.02 100 
2 160 0.4 0.1 1.4 1.33 0.02 0.02 100 
3 26 0.2 0.1 1.4 1.33 0.02 0.02 100 

 
 
 

As the refractive index increases, the θf increases linearly while the ACf decreases 

in all three simulation cases. Under a theoretical analysis of θf, we already know from 

Equation 6.9: 

( ) -1 -1
f avg avg

l
t tan tan

v
ω

θ ω ω ω τ ω τ≈ + = +    (6.15) 

where <l> is the mean path length of collected fluorescence photon, which is a function 

of volume fraction, fv ,and particle diameter, dpar (161).  τavg is the average lifetime of the 

fluorophore.  
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Figure 6.15. Simulation results of fluorescence phase shift θf (radius) as a function of 
refractive index of microspheres at 100MHz and at detection position 4.  The symbols 
represent simulation results whereas the dotted lines are the linear fits.  The error bars 
denote the uncertainty in simulation for 108 photons.  The uncertainty was calculated as 
the standard deviation of the simulation results of three data sets each containing 108 
photons. 
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Figure 6.16. Simulation results of normalized fluorescence amplitude ACf (a.u.) as a 
function of refractive index of microspheres at 100MHz and at detection position 4.  The 
simulated amplitude AC is normalized by the maximum amplitude AC.  The symbols 
represent simulation results whereas the lines connecting the symbols indicate the trend 
lines.   

 

 
The mean “time-of-flight” <t> is equal to (174): 

x mt t t= +     (6.16) 

where <tx> is the mean “time-of-flight” of excitation photon which propagates from the 

source to an immobilized fluorophore inside the microsphere, and <tm> is the mean 

“time-of-flight” of fluorescence photon which propagates from the fluorophore to the 

detector. 

Then θf  can be further expanded from Equation 6.16 as: 
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   (6.17) 

where c is the light speed in vacuum.  αtis and αpar are prefactors representing the 

fractional contribution to the average speed, v  from the surrounding medium and 

microsphere, respectively.  The sum of αtis and αpar is equal to unity.  As we can see from 

Equation 6.17, there is a linear relationship between the refractive index, npar, and θf 

which can be used to explain the results in Figure 6.15.  It may be recalled that the 

higher the refractive index, a stronger scattering effect arises from the microspheres.  

Therefore the fluorescence amplitude ACf  decreases with increasing refractive index. 
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6.4.2.3 Influence of Volume Fraction  

Figures 6.17 and 6.18 present the θf  and ACf change as a function of volume 

faction of microspheres ranging from 0.1 to 0.64 at modulation frequency of 70 and 100 

MHz (in Figure 6.18).  The simulation conditions are listed in Table 6.7.   

 

 

Table 6.7. Simulation conditions for the study of volume fraction influence on θf  and 
amplitude ACf. 

 dpar 
(µm) P τavg 

(ns) ntis npar 
µa, par, x 
(cm-1) 

µa, par,m 
(cm-1) 

1 74 0.05 1.4 1.00 1.59 0.02 0.02 
 

 
When the refractive index is fixed, θf increases but ACf decreases with increasing 

volume fraction of the microspheres in the cubic phantom.  In a previous study, a 

quantitative relationship between µs
’ and fv has been shown as (166): 

( )' 2
1 2

1
s v v

par

a f a f
d

µ = ⋅ + ⋅     (6.18) 

where parameters a1 and a2 are decided by npar.  Accordingly, increasing fv will increase 

the isotropic scattering coefficient.  Correspondingly, the increase of θf with fv can be 

explained with Equation 6.13. 
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Figure 6.17. Simulation results of θf at different detector positions with increasing 
volume fraction of microspheres in the cubic phantom at modulation frequency of 70 
MHz.  The symbols denote the simulation results and the lines connecting the symbols 
denote the trend lines.  The error bars represent 1% simulation uncertainty for 108 
photons.  
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Figure 6.18. Simulation results of ACf at the function of volume fraction of 
microspheres in the cubic phantom at modulation frequency of 70 and 100 MHz.  The 
simulated amplitude AC is normalized by the maximum amplitude AC at each 
modulation frequency.  The symbols denote the simulation results and the lines denote 
the linear fits. The error bars represent 2% simulation uncertainty for 108 photons. 
 
 
 

6.4.2.4 Influence of Fluorescence Average Lifetime 

Figures 6.19 and 6.20 demonstrate the influence of fluorophore average lifetime 

on the θf and ACf.  The simulation conditions are listed in Table 6.8.  As the fluorophore 

average lifetime increases, θf increases and ACf decreases.  In the presence of the 

microspheres, the values of θf are magnified by the presence of the microspheres as 

shown in Figure 6.19.  It has been shown in equation 6.15 that θf consists three 

contributions from (i) “time-of-flight” of excitation photons; (ii) time-delay caused by 
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the lifetime of the excited fluorophore; and (iii) “time-of-flight” of emission photons 

(174).  For the established ConA-dextran affinity system in Section 4, the donor average 

lifetime change is from 2.79 to 3.16 ns as glucose concentration increases from 0 to 224 

mg/dL.  The corresponding ∆θf (=θf(224 mg/dL)-θf(0 mg/dL)) at 100MHz with or 

without scattering is 0.05 radiuses (=2.9˚) based on the results in Figure 6.19.  The 

presence of scattering doesn’t provide better sensitivity for ∆θf . 

 
 

 
Figure 6.19. Simulation results of fluorescence phase shift θf (radius) as a function of 
fluorophore average lifetime at 100 MHz and detection position 4.  The symbols 
represent simulation results whereas the lines connecting the symbols are the trend lines. 
 



 

 

149

Table 6.8. Simulation conditions for the study of the influence of fluorophore lifetime 
on θf  and amplitude ACf.  

 dpar 
(µm) fv P ntis npar 

µa, par, x 
(cm-1) 

µa, par,m 
(cm-1) 

frequency 
(MHz) 

1 26 0.5 0.1 1.33 1.59 0.02 0.02 100 
2 74 0.5 0.5 1.33 1.59 0.02 0.02 100 
3 120 0.5 0.1 1.33 1.59 0.02 0.02 100 
4 160 0.64 0.5 1.33 1.59 0.02 0.02 100 

 

 
 

 
Figure 6.20. Simulation results of normalized fluorescence amplitude ACf (a.u.) as a 
function of fluorophore average lifetime at 100MHz modulation frequency and detection 
position 4.  The symbols represent simulation results whereas the lines connecting the 
symbols indicate the trend lines. 
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6.5 Summary 

We have shown that, a new Monte Carlo simulation for time-resolved light 

propagation at microsphere-based implantable sensors in a three-dimension cubic 

phantom.  The validity of this model for the excitation light propagation has been 

demonstrated using a single-pixel FDPM system. Comparison of experimental results 

and simulation data has shown that (i) our MC model could predict the PS and AC 

change well; (ii) the mean phase-shift deviation was 0.736˚; and (iii) the mean AC 

deviation was 42%.  The model was then applied to investigate the influence of several 

design parameters on surface detected PS and AC.  The parameters included the optical 

and physical properties of the microsphere: (i) the microsphere diameter; (ii) volume 

fraction; and (iii) refractive index. We also found that even though the sensitivity of PS 

change in presence of scattering was the same as the value without scattering, the values 

of PS were magnified due to the scattering effects.  Our work may provide, for the first 

time, a preliminary basis for designing implantable, microsphere-based optical sensors 

for lifetime measurements. 
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7. CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

Microsphere-based implantable optical sensors are promising for future 

development of a continuous glucose sensing technique.  In this work, we tried to 

develop a new prototype of an implantable fluorescent glucose sensor using FD 

measurements.  The research was carried out into three directions:  

(i) We developed a new glucose sensitive ConA-dextran affinity system using 

long wavelength Alexa Fluor dyes.  The glucose sensing range by change of phase-shift 

could reach up to 750 mg/dL, which is within the physiological range.  For the first time, 

we analyzed the decay kinetics of this FRET system using results from FD 

measurements.  We found that parameter γ in the generalized Förster model provided 

better sensitivity for evaluating glucose concentration than the raw phase-shift data.  

Most importantly, our work extended the simple, low-cost FD instrumentation to a 

potential, powerful “weapon” for ultra-sensitive glucose sensing in the future. 

(ii) We experimentally investigated the feasibility of FD lifetime spectroscopy in 

tissue-mimicing scattering phantom with implantable microsphere-based sensor.  We 

chose a well-characterized pH sensor, C-SNAFL-1, to test the feasibility.  Following 

bioconjugation reactions and photopolymerization, self-made poly(ethylene glycol) 

microspheres encapsulating the pH fluorophores were prepared and characterized.  The 

FDPM measurements in a phantom with 0.5% polystyrene as scatters showed that: (i) 

the phase-shifts in presence of scattering were magnified compared with those in 
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absence of scattering; and (ii) the average fluorophore lifetime, τavg, which was extracted 

from measurements using optical diffusion theory, could be used to quantitatively 

measure pH change. 

(iii) A new Monte Carlo model was developed and experimentally validated for 

time-resolved light propagation in microsphere-based sensors.  The model accounted for 

the refractive index mismatch between the polymeric beads and the surrounding media.  

Geometric optics was used to trace photon tracks instead of Mie theory due to the large 

size of the microsphere compared to the wavelength of incident light.  Using this model, 

the influence of particle size, volume fraction, refractive index, and fluorophore lifetime 

on phase-shift signal was presented.  This model may provide an effective tool for future 

design of implantable microsphere-based sensors. 

7.2  Future Work 

Future work focusing on translating the FD lifetime spectroscopy into animal 

studies includes:  

(i) Designing a new FRET glucose-sensitive affinity system which either attaches 

on polymer microspheres surface or is encapsulated into polymer beads.  

(ii) Developing FD measurements in non-scattering solution that could be carried 

out to test the phase-shift response to glucose concentration change.  The glucose 

sensing range may be adjusted by changing the composition of the affinity system as 

shown in section 4.2.4.  The stability, reversibility, and time response of the system 

would be evaluated.  
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(iii) FD measurements in a tissue-mimicking scattering phantom should be 

evaluated out to show the feasibility of quantitative glucose sensing. 

Lastly, (iv) the injection of microsphere sensors into a pig skin tissue should be 

performed.  Glucose monitoring using FD lifetime spectroscopy should be examined.   
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APPENDIX 

NOMENCLATURE 

Abbreviations: 

 

3D  three dimensional 
A  acceptor 
Acryl-   α-acryloyl  
AF568  Alexa Fluor 568 
AF647  Alexa Fluor 647 
AMCA 7-amino-4-methyl-coumarin  
ANS  8-anilino-1-naphthalenesulfonic acid 
APC    Allophycocyanin 
Ar  argon 
BSGK  bacillus stearothermophilus 
CB  cascade blue 
CAD  computer-aided design 
CCD  charge-coupled device 
ConA  concanavalin A 
CQ  collisional quenching 
C-SNAFL carboxy seminaphthofluorescein 
CW  continuous wave 
Cy  cyanine 
D  donor 
DI  deionized 
DMSO  dimethyl sulfoxide 
DTTCI  3,3-diethylthiatricarbocyanine iodide 
EM  emission 
EOM  electro-optic modulator 
EtOH  ethanol  
EX  excitation 
FCC  face centered cubic 
FD  frequency-domain 
FDPM  frequency-domain photon migration 
FITC  fluorescein isothiocyanate 
FRET  fluorescence resonance energy transfer 
FWHM full width at half maximum 
GBP  glucose-binding protein 
GFP  glucose fluorescence protein 
GOX  glucose oxidase 
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Abbreviations continued: 
 
HMP  hydroxy-2-methylpropiophenone 
I-ANS  2-(4-iodoacetamidoanilino) naphthalene-6-sulfonic acid 
ICG  indocyanine green 
Kr  krypton 
LbL  layer by layer 
LPF  long pass filter 
M  modulation 
MC  Monte Carlo 
MeOH  methanol 
MG  Malachite Green 
MIMG  maltose-insulin-Malachite Green 
MLC  metal-ligand complexes 
MOPS  morpholinopropanesulfonic 
MW  molecular weight 
MWCO molecular weight cut-off 
N/A  not applicable 
NaB  sodium bicarbonate buffer 
ΝΗS  ω-N-hydroxysuccinimidyl ester 
NIR   near infrared 
OCT  optical coherence tomography 
P  probability 
PAA  polyacrylamide 
PBS  phosphate-buffered saline 
PCCA  polymerized crystalline colloidal array 
PEBBLE probes encapsulated by biologically localized embedding 
PEG  poly(ethylene glycol) 
PEG-NHS α-acryloyl ω-N-hydroxysuccinimidyl ester of PEG-propionic acid 
PEG-DA poly(ethylene glycol) diacrylate 
PET  photoninduced electron transfer 
PMT  photomultiplier tube 
PS  phase shift 
QD  quantum dot 
RCP  random close packing 
RITC  rhodamine isothiocyanate 
RF  radio frequency 
SNARF  seminaphthorhodafluor 
SNAFL seminaphthofluorescein  
SNR  signal to noise ratio 
SPR  surface plasmon resonance 
Succinyl- succinylated 
TI-Amp transimpedance amplifier 
TRITC  tetramethylrhodamine isothiocyanate. 
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Abbreviations continued: 
 
TPT  trimethylolpropane triacrylate 
UV  ultraviolet 
YFP  yellow fluorescence protein 
 

English symbols: 

ai
s  coefficients of orthonormal Laguerro polynomials 

aj  pre-exponential factor of a component with a lifetime τj  
A0  ground electronic state of acceptor 
A1  excited electronic state of acceptor 
AC  amplitude of intensity-modulated light [a.u.] 
[A]  acceptor concentration [mol/L] 
B  time-dependent parameter in the fractal FRET decay model 
c  light speed in vacuum [m/s] 
CA  critical acceptor concentration [mol/L] 
CD  critical donor concentration [mol/L] 
[C]  concentration [mol/L] 
[Cq]  quencher concentration [mol m-3] 
Cp  specific heat of the medium [J mol–1 K–1] 
d  minimum donor-acceptor distance 
dp  diameter of microspheres [m]  
D  optical diffusion coefficient [cm] 
Dm  optical diffusion coefficient at emission wavelength 
Dx  optical diffusion coefficient at excitation wavelength  
E  FRET efficiency 
F(ω)  Fourier transform of the FRET decay kinetics 
g  the average of the cosine of the scattering angle 
h  Planck’s constant [J s] 
i  imaginary number  
I(t)  fluorescence intensity at time t [W cm-2] 
I0  fluorescence intensity at time t=0 [W cm-2] 
IAC0  fluorescence amplitude at time t=0 [W cm-2] 
IAC  fluorescence amplitude at time t [W cm-2] 
J  overlaps of donor emission and acceptor absorption spectra 
k1  binding constant [L/mol] 
k2  binding constant [L/mol] 
K  association constant [L/mol] 
Li

s  orthonomal Laguerro polynomials 
L  path length [m] 
n  refractive index 
np  refractive index of particle 
npar  refractive index of microsphere 
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English symbols continued: 
 
nm  refractive index of medium 
ntis  refractive index of surrounding tissue or medium 
N(ω)  imaginary part of Fourier transform of the decay kinetics 
m  the number of frequencies for which data are measured 
MM  measured modulation [a.u.] 
MP  model predicted modulation [a.u.] 
NA  Avogadro’s number 
P(ω)  real part of Fourier transform of the decay kinetics 
Q  fluorescence quantum efficiency 
r  position [cm] 
r  spherical particle radius [m] 
r  donor-acceptor distance [m] 
rAD  collision distance [m] 
rs-d  source-detector distance [m] 
r*  interaction radius [m] 
r
r

  photon position vector 
R  Fresnel’s reflection coefficient 
R0  Förster distance [m] 
R0

DD  critical energy transfer distance for donor-donor energy transfer [m] 
s  step size 
Sо  electronic ground state 
S1  excited singlet state 
Sx  excitation source term 
Sm  emission source term 
t  time [s] 
td  time delay due to the generation of fluorescence [s] 
<t>  mean “time of flight” [s]  
U(r,t)   photon density at position r and time t [W m-3] 
Ux  excitation photon density [W m-3] 
Um  emission photon density [W m-3] 
v  speed of sound in the medium [m/s] 
vE  frequency of excitation [1/s] 
w  photon weight 
 

Greek symbols: 
α  parameter related to diffusion coefficients of fluorophore and quencher 
α  parameter in the generalized Förster model 
β  thermal expansion coefficient [K-1] 
β  parameter related to diffusion coefficients of fluorophore and quencher 
β  parameter in the generalized Förster model 
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Greek symbols continued: 
 
γ  parameter in the generalized Förster model 
δθ  estimated uncertainties in the measured phase-shift [deg] 
δM  estimated uncertainties in the measured modulation-ratio  
εA  extinction coefficients [M-1 cm-1] 
φ  observed rotation 
ζm  detection efficiency factor of the instrumentation at emission wavelength 
ξaxf  extinction coefficients of fluorophore at the excitation wavelength  
θ  phase shift [degree] 
θ0  phase shift at time t=0 [degree] 
θA  angle between absorption dipole of acceptor and the joining vector 
θD  angle between emission dipole of donor and the joining vector [degree] 
θΜ  measured phase shift [degree] 
θP  model predicted phase shift [degree] 
θT angle between emission dipole of donor and absorption dipole of acceptor 

[degree] 
θi angle of incidence of photon on the boundary of particles 
θt angle of transmission of photon on the boundary of particles 
κnr  non-radiative rate of relaxation [1/s]  
κr  radiative rate of relaxation [1/s] 
κT  rate of fluorescence energy transfer [1/s] 
κq  Stern-Volmer constant [m3/s.mol] 
κ2  orientation factor 
λ  wavelength [nm] 
µa  absorption coefficient [cm-1] 
µa

w  water absorption coefficient [cm-1] 
µa

g  intrinsic glucose absorption coefficient [cm-1] 
µax  absorption coefficient at excitation wavelength [cm-1] 
µam  absorption coefficient at emission wavelength [cm-1] 
µaxf

  absorption coefficient at excitation wavelength by fluorophore [cm-1] 
µs  scattering coefficient [cm-1] 
µs’   isotropic or reduced scattering coefficient [cm-1] 
µsx’  isotropic scattering coefficient at excitation wavelength [cm-1] 
µsm’  isotropic scattering coefficient at emission wavelength [cm-1] 
∆µsg  change of scattering coefficient caused by glucose [cm-1] 
µt   total attenuation coefficient [cm-1] 

Aµ
uur    unit vector of acceptor transition moment 

Dµ
uur   unit vector of donor trabsition moment 

v
r

  photon moving direction 
ς  random number  
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Greek symbols continued: 
 
ρ(r)  probability function  
τ  fluorophore lifetime [s] 
τ0  unquenched fluorophore lifetime [s] 
τavg  fluorophore average lifetime [s] 
τavg

scat  fluorophore average lifetime at presence of scattering 
τj  lifetime of fluorescent component j [s] 
τF  donor lifetime [s] 
Φ  light fluence [W/cm2] 
ρP  volume density [m-3] 
χ2 the error- weighted sum of squared deviations between the measured and  

calculated values of phase delay and amplitude demodulation 
ω  angular modulation frequency [rad/sec] 
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