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ABSTRACT

Non-Eyring Temperature Dependence of Dynamic Isotope Effects.

(December 2006)

N. Rebecca Ruiz, B.S., Northwest Nazarene University

Chair of Advisory Committee:  Dr. Daniel A. Singleton

Our group has recently described a new form of kinetic isotope effect that arises

from dynamic selectivity in the bifurcation of a reaction pathway on the slope of an

energy surface. Since the selection between products does not occur at a potential energy

saddle point, we proposed that the isotope effect is decided by dynamic factors that are

not necessarily related to zero point energy effects on the surface. As an alternative

explanation, it has recently been suggested that variational transition state theory can

account for these isotope effects. The dynamic explanation and variational transition state

theory explanation make distinct predictions as to the temperature dependence of these

isotope effects. I describe here my studies of the temperature dependence of the

intramolecular isotope effects for the reaction of singlet oxygen with gem-

tetramethylethylene-d6.  The selectivity observed for this reaction across a broad

temperature range is clearly a non-Eyring distribution and thus the mechanism cannot be

adequately described solely using transition state theory or even some variation of it.

After using these results to evaluate competing theories it was concluded that this

mechanism could only be properly understood using a dynamic explanation.
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CHAPTER I

INTRODUCTION

Transition State Theory

The understanding of the rates and selectivities of chemical reactions is

predominantly based on transition state theory.  Since its inception by Eyring, transition

state theory has undergone many refinements to come to the various forms known and

used today.  Over time, transition state theory has passed from being a model for

understanding chemical reactivity- to being integral to the way chemists look at all

reactions themselves.  This integration has become so tight that there are few outlets

available for rationalization of reactions in which transition state theory fails to predict or

explain the outcome.

Transition state theory relates the rates of reactions to the enthalpy and partition

function of a transition state, which is a multidimensional surface dividing starting

material from product.  In thermodynamics terms, the rate of a reaction can be expressed

as in eq 1, often referred to as the Eyring equation.  In this equation k is the overall

reaction rate, kb is the Boltzmann constant, T is absolute temperature, h is Planck’s

constant, -ΔGo
act is the standard Gibbs free energy of activation, R is the universal gas

constant, -ΔHo
act is enthalpy of activation, and -ΔGo

act is entropy of activation.  The

symbol κ is the transmission coefficient, a correction for any recrossing of products

across the dividing surface, and has a value ranging between 0 and 1.

                                                  

This thesis follows the style of Journal of the American Chemical Society.
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Eq 1 can be used to relate the competitive rates of two (or more) reactions in the

same system.  The rate of one reaction (k) can easily be related to the rate of the other (k’)

by dividing the equations for each and canceling out identical constants, assuming that κ

is identical for each.  The relative rates can be interpreted as the differences in their free

energies of activation, represented as ΔΔG

€ 

act
0 , as shown in eq 2.  This equation can also

be expanded to show that the individual rates are equivalently interpreted as the

differences in their enthalpies and entropies of activation, ΔΔH
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0  and ΔΔ S

€ 
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0 ,

respectively (eq 3).
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By utilizing this type of approach, the interpretation of rates and selectivity has a

formalistic character that lends itself a degree of flexibility.  Variations within a system

are simply accounted for as variables of the base equation and can be applied to most

situations; a most significant variation being the dependence of ΔΔH

€ 

act
0  and ΔΔS

€ 

act
0  on

temperature.

A variety of predictions can be made using eq 3, particularly regarding the effect

of temperature on selectivity.  These predictions have been found to be most useful and

qualitatively accurate for numerous situations.  To be fair, allowing for temperature

dependence in ΔΔH

€ 

act
0  and ΔΔS

€ 

act
0 , eq 3 could account for almost any observations.

However, a potentially breakable prediction significant to this work is the effect on

selectivity as temperature (T) decreases significantly, approaching absolute 0.  According

to eq 3, selectivity should increase limitlessly as T is reduced to 0.  An exception to this

has been observed in reactions with large amounts of tunneling, but in such cases ΔΔH

€ 

act
0

is exactly zero at sufficiently low temperatures.1-8  Outside of such tunneling cases, the

exponential effect of temperature on selectivity has been inviolate.

This traditional treatment of relative rates or product selectivity in a reaction

associates the product ratios with the energy difference between the transition states

leading to the two products.  In such a treatment there is a subtle presupposition that

separate products are always formed from separate transition states.  The traditional

modeling for the minimum energy pathway for the formation of each product could be

displayed in a two-dimensional reaction coordinate diagram such as the one shown in

Figure 1A.  However, reality is multidimensional, and complications arise that are not

well represented in two dimensions.  One issue is that in three or more dimensions, a
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transition state is not a maximum but a saddle point.  This allows two transition states to

be adjacent, while in two dimensions this is not possible.  A second issue is that one

transition state can lead to two or more products.  Both of these possibilities can be

understood by comparing the two-dimensional reaction coordinate diagram in Figure 1A

to the energy surface displayed in Figure 1B.  In Figure 1B, there are two adjacent

transition states, and reactants passing the rate-limiting transition state at left can proceed

downhill to two products.

Figure 1A.  2-D Reaction coordinate diagram. Figure 1B. 3-D Energy surface diagram.

Introduction to Dynamics

After coming to view reaction pathways as more like the three-dimensional

potential energy surface just described, it becomes almost natural to question the basic

assumption that separate products invariably arise from separate transition states.  This

assumption has been shown unreliable from a theoretical standpoint in a variety of
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situations9-19.  For example, Hase’s ab initio quasiclassical trajectory studies of the

cyclopropyl radical ring-opening gave evidence for both a conrotatory and disrotatory

ring-opening as well as evidence of a valley ridge inflection point along the potential

energy surface, a phenomenon which will be discussed in further detail below.  Schlegel

and Shaik’s theoretical studies of ketyl anion radicals with alkyl halides predict a single

transition state with a bifurcating pathway leading to both electron transfer and carbon-

alkylated products.18  In theoretical studies by Birney and coworkers, the formation of

semibulvalene in deazitations involves sequential transition states along the minimum

energy pathway as well as a valley ridge inflection point.20

Figure 2.  Potential energy surface of a bifurcating reaction pathway
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In all of these examples, products of lower symmetry follow a symmetrical

transition state. By necessity, a reaction path through such transition states must bifurcate

as it breaks symmetry to form two (or more) products.  Energy surfaces of this type, as in

Figure 1B or Figure 2, are referred to as bifurcating energy surfaces.  In such cases two

saddle points sit adjacent to one another (TS1 and TS2), connected by the minimum

energy pathway (MEP), and the area in between them is known as the valley-ridge

inflection (VRI).  It is at the VRI, that trajectories will begin to deviate towards their

respective product valleys. These reactions are referred to as having a “two-step no

intermediate mechanism” as there are two separately-affectable and so kinetically

distinguishable steps, yet there is no minimum.  The product selectivity is determined

along the slope of the energy surface rather than at the transition state.21

It has been suggested by Singleton and coworkers that the ene reaction of alkenes

with (1Δg) oxygen (1O2) involves a bifurcating energy surface of this type.  In such a case

as it was designed, the two products were only distinguishable by their differences in

isotopic substitution so that the selectivity could be quantitatively represented as an

intramolecular kinetic isotope effect (KIE).21-24  Singleton proposed that the observed

isotopic selectivity reflected a new type of KIE, best understood by dynamic trajectories.

The evidence that brought him to this conclusion is more fully described later in this

work.

This thesis describes an extensive experimental study of the ene reaction of 1O2.

In this study, gem-tetramethylethylene-d6 (TME-d6) was synthesized and subjected to

standard 1O2 conditions at a wide range of temperatures.  The mixture of products at each
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temperature, only distinguishable by isotopic substitution, was used to determine, in

effect, the intramolecular KIE.  These results were studied in conjunction with

theoretically predicted isotope effects, within the same general temperature range, based

on trajectory calculations.  The temperature dependence of the selectivity was found to be

determinedly non-Eyring in nature and as such is a unique case, experimentally.  The

experimental results were found to be reasonably predictable when examined in the

manner as previously described by Singleton.  Neither conventional nor variational

transition state theory was able to predict the selectivity as aptly.

Dynamic effects have partially resolved the mechanistic debate over several

reactions and have clarified the mysterious regioselectivity and isotopic selectivity as

well.21,24-30  It has been suggested that reactions following a two-step no intermediate

mechanism are far from anomalous, but are commonly mischaracterized as concerted

processes.24  Since reactions have typically been looked at in terms of either one-step

concerted mechanism or a two-step mechanism, new investigations must be undertaken

to qualitatively understand selectivity in these reactions.

History of the Ene Reaction of Singlet Oxygen

1O2
OOH

1 2

Figure 3.  The 1O2 ene reaction of tetramethylethylene.
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The mechanism of the ene reaction of 1O2 with small alkenes, such as

tetramethylethylene 1 (see Figure 3), has been explored extensively.31-34  Although this

reaction is formally an allowed pericyclic process that could proceed by a transition state

resembling 3 (see Figure 4), intermolecular isotope effects have shown that this is not a

realistic mechanistic explanation.  A competitive reaction between tetramethylethylene

and tetramethylethylene-d12, conducted by Stephenson and coworkers, exhibited an

intermolecular isotope effect of only 1.11.  This observation indicates that hydrogen

transfer does not occur during the rate-determining step, consequently ruling out the

concerted mechanism previously proposed.   In standard mechanistic analysis, this forces

the conclusion that there is an intermediate in the mechanistic process.  Several possible

intermediates can be reasonably proposed, such as a zwitterionic or diradical 4,

perepoxide 5, or exciplex 6 intermediate (see Figure 4), however more experimental

evidence was required to narrow down the field of possibilities.

O

OH

O

OH . (-)

. (+)

O

O

H
+

-

O
O

H

4 5 6

1 2

21

3

Figure 4.  Previously proposed intermediates for the 1O2 reaction of tetramethylethylene.
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Stephenson and coworkers utilized a variety of deuterium labeled alkenes to

obtain a series of KIEs for the reaction of 1O2 with each, the results of which are shown in

Figure 5.  His observations led to a more expansive understanding of the mechanism.

The isomers, 7 and 9, showed significant intramolecular isotope effects ranging from

1.38 to 1.41, whereas isomer 8 exhibited only a small effect of 1.04-1.09.  The isomer 10,

similarly studied by Foote, was observed to also have a large isotope effect of 1.38,

comparable to 7 and 9.

D3C

H3C CD3

CH3 D3C

H3C CH3

CD3 D3C

D3C CH3

CH3 H

H3C CD3

H
7 8 9 10

1.38-1.41 1.04-1.09 1.4 1.38

Figure 5.  Intramolecular isotope effects on deuterium labeled olefins.

A zwitterionic or diradical intermediate is consequently ruled out by these results,

as they would both be expected to have large observed isotope effects with 7 and 8, but

not with 9 and 10.  After rate-limiting formation of the zwitterionic or diradical

intermediate resulting from 7 or 8 (see Figure 6), the intermediate would select between

the proteomethyl and deuteriomethyl in the product forming step, a selection unavailable

in the 9 and 10 intermediates.
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D3C

H3C CH3

CD3

O

O

D3 C CD3

CH3
H3C

O

HO

D3 C CD3

CH3

H2C O

DO

D2C CD3

CH3

H3C

8

+
.

.

1O2

Figure 6.  Product mixture expected from mechanism including a diradical intermediate.

A perepoxide or exciplex intermediate is much more consistent with the observed

isotope effects in that both would be expected to have large observed isotope effects with

7, 9, and 10, but not with 8.  After rate-limiting formation of the perepoxide or exciplex

intermediate resulting from 7 , 9 (see Figure 7), and 10, the intermediate would select

between the proteomethyl and deuteriomethyl in the product forming step, a selection

unavailable this time in the 8 intermediate.  Consequently it was concluded that the

intermediate must be a perepoxide or exciplex type intermediate.

Figure 7.  Product mixture expected from mechanism including a perepoxide
intermediate.

In contrast, a variety of theoretical calculations performed by Singleton and

coworkers predicted several different mechanisms, standard high level methods did not

support a perepoxide or exciplex type intermediate, and were unable to adequately

D3C

D3C CH3

CH3
D3C

CD3

CH3

H3C
O

O

D3C

CD3

CH2

CH3
O

OH

D3C

CD2

CH3

O
H3C

OD

+

9
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predict the experimental results previously described.  They then sought to further

investigate the mechanism experimentally by obtaining both intermolecular and

intramolecular 13C isotope effects, gaining a more detailed picture of the structure of the

rate-limiting transition state.   The intermolecular 13C KIEs of a nearly-symmetrical

alkene 11 (see Figure 8) reacted with 1O2 were observed at natural abundance using high

resolution NMR techniques in analogy with processes designed and utilized previously

by Singleton and coworkers.35  Similarly small isotope effects were observed at each

olefinic carbons in the recovered starting material 11 indicating a symmetrical approach

of the oxygen to olefin bond.

1.006(3) 1.007(3)

11

Figure 8.  13C isotope effects for the 1O2 reaction with 11.

Intramolecular 13C KIEs were observed by isolating the product of 1O2 with

tetramethylethylene at natural abundance and obtaining the relative integrations of the 13C

signals.  When analyzed in the light of each mechanistic model previously proposed, the

concerted and diradical mechanisms were even more fully excluded and it was shown

that a species with perepoxide type symmetry occurs after the rate-limiting step.
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Next, Singleton and coworkers pursued a variety of theoretical calculations and

found two contiguous transition states, TS1 and TS2, with no intermediate, much like the

potential energy surface seen in Figure 2.  On this surface the product determining

selectivity occurs at the VRI, before the reacting species reaches TS2 (see Figure 9).

They employed quasiclassical direct dynamics calculations, closely modeling the

potential energy surface along the pathway where the O2 is approaching the olefin.

H3C

H3C CD3

CD3

O

O

H3C

H3C CD3

CD3

O

O

H3C

H3C CD3

CD3

O

O

H3C

H3C CD3

CD3

TS2VRITS1

H2C

H3C CD3

CD3

OOH

H3C

H3C CD3

CD2

DOO

1O2

+

+

Figure 9.  Two-step no intermediate mechanism of ene reaction 1O2 with TME-d6 as
proposed by Singleton

Each trajectory was initialized with a geometry in between TS1 and the VRI, centered on

the MEP of a symmetrical potential energy surface and thus unbiased towards the

reaction of hydrogen versus deuterium.  However, at both 0 K and 263 K the trajectories

followed favored reaction with hydrogen.  At 0 K, 183 trajectories afforded a kH/kD of

2.0.  At 263 K, 257 trajectories afforded a kH/kD of 1.38, closely matching the
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experimental value.  Although not a quantitatively accurate manner of predicting KIEs,

Singleton ascertained that this demonstrates that dynamically based selectivity can occur

along a symmetrical barrierless energy surface forming a new type of isotope effect that

is unrelated to typical zero point energy effects.

In 2004 Lluch and coworkers challenged the claim that dynamic effects were the

source of selectivity for the ene reaction of singlet oxygen and asserted his own claims

that the variational transition state theory (VTST) is sufficient to explain the KIEs at

variable temperatures.36  VTST differs from traditional transition state theory by

accounting for recrossing of the reactants across the reaction barrier, a notable

assumption inherent in conventional TST.  Lluch attempted to make his calculations

comparable to Singleton’s by employing the same basis set and level of theory.  From the

valley ridge inflection geometry he found a bifurcation in the minimum energy pathway

leading to two distinct pathways, one for the hydrogen abstraction and the other for the

deuterium abstraction. Along each of these pathways he calculated a dynamical

bottleneck and determined it to be the true source of selectivity.  From these findings,

Lluch calculated several intramolecular KIEs between 150 and 500 K, which in turn

predicted a traditional Eyring shaped curve where the selectivity increases rapidly as the

temperature decreases (Figure 10).  At the time of his work, no experimental evidence on

the temperature dependence of the reaction was available to compare to.

  Our hypothesis and the subject of this thesis is that the intramolecular isotopic

selectivity in these reactions constitutes a new form of kinetic isotope effect, and as such,

it is of fundamental interest to observe the basic characteristics of a new phenomenon.

Does the temperature dependence of the selectivity differ from that normally observed for
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reactions in which the products arise from separate transition states?  Can the selectivity

be modeled by an Eyring relationship as in eq 3?  Although the Lluch variational

transition state theory treatment errs quantitatively, can it qualitatively account for the

temperature dependence of the isotope effect?  By answering this last question, we hoped

to definitively decide whether variational transition state theory is really applicable to

these reactions.  Can trajectory calculations account for the temperature dependence of

the isotope effect?  If so, can this be used to gain insight into observations?  Overall, our

goal being to observe, theoretically predict, and understand the temperature dependence

of the isotope effect in these reactions.  We have largely succeeded.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0 50 100 150 200 250 300 350 400 450

Temp (K)

kH
/k

D

Predicted KIEs - Variational
Transition State Theory
Eyring relationship - least
squares best fit

Figure 10.  Lluch’s VTST predictions compared to an Eyring curve.
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CHAPTER II

RESULTS

Experimental Isotope Effects

CD3

CD3H3C

H3C CD3

CD3H3C

H2C

OOH

CD2

CD3H3C

H3C

DOO

9 1312

+

1O2

+

Figure 11.  1O2 reaction of tetramethylethylene-d6 to form a hydroperoxide mixture.

The principal reaction chosen for study is the 1O2 ene reaction of

tetramethylethylene-d6 (9) (see Figure 11), chosen because it is a key example used in the

previous studies by Singleton and Lluch.  Also, the substrate is easily synthesized (see

Figure 12) through a three-step process, adapted from the procedure of Adam and

coworkers.37

The reaction of 9 to form the hydroperoxide mixture of 12 and 13, as shown in

Figure 13, was performed on a 100-200 mg scale in methanol or a methanol mixture

solvent system using Rose Bengal as a sensitizer.  The reaction was taken to partial

completion in order to obtain quantitatively reliable KIE by limiting the possibility of

secondary or side reactions.  The isomers in the product mixture are only differentiated

by their isotopic arrangement enabling the measurement of the reaction selectivity.  Since

the mixture of products contains the limitedly stable hydroperoxides, they were

immediately deoxygenated to form the alcohols 16 and 17 before analysis.
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O

HO
CH3

CH3

O

O

H3C

H3C

CD3

CD3

O

HO CD3

OH
CD3

H3C CH3

H3C

H3C CD3

CD3

1)  2.1 equiv nBuLi
     2 equiv diisopropyl amine
     THF

2)  1 equiv acetone-d6
      HCl workup

100 oC

 -CO2

PhSO2Cl

Pyr:, 0 oC

14

15 9

Figure 12.  Synthesis of tetramethylethylene-d6.

This conversion step has no effect on the isotopic composition of the products. At this

point the mixture of products was isolated by extraction and purified by chromatography

and distillation for NMR analysis.  Multiple high resolution 1H-NMRs of each sample

were run back to back with standard non-deuterated samples reacted under the same

conditions.   The average of the integrations was used to determine the ratio of

isotopomeric alcohols 16 and 17.  The integrations for all peaks were corrected using the

average integrations from the standard sample, improving the quantitative accuracy of the

integrations.  In some cases baseline corrections were also employed.  After correction,

the methyl peaks of 17 were compared to the methyl and methylene peaks of 16, which

were then used to calculate the KIE for each sample.  This method of measuring KIEs

utilizing high resolution NMR is analogous to the methods developed by Singleton and

coworkers to study a variety of chemical phenomena.
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NaBH4
MeOH

16 17

12    +    139     O2, hν
Rose Bengal

H2C

H3C CD3

CD3

OH

H3C

H3C CD3

CD2

HO+

Figure 13.  Conversion of tetramethylethylene to hydroperoxide mixture and
subsequently to alcohol mixture for analysis.

As can be expected with a study spanning such a wide temperature range, some

variation in reaction conditions was necessary. Great concern was given to keeping the

differing systems as comparable as possible, so only the primary solvent was varied.  For

reactions at 193 K to 328 K, methanol was the only solvent used, whereas for reactions at

118 K to 163 K, a mixture of Freons, either CHClF2 or 2:1 CHClF2:CHF2, with 5%

methanol was used.  A variety of other major solvents were tried in order to expand the

temperature range (Table 1) before turning to Freon mixtures, but none were found to

provide an adequate environment for significant reaction of 1O2 or produced too many

side reactions to be useful.  Several reactions at 77 K were run using a solvent mixture of

liquid nitrogen and 5% methanol suspended heterogeneously.  Observed KIEs for each

were found to be in reasonable agreement.

As is apparent in Table 1, many solvents systems were tried and rejected for

various reasons.  Much was learned from this process that made it possible to afford

greater confidence to the comparability of the solvent systems finally chosen for the final

study.  Isolated non-polar solvents tended to inhibit reactivity almost completely, but with

even a small amount of methanol normal reaction often transpired.  In attempts to gain

samples run at lower temperature, which are of particular interest, a variety of mixtures of
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methanol with lower boiling solvents were tried.  Several samples were acquired,

however the quantity of side and/or secondary products from reaction with the non-polar

solvent made them unreliable and useless for KIEs.

Table 1.  Alternative solvent system attempts for expanding temperature range
Solvent T (K) t (h) rxn

1,2-propanediol 298 2 -
1,2-propanediol 373 1 -

1:1 1-octanol/isopropanol 298 6 -
1:1 1-octanol/isopropanol 328 12.5 -
1:1 1-octanol/isopropanol 343 15 -
1:3 1-octanol/isopropanol 343 5 -
1:3 1-octanol/isopropanol 363 5 -

1-octanol 298 12 -
1-octanol 423 6 -
1-octanol 453 9 -

diethyl ether 183 2 -
diethyl ether 298 15.5 -

p-dioxane 298 4 -
p-dioxane 353 2 -
pentane 298 15.5 -
toluene 298 6 -

1:1 pentane/methanol 153 1 74%
1:3 pentane/methanol 173 1 43%
1:3 methanol/pentane 158 3 20%
1:10 methanol/pentane 298 3 10%
1:10 methanol/pentane 148 3 12%

1:1 methanol/diethyl ether 173 3 10%
1:3 methanol/diethyl ether 168 3 16%
1:10 methanol/diethyl ether 298 3 8%
1:10 methanol/diethyl ether 163 3 -

1:5 methanol/n-propanol 298 6 23%
1:5 methanol/2-methylbutane 298 6 30%

1:2:10 diethyl ether/pentane/methanol 183 2 18%
1:2:6 n-propanol/methylcyclohexane/pentane 298 6 -
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Conversely, with Freon/methanol mixtures, no such side or secondary products

were seen giving credence to the belief that the 1O2 ene reaction with alkenes is

undergoing the same mechanism as in the methanol only reactions.  Table 2 lists the

observed KIEs from this.  The most notable qualitative observation with these KIEs is the

leveling off of the effect seen as the temperature decreases, reaching a limiting isotope

effect of approximately 1.56.  Some scattering is noticeable in the data, but that is likely

due to necessary variations in reaction conditions.

Table 2.  Observed KIEs for the ene reaction of 1O2 with gem-tetramethylethylene-d6 at a
variety of temperatures.

T (K) KIE
75 1.559
75 1.595

118 1.566
138 1.586
158 1.545
163 1.530
193 1.538
208 1.548
218 1.464
248 1.456
276 1.417
298 1.373
313 1.326
328 1.300

As a simple means of observing KIEs in a different manner, a series of 1O2

reactions with both tetramethylethylene and gem-tetramethylethylene-d6 were attempted

on an NMR scale in deuterated solvent systems, chloroform-d3 and benzene-d6.

Preliminary results at room temperature were very inconsistent with known isotope

effects, indicating a much higher kH/kD than observed previously.  It was theorized that a
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second mechanism, such as a radical type two oxidation, was occurring along with the

1O2 reaction and a mixed KIE was ultimately being observed.  This approach was

discontinued, as it became no more useful than an interesting way of monitoring by-

product formations.

Trajectory Studies

Extensive quasiclassical trajectories on the B3LYP/6-31G* surface of the ene

reaction of 1O2 with tetramethylethylene-d6 were employed to study the temperature

dependence of selectivity under this theoretical model in order to ascertain if it could

adequately predict the obtained experimental results.  Each trajectory was initialized with

O1-C1 and O1-C2 distances of 1.95 Å, a geometry in between TS1 and the VRI, centered

on the MEP of the B3LYP surface and thus unbiased towards the reaction of hydrogen

versus deuterium in the same manner as the trajectories run by Singleton and coworkers.

A linear sampling of possible displacements for each normal mode was used to

randomize the starting atomic positions.  More than 2000 trajectories were initialized at

0 K, 163 K, 263 K, and 328 K.  Each mode was given its zero point energy (zpe), a

Boltzmann sampling of vibrational levels, and a random sign for its initial velocity.  The

random signs were obtained using a random number generator, which was monitored to

ensure that true randomization was being obtained.  A Boltzmann sampling of

translational energy was given to the mode correlated to the approach of the O1 toward

the alkene carbons, C1 and C2.  Until either product was formed, 1-fs steps were taken

employing a Verlet algorithm with all atomic motions freely variable.  The overall results

for the trajectory runs and the resulting KIE predicted from the ratio of products, kH/kD, at

each temperature is listed in Table 3.
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Table 3.  Trajectory runs at a variety of temperatures and their respective isotope effects.
T (K) Runs H D KIE

0 726 422 304 1.39
77 706 409 297 1.38
163 663 387 276 1.40
263 257 149 108 1.38
328 1019 559 460 1.22

An Attempt to Apply Conventional Transition State Theory

A best fit of the Eyring relationship was obtained for the experimentally observed

KIEs.  Although a less than perfect fit is not unusual, if the reaction selectivity was

predictable by transition state theory then the general trends would be comparable.  This

is not the case at all due to the unusual leveling off at decreasing temperatures observed

in the experimental KIEs.

Application of Variational Transition State Theory

From some unusual observations in Lluch’s paper on the 1O2 ene reaction of

tetramethylethylene-d6, we suspected that there were errors in the analysis.  We have

therefore repeated the analysis, particularly using a very careful determination of the

minimum-energy path for formation of the H-abstracted versus D-abstracted products.

Points on the revised MEP were subjected to a frequency calculation and the resulting

harmonic frequencies were used to determine the location and energy of the variational

transition state theory bottlenecks for formation of each product at a range of

temperatures.  From the transition state energies, the isotope effects were calculated in a

standard way.  The results are summarized in Table 4.
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Table 4. Calculated isotope effects for VTST as predicted by Lluch.
T (K) KIE
150 1.207
200 1.160
263 1.126
300 1.111
400 1.087
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CHAPTER III

EXPERIMENTAL

General

Isobutyric acid, 99% (Aldrich); butyllithium, 2.5 M solution in hexanes (Aldrich);

diisopropylamine, 99% (Aldrich); acetone-d6, 99.5% (Aldrich); hydrochloric acid, 12 M

(EMD); benzenesulfonyl chloride, 99% (Aldrich); pyridine (EMD), diethyl ether (Fisher),

Rose Bengal (Lancaster), sodium borohydrate (EM), trifluoromethane (SynQuest), and

chlorodifluoromethane (SynQuest) were used without further purification.

Tetrahydrofuran (Fisher) and methanol (Fisher) were dried by distillation before use.

The butyllithium was titrated versus menthol in toluene using 1,10-phenanthroline as

indicator

Synthesis of gem-tetramethylethylene-d6 (9)

2,2-Dimethyl-3-hydroxy-3-(trideuteriomethyl)-4,4,4-trideuteriobutyric acid

(14). Example Procedure.  Under N2, a dry flask was charged with a solution of 28.5 g

(282 mmol) of diisopropylamine in 30 mL of THF.  While stirring continuously, the

solution was cooled to –78 °C and 100 mL (250 mmol) of n-butyllithium solution (2.5 M

in hexanes) was added.  The solution was allowed to warm to room temperature and stir

continuously for 2 h.  The solution was then cooled again to –78 °C and 12.25 g (139

mmol) of isobutyric acid in 10 mL of THF) was added.  The solution was allowed to

warm to room temperature and react for 2 h.  The solution was cooled to 5 °C and 8.70 g

(136 mmol) of acetone-d6 in 15 mL of THF was added, the solution was allowed to warm

to room temperature and react for 18 h.  The reaction mixture was then poured over ice
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and washed 4 times with diethyl ether.  The aqueous layer was acidified with 12 N HCl

and the excess water was removed under reduced pressure by simple distillation.  The

remaining organic layer was extracted with diethyl ether, dried with MgSO4, and then

vacuum filtered.  Excess ether was removed by rotary evaporation and the remaining

mixture was rinsed with pentane several times until white crystals formed which were

then isolated by vacuum filtration yielding 9.15 g (60.1 mmol) of 14.

3,3-Dimethyl-4,4-bis(trideuteriomethyl)oxetan-2-one (15). Example

Procedure.  A mixture of 9.15 g (60.1 mmol) of 14 in 50 mL of pyridine was cooled to 5

°C, and 21.4 g (121 mmol) of benzenesulfonyl chloride was added.  The flask was sealed,

shaken thoroughly, and then placed in a refrigerator overnight.  At this time, the reaction

was judged complete by NMR analysis of an aliquot.  The reaction mixture was

combined with several volumes of ice and extracted 3 times with diethyl ether.  The

combined ether layers were washed with saturated aqueous sodium bicarbonate solution

and water, twice each.  The organic layer was dried with MgSO4, vacuum filtered, and

the excess ether evaporated.  The remaining mixture was then rinsed with pentane several

times and then vacuum filtered to isolate 5.59 g (41.7 mmol) of 15 as dry, white crystals.

Deuterium incorporation was determined to be >99.9% by ESI mass spectroscopy.

gem-Tetramethylethylene-d6 (9).  Example Procedure. A 5.58 g (41.6 mmol)

sample of 15 was distilled, neat, under a water aspirator at 100 °C to yield 2.16 g (23.9

mmol) of the desired olefin 9 (17.6% yield over 3 steps) and evolving CO2 at the same

time.  The isolated TME-d6 was stored in the freezer to avoid evaporation.
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Singlet Oxygen Reaction of 9

Conducted in methanol (193 K to 328 K).  Example Procecdure. Under an

oxygen atmosphere, a mixture of 20 mL of dry methanol, 108 mg (1.20 mmol) of 9, 10

mg (0.01 mmol) of Rose Bengal, and 4 drops of 1,2-dichloroethane was stirred

continuously at 198 K while being irradiated with a 300-W sunlamp.  The reaction was

monitored by GC and after 30% conversion of the tetramethylene-d6, the irradiation was

discontinued.  The mixture was then warmed to 225 K and 40 mg (11 mmol) of NaBH4

was added.  After stirring at 225 K for 6 h, the volatiles were removed by vacuum

distillation, and the mixture was extracted with 50 mL dichloromethane, rinsed four times

with water, dried with MgSO4, and filtered through a small silica plug.  The

dichloromethane was removed by rotary evaporation aided by rinsing the product three

times with 5 mL portions of benzene-d6.

Conducted in methanol/Freon mixture (118 K to 163 K). Example Procedure.

Using a liquid nitrogen condenser, 20 mL of chlorodifluoromethane was condensed and

transferred into a small flask followed by 148 mg (1.64 mmol) of 9, 10 mg (0.01 mmol)

of Rose Bengal, and 1 mL of dry methanol.  The solution was stirred under an oxygen

atmosphere at 163 K while being irradiated with a 300-W sunlamp.  After 2 h, the

irradiation was discontinued.  The mixture was then warmed to 225 K and 20 mL of dry

methanol was added along with 50 mg (14 mmol) of NaBH4.  After stirring at 225 K for 6

h, the solution was worked-up in the same manner as describe above.

Conducted in methanol/liquid nitrogen mixture (77 K). Example Procedure.

Under an oxygen atmosphere, a mixture of 20 mL liquid nitrogen, 100 mg (1.11 mmol) 9,
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10 mg (0.01 mmol) of Rose Bengal, and 1 mL of dry methanol was stirred continuously

at 77 K while being irradiated with a 300-W sunlamp.  After 2 h, the irradiation was

discontinued.  The mixture was then warmed to 225 K and 20 mL of dry methanol was

added along with 40 mg (11 mmol) of NaBH4.  After stirring at 225 K for 6 h, the

solution was worked-up in the same manner as describe above.

NMR Measurements

Each sample was prepared in a 5-mm NMR tube filled with benzene-d6 to a

constant height of 5.0 cm.  The 1H spectra were recorded on either a 400 or 500 mHz

NMR, using 8-s delays between 45° pulses, a 3.7496-s acquisition time, and collecting

44,932 points. Multiple measurements were obtained for each sample along with a

nondeuterated standard that was subjected to the same reaction conditions.  Integrations

were determined numerically using a constant integration region for each peak in both the

sample and standard.  Table 5 lists the average integrations observed for each sample

along with its respective standard and their standard deviations.  The integrations shown

for samples obtained at temperatures ranging from 75 K to 218 K were averaged from six

consecutive fids, while integrations for samples obtained at temperatures ranging from

248 K to 328 K were from a single fid.  A single fid was deemed sufficient at higher

temperatures since the KIE variation between each individual fid of at lower temperatures

had an average standard deviation of ±0.0036.
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Table 5.  Average integrations and standard deviations for each NMR sample and
standard.

T (K) H1 H2 std H2 H3 std H3 H4 std H4
75 1000 1013.20 1.92 3046.90 2.64 3652.12 5.9819

standard 1000 1014.09 1.61 3015.55 2.51 5659.20 7.5052
75 dilute 1000 1013.85 5.46 3099.39 17.0 3763.09 22.2075
standard 1000 998.85 0.48 3020.53 0.94 5893.66 2.7840

118 1000 1028.24 4.81 2953.31 4.88 3578.18 8.1137
standard 1000 1014.09 1.61 3015.55 2.51 5659.20 7.5052

138* 1000 1057.91 17.62 3036.45 56.03 3924.38 82.0718
standard* 1000 1016.96 0.45 2954.26 0.91 6071.90 1.9837

158* 1000 1018.19 8.28 3087.10 25.82 3652.92 35.4348
standard* 1000 1012.90 0.23 2978.57 0.80 5516.70 1.3333

163* 1000 1004.4 0.82 3062.05 3.33 3805.72 5.895
standard* 1000 1000.92 0.49 3011.77 0.49 5876.39 1.3318

193* 1000 1032.30 5.55 2944.40 15.09 3952.17 18.6701
standard* 1000 1016.96 0.45 2954.26 0.91 6071.90 1.9837

208 1000 1033.41 0.98 3035.18 2.06 3717.19 1.5453
standard 1000 1011.58 0.89 3021.89 1.58 5714.17 6.4763

218 1000 1016.46 0.95 3013.56 1.88 3847.10 3.10
standard 1000 1002.59 1.51 3038.33 1.51 5842.73 4.64
248** 1000 1017.49 - 3058.75 - 4176.40 -

standard** 1000 998.868 - 2991.63 - 6025.93 -
276** 1000 1034.23 - 3087.66 - 4329.20 -

standard** 1000 998.868 - 3005.97 - 6025.93 -
298** 1000 1028.47 - 3235.71 - 4482.85 -

standard** 1000 998.868 - 3005.97 - 6066.08 -
313** 1000 1026.82 - 3125.19 - 4569.18 -

standard** 1000 1003.48 - 2987.39 - 5988.69 -
328** 1000 1024.11 - 3154.17 - 4679.30 -

standard** 1000 1003.48 - 2987.39 - 5928.59 -
* baseline corrections were employed
** single fid runs

H3 CD3

CD3

OH

H4

H4 CD3

CD2

HO+

H1

H2

Figure 14.  Hydrogen labeling key for KIEs.
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From the integrations listed in Table 5 the KIEs were calculated using eq 4 in

which H1, H2, H3, and H4 represent the corrected average integrations of the 1H-NMR

peaks associated with the four hydrogens as shown in Figure 14.  The resulting isotope

effects were listed earlier in Chapter II, Table 2.

€ 

kH kD =
(H1+ H2 + H3) /5

(H4) /6
(eq 4)
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CHAPTER IV

DISCUSSION

In order to obtain a more comprehensive picture of the temperature dependence of

1O2 with alkenes, each source of data was overlaid for better comparison.  Figure 15 is a

compilation of the KIEs obtained from the experimental results on tetramethylethylene-

d6, predictions from trajectories, predictions from VTST, and a best-fit Eyring

relationship to the experimental data.  This compilation allows for the various isotope

effects to be examined individually as well as in relation to each other.
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Figure 15.  Comparative plot of the KIEs versus temperature for experimentally observed
isotope effects, predicted isotope effects from VTST, predicted isotope effects from
trajectories, and the best fit Eyring relationship for the experimental KIEs.
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The most striking aspect of the experimental results is the trend seen at

increasingly lower temperatures, where the KIE begins to level off as it approaches 1.56.

Employing constant activation parameters, the Eyring relationship of eq 3 was overlaid to

determine the quality of the fit of the selectivity versus temperature.  As is apparent in

Figure 16, this trend of the experimentally observed KIEs is a completely incompatible fit

with the least squares best fit of the Eyring relationship.  A perfect fit would not

necessarily be expected since activation enthalpies and entropies typically vary with

temperature.  However, the manner of failure in this case is qualitative in nature, not

quantitative, and therefore unique to date.
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Figure 16.  Plot of the experimentally observed intramolecular KIEs and the best-fit
Eyring relationship.
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When compared to the experimental results, the trajectory predictions are quite

remarkable (see Figure 17).  At decreasing temperatures, the KIE seems to level off as it

approaches a constant value on the order of 1.4. Although they quantitatively

underestimate the experimental limiting value of 1.56, the qualitative trends are quite

comparable, and all of the experimental results fall within the uncertainty regions

inherent to the limited number of trajectories.  A consequence of the uncertainty rations is

that slight trends would be difficult to discern when predicting the temperature

dependence of the selectivity.  It is clear, though, that trajectory predictions parallel the

experimental observations much more satisfactorily than the Eyring relationship

predicted by transition state theory.
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Figure 17.  Plot of the experimental KIEs versus dynamic trajectory predictions.
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The next step is to compare the predictions Lluch made using VTST (see Figure

18) to the experimental and theoretical work previously described.  His predictions

substantially underestimate the experimental observations reported in this and previous

works, even more so than trajectory predictions.  At the time he released his theories, the

only experimental observations available were at 263 K and he theorized that the B3LYP

potential energy surface used was merely inaccurate, resulting in a quantitative error.  In

comparison to the Eyring relationship, the trend of Lluch’s predictions is comparable,

which is to be expected based on shared foundations in transition state theory.

Figure 18.  Plot of the intramolecular experimental KIEs, predictions from trajectories,
and predictions from VTST.
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Conversely, when compared to the experimental observations reported in this

thesis the trend is distinctly dissimilar leading to the conclusion that the VTST, like

conventional transition state theory, fails to properly predict the selectivity versus

temperature on both the quantitative and qualitative level.  VTST predicts a symmetrical

intermediate in the area near the VRI on the potential energy surface, which then leads to

two distinct transition states leading to their prospective products, in the same manner as

conventional transition state theory.  From the failure of both of these theories to

adequately predict the selectivity it can be concluded that an intermediate, as suggested,

is very unlikely.

Examination of the potential energy surface for the ene reaction of 1O2 with

tetramethylethylene-d6 reveals a symmetrical surface in Cartesian coordinates, but when

examined after the inclusion of zpe the surface appears unsymmetrical.  However, this

asymmetry does not appear to be a sufficient explanation of the selectivity observed

experimentally and more importantly it does not explain the leveling out of the isotope

effect at lower temperatures.  This leads to the conclusion that the typical effect of zpe on

barriers, as described in transition state theory, is irrelevant to the isotope effects

observed.  The selectivity seems more directly related to the inherent asymmetry in the

mass-weighted surface and that of the vibrational modes, which are not implicitly

accounted for in transition state theory.  This is not to mean that zpe is to be completely

ignored, but should be included in a more complete picture of the motion of the atoms.

The effects of zpe, as well as thermal excitation, on the vibrational modes can

collectively be accounted for from a quasiclassical dynamic standpoint.  The contribution
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from thermal excitation at higher temperatures is significant, leading to greater atomic

motion and decreased selectivity.  Conversely, at lower temperatures the contribution

from thermal excitation becomes increasingly less significant until the atomic motion is

completely ruled out by zpe.  In such case the selectivity then becomes independent of

temperature, as seen in the leveling off of the isotope effect, since zpe itself is

independent of temperature.   Although this is not an end-all, all-inclusive explanation of

the ene reaction of 1O2 on small alkenes, it is a powerful step towards a better

understanding dynamic effects on the selectivity of such systems.



35

CHAPTER V

CONCLUSION

The experimental KIEs reported in this work present reasonably strong evidence

concerning the nature of the mechanism of the ene reaction of 1O2 with gem-

tetramethylethylene-d6.  It has been suggested previously by Singleton that this

mechanism demonstrates a new form of isotope effect, the characteristics of which are

not fully understood.  The selectivity observed for this reaction across a broad

temperature range is clearly a non-Eyring distribution and thus the mechanism cannot be

adequately described solely using transition state theory or even some variation of it.  The

leveling off of the isotope effect observed at low temperatures was the primary indication

of this unique failure of transition state theory to adequately model a reaction of this type.

Quasiclassical trajectories runs were found to be much more satisfactory in qualitatively

predicting the observed KIEs.  They showed that two transition states could exist next to

each other on a potential energy surface without a stabilizing intermediate.  In such a case

as this the selectivity for product formation occurs at the VRI, before the second

transition state, subsequently making selectivity independent of either transition state.

This model is not only theoretically sound, but qualitatively successful in predicting the

selectivity observed.  Conversely, the VTST model employed by Lluch failed to properly

predict the selectivity on both a quantitative and qualitative level.  Overall, this is exciting

and conclusive evidence of a new isotope effect as suggested previously.  There is

currently only a modest understanding of the basic characteristics of this new

phenomenon, however this work is a major step in coming to a fuller understanding of its

existence and distinctiveness.
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