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ABSTRACT 

 

Mixed Ionic and Electronic Conducting Electrode Studies for an Alkali Metal Thermal 

to Electric Converter.  (December 2006) 

Yuyan Guo, B.S., University of Science & Technology, Beijing; 

M.S., University of Science & Technology, Beijing 

Co-Chairs of Advisory Committee:     Dr. Timothy R. Hughbanks 
        Dr. Michael Schuller 

 
 

This research focuses on preparation, kinetics, and performance studies of mixed 

ionic and electronic conducting electrodes (MIEE) applied in an alkali metal thermal to 

electric converter (AMTEC).  Two types of MIEE, metal/sodium titanate and metal/β″-

alumina were investigated, using Ni, Cu, Co and W as the metal components.  Pure metal 

electrodes (PME) were also studied, including Ta, Ni, Nb, Ir, W and MoRe electrodes. 

The stability of MIEE/β′′-alumina solid electrolyte (BASE) interface was studied in 

terms of the chemical potential of Na-Al-Ti-O system at 1100K (typical AMTEC 

operating temperature).  Ni metal was compatible with sodium titanate and BASE and 

displayed the best initial performance among all tested PMEs.  Ni/sodium titanate 

electrodes with 4/1 mass ratios of metal/ceramic performed best among all tested 

electrodes.  Scanning Electron Microscope (SEM) observations showed that grain 

agglomeration, which is the main mechanism for electrode degradation, occurred in all 

tested electrodes.  Ceramic components were able to effectively limit the growth of 

metal grains and resulted in a long lifetime for MIEEs.  Ni particles in the MIEE formed 
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a network microstructure that was close to the theoretical morphology of the ideal 

electrode.  A model based on percolation theory was constructed to interpret and predict 

the performance of MIEEs.   

The electrode kinetics was studied and a theoretical expression for the interface 

impedance was derived for both PME and MIEE, using electrochemical impedance 

spectroscopy (EIS).  The conductivity of the Na2Ti3O7 and Na2Ti6O13 mixture was 

measured.  The average activation energy for the bulk conductivity was 0.87ev.  Finally, 

theoretical analysis clarified that the transfer coefficient α value change would cause at 

most a few percent change in the electrode performance parameter B.   
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CHAPTER I 

INTRODUCTION 

 

1.1 Motivation 

As researchers continue to push technological limits to probe the far reaches of our 

solar system, significant challenges emerge.  One such challenge is associated with the 

way in which these spacecraft are powered.  The most common source of power for 

these probes, which derived from solar illumination, becomes an inefficient energy 

source as the distance from the sun increases.  Radioisotope thermoelectric generators 

(RTG) that have been put to use in deep space exploration vehicles such Pioneer (1972), 

Voyager (1977) and Galileo (1977), are considered high in mass and low in conversion 

efficiency.1,2  Because of these shortcomings, NASA’s Space Nuclear Initiative (SNI) 

has been making efforts to develop more advanced power systems technologies for 

future missions that may involve travel to the farthest planets of our solar system and 

beyond.  These technologies that are pursued in space power point to higher reliability, 

higher density, higher efficiency, lower cost and lower volume.  The Alkali Metal 

Thermal to Electric Converter (AMTEC) is one of these technologies and has the 

potential to meet all these goals and objectives.3,4 

AMTEC was first developed at the Ford Scientific Laboratory in Dearborn, Michigan 

in 1968 and was further supported by NASA work at the Jet Propulsion Laboratory 

(JPL) in the early 1980s.  Since that time, several companies and laboratories throughout 

This dissertation follows the style and format of Journal of the Electrochemical Society. 
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the world have studied and further developed AMTEC’s power generation process.5-8 

Currently, conversion efficiencies have been demonstrated as high as 22% in the 

laboratory with open circuit voltages in single electrochemical cells up to 1.6V and 

current densities up to 2.0A/cm2.  With a few improvements, AMTEC is expected to 

yield power efficiencies as high as 30 percent and a power density of approximately 80 

watts per kilogram in the near future, which would significantly reduce overall system 

mass.  What makes AMTEC even more appealing is that it is a static energy conversion 

device and fuel source insensitive in that it can utilize heat from nearly any source, 

including fossil fuel, the sun, radioisotopes, or a nuclear reactor.4,9-11 With all these 

advantages combined, AMTEC appears to be extremely promising for use as an 

electrical power system on further deep space mission and terrestrial application. 

 

1.2 Alkali Metal Thermal to Electric Converter 

AMTEC, originally designed to be a space power generator to fulfill the 

requirements of diverse space missions, is a high-temperature regenerative concentration 

cell that employs an alkali metal working fluid (such as sodium or potassium) to directly 

convert heat to electricity.  It can provide efficiencies close to the theoretical Carnot 

efficiency and is capable of high power density and low mass.9-12  

1.2.1 AMTEC Operating Principles  

AMTEC operation is based on the principle of sodium concentration cells, in which 

the driving force is the sodium pressure difference between the anode and cathode.  The 

device uses an alkali metal conducting ceramic, polycrystalline β′′-alumina, as the 
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electrolyte.  With the formula of Na2(Mg, Li)O•5Al2O3, β′′-alumina has mobile Na+ ions 

in its structure, which results in it being an excellent sodium ion conductor, but a poor 

electronic conductor.(further details of β′′-alumina can be found in next section.)  The 

principles of AMTEC operation are shown in Figure 1.1.   

 

 

In this device, sodium is contained in a sealed loop, which is divided into high and 

low temperature regions.  β′′-alumina used as the partition between the high and low 

pressure areas is a solid electrolyte and coated on both sides with porous electrodes.  

Figure 1.1. Schematic diagram of AMTEC. 

e 

Na Liquid 
Tl, Pl 

 Cooling (T=400-700K ) 

e + 
Na Gas 

Load Na+ ion 

Pump 

Na Liquid Th, Ph 

 Na→Na+ + e 

  β′′-Al2O3 

 Na+ + e→ Na 

Heating (T=900-1200K ) 
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High pressure sodium is oxidized at the anode, becoming a sodium ion and releasing an 

electron in the high temperature region (900-1200K), shown in reaction (1.1).  The 

released electron flows to the cathode through the external load, producing electrical 

work.  The sodium ion passes through the β′′-alumina solid electrolyte (BASE) and 

recombines with the electron from the external load to form neutral sodium on the low 

pressure side of BASE.  This neutral sodium then flows from the cathode to the 

condenser in the low temperature region (400-700K) and is pumped back to the high 

temperature region. The electrode reactions and overall cell reaction are shown in 

reaction (1.1), (1.2) and (1.3).4,9-12 

Anode reaction:   Na(Phigh) → Na+ + e     (1.1) 

Cathode reaction:   Na+ + e → Na(Plow)     (1.2) 

Cell reaction:   Na(Phigh) → Na(Plow) + Work    (1.3) 

The open circuit potential ocE  can be expressed as: 

low

highh
oc P

P
F

RTE ln=         (1.4) 

where R is the gas constant, F is the Faraday constant, Th is the temperature of AMTEC 

hot side, and Phigh and Plow are the vapor pressure of sodium at the anode and cathode, 

respectively.  

1.2.2 AMTEC Equipment 

An AMTEC device generally contains several BASE tubes connected in series to 

generate the desired voltage to meet the specified task requirement.  A typical AMTEC 

device, as shown in Figure 1.2, consists of an evaporator, condenser, liquid-return artery 
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(wick), BASE tubes (7 tubes in this example), porous electrodes, current collectors, α-

alumina insulators, and metal braze rings.   

The evaporator is located at the bottom of the device while the condenser is on the 

top.  The BASE tubes, electrically connected in series, are brazed to a stainless steel 

support plate and insulated electrically from the plate by high quality, high purity α-

alumina.  The thermal energy is input via the cell hot plate at the bottom of the unit and 

transported to the BASE tubes, which are covered by thin porous electrode on the inner 

and outer surface as anode and cathode films respectively.  High pressure sodium vapor 

is oxidized within the BASE tube causing sodium ions to pass through the BASE to the 

outer surface.  Sodium ions combine with the electrons to form neutral sodium on the 

cathode and flow to the condenser, located on the top of the device.  The metal felt wick 

is located in the central tube and serves as a means to pump the sodium working fluid 

from the condenser back to the evaporator.   

Several solid metallic rings around the evaporator enhance the heat conduction path 

between the BASE tubes support plate and the cell evaporator, increasing both the 

evaporator temperature as well as the sodium vapor pressure at the anode.  The conical 

evaporator provides a larger surface area for the evaporating liquid sodium to return 

from the condenser.  Finally, encompassing the cell is an axial radiation shield serving to 

diminish parasitic heat losses to the heat sink.6,13,14 
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1.3 β′′-alumina Solid Electrolyte (BASE)  

BASE is a low electronic conductivity yet high ionic conductivity material.  This 

material is the heart of the AMTEC.  In β′′-alumina, sodium ions are highly mobile and 

thus readily produce current when an electric field is applied.  In this section, we will 

introduce the crystal structure, basic physical and chemical properties, and degradation 

of β′′-alumina in the AMTEC. 

β-alumina family refers to a series of sodium aluminates with closely related 

structures and chemical properties, with the chemical formula of Na2O•x(Al2O3) (x=5-11).  

In this family, the most important members are β′′-alumina and β-alumina, with β′′-

Figure 1.2.  Picture of AMTEC cell with 7 BASE tubes. 
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alumina possessing the ability to convert to β-alumina at high temperature.15-23  The 

structures of these two materials are shown in Figure 1.3. 

 

                            
 

 

 

β-alumina β″-alumina 

Figure 1.3. Ideal crystal structure of β-alumina (left) and β″-alumina(right). 
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1.3.1 Crystal Structure 

β′′-alumina has a rhombohedral symmetry and with ideal composition of 

Na2O•5Al2O3, the lattice constants are a=5.59Å, c=33.85Å.  It is often soda deficient 

and is normally stabilized by the addition of MgO and/or Li2O, normally 7.5% Na2O and 

0.1-0.5% MgO or Li2O.  A typical composition of β′′-alumina is Na1.67Mg0.67Al10.33O17. 

The basic crystal structure of β″-alumina is composed of three Al–O blocks which 

are separated by two sodium planes, as reported by Yamaguchi in 1968.24  Each Al–O 

block consists of four close-packed oxygen layers with Al3+ ions occupying the 

octahedral sites as well as the tetrahedral sites.  Al3+ and O2- ions are packed in the same 

fashion as in MgAl2O4 spinel, with the only difference being the replacement of Mg on 

tetrahedral sites with Al.   

The spinel-type blocks are separated by two kinds of sodium planes.  One has Na+ 

and O2- ions while the other contains only Na+ ions, although both are loosely packed.  

In these planes, there are three kinds of sites for Na+ ions, called BR(Beevers-Ross), 

aBR(anti-Beevers-Ross) and mO(mid-oxygen) sites, shown in Figure1.4.  Na+ ions are 

preferentially located at the BR site at low temperature, while at high temperature, Na+ 

ions are statistically distributed over the three sites.18  Thus Na+ can be very easily 

transported along the plane, leading to the high ionic conductivity shown by β″-alumina.  

However, the conductivity is limited to this plane and movement along the c axis is 

exceedingly difficult, therefore, this material is highly anisotropic.   
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β-alumina is in a hexagonal form, and the lattice constants are a=5.59Å, c=22.53Å 

for the ideal composition of Na2O•11Al2O3, but it always contains excess soda, and this 

nonstoichiometric composition is generally represented by Na1+xAl11O17+x/2 with x being 

typically 0.2.  β-alumina is the more commonly used ionic conducting material and is 

already applied in several fields including high-energy batteries.25 

1.3.2 Physical and Chemical Properties 

β-alumina has been investigated widely and its properties are well known.  Some of 

the physical properties of β-alumina are given in Table 1.1.  This table can be used as a 

reference to consider β′′-alumina’s properties, since they are very similar and β′′-

alumina’s data are not readily available.  Some researchers, however, have found that 

β′′-alumina has lower ionic resistivity than β-alumina at moderate to elevated 

temperature.  The possible reason for this difference could be the greater number of Na+ 

in β′′-alumina and the charge of the compensating defects.  The high defect charge in β-

Figure 1.4.  Site model of conduction plane of β′′-alumina. 

BR 

−2O  

5.58
Ο

Α  

aBR 

mO
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alumina could trap Na+ ions in their vicinity and reduce the number of interstitial Na+ 

ions available for an interstitialcy mechanism diffusion.17 

β-alumina is stable at elevated temperatures, even in the presence of molten sodium, 

and has thermodynamic stability essentially the same as Al2O3+ Na2O.  Na+ ions in β-

alumina can be ion exchanged with other cations, such as Ag+, Cu+, K+, Ti+, Li+.  At 

room temperature, they can be exchanged by water and H3O+, resulting in the presence 

of H2O and H3O+ in the conduction planes, which lead to an increase in resistivity.  

Therefore, in our research, BASE tubes are stored in a dry atmosphere.  

 

Table 1.1. Some physical properties of β-alumina. 

Property Value 

Melting Point ∼2253K 

Density 3.26g/cm3 

Coeff. Of expansion, a-axis @ 773∼873 K 7.7×10-6 /K 

Coeff. Of expansion, c-axis @ 773∼873 K 5.7×10-6 /K 

Calculated coeff. Of self-diffusion at 298K 4.0×10-7Cm2/sec 

Activation energy of the self-diffusion 15.9kJ/mole (473-673K) 

Na+ conductivity @298K 0.033ohm-1cm-1 

Na+ conductivity @373K 0.0765ohm-1cm-1 

Na+ conductivity @1000K 0.7ohm-1cm-1 
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1.3.3 Degradation  

Due to it has a high melting temperature, good Na+ ion conductivity and low 

reactivity, polycrystalline β′′-alumina is used in AMTEC as the solid electrolyte and 

becomes the key to AMTEC operation.  Unfortunately, BASE degrades over time during 

the AMTEC operation, which reduces AMTEC efficiency.  This degradation of BASE 

can be thought of as two main mechanisms, thermal breakdown and chemical 

contamination.26-28  

Thermal breakdown involves several processes at AMTEC working temperature. 

The first of these is sodium loss.  Sodium in the BASE conductive plane could be lost 

during AMTEC operation, which results in a decrease in the BASE’s ionic conductivity.  

With sodium loss, the β″ phase converts to the β′ phase and finally to α-alumina, which 

is not an ionic conductor.   

The second process is the formation of molten dendrites.  Due to the high 

temperature and flow of the charge, molten sodium dendrites could be formed within the 

BASE structure.  As these dendrites increase in size and propagate through the structure, 

they can ultimately cause an electrical short between the cathode and the anode causing 

electrons to flow directly between these two surfaces and thus reducing the amount of 

charge flowing through the external, load-bearing circuit. 

The third process is crack formation.  A crack is a void or discontinuity in a material 

that has a propensity to grow or increase in size, which could cause the material to 

finally rupture and fail.  Sodium ion migration leads to intergranular weakening and 

fracture.  If the crack propagates through the thickness of the BASE tube, a short or 
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opening is created between high pressure and low pressure sodium regions of the cell, 

which will result in leakage of Na vapor and reduced power output. 

Finally, the fourth of these processes is microstructure change.  β″-alumina is highly 

anisotropic due to conductivity limited to the Na+ planes.  In AMTEC, polycrystalline 

β″-alumina is used to get good conductivity in all orientations.  However, high 

temperature combined with sufficiently long periods of time cause grain growth, and the 

coalescence of grains may cause microscopic voids in the material thereby greatly 

increasing resistance to ion transport. 

In AMTEC devices, chemical contamination can occur when elements such as 

chromium and manganese from stainless steel react with BASE and form Cr2O3•Al2O3 

and MnAl2O4.  These materials may also substitute for Na+ in the conduction layer of the 

BASE crystal.  Contaminants in the BASE like NaAlO2 also have a deleterious effect on 

ionic conductivity, mechanical strength and chemical stability. 

 

1.4 Key Issues in AMTEC Performance Operation  

For an AMTEC device to be feasible for either space or terrestrial applications, it 

requires a high power density and a long lifetime of 7-15 years.  For this reason, research 

efforts have been focused on improving AMTEC efficiency and lifetime.  

The efficiency of AMTEC under load is the specific output power of the electrode 

divided by the total heat input required per unit area of electrode, which given as  

QTTCH
F
jjV

jV

lowhighpvap +−+Δ+
=

)]([

*η      (1.5) 
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Here, V and j are the output voltage and current density, F is Faraday constant, Cp is the 

specific heat of liquid sodium, vapHΔ  is the molar vaporization enthalpy of liquid 

sodium, and Q is the parasitic heat losses.4 

Based on this equation, there are two ways to raise the efficiency.  One is improving 

output voltage or current and the other is reducing the parasitic heat losses.  Achieving 

the former requires reducing electrochemical losses, while achieving the latter requires 

reducing thermal losses.  Moreover, there are some losses owing to degradation of 

components such as the electrodes and the electrolyte over time. 

Thermal losses in an AMTEC cell consist primarily of radiative loss (Qr) and 

conductive loss (Qc), shown in equation (1.6).  

rc QQQ +=          (1.6) 

Conductive loss is the heat loss due to conduction from the hot region through the 

output current leads and supporting structure for the BASE, which could result in a 

condenser temperature higher than its optimum.  Radiative loss is the heat loss due to 

radiation from hot surfaces through the vapor space to the condenser.  Qc is determined 

by the dimensions and thermal conductivities of the electrical leads and structural 

members of the device, while Qr is determined by knowledge of the emissivities of the 

hot surfaces and condenser surfaces and the geometric configuration of the device.  

Therefore, recent research on thermal losses is concentrated on constructing a thermal 

model, describing and simulating thermal characteristics of components of cells, and 

designing and optimizing systems.29-31  We will not focus on this aspect in this research. 
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Electrochemical losses are the losses related to electrochemical reactions and 

transport processes.  The core of an AMTEC cell is the electrode and BASE assembly.  

Sodium oxidation and reduction, sodium vapor transport through the electrode material, 

current collection and electron flow to and from the electrodes, all occur on the 

electrode/BASE assembly and all contribute to the electrochemical losses and finally 

determine current-voltage characteristics, i.e. electrical energy output.  

Internal resistance of the cell includes pressure losses due to sodium flow through the 

device, contact and sheet resistance, and potential-dependent resistance, which is 

designated as the apparent charge-transfer resistance, Ract (interfacial kinetics losses and 

flow of Na vapor through the electrode from the interface and then away from the 

electrode surface).  Therefore, it is very important to understand and improve these 

electrochemical processes in order to minimize these losses and improve the efficiency 

of AMTEC.  The theory of kinetics and transport in the AMTEC electrode/BASE 

assembly must be further developed to achieve these goals. 

Most of the electrochemical losses can be minimized, although not eliminated, by 

choosing the electrode material, morphology, and current collection network and 

improving connecting technology.  This research will focus on reducing electrochemical 

losses by the choice of electrode materials and understanding electrode kinetics. 

Another key issue for AMTEC is the degradation characteristics of the cells, which 

determine the lifetime of an AMTEC power converter.  This degradation includes 

electrode performance degradation, capillary pumping system degradation and BASE 

degradation, as described in the previous section.  Previous AMTEC research has shown 
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that, over the time scales studied (up to 8000h), the electrode is the component most 

likely to influence device performance and limit operating lifetime.32 

AMTEC electrode degradation modes include growth of electrode grains, reduction 

of electrode porosity, segregation of electrode components, evaporation of electrode 

material, formation of new compounds, and separation between electrode and current 

collector.  

At AMTEC operating temperatures, grains of electrode materials will grow and 

coalesce, which will dramatically reduce electrode performance.  Grain coalescence 

reduces the total reaction area and electrode porosity, and changes the pore size and 

shape, which determines the efficiency of sodium transport and influences the potential 

drop in the electrode.  Additionally, electrode composition could be changed.  Some 

components could evaporate and leave the electrode or react with the environment to 

form new compounds, which could be volatile or have low conductivity.  Due to 

different diffusion coefficients, electrode components can concentrate and create a non-

uniform structure.  Finally, due to different thermal expansion coefficients, the electrode 

and current collector can separate, which will greatly reduce the output current by 

increasing the series resistance.33-38 

 

1.5 AMTEC Electrode Studies 

The above discussion shows that the electrode is a key issue in AMTEC 

development, because it is the component most likely to influence AMTEC performance 

and limit operating lifetime.  Comparing anode and cathode, it is found that cathode is 
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more demanding, because sodium vapor activity is high at the anode and it is more 

reversible.  Therefore, the electrode development and degradation studies have focused 

on the cathode.   

An AMTEC electrode must meet the following requirements in order to achieve the 

desired performance.39 

1. The electrodes must be stable for long periods of time at AMTEC operating 

temperate (700-1000oC for 15 years), which require the electrodes to have a high 

melting temperature above AMTEC operating temperatures, a thermal expansion 

coefficient near that of BASE, and very low vapor pressure at AMTEC 

temperatures. 

2. The electrode must be chemically and thermally compatible with other 

components in the cell, including sodium and the BASE.  It must not form new 

phases with other components of the cell, which would adversely affect the 

performance of the cell. 

3. The electrode must provide reaction sites for sodium reaction and oxidation to 

occur.  Large reaction areas are necessary for producing high current at useful 

voltages. 

4. The electrode must provide paths for electrons from the sodium oxidation sites to 

the current collector, and from the current collector to the sodium reduction sites, 

which requires that the electrode must have good electronic conductivity. 
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5. The electrode must provide a means of sodium transport between the reaction 

sites and vapor space.  It requires that the electrode is capable of high rates of 

ionic or diffusive transport of sodium. 

Refractory metals and their alloys could meet these requirements, including Mo, 

W, Ir, Ni, Ti, WRh2, and WRh3.40-44  Sputtered Mo electrodes have been studied widely 

as applied to AMTEC, and have shown high power densities and the best initial 

performance of all studied metal electrodes.  However, molybdenum forms volatile Na-

M-O compounds during the AMTEC operation, which dramatically reduce Mo electrode 

lifetimes.44,45  Similar behavior is also found in the W electrode system.38  

Ceramic materials are another electrode candidate group, which are stable at 

AMTEC operating temperatures and have thermal expansion coefficients comparable to 

that of BASE.  Some nitrides, oxides and carbides of transition metals (IV, V and VI 

groups) have been investigated, such as TiN, TiC, NbN, NbC.46-49  Also, some ceramics 

such as MoN, ZrN were considered as electrode materials, but MoN was found to have 

positive Gibb’s free energy at AMTEC temperatures, and ZrN oxidizes at AMTEC 

operating temperature.  Currently, TiN has shown good performance for a long time and 

is used as a standard AMTEC electrode. 

For both metal and ceramic electrode materials, however, charge transfer reactions 

occur only at electrochemically active sites, i.e. a point where the vapor space, the 

electronic conductor, and the ionic conductor are in close contact, also called the triple-

phase boundary (TPB).  Typically, for metal electrodes, the ratio of active site area to the 

overall electrode area is about 10-4, which significantly limits the current production.   
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There are two possible approaches to increase the reaction site density.  The first 

method is to reduce the electrode particle size, for example, by using nano-particles.  

Unfortunately, these small particles are more likely to grow or coalesce (sintering 

behavior) during the AMTEC operation in addition to increasing the cost of AMTEC.  

The second method is to develop mixed ionic-conducting and electronic-conducting 

electrodes (MIEE).  This mixed electrode offers the potential to increase reaction site 

density per unit electrode surface area, since it can extend the active area three-

dimensionally into the electrode thickness, due to internal sodium ion transport.  

Additionally, MIEE may maintain the porosity of the electrode by forming a framework 

of ceramic to help control the sintering behavior of the metal and effectively adjust the 

thermal expansion coefficient of the electrode to help reduce thermal stresses, which 

could improve the lifetime of electrode.  Although electrical resistance and sodium 

conduction are both properties of the electrode, the physical morphology of the electrode 

plays an equally important part.  Characteristics of the electrode, such as the porosity, 

thickness, grain size, and quality of contact at the electrode-electrolyte interface, can all 

affect the conduction of both electrons and sodium to and from the reaction sites.  

Therefore, developing an MIEE is an attractive alternative to improve the efficiency of 

AMTEC.   

The first step in the development of an MIEE is to find an appropriate sodium ion 

conductor.  Obviously, β″-alumina is the best candidate and at present, the Mo/β″-

alumina electrode is the only MIEE that has been investigated experimentally.  
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Unfortunately, this MIEE displayed inconsistent performance in the lab, the reasons for 

which still being unclear.50  

There are other sodium conductors, such as Na2Ti3O7, Na3PO4, Na2MoO4, 

NASICON (Na1+xZr2(PO4)3-x(SiO4)x  0<x<3 ), and Na0.9Mg0.45Ti1.55O4.  Among these 

sodium conductors, some, such as Na3PO4, have melting points lower than AMTEC 

operating temperatures, some have high vapor pressure at AMTEC temperatures, such as 

Na2MoO4, and some have only one dimension sodium ion conductivity, such as 

Na0.9Mg0.45Ti1.55O4.  Sodium titanate (Na2Ti3O7 or Na2Ti6O13) appears to be a good 

candidate, because of its high melting point, compatibility with BASE and low cost.51  

Its properties will be described in next section.  Since metal/sodium titanate MIEEs have 

not been previously reported as electrode materials, this research focuses on preparation 

and performance studies of these mixed electrodes for AMTEC operation.   

 

1.6 Sodium Titanate Materials 

Sodium titanates refer to a composition series of ternary oxides of sodium with 

titanium dioxide, Na2O•nTiO2, (n=3∼8), which crystallize in a monoclinic structure.  

Na2Ti3O7 is a member of this family, whose crystal structure was first reported in 1961 

with unit-cell dimensions of a=8.571Å, b=3.804Å, c=9.135Å and β=101.57°.52  The 

basic framework of Na2Ti3O7 is built up by three TiO6 octahedra-sharing edges at one 

level, as shown in Figure 1.5.  These units are joined to similar blocks above and below 

by additional edge sharing, which forms zigzag strings extending in the direction of the b 

axis.  The strings are combined by sharing the corners of the octahedra to form staggered 
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sheets, which stack in the a-direction.  These form a layered structure with the 

composition (Ti3O7)2-.  Sodium ions hold these layers together and occupy the interlayer 

regions at the levels y=1/4 and 3/4.51  The crystal structure allows sodium mobility in the 

interlayers.  Therefore, sodium titanates have been used in ion exchange processes, as 

ceramic capacitors, dielectric resonators in microwave oscillators band pass, reinforcing 

agents of plastics, adiabatic materials and an oxygen electrode for potentiometric gas 

sensors. 53-56  

The crystal structure suggests that sodium titanates should be a sodium ion 

conductor, since the sodium ion can move along the layers easily.  However, only few 

data are available in the literature about sodium titanate’s electrical properties up to now, 

and these data are measured by different researchers and show inconsistence.57-59  

Therefore, it is necessary to measure the conductivity of sodium titanate.  

Sodium titanate has a high melting point of 1401K, which is higher than the AMTEC 

operation temperature and since it is a ceramic, its thermal expansion coefficient should 

be close to that of BASE, although the exact value is not available.  Therefore, sodium 

titanate could certainly be considered as ionic conductor candidate for an MIEE of 

AMTEC.   

Before making this statement however, the question of whether or not Na2Ti3O7 is 

chemically compatible with other components in the cell, including sodium vapor, the 

metal component in the electrode, and the BASE must be answered.  Sodium titanate is a 

stable chemical, and likely does not react with individual components of the cell, but 

when all the components are present; it could cause a system-level affect or catalyze 
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some reactions that may not occur when simply examining the individual components.  

In this research, we will calculate the reaction Gibbs free energy for all possible 

reactions in Na-Al-Ti-O system and plot the chemical potential diagram to analyze the 

stable chemical form or phases present in this system, as well as reactions possibly 

occurring between electrode and electrolyte. 

 
 

 
 

 

 

 

 

Figure 1.5.  Crystal structure of Na2Ti3O7. 
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1.7 Objective   

To improve AMTEC’s performance, a key issue is the development of a highly 

efficient electrode, especially the cathode.  In this research, the primary objective is to 

develop metal/ceramic mixed ionic and electronic conducting electrodes, measure their 

performances as a function of time, optimize their composition and analyze electrode 

kinetics. 

In the first part of this dissertation, the MIEE preparation is discussed.  First we 

select metal candidates based on their physical and chemical properties, and theoretically 

analyze their stability and compatibility with other components in a MIEE.  Then the 

selected metal candidates are tested as AMTEC electrode and measure their 

performance.  Based on the performance and morphology of electrodes, the metal 

component is determined.  We use selected metals mixed with sodium titanate or β″-

alumina ceramic to prepare a series of MIEEs with different composition, and then the 

relationship between the performance and composition are examined experimentally.  

Finally, a theoretical model is developed to explain the experimental results and predict 

the optimal composition for MIEEs. 

In the second part of this dissertation, the kinetic mechanisms are identified for pure 

metal electrodes and MIEEs.  First, the ionic conductivity of sodium titanate used in this 

research is measured in AMTEC conditions.  Then, applying the electrochemical 

theories into electrode systems and combining with experimental results, the kinetic 

mechanisms of the pure metal electrode and MIEE are proposed and discussed.  Finally, 
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the expression of the interface impedance is theoretically derived based on the proposed 

kinetics for both pure metal electrode and MIEE.  

The last part of this dissertation is the performance examination of different kinds of 

MIEEs.  In this part, two kinds of MIEEs are studied, metal/β′′-alumina and 

metal/sodium titanate MIEEs, and for each kind of MIEE, a series of electrodes with 

different compositions are prepared and tested.  The functions of different metal 

components in the MIEE are discussed and the performances of metal/β′′-alumina and 

metal/sodium titanate MIEEs are compared.  Finally the performance of all tested MIEE 

are described and analyzed. 

In summary, AMTEC electrode study is still in a fundamental stage.  In this research, 

we propose the MIEE for AMTEC operation and compare to the pure metal electrode.  

By studying several reasonable MIEEs, we try to find the electrode with the best 

performance and understand the electrochemical kinetic mechanisms. 
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CHAPTER II 

EXPERIMENTAL 

 

2.1 Experimental Apparatus 

In order to accurately evaluate the performance of AMTEC electrodes, it is important 

to isolate the electrode from other components.  The Sodium Exposure Test Cell (SETC) 

is specifically designed to simulate AMTEC electrode working conditions and examine 

electrode performance, without having to run a complete AMTEC cell.60  

The SETC consists of a stainless steel tube chamber with a length of 49cm and a 

7.5cm diameter and a sodium containment, or sodium pool, as shown in the Figure 2.1.  

α-alumina rods are used to support test samples and are held in the manifold with 

Epoxy-Patch insulating epoxy, which forms a vacuum tight seal.  The chamber is 

evacuated and then heated to AMTEC operating temperatures, while the temperature of 

sodium containment or pool is kept at AMTEC condenser temperatures.   

The SETC is a non-power-producing cell, unlike AMTEC.  Its anode and cathode are 

in the same environment, which is similar to that of the cathode of AMTEC.  Electron 

flow is driven not by the difference of the sodium chemical potential, but by the external 

power, applied as a voltage difference between the electrodes.  The SETC provides a 

sodium vapor pressure of the same order of magnitude as that found on the cathode side 

of AMTEC cells.  All processes occurring on the anode, cathode and BASE in a SETC 

are the same as those in the AMTEC cell.  The experimental results have proved that 

performance of the electrode and the electrolyte in AMTEC cells can be tested in an 
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SETC, and performance parameters, which correlate with those taken from AMTEC 

operation, can be calculated from data taken in an SETC.60 Therefore, all the 

experimental results for electrode performance in this research are measured by the 

SETC in our lab. 

The chamber is lined with niobium or titanium metal to prevent volatiles from the 

stainless steel such as chromium and manganese from contaminating the test samples.  

The manifold also includes a pump out port and a sodium fill port.  The pump-out port 

connects to the turbo molecular vacuum pump that is backed by a roughing pump.  

Before operation, the SETC needs to be baked out in order to remove the water and 

inorganic contaminants in it, beginning with ~220ºC, then to ~440, ~660, ~880, and 

finally ~1100ºC and holding each temperature for 4 hours.  After the assembly is 

outgassed and the temperature is reduced to ∼400ºC, approximate 20g of liquid sodium 

is introduced into the sodium pool.  Finally, the end of SETC having samples is heated 

to the operating temperatures of 600-900ºC, while the sodium pool is kept at a 

temperature of ∼300ºC. 

There are 4 test samples in the chamber, which are placed in the hot end.  Each 

sample consists of a cylindrical β"-alumina solid electrolyte (BASE) tube with 4 

electrode bands, each approximately 0.25cm wide, deposited on the outer surface of the 

BASE and separated by 0.25cm bands of bare BASE.  The electrodes are covered by Ni 

or Cu metal mesh, which acts as the current collector.  Ni or Cu leads are used to tie 

these current collectors onto the BASE tube and are threaded through α-alumina rods to 

the outside of the manifold, where they are connected to the EIS equipment.  
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Figure 2.1. Schematic drawing of the sodium exposure test cell. 
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2.2 Techniques 

2.2.1 Electrochemical Impedance Spectroscopy  

Electrochemical Impedance Spectroscopy (EIS) has become a mature technique that 

has been seen a tremendous increase in popularity in recent years.  This method probes 

the system response to the application of a small amplitude ac signal, which usually is a 

voltage between 5 to 50 mV over a range of frequencies of 105 Hz to 10-3 Hz.  The 

response is the complex impedance (Z) that is defined as the ratio of voltage(V(ω)) to 

current (I(ω)) and varies as the frequency(ω) of the applied voltage changes.  The EIS 

instrument records the exact impedance including the phase angle (φ(ω)), real (Zre) and 

imaginary (Zim) components of the impedance at every frequency applied and displays 

them graphically using two types of plots, the Nyquist plot (also known as complex 

plane or Argand plots) and the Bode plot.  The Nyquist plot is a graph of the imaginary 

versus the real components of the impedance, plotted for various frequencies.  That is, 

each point on the Nyquist plot is the impedance at one frequency.  The Bode plots are 

log|Z| (magnitude) and phase angle φ(ω) verse log(ω).61-65  Figures 2.2(c) and (d) show 

typical Nyquist and Bode plots.  

EIS theory is based on analogies between the electrochemical process and networks 

of electrical elements, such as resistors, capacitors and inductors, which are thought to 

behave like the electrochemical cell.  Therefore, an electrochemical system’s 

performance can be represented by an equivalent circuit of electrical elements that pass 

current with the same amplitude and phase angle as the real cell does under a given 

excitation.  For the very basic electrochemical process, which only includes one step, 
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that is, a charge transfer reaction on the interface between electrode and electrolyte, an 

equivalent circuit, called the Randles’ circuit, is used to represent it.  Figures. 2.2(a) and 

(b) show the process and the circuit.  The parallel elements are introduced because the 

total current through the interface is the sum of distinct contributions from double-layer 

charging, ic and the faradic process, if, which is the only charge transfer reaction here.  

The double-layer capacitance is nearly a pure capacitance, hence it is represented in the 

equivalent circuit by the element Cdl.  A resistor Rct is used to represent the charge 

transfer process.  Of course, all of the current must pass through the solution resistance; 

therefore Rs is inserted as a series element to represent this effect in the equivalent 

circuit.   
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Figure 2.2. (a) Charge transfer electrochemical process. (b) Randles’ equivalent circuit. (c) 

responded electrochemical impedance spectrum, Nyquist plot and (d)Bode plots. 
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(b) Randles’ equivalent circuit 
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The impedance of this system is given as 
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There are two limits of the impedance, when ω=0, Zre=Rs+Rct, and Zim=0; when 

ω=∞, Zre=Rs, and Zim=0.  Analyzing Zre and Zim, equation 2.4 is found.  
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Because Zim only has negative values, Equation 2.4 represents a semicircle centered 

at 
2
ct

s
RR + on the real axis and having a diameter of Rct, shown in Figure 2.2(c).  The 

intercept at high frequency (on the left) on the real axis gives the value of Rs, and the 

intercept at the low frequency (on the right) is the sum of resistance of Rs and Rct.  

Additionally, the point at the semicircle maximum, i.e, the higest Zim, corresponds to the 

frequency ω=1/RctCdl.  The Bode plots are shown in figure2.2 (d).  The graph of log|Z| 

versus logω contains two breakpoints, and the phase angle graph shows the phase angle 

is 0o at both low frequencies and high frequencies and has a maximum when frequency 

is equal to 

s

cts

dlct R
RR

CR
+

=
1ω         (2.5) 



 

 

31

It should be noted that the frequency corresponding to maximum of the phase angle is 

different from that of maximum of the imaginary part of impedance.  By analyzing 

Nyquist and Bode plots, the values of elements in the equivalent circuit can be obtained. 

These elements can represent all kinds of electrochemical processes occurring in the 

electrochemical system.   

For a real electrochemical system, an overall electrode reaction process that causes 

the conversion of the oxidized species, O, to a reduced form R, is composed of a series 

of steps, shown in Figure 2.3.  In general, the current (or electrode reaction rate) is 

governed by the rates of processes such as 

1. Mass transfer (e.g. species O from the bulk solution to the electrode surface). 

2. Electron transfer at the electrode surface. 

3. Chemical reactions preceding or following the electrode transfer.  These might 

be homogeneous processes or heterogeneous ones on the electrode surface. 

4. Other surface reactions, such as adsorption, desorption, or crystallization 

(electrodeposition). 

The EIS results can be complicated for an AMTEC electrode, but by using equivalent 

circuits, it is possible to separate and quantify the individual resistances for each 

electrochemical step, if they have sufficiently different time constants.  Further, we can 

gain information as to what kind of steps really occurred in the SETC, which is the most 

important advantage of EIS over other laboratory techniques. Additionally, we can 

determine system kinetics and calculate kinetic parameters, such as activation energy of 
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the electrode reaction, the transfer coefficient α, the diffusion coefficient, and other basic 

kinetic parameters for an electrochemical reaction.   

Another advantage of EIS is that the excitation waveforms used have a very small 

magnitude and cause only minimal perturbation to the electrochemical test system, 

thereby obtaining the response of the system following the perturbation near steady state. 

This approach is different from other electrochemical techniques, such as potential 

sweeps, potential steps, or current steps, which drive the electrode to a condition far 

from equilibrium, and for which the response is usually a transient signal.66  
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Figure 2.3.  Pathway of a general electrochemical process. 
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Other advantages of this technique are rapid acquisition of data, accuracy, 

reproducibility, effectiveness in low conductivity media and that it is non-destructive. 

Therefore, EIS is a very effective tool for characterizing a real electrochemical system 

and was used throughout this study. 

Figure 2.4 shows the EIS instrumentation used in our lab.  It includes a Solartron 

1287 Electrochemical Interface (ECI), which is a high accuracy and wide bandwidth 

potentiostat/galvanostat capable of handling sample polarization and measurements, and 

a Solartron 1250 Frequency Response Analyzer (FRA), which is used to generate and 

measure the ac signals.  The computer and software are for controlling the ECI and FRA 

and recording and displaying measurement results.  The impedance results were 

analyzed using Z-plot and complex nonlinear least-squares (CNLS) software. 

 

Figure 2.4. Equipment of electrochemical impedance spectrum. 1. electrochemical 

interface (ECI) 2. frequency response analyzer (FRA) 3. computer and software. 
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2.2.2 Scanning Electron Microscope  

The Scanning Electron Microscope (SEM) is capable of producing high resolution 

topographic electron images, where its high resolution and depth of field give it a great 

advantage over optical microscopy.  The instrument includes an electron gun, a series of 

magnetic lenses, a set of scanning coils, detectors, amplifiers, and monitors.  The 

electron gun is on the top of the vacuum column, and it emits a beam of high energy 

electrons.  This beam travels downward through a series of magnetic lenses designed to 

focus the electrons into a fine probe incident on the surface of the specimens.  Scanning 

coils move the focused beam back and forth across the specimen.  As the electron beam 

hits each spot on the sample, secondary electrons and backscattered electrons are emitted 

from its surface.  The detectors count these electrons and send the signals to an amplifier 

and to the monitors.  The final image is built up from the number of electrons emitted 

from each spot on the sample.67 

The SEM can create secondary electron (SE) images, backscattered electron (BSE) 

images and characteristic x-ray maps.  SE images are sensitive to surface topography, 

because the number of secondary electrons emitted is dependent on the surface 

topography.  Thus SE images are used primarily for displaying topographic data, which 

can show a well-defined, three-dimensional appearance.  The BSE images are used 

primarily for providing composition information, because the BSE yield varies 

monotonically with the atomic number.  Characteristic x-ray maps can identify elements 

present in the sample and their distribution.   
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In this research, we use this technique to analyze morphology characteristics of 

electrode film, including the particle size, particle distribution, electrode thickness, 

porosity and composition change. 

2.2.3 Sputtering 

Sputtering is a physical vapor deposition technique, discovered in the 1850's.  With 

the advent of modern vacuum technology, it has become one of the most widely used 

techniques for depositing thin films with high quality.  Sputtering works by bombarding 

a target material with high-energy particles such that atoms or molecules are ejected and 

condense on a substrate as a thin film.68-71 

As shown in Figure 2.5, sputtering is performed in a vacuum chamber, in which 

sputtered material, usually called the target, working gas and substrate are located.  The 

vacuum chamber is first evacuated to a base pressure of 10-6 to 10-10 torr, depending 

upon the process, and then backfilled by the working gas to a pressure of between 10-3 

and 10-1 torr.  A negative potential, typically between 0.5 and 5 kV, is applied to the 

target, and the substrate is grounded, so target and substrate work as a cathode and 

anode.  The working gas, typically Ar, is ionized, forming a glow discharge plasma.  

Positive Ar ions in the plasma are accelerated and drawn towards the target and strike it 

with a kinetic energy of several hundred eV.  This powerful impact will dislodge atoms 

of the target into the vapor phase.  The dislodged target atoms will have substantial 

kinetic energies and transport to the substrate through a region of reduced pressure. 

When they arrive at the substrate, they condense, nucleate and grow to form a thin film.  

Generally, the sputtered layers adhere well to the substrate. 
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Sputtering approaches include diode sputtering, radio frequency (RF) sputtering, 

magnetron sputtering and reactive sputtering.  Magnetron sputtering is the current 

workhorse of the sputter deposition field, used in perhaps 95% of all sputtering 

applications.  Our device is a magnetron sputtering.  

The most important parameters controlling the growth and properties of the films by 

sputter deposition processes are: 1) target voltage and current, 2) working gas partial 

pressure and flow rate, and 3) substrate temperature and substrate bias. Therefore, by 

adjusting these parameters, it is possible to use sputtering to deposit films with 

extremely high quality.  

There are a few limitations on sputtering as a deposition technique.  For example, 

organic solids are frequently unable to withstand ion bombardment and some materials 

are incompatible with good vacuum because of their volatility.  In general, sputtering is 

a versatile process applicable to thin film deposition of electrically conducting and 

insulating materials, elemental materials, alloys, and compounds. 

We used a Hummer 8 magnetron sputtering (Anatech, Ltd) to deposit Mo, MoRe, Ta, 

Nb, WRe and Ir electrodes on BASE tubes and disks in this research.  
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Figure 2.5.  Schematic drawing of the sputtering process. 
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2.2.4 Flame Spraying 

Flame spraying is the most basic form of thermal spraying.  It generally uses an 

oxyacetylene flame to melt and propel a coating material in the form of powder or wire 

at high velocity onto a substrate where solidification occurs rapidly, forming either a 

protective coating or a bulk shape.  Flame spraying results in fine, chemically 

homogeneous coatings, where there is no change in composition with thickness.  But due 

to low flame temperatures and medium particle velocity, the coating could be low 

density and have low adhesion.69-70 

Because considerable heat is imparted to the substrate and the solidification occurs 

rapidly, thermal degradation of substrate properties and the coating could occur.  Both 

the substrate and coating contract upon cooling, which can generate high residual 

stresses if a significant difference in coefficients of thermal expansion exists and these 

stresses can lead to coating delamination.  Additionally, a metal substrate or coating 

could be oxidized in the deposition process.  However, flame spraying is simple in 

principle and operation, and system and production costs are low, comparing to other 

thermal spraying, such as plasma spraying.  

In this research, we use this technique to deposit most of mixed metal and ceramic 

electrodes on the BASE surface.  
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2.2.5 Coulter Counter 

A Coulter counter is an apparatus to count and size particles and cells, utilizing the 

technology known as the Coulter principle (electrical sensing zone method).  This 

technology was originally developed by Wallace H. Coulter as a method to count blood 

cells, and later it was transferred into industrial applications.  Now, it has become the 

accepted "reference method" throughout the world for particle size analysis and widely 

used in both industrial particle characterization and for biological applications, providing 

the highest resolution available for particle sizing and counting.72-73  

The Coulter method is based on measurable changes in electrical resistance as 

nonconductive particles suspended in a conductive solution are swept through a small 

aperture of known diameter and length.  Figure 2.6 is a diagram of the Coulter counter, 

including a conductive solution, two electrodes and a glass aperture tube.  Two 

electrodes are submerged in the solution and separated by the glass aperture tube.  When 

voltage is applied between them, a "sensing zone" is created around the aperture.  

Particles being measured are suspended in the conductive solution.  If a vacuum is 

applied to the top of the glass tube, the solution with the suspended particles will flow 

into the glass tube through the aperture.  As each particle passes through the aperture it 

displaces its own volume of electrolyte, momentarily increasing the resistance of the 

aperture and a voltage pulse is measured.  This pulse’s amplitude is directly proportional 

to the volume of the particle.  Scaling these pulse heights in volume units enables a size 

distribution to be acquired and displayed.  In addition, if a metering device is used to 
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draw a known volume of the particle suspension through the aperture, a count of the 

number of pulses will yield the concentration of particles in the sample.74 

The method has been utilized to characterize thousands of different industrial 

particulate materials: drugs, pigments, fillers, toners, foods, abrasives, explosives, clay, 

minerals, construction materials, coating materials, metals, filter materials, and many 

others have all been analyzed by the coulter principle.75  In fact, the method can be used 

to measure any particulate material that can be suspended in an electrolyte. Particles can 

routinely be measured having the size as small as 0.4 µm and as large as 1200 µm in 

diameter. 

We used this technique to measure the particle distribution of our sodium titanate and 

mixtures of metal and sodium titanate. 

 

 

 

 

 

Figure 2.6.  Schematic diagram of the Coulter counter. 
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CHAPTER III 

PREPARATION OF MIXED IONIC AND ELECTRONIC 

ELECTRODES 

 

3.1 Introduction  

A key component of achieving high efficiency in an AMTEC device is its cathode. 

The basic requirements for an AMTEC electrode are having a melting temperature 

higher than the operating temperature of AMTEC, 1123-1223K, and being stable for a 

long periods of time at those operating temperatures.  The electrode also should be 

chemically and thermally compatible with other components in the cell, including 

sodium and BASE.  It must not form new phases with other components of the cell 

which would adversely affect the performance of the cell.  Additionally, the electrode 

should have good electronic conductivity, very low vapor pressure at AMTEC 

temperatures and capability of high rates of ionic or diffusive transport of sodium.39 

For mixed ionic and electronic electrodes, the electronic component is generally a 

metal, which provides a conduction path for electrons, and the ionic component is a 

ceramic material, which provides the Na+ transport path.  The properties of these two 

components and their interaction with the BASE determine the performance of the 

electrode.  In this chapter, we first investigated the compatibility of components in the 

mixed electrode, in which we calculated Gibbs free energy and constructed chemical 

potential diagrams for different systems.  Second, we examined selected pure metal 

electrodes and their performance, and selected the best metal candidate for a MIEE.  
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Third, we discussed the preparation of a series of mixed electrodes with different 

compositions using selected metal with sodium titanate, and measured their 

performance.  Finally, we developed a theoretical model based on percolation theory, 

which we construct to predict and explain the experimental results and indicate the 

optimal composition for a MIEE.  

3.1.1 Metal Component Selection 

In order to meet the requirements of an AMTEC electrode, both physical and 

chemical properties of prospective metals must be considered, such as coefficient of 

thermal expansion, vapor pressure, and reactivity.   

The coefficient of thermal expansion (CTE) is an important factor for electrode 

selection.  Although the electrode film is very thin, hence not subject to great internal 

stresses, the CTEs of the electrode and BASE still need to match each other in order for 

the electrode to remain bonded to the BASE during the AMTEC operation, especially 

during periods of thermal cycling.  Low vapor pressure helps ensure that a sufficient 

amount of electrode remains after an extended period at high temperature and reduces 

the chance of contaminating other components in the cell.  A low surface-self diffusion 

coefficient corresponds to slow sintering behavior, helping to maintain a stable physical 

morphology over the lifetime of the electrode, especially in the reaction area at the three-

phase boundary between electrode, electrolyte, and sodium vapor space.  Other 

necessary characteristics of electrode materials include inertness with respect to sodium 

and BASE and no dissociation at AMTEC operating temperatures.  
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Table 3.1 lists the properties of all metals with a melting point higher than 1273K, 

including electrical resistance, thermal expansion coefficient, vapor pressure and 

surface-self diffusion coefficient, relevant to AMTEC operation.  Na-β”-alumina is 

included at the bottom of the table for comparison.  It is found that iridium and niobium 

both provide a close match to BASE’s thermal expansion, and possess low vapor 

pressure and surface-self diffusion coefficients, similar to molybdenum’s, which has 

been used as an AMTEC electrode and exhibits adequate sintering behavior.  

Additionally, iridium also has a low electrical resistance, while niobium provides a 

higher electrical resistance.  Combining all these properties, iridium offers a good 

possibility for AMTEC electrode candidates.  Niobium may be a good candidate too, 

though its electrical resistance is not very low.  Hafnium, tantalum and zirconium also 

have similar CTE to BASE, but hafnium possesses a very large electrical resistance.  For 

these reasons, tantalum, iridium and niobium have been examined as electrode materials 

in this research. 

Rhodium, platinum, rhenium, ruthenium and vanadium metals all have low vapor 

pressure, along with relatively low electrical resistances and surface-self diffusion 

coefficient, but their CTEs are higher than that of BASE.  These metals might be 

effective if alloyed with the metal having low CTE, such as tungsten or molybdenum.  

For the purpose of this research, WRe, WRh, and MoRe alloy electrodes were all tested. 

Metals with higher surface-self diffusion or thermal expansion coefficients that don’t 

match the electrolyte are not qualified for AMTEC metal electrodes, but may be suitable 

in a MIEE electrode with ceramic material.  The ceramic component is able to form a 
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framework to help control the sintering behavior of the metal, and effectively adjust the 

CTE of the electrode to help reduce thermal stresses.  Ni is such a metal, and thus could 

be a candidate material for the metal component in a MIEE. 

In summary, due to low vapor pressure, surface-self diffusion coefficient, similar 

thermal expansion coefficient to that of BASE and relative low electrical resistance, 

iridium, niobium and tantalum appear to have potential to conduct good performance in 

an AMTEC power system.  Therefore, the performances of these metals were tested as 

AMTEC electrode materials in this research.  Nickel metal has also been investigated as 

a MIEE component candidate due to the idea that the two components, metal and 

ceramic, might restrict each other and possibly result in good performance.  Additionally 

WRe, WRh, and MoRe alloy electrodes appeared promising due to their ability to 

achieve the desired thermal expansion coefficient and were thus examined as well. 

All the preceding discussion of metal electrode selection is only based on their 

physical properties.  According to the AMTEC electrode requirements, the chemical 

properties of these metals are also needed to examine.  The chemical potential diagram 

will provide this information. 

 

 

 

 



 45

Table 3.1.  Physical properties of metals studied in this research, including melting 

point(Tm), electrical resistivity(R) and coefficient of thermal expansion (CTE) at 

different temperature, vapor pressure (Pvap) at 1273K, and surface-self diffusion 

coefficient(Ds) at 1273K. 

Electrode Tm(K)b R(μΩ*cm)bCTE(10-6/K)b   T(K)a Pvap(torr)c Ds(cm2/s)b,d

Beryllium(Be) 1560 26 17 973 1.49E-04  

Chromium(Cr) 2133 47 9.4 925 5.72E-06 2.20E-7 

Copper(Cu) 1358 8.1 20.3 1250 6.17E-05 1.87E-9 

Cobalt(Co) 1767 26.5 14.0 673 8.53E-08 7.98E-13 

Hafnium(Hf) 2500 84.4 6.3 673 5.23E-16  

Iridium(Ir) 2720 15.1 7.2 773 3.07E-17 1.00E-9 

Iron(Fe) 1809 105.5 14.6 1073 2.11E-06 1.50E-5 

Molybdenum(Mo) 2888 31 5.75 1273 4.92E-17 6.90E-10 

Nickel(Ni) 1728 45.5 16.3 1173 9.41E-08 5.80E-6 

Niobium(Nb) 2740 59.7 7.72 1073 1.57E-19 4.10E-10 

Palladium(Pd) 1827 40 13.6 1273 8.80E-07  

Platinum(Pt) 2043 43.1 10.2 1273 1.28E-12 1.40E-7 

Rhenium(Re) 3453 4.7 8.5 373 6.63E-22  

Rhodium(Rh) 2239 14.6 9.8 773 1.16E-12 3.00E-9 

Ruthenium(Ru) 2583 7.7 9.6 293 2.19E-16  

Tantalum(Ta) 3253 35 6.6 773 1.68E-23 2.70E-8 

Thorium(Th) 2028 14 11.2 293 1.50E-15  

Titanium(Ti) 1940 165 9.9 1073 1.05E-09  

Tungsten(W) 3660 33 4.6 1273 2.72E-25 2.30E-13 

Vanadium(V) 2175  10.4 1173 4.02E-11  

Zirconium(Zr) 2125 44 5.9 293 4.84E-15  

Na-β′′-Al2O3 2253  8.6 1273   
a Both electrical resistance and CTE are given at this temperature. 
b From Ref. 76. 
c From Ref. 77. 
d. From Ref 78. 
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3.1.2 Chemical Potential Diagram 

Before using metal and sodium titanate to make the mixed electrode, we must 

examine if they could co-exist and be stable at AMTEC operating temperatures.  At 

AMTEC temperatures, molecules have high kinetic energy and are able to diffuse 

rapidly or react with each other.  This diffusion and reaction could dramatically degrade 

electrode performance.  The chemical stability of the electrode is quite important for 

obtaining good performance of high temperature electrochemical cells.  

If chemical reactions occur between the electrolyte and electrode in high temperature 

electrochemical cells under operating conditions, the product phase(s) would be very 

difficult to identify it in situ.  Although microstructure and composition identification 

could be examined after the operation, the product phase(s) could be stable only at 

operating temperatures.  So the post-test examination might not give us enough 

information to understand the behavior of the electrode during the operation.  Chemical 

potential diagrams have been proposed as a thermodynamic way of examining the 

thermodynamic stability of electrode-electrolyte interfaces. 

For high temperature electrochemical cells, when the chemical potential relations 

among the species across interfaces deviates from equilibrium, the difference provides 

the driving forces for formation of new phases.  When there arises a chemical potential 

gradient, this provides the driving force for chemical diffusion.  Thus, chemical potential 

diagrams can demonstrate the following information: 
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1. Chemical phases present in the system. The chemical potential diagram consists of 

stability polygons for compounds, which illustrates the stable phases under 

experimental conditions. 

2. Reactions possibly occurring between electrode and electrolyte as a function of 

polarization. Usually, polarization of electrochemical cells can be related to a 

change in chemical potential of a particular species associated with ionic carriers in 

the electrolyte. Therefore, an appropriate chemical potential diagram can illustrate 

the effect of polarization on chemical stability of the interface. 

3. Reaction products arrangement or reaction steps. When reactions actually occur at 

interfaces, there arise chemical potential gradients across the interface. If a reaction 

proceeds slowly enough to be followed by diffusion of elements involved, reaction 

products can be arranged so as to give gradual changes of chemical potentials, 

which shows in chemical potential diagram. 

Therefore, the use of chemical potential diagrams provides a powerful basis of 

applying thermodynamic considerations to practical materials problems. 
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3.2 Experimental 

3.2.1 Electrode Preparation 

Pure metal electrodes, such as Ta, Nb, Ir, WRh, WRe and MoRe were sputtered in 

our lab using the Hummer 8 turbo sputtering system (Anatech, Ltd).  Ni electrodes were 

fabricated by evaporation in Southwest Impreglon, Houston. 

Sodium titanate powder was purchased from Strem chemicals Inc., with a particle 

size as large as 37μm.  To improve MIEE performance, these powders were milled in 

ethanol solution by steel balls of different size for a few days, followed by drying and 

grinding.  These milled sodium titanate powders were mixed with pure metal powders at 

calculated mass ratios by ball-milling for a day, then dried and ground again.  The 

particle size distribution was measured by a Coulter Multisizer in Mechanical 

Engineering Department, TAMU.  The mixed powders were deposited on the β″-

alumina tube outside wall by flame spray at Hitemco Inc or Alamo Supply, in Houston, 

Texes. 

3.2.2 Setup and Measurement  

The SETC was set up as described in Chapter II.  Each sample consists of a 

cylindrical β"-alumina tube with 4 electrode bands, approximately 0.25cm wide, 

deposited on the outer surface of BASE and separated by 0.25cm spaces and covered by 

Ni metal mesh or Cu mesh as the current collector.  Ni or Cu leads are used to tie these 

current collector on to the β"-alumina tube and threaded through α-alumina rods to out 

of the manifold, shown in Figure 3.1.  



 49

Electrochemical impedance measurements were performed using a Solartron 1250 

Frequency Analyzer and a Solartron 1287 Electrochemical Interface in the frequency 

range between 105Hz and 0.1Hz.  A small amplitude (10mv) sinusoidal wave output was 

superimposed on the applied dc potential.  Impedance was measured every day for each 

electrode to record their performance over time, but the overall experiment running time 

can differ based on sample performance and other factors.  The electrode temperature 

was around 850oC and the pool temperature was 290oC.  The SETCs had fluctuations in 

temperature control, such that these temperatures varied in the range of 840-860oC and 

280-305oC. 

The microstructures of electrodes before and after testing in the SETC were observed 

by a microprobe in the Geology and Geophysics department, TAMU.  This electron 

microprobe is a four-spectrometer Cameca SX50 equipped with a PGT energy dispersive 

system and a dedicated Sun workstation. 
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Figure 3.1. Schematic diagram of SETC electrodes. 
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3.3 Results and Discussion 

3.3.1 Calculation of Chemical Potential Diagrams 

The chemical potential diagrams are plotted based on the calculation of Gibbs free 

energy of reactions and equilibrium partial pressure of oxygen.  The detailed calculations 

are displayed in appendix A.  

Chemical Potential Diagram for the Na-Al-O System at 1100K. ⎯  For the Na-Al-O 

system, all possible reactions and calculated equilibrium partial pressure of oxygen for 

each reaction are listed in Table 3.2.  The thermodynamic properties of β- and β″- 

alumina have been measured by several authors79-81 and reviewed recently by 

Barsoum.82  Although the thermodynamic properties of β-alumina (Na2Al22O34) have 

been well established, those of β″- alumina (NaAl5O8) have not been clarified yet.  The 

thermodynamic data of β-and β″-alumina adopted in this calculation are from Barsoum’s 

evaluation and Itoh’s measurements80 respectively. 

Figure 3.2(a) shows the chemical potential diagram for the Na-Al-O system at 

1100K.  This diagram shows that β″-alumina is thermodynamically stable at this 

temperature but its stability region is very narrow.  Therefore β″-alumina is easy to 

convert to its neighbors NaAlO2 and Na2Al22O34.  Additionally, with the temperature 

increase, the stability region of β″-alumina will become narrower and finally become a 

line at some temperature, which means β″-alumina is not a stable phase at that 

temperature and decomposes into NaAlO2 and Na2Al22O34.  This is in agreement with 

the experimental results of Barsoum, who found that at low temperatures, β″-alumina is 

thermodynamically stable, while at high temperatures (around 1773K), and this phase 
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decomposes into β- alumina and NaAlO2.  Thus, chemical potential diagram provides 

theoretical evidence for BASE degradation in AMTEC.  

The equilibrium oxygen partial pressure over β″-alumina is a function of the sodium 

partial pressure.  The slope of stability range of β″-alumina is –4, which means that a 

slight change in the sodium partial pressure gives rise to a drastic change in the 

equilibrium oxygen pressure.  In AMTEC, the vapor pressure of sodium ranges from 1 

to 10-5 atm.38, 44,83  Figure 3.2(a) indicates that to keep β″-alumina within its stability 

field, the oxygen partial pressure should be maintained at low levels ( 2810
2

−<OP atm) 

depending on the sodium partial pressure.   

Chemical Potential Diagram for the Na-Ti-O Systems at 1100K. ⎯ For the Na-Ti-O 

system, well-defined thermodynamic data are not available.  There are only a few 

literature sources concerning this system and they differ from each other.  In this 

research, these thermodynamic data were assessed before calculation, and then the most 

reasonable ones were adopted, but no experimental measurements were done in our lab.  

Therefore, the chemical potential diagram of the Na-Ti-O system, shown in Figure 

3.2(b), may not be as accurate as the Na-Al-O system.  All reactions and their 

equilibrium partial pressure of oxygen are listed in Table 3.3. 

It is found that Na2Ti2O5 is not present in this diagram, although it reacts with 

sodium or other compounds and is listed in Table 3.3.  This means this compound is not 

stable at this temperature in our system.  Although it could be formed at this 

temperature, it will convert to other sodium titanates, which is in agreement with the 

results of Eriksson and Pelton.84  They assessed the Na2O-TiO2 phase diagram, and 
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found that there is not Na2Ti2O5 compound present in it.  This agreement indicates that 

our calculation is valid.  Figure 3.2(b) shows that Na2Ti3O7, Na2Ti6O13 and TiO2 are 

stable at AMTEC condition, depending on the real oxygen partial pressure.  

 

Table 3.2. Equilibrium partial pressure of oxygen ( 
2OP  ) of reactions in the  

Na-Al-O system at 1100K. 

Reaction Partial Pressure of Oxygen (atm) 

2Al(l)+ 3/2O2(g)→ α-Al2O3(s) 04.42log
2

−=OP  

2Al(l)+ 3/2O2(g)→ γ-Al2O3(s) 59.41log
2

−=OP  

2Na(g) + 1/2O2(g)→Na2O(s) NaO PP lg449.26log
2

−−=  

Na(g) +Al(l) + O2(g)→NaAlO2(s) NaO PP lg56.42log
2

−−=  

Na(g) +5Al(l) + 4O2(g)→NaAl5O8(s)a NaO PP lg
4
111.42log

2
−−=  

2Na(g) +22Al(l) + 17O2(g)→Na2Al22O34(s)b NaO PP lg
17
201.42log

2
−−=  

4Na(g) + NaAl5O8(s) + O2(g)→5NaAlO2(s) NaO PP lg434.44log
2

−−=  

12Na(g) + 5Na2Al22O34(s) +3O2(g)→22NaAl5O8(s) NaO PP lg418.45log
2

−−=  

20Na(g) + Na2Al22O34(s) + 5O2(g)→22NaAlO2(s) NaO PP lg493.44log
2

−−=  

2Na(g) + Al2O3(s) + 1/2O2(g)→2NaAlO2(s) NaO PP lg447.45log
2

−−=  

2Na(g) +5Al2O3(s) + 1/2O2(g)→2NaAl5O8(s) NaO PP lg498.49log
2

−−=  

2Na(g) +11Al2O3(s) + 1/2O2(g)→Na2Al22O34(s) NaO PP lg477.55log
2

−−=  

a.From Ref. 80 
b.From Ref. 82 
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Table 3.3. Equilibrium partial pressure of oxygen (

2OP ) of reactions in the Na-Ti-O 

system at 1100K. 

Reaction Partial Pressure of Oxygen (atm)

Ti(s)+ O2(g)→TiO2(s) 36.35log
2

−=OP  

2Na(g) + 1/2O2(g)→Na2O(s) NaO PP lg449.26log
2

−−=  

2Na(g) +Ti(s) +3/2O2(g)→Na2TiO3(s) NaO PP lg
3
411.39log

2
−−=  

2Na(g) +2Ti(s) +5/2O2(g)→Na2Ti2O5(s) NaO PP lg
5
490.37log

2
−−=  

2Na(g) +3Ti(s) +7/2O2(g)→Na2Ti3O7(s) NaO PP lg
7
444.37log

2
−−=  

2Na(g) +6Ti(s) +13/2O2(g)→Na2Ti6O13(s) NaO PP lg
13
454.36log

2
−−=  

2Na(g) + Na2Ti2O5(s) +1/2O2(g) →2Na2TiO3(s) NaO PP lg422.45log
2

−−=  

2Na(g) + 2Na2Ti3O7(s) +1/2O2(g) →3Na2Ti2O5(s) NaO PP lg436.44log
2

−−=  

4Na(g) + Na2Ti3O7(s) +O2(g) →3Na2TiO3(s) NaO PP lg496.44log
2

−−=  

2Na(g) + Na2Ti6O13(s) +1/2O2(g) →2Na2Ti3O7(s) NaO PP lg407.48log
2

−−=  

4Na(g) + Na2Ti6O13(s) +O2(g) →3Na2Ti2O5(s) NaO PP lg471.46log
2

−−=  

10Na(g) + Na2Ti6O13(s) +5/2O2(g) →6Na2TiO3(s) NaO PP lg478.45log
2

−−=  

2Na(g) + TiO2(s) + 1/2O2(g) →Na2TiO3(s) NaO PP lg458.46log
2

−−=  

2Na(g) + 2TiO2(s) + 1/2O2(g) →Na2Ti2O5(s) NaO PP lg406.48log
2

−−=  

2Na(g) + 3TiO2(s) + 1/2O2(g) →Na2Ti3O7(s) NaO PP lg450.49log
2

−−=  

2Na(g) + 6TiO2(s) + 1/2O2(g) →Na2Ti6O13(s) NaO PP lg470.50log
2

−−=  
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Figure 3.2. Chemical potential diagrams for (a) the Na-Al-O system. (b) the Na-Ti-O 

system at 1100K. 

(a) Chemical Potential Diagram for the Na-Al-O system at 1100K. 

(b) Chemical Potential Diagram for the Na-Ti-O system at 1100K. 
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Chemical Potential Diagram for the Na-Ti-Al-O Systems at 1100K. ⎯  For the 

Na-Ti-Al-O system, there may be some quaternary oxides present, such as NaAl5Ti2O12 

and Na2Al2Ti6O16, but thermodynamic data are not available for these compounds.  If 

these compounds do exist, they generally could be synthesized by solid oxide reactions 

at elevated temperature.  We assume that these two compounds just start being formed at 

1100K, which in fact is too low temperature for ceramic oxide formation.  Based on this 

assumption, we estimated the minimum Gibbs free energy of formation for these two 

compounds at 1100K, listed in Table 3.4. 

When chemical potential diagrams of the Na-Al-O and the Na-Ti-O systems are 

superimposed in Figure 3.3, some compounds coexist at some regions and they could 

react each other. These reactions are listed in Table 3.4.  Calculation of the Gibbs free 

energy of reaction for all these reactions (see calculation in Appendix A) shows that all 

rxnGΔ  are greater than 0, which means these reactions are unlikely to occur in our 

system.  Therefore, at each point in Figure 3.3, one compound in the Na-Al-O system 

and another compound in the Na-Ti-O system are in equilibrium with each other, except 

in the low sodium pressure region, in which TiO2 and Al2O3 are present.  When these 

two systems overlap, TiO2 and Al2O3 could react with each other and form Al2TiO5, 

Al2Ti7O15 or Al3Ti5O2 compounds.  Because this region is far away from our 

experimental conditions, thus, any change would not affect our experimental results. 

Additionally, there are no thermodynamic data available for these compounds.  

Figure.3.3 illustrates that the stability region of Na2Ti6O13 is far from that of β″-

alumina, suggesting the decomposition of Na2Ti6O13 is thermodynamically favored 
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during operation.  Furthermore, if the decomposition reaction rate is high enough at 

experiment temperature, Na2Ti6O13 will not be present.  Figure 3.3 also shows that the 

stability region of Na2Ti3O7 is overlapped with β″-alumina stability region.  In the 

overlap section, Na2Ti3O7 is stable with β″-alumina; while in the left section, Na2Ti3O7 

thermodynamically converses to Na2TiO3.  However, because the equilibrium line 

between Na2Ti3O7 and Na2TiO3 is so close to the line of NaAlO2 and β″-alumina, the 

driving force of Na2Ti3O7 conversion is very small.  Therefore, it is believed that 

Na2Ti3O7 is basically stable with β″-alumina at our experimental conditions. 

It was reported that the Na2MoO4 treated Mo electrodes exhibit high electrode 

activity, due to the high Na+ conductivity of Na2MoO4.  Unfortunately, sodium 

molybdenum oxides can not thermodynamically be in equilibrium with a Mo/BASE 

interface, which results in the degradation of the electrochemical activity.85  Figure 3.3 

illustrates that sodium titanate is thermodynamically favored to be stable with BASE, 

which confirms that Na2Ti3O7 sodium titanate is a promising candidate of MIEE for 

AMTEC. 
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Table 3.4. Minimum Gibbs free energy changes ( rxnGΔ ) of reactions in the  

Ni-Ti-Al-O system at 1100K.  

Reaction rxnGΔ (kJ)

2Na(g)+2Al(s)+6Ti(s)+8O2(g)→Na2Al2Ti6O16(s) -6050a

Na(g)+5Al(s)+2Ti(s)+6O2(g)→NaAl5Ti2O12(s) -4908.18a

5NaAlO2(s)+2Na2TiO3(s)→NaAl5Ti2O12(s)+8Na(g)+2O2(g) 172 

2NaAlO2(s)+6Na2TiO3(s)→Na2Al2Ti6O16(s)+12Na(g)+3O2(g) 344 

22Na2Ti3O7(s)+Na2Al22O34(s)→11Na2Al2Ti6O16(s)+24Na(g)+6O2(g) 3001 

11Na2Ti6O13(s)+Na2Al22O34(s)→11Na2Al2Ti6O16(s)+2Na(g)+1/2O2(g) 2858 

44/3Na2Ti3O7(s)+5Na2Al22O34(s)→22Na2Al2Ti6O16(s)+52/3Na(g)+13/3O2(g) 3184 

22/3Na2Ti6O13(s)+5Na2Al22O34(s)→22NaAl5Ti2O12(s)+8/3Na(g)+2/3O2(g) 3069 

a  This is the standard Gibbs Free Energy of formation. 

Figure 3.3. Chemical potential diagrams for the Na-Al-Ti-O system at 1100K.



 58

Metal Stability at 1100K. ⎯  From Figure 3.2(a) and 3.2(b), it is found that Al and 

Ti cannot be used as AMTEC electrodes thermodynamically, because these metal 

stability requires a very low level of oxygen pressure so that they are easily oxidized at 

AMTEC conditions.  We calculated the equilibrium oxygen partial pressure for oxides of 

metal candidates at our experimental conditions, listed in Table 3.5.   

It is found that Ni metal is stable with oxygen partial pressures lower than 10-14atm, 

and Cu stable at oxygen partial pressures lower than 10-9atm, which means they are 

stable as pure metals at AMTEC conditions.  The same situation is also for metal Ir and 

Co.  Therefore, these four metals can be used as AMTEC electrodes.  Zirconium has 

been discussed above and could be a candidate, since it has a similar CTE with BASE, 

but the thermodynamic calculation shows that it requires very low equilibrium partial 

pressures of oxygen.  Therefore, thermodynamics favorites it present as an oxide at 

AMTEC operation conditions.   

The equilibrium lines between Nb and its oxides are just in the AMTEC condition, 

where oxygen partial pressures are close to 10-28atm.  Nb and its oxides both could be 

stable in AMTEC condition, depending on the real oxygen pressure in the system.  The 

similar situations are for Ta and Ta2O5 and V and its oxides.  Therefore, Nb, Ta and V 

could be used in AMTEC, though there are concerns about oxide formation.   

All these discussions are based on the thermodynamic calculations.  In fact, kinetics 

also determines whether a reaction occurs or not.  If the reaction rate is very slow, this 

reaction can be considered as not occurring, although thermodynamically favored to 

occur.   
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Table 3.5. Equilibrium partial pressure of oxygen (
2OP ) of metal oxides at 1100K.

Reaction Partial Pressure of Oxygen (atm)

Cu(s)+ 1/2O2(g)→ CuO(s) 51.5log
2

−=OP  

2Cu(s)+ 1/2O2(g)→ Cu2O(s) 39.8log
2

−=OP  

3Co(s)+ 2O2(g)→ Co3O4(s) 6.11log
2

−=OP  

Co(s)+ 1/2O2(g)→ CoO(s) 8.14log
2

−=OP  

Ir(s)+ O2(g)→ IrO2(s) 4.2log
2

−=OP  

Ni(s)+ 1/2O2(g)→ NiO(s) 35.13log
2

−=OP  

Nb(s) + 1/2O2 (g)→ NbO (s) 4.30log
2

−=OP  

Nb(s) + O2 (g)→ NbO2 (s) 3.28log
2

−=OP  

2Nb(s) + 5/2O2 (g)→ Nb2O5 (s) 97.26log
2

−=OP  

Ta(s) + O2 (g)→ TaO2 (s) 05.11log
2

−=OP  

2Ta(s) + 5/2O2 (g) → Ta2O5 (s) 7.29log
2

−=OP  

V(s) + 3/2O2 (g) → V2O3 (s) 7.29log
2

−=OP  

V(s) + 2O2 (g) → V2O4 (s) 2.25log
2

−=OP  

Zr(s) + O2 (g) → ZrO2 (s) 2.42log
2

−=OP  
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3.3.2 Pure Metal Electrodes  

Ta, Ni, Nb, Ir, W and MoRe metal electrodes were examined in this research and 

some of their Nyquist plots are shown in Figure 3.4, which are typical impedance spectra 

for porous metal electrodes.86  The impedance spectra are very similar for all measured 

metal electrodes, and are composed of two characteristic semi-circular curves with two 

real axis intercepts and a short inductive tail at high frequency.  From AMTEC 

electrochemical theory,87 the difference between the high and low frequency intercepts 

can be interpreted as the apparent charge transfer resistance, Ract, of the electrode, which 

is a resistance including both charge transfer and sodium transport effects.  The high 

frequency intercept value is interpreted as the series resistance Rs, including lead 

resistance, contact resistances of the leads to the current collector and the current 

collector to the metal film, and part of the uncompensated BASE resistance.  The tail at 

high frequency is an inductance, caused by the ringlike nature of the contact wire and 

electrode film around the BASE tube.  Figure 3.4 shows that all tested metals have 

similar impedance spectra, but the values of Rs and Ract are different, which means that 

these metals performed differently.   

For the same metal electrode, the impedance spectra also varied with time, generally 

showing increasing Rs and Ract.  Figure 3.5 shows the impedance change with time for a 

Ta electrode.  It is found that Rs and Ract both increase with time.  For comparison, we 

plotted graphs of Rs and Ract vs. experiment time for all measured electrodes, shown in 

Figure 3.6 (a) and (b) respectively. 
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 Figure 3.5.  Impedance spectra change with experiment time for a Ta electrode.

Figure 3.4. Impedance spectra for different tested metal electrodes, at 850oC electrode

temperature and 285oC pool temperature. 
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Basically, Rs doesn’t vary too much with experiment time for most tested metal 

electrodes, such as Ta, Nb, Ir and W.  It fluctuated slightly with time at the beginning of 

the experiment, which could be the period of electrode maturity, and then it remained 

constant.  The MoRe electrode has a Rs of about 5.2 ohm·cm2 at the beginning, and then 

Figure 3.6. a) Series resistance Rs and b) apparent charge transfer resistance Ract

change with experiment time for tested metal electrodes. 
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after running 16 days, Rs increased with time sharply and finally stabilized at 6.3 ohm·cm2.  

This jump of Rs value may be due to the electrode film debonding from the current 

collector, which increases the contact resistance between the current collector and the 

electrode film.  The Ni electrode is an exception, because its Rs increased almost linearly 

by 50% in 20 days.  Ni metal has a larger thermal expansion coefficient (16.3×10-6 K-1), 

substantially greater than those of BASE(8.6×10-6 K-1), as discussed in section 3.1.  Such 

a large difference in thermal expansion coefficient could produce insufficient contact 

between electrode film and BASE at high temperature.  Figure 3.6(b) illustrates Ract 

changes with time.  It is found that Ract increased with operating time rapidly for most of 

the metal electrodes, except W.  WRe electrodes were also tested, but performed very 

poorly; Ract was as large as a few hundred, and is not listed in Figure 3.4 and 3.6. 

Summarizing tested metal electrodes, it was found that Ir, Nb and Ta did not perform 

as well as expected.  Significant agglomeration of grains occurred after 14 days running 

in SETCs for these three electrodes, as seen in SEM images in Figure 3.7. The extent of 

grain growth is consistent with the sample’s surface-self diffusion coefficients listed in 

Table 3.1.  For example, Ta has the largest surface-self diffusion coefficient of 2.70×10-8 

cm2/s at 1273K, and its grains became very large after running, while for the Ir sample 

with surface-self diffusion coefficients of 1.00×10-9 cm2/s, the grain boundary still can be 

seen.  At high temperature, metal grain coalescence occurred in the electrode film, which 

resulted in a decrease in the total number of grains and total triple phase reaction area 

and then led Ract to increase.  At the same time, the big grains can block Na gas diffusion 

from the reaction site, which also cause Ract increase.  These origins of electrode 
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degradation determine the lifetime of an AMTEC electrode.  For W electrodes, Ract 

decreased slightly with time.  The reason could be the better contact between W and the 

BASE, which results in the triple phase reaction area increasing with time.  Because W 

has a very small vapor pressure and self-diffusion coefficient in AMTEC temperature, W 

particles have very slow grain growth. 

The Ni sample was run for only 20 days in this test, but compared to the other tested 

samples, it exhibited the best performance at the beginning, with the lowest Rs and Ract, 

although these two parameters both increased with time of operation.  Since Ni has 

somewhat larger thermal expansion and diffusion coefficients, grain growth and 

electrode delamination occurred in this sample, as shown in Figure 3.7, explaining that 

Rs and Ract increased with time.  Therefore, Ni itself is not a good candidate for AMTEC, 

which requires Ract and Rs and their degradation with time to be as small as possible.  

However, a mixed Ni/sodium titanate electrode might retain its initial good performance 

for a long time.   

Sodium titantate may provide a means of controlling the sintering behavior of metals 

and maintain the porosity of the electrode by forming a ceramic formwork, which would 

reduce the increase of Rs and Ract with time and keep the best performance for a long 

time.  Additionally, based on the metal stability calculation, it is known that Ni is very 

stable in any AMTEC condition.  It should not be oxidized to form volatile NaxNiOy 

compounds with sodium at the AMTEC operating temperature, as occurs in Mo 

electrodes.  Therefore, Ni is selected as component with sodium titanate to make the 

mixed electrode in this study.  
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Pre-test Ir sample ×5000 SE image  Post-test Ir sample×5000 SE image 

   

Pre-rest Ta sample ×5000 SE image  Post-test Ta sample ×5000 SE image 

 

 

2μm SE 15kV 2μm SE 15kV

2μm SE 15kV 2μm SE 15kV

Figure 3.7.  Scanning electron microscope images for Ir, Ta, Nb and Ni electrodes. 
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Pre-test Nb sample ×5000SE image   Post-test Nb sample ×5000 SE image 

   

Pre-test Ni sample × 5000 SE image  Post test Ni sample ×5000 SE image 

 

 

 

 

Figure 3.7.  (Continued) 
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3.3.3 Mixed Ionic and Electronic Conducting Electrodes  

We tested Ni/sodium titanate electrodes with the Ni/sodium mass ratios of 2:1, 3:1, 

and 4:1, labeled as N21, N31 and N41 electrode respectively.  Their impedance spectra 

are shown in Figure 3.8.  N41electrode displayed the smallest impedance and performed 

best, followed by N21 electrode and the worse one is N21 electrode.  Figure 3.9(a) and 

(b) are the plots of Rs and Ract changes with experiment time for these mixed electrodes 

and pure Ni electrodes for comparison.  N31 and N41 electrodes had the very stable 

performance; their Rs and Ract change slightly over 45 days, satisfying our goal of 

AMTEC electrodes running over 1000 hours without degradation.  
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Figure 3.8. Impedance spectra of Ni/sodium titanate electrodes with different Ni/sodium 

titanate mass ratios. 
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Figure 3.9. a) Series resistance Rs and b) apparent charge transfer resistance Ract change

with time for Ni/sodium titanate electrodes with the mass ratios of 2/1, 3/1 and 4/1.  
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For N21 electrodes, Rs and Ract increased with experiment time rapidly and they 

performed even worse than pure Ni electrode, which indicated that the addition of 

sodium titanate did not make the role as we expected, neither increasing the reaction area 

nor restricting Ni grain growth.  In these electrodes, it seems that the substitution of 

sodium titanate for some Ni particles reduces the conductivity of the electrode, and 

occupies some positions on the interface between electrode and BASE so that the triple 

phase boundary reaction area decreases.   

For N31 electrodes, the electrode conductivity is comparable to the pure Ni 

electrodes, but the Ract is still greater than that of a pure Ni electrode.  This indicates that 

the amount of Ni in the mixed electrode should not be less than 75% mass percent, i.e. 

75% mass percent Ni is the minimum to guarantee good electrode conductivity, while 

this amount seems to be insufficient to increase the electrode reaction area.   

For N41 electrodes, the Rs and Ract both are smaller and more stable than those of 

pure Ni metals.  In these mixed electrodes, it seems that the sodium titanate restricts the 

growth of Ni grains so that the electrode retains its good behavior for a long time and 

greatly increases the reaction area to make Ract decrease significantly.   

The microstructure of this electrode confirmed this explanation, shown in Figure 

3.10 and observed after tested over 60 days.  In Figure 3.10(a), the white grains are Ni, 

such as B and C particles, while the gray grains are the sodium titanates, such as A 

particles.  It is found that these two types of particles interwove with each other, which 

effectively blocks particle agglomeration.  For example, the sodium titanate particle A is 
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at the neck between the Ni particles B and C.  It successfully restricted the B grain 

further connecting with C and becoming larger.  

 

  

×2000 BSE image 

   

×2000 Ti x-ray map   ×2000 Ni x-ray map 
 
 
 
 

Figure 3.10.  Microstructure of Ni/sodium titanate electrode with the mass ratios of 

4/1, after testing in a SETC over 60 days. 
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3.3.4 Theoretical Analysis of the Optimum Composition for MIEEs 

For the mixed conducting cathode, the phenomena that take place in the 

electrochemical process include 1) transport of electrons from the current collector (Ni 

mesh) to the reaction site through an electronic conductor (Ni); 2) transport of Na+ ions 

from the electrolyte to the reaction site through the ionic conductor (Na2Ti3O7); 3) 

electrochemical reactions at an electrochemically active site; 4) the reaction product, 

sodium vapor, diffuses from the reaction site to the outside surface of electrode through 

pores present in the electrode.  Therefore, the best MIEE should effectively support 

those four processes with as small resistance as possible.  

In a MIEE there are three cluster types formed by mixed metal and ceramic particles, 

shown in Figure 3.11.  We will focus on the ionic conductor, though similar conditions 

apply to the electronic conductors.  Type A clusters are not interrupted through the 

electrode, present many branches, and connect with each other to form a network, which 

provides ion paths directly from the electrolyte to the current collector.  Type B clusters 

are shorter chains connected only to the electrolyte, which bring Na+ ions only though a 

fraction of the electrode.  Finally, type C clusters are completely isolated from the 

electrolyte and current collector; they do not assist in ionic conduction.  
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Two parameters are of great importance for good electrode performances: a large 

three-phase boundary area, which is the active area for the electrochemical reaction, and 

high ionic and electronic conductivities.  In order to have good conductivity, particles of 

the same type (electronic conductor or ionic conductor) have to touch each other so that 

a network is formed through the electrode, such as the type A clusters, which can 

effectively supply electrical charges to the whole electrode.  Moreover, adequate contact 

between particles of different types ensures that a large active reaction area is formed.  

Therefore, having both the electron and the ion conduction paths continuous throughout 

the electrode is necessary for good performance, i.e., a large number of A-clusters must 

be present in the electrode for both types of conductor.  Mathematical modeling shows 

Figure 3.11. Scheme of the mixed ionic and electronic electrode, and different

types of clusters formed by the particles.  
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that there is a critical value for the volume fraction of electronic or ionic conducting 

particles, under which the particles form only B- and C-clusters in the electrode. Only 

above this threshold is a network of A-clusters formed.  This critical value of the volume 

fraction (Vc) is referred as the percolation threshold.  Percolation theory shows that 

above the percolation threshold, some of the physical properties of system will change 

sharply and will scale according to the universal law b
cVV )( −∝Φ , where Φ represents 

a physical property, such as the electrical or thermal conductivity and the exponent b is 

insensitive to the microstructure of the composite.88-89  For a MIEE, there are two 

percolation thresholds present, one for the electronic conductor and another for the ionic 

conductor.  A sharp increase in the performance has been predicted to occur at the 

percolation thresholds and there is a window of compositions between the percolation 

thresholds in which the performance is predicted to be very high.  Additionally, the 

pores in the electrode also need to satisfy percolation theory.  But since the size, shape 

and number of pores are controlled by the fabrication techniques, we don’t consider its 

effect on the optimal performance of the electrode in this model.  In fact, for sputtering 

or flame spray fabrication technique, the deposited film has 30-40% void density, which 

could higher than the percolation thresholds for the pores. 

Some researchers have applied the theory of percolation threshold in studying the 

properties of composite materials.90-93  In this research we developed a model to assess 

the optimum composition of an AMTEC electrode, based on the theories of percolation 

and binary random packing of spheres. 
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The model is valid between the percolation thresholds of the ionic and the 

electronic conductors and is based on the following assumptions: (1) steady state 

conditions;(2) one-dimensional model as a function of the electrode thickness (x) (3) 

uniformity of temperature, pressure, reactant and product concentration;(4) each of the 

two conducting phases within the electrode is considered as continuous and 

homogeneous, having a resistivity independent of the x coordinate; 5) the particles that 

form the electrode are spherical, and 6) all particles of the same type have the same 

diameter.   

For the mixed electrode consisting of spherical electronic conductors, i.e. metal 

particles of radius re and spherical ionic conductors, i.e. ceramic particles of radius ri, the 

particle coordination numbers are calculated using the following equations proposed by 

Bouvard et al.94 
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where the indexes i and e represent the ionic and electronic conductors, respectively.  Zi-e 

is the average number of electronic particles in contact with an ionic particle.  Zi and Ze 

are the coordination numbers of ionic and electronic particles, respectively, i.e. the 

average number of contacts of both ionic and electronic particles with an ionic particle 

(Zi) or an electronic particle (Ze).  Z is the overall average coordination number, which is 
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6 for binary random packing of spheres.  The parameter λ is the particle size ratio, 

ie rr /=λ  and ni is the number fraction of ionic particles, which is related to the volume 

fraction Vi by equation (3.4).  The relationship between ni and ne, or Vi and Ve is shown 

in Equation (3.5).  
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and  1=+ ei nn   1=+ ei VV       (3.5) 

Additionally, there are two more types of coordination number needed to mention, 

which are the average coordination number of same type particles, Zi-i and Ze-e.  Zi-i is the 

average number of ionic particles in contact with an ionic particle, and Ze-e is the average 

number of electronic particles in contact with an electronic particle.  These two 

coordination numbers are directly related to the percolation threshold.  Relationships 

between Zi-i and the percolation threshold have been found by different researchers and 

there are discrepancies among them.  Kuo et al evaluated all these works and concluded 

that it is more accurate that the percolation threshold of ionic or electronic particles is 

obtained under the condition of Zi-i=1.764 or Ze-e=1.764 respectively.95  The relationship 

is the following, and it is based on the model of Suzuki and Oshima.96 
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Combining equations (3.4) and (3.6), it is found that the percolation threshold is a 

function of the particle size ratios.  We calculated the theoretical percolation threshold of 

ionic and electronic conductors corresponding to all possible particle size ratios, and 



 76

plotted in Figure 3.12.  The area limited by these two threshold lines is the predicted 

high performance range.  When λ=1, the percolation threshold of volume fraction is 

Vic=Vec=0.294, i.e. if the two kinds of particles have the same size, the electrodes with 

electronic particle volume fractions of 0.294 to 0.706 should display good performance.   
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In this research, the purchased sodium titanate has a large particle size, as large as 37 

μm.  Our previous research results found that such large grain size in an electrode led to 

very poor performance.  Therefore, the powders were ball-milled before being used to 

make the mixed electrodes.  The particle distribution of milled sodium titanate was 

measured, shown in Figure 3.13.  It is seen that the average particle size of milled 

sodium titanate is about 5μm, but most of the particles are around 2μm.  The distribution 

Figure 3.12.  The percolation thresholds of the ionic and electronic conductors

within the electrode as a function of particle size ratio. 
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of particles smaller than 1.5μm is not accurate due to the limitations of the measurement 

equipment, so there could be more particles smaller than 2μm.  Additionally, the flame 

spraying deposition process favors depositing the smaller particles on the BASE surface.  

Thus, it is reasonable to believe that most of sodium titanate practically deposited on the 

electrodes are 2μm or smaller.  The Ni has the particle size of 5∼15μm, thus the particle 

size ratio of Ni to sodium titanate should be larger than 2.5.  Based on Figure 3.12, the 

electrode should have at least 0.510 volume fraction of Ni and 0.143 volume fraction of 

sodium titanate, in order to produce high performance.  In this research, we tested 

electrodes with the Ni/sodium titanate mass ratios of 2:1, 3:1 and 4:1, which correspond 

to Ni volume fractions of 0.47, 0.57 and 0.64 respectively.  Since the volume fraction of 

0.47 is smaller than percolation threshold of 0.510, few A clusters should be present in 

this electrode, which could cause the poor conductivity and small reaction area.  We 

observed these results in our experiments, in which the conductivity of the N21 electrode 

is very poor and much lower than pure Ni electrode, discussed in previous section.  For 

N31 and N41 electrodes, both metal and ceramic have the volume fraction greater than 

their percolation threshold, therefore, these electrodes should perform better and have a 

large number of A clusters.  Figure 3.14 shows the physical morphology of N41 

electrode after testing in a SETC over 60 days.  It is found that Ni particles connected 

with each other and formed a network covering the whole area, which are A clusters 

defined previously.  Therefore, this electrode has a high conductivity and large reaction 

area. 
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Figure 3.13.  The particle size distribution of milled sodium titanate powder. 

Figure 3.14. SEM image of the Ni/sodium titanate electrode with 4/1 mass ratios 

after testing in the SETC over 60 days. 
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Since reaction area or active area (A) is a very important parameter that affects the 

performance of electrodes, we also calculated it in this simulation.  For a MIEE, the total 

reaction areas are the sum of the reaction area at the interface between the electrode and 

electrolyte, i.e. the traditional triple phase boundary reaction area, where the electrons 

combine with Na+ ions from BASE and release Na gas, and the reaction area between 

electronic and ionic conductors within the electrode.  In this simulation, we don’t count 

the former reaction area at the interface, since the latter one is unique for the MIEE.  

The reaction area per unit volume is proportional to the number of contact points per 

unit volume between electronic and ionic conductors, multiplied by the probability that 

an electronic and an ionic conductor particle belong to type A-clusters: 

eieii PPZnA −∝          (3.7) 

The number of particles per unit volume (n*) is given by equation (3.8) 

])1([ 33
3
4

*

λπ
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iii nnr
n

−+
=        (3.8) 

where ε is the packing density, which depends on the particle size and size ratio.  The 

probability that an ionic conductor particle belongs to an A-cluster above the percolation 

threshold is evaluated by Bouvard as 

( ) 4.05.2)2/2(1 iii ZP −−=        (3.9) 

Combining equations (3.1), (3.7), (3.8) and (3.9),  we obtain equation (3.10)  

ei
ei

ei PP
Z
ZZnnSnA *=         (3.10) 
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where S is the contact area between a Ni particle and a sodium titanate particle.  Figure 

3.15 shows this contact area schematically.  The contact area is determined by the 

contact angle (θ) and the radius of the smaller particle: 22 )(sinθπrS = , where θ is 

assumed as a constant in this simulation.   

 

We calculated reaction areas for MIEEs with all kinds of composition and various 

particle dimensions, shown in Figure 3.16.  A is zero when the volume fraction is less 

than the percolation thresholds, where the probability P is zero. (Equation (3.9) has been 

slightly modified so that P=0 at the percolation thresholds.)  It is found that the reaction 

area A has the maximum value with the volume fraction change.  For example, if two 

components have the same particle size, i.e. λ=1, the maximum A is obtained when the 

electrode has equal volume fractions of electronic and ionic components, i.e., Vi=Ve=0.5.  

If the two components have different particle sizes, i.e., when λ is varied between 1 and 

4, we can find that the volume fraction of Ni corresponding to the maximum A shifts to 

r
θ Contact 

area

Figure 3.15. Schematic of contact area between ionic and electronic particles.  
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Figure 3.16. Calculated reaction area change with the volume fraction of metal. The 

packing density ε is set at 0.61 and the contact angle θ is set at 15o. 

the right side, the high value side.  When λ=4, a volume fraction of 0.75 for Ni is 

required to reach the maximum reaction area. 
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Figure 3.16 also shows that the value of maximum reaction area decreases with 

increasing particle size ratio.  From λ=1 to 4, the maximum A value is largest when two 

components have the same particle size.  Additionally, the maximum reaction area also 

decreases with increasing particle size, when the particle size ratio is fixed.  For 

example, when λ=1, the value of maximum A is sharply reduced to less than half if the 

particle size increases from 2μm to 5μm.  It is reasonable, since as the particle size 

increases, the number of particles in a unit volume decreases, which causes contact area 

to decrease.  Therefore, summarizing above discussion, it is found that in order to obtain 
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the best performance, the electrode should consist of two components with the same size 

and volume fractions, and this particle size should be as small as possible.  

In this research, we tested electrodes with Ni volume fractions of 0.47, 0.57 and 0.64 

respectively.  Figure 3.16 shows that reaction area is increasing from Ve=0.47 to 0.64 for 

all the electrodes with Ni particle sizes from 4-8μm, which is in agreement with our 

experimental results, shown in Figure 3.9.  This explained that N41 electrode performed 

better than N31 electrode, even both electrode compositions are in the high performance 

region.   

Carefully observing the curves of A vs. Vi for the electrode with Ni particle size from 

5 to 8μm, it is found that the volume fraction of 0.47 is below the percolation threshold 

and A is zero for this electrode.  It is different with the experimental results, in which 

electrochemical reaction did occur and Ract is as large as 35ohm.cm2.  Additionally, the 

experimental results showed that the N41 electrode performed much better than the N31 

electrode, but it is not very evident in this theoretical simulation.   

Generally speaking, in our electrode, the particles do not have an exactly spherical 

shape, nor is the diameter exactly defined; on the contrary there is a distribution around a 

mean value.  These factors can influence the percolation thresholds in a real electrode.  

Figure 3.17 shows the particle size distribution in N41 electrode.  It is found that 

particles have different sizes over a large range, which definitely affects the accuracy of 

the percolation threshold calculation.  Compared to the sodium titanate particle 

distribution, Figure 3.11, we found a wider distribution of mixed particle sizes between 

2μm and 5μm.  Since most of sodium titanate particles are around 2μm, it is apparent 
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that some Ni particles are less than 5μm.  Due to the smaller Ni particle present, the 

particle ratio λ could be less than 2.5.  Figure 3.12, shows that 0.47 volume fraction is 

the percolation threshold corresponding to λ=2.1.  Therefore, A-clusters could be formed 

and provide reaction area in these electrode.  Additionally, in our model, we only count 

the A-cluster’s contribution to the electrode performance, excluding the B-clusters.  If 

the electrode thickness is small compared to the particle diameter, the length of B-

clusters through the electrode is significant for a wide range of compositions outside the 

percolation thresholds.  Thus even if A-clusters are not present, the B-clusters would 

contribute to the transport of electrons and ions and the electrochemical reaction through 

the electrode.  Additionally, we mentioned above that A calculated did not include the 

reaction area at the interface, but in fact, it did exist and contributed to the reaction area.    
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 Figure 3.17. The particle distribution of Ni and sodium titanate mixture with the 

mass ratios of 4:1. The Ni particle purchased is 5-15μm.  
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The percolation theory requires that the thickness of electrode is much greater than 

the particle size.  The thicker the electrode, the more accurate this model. Under those 

conditions, if the volume fraction is greater than the percolation threshold, the reaction 

area and the conductivity will jump sharply up by several orders of magnitude. But our 

mixed electrode has a thickness of between 10 and 20μm, which just a few times the 

electrode particle size. Thus, only a few electrode particles are packed in the thickness 

direction and the randomness of particle packing is very high in such a system, which 

could cause behavior far different from the theoretical calculation in this model.  In 

summary, all these factors could result in the discrepancy between the experimental 

results and theoretical simulation. 

Although there is some discrepancy present, this model is in agreement with the 

experimental results for most cases, based on our experimental results.  Therefore, it is 

useful and can be employed to predict the performance of all kind of MIEE.  

 

3.4. Summary and Conclusions 

Chemical potential diagrams have been plotted for the Na-Al-O and Na-Ti-O ternary 

systems and the Na-Al-Ti-O quaternary system, based on the calculation of Gibbs free 

energy.  At AMTEC conditions, the stability region of β″-alumina is very narrow.  

Whether it is present as β″-alumina or converts to β-alumina and NaAlO2 is dependent 

on the real oxygen and sodium vapor partial pressures in the system.  Sodium titanate 

Na2Ti3O7 is thermodynamically stable at AMTEC operating conditions and also 

compatible with BASE, thus, it can be used as the ionic component in a mixed 
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conducting cathode for AMTEC.  Al and Ti are not thermodynamically favored for use 

as AMTEC electrodes, because they are very easily oxidized, since their metal phase 

stability requires a very low level of oxygen pressure.  Ta, Nb and V could be used in 

AMTEC, depending on the real sytem conditions.  Metal Ni, Cu, Ir and Co can be 

present at any AMTEC condition.   

Ta, Ni, Nb, Ir, W and MoRe electrodes have been tested in SETCs.  Ir, Nb and Ta did 

not perform as well as expected.  They degraded rapidly due to significant grain 

agglomeration.  Ni was selected as the metal component in a MIEE, since it has the best 

initial performance among these tested pure metal electrodes, and it also 

thermodynamically compatible with sodium titanate and BASE, although Ni 

agglomeration occurred during the test. 

Therefore, different compositions of Ni/sodium titanate mixed electrodes were tested 

in SETCs.  It is found that sodium titanate particles effectively reduce Ni particle 

agglomeration.  Among tested Ni/sodium titanate electrodes, the ones with mass ratios 

of 4/1 performed best.  We found that the 75% mass of Ni produced good electrode 

conductivity.  Based on the percolation theory, a model was constructed to interpret the 

performance of these mixed electrodes and find the optimum composition.  The 

percolation threshold of volume fraction was calculated for both components, which 

varies with particle size ratio.  The composition window corresponding to high 

performance is defined for a wide range of particle size ratios.  The reaction area within 

the electrode was calculated based on the model.  It is found that the reaction area 

decreases with increasing particle size or particle size ratio.  The model also predicted 
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that the best performance electrode should consist of two components with the same 

volume fraction and same particle size, and this particle size should be as small as 

possible.   
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CHAPTER IV 

KINETIC STUDIES OF MIXED IONIC AND ELECTRONIC 

ELECTRODES 

 

4.1 Introduction 

Based on the experimental results and analysis in Chapter III, it is found that 

Ni/sodium titanate mixed electrodes with appropriate composition performed much 

better than pure Ni metal electrodes.  It is known that the electrode behavior is controlled 

by its kinetics, but the kinetics of an AMTEC electrode is still unclear.  Therefore, in this 

chapter, we proposed possible electrode kinetic mechanisms, and derived the theoretical 

expressions for the interface impedance for both pure metal and mixed electrodes.  

Based on its stable chemical and physical properties, sodium titanate was selected as 

the Na+ ion conductor in MIEEs.  But the most important property, Na+ ion conductivity, 

is still unsure for this compound, although its layered crystal structure suggests it is a 

good Na+ ion conductor.  Up to now, few literatures reported the electrical properties of 

sodium titanate, and these data are inconsistent.57-59  Therefore, we also measured the 

conductivity of sodium titanate and discussed the results in this chapter.   

 

4.2 Experimental 

4.2.1 Measurement of Na2Ti3O7 Ionic Conductivity 

The purchased sodium titanate powder were milled, dried, and ground, as described 

in Chapter III.  The ground powders were pressed into pellets (12mm in diameter and 
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∼2mm in thickness) and sintered at 1273K for 18hrs in air.  Two sides of the sintered 

pellets were sputtered with thin Ta layers, which served as electrodes.  Ni mesh was used 

as the current collector.  The sample is shown in Figure.4.1.  The conductivity was 

measured from 600K to 1150K at the same conditions as a SETC.  

 

 

 

 

4.2.2 Composition Analysis of Sodium Titanate  

Composition analyses of the milled powder were carried out by X-ray diffraction 

(XRD).  XRD data were collected at room temperature using a Bruker-AXS D8 Powder 

diffractometer with Cu Kα1 X-rays (λ=1.5405Å), and a 2θ scanning step of 0.04o/4s 

from 5o to 70o.  Sodium titanate phases were identified by comparison with the Joint 

Committee for Powder Diffraction Studies (JCPDS) cards.  

The SETC setup procedures and the preparation and performance measurement of 

pure metal and mixed electrodes were already discussed in Chapter III.   

Figure 4.1. Scheme of the experimental cell for sodium titanate conductivity measurements.

Ta Electrode 

Ni Mesh 

Ni Wire 

Sodium Titanate Pellet
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4.3 Results and Discussion 

4.3.1. Ionic Conductivity of Sodium Titanate 

The sodium titanate pellets shrank during the sintering process; their diameter was 

reduced 6∼8%.  The final density of the sample was approximately 85% of the 

theoretical densities.  

The XRD analyses found that there are mainly two phases in our powder, Na2Ti3O7 

and Na2Ti6O13, shown in Figure 4.2.  Since they are both monoclinic structures, a semi-

quantitative chemical analysis was performed using the ratios of intensities of the 100 

peak of each components.  This analysis indicated the ratio of Na2Ti3O7 to Na2Ti6O13 

was 1/2 by mass.  
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Figure 4.2. X-ray diffraction pattern of raw sodium titanate powder. 
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The measured impedance spectra are shown in Figure 4.3.  Each impedance 

spectrum consists of a depressed semicircle in the high-frequency range and a line in the 

low-frequency range.  The radius of the semicircle and its intercept at high frequency 

decreased with temperature increase.  These spectra are in agreement with other research 

reports and one kind of typical spectra for a pure ionic conductor.86  In principle, a 

semicircle between the origin and the intercept would be observed if much higher 

frequencies were used in the experiment.  The high-frequency limit should be as high as 

0.1GHz because the conventional value of geometric capacitance (Cgeo) is about 10pF 

for ceramic materials.  The high-frequency limit imposed by the equipment used in this 

study (100kHz) is not sufficient to observe this phenomenon.  This missed semicircle 

corresponds to the polarization of sodium titanate grain interiors, i.e. the bulk conduction 

process, and the intercept represents the total ionic resistance of sodium titanate bulk 

grains, while the semicircle present is usually assigned to the relaxation process in the 

sodium titanate grain boundaries, i.e., grain boundary conduction.  The tail at low 

frequency is related to the polarization of the electrode/sodium titanate interface.86  

Figure 4.3 (a) is the spectra measured at low temperatures (614 and 672 K).  The data are 

somewhat messy at low frequency due to noise, which decreases as temperature 

increases.  The enlarged plot shows that the spectra did not end at the origin and it is 

very clear when the spectrum measured at high temperature, shown in Figure 4.3(b) and 

(c), which was measured at 1068K.   
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 Figure 4.3. Impedance spectra of sodium titanate measured at different temperature (a)

full spectra measured at 614 and 672K. (b) high frequency part. (c) full spectrum

measured at 1068K.  (d) Bode plot measured at 1068K. 
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Figure 4.3.  (Continued) 
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The depressed semicircle is indeed the arc of a circle with the center some distance 

below the x-axis, which is very commonly observed in most ceramic materials and 

generally fitted by a constant phase element (CPE) in parallel with a resistance.  A CPE 

is a non-intuitive circuit element that was invented to describe non-ideal capacitive 

behavior.  Mathematically, a CPE's impedance is given by 

])([1 pjTZ ω=         (4.1) 

where T has the numerical value of the admittance  )1( Z  at ω=1 rad/s.  The units of T 

are S·sp.  p is an exponent between 0 to 1 and when it is equal to 1, the CPE turns into a 

real capacitor.  Equation (4.1) determines the phase angle of the CPE impedance has a 

value of -(90*p) degrees, independent of the frequency.  This property gives it the name 

CPE.61,86 

 

 

 

 

 

Based on above analysis, an equivalent circuit model (ECM) was constructed to fit 

the impedance spectra, shown in Figure 4.4, which consists of a resistance in series with 

two similar sections.  Each of these sections is comprised of a resistance and a CPE in 

parallel.  The section of Rbd in parallel with CPEbd corresponds to the polarization of 

Figure 4.4. Equivalent circuit for the impedance spectrum of sodium titanate ionic 

conductor. 
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sodium titanate grain boundary, while the section of Rel in parallel with CPEel refers to 

the electrode polarization process.  Since the high frequency semicircle did not show in 

our measurement, a resistance Rbk is used to represent it and its value is equal to the total 

ionic resistance of sodium titanate bulk grains.  The fitted curves for the Nyquist and 

Bode plots are shown in Figure 4.3 (c) and (d) respectively.  The level of agreement 

between experiment and curve fit is quite satisfactory in terms of shape and distribution 

of frequencies on the spectrum.  Based on this equivalent circuit, all the parameters were 

extracted, and listed in the Table 4.1.  Comparing the bulk resistance Rbk to the boundary 

resistance Rbd, we found that the resistance of the grain interior conduction is much 

larger than that of the grain boundary, which means the sodium ion transport inside the 

grain is more difficult than along the grain boundary.   

 

 

In order to confirm the validity of these parameters, the impedance of grain boundary 

CPE (CPEbd-T) was converted to the corresponding capacitance and compared to the 

literature.  Using equation 4.2 provided by the literature,97,98 we got the “true” grain 

boundary capacitance of approximate 1nF, which is in the range of grain-boundary 

capacitances of typical polycrystalline ceramic ionic conductors.86  Therefore, these 

Table 4.1. The parameters used in the equivalent circuit 

 Rbk(Ω) Rbd(Ω) Rel(Ω) CPEbd-T CPEbd-p CPEel-T CPEel-p 

Value 208 33 28 5.40E-05 0.575 0.062 0.56 

Error% 0.11 0.98 7 5.18 1.03 2.42 3.2 
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parameters extracted in our experiment are valid.  Based on the parameters of Rbk and 

Rbd, the conductivity of sodium titanate is calculated.  

pCR −= )(maxω          (4.2) 

)exp( RT
E

T
ao −=

σ
σ         (4.3) 

The conductivity is dependent on the temperature, as described by the Arrhenius law, 

equation (4.3).  Therefore, by plotting the logarithm of conductivity versus reciprocal 

temperature we can get the activation energy, shown in Figure.4.5, where the total 

conductivity includes both bulk and grain boundary conductivities.  The average activation 

energy for the bulk and total conductivities are 0.87ev and 0.96ev, respectively.  

Compared to the literature reports about the conductivity of sodium titanate, listed on 

Table 4.2, our results are higher than most of them, but not unreasonable.  
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 Figure 4.5. Arrhenius plots of bulk and total conductivities for sodium titanate. 
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Table 4.2. Summary of the sodium titanate conductivity measured in the 
literature 

Composition Measurement 
Technique 

Measurement 
Temperature (K)

Activation 
Energy (eV) Authors Date 

Na2Ti3O7 EIS 500~750 bulk+boundary 
0.70 

S.Kikkawa 
et al57 1985 

400~475 0.36 
475~650 0.70 Na2Ti3O7 

d.c. 
conductivity 
measurement 650~800 0.33 

S. Pal 
et.al58 1989 

Na2Ti3O7 EIS 293~493 bulk+boundary 
1.3 

K.Byrappa 
et al59 1997 

Na2Ti3O7 EIS 700K~1000K bulk+boundary 
0.79~0.80 

A-L.Sauvet 
et al102 2004 

Na2Ti3O7 
+Na2Ti6O13 

EIS 740~970K bulk+boundary 
0.62 

J. Ramirez-
Salgado et al99 2004 

Na2Ti3O7 
+Na2Ti6O13 

EIS 600~1150K bulk+boundary 
0.96 

Guo and 
Schuller TBD 

 

 

Comparing to J. Ramirez-Salgado’s results,99 who measured the conductivity of a 

sodium titanate mixture, the activation energies obtained in this research are higher than 

theirs.  The difference could be caused by the composition of the sample measured.  

Their sample consisted with the mixture of 3/1 ratios of Na2Ti3O7 to Na2Ti6O13 by mass, 

while our ratio was only 1/2 of Na2Ti3O7 to Na2Ti6O13 by mass.  Our sample has less 

amount of Na2Ti3O7, which results in the higher activation energy, since Na2Ti3O7 has 

higher conductivity than Na2Ti6O13.  Additionally, they only measured the total 

conductivity, which includes the bulk and boundary contribution together.  The 

conductivity of the grain boundary is affected by some factors, such as the synthesis 
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method, sintering procedure and boundary size and shape.  Therefore, the bulk 

conductivity is used to represent the material’s conductivity, not the boundary 

conductivity. 

The sodium titanates Na2TinO2n+1 (n=3~8), crystallize in a monoclinic structure, in 

which TiO6 octahedra share edges to form layered lattices and sodium occupies the 

interlayer regions.  With different values of n, the crystal structure changes.  For n=3 or 

4, the structure consists of (Ti3O7)2- layers held together by sodium ions.  With a low 

sodium metal content (n=6-8), tunnel structures (Figure.4.6.) are observed, which we 

would expect to exhibit low conductivity and good chemical stability.100,101  Therefore, a 

mixture of Na2Ti3O7 and Na2Ti6O13 should have lower conductivity than pure Na2Ti3O7.  

Based on the somewhat inconsistent literature, the activation energy of Na2Ti3O7 is 

between 0.70-0.80 ev.  Therefore, our mixture’s bulk conductivity activation energy of 

0.87ev is consistent with its composition and literature values.  

Figure 4.5 also shows that the bulk resistance dominates the high temperature region, 

since it is approximately equal to the total resistance.  This indicates that the grain 

boundaries have very good conductivity at high temperature.  At AMTEC working 

temperatures (~1120K), only about 10% of the resistance is contributed by the grain 

boundary.  It is reported that relatively small grains or discrete boundaries have a small 

resistance.103  
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Na2Ti3O7 

Na2Ti6O13 

Figure 4.6. Crystal structures of Na2Ti3O7 and Na2Ti6O13 sodium titanates. 
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4.3.2 Pure Metal Electrode Kinetic Mechanism 

In this research, we tested some pure metal electrodes, including Ni, Ta, W, Ir, and 

Nb.  Based on the data in Chapter III, it is known that the Ni electrode displayed the best 

initial performance and was selected as the metal component for a MIEE.  Here, we use 

it as an example to analyze the kinetic mechanisms of pure metal AMTEC electrodes.  In 

fact, Figure 3.2 shows all the metal electrodes have very similar electrochemical spectra, 

which indicates they have the same kinetic mechanisms.  

Figure 4.7 shows the electrochemical spectrum (solid diamonds) of a Ni electrode.  

Deconvoluting this spectrum, two arcs (solid line) are obtained, which indicates that at 

least two processes contribute to the electrode polarization.  Based on electrochemical 

theory, the high frequency impedance generally is related to charge transfer, and the low 

frequency impedance is related to mass transfer.  Combining electrochemical theory 

with complex nonlinear least squares analysis, the equivalent circuit is created, shown in 

Figure 4.8.  It is used to model the impedance spectrum (open triangles), and it produces 

excellent agreement with the experimental results.  Figure 4.7 also shows that the charge 

transfer resistance is smaller than the diffusion resistance, which means Na diffusion in 

the electrode is more difficult than the electrode reaction.  In fact, the same phenomenon 

was found for all tested pure metal electrodes.  For a pure metal porous electrode, the 

charge transfer reactions only can occur at the interface of BASE, electrode and vapor 

space.  The Na vapor will diffuse from the interface to the electrode surface through the 

pores in the electrode.  Na is not soluble in the electrode, so cannot be transported 
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through the metal.  The experimental results indicate that although the reaction area at 

the interface is limited, the Na gas diffusion rate is slow enough to limit the current.  
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Figure 4.7. Impedance spectra of Ni electrode measured at 850oC.  The solid diamonds

(♦) represent the experimental data; the open triangles (Δ) are calculated using the

equivalent circuit in Figure 4.8; the two semicircles are the theoretical impedance

spectra of charge transfer and sodium transport impedance respectively. 

Figure 4.8. Equivalent circuit for interpreting and fitting the electrochemical

spectra of a Ni electrode. 
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Physical parameters for pure metal electrode processes were extracted from the 

fitting routine and plotted as a function of time in Figure 4.9.  They all increase with 

experimental time and the reasons were already discussed in Chapter III. 
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In the equivalent circuit, Figure 4.8, the constant phase elements are used to 

represent the capacitive behavior of the electrode process.  The literature reported that a 

CPE is generally used in an inhomogeneous system to account for factors, such as 

surface roughness, varying thickness or composition, or a distribution of reaction 

rates.104  It has been shown that the exponent p in the equation (4.1) is equal to 1/(D-

1),105 where D is the fractal dimension.  For an absolutely flat surface the fractal 

dimension (D) is 2.0 and p=1, which is a capacitor, while for a highly contorted surface 

(D=3), and p=0.5, it produces an infinite length Warburg element, which corresponds to 

Figure 4.9. The changes of series resistance Rs, charge transfer resistance Rct and

diffusion resistance Rd with experiment time for a Ni electrode.  
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charge carrier diffusion through a thick material, such as a thick porous electrode.  Our 

experimental results show that p is between 0.52 to 0.69, corresponding to a D of 2.92 to 

2.45, which indicates that our electrode/electrolyte interface could be really rough and 

fractal. 

It is also possible that the CPE in our system is caused by varying thickness or 

composition of the electrode film, which has been reported for a coating with varying 

composition along the coating thickness.106  Our SEM images show that the thickness of 

the electrode is not uniform, but this may result from the sample preparation for SEM 

observation.  Therefore, we can not conclude if this factor contributes to the CPE effect 

in our work. 

In order to analyze and interpret the experimental results, it is necessary to derive a 

theoretical expression for the impedance of electrode process. For pure metal electrodes, 

the electrode process consists of a charge transfer reaction at the interface triple phase 

boundary and sodium vapor transport in the porous electrode, shown in Figure 4.10.  

Sodium vapor transport in the porous electrodes might include the following three steps: 

1. Surface diffusion of sodium on the electrode particles. 

2. Desorption of sodium from the electrode particles. 

3. Vapor phase transport in the pores of the electrode. 

We use two reactions to represent electrode process.  The first reaction is charge 

transfer (Na+ ion reduction at the cathode) and the second reaction represents the Na 

vapor transport in the electrode, which includes all three steps described above. 
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Electrochemical theory107 defines the current as  

])0([
RT
P

kCknFAiii in
bNaf −=−= +

sr
      (4.6) 

where n is the number of electrons involved in the electrode reaction, which is 1 in 

reaction (4.4); F is the Faraday constant; A is the interface area; kf and kb are the 

potential-dependent rate constants for the forward and backward reactions: 

)](exp[ o
of EEnfkk −−= α   )]()1exp[( o

ob EEnfkk −−= α  (4.7) 
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Figure 4.10. Schematic representation of the electrode reaction process. 
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where ko and Eo are the standard electron transfer rate constant and standard potential, 

respectively.  )0(+Na
C  is the concentration of Na+ ions at the BASE/electrode interface.  

We assume that the interface concentration of Na+ ions is equal to the bulk concentration 

in the BASE during electrode reaction process, since the concentration of mobile Na+ 

ions in BASE is approximately 9M, and the diffusion rate of Na+ in BASE is very high.  

Pin is the sodium vapor pressure at the interface.  α is the charge transfer coefficient, and 

f= F/RT. 

In AC impedance, a small AC perturbation signal is applied and the current and 

concentrations oscillate around steady-state values: 

iii ~+=    ininin PPP ~+=    EEE ~+=    (4.8) 

where )exp(~
0 tjIi ω=  )exp(~

0 tjPPin ω=   )exp(~
0 tjEE ω=   

Differentiation of equation (4.6) , gives 
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bNaf −−−−= + ])1()0([ αα   (4.9) 

Since   ij
dt
id
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iid

dt
di ~~)~( ω==

+
= , and the similar relationships exist for 

dt
dE  

and 
dt

dPin , 

in
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bNaf P
RT
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i ~~])1()0([
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The interface impedance of pure metal electrode Z is  

i
EZ ~
~

−=           (4.11) 
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from equations (4.10) and (4.11) , we obtain 
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Let  
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Zf is the impedance due to the charge transfer reaction.  At equilibrium, oiii ==
sr

, thus Zf 

turns into the charge transfer resistance Rct , i.e. ct
o

f R
nFi
RTZ == .  Zd is the impedance 

related to the Na vapor pressure change with current, thus which is corresponding to the 

Na transport in the porous electrode.   

df ZZZ +=          (4.15) 

Therefore, the interface impedance comes from the charge transfer and Na diffusion, 

which is in excellent agreement with the experimental results. 

In order to obtain 
i
pin~
~

, reaction (4.5) is taken into account.  Assuming this process 

obeys first–order kinetics, the reaction rate is expressed as 

RT
Pk

RT
Pkv Nain

222 −−=          (4.16) 

and the change of sodium pressure at the interface with time is described as 
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RT
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PNa is the pressure of sodium at outside surface of the electrode.  

At equilibrium, i=0 and 0=
dt

dPin ,  
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2
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where 
2

2
2

−

=
k
kK , the equilibrium constant for reaction (4.5). 

By introducing the alternating component, Eq(4.17) can be modified as 
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by substitution of Eq. (4.8) and (4.18) into Eq. (4.19) 
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Substituting equation (4.20) into (4.14), 
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where  
b

f

k
k

K =1 , the equilibrium constant for reaction (4.4). 

therefore,  
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where 
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Considering the series resistance Rs, the inductance of the lead L and a double-layer 

capacitance Cdl, the total impedance of the pure metal electrode is  

d
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     (4.25) 

The equivalent circuit corresponding to equation (4.25) is the same as Figure 4.8, which 

proves the validity of the equivalent circuit used to fit experimental results in this 

research.  The more important thing is the physical meanings of the parameters in the 

equivalent circuit are understood. 

Compare equation (4.13) to (4.24), it is found that  

2k
k

R
R b

ct

d =          (4.26) 

The experimental data have shown that Rd is greater than Rct for pure metal electrodes, 

which means that kb is greater than k2.  kb is the potential-dependent rate constant for the 

backward reaction, while k2 is the reaction rate constant for Na vapor transport into 

vacuum.  In fact, reaction (4.5) is not a single reaction, and might include sodium vapor 

surface diffusion, desorption and diffusion in the pores of the electrode.  Therefore, it is 

very complicated and strongly dependent on the properties of electrode itself, such as 

electrode morphology and Na diffusion coefficient on the electrode.  In contrast, Rct is 
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more related to the properties of the system, such as temperature and Na+ concentration, 

based on the equation (4.13).  This is in agreement with experimental results.  For all 

tested pure metal electrodes, charge transfer resistances were very similar, since all 

electrode were measured at same temperature and using same BASE, while the diffusion 

resistances were highly variable.   

Substituting equation (4.18) into (4.23), the following equation is obtained  

[ ]2122

22

/)1()0( KPCRTKA
TR
FnC NaNad αα −+= +      (4.27) 

It shows that the diffusion capacitor is not just related to sodium vapor diffusion, but 

also to the charge transfer process, since it consists of two items.  If K1, the equilibrium 

constant of the charge transfer reaction is large, and K2, the equilibrium constant of 

sodium transport, is small, the electrode will have a large capacitance.  A large K1 means 

the charge transfer reaction can produce enough Na vapor, while small K2 means the 

adsorbed Na vapor is difficult to transport through the electrode, therefore, the adsorbed 

Na vapor must accumulate in the electrode, or there is a lag-time of sodium 

concentration in the pore with respect to the current, which results in capacitive 

behavior.  K1 is only determined by potential and temperature, independent on the 

properties of individual electrode, thus a large diffusion capacitance is related to a small 

equilibrium constant of sodium transport process.  Additionally, because 
in

Na

P
P

K =2  and 

the sodium pressure PNa at the electrode surface is only dependent on the temperature, 

the small K2 means the vapor pressure on the interface is high.  Therefore, the diffusion 

capacitance can be used to estimate the interface pressure of sodium vapor.  For 
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example, a large diffusion capacitance indicates the interface vapor pressure of sodium is 

high.  The significance of this discovery is the vapor pressure at interface, which is not 

directly measured by any experiment, could be estimated from impedance data. 

According to EIS theory, for a RC loop, the point at the semicircle maximum 

corresponds to the frequency ω=1/RC.  Therefore, 

dd
d CR

1
=ω          (4.28) 

By substituting Eq. (4.23) and (4.24) into (4.28),  

2kd =ω           (4.29) 

dω  can be extracted from EIS results and thus the value of the rate constant k2 for 

sodium transport through the electrode is obtained.  In order to find the relationship 

between k2 and temperature, we measured the impedance at different temperatures for Ni 

electrodes and the results are shown in Figure 4.11.  The relationship of k2 with 

temperature obeys Arrhenius’ law, indicating that although Na transport might include 

several steps, the entire process is controlled by a single activation energy.  
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 Figure 4.11.  Arrhenius plot for sodium transport in the Ni electrode at SETC conditions.
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4.3.3 Mixed Electrode Kinetic Mechanisms 

Figure 4.12 shows the impedance spectra for different mixed ionic and electronic 

electrodes.  It is found that they are similar in shape and can also be deconvoluted into 

two semi-circles.  This implies the electrode process still consists of two steps, a charge 

transfer reaction (4.4) and sodium vapor transport reaction (4.5), which also includes 

sodium surface diffusion, desorption, and vapor transport.  The difference with the pure 

metal electrode is the reaction sites, i.e. triple-phase boundaries, are not only at the 

electrode/BASE interface, but also within the electrode, since the sodium ions can 

transport into the electrode by the ionic conductor, and the produced sodium vapor 

doesn’t have to transport through the entire electrode thickness to arrive at the electrode 

surface.  Therefore, reactions (4.4) and (4.5) both occur at the interface and within the 

electrode.   
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Figure 4.12.  Impedance spectra of different MIEEs. 
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If the reactions occur at the interface, the current ini is already described in Equation 

(4.6).  If the reactions occur within the electrode, the current eli  is expressed by the 

equation (4.30) 
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The total current produced by this electrode is  
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where Ain is the total reaction area at the interface.  It is assumed that every reaction site 

within the electrode has the same area, Ael, which is the area of the single reaction site 

within the electrode.  )0(+Na
C  and Pin are still the concentration of Na+ ions and sodium 

pressure at the interface, and )0(+Na
C is a constant.  )(xC

Na+  and )(xPel  represent the 

Na+ ions concentration and sodium vapor pressure at the reaction sites within the 

electrode, not at the interface.  )(xC
Na+ is a function of the location of reaction site and 

time, but in order to simply the situation, we assume it is a constant and equal to the Na+ 

ion concentration in the sodium titanate.   

Differentiation of equation (4.31) and combination with ij
dt
di ~ω= , yields 
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The interface impedance of mixed electrode Z still consist of two parts, Zf and Zd, 
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df ZZZ +=          (4.33) 
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Zf is the charge transfer impedance.  At equilibrium, i=0, ctf R
nFi
RTZ ==

0

.  Zd is the 

impedance related to the Na transport in the porous electrode.   

For a MIEE, if the reaction sites of reaction (4.5) are at the interface, the reaction rate 

is the same with equation (4.16); if the reaction sites are within the electrode, the rate is 

expressed as  
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the change of sodium pressure at the interface with time is described as 
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At equilibrium, i=0 and 0)(
==

dt
xdP

dt
dP elin ,  

2

)(
K
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By introducing the alternating component, and substitution, it yields  



 

 

113
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using the ratio rules on equation (4.40) and (4.41) produces 
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Substituting equation (4.42) into (4.35), 
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It is seen that Cd and Rd are not just related to sodium transport process, but also to the 

properties of charge transfer reaction, such as Ain, Ael and )(xC
Na+ . 
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Therefore, the mixed electrode impedance has the same form as a pure metal 

electrode, shown in equation (4.25), but every parameter has a different meaning.  The 

equivalent circuit, Figure 4.8 is also useful for the mixed electrode spectrum.  In the 

above deduction, )(xC
Na+ is considered as a constant.  In fact, for a real mixed electrode, 

)(xC
Na+ generally changes with the location x and with time.  Therefore, the impedance 

should be equal to equation (4.46). 
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The third item in this equation corresponds to Na+ ion transfer in the ionic conductor.  

It could be a line with a slope of 1, which corresponds to the semi-infinite line Warburg 

diffusion, or it also could be a semicircle in the Nyquist plot.  In this case, the impedance 

spectrum includes three semicircles.  Sometimes, the third semicircle is overlapped by 

the sodium vapor transport semicircle, i.e. they have very similar time constants.  In this 

case, it is difficult to distinguish them and Rd extracted from this spectrum has errors.   

Comparing Rct for these two systems, equations (4.13) and (4.34), it seems that 

mixed electrode can have smaller Rct values, since equation (4.34) has more items in the 

denominator.  For a mixed electrode system, both metal and ceramic particles contact 

with BASE, and the ceramic contact area can not provide reaction sites, therefore, Ain 

should be smaller than that of the pure metal electrode, and thus ini  as well.  Only when 

the ini  is similar for these two systems, or the eli  can compensate for this difference, will 

the mixed electrode system have a smaller charge transfer resistance than a pure metal 
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electrode system, which provides the theoretical interpretation for the experimental 

results of larger charge transfer resistance for a MIEE comparing to a pure metal 

electrode. 

In order to obtain a small Rct for the mixed electrode, keep Ain and Ael as large as 

possible.  How to obtain a large Ael is related to the particle sizes and composition for 

both components, discussed in Chapter III, in which the particles of the same type 

(electronic conductor or ionic conductor) have to touch each other so that a network is 

formed through the electrode, and adequate contact between the particles of different 

types ensures that a large active reaction area is formed.  A large Ain requires that the 

interface area should be occupied by metal particles as much as possible.  Combining 

those two requirements, it is found that the ionic particles should form a tree type 

structure from the interface to surface, in which the root is on the interface, and branches 

are all through the whole electrode.  If the interface areas are all occupied by the ionic 

particles, the two types of particles form more C clusters, this electrode will have a very 

large Rct.  Therefore, it can be concluded that the mixed electrode is more dependent on 

the microstructure.  

For the mixed electrode system, equations (4.26) and (4.29) still work.  However, if 

k2 is needed to be evaluated from equation (4.29), it would be not as accurate as for the 

pure electrode system, because Na+ ion transfer in the ionic conductor is not considered 

in the mixed electrode kinetics.   

In this study, we also calculated another kinetic parameter, the charge transfer 

coefficient α, for the Ni/sodium titanate MIEE.  It is calculated based on the Tafel 
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behavior of the electrode, described in equation (4.47), and we obtained α is equal to 

0.34 at 1123K, shown in Figure 4.13. 

ηαnfii −= 0lnln         (4.47) 

α is an important parameter and related to a large number of equations and 

conclusions for AMTEC studies, but it has never been measured in the literature and is 

usually assumed to be equal to 0.5 in all AMTEC theory.  Therefore, our experimental 

result of 0.34, not 0.5, would cause the correction of the equations and conclusions 

involving α.  How α affects these equations and conclusions will be discussed in 

Chapter V. 
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Figure 4.13. Cathode Tafel plot for Ni/sodium titanate electrode with 4/1mass ratios. 
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4.4 Summary and Conclusions  

The conductivity has been measured for a sodium titanate mixture of Na2Ti3O7 and 

Na2Ti6O13 with a mass ratio of 1:2 at the AMTEC operating conditions.  The average 

activation energy for the bulk and total conductivities are 0.87ev and 0.96ev, 

respectively.  At AMTEC working temperatures (~1120K), the conductivity of the grain 

boundary is much higher than that of the bulk.  Only about 10% of the total resistance is 

contributed by the grain boundary.   

Theoretical expressions for the interface impedance of the electrode process have 

been derived to interpret the experimental results for both pure metal electrode and 

mixed electrode.  For a pure metal electrode, the interface impedance consists of charge 

transfer resistance and sodium transport impedance, which is the transport resistance in 

parallel with the transport capacitance.  For a mixed electrode, the electrode impedance 

consists of charge transfer resistance, sodium transport impedance and the impedance of 

sodium ion transfer in the ionic conductor of the electrode.  The transport resistance and 

the capacitance are not only related to the transport process, i.e. the sodium vapor 

pressure at the interface or within the electrode, but also related to the charge transfer 

properties.  For most of tested electrodes, the rate constant of sodium transport is smaller 

than that of sodium oxidation, based on the experimental results that the radius of 

semicircle at low frequency is generally larger than that at high frequency.  For a pure 

metal electrode, a method is provided to estimate the sodium vapor pressure at the 

electrode/electrolyte interface by measuring electrode impedance and extracting the 

diffusion capacitance.  The rate constant of sodium transport can also be calculated from 



 

 

118

the impedance, which is equal to the frequency of the semicircle maximum point at low 

frequency range.  Although sodium transport in the electrode includes several steps of 

adsorption, desorption and vapor transport in the pores, the entire process is controlled 

by a single activation energy of 99.4kJ/mol for a Ni electrode.  

Although the mixed electrode extends the reaction area from the interface to the 

thickness of the electrode, it might have a larger charge transfer resistance, which 

depends on the microstructure of the electrode.  A tree type structure for ionic particles 

could result in a small charge transfer resistance.  Therefore, the mixed electrode is more 

dependent on the microstructure than the pure metal electrode. 
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CHAPTER V  

PERFORMANCE STUDIES OF MIXED IONIC AND ELECTRONIC 

ELECTRODES  

 

5.1 Introduction 

As described in Chapter I, mixed electrodes are able to increase the reaction area and 

reduce electrode degradation by limiting the sintering behavior of the metal component.  

But the mixed electrode system is more complicated than the traditional single-phase 

metal electrode, since it has more components.  The electrode performance is not only 

dependent on electrical resistance and sodium conduction, but also on the physical 

morphology of the electrode, such as the porosity, thickness, grain size, and quality of 

contact at the electrode-electrolyte interface, all which can affect the conduction of both 

electrons and sodium to and from the reaction sites.   

Two parameters are generally used to evaluate the performance of an electrode, Rs 

and Ract.  Rs is the series resistance, including all contact resistances.  Ract is a 

combination of the charge transfer resistance and the sodium diffusion resistance.  We 

used Rs and Ract to evaluate the performance of pure metal electrodes and MIEEs in 

Chapter III.  But the evaluation is only valid when all these electrodes are measured at 

the same temperature including both electrode and sodium pool temperatures, because Rs 

and Ract vary with temperature.  Therefore, researchers in JPL developed another 

parameter, B, to evaluate electrode performance independent of the electrode and sodium 

pool temperature.36  B is the normalized exchange current density, which is normalized 
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to the sodium collision rate and reaction rate at unit activity of sodium.  The units of B 

are AK1/2/(m2Pa) or AK1/2/N and it is calculated using equation (5.1).   

el

el
o
o

P
TJ

B
2/1

=          (5.1) 

In this equation, Tel and Pel are the temperature and sodium pressure at the electrode, 

o
oj  is the exchange current at an equilibrium potential obtained with saturated sodium 

vapor in contact with the electrode, defined by researchers in JPL.  B is a sensitive 

measurement of the electrode performance.  Large changes in B reflect relatively small 

changes in electrochemical cell performance until the exchange current drops significantly.  

The research at JPL indicated that the B value is approximately independent of electrode 

temperature, but our experimental results did not support this claim.  

In the derivation of equation (5.1), the charge transfer coefficient α is assumed equal 

to 0.5, but some experimental results indicated that α has significant scatter from 0.3 to 

0.7.107  Our experimental results showed that α≈1/3 at 1123K for the Ni/sodium titanate 

electrodes in Chapter IV.  The value of α change will result in the change of B value.  

Since B is the main parameter used to evaluate AMTEC electrode performance, it is 

worth understanding its validity and the effect of α on B.  

In this chapter, two kinds of MIEEs were tested and discussed.  One is metal mixed 

with β′′-alumina and the other is metal mixed with sodium titanate.  For all tested 

electrodes, the impedance spectra were measured, B values were calculated, electrode 

performance was evaluated and the microstructures were observed before and after 
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electrodes testing in SETCs.  Finally, the effect of the charge transfer coefficient α on B 

was discussed.  

 

5.2 Experimental 

The following chemicals were used as purchased: 

Nickel powder 2.2∼3.0μm(99.9%, Alfa Aesar) 

Nickel powder 3∼7μm(99.9%, Alfa Aesar) 

Nickel powder 5∼15μm(99.8%, Alfa Aesar) 

Aluminum powder 3.0∼4.5μm (97.5%, Alfa Aesar) 

Cobalt powder ∼1.6μm (99.8%, Alfa Aesar) 

Cupper powder 1∼1.5μm (99%, Alfa Aesar) 

Sodium titanate powder(99.7%, Strem chemicals Inc ) 

 

For metal/β′′-alumina electrodes, W/β′′-alumina, Cu/β′′-alumina, Ni/β′′-alumina, 

Cu/Ni/β′′-alumina and Cu/Co/β′′-alumina were tested.  Some of them were fabricated by 

electrophoresis in Ionotec, England and others were deposited by flame spraying in 

Hitemco, Houston. 

For metal/sodium titanate electrodes, Ni/sodium titanate, Cu/sodium titanate, 

Ni//Cu/sodium titanate, and Co/Cu/sodium titanate were tested.  All metal/sodium 

titanate electrodes were deposited by flame spraying deposition technique in Hitemco or 

Alamo Supply, Houston.  The detailed electrode compositions and experiment durations 

are listed in appendix B.   
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5.3 Results and Discussion 

5.3.1 TiN Electrode 

TiN electrodes were examined in this research as a reference for evaluating the 

performance of other electrodes, since it is the current standard AMTEC electrode.  The 

impedance spectra of these electrodes exhibit the Ract increased with experiment time 

rapidly, shown in Figure 5.1(a).  This trend is clearer in the plot of B value vs. time, 

shown in Figure 5.1(b), which includes results for several TiN electrodes.  It is found 

that TiN electrodes performed very well initially, and then degraded rapidly with time.  

The final B value is around 10 after 20 days of testing.  This rapid significant 

degradation is the reason why we need to discover new electrode materials to improve 

the AMTEC electrode performance and lifetime. 

5.3.2 Metal/β′′-alumina MIEEs 

W/β′′-alumina MIEEs. ⎯ Metal W and its alloys were studied as AMTEC 

electrodes, and displayed notable performance.  Thus, we selected it to fabricate a mixed 

electrode with β′′-alumina.  These electrodes have been tested with mass ratios of W to 

β′′-alumina of 1/1, 3/2, 3/1, and 4/1.  They were fabricated by electrophoresis at Ionotec, 

England.  Unfortunately, the adhesion of the electrode film to BASE was very low, 

which resulted in poor performance for most tests of these electrodes.  The sample with 

3/1 ratios performed better.  Figure 5.2(a) shows its impedance spectra measured at 

304oC pool temperature and 904oC electrode temperature. 
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 Figure 5.1. a) The impedance spectra of TiN electrodes. b) B value versus experiment time.
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These spectra can be deconvoluted into two depressed semi-circles, one related to the 

charge transfer process at high frequency range, and the other related to sodium 

diffusion in the electrode at low frequency range.  It is found that the high frequency 

circle (the charge transfer circle) is very depressed, compared to the normal impedance 

spectra of a MIEE.  This phenomenon could result from surface roughness or varying 

thickness or composition of the electrode film.  The depressed semicircle is indeed the 

arc of a circle with the center some distance below the x-axis.  For a very smooth 

surface, the circle is an exact semicircle, i.e., the center of the circle is on the x-axis.  

When the surface roughness increases, the center of the circle moves below the x-

axis.86,105  A highly depressed circle corresponds to a very rough, fractal surface.  

Therefore, our W/β′′-alumina spectra reflect a rough electrode surface, which is 

consistent with the SEM observations. 

The spectra also illustrate that Ract increases with experiment time, which indicates 

that this electrode degrades rapidly.  B values of this electrode are as low as 5, shown in 

Figure 5.2(b), which is much lower than that of the standard TiN electrode.   

Figure 5.3 includes the SEM images of this sample before testing in the SETC.  The 

raw mixed materials have 75% W by mass, but these images reveal an inadequate 

amount of W deposited into the electrode, which suggests that the electrophoresis 

deposition technique did not work well for W/β′′-alumina mixture deposition.  This lack 

of W probably played a major role in the poor performance of the electrodes. 
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Figure 5.2. a) The impedance spectra of W/β′′-alumina electrode with W/β′′ ratios of 

3/1. b) B value versus experiment time.  
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Pre-test sample ×2000 SE image        ×2000 Ni x-ray map 

   

×2000 Al x-ray map   ×2000 W x-ray map 

 

 

 

Figure 5.3. SEM images of W/β′′-alumina sample with W/β′′ ratios of 3/1 before 

testing in the SETC. 
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Cu/β′′-alumina MIEEs. ⎯ Due to the high electrical conductivity and 

thermodynamical stability at AMTEC conditions, metal copper is an alternative to Ni as 

the metal component of a MIEE.  Cu/β′′-alumina electrodes were tested in this research 

with the ratio of Cu to β′′-alumina of 1/1 and fabricated by flame spraying deposition 

technique.  The impedance spectra, shown in Figure 5.4(a), were measured at 855oC 

electrode temperature and 294-300oC pool temperature.  Due to vacuum pump problems, 

this test was run only a few days. 

The spectrum consists of two depressed semi-circles, the high frequency charge 

transfer circle and the low frequency diffusion circle, which is in agreement with 

impedance spectra of normal mixed electrodes as discussed in Chapter IV.  Thus the 

deduced electrode kinetics is also useful for this electrode.   

The spectra show the Ract decreases with time, meaning the electrode matures with 

time.  Deconvoluting these spectra, the charge transfer resistance and diffusion 

resistance are obtained, shown in Figure 5.4(b).  It is found that the value of Rct is very 

close to Rd value for this electrode.  Such large Rct could due to insufficient amounts of 

Cu in this electrode, thus increasing the mass percentage of Cu may reduce it.  The kinetics 

equation (4.26) proposed in Chapter IV displays the reaction rate constant of sodium 

oxidation kb is close to rate constant of sodium vapor diffusion k2, if Rct is similar to Rd. 

The B value, shown in Figure 5.4(c) is around 8, which is lower compared to the 

standard TiN electrode.  Therefore, the performance of Cu/β′′-alumina electrode is not 

satisfied with AMTEC requirements.  But compared to the W/β′′-alumina electrode, 

Cu/β′′-alumina performs slightly better.  



 128

-8.00

-6.00

-4.00

-2.00

0.00
10.00 15.00 20.00 25.00 30.00 35.00

Real impedance(ohm)

Im
ag

in
ar

y 
Im

pe
da

nc
e(

oh
m

)
to=1d

to=2d

to=3d

to=5d

to=6d

to=7d

to=8d

(a)

 

 

-8.0

-6.0

-4.0

-2.0

0.0
10.0 15.0 20.0 25.0 30.0 35.0

Real Impedance(ohm)

Im
ag

in
ar

y 
Im

pe
da

nc
e(

oh
m

) Experimental data
charge transfer impedance
diffusion impedance

(b)

 
 
 
 
 
 
 
 
 
 
 

Figure 5.4. a) The impedance spectra of Cu/β′′-alumina electrode with Cu/β′′ ratio of 

1/1. b) The impedance spectrum measured on t-to=7d, and its deconvoluted spectra for 

charge transfer and sodium transport processes c) B value versus experiment time. 
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The SEM images in Figure 5.5 show the physical morphology of this electrode 

before and after testing in the SETC.  For the original pre-test sample, its microstructure 

is basically satisfactory, with Cu distributed uniformly and close to the desired amount.  

The porosity in the electrode is also appropriate.  This means the flame spray deposition 

technique works for the Cu/β′′-alumina mixture deposition.  The SEM images of the 

post-test sample reveal that the particle size of Cu is significantly increased compared to 

the microstructure of the original sample.  Since this sample was only tested 10 days in 

the SETC, such large change of Cu particles indicates its grain growth rate is very 

significant, which could lead to very rapid degradation.  Therefore, we believe the 

Cu/β′′-alumina electrode is not a good electrode for AMTEC operation.  

Figure 5.4.  (Continued) 
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  Pre-test sample ×500 BSE image         ×2000 BSE image 

   

×2000 Cu x-ray map    ×2000 Al x-ray map 

(a) 

 

 

10 μm    Cu       15kV    10 μm    Al      15kV    

10 μm    BSE         15kV      20μm   BSE         15kV 

Figure 5.5. SEM images of Cu/β′′-alumina sample with Cu/β′′ ratio of 1/1, a) before and 

b) after testing in the SETC. 



 131

 

   

Post-test sample ×500 BSE image         ×2000 BSE image 

   

×2000 Cu x-ray map    ×2000 Al x-ray map 

(b) 

 

 
Figure 5.5.  (Continued) 

10 μm BSE 15kV20μm BSE 15kV

10 μm Cu 15kV 10 μm    Al      15kV    
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Ni/β′′-alumina MIEEs. ⎯ These electrodes have been fabricated by both 

electrophoresis and flame spraying deposition techniques, but the electrophoretically 

deposited electrode films were very thin and adhered poorly to the BASE, which 

resulted in poor performance.  Flame spraying deposited electrode displayed better 

adhesion and higher performance.  Therefore, the behaviors of the electrodes deposited 

by flame spraying are analyzed here.  We tested these electrodes with Ni to β′′-alumina 

ratios of 1/1, 3/2, and 3/1.  Based on the experimental data, the best performance belongs 

to the electrode with the Ni/β′′ ratios of 3/1.  Its impedance spectra are shown in Figure 

5.6(a), measured at 302oC pool temperature and 850oC electrode temperature. 

For this electrode, the charge transfer resistance is much smaller than the diffusion 

resistance, which means sodium diffusion in this electrode is the rate limiting step.  

Additionally, the impedance measured on Jan 5th suddenly increased, which is mainly 

due to an increase of the diffusion impedance, shown in Figure 5.6(b).  This could result 

from a reduction of electrode porosity during the test.  

The initial B is around 15 for Ni/β′′ electrode, shown in Figure 5.6(c).  Compared to 

the Cu/β′′ electrode, the Ni/β′′ electrode displayed a much smaller Rct, but a larger Rd.  

Thus, the rate constant k2 of the sodium vapor transport reaction (4.5) is smaller than that 

of Cu/β′′ electrode, which means sodium transport is more difficult in the Ni/β′′ 

electrode than the Cu/β′′ electrode.  However, the apparent charge transfer resistance Ract 

is similar for both electrodes, which are around to 14Ω.  The B values for Ni/β′′ 

electrode are slightly larger than that of Cu/β′′ electrode, which indicates that these two 

electrodes have the similar performance.  
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Figure 5.6. a) The impedance spectra of Ni/β′′-alumina electrode with Ni/β′′ ratios

of 3/1. b) The impedance spectra measured on t-to=2d and 3d, and their deconvoluted

spectra for charge transfer and sodium transport processes. c) B value versus

experiment time. 
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Figure 5.7 displays the microstructure of a tested Ni/β′′-alumina electrode.  It 

illustrates that grain coalescence for both Ni and β′′-alumina particles.  With the sample 

testing in the high temperature SETC, grain coalescence occurred, which reduced the 

electrode porosity and then made the sodium transport more difficult.  At the beginning 

of this process, it would not significantly affect the number of reaction sites, thus the 

charge transfer resistance change slightly, which could explain the significant increase of 

the diffusion resistance on Jan 5th.   

Ni particles coalesced and formed a network from the current collector to the 

interface of BASE.  This interaction improves the electrode conductivities for both ionic 

and electronic.  Also, the networks of Ni and β′′-alumina were interwoven, which 

enlarges the reaction area.  This behavior could interpret the small charge transfer 

resistance for Ni/β′′-alumina electrode. 

Figure 5.6.  (Continuted) 
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Post-test sample ×500 SE image          ×2000 SE image  

   
 
 

×2000 Al x-ray map    ×2000 Ni x-ray map 
 

 

 

Figure 5.7. SEM images for Ni/β′′-alumina sample with Ni/β′′ ratios of 3/1 after testing 

in the SETC.  

10 μm SE 15kV20μm SE 15kV

10 μm Al 15kV 10 μm Ni 15kV
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Ni/Cu/β′′-alumina MIEEs. ⎯  In these electrodes, Cu is added as the second metal 

in order to improve the adhesion of the electrode film, because Cu/β′′-alumina electrode 

displayed a good adhesion.  For the Ni/β′′-alumina electrode with the Ni/β′′ ratios of 3/1 

discussed previously, if half of its Ni is replaced by Cu, it forms Ni/Cu/β′′-alumina 

electrodes with 3/3/2 ratios of Ni to Cu to β′′.  These electrodes were tested at 855oC 

electrode temperature and 295oC sodium pool temperature.   

The impedance spectra and deconvoluted spectra of this Ni/Cu/β′′ electrode are 

shown in Figure 5.8 (a) and (b), respectively.  Compared Figure 5.8(b) to the Cu/β′′ 

electrode spectrum, Figure 5.4(b), we found that the charge transfer resistance Rct of 

Ni/Cu/β′′ electrode is reduced, but their diffusion resistance Rd is similar.  Compared to 

Ni/β′′-alumina electrode, Figure 5.6(b), the Rct of Ni/Cu/β′′ electrode is increased, while 

Rd is decreased.   

Combining these results, we found that the electrode containing Cu had a small 

diffusion resistance, while the electrode containing Ni had a small charge transfer 

resistance and with the amount of Ni component increase, Rct decreases; with the Cu 

amount increase, Rd roughly decreases.  It seems that Cu particles are more involved in 

sodium transport process, while Ni particles contribute more to the charge transfer 

reaction.  k2 is larger in the electrode having Cu particles, which may suggest that the 

sodium vapor diffusion or desorption on Cu particles is easier than on Ni particles. 
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The B values for this electrode are similar to that of Cu/β′′ and Ni/β′′ electrodes.  

Therefore, it is concluded that Ni/Cu/β′′ electrode did not make progress with 

performance compared to Cu/β′′ or Ni/β′′ electrodes.  

The SEM images of Ni/Cu/β′′ electrode before and after the test are shown in Figure 

5.9(a) and (b).  The SEM images of pre-test sample show that the Ni, Cu and β′′ were all 

deposited on the BASE with the desired mass ratio and they basically distributed 

uniformly over the whole electrode, which means that flame spraying is suitable for 

depositing a mixture with multiple components.  The images of the post-test sample 

demonstrated that metal and ceramic particles both grew during the SETC test.  Each 

type of particles connected and formed networks, which limited the further growth of 

grains.  The grain boundaries still can be seen in this sample.  Therefore, the extent of 

the grain growth is smaller than that of the pure metal electrode.  It is also found that Ni 

and Cu particles coexistence in all images.  For example, Ni and Cu are both present in 

the “key” shaped particles at the center of the SE image in Figure 5.9(b).  This behavior 

is not observed for other electrodes with two metals.  The most possible reason is the 

metal Ni and Cu alloyed during the test.  
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Figure 5.8. a) The impedance spectra of Ni/Cu/β′′-alumina electrode with Ni/Cu/β′′ ratios 

of 3/3/2. b) The impedance spectrum measured on t-to=8d, and its deconvoluted spectra 

for charge transfer and sodium transport processes. c) B value versus experiment time. 
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Pre-test sample ×2000 BSE image         ×2000 Al x-ray map  

   

×2000 Ni x-ray map    ×2000 Cu x-ray map 

(a) 
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Figure 5.9. SEM images for Ni/Cu/β′′-alumina sample with Ni/Cu/β′′ ratios of 3/3/2 

a) before and b) after testing in the SETC.  
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Post-test sample ×2000 BSE image         ×2000x Al x-ray map 
 

    
 

×2000 Cu x-ray map    ×2000 Ni x-ray map 

(b) 

 

 

Figure 5.9.  (Continued) 
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Co/Cu/β′′-alumina MIEEs. ⎯  Metal Co is the first using in an AMTEC electrode 

in this research.  The electrodes were tested having ratios of Co to Cu to β′′-alumina of 

3/3/2, the same ratio used with Ni/Cu/β′′-alumina electrode discussed previously.  

Co/Cu/β′′ electrode was tested over 70 days at 867oC electrode temperature of and 

300oC pool temperature.   

The impedance spectra are shown in Figure 5.10(a).  By deconvoluting the spectra, 

the series resistance Rs, charge transfer resistance Rct and diffusion resistance Rd were 

obtained and were all plotted verse experiment time in Figure 5.10(b), as well as Ract.  It 

is found that Rs and Rd are basically stable for the entire experiment period, while the 

other two resistances increased gradually with experiment time for the first 35 days and 

then stabilized.  Comparing this electrode’s initial performance to that of Cu/β′′ and 

Ni/Cu/β′′ electrodes, we found that Co/Cu/β′′ electrode has similar Rd to Cu/β′′ or 

Ni/Cu/β′′ electrodes, while its Rct is much smaller than that of the Cu/β′′ electrode, and 

slightly lower than the Ni/Cu/β′′ electrode.  This indicates that the role of Co might be 

similar to Ni in those mixed electrodes, which is more related to charge transfer process.  

Unfortunately, we did not test Co/β′′-alumina electrode to prove this conjecture. 

Additionally, the values of B are also close to those of Ni/Cu/β′′ electrodes, but this 

electrode had a longer lifetime.  The B values decreased for the first 30 days and then 

stabilized, shown in Figure 5.10(c).  To summarize, Co/Cu/β′′-alumina electrode’s 

performance is similar to Ni/Cu/β′′-alumina electrodes, but it degrades slowly.  
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The microstructure of this electrode before and after testing was shown in Figures 

5.11(a) and (b).  The SEM images for the pre-test sample are very similar to 

Ni/Cu/β′′electrode.  Metal particles are small and spherical, while β′′-alumina particles 

have the varying size and shape.  The microstructure of the electrode after testing shows 

β′′-alumina particles grew and congregated to form a frame with Cu and Co particles 

inserted in it, while Cu and Co particles remained the small size, which indicated that 

β′′-alumina limited the growth of metal particles.  The small size of the metal particles 

most likely contributed to the slow degradation of this electrode. 
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Figure 5.10. a) The impedance spectra of Co/Cu/β′′-alumina sample with Co/Cu/β′′

ratios of 3/3/2. b) The changes of extracted Ract, Rs, Rct, Rd versus experiment time. c) B

value versus experiment time.  
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 Figure 5.10.  (Continued) 
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Pre-test sample ×2000 BSE image          ×2000 Al x-ray map 

   

×2000 Cu x-ray map    ×2000 Co x-ray map 

(a) 

 
 
 
 

10 μm Cu 15kV 10 μm Co 15kV

10 μm    Al      15kV    10 μm    BSE      15kV    

Figure 5.11. SEM images for Co/Cu/β′′-alumina sample with Co/Cu/β′′ ratios of 

3/3/2 a) before and b) after testing in the SETC.  
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Post-test sample ×2000 SE image  ×2000 Al x-ray map 

   

×2000 Cu x-ray map    ×2000 Co x-ray map 
 

(b) 

 

 
Figure 5.11.  (Continued) 
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5.3.3 Metal/Sodium Titanate MIEEs 

Cu/Sodium Titanate MIEEs. ⎯ This electrode was investigated with a Cu to 

sodium titanate (ST) ratio of 1/1 and its spectra are shown in Figure 5.12(a).  It was 

found that the spectra did not intercept the real impedance axis at the right side.  This 

failure to intercept is resulted from the low frequency limitation used in this 

measurement, 0.1Hz, not being low enough.  Simulating experimental spectrum from 10-

3 to 106Hz using the proposed equivalent circuit in Chapter IV generated a spectrum that 

adequately matched the experimental data and intercepted the real impedance axis, 

shown in Figure 5.12(b).  Ract for this electrode was calculated from the extended low 

frequency intercept.   

The deconvoluted spectra exhibit the charge transfer resistance is smaller than the 

transport resistance, the latter being more than twice of the former.  Compared to the 

Cu/β′′-alumina electrode, Cu/ST electrode has a larger Rd but their Rct values are very 

close.  According to the MIEE kinetic equation (4.26) described in Chapter IV, a large Rd 

should correspond to a small k2.  Based on equation (4.29), k2 can be evaluated from the 

frequency at the maximum of the sodium transport semicircle.  The experimental results 

show the ratio of these specific frequencies is 1/4 for those two electrodes, thus the 

sodium transport rate constant k2 for the Cu/ST electrode is only 1/4 of that for the 

Cu/β′′-alumina electrode.   
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Figure 5.12. a) The impedance spectra of Cu/sodium titanate sample with Cu/ST ratio
of 1/1. b) The impedance spectrum measured on t-to=6d, and its deconvoluted spectra for
charge transfer and sodium transport processes. c) B value versus experiment time. 
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The large Rd can be explained from the electrode’s morphological characteristics, 

shown in Figure 5.13.  The pre-test SEM images show the electrode film is dense.  

Sodium titanate is present as very large particles, which are connected together to form a 

frame and the Cu particles are embedded in the frame or on the top of it.  Thus the 

porosity in this electrode is very low.  Such a microstructure could result in a small 

reaction area and difficult sodium transport within the electrode, but the adhesion of this 

electrode to the BASE is good.  

The SEM images for the post-test sample show that some area of the BASE is bald, 

without the coverage of the electrode film.  This loss occurred because the electrode film 

stuck to the current collector and was separated from BASE during SETC disassembly or 

during the process of making SEM samples.  Figure 5.13(b) show that the Cu particles 

aggregated together around the sodium titanate, shown in  

The B value sharply decreased with experiment time as shown in Figure 5.12(c).  

Compared to the Cu/β′′-alumina electrode, the Cu/ST electrode did not show any 

improvement.  The large particle size of sodium titanate could be the main reason for this 

result. 
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Pre-test sample ×500 SE image          ×2000 BSE image 

   
 

×2000 Cu x-ray map    ×2000 Ti x-ray map 

(a) 

 
 
 
 

10 μm Cu 15kV 10 μm Ti 15kV

10 μm BSE 15kV20μm SE 15kV

Figure 5.13. SEM images for Cu/sodium titanate sample a) before and b) after testing 

in the SETC.  
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Post-test sample ×500 BSE image          ×2000 BSE image  
 

   
 

×2000 Cu x-ray map    ×2000 Ti x-ray map 

(b) 

 

 
Figure 5.13.  (Continued) 
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Figure 5.14 is the spectra of the electrode with a 4/1 ratio measured at 845oC 

electrode temperature and 309oC pool temperature.  It is found that the value of Rct is 

about 0.1Ω, and Rd increases with experiment time from 1.5Ω to 2.5Ω.  Such small Rct 

and Rd had never been obtained in our tested electrodes previously.  Its B values were as 

high as 70 at initial, then decreased and finally stabilized around 50, which is much 

higher than that of TiN electrode after 10-40 days testing at this temperature. 

Carefully observing its spectra, it is found that the spectra are different from 

traditional spectra of mixed electrodes in shape.  The semicircle curves are hardly 

depressed.  We discussed the relationship of the depressed extent of the semicircle with 

the surface roughness in Chapter IV, and concluded that a real semicircle without any 

depression indicates the interface is smooth.  Therefore, this electrode has a smooth 

interface between electrode and electrolyte. 

Figure 5.15 shows the electrode’s microstructure after testing.  It is found that Ni 

formed a complete network within the whole electrode, as did sodium titanate and they 

were interwoven, which matches the designed ideal morphology for a high performance 

electrode described in Chapter III.   
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Figure 5.14. a) The impedance spectra of Ni/sodium titanate electrode with Ni/ST ratios

of 4/1 b) The changes of extracted Rs, Rct, and Rd, versus experiment time and c) B value

versus experiment time. 
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Post-test sample ×500 BSE image           ×2000 SE image 

   

×2000 Na x-ray map    ×2000 Ni x-ray map 
 

 

 

Figure 5.15. SEM images of the Ni/sodium titanate sample with Ni/ST ratios of 4/1 

after testing in the SETC. 
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Ni/Cu/sodium titanate MIEEs. ⎯  The tested electrodes had Ni/Cu/Sodium titanate 

ratios of 3/3/2 and 3/3/3.  Cu was added to improve the adhesion of the electrode film to 

the BASE.  In all tested electrodes, the mass of Cu is same as that of Ni.  The impedance 

spectra of Ni/Cu/ST electrode with mass ratios of 3/3/2 were measured at 844oC 

electrode temperature and 290oC pool temperature, shown in Figure 5.16.   

The Ract value first decreased with time, then stabilized for 30 days and finally 

slowly increased with experiment time.  Since these two types of electrodes have the 

same metal components and β′′-alumina even has a higher Na+ ion conductivity than 

sodium titanate, it seems that the better performance should belong to Cu/Ni/β′′ 

electrode, but the experiment data show that Ni/Cu/ST electrode has the smaller Rs, Rct 

and Rd.  The electrode performance is not only dependent on the physical properties of 

the electrode components, but also on the microstructure formed by these components 

connection.  Thus, the better performance of Ni/Cu/ST electrode suggests that metal Ni 

and Cu combining with sodium titanate should display the sort of microstructure 

favorable to charge transfer and sodium transport that was discussed in the theoretical 

analysis of mixed electrode composition and kinetics in Chapter III.   

The SEM images of this electrode are shown in Figure 5.17(a) and (b).  The images 

of the pre-test sample show that Ni, Cu and sodium titanate are all deposited on the 

BASE with the desired ratio and all three particles are present as small spheres.  

Compared to the particles in the Cu/sodium titanate electrode, the particle size of the 

sodium titanate significantly decreased, although some big grains still are present.  The 

raw sodium titanate used in this electrode was ball-milled in the alcohol medium.  
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Figure 5.16. a) The impedance spectra of Ni/Cu/sodium titanate electrode with

Ni/Cu/ST ratios of 3/3/2. b) The changes of extracted Rs, Rct, and Rd versus

experiment time. c) B value versus experiment time.  



 156

Ni and sodium titanate particles grew during the test, shown in Figure 5.17(b).  The 

amount of Cu in the post-test sample is much less than the pre-test sample, which could 

be caused by Cu evaporation during the test.  Cupper has a fairly high vapor pressure at 

elevated temperature, three orders of magnitude larger than that of nickel.  Insufficient 

amount of the Cu in the electrode could result in Rct increase, but Ni was still present in 

the electrode and played the role of electronic conductor. Additionally, previous 

discussion indicated that the metal Ni is more related to the charge transfer process than 

Cu.  Therefore, this could be the reason of the Rct slowly increased near the end of test. 

Another tested Ni/Cu/sodium titanate electrode has Ni/Cu//Sodium titanate ratios of 

3/3/3.  To reduce the sodium transport resistance, the amount of sodium titanate was 

increased, compared to Ni/Cu/ST electrode with 3/3/2 ratios previously discussed.  But 

experiment data show that the addition of sodium titanate did not improve the electrode 

performance.  The spectra of Ni/Cu/ST electrode with 3/3/3 ratios and extracted Rs, Rct 

and Rd changes with time are shown in Figure 5.18(a) and (b).  It is found that Rs, Rct, Rd 

and B are all very similar to those of Ni/Cu/ST with 3/3/2ratios, but after 30 days, these 

resistances increased or B decreased with time more rapidly than the 3/3/2 electrode.   

The SEM images of the pre-test sample are shown in Figure 5.19 (a).  Compared to 

the 3/3/2 electrode, it is found that the amount of sodium titanate seems not to be 

increased, i.e., the extra amount of sodium titanate did not appear to deposit on the 

BASE.  The amount of Cu seems to be less than 3/3/2 electrode.  The microstructure of 

the post-test sample is similar with that of 3/3/2 electrode, shown in Figure 5.19 (b).  Cu 

evaporation and Ni particles coalescence also occurred in this electrode during the test.   
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Pre-test sample ×2000 BSE image          ×2000 Ti x-ray map 
 

   
 

×2000 Cu x-ray map    ×2000 Ni x-ray map 

(a) 

 

 

Figure 5.17. SEM images for Ni/Cu/sodium titanate sample with Ni/Cu/ST ratios of 

3/3/2 a) before and b) after testing in the SETC.  



 158

 

   
 

Post-test sample×2000 SE image          ×2000 Ti x-ray map 
 

   
 

×2000 Copper x-ray map   ×2000 Nickel x-ray map 

(b) 

 Figure 5.17.  (Continued) 
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Figure 5.18. a) The impedance spectra of Ni/Cu/sodium titanate electrode with

Ni/Cu/ST ratios of 3/3/3. b) The changes of extracted Rs, Rct and Rd versus experiment

time. c) B value versus experiment time. 
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Pre-test sample ×2000 BSE image         ×2000 Ti x-ray map 

   

×2000 Cu x-ray map    ×2000 Ni x-ray map 

(a) 

 

 

Figure 5.19. SEM images for Ni/Cu/sodium titanate sample with Ni/Cu/ST ratios of 

3/3/3 a) before and b) after testing in the SETC.  
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Post-test sample ×2000 SE image   ×2000 Ti x-ray map 

   

×2000 Cu x-ray map    ×2000 Ni x-ray map 

(b) 

 Figure 5.19.  (Continued) 
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Co/Cu/sodium titanate. ⎯  The electrodes tested in this research have two different 

compositions, with the mass ratios of Co/Cu/ST of 3/2/1 and 3/4/1.  The impedance 

spectra of the electrode with 3/2/1 ratios are shown in Figure 5.20(a) and (b).  For this 

electrode, its Rct is larger than Rd, which is possibly caused by the insufficient amount of 

electronic conductor, metals.  Therefore, we increased the mass of metals in the 

electrode, which generated the electrode with 3/4/1ratios. 

The electrode with 3/4/1ratios displayed the good performance initially, but then 

degraded rapidly, shown by its spectra in Figure 5.21(a).  It did not make any progress 

towards reducing Rct, i.e., increasing conductivity, compared to the electrode with 3/2/1 

ratios.  Figure 5.21(b) shows Rs, Rct and Rd change with time.  Rct and Rd increase rapidly 

and linearly with time after running 30 days.  Such raid increase in Rct and Rd would 

result this electrode complete failure.  
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Figure 5.20. a) The impedance spectra of Co/Cu/sodium titanate electrode with

Co/Cu/ST ratios of 3/2/1. b) The impedance spectrum measured on t-to=7d, and its

deconvoluted spectra for charge transfer and sodium transport processes.  
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Figure 5.21 .a) The impedance spectra of Co/Cu/sodium titanate electrode with

Co/Cu/ST ratios of 3/4/1. b) The changes of extracted Rs, Rct and Rd with

experiment time.  
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5.3.4 The Effect of Charge Transfer Coefficient α on B 

B, the normalized exchange current density, is the only temperature independent 

index available for evaluating AMTEC electrode performance, therefore, it is important 

and necessary to clarify the validity of B.  The transfer coefficient α, is a measure of the 

symmetry of the energy barrier for a charge transfer reaction.  In most electrochemical 

systems, α turns out to lie between 0.3 and 0.7.  For AMTEC, JPL assumed α is 1/2, 

while this research measured α to be approximately 1/3.  α is one of the factors that 

affect B.  If α is changed, B’s equation needs to be corrected. 

B is defined in equation (5.1) 

el

el
o
o

P
TJ

B
2/1

=          (5.1) 

Researchers in JPL defined o
oJ  as the exchange current at the equilibrium potential 

obtained with saturated sodium vapor in contact with the electrode and it is defined in 

equation (5.2), 

α
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oJ  is the exchange current at actual equilibrium potential of the cell, defined in equation 

(5.3) 
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Substituting equation (5.2) and (5.3) into Eq.(5.1),  the following equation is obtained, 
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In a SETC, based on vapor kinetics theory, the sodium vapor pressure at the electrode is 
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This equation shows that B is a function of α.  Therefore, B will change with α.  

If 1αα = ,   
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Divided (5.6) by (5.7), produces  

2
21

2
21

2
22

2
11

2
12

2

1

αα

αααα

−

−+−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Na

el

actNa
Nael

actNa
Nael T

T
FRP
RTT

FRP
RTT

B
B

  (5.8) 

This equation shows B monotonously increases with increasing α.  Therefore, the 

greater α, the greater B.  In our SETCs, the pool temperature (TNa) is 285∼305oC, and 

electrode temperature (Tel) is 840∼865oC.  If α ranges between 0.3 and 0.7, the ratio in 

equation (5.8) varies from 1 to 1.14, which means the values of B calculated at different 

transfer coefficients are slightly different.   

Taking the derivative of B with respect to α, yields 
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In the temperature range described above, if α ranges from 0.3 to 0.7, the value of 

B
BΔ is in the range from 0 to 0.14, which means that the maximum change in B is 14% 

due to changing α.  For the most common temperature, Tel = 850oC and TNa = 300oC, the 

B value at 2/1=α  is 1.06 times the B value at 3/1=α .  

B is a sensitive measure of the electrode performance.  Large changes in B reflect 

relatively small changes in electrochemical cell performance.  Therefore, a 14% error in 

B does not affect the evaluation of electrode performance.  Additionally, other 

measurement errors could affect the value of B, such as temperature and apparent charge 

transfer resistance.  Compared to the errors from these factors, it is believed that the 

transfer coefficient α does not contribute significant errors to B.  Therefore, equation 

(5.11) is valid to calculate B. 
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5.4 Summary and Conclusions 

We have investigated two types of MIEEs, metal/β′′-alumina electrodes and 

metal/sodium titanate electrodes.  For each type of electrode, different metals and 

compositions are used to prepare a series of electrodes and their performance were 

measured.  The metals used were W, Ni, Cu and Co. 

For metal/β′′-alumina electrodes, the performance was similar each other no matter 

which metal or composition used and lower than the performance of standard TiN 

electrode, or even a pure Ni electrode.  The flame spraying deposition technique worked 

for the fabrication of mixed electrodes with multiple components.  The experiment 

results indicated that Cu is capable of improving the electrode adhesion. 

For metal/sodium titanate electrodes, Ni/sodium titanate preformed best.  The 

Ni/sodium titanate electrode with 4/1 mass ratio displayed a very good performance with 

the initial B as large as over 60 and final B stable around 50, and a long lifetime, which 

satisfy the requirement of AMTEC electrodes.  It was found that the particle size and the 

composition changed the performance of these electrodes significantly.  Cu was added in 

the electrode as the second metal to improve electrode adhesion, but it evaporated during 

testing, which made the electrode performance degrade more rapidly.  Additionally, the 

electrodes with Cu had a lower sodium transport resistance.  The kinetics suggested that 

these Cu electrodes have a large rate constant for sodium transport.  The electrodes with 

Ni generally provide a small charge transfer resistance, which implies that Ni particles 

are more related to the charge transfer reaction.  The possible reason could be the Ni 

particles form a network microstructure that is close to the theoretical morphology of the 
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ideal electrode.  The experimental results proved that the performance of MIEEs is 

strongly dependent on microstructure, as discussed in Chapter III.  It is also found that 

grain agglomeration occurred in all electrodes, and the ceramic components limited the 

growth of metal grains, which results in a longer lifetime than the pure metal electrode.  

Different values of the transfer coefficient α can cause variations in B values.  For 

standard SETC conditions, it will cause 6% change, while for normal SETC conditions, 

it can produce a maximum change of 14%.  Based on the error analysis, it is believed 

that variations in α do not generate a significant effect on B.  
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CHAPTER VI 

FINDINGS AND CONCLUSIONS 

 

This research investigated pure metal electrodes, metal/sodium titanate, and 

metal/β′′-alumina mixed conductor electrodes for AMTEC operation, measured their 

performance, proposed kinetic mechanisms for electrode processes and calculated 

optimum composition characteristics.  The findings and conclusions are listed below:  

i. Using thermodynamic theory, chemical potential diagrams were created for the 

Na-Al-O, Na-Ti-O, and Na-Al-Ti-O systems at 1100K.  Those diagrams illustrate that 

β′′-alumina is stable over limited range of AMTEC operating conditoins.  Ni and 

Na2Ti3O7 are thermodynamically stable at AMTEC operating conditions and also 

compatible with BASE. 

ii. Based on the chemical and physical properties, metal Ta, Ni, Nb, Ir, W and 

MoRe were studies as the electronic component-cadidates for MIEEs and tested in 

SETCs.  The experimental results showed that metal Ni is the best choice to be the 

electronic conductor in a MIEE. 

iii. Based on the percolation theory, a theoretical model was constructed.  It 

interpreted the performance differences of mixed conductor electrodes and predicted the 

optimum particle size and composition range.  The reaction area was evaluated for 

electrodes with different compositions and particle sizes.  The model shows that the 

reaction area decreases with increasing particle size and particle size ratio.  It also 

predicts the electrode with two components has the best performance when these two 
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components have the same volume fraction and same particle size, and this particle size 

should be as small as possible. 

iv. For a mixture of Na2Ti3O7 and Na2Ti6O13 with mass ratio of 1/2, the average 

activation energy for the bulk conductivity is 0.87ev.  At AMTEC working temperatures 

(~1120K), the conductivity of the grain boundaries is much higher than that of the bulk. 

v. The pure metal electrodes and mixed conductor electrodes had similar 

impedance spectra, which consist of two depressed semicircles.  The semicircle at high 

frequency is related to sodium charge transfer reaction, while the semicircle at low 

frequency is related to sodium vapor transport through the electrode.  The theoretical 

expression for the impedance of the electrode processes has been derived. 

vi. The pure metal electrodes and mixed conductor electrodes have similar electrode 

kinetics mechanisms.  The transport resistance is determined by not only electrode 

transport characteristics but also charge transfer properties.  For most of the tested 

electrodes, the rate constant of sodium transport is smaller than that for sodium oxidation 

reaction and can be calculated from the impedance spectra, which is equal to the 

frequency of the maximum point on the semicircle at low frequency range.  For a pure 

metal electrode, the sodium vapor pressure at the electrode/electrolyte interface could be 

estimated by measuring electrode impedance and extracting the diffusion capacitance.   

vii. Sodium transport in the electrode is controlled by single activation energy of 

99.4kJ/mol for a Ni electrode, although it might include several steps.  
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viii. All tested metal/β′′-alumina electrodes had similar and low performance.  The 

flame spraying deposition technique worked for the fabrication of mixed conductor 

electrodes with multiple components. 

ix. Ni/sodium titanate with the Ni/sodium titanate ratios of 4/1 displayed the best 

performance and longest lifetime among all tested MIEEs, the pure metal electrodes and 

standard TiN electrode.  Ni particles are able to form a network microstructure that is 

close to the theoretical morphology of the ideal electrode. 

x. Grain agglomeration occurred in SETC testing for all electrodes, and sodium 

titanate particles limited the growth of metal grains in mixed conductor electrode.  The 

performance of the mixed conductor electrode is strongly dependent on microstructure. 

xi. Variations in transfer coefficient α do not generate a significant effect on B.  At 

traditional SETC conditions, variations of α causes 6% change in B, for the normal 

SETC conditions, it produces a maximum change of 14%. 
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APPENDIX A 

CALCULATION OF GIBBS FREE ENERGY 
 

 

Table A.1.  Thermodynamic properties of compound in the Na-Al-Ti-O system 

Heat Capacity 
Cp=a+(b×10-3)T+(c×105)T-2+d/T1/2+(e×108)T-3 Chemical 

Formular 
)15.298(o

f HΔ
kJ/mole 

)15.298(oS
J/mole/K a b c d e 

)1100(o
f GΔ
kJ/mole 

Ref 

O2  205.1 29.659 6.137 -2.196   0 108 
Na(s) 

(298-370K)  51.46 72.637 -9.492 -12.594    108 

Na(l) 
(370-1170.5K)   40.257 -28.238 -0.799    108 

Na(g) 107.3 153.67      5.865 108 

β-Ti(s)  30.72 23.057 5.541 -0.561    108 

Al 
(298-933K) 0 28.27 28.089 5.415 -2.774   0 108 

Al 
(933-2790.8K)   31.751 3.936×10-8 5.480×10-8    108 

Na2O -417.98 75.04      -267.206 109 

TiO2(rutile) -944.747 50.29      -744.803 109 
 
 Continued on next page
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Heat Capacity 

Cp=a+(b×10-3)T+(c×105)T-2+d/T1/2+(e×108)T-3 Chemical 
Formular 

)15.298(o
f HΔ

kJ/mole 
)15.298(oS

J/mole/K a b c d e 

)1100(o
f GΔ
kJ/mole 

Ref 

γ-Al2O3(s) -1656.9 52.3      -1313.99 109 

NiO(s)        -140.6 110 

Cu2O(s) -170.71 92.36      -88.331 109 

CuO(s) -156.06 42.59      -58.542 109 

Na2TiO3(s) -1586.8 123.5 198.9  -59.49 -644.3 8.505 -1223.7 84 

Na2Ti2O5(s) -2539.7 173.6 272.6   -1282.7 -1.576 -1983.8 84 

Na2Ti3O7(s) -3490.5 233.9 367.2   -1940.3 -1.371 -2748.2 84 

Na2Ti6O13(s) -6322.9 398.6 483.0 55.45 -90.96   -4991.0 84 

NaAlO2(s) -1133.19 70.4      -890.6 80 

NaAl5O8(s) -4523.73 148.56 351.9 24.65 -191.84   -3542.4 80 

Na2Al22O34(s) -19145.5 583.14 1451.1 90.69 -826.34   -15029.4 82 
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Calculation of Gibbs Free Energy of Formation at 1100K. 

According to the thermodynamic theory, the standard Gibbs free energy of 

compound formation is defined as  

[ ]∑ ×−+Δ=Δ elements
o

compound
oo

f
o
f TScoeffTSTTHTG )()()()(   (A.1) 

where, )(TH o
fΔ is the standard enthalpy of formation, and defined as 

[ ]
[ ]

elements
oo

compound
ooo

f
o
f

HTHcoeff

HTHHTH

∑ −×−

−+Δ=Δ

)15.298()(

)15.298()()15.298()(
   (A.2) 

)(TS o  is the standard entropy and defined as  

∫+=
T poo dT

T
C

STS
298298)(        (A.3) 

For example, we use above three equations to calculate the standard Gibbs free 

energy of formation of NaAl5O8 compound, all data listed in Table A.1. 

Na(l) +5Al(l) + 4O2(g)→NaAl5O8(s) 
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For some compounds, their thermodynamic data are not available.  For example,  

Na2O(s)+Al2O3 (s)+6TiO2(s)→Na2Al2Ti6O16(s) 

Assuming Na2Al2Ti6O16 could begin to form at 1100K, so  

0)1100( =Δ rxnG  

06)1100(
22216622 ,3,,, =Δ×−Δ−Δ−Δ=Δ o

TiOf
o

OAlf
o

ONaf
o

OTiAlNafrxn GGGGG  

o
TiOf

o
OAlf

o
ONaf

o
OTiAlNaf GGGG

22216622 ,3,,, 6 Δ×+Δ+Δ=Δ  

molekJ

G o
OTiAlNaf

/01.6050

)803.744(699.1313206.267
1662,

−=

−×+−−=Δ
    (A.4) 
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In fact, Na2Al2Ti6O16 formation requires a higher temperature, thus 
16622, OTiAlNafGΔ  

calculated in equation (A.4) is the minimum Gibbs formation free energy of 

Na2Al2Ti6O16. 

 

Calculation of Gibbs Free Energy of Reaction at 1100K. 

∑∑ Δ×−Δ×=Δ )tan()( tsreacGcoeffproductsGcoeffG o
fr

o
fp

o
rxn   (A.5) 

QRTGG o
rxnrxn ln+Δ=Δ        (A.6) 

Where Q is the reaction quotient. 

For example,  

2Na(g) +1/2O2(g)+ Na2Ti6O3(s)→2Na2Ti3O7(s) 

kJ

GGGG o
gNaf

o
OTiNaf

o
OTiNaf

o
rxn

13.537

865.52)0.4991()2.2748(2

)1100(2)1100()1100(2 )(1362732

−=

×−−−−×=

Δ×−Δ−Δ×=Δ

 

kJPPkJ

kJ
PP

kJ

QRTGG

NaO

NaO

o
rxnrxn

]ln2ln
2
1[101100314.813.537

]1ln[101100314.813.537

ln

2

2

3

22/1
3

+×××−−=

×××+−=

+Δ=Δ

−

−   (A.7) 

When this reaction is at equilibrium, 0=Δ rxnG .  So above equation (A.7) becomes to  

]ln2ln
2
1[101100314.813.5370

2

3
NaO PP +×××−−= −  

and then 
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NaO PP log40.51log
2

−−=  

This equation shows the relationship between the oxygen partial pressure and sodium 

partial pressure at equilibrium.  We calculated equilibrium oxygen partial pressure for 

reactions in the Na-Al-O, Na-Ti-O, and selected metal systems and listed the results in 

Table 3.2, 3.3 and 3.4 respectively.  

When chemical potential diagrams of the Na-Al-O and Na-Ti-O systems are 

superimposed, the stability region of NaAlO2 and Na2TiO3 are overlapped.  The possible 

reaction between them is listed below 

2NaAlO2(s) +6Na2TiO3(s)→Na2Al2Ti6O16(s)+12Na(g)+3O2(g) 

QRTGG o
rxnrxn ln+Δ=Δ  

33

312

3,,)(,,

)ln3ln12(101100314.851.3145

)ln(

6212)1100(

2

2

2216622

−− +××+=

+

Δ−Δ−Δ+Δ=Δ=Δ

ONa

ONa

o
TiONaf

o
NaAlOf

o
gNaf

o
OTiAlNafrxnrxn

PP

PPRT

GGGGGG

 

)loglog4(303.23101100314.851.3145
2

3
ONa PP +××××+= −   (A.8) 

If 0)1100( <Δ Grxn , it means this reaction could spontaneously occur at the experimental 

conditions, otherwise, it can not.  Therefore, we try to calculate the minimum GrxnΔ  in 

our experiment conditions.  Observing equation (A.8), it is found that the minimum 

GrxnΔ  is obtained when sum of 
2

loglog4 ONa PP +  is minimum.  For every value of PNa 

and 
2OP  in the overlapped region, the )1100(GrxnΔ reaches the minimum, when the 

condition is on the equilibrium line between NaAlO2 and NaAl5O8 (β″-alumina), the 
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right boundary of the overlap region.  On this line, the pressure of oxygen and sodium 

obeys the following equation, 

NaO PP log434.44log
2

−−=        (A.9) 

by substitution equation (A.9) into equation (A.8), we get 086.343)1100( >=Δ kJGrxn , 

this is the minimum GrxnΔ  could be obtained at our experiment conditions and it is still 

greater than 0.  Therefore, this reaction can not spontaneously occur in our experiment. 

All the reactions listed in Table 3.4 were calculated and found that none of them 

would occur at our experiment conditions.  So the compounds in this quaternary system 

are as stable as they are in tertiary systems. 
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APPENDIX B 

 

Table B.1.  Summary of Metal/β′′-alumina Samples 

SETC 

NO. 
Components 

Metal/β′′-alumina

mass ratio 

Experiment 

durations 

28 W/β′′-alumina 3/1 9 

30 W/β′′-alumina 3/1 11 

36 Ni/β′′-alumina 3/1 10 

37 Ni/β′′-alumina 3/1 30 

49 Cu/β′′-alumina 1/1 11 

52 Cu/β′′-alumina 1/1 13 

49 Ni/Cu/β′′-alumina 3/3/2 11 

50 Ni/Cu/β′′-alumina 3/3/2 90 

49 Co/Cu/β′′-alumina 3/4/1 11 

49 Co/Cu/β′′-alumina 3/3/2 11 

50 Co/Cu/β′′-alumina 3/3/2 90 

52 Co/Cu/β′′-alumina 3/3/2 13 
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Table B.2. Summary of Metal/Sodium Titanate Samples 

SETC 

NO. 
Components 

Metal/ Sodium Titanate

mass ratio 
Pass 

Experiment 

durations

29 Cu/Sodium Titanate 1/1  20 

49 Cu/Sodium Titanate 1/1 3 10 

52 Cu/Sodium Titanate 1/1 4 15 

49 Co/Cu/Sodium Titanate 3/3/2 3 10 

51 Co/Cu/Sodium Titanate 3/3/2 4 15 

52 Co/Cu/Sodium Titanate 3/3/2 5 15 

49 Co/Cu/Sodium Titanate 3/4/1 3 10 

50 Co/Cu/Sodium Titanate 3/4/1 3 90 

49 Co/Cu/ Sodium Titanate 3/2/1 3 10 

50 Co/Cu/Sodium Titanate 3/2/1 3 90 

51 Co/Cu/Sodium Titanate 3/2/1 4 15 

54 Ni/Cu/Sodium Titanate 3/3/2 4 30 

55 Ni/Cu/Sodium Titanate 3/3/2 4 60 

55 Ni/Cu/Sodium Titanate 3/3/3 3 60 

55 Ni/Cu/ Sodium Titanate 3/3/3 4 60 
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Table B.3. Summary of Ni/Sodium Titanate Samples 
SETC 

NO. 
Name 

Ni/Sodium Titanate 

mass ratio 
Pass Particle Size 

Experiment 

durations 

36 N4 4/1   5 

37 N4 4/1   30 

57 S3NT 4/1 3 3-7 μmNi 65 

58 NT12 4/1 6 5-15μmNi 55 

58 NT15 4/1 9 5-15μmNi 55 

69 R55 4/1 3 July 23 mixture 12 

69 R56 4/1 3 July 23 mixture 12 

71 R65 4/1 3 2-3μmNi 18 

71 R63 4/1 10 2-3μmNi 18 

71 R69 4/1 10 3-7μmNi 18 

72 R64 4/1 3 5-15μmNi 52 

72 R68 4/1 3 3-7μmNi 52 

72 R60 4/1 4 2-3μmNi 55 

72 R66 4/1 10 2-3μmNi 55 

73 R79 4/1 3 2-3μmNi 97 

73 R74 4/1 5 July 23 mixture 97 

73 R78 4/1 8 5-15μmNi 97 

74 R76 4/1 2 2-3μmNi 97 

74 R75A 4/1 8 July 23 mixture 97 

74 R75B 4/1 10 July 23 mixture 97 

75 R81 4/1 3 2-3μmNi 49 

75 R83 4/1 3 2-3μmNi 49 

75 R87 4/1 3 July 23 mixture 49 

75 R84 4/1 5 2-3μmNi 49 

76 R82 4/1 3 2-3μmNi 50 

76 R88 4/1 3 July 23 mixture 50 

76 R90 4/1 4 July 23 mixture 50 

      Continued on next page
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SETC 

NO. 
Name 

Ni/Sodium titanate 

Ratio(mass%) 
Pass Particle Size 

Experiment 

durations 

34 N3 3/1 2  60 

36 N3 3/1   5 

37 N3 3/1   30 

39 N3 3/1 3  6 

39 N4 3/1 4  6 

58 L3NT 3/1 3 5-15umNi 3 

58 L5NT 3/1 5 5-15umNi 5 

31 N2 2/1   5 

32 N4 2/1 4  12 

32 N6 2/1 6  12 

33 N 2/1   13 

34 N22 2/1 2  45 

      

July 23 mixture: 135g Ni (<1μm)+265g Ni(2-3μm)+100g sodium titanate (milled over 6 days). 
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