

AREA AND ENERGY EFFICIENT VLSI ARCHITECTURES FOR

 LOW-DENSITY PARITY-CHECK DECODERS USING

AN ON-THE-FLY COMPUTATION

A Dissertation

by

KIRAN KUMAR GUNNAM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2006

Major Subject: Computer Engineering

AREA AND ENERGY EFFICIENT VLSI ARCHITECTURES FOR

LOW-DENSITY PARITY-CHECK DECODERS USING

AN ON-THE-FLY COMPUTATION

A Dissertation

by

KIRAN KUMAR GUNNAM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Gwan Choi

Scott Miller
Committee Members, Jiang Hu
 Duncan Walker
Head of Department, Costas Georghiades

December 2006

Major Subject: Computer Engineering

iii

ABSTRACT

Area and Energy Efficient VLSI Architectures for Low -Density Parity-Check Decoders

Using an On-the-Fly Computation. (December 2006)

Kiran Kumar Gunnam, M.S., Texas A&M University

Co-Chairs of Advisory Committee: Dr. Gwan Choi
 Dr. Scott Miller

The VLSI implementation complexity of a low density parity check (LDPC)

decoder is largely influenced by the interconnect and the storage requirements. This

dissertation presents the decoder architectures for regular and irregular LDPC codes that

provide substantial gains over existing academic and commercial implementations. Several

structured properties of LDPC codes and decoding algorithms are observed and are used to

construct hardware implementation with reduced processing complexity. The proposed

architectures utilize an on-the-fly computation paradigm which permits scheduling of the

computations in a way that the memory requirements and re-computations are reduced.

Using this paradigm, the run-time configurable and multi-rate VLSI architectures for the

rate compatible array LDPC codes and irregular block LDPC codes are designed. Rate

compatible array codes are considered for DSL applications. Irregular block LDPC codes

are proposed for IEEE 802.16e, IEEE 802.11n, and IEEE 802.20. When compared with a

recent implementation of an 802.11n LDPC decoder, the proposed decoder reduces the

logic complexity by 6.45x and memory complexity by 2x for a given data throughput.

When compared to the latest reported multi-rate decoders, this decoder design has an area

iv

efficiency of around 5.5x and energy efficiency of 2.6x for a given data throughput. The

numbers are normalized for a 180nm CMOS process.

Properly designed array codes have low error floors and meet the requirements of

magnetic channel and other applications which need several Gbps of data throughput. A

high throughput and fixed code architecture for array LDPC codes has been designed. No

modification to the code is performed as this can result in high error floors. This parallel

decoder architecture has no routing congestion and is scalable for longer block lengths.

When compared to the latest fixed code parallel decoders in the literature, this design has

an area efficiency of around 36x and an energy efficiency of 3x for a given data throughput.

Again, the numbers are normalized for a 180nm CMOS process. In summary, the design

and analysis details of the proposed architectures are described in this dissertation. The

results from the extensive simulation and VHDL verification on FPGA and ASIC design

platforms are also presented.

v

To my family.

vi

 ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Dr. Gwan Choi, for his financial

support and encouragement for my research. He supported me in all the difficult situations

where I needed help. I would like to thank Dr. Scott Miller for his time in serving on my

committee. His suggestions made me focus exclusively on LDPC decoder architectures

though initially I set out to work on a conglomeration of different topics. Dr. Mark Yeary

has been very helpful and he spent a lot of time improving my papers. I would also like to

thank Dr. Duncan Walker who suggested that I look into scalabilty issues of the decoder

architectures. I would like to thank Dr. Jiang Hu for his time and suggestions to improve

the presentation aspects of my research.

I would like to take this opportunity to express my thanks to Intel, Schlumberger

and Starvision Technologies for supporting my research. Dr. James Ochoa and Mr. Mike

Jacox of Starvision Technologies in conjunction with Dr. Gwan Choi and Dr. John Junkins

have supported my PhD program.

Several students and other people at Texas A&M helped me in my research work

also. Thanks to Weihuang Wang, in particular, for working on the matlab simulation model

for my architecture on the layered decoding for array codes and on the verification of some

of the HDL modules. In addition, he spent several weeks with me working on writing the

paper. Most of the figures presented in this dissertation were drawn by him. I appreciate the

help of Mr. Abhiram Prabhakar and Mr. Euncheol Kim in providing the useful reviews for

some of my work. Several members of the computer engineering group helped also. In

vii

addition, Ms. Linda Crenwelge, associate editor of Choice magazine, provided me help

with the editing of my papers. I am thankful for the additional staff at Texas A&M

University for assisting in my degree program.

 Several other researchers and professors outside Texas A&M University provided

feedback on my work. Dr. Jinghu Chen of Qualcomm provided a review on one of my

papers and supplied me with his software on density evolution. Dr. Zhongfeng Wang of

Oregon State University provided several suggestions to improve the presentaion of the

papers. In addition, I received several anonymous reviewers’ comments as part of my paper

submissions. Those suggestions are incorporated into the papers, as well as, into the

dissertation.

Dr. Roger Robbins has been my career mentor for the last four years. His advice

helped me see my career and life more clearly. Kanu Chadha gave his time to listen to me

and to offer suggestions. My lovely wife, Anu, has supported me in many more ways than

meet the eye. She did the difficult task of completing 36 credit hours in one year at Texas

A&M for her masters degree course requirements while taking care of different things at

home. I would like to thank my parents, and brother Ramakrishna, for their constant

support and encouragement through every major decision in my life.

viii

 TABLE OF CONTENTS

 Page

ABSTRACT ...iii

DEDICATION……………………………………………………………………………... v

ACKNOWLEDGMENTS...vi

TABLE OF CONTENTS ..viii

LIST OF FIGURES ...xi

LIST OF TABLES...xiii

CHAPTER

I INTRODUCTION.. 1

1.1. Motivation ... 1
1.2 Problem Overview... 5
1.3. Main Contributions.. 6

II QUASI-CYCLIC LOW-DENSITY PARITY-CHECK CODES AND
 DECODING..11

2.1.Introduction .. 11
2.2.Cyclotomic Cosets.. 12
2.3.Array LDPC Codes... 13
2.4.Rate-compatible Array LDPC Codes ... 14
2.5.Irregular Quasi-Cyclic LDPC Codes (Block LDPC codes) 15
2.6.Irregular QC-LDPC Codes for Other Wireless Standards(802.11n and

802.20)…………………………………………………………...…………16
2.7 Two Phase Message Passing (TPMP) and Decoding of LDPC 16

 2.8 Turbo Decoding Message Passing (TDMP) or Layered Decoding................ 18

III MULTI-RATE TPMP ARCHITECTURE FOR REGULAR QC-LDPC
 CODES.. ... 19

3.1 Introduction .. 19
3.2.Block Message Independence Property for Regular QC-LDPC Codes 20
3.3.Architecture .. 23

ix

CHAPTER Page

3.4.Performance Comparison ... 29
3.5.FPGA Implementation Results .. 30
3.6.ASIC Implementation Results ... 31

IV VALUE-REUSE PROPERTIES OF OMS AND MICRO-ARCHITECTURES
 FOR CHECK NODE UNIT BASED ON OMS... 35

4.1.Value-reuse Properties.. 35
4.2.Serial CNU for OMS .. 36
4.3.Parallel CNU... 38

V FIXED CODE TPMP ARCHITECTURE FOR REGULAR QC-LDPC CODES... 41

5.1.Introduction .. 41
5.2.Reduced Message Passing Memory and Router Simplification..................... 42
5.3.Check Node Unit Micro-architecture ... 43
5.4.Architecture ... 45
5.5.Results and Performance Comparsion ... 48

VI MULTI-RATE TDMP ARCHITECTURE FOR RATE-COMPATIBLE ARRAY
LDPC CODES.. 53

6.1.Introduction ... 53
6.2.Background .. 54
6.3.TDMP for Array LDPC.. 57
6.4.Value-reuse Properties of OMS.. 59
6.5.Multi-rate Architecture Using TDMP and OMS ... 61
6.6.Implementation Results and Discussion .. 68
6.7.Conclusion ... 75

VII MULTI-RATE TDMP ARCHITECTURE FOR IRREGULAR QC-LDPC
 CODES ... 81

7.1.Introduction ... 81
7.2.LDPC Codes and Decoding ... 82
7.3.Multi Rate Decoder Architecture Using TDMP and OMS 85
7.4.Discussion and Implementation Results .. 93
7.5.Conclusion .. 100

x

CHAPTER Page

VIII FIXED CODE TDMP ARCHITECTURE FOR REGULAR QC-LDPC
 CODES...……………………………………………………………………….…105

8.1.Introduction ... 105
8.2.Parallel Architecture Using TDMP and OMS ... 105
8.3.ASIC Implementation Results .. 108
8.4.Conclusion .. 111

IX SUMMARY ... 113

9.1 Key Contributions .. 113
9.2 Future Work ... 117
9.3 Conclusion .. 118

REFERENCES ... 120

VITA... 126

xi

LIST OF FIGURES

FIGURE Page

1.1 Block diagram of a digital communication system .. 1

3.1 Block diagram of the decoder architecture... 25

3.2 Pipeline of the decoder ... 26

3.3 Comparison of architecture for (3,k=6,…30) rate compatible array codes of up
 to length 1830……...……………………………………………………..………...30

4.1 Serial CNU for OMS using value-reuse property .. 36

4.2 Finder for the two least minimum in CNU (a) binary tree to find the least
 minimum.…………………………………………………………………………..39

4.3 Parallel CNU based on value-reuse property of OMS……....…………..…………40

5.1 Check node processing unit, Q: variable node message, R: check node
message.………………………………………………………................................ 44

5.2 Architecture ………………………………………………………………………..45

5.3 Pipeline ……………………………………………………………………….……47

5.4 Results comparison with M. Karkoot et al.,[37] and T. Brack, et al., [41] …….….50

6.1 Serial CNU for OMS using value-reuse property.…………………………………60

6.2 LDPC Decoder using layered decoding and OMS ……………………..…………62

6.3 Block serial processing and 3-stage pipelining for TDMP using OMS
 a) detailed diagram b) simple diagram .. 66

xii

FIGURE Page

6.4 . (a) Bit error rate performance of the proposed TDMP decoder using
OMS(j=3,k=6,p=347,q=0) Array LDPC code of length N=2082 and
(j=5,k=25,p=61,q=0) array LDPC code of length N=1525.. …74

7.1 Operation of CNU (a) no time-division multiplexing (b) time-division
 multiplexing…………………………………………………………………….….87

7.2 Multi-rate LDPC decoder architecture for block LDPC codes…..…………...........88

7.3 Three-stage pipeline of the multi-rate decoder architecture ……………………….89

7.4 Out of order processing for Rnew selection …………………………….…………..89

7.5 Proposed master-slave router to support different cyclic shifts that arise due to a
 wide range of expansion factors z(=24,28,..,96) and shift

coefficients (0,1,..,z-1) …………………………………………………………… 93

7.6 User data throughput of the proposed decoder vs. the expansion factor of the

code, z, for different numbers of decoder parallelization, M ……….………….… 97

7.7 Frame-error rate results………… ……………...………………………………….97

8.1 Parallel architecture for layered decoder…………………………….…………….106

8.2 (a) Illustration of connections between message processing units to achieve
cyclic down shift of (n-1) on each block column n (b) Concentric layout to
accommodate 347 message processing units ..109

8.3 BER performance of the decoder for (3,6) array code of N=2082 ……………...111

xiii

 LIST OF TABLES

TABLE Page

1.1 BER performance for different codes... 3

1.2 Quick summary of the proposed multi-rate decoder architectures............................. 8

1.3 Quick summary of the proposed fixed-code decoder architectures 9

3.1 Occupation of resources for a decoding iteration in terms of clock cycles 26

3.2 Snapshot of partial sum registers in p CNUs operating in parallel to compute p R
 messages ... 27

3.3 Snapshot of partial sum registers in p VNUs operating in parallel to compute p Q
 messages ... 28

3.4 Memory requirement comparison .. 30

3.5 FPGA results (Device: Xilinx 2v8000ff1152-5) for (3,30) code of length 1830 31

3.6 ASIC Implementation of the proposed TPMP multi-rate decoder architecture 33

3.7 Area distribution of the chip for (3, k) rate compatible array codes, 130nm
 CMOS... 33

3.8 Power distribution of the chip for (3, k) rate compatible array codes, 130nm
 CMOS... 34

4.1 Parallel CNU implementation .. 40

5.1 FPGA results (Device: Xilinx 2v8000ff1152-5) .. 49

5.2 Summary of the proposed fixed-code decoder architecture, Code 1........................ 50

5.3 Summary of the proposed fixed-code decoder architecture, Code 2........................ 51

5.4 Summary of the proposed fixed-code decoder architecture, Code 3 and Code 4 51

xiv

TABLE Page

5.5 Area distribution of the fixed code TPMP architectures for array codes, 130nm
CMOS... 52

5.6 Power distribution of the fixed-code TPMP architectures for array codes,
 130nm CMOS... 52

6.1 FPGA implementations and performance comparison... 76

6.2 Memory implementation for optimally scaled architecture (j=5,k=10,…,
 kmax (=61), p=61,M=p)... 77

6.3 Memory implementation for scalable architecture (j=3,k=6,…,kmax (=32),
 p=347,M=61) ... 78

6.4 ASIC Implementation of the proposed TDMP multi-rate decoder architecture 79

6.5 Area distribition of the chip for (5,k) rate compatible array codes, 130nm 80

6.6 Power distribution of the chip for (3,k) rate compatible array codes, 130nm.......... 80

7.1 FPGA Implementation results of the multi-rate decoder (supports z=24, 48 and
 96 and all the code rates) .. 95

7.2 FPGA Implementation results of the multi-rate decoder, fully compliant to
 WiMax (supports z=24,28,32,…,and 96 and all the code rates)………………… 96

7.3 Implementation comparison ... 96

7.4 ASIC Implementation of the proposed TDMP Multi-rate decoder architecture 101

7.5 Area distribution of the chip for WiMax LDPC codes... 101

7.6 Power distribution of the chip for WiMax LDPC codes .. 102

7.7 ASIC Implementation of the proposed TDMP Multi-rate decoder architecture
 for 802.11n LDPC codes .. 102

7.8 Area distribution of the chip for IEEE 802.11n LDPC codes 103

7.9 Power distribution of the chip for IEEE 802.11n LDPC codes.............................. 103

xv

TABLE Page

7.10 FPGA implementation results for the multi-rate decoder, fully compliant to
 IEEE 802.11n (Device, XILINX2V8000FF152-5, frequency =110MHz)............. 104

7.11 ASIC implementation results for the multi-rate decoder for M=81 (Frequency =
 500MHz)... 104

8.1 Proposed decoder work as compared with other authors 112

 1

CHAPTER I

 INTRODUCTION

1.1. Motivation

 The insatiable demand for data and connectivity at the user level, driven primarily

by advances in integrated circuits, has dramatically impacted the evolution of the

communications market. The period of the last 25 years witnessed the progress from 300

baud modems to multi-terabit fiber backbones, multi-gigabit wired communication links

and multi-megabit wireless communication links.

Fig 1.1. Block diagram of a digital communication system

 Figure 1.1 shows a basic block diagram of a digital communication system [1]. First,

an information signal, such as voice, video or data is sampled and quantized to form a

digital sequence, then it passes through the source encoder or data compression to remove

any unnecessary redundancy in the data.

This dissertation follows the style and format of IEEE Transactions on Circuits and
Systems.

Source
Decoder

Channel
Decoder

Digital
Demodulator

Digital
Modulator

Channel
Encoder

Source
Encoder

Channel

Information
Source

Output
Signal

 2

Then, the channel encoder codes the information sequence so that it can recover the

correct information after passing through a channel. Error correcting codes such as

convolutional [2], turbo [3] or LDPC codes [4] are used as channel encoders. The binary

sequence then is passed to the digital modulator to map the information sequence into

signal waveforms. The modulator acts as an interface between the digital signal and the

channel. The communication channel is the physical medium that is used to send the

signal from the transmitter to the receiver. At the receiving end of the digital

communications system, the digital demodulator processes the channel-corrupted

transmitted waveform and reduces the waveforms to a sequence of digital values that

feeds into the channel decoder. The decoder reconstructs the original information by the

knowledge of the code used by the channel encoder and the redundancy contained in the

received data. Then, a source decoder decompresses the data and retrieves the original

information. The probability of having an error in the output sequence is a function of the

code characteristics, the type of modulation, and channel characteristics such as noise and

interference level, etc [1].

 Low-Density Parity Check (LDPC) codes and Turbo codes are among the best

known near Shannon limit codes that can achieve good BER performance for low SNR

applications [3]-[14] as shown in Table 1.1. When compared to the decoding algorithm of

Turbo codes, LDPC decoding algorithm has more parallelization, low implementation

complexity, low decoding latency, as well as no error-floors at high signal-to-noise ratios

(SNRs). LDPC decoders require simpler computational processing. While initial LDPC

decoder designs [15] suffered from complex interconnect issues, structured LDPC codes

[10-11], [4], [16-25] simplify the interconnect complexity. Recently, Low-Density Parity-

 3

Check (LDPC) codes have widely been considered as a promising error-correcting

coding scheme for many real applications in telecommunications and magnetic storage,

because of their superior performance and suitability for hardware implementation.

LDPC codes are adopted/being adopted in the next generation digital video broadcasting

(DVB-S2), MIMO-WLAN 802.11n, 802.12, 802.20, Gigabit Ethernet 802.3, magnetic

channels (storage/recording systems), and long-haul optical communication systems .

Table 1.1

BER performance for different codes

Rate ½ Code SNR required for

BER <1e-5

Shannon, Random Code 0 dB

(255,123) BCH 5.4 dB

Convolutional Code 4.5 dB

Iterative Code Turbo 0.7 dB

Iterative Code LDPC 0.0045 dB

 LDPC codes can be decoded by Gallager’s iterative two-phase message passing

algorithm (TPMP), which involves check-node update and variable-node update as a two

phase schedule. Various algorithms are available for check-node updates and widely used

algorithms are the sum of products (SP), min-sum (MS), and Jacobian-based BCJR

(named after its discoverers Bahl, Cocke, Jelinik, and Raviv) [26-35]. The authors in [20]

introduced the concept of turbo decoding message passing (TDMP, also called layered

decoding) using BCJR for their architecture-aware LDPC (AA-LDPC) codes. TDMP

 4

offers 2x throughput and significant memory advantages when compared to TPMP.

TDMP is later studied and applied for different LDPC codes using the sum of products

algorithm and its variations in [38]-[39]. TDMP is able to reduce the number of iterations

required by up to 50% without performance degradation when compared to the standard

message passing algorithm. A quantitative performance comparison for different check

updates was given by Chen and Fossorier et al. [32]. Their research showed that the

offset min-sum (OMS) decoding algorithm with 5-bit quantization could achieve the

same bit-error rate (BER) performance as that of floating point SP and BCJR with less

than 0.1 dB penalty in SNR.

 Most of the current LDPC decoder architecture research is focusing on increasing

throughput or reducing implementation complexity, neglecting power analysis. In fact,

power consumption presents a critical issue in computing, particularly in portable and

mobile platforms, because of battery life and power dissipation. Designing a practical

architecture must consider the trade-off among throughput, power consumption and

hardware complexity. An LDPC decoder architecture can be implemented in parallel

message passing and/or serial message passing. In the parallel decoder architecture [15],

the nodes in the bipartite graph are directly mapped into message computation units and

the edges of the graph are mapped into network of interconnects. The parallel architecture

achieves high throughput at the cost of interconnect complexity. In the architecture [16],

a fully pipelined implementation with two memory buffers per stage, alternating between

read/write, was introduced. In [18], a joint code decoder design approach was adapted to

construct a class of (3,k)-regular LDPC codes and a partly parallel decoder architecture

was proposed to reduce the hardware complexity and achieve reasonable throughput.

 5

11..22.. PPrroobblleemm OOvveerrvviieeww

 A parallel decoder implementation [15] exploiting the inherent parallelism of the

algorithm is constrained by the complexity of the physical interconnect required to

establish the graph connectivity of the code and, hence, does not scale well for moderate

(2K) to large code lengths. Long on-chip interconnect wires present implementation

challenges in terms of placement, routing, and buffer-insertion to achieve timing closure.

For example, the average interconnect wire length of the rate-0.5, length 1020, 4-bit

LDPC decoder of [15] is 3 mm using 160nm CMOS technology, and has a chip area of

52.5 mm2 of which only 50% is utilized due to routing congestion. On the other hand,

serial architectures [16] in which computations are distributed among a number of

function units that communicate through memory instead of a complex interconnect, are

slow and do not meet the practical data throughputs considered in the present standards.

 The authors in [19] reported that 95% of power consumption of the decoder chip

developed in [18] results from memory accesses. The implementation [20] reports that

50% of it power is due to memory accesses in message passing. There are several other

architectures presented in [22]-[24], [37-38], [42], [45]. However, all of these

implementations focused on improving the throughput while ignoring the power

consumption issue due to message passing memory.

The check-to-bit message update equation is prone to quantization noise since it

involves the nonlinear function and its inverse. The function has a wide dynamic range

which requires the messages to be represented using a large number of bits to achieve a

fine resolution, leading to an increase in memory size and interconnect complexity (e.g.,

for a regular (3, 6)-LDPC code of length 1020 with 4-bit messages, an increase of 1 bit

 6

increases the memory size and/or interconnect wires by 25%). The min-sum decoding

algorithm [29], [32]-[33], [34] is an approximation for the Sum of Products algorithm to

decode LDPC codes. The min-sum decoding algorithm does not have the complexity

associated with non-linear functions used in the sum of products algorithm [26].

1.3. Main Contributions

 The main contributions of this work are the following:

1 The On-the-fly computation paradigm by which the structured properties of

LDPC codes are used to reduce computations, memory and interconnect.

2 New micro-architecture structures for switching network and check node

processing.

3 Efficient decoder architectures and implementations for regular and irregular

LDPC codes that offers substantial gains over the existing academic and

commercial implementations Three unique run time configurable and multi-rate

cores, each tailored in the design phase based on the class of code and the

application, are designed. Two very high throughput and fixed code architectures

are designed. Characteristics of these decoder ASIC implementations are briefly

summarized in Table 1.2 and Table 1.3 along with the other recent state-of-the-

art implementations. Details of each decoder implementation are given in the next

chapters.

 Rate compatible array codes are considered for DSL applications. Irregular block

LDPC codes are proposed for IEEE 802.16e, IEEE 802.11n, IEEE 802.20 and being

considered for other wireless standards. The total savings in memory translate to around

55% for the IEEE 802.11n LDPC decoder, when compared to a very recent state of the

 7

art decoder. In addition to the above savings, a master-slave router is proposed to

accommodate 114 different parity check matrices in run time for IEEE 802.16e. This

approach eliminates the control memory requirements by generating the control signals

for the data router (slave) on-the-fly with the help of a self routing master network. If the

memory approach is used for this as in the present state of the art, it would have resulted

in a large chip area of around 140 mm2 (in 180 nm technology) just for storing the control

signals.

 Properly designed regular array codes have low error floors and meet the

requirements of magnetic recording channel and other applications which need several

Gbps of data throughput. A high throughput and fixed code architecture for array LDPC

codes has been designed. No modification to the code is done as this can result in early

error floors. This parallel decoder architecture has no routing congestion and is scalable

for longer block lengths. When compared to the latest state of the art decoders, this

design has an area efficiency of around 10x for a given data throughput. In summary, all

of these findings are explained in the text of this dissertation, with extensive theoretical

simulations and VHDL verification on FPGA and ASIC design platforms.

 8

 Table 1.2

Quick summary of the proposed multi-rate decoder architectures

Semi-Parallel
multi-rate
LDPC decoder
[26]

Multi-rate
TPMP
Architecture
regular QC-LDPC
(Chapter III)

Multi-rate
TDMP
Architecture
for regular QC-
LDPC
(Chapter VI)

Multi-rate
TDMP
Architecture
for irregular QC-
LDPC
(Chapter VII)

LDPC Code

AA-LDPC, (3,6)
code, rate 0.5,
length 2048

(3,k) rate
compatible
array codes
p=347.
k=6,7,..12

(5,k) rate compatible
array codes
p=61.
k=10,11,..61

Irregular codes up
to length 2304
IEEE 802.16e
WiMax LDPC
codes

Decoded Throughput, td, 640 Mbps 2.37 Gbps 590 Mbps 1.37 Gbps
Area 14.3 mm2 7.62 mm2 1.6 mm2 2.1 mm2
Frequency 125 MHz 500 MHz 500 MHz 500 MHz
Nominal Power
Dissipation 787 mW 821 mW 257 mW 282 mW

CMOS Technology 180 nm, 1.8V 130 nm, 1.2V 130 nm,.1.2V 130 nm, 1.2V
Decoding Schedule TDMP, BCJR,

itmax=10
TPMP, SP, itmax=20 TDMP, OMS,

itmax=10
TDMP, OMS,
itmax=10

Area Efficiency for td, 44.75 Mbps/mm2 311 Mbps/ mm2 369 Mbps/ mm2 649.5 Mbps/ mm2
Energy Efficiency for td, 123

pJ/Bit/Iteration
17 pJ/Bit/Iteration 44.2 pJ/Bit/Iteration 21 pJ/Bit/Iteration

Est. Area for 180 nm 14.3 mm2 14.6 mm2 3.06 mm2 4.02 mm2
Est. Frequency for 180
nm

125 MHz 360 MHz 360 MHz 360 MHz

Est. Decoded
Throughput(td) ,180 nm

640 Mbps 1.71 Gbps 426 Mbps 989 Mbps

Est. Area Efficiency for
td, 180 nm

44.75 Mbps/mm2 117 Mbps/ mm2 139.2 Mbps/mm2 246 Mbps/mm2

Est. Energy Efficiency for
td, 180 nm

123 pJ/Bit/Iteration 38.3 pJ/Bit/Iteration 99.5 pJ/Bit/Iteration 47.3 pJ/Bit/Iteration

Application Multi-rate
application as well
as fixed code
application

DSL, Wireless DSL, Wireless Wireless,
IEEE 802.11n,
IEEE 802.16e,
IEEE 802.22

Bit error rate Performance Good Good Good Very good and
close to capacity

Scalability of Design
for longer lengths

Yes Yes Yes Yes

 9

Table 1.3

Quick summary of the proposed fixed-code decoder architectures

Fully Parallel LDPC
decoder
[15]

TPMP
Architecture
regular
Array QC-LDPC
(Chapter V)

TDMP
Architecture
for regular
Array QC-LDPC
(Chapter VIII)

Decoded Throughput, td, 1 Gbps 1.5 Gbps 6.94 Gbps

Area 52.5 mm2 3.39 mm2 5.39 mm2

Frequency 64 MHz 500 MHz 100 MHz

Nominal Power Dissipation 690 mW 156.5 mW 75 mW

LDPC Code Random LDPCr code,
rate 0.5, length 1024

(4,30) array code of
length 1830

(3,6) array code of length
2082

CMOS Technology 160 nm, 1.5V 130 nm, 1.2V 130 nm, 1.2V

Decoding Schedule TPMP, SP, itmax=64 TPMP, SP, itmax=20 TDMP, OMS, itmax=10

Area Efficiency for td, 19 Mbps/mm2 442.4 Mbps/mm2 1288 Mbps/mm2
Energy Efficiency for td, 10.1 pJ/Bit/Iteration 5.6 pJ/Bit/Iteration 1.1 pJ/Bit/Iteration

Est Area for 180 nm 66.4 mm2 6.5 mm2 10.1 mm2
Est Frequency for 180 nm 56.8 MHz 360 MHZ 72 MHz

Est Decoded Throughput td, 180
nm

887.5 Mbps 1.08 Gbps 4.98 Gbps

Est Area efficiency for td , 180
nm

13.36 Mbps/mm2 166.1 Mbps/mm2 493 Mbps/mm2

Est Energy efficiency for td ,
180 nm

14.5 pJ/Bit/Iteration 12.6 pJ/Bit/Iteration 4.8 pJ/Bit/Iteration

Scalability of Design for other
code parameters and longer
lengths

No Yes Yes

Application Fixed code application Very High throughput
and low error-floor
applications such as
magnetic recording
channels, Ethernet and
optical links

Very High throughput and
low error-floor applications
such as magnetic recording
channels, Ethernet and
optical links.

Bit error rate Performance Good Good Good

 10

 By examining the above implementation results for multi-rate architectures, we can

conclude that irregular QC LDPC codes perform well and also their implementation

complexity is less among the above 3 architectures. The implementation for irregular

codes is more efficient as fewer number of non-zero blocks in the parity check matrix are

needed to achieve excellent BER performance close to the capacity. Note that the

underlying data flow graph for both regular QC-LDPC codes (Chapter VI) and irregular

QC-LDPC codes (Chapter VII) is the same. This new data flow graph has several

advantages which are discussed more fully in Chapters VI and VII. Scheduling of layered

decoding, out-of-order processing, and bypassing techniques are employed to deal with

irregularity. This is discussed fully in Chapter VII.

 By examining the above implementation results, we can conclude that parallel

TDMP architecture for array QC LDPC codes have the least complexity for very high

throughput applications. A parallel layered architecture for irregular QC-LDPC codes can

also be implemented based on this. However, the routing will be a problem and in

addition irregular QC-LDPC will have a high error floor phenomenon. All of the above

architectures are described in the following chapters.

 In summary, the multi-rate and fixed code LDPC decoder architectures described in

this dissertation achieve the best reported energy and area efficiencies while achieving

the highest throughputs. The foundation of these architectures is based on minimizing the

message passing and computation requirements by performing a thorough and systematic

study.

 11

CHAPTER II

QUASI-CYCLIC LOW-DENSITY PARITY-CHECK CODES AND DECODING

2.1. Introduction

 LDPC codes are linear block codes described by an nm× sparse parity check matrix

H. LDPC codes are well represented by bipartite graphs. One set of nodes, the variable or

bit nodes correspond to elements of the code word and other set of nodes, viz. check

nodes, correspond to the set of parity check constraints satisfied by the code words.

Typically the edge connections are chosen at random. The error correction capability of

the LDPC code is improved if cycles of short length are avoided in the graph. In a ()cr,

regular code, each of the n bit nodes ()nbbb ...,, ,21 has connections to r check nodes and

each of the m check nodes ()mccc ...,, ,21 has connections to c bit nodes. In an irregular

LDPC code, the check node degree is not uniform. Similarly the variable node degree is

not uniform. We focus on the construction which structures the parity check matrix H

into blocks of pp × matrices such that: 1. a bit in a block participates in only one check

equation in the block and 2. each check equation in the block involves only one bit from

the block. These LDPC codes are termed as Quasi cyclic LDPC codes: Cyclic shift of

code word by p results in another code word. Here p is the size of square matrix which is

either a zero matrix or circulant matrix. This is a generalization of cyclic code in which

cyclic shift of code word by 1 results in another code word.

2.2. Cyclotomic Cosets

 One method to perform this construction is through cyclotomic cosets [49]. Another

method is to achieve this property by employing random bit filling algorithm (for low

 12

rate codes such as rate ½ codes) and deterministic constructions (for high rate codes such

as rate 8/9 codes) [9]-[11]. The work [49] reports no performance degradation for a (3, 5)

- LDPC code of length 1055, rate 0.4; constructed from cyclotomic cossets. The H

matrix can be constructed with filling the matrices obtained by permuting identity matrix

by the appropriate shift coefficients [49]. Say kjB , ckrj ,..2,1;..2,1 ==∀ is a pp × matrix,

located at the thj block row and thk block column of H matrix. The scalar

value),(kjs denotes the shift applied to ppI × identity matrix to obtain the thkj),(

block, kjB , , and the rows in the ppI × identity matrix are cyclically shifted to the right

),(kjs positions for }{ 1,...,2,1,0),(−∈ pkjs . Let us define S as a rc × shift coefficient

matrix in which

),(, kjsS kj = ckrj ,..2,1;..2,1 ==∀ . (2.1)

 The cyclotomic cosset containing the integer s is the set { }12 ,...,,, −smsqsqsqs where

sm is the smallest positive integer satisfying)(mod pssq sm ≡ and q satisfies the

relation)(mod1 pq c = . If 3,5 == rc and the desired length of code is in the vicinity of

1020 . We find by trial and error that the values 211=p and 71=q result in cyclotomic

cossets and the resulting code length n is)(1055 cp= . One possible construction for S is

�
�
�

�

�

�
�
�

�

�

rCosset

Cosset1

.So
�
�
�

�

�

�
�
�

�

�

=×

17411675507
14411396645

16514211032

53S

The H matrix can be now easily constructed with filling the matrices obtained by

permuting 211211×I matrix by the above shift coefficients. So an H matrix, in this

construction, can be completely characterized by these two simple matrices viz. ppI × and

 13

rcS × . To define H matrix, we start with fixing rc, and finding an appropriate p and shift

coefficient matrix S such that the BER performance is maintained when compared to a

random construction.

2.3. Array LDPC Codes

 The reader is referred to [9]-[10], [36], [50-54] for a comprehensive treatment on

array LDPC codes. The array LDPC parity-check matrix is specified by three parameters:

a prime number p and two integers k , and j such that pkj <, .

 It is given by,

2 1

2 4 2(1)

1 (1)2 (1)(1)

...

...

k

k
A

j j j k

I I I I

I
H I

I

α α α
α α α

α α α

−

−

− − − −

� �
� �
� �
� �=
� �
� �
� �� �

�

� � � �

�

 (2.2)

where I is the pp × identity matrix, and α is a pp × permutation matrix representing a

single left or right cyclic shift of I . Power of α in H denote multiple cyclic shifts, with

the number of shifts given by the value of the exponent. In the following discussion, we

use the α as a pp × permutation matrix representing a single left cyclic shift of I .

2.4. Rate-compatible Array LDPC Codes

 Rate-compatible array LDPC codes are a modified version of the above for efficient

encoding and multi-rate compatibility in [10] and their H matrix has the following

structure

 14

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

−−−

−−−

−−−

))(1()1(

)3(2)2(2)3(2

212

jkjj

kjj

kjj

IOO

IOO

IO

IIIIII

H

αα

ααα
αααα

���

�������

�

�

��

 (2.3)

where O is the pp × null matrix. The LDPC codes defined by H in (2.3) have a

codeword length jpM = , number of parity-checks kpM = , and an information block

length pjkK)(−= . The family of rate-compatible codes is obtained by successively

puncturing the left most p columns, and the topmost p rows. According to this

construction, a rate-compatible code within a family can be uniquely specified by a single

parameter, say, q with 20 −≤< jq . To have a wide range of rate-compatible codes, we

can also fix j , p , and select different values for the parameter k . Since all the codes share

the same base matrix size p ; the same hardware implementation can be used. It is worth

mentioning that this specific form is suitable for efficient linear-time LDPC encoding

[10]. The systematic encoding procedure is carried out by associating the first KN −

columns of H with parity bits, and the remaining K columns with information bits.

 15

2.5. Irregular Quasi-Cyclic LDPC Codes (Block LDPC Codes)

 The block irregular LDPC codes have competitive performance and provide

flexibility and low encoding/decoding complexity [12]-[13]. The entire H matrix is

composed of the same style of blocks with different cyclic shifts, which allows structured

decoding and reduces decoder implementation complexity. For the LDPC codes proposed

for IEEE 802.16e, each base H matrix in block LDPC codes has 24 columns, simplifying

the implementation. Having the same number of columns between code rates minimizes

the number of different expansion factors that have to be supported. There are four rates

supported: 1/2, 2/3, 3/4, and 5/6, and the base H matrix for these code rates are defined

by systematic fundamental LDPC code of bM -by- bN where bM is the number of rows

in the base matrix and bN is the number of columns in the base matrix. The following

base matrices are specified: 12 x 24, 8 x 24, 6 x 24, and 4 x 24. The base model matrix is

defined for the largest code length (N = 2304) of each code rate. The set of shifts in the

base model matrix are used to determine the shift sizes for all other code lengths of the

same code rate. Each base model matrix has 24 (= bN) block columns and bM block

rows. The expansion factor z is equal to N/24 for code length N. The expansion factor

varies from 24 to 96 in the increments of 4, yielding codes of different length. For

instance, the code with length N = 2304 has the expansion factor z=96 [10]. Thus, each

LDPC code in the set of WiMax LDPC codes is defined by a matrix H as :

b

bbbb

b

b

H

NMMM

N

N

P

PPP

PPP

PPP

H =

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

,2,1,

,22,21,2

,12,11,1

�

����

�

�

 (2.4)

 16

where jiP , is one of a set of z-by-z cyclically right shifted identity matrices or a z-by-z

zero matrix. Each 1 in the base matrix bH is replaced by a permuted identity matrix

while each 0 in bH is replaced by a negative value to denote a z-by-z zero matrix.

2.6. Irregular QC LDPC Codes for Other Wireless Standards (802,11n and 802.20)

 The LDPC codes proposed in other wireless standards area similar to the above

structure. But the base matrices are different. So the same architectures can be re-used

with minor changes.

2.7. Two Phase Message Passing (TPMP) and Decoding of LDPC

 A quantitative performance comparison for different check updates [26]-[35] was

given by Chen et al. [32]. Their research showed that the performance loss for OMS

decoding with 5-bit quantization is less than 0.1dB in SNR compared with that of optimal

floating point SP (Sum of Products) and BCJR. Assume binary phase shift keying

(BPSK) modulation (a 1 is mapped to -1 and a 0 is mapped to 1) over an additive white

Gaussian noise (AWGN) channel. The received values ny are Gaussian with mean

1±=nx and variance 2σ . The reliability messages used in belief propagation (BP)-based

offset min-sum algorithm can be computed in two phases: 1. check-node processing and

2. variable-node processing. The two operations are repeated iteratively until the

decoding criterion is satisfied. This is also referred to as standard message passing or

two-phase message passing (TPMP). For the ith iteration, ()i
nmQ is the message from

variable node n to check node m , ()i
mnR is the message from check node m to variable

 17

node n ,)(nΜ is the set of the neighboring check nodes for variable node n , and)(mΝ is

the set of the neighboring variable nodes for check node m .

 The message passing for TPMP is described in the following three steps as given in

[32] to facilitate the discussion on TDMP in the next section:

Step 1. Check-node processing: for each m and)(mn Ν∈ ,

Sum of Products (SP) Check-node update

() ()()
()

()i
mn

nmNn

i
mn

i
mn QR δψψ .

\

1

�
�
�

�

�
�
�

�
�
�
�

	

�

�
=

∈′
′

− (2.5)

Here ()2/tanhlog()(xx −=ψ is the Gallager’s function which is invariant under its inverse.

Offset min-sum(OMS) Check-node update (approximation to (2.5))

() () ()()0,max βκδ −= i
mn

i
mn

i
mnR , (2.6)

()

()
()() 1

min .
\

i i
mn mn

i
R Qn mn m n

κ −= = ′′∈ Ν
 (2.7)

where β is a positive constant and depends on the code parameters [32]. For (3, 6) rate

0.5 array LDPC code, β is computed as 0.15 using the density evolution technique

presented in [12].

The sign of check-node message ()i
mnR is defined as

() ()()
()

1

\

sgni i
mn n m

n m n

Qδ −
′

′∈Ν

� 	
=
 �
 �
� �

∏ , (2.8)

Step 2. Variable-node processing: for each n and)(nm Ν∈ ,

 () () ()

()

0

\

i i
nm n m n

m m m

Q L R ′
′∈Μ

= +
 , (2.9)

where the log-likelihood ratio of bit n is ()
nn yL =0 .

 18

Step 3. Decision: for final decoding

() ()

()

∈

+=
nMm

i
mnnn RLP 0 . (2.10)

 A hard decision is taken by setting ˆ 0nx = if () 0n nP x ≥ , and ˆ 1nx = if () 0n nP x < . If,

0=THx� , the decoding process is finished with ˆnx as the decoder output; otherwise,

repeat steps (1-3). If the decoding process doesn’t end within predefined maximum

number of iterations, maxit , stop and output an error message flag and proceed to the

decoding of the next data frame.

2.8.Turbo Decoding Message Passing (TDMP) or Layered Decoding

 In TDMP, the LDPC code with j block rows can be viewed as concatenation of j

layers or constituent sub-codes similar to observations made for AA-LDPC codes in [20].

After the check-node processing is finished for one block row, the messages are

immediately used to update the variable nodes (in step 2, above), whose results are then

provided for processing the next block row of check nodes (in step 1, above).

 19

CHAPTER III

MULTI-RATE TPMP ARCHITECTURE FOR REGULAR QC-LDPC CODES

3.1. Introduction

This chapter provides efficient multi-rate TPMP architectures for regular QC-

LDPC codes. This architecture is targeted for Cyclotomic coset based LDPC and array

LDPC. This architecture works for rate compatible array LDPC codes with a minor

change in implementation to accommodate the slight irregularity in the parity check

matrix.

The QC-LDPC codes are discussed in Chapter II. For the continuity of

presentation, some of the material discussed in Chapter II is briefly summarized in this

section. The H matrix can be constructed with filling in with matrices obtained by

permuting identity matrix by the appropriate shift coefficients [49]. Say

kjB , ckrj ,..2,1;..2,1 ==∀ is a pp × matrix, located at the thj block row and thk block

column of H matrix. The scalar value),(kjs denotes the shift applied to ppI × identity

matrix to obtain the thkj),(block, kjB , , and the rows in the ppI × identity matrix are

cyclically shifted to the right),(kjs positions for }{ 1,...,2,1,0),(−∈ pkjs . Let us define S as

a rc× shift coefficient matrix in which

),(, kjsS kj = ckrj ,..2,1;..2,1 ==∀ . (3.1)

So an H matrix, in this construction, can be completely characterized by these two

simple matrices viz. ppI × and rcS × .To define H matrix, we start with fixing rc, and

 20

finding an appropriate p and shift coefficient matrix S such that the BER performance is

maintained when compared to a random construction.

For example if 3,5 == rc and 211=p the use of cyclotomic cosets [49] results in

the following shift coefficient matrix for the code of length)(1055 cpn = .

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=×

17411675507
14411396645
16514211032

53S (3.2)

For regular array LDPC codes with similar parameters, this is given by

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=×

86420
43210
00000

53S

3.2. Block Message Independence Property for Regular QC-LDPC Codes

The reliability messages used in Gallager’s Belief Propagation algorithm can be

computed in two phases viz., check-node processing (3.3) and variable node processing

(3.4) and this is repeated iteratively till the decoding criterion is satisfied (see Chapter II).

The message passing equations are given by

()
[]

[]
()),(.,

][

1][
,

1
,

'
' bicjQQR cjbi

ccjRow

cjRowi
cjibicj δψψψ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

=

− (3.3)

[]

[]
)(,

][

1][' ,', biRRQ bicj

rbiCol

biColj
bijcjbi ∧+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

 (3.4)

where bicjR , is the message from check jc to bit ib , cjbiQ , is the message from bit ib to

check jc , ()()2/tanhlog)(xx −=ψ is the Gallager’s function which is invariant under its

inverse, ()bicj,δ is 1± and is given by

 21

() () () ()][

][' ,', 1.sgn.sgn, cjRow

cjRowi
cjicjbi QQbicj −
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∏

∈

δ (3.5)

() 11][=− cjRow for codes constructed with even parity. ()bi∧ is the intrinsic reliability

metric of bit i . [][]ccRow j ...1 ([][]rbCol i ...1) gives the locations of bits (checks) connected

to the check node jc (bit node ib).

 We can represent R and Q messages by the following matrices for deriving the new

data independence property. This arrangement is similar to physical message storage

employed in [16] except that these matrices are not really stored in the proposed

architecture.

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

=

••••••]][[,]1][[,]1][[,

]][2[,2]2][2[,2]1][2[,2

]][1[,1]2][1[,1]1][1[,1

...
::::

...

...

crpRowrprpRowrprpRowrp

cRowRowRow

cRowRowRow

RRR

RRR
RRR

Rm

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

=

••••••]][[,]2][[,]1][[,

]][2[,2]2][2[,2]1][2[,2

]][1[,1]2][1[,1]1][1[,1

...
::::

...

...

rcpColcpcpColcpcpColcp

rColColCol

rColColCol

QQQ

QQQ
QQQ

Qm (3.6)

 If we employ the partitioning of H matrix into r rows and c columns of p x p

matrices, the R and Q messages in a p x p block can be processed simultaneously. The

recent architectures [17]-[18], [37], [49] exploit this property to store messages in the

memory partitioned into p independent memory banks and employ p copies of message

computation units.

 We now represent the R and Q messages in a p x p block as p x 1 vectors

 22

[]Tkpjpkpjlkpjkj RmRmRmR ,)1(,,)1(,)1(1, ...,,..., −+−+−+=
r

[]Tjpkpjpkljpkjk QmQmQmQ ,)1(,)1(,)1(1, ,...,,..., −+−+−+=
r

 (3.7)

pl ,...,2,1= ckrj ,...,2,1,,...,2,1 ==∀

Then R and Q messages in block matrix format are:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

crrr

c

c

RRR

RRR
RRR

R

,1,1,

,21,21,2

,12,11,1

...
::::

...

...

rrr

rrr

rrr

r

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

rccc

r

r

QQQ

QQQ
QQQ

Q

,1,1,

,21,21,2

,12,11,1

...
::::

...

...

rrr

rrr

rrr

r
 (3.8)

Now the Gallager’s equations can be written as

() () jk
kjs

jk
kjs

jk

c

k
kj QQR ,

),(
,

),(
,

1
, .δψψψ

rrrr
⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=

 (3.9)

k
kjsp

kj

r

j

kjsp
kjjk RRQ ∧+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

=

−∑ rrrr
),(

,
1

),(
,, (3.10)

() ()⎟
⎠

⎞
⎜
⎝

⎛
= ∏

=

r

k
jk

jks
jkjk QQ

1
,

),(
,, sgn.sgn

rrr
δ (3.11)

() ()[]pkppkk)1(,...,)1(1 −+∧−+∧=∧
r

 (3.12)

where),(
,

kjs
jkQ

r
(),(

,
kjsp

kjR −
r

) is the modified 1×p vector jkQ ,

r
(kjR ,

r
), whose elements are

circularly shifted in location by the amount),(kjs (),(kjsp −).

Say ()),(
,

1

kjs
jk

c

k
j QA

rr
∑
=

= ψ , ()),(
,,

kjs
jkjk QB

rr
ψ= (3.13)

 23

 ∑
=

−=
r

j

kjsp
kjk RC

1

),(
,

rr
,),(

,,
kjsp

kjkj RD −=
rr

 (3.14)

Now

[] jkjkjkj BAR ,,, .δψ
rrrr

−= (3.15)

kkjkjk DCQ ∧+−=
rrrr

,, (3.16)

 We can observe that the thj block row of R messages is only dependent on the

thj block column of Q messages and similarly the thk block row of Q messages is only

dependent on the thk block column of R messages. Only one class of messages has to be

stored if we schedule the pipeline of the R and Q message computation unit such that

either one of R and Q message units output the block row at once and multiplexing the

other units schedule such that it is able to produce the output in block column fashion.

 If p Check to Bit serial message computation units, which have internal FIFOs of

size ()()11 +−× rc rc.≈ are employed, this is approximately equivalent to storage

requirement of one class of messages ()rcp .. . We do not need any additional memory for

storing R and Q messages. By scheduling we can efficiently use the internal memory of

the computational units.

3.3. Architecture

 For the example (3, 5) - LDPC code of length 1055 described in Section

3.2, 3=r , 5=c and 211=p . We can generalize the following discussion to any LDPC

code with similar structure. A multi-rate architecture is obtained by designing the

architecture such that it can support the maximum values of r and c .

 24

 According to the observation made in Section 3.2, the pipeline is designed such that

Q messages are produced block row wise and R messages are produced in block column

fashion (Fig. 3.1). Initially the Q messages are available in row wise as they are set to

soft log likelihood information of the bits coming in chunks of p (10). The Q Initializer

(Q Init) is an SRAM of size pn + and holds the ∧ values of two different frames. It can

supply p intrinsic values to the BCUs each clock cycle and also can simultaneously read

p intrinsic values from the channel at the start of iterations of the next frame. The data

path of the design is set to 5 bits. ψ and 1−ψ are implemented based on uniform

quantization and according to the scheme of [12]. The maximum number of iterations is

set to 20 and the iterations will stop when the decoded vector d (using Majority function

of Bit to check messages)satisfies the relation 0=TdH .

 The p by p cyclic shifter is constructed with two input - two output switches and

)(2log p stages of 2/p switches are used. The Switching Sequence (SS) unit supplies the

binary sequences to toggle switches in order to produce the shifts in the matrix
53×S (2).

The cyclic shifters of R and Q messages will receive sequences column wise

corresponding to the shifts (2, 5, 7, 3… 174) for cyclic shift up and down respectively

(refer to (3.9) and (3.10)). The check node processing array is composed of p serial

Check Node Units (CNU) which computes the partial sum for each block row in a

multiplexed fashion to produce the R messages in block column fashion. The registers

ps1, ps2 and ps3 correspond to the partial sum for block row 1, 2 and 3 respectively.

 25

Q Init
Cyclic
Shifter

CNU 1

CNU P

VNU 1

VNU P
SS

Cyclic
Shifter

Majority Function
Iteration CounterIteration Estimate

In

Out

Q Init
Cyclic
Shifter
Cyclic
Shifter

CNU 1

CNU P

CNU 1

CNU P

CNU 1

CNU P

VNU 1

VNU P

VNU 1

VNU P

VNU 1

VNU P
SSSS

Cyclic
Shifter
Cyclic
Shifter

Majority Function
Iteration CounterIteration Estimate

In

Out

Fig. 3.1. Block diagram of the decoder architecture

Ψ-1

LUT
Ψ

LUT

ps1
ps2
ps3

13 (=c(r-1)+1) Long Dual
Pointer ‘D’ FIFO

A1
A2
A3

+ +
Q message

f/3

f/15
R message

-

3(=r) Long ‘D’
FIFO

R message

f

ps4
_

Q message

C

f/3

3(=r) Long ‘D’
FIFO

R message

f

ps4
_

Q message

C

f/3

 26

Fig. 3.2. Pipeline of the decoder

Table 3.1.

Occupation of resources for a decoding iteration in terms of clock cycles. (Shown for
two iterations.)

I CBU Adders CBU Sub

tractors

BCU Adders BCU Sub

tractors

1 1-15 14-28 15-29 19-33

2 20-34 35-49 34-48 38-52

 I=Iteration Number.

 27

Table 3.2.

Snapshot of partial sum registers in p CNU s operating in parallel to compute p R
messages

Clock,

I

13,1 15,1 22,1

1
r

ps ()),1(
1,

5

1

ks
k

k

Q
r

∑
=

ψ ()),1(
1,

5

1

ks
k

k

Q
r

∑
=

ψ ()),1(
1,

1

1

ks
k

k

Q
r

∑
=

ψ

2
r

ps ()),2(
2,

4

1

ks
k

k
Q
r

∑
=

ψ ()),2(
2,

5

1

ks
k

k
Q
r

∑
=

ψ
0

3
r

ps ()),3(
3,

3

1

ks
k

k

Q
r

∑
=

ψ ()),3(
3,

5

1

ks
k

k

Q
r

∑
=

ψ
0

The CNU B FIFO corresponds to (3.13) stores the intermediate computations. Its

snapshot at 15th clock cycle is [],1,1,1,5,2,5,3,5 ...,, BBBB
rrrr

. The registers A1, A2 and A3 (which

correspond to (3.13)) latch the ps1, ps2 and ps3 (Table 3.3) in 14,15 and 16 clock cycles

respectively and one of these values (from 14- 28th clock cycle for 1st iteration) will be

selected sequentially as one of the inputs to the subtractor and each subtraction operation

during this period produces R messages in block column fashion. The variable node

processing array is composed of p serial Variable Node Units (VNU) which compute the

partial sum ps4 for each block row in a sequential fashion to produce the Q messages in

block row fashion. The pipeline is shown in Fig. 3.2.

 28

 Table 3.3.

Snapshot of partial sum registers in p VNUs operating in parallel to compute p Q
messages

Clock,I 15,1 17,1 29,1

4
r

ps ∑
=

−
1

1

)1,(
1,

j

jsp
jR
r

 ∑
=

−
3

1

)1,(
1,

j

jsp
jR
r

 ∑
=

−
3

1

)5,(
5,

j

jsp
jR
r

 The VNU D FIFO corresponds to (3.14). Its snapshot at 17th clock cycle is

[]1,31,21,1 ,, RRR
rrr

 and at 29th clock cycle is []5,35,25,1 ,, RRR
rrr

. The register C (which corresponds

to (314)) latch the ps4 (Table 3.4), every three clock cycles and is one of the inputs to the

subtractor and each subtraction operation during this period produces Q messages in

block row fashion.

 While this architecture is targeted for regular array LDPC codes and cyclotomic

coset based regular QC-LDPC codes, this architecture works for rate compatible array

LDPC codes with a minor change in implementation to accommodate the slight

irregularity in the parity check matrix. Note that due to the slight irregularity in rate-

compatible array LDPC matrix, each block row l has a node degree 1j l− + . The

variable-nodes in each block column n has a node degree equal to),min(jn . We have to

devise a simple control mechanism to address this irregularity. One simpler way to

facilitate implementation is to assume that all the block rows have equal check-node

degrees and set the check-node messages corresponding to null blocks in H matrix to

zero in order not to affect the variable-node processing. ()
, 0i

l nR =
v

 if n l< in each iteration

 29

i. Similarly the variable-node messages belonging to the null blocks are always set to

positive infinity in order not to affect the check-node processing. ()
,
i

l nQ = ∞
v

if n l< . For

check-node update, the message with maximum reliability won’t affect the CNU output.

3.4. Performance Comparison

3.4.1. Memory Advantage

 Table 3.4 shows the comparison with the related work. The memory savings are

75% and savings in memory accesses are 66% when compared to [16]. When compared

to [17], [20] the memory accesses are 50% less while the memory requirement is almost

the same and this results in better low power characteristic for the proposed architecture.

For example [20] reported that the NA-Mm accounts for 50% of their decoder power.

3.4.2. Throughput Advantage

The architecture presented here does the overlapping of the CNU processing and

VNU processing. So this architecture has around 2x throughput advantage similar to

overlapped TPMP architectures [17] when compared to the other TPMP architectures

[18]. In addition, this architecture is efficiently pipelined as compared to other

architectures. This will lead to frequency advantage as well as the reduction of glitches.

 30

Table 3.4.

Memory requirement comparison

 [3] [4] [5] [8] Proposed

Mm rcp ..4 rcp ..2 rcp .. rcp .. 0

Mc cp. cp. rp. cp. rcp ..

NA_Mm rcp ..4 rcp ..4 rcp ..2 rcp ..2 0

NA_Mc rcp ..2 rcp ..2 rcp ..2 rcp ..2 rcp ..2

Mm: Memory for message storage Mc: Internal Memory in Check to Bit Serial Computational Units NA_Mm: No. of
R/W accesses from Mm for a decoding iteration NA_Mc: No. of R/W accesses from Mc for a decoding iteration

3.5 FPGA Implementation Results

Fig.3.3 gives the comparison with the implementation of [42]. Table 3.5 gives the

FPGA implementation details for the proposed architecture.

Fig. 3.3. Comparison of architecture for (3,k=6,…30) rate compatible array codes of up
to length 1830. Reference is [42]

 31

Table 3.5.

 FPGA results (Device: Xilinx 2v8000ff1152-5) for (3,30) code of length 1830

 No. Slices No. 4-input
LUT

No. Slice
Flip-flops BRAM

CNU simple 39 66 35

CNU-TDM3 51 56 59

Array of 61 CNU-
TDM3 3111 3416 3599

VNU 18 25 26

VNU array 1098 1525 1586

Routers 2070 3600 0

Message
Computation FIFOs
61 FIFOs of depth
87 and word length

5

26535 bits
5 BRAMS configured
as depth 87 and word

length 61

Input Buffer
1830x5 bits

 9150 bits
5 BRAMS configured

as
depth 30 and word

length 61

Total number
available

46592 93184 93184 168

Top-TDM3 6279 8541 5185 Frequency 80 MHz

Throughput 150 Mbps

3.6. ASIC Implementation Results

The proposed decoder architecture is implemented using the open source standard

cells vsclib013 [62] in 130nm technology. The synthesis is done by using the synopsys

design analyzer tool, while layout is done using the cadence’s Silicon Ensemble tool.

Tables 3.6, 3.7 and 3.8 give the performance comparison as well as the decoder chip

characteristics. Even though TDMP is a better alternative for implementation (Chapters

VI, VII and VIII) as shown in later chapters, the original TDMP decoder [12] is based on

more complicated BCJR algorithm. The CNU for BCJR takes more area due to the need

 32

of several internal FIFOs. In addition, the Omega network is used in [20] instead of

logarithmic shifter. The use of logarithmic shifter saves area to store the control signals

as well as the the absence of control wires make the logarithmic shifter’s layout much

more compact. Note that the memory requirements for both the decoder is similar.

However the number of memory accesses in [20] is much higher leading to low energy

efficiency. The proposed decoder has a frequency advantage also, as the CNU stage has 2

pipeline stages, the VNU stage has 2 pipeline stages. The decoder in [20] has fewer

pipeline stages due to the nature of feedback loops in the CNU processing.

 33

Table 3.6.

ASIC Implementation of the proposed TPMP multi-rate decoder architecture

Semi-Parallel
multi-rate
LDPC decoder
[20]

Multi-rate
TPMP
Architecture
regular QC-LDPC

LDPC Code
AA-LDPC, (3,6) code, rate 0.5, length
2048

(3,k) rate compatible
array codes
p=347.
k=6,7,..12. length
=pk(2082,..,4164)

Decoded Throughput, td, 640 Mbps 2.37 Gbps
Area 14.3 mm2 7.62 mm2
Frequency 125 MHz 500 MHz
Nominal Power Dissipation 787 mW 821 mW

Memory 51,680 bits
62,465 bits
(including the channel LLR
memory)

CMOS Technology 180 nm 1.8V 130 nm, 1.2V
Decoding Schedule TDMP, BCJR, itmax=10 TPMP, SP, itmax=20
Area Efficiency for td, 44.75 Mbps/mm2 311 Mbps/ mm2
Energy Efficiency for td, 123 pJ/Bit/Iteration 17 pJ/Bit/Iteration
Est. Area for 180 nm 14.3 mm2 14.6 mm2
Est. Frequency for 180 nm 125 MHz 360 MHz
Decoded Throughput(td) ,180 nm 640 Mbps 1.71 Gbps
Area Efficiency for td, 180 nm 44.75 Mbps/mm2 117 Mbps/ mm2
Energy Efficiency for td, 180 nm 123 pJ/Bit/Iteration 38.25 pJ/Bit/Iteration
Application Multi-rate application as well as fixed code

application
Multi-rate application as well as
fixed code application
Rate-compatible array codes are
considered for DSL applications.

Bit error rate Performance Good Good and similar to AA-LDPC

itmax= Maximum number of iterations.

Table 3.7.

Area distribution of the chip for (3, k) rate compatible array codes, 130 nm CMOS

 Area (mm2)

CNU Array (FIFO is not included) 2.19

VNU Array 1.43

Message Passing Memory+ Channel LLR
memory

2.28

2 Cyclic shifters 1.73

Total chip area 7.63

 34

Table 3.8.

Power distribution of the chip for (3,k) rate compatible array codes, 130 nm CMOS

 Power (mW)

Logic(CNU, VNU and shifters) 482.5

Memory 199.7

Leakage 0.3

Clock 96.5

Wiring 48.2

Total 827.2

 35

CHAPTER IV

VALUE-REUSE PROPERTIES OF OMS AND MICRO-ARCHITECTURES FOR

CHECK NODE UNIT BASED ON OMS

4.1. Value-reuse Properties

This chapter provides the novel micro-architecture structures for check node

message processing unit (CNU) for the min-sum decoding of Low-Density Parity-Check

codes (LDPC). The construction of these CNU structures is based on a less known

property of the min-sum processing step that it produces only two different output

magnitude values (or three signed 2’s complement values) irrespective of the number of

incoming bit-to check messages [26]. These new micro-architecture structures would

employ the minimum number of comparators by exploiting the concept of survivors in

the search. These would result in the reduced number of comparisons and consequently

reduced energy use.

For each check node m , ()i
mnR ()mn Ν∈∀ takes only 2 values. The least minimum

and the second least minimum of the entire set of the messages can be defined from

various variable-nodes to the check-node m as,

()

()
()1

1 min .i
m

i
M Qmnn m

−= ′′∈ Ν
, (4.1)

()

()
()1

2 2 min .i
m

i
M nd Qmnn m

−= ′′∈ Ν
 (4.2)

Now (2.7) in Chapter II becomes

()i
mnR = ()1 i

mM , () indexMmn _1\Ν∈∀ (4.3)

 36

 ()2 i
mM= , indexMn _1= .

 Since ()mn Ν∈∀ , ()i
mnδ takes a value of either 1+ or 1− and ()i

mnR takes only two

values. So (2.6) in Chapter II, gives rise to only three possible values for the whole set

()i
mnR ()mn Ν∈∀ . In a VLSI implementation, this property significantly simplifies the

logic and reduces the memory.

4.2. Serial CNU for OMS

This section presents the micro-architecture of serial CNU for OMS, which is

used in TPMP architecture (Chapter V) and in TDMP architectures(Chapter VI and VII).

Fig 4.1. Serial CNU for OMS using value-reuse property.

Fig. 4.1(a) shows the CNU micro-architecture for (5, 25) code while Fig. 4.1(b)

shows the block diagram of the same. In the first 25 clock cycles of the check-node

processing, incoming variable messages are compared with the two up-to-date least

 37

minimum numbers (partial state, PS) to generate the new partial state, M1 which is the

first minimum value, M2 which is the second minimum value and index of M1. The final

state (FS) is then computed by offsetting the partial state. It should be noted that the final

state includes only M1, -M1, +/-M2 with offset correction. Fig. 4.1(b) is the block

diagram of the same architecture. M1_M2 finder computes the two least numbers,

according to the incoming data and the current minimum numbers stored in partial state.

The offset module applies the offset correction, and stores the results in the Final State

module. R selector then assigns one out of these 3 values, based on the index of M1 and

the sign of R message generated by sign XOR logic (4), to the output R messages. While

the final state has dependency on offset correction, the offset is dependent on the

completion of the partial state. In operation, the final state and partial state will operate

on different check-nodes. The serial CNU finds the least two minimum numbers with 2

comparators in a serial fashion and reduces the number of offset-correction computation

from k to 2. Normally, CNU (check-node unit) processing is done using the signed

magnitude arithmetic for (2.7) and VNU (variable-node unit processing) (2.9) is done in

2’s complement arithmetic. This requires 2’s complement to the signed conversion at the

inputs of CNU and signed to the 2’s complement at the output of CNU. In the proposed

scheme, 2’s complement is applied to only 2 values instead of k values at the output of

CNU. The value re-use property also reduces the memory requirement significantly.

Conventionally, the number of messages each CNU stores is equal to the number of

edges it has, that is k . Now only four units of information are needed: the three values

that ()i
mnR may take and the location of ()1 i

mM , then check-node message to the VNU is

readily chosen by multiplexing.

 38

4.3. Parallel CNU

 In procedures 1 and 2 below, consider the case of rate 0.5 (4, 8) code so that

8=k and assume the word length of signed magnitude variable node messages is 5 so

that there are 4 bits allocated for magnitude.

Procedure 1: Locate the two minimum magnitude values of the input vector. Procedure

1.1: Find the first minimum in the input vector of length 8 using the binary tree of

comparators, see Fig. 4.2.a. Procedure 1.2: Select the survivors by using the comparator

output flags as the control inputs to multiplexes. For example in the last stage of the

comparator tree the value other than the least minimum is the survivor. No further

comparisons are necessary along the tree path to the survivor. We trace back the

survivors using the comparator outputs. At any stage of the binary tree we have only one

survivor. So there would be k2log survivors. Procedure 1.3: Perform 1log2 −k

comparisons among survivors to find the least minimum of survivors (i.e., the second

minimum of input vector) using another smaller binary tree (Fig 4.2.b).

 In Fig. 4.2, C0, C1, and C2 are 1-bit outputs of comparators. The comparator’s

output is 1 if A<B and is 0 otherwise. ‘0’ in C0 notation is used to denote the first level of

outputs from the right and so on. C2[0] denotes the output of the first comparator (from

bottom) at third level outputs from the right. A2, A1, and A0 are 4-bit magnitudes of

variable node messages Q. ‘0’ in A0 notation is used to denote the first level of inputs.

A0[0] denotes the 4-bit input word at the first input of the first level of inputs. A similar

naming convention is used for other symbols. K1 = A0 [C0 C1[C0] C2[C0C1[C0]]] is the

least minimum. The 3 bit trace back C0 C1[C0] C2[C0C1[C0]] gives the index of K1 in

the input vector A0. Next, the survivors are obtained from the intermediate nodes of the

 39

search tree. We use 2-in-1, 4-in-1 and 8-in-1 multiplexers respectively to obtain the

following survivors: B2= A2[c0], B1= A1[!c1 c0]] and B0= A0[!c2 c1 c0]. Here, the

notation !x denotes logical inversion of the bit x. The second minimum is obtained from

these survivors (Fig. 4.2.b).

Procedure 2: This procedure produces the R outputs according to (4.3). Apply the offset

to K1 and K2 to produce M1 and M2. Next compute –M1 and/or –M2. Then, based on

the computed sign information by XOR logic (2.8) and index of K1, R is set to one of the

3 possible values M1, -M1, +/- M2 (see Fig. 4.3).

 (a)

 (b)

Fig. 4.2. Finder for the two least minimum in CNU (a) Binary tree to find the least
minimum. (b) Trace-back multiplexers and comparators on survivors to find the second

minimum. Multiplexers for selecting survivors are not shown.

Mux
Mux

C0

c0

C1[1] C2[3]

C1[0]
C2[0]

c1 c2

A
B

A<B
min A

B
A<B
min

B1

B0

B2
K2

 40

 Fig. 4.3. Parallel CNU based on value-reuse property of OMS.

 Table 4.1 presents the complexity comparison of parallel CNU for min-sum

variants. The Parallel CNU in Fig. 4.3 can work as a regular min-sum (MS) CNU if the

offset modules are removed. Note that the recently published CNU work on regular MS

in [44], used a pseudo-rank order filter to find M1 and M2, which is more complex than

our proposed method based on survivors [55]. In addition, the value-reuse property is not

exploited completely as k instances of 2’s complement adder are used and the BER

performance degradation is 0.5 dB when compared to floating point SP. Also, note that

the overall decoder architecture in both [20] (which is based on normalized MS, NMS)

and [44] are based on TPMP, while the work presented here uses TDMP

Table 4.1

Parallel CNU implementation

CNU Complexity in terms

of equivalent adders

MS Variant (loss in dB against floating point SP)

 [20] ()� �()()12log5.04 −+ kkk NMS (~0.1)

 [44] ()� �()12log32/5 −+ kk MS (~0.5)

Proposed ()� � 12log2 ++ kk MS (~0.5)

Proposed ()� � 52log2 ++ kk OMS (~0.1 dB)

41

CHAPTER V

FIXED CODE TPMP ARCHITECTURE FOR REGULAR QC-LDPC CODES

5.1. Introduction

 Message passing memory takes around 30% of chip area and consumes from 50%-

90% power of the typical semi-parallel decoders for the Low Density Parity Check Codes

(LDPC) [18], [20]. We propose a new LDPC Decoder architecture based on the Min Sum

algorithm that reduces the need of message passing memory by 80% and the routing

requirements by more than 50%. This novel architecture is based on the scheduling of

computation that results in “on the fly computation” of variable node and check node

reliability messages. The results are memory-efficient and router-less implementations of

(3,30) code of length 1830 and (3,6) code of length 1226; each on a Xilinx Virtex

2V8000 FPGA device achieved 1.27 Gbps and 585 Mbps respectively

 We present a new architecture that exploits the various properties of structured

Array LDPC codes [9] and the value–reuse properties offset min-sum algorithm to reduce

the memory, routing and computational requirements. The key features of this

architecture are:

1. 80% savings in message passing memory requirements when compared to other

semi-parallel architectures based on MS and its variants [37], [41]

2. Scalable for any code length due to the concentric and regular layout unlike the

fully parallel architecture [15]

3. Reduction of router multiplexers from 50% and beyond based on dynamic state

concept.

42

5.2. Reduced Message Passing Memory and Router Simplification

 Array codes are defined in [9] and have three parameters),(cv dd and length N .

Here vd is the variable node degree and cd is the check node degree. The size of the

circulant matrix block in array code is a prime number and is given by cdNp /= . Refer

Chapter II for details on array codes. Most of the previous work is in the area of semi-

parallel implementation of structured LDPC codes, however most of them are based on

SP, for instance [17], [18], [51], [37], [41] proposed architectures based on MS and its

variants. In the architecture of [51], (Chapter III) the check node messages in the H

matrix are produced block column wise so that all the variable messages in each block

column can be produced on the fly. Again these variable-node messages can be

immediately consumed by the partial state computation sub-units in Check Node Units.

This scheduling results in savings in message passing memory that is needed to store

intermediate messages. This work extends above concepts used for SP to the offset MS.

 Cyclic shifters take around 10%-20% of chip area based on the decoder’s

parallelization and constitute the critical path of the decoder. We make an observation

that if all the block rows are assigned to different computational unit arrays of Check

Node Unit(CNU) and serial CNU processing across block row is employed, then we need

to have a constant wiring to achieve any cyclic shift as each subsequent shift can be

realized using the feedback of previous shifted value. This leads to the elimination of

forward router between CNU and Variable Node unit (VNU) as well as the reverse router

between VNU and CNU. This is possible due to the fact that block-serial processing is

employed and Array codes have a constant incremental shift in each block row. For the

first block row, the shift and incremental shift is 0. For the second block row, the shifts

43

are [0,1,2,…, 1−cd] and the incremental shift is 1. For the third block row, the shifts are

[0, 2 ,…,)1(2 −cdX] and the incremental shift is 2.

5.3. Check Node Unit Micro-architecture

 The proposed serial check node unit design, discussed fully in Chapter IV and in

[55] utilizes a less known property of the min-sum algorithm that the check node

processing produces only two different output magnitude values irrespective of the

number of incoming variable-node messages. [26]. The work in [37] resorts to the use of

2 cd comparators and additional processing such as offset correction and 2’s complement

for all cd messages and does not utilize this property. This property would greatly

simplify the number of comparisons required as well as the memory needed to store CNU

outputs. Fig. 5.1. shows the serial CNU architecture for (3, 30) code. In the first 30 clock

cycles of the check node processing, incoming variable messages are compared with the

two up-to-date least minimum numbers (partial state, PS) to generate the new partial

state, which include the least minimum value, M1, the second minimum value M2 and

index of M1. Final state (FS) is then computed by offsetting the partial state. It should be

noted that the final state includes only three signed numbers, i.e. M1, -M1, +/-M2 with

offset correction, and index of M1. VNU micro-architecture is implemented as a parallel

unit as the number of inputs is small. It takes 3 check node messages and one channel

value. It is a binary tree adder followed by subtractors and 2’s complement to signed

magnitude conversion to generate variable node messages [16].

44

Fig 5.1. Check node processing unit, Q: Variable node message, R: Check node
message. (a) simple scheme; (b) dynamic scheme.

45

�
� � � � � � �

� � 	

 � � � �

 � � � �

�� � � �

� � 	

 � � � �

 � � � �

�� � � �

� � 	

 � � � �

 � � � �

�� � � �

� � 	 � � �

� � 	 � �

� � 	 � �

�
�
�

�
�
�

�
�
�

�
�
�

�
� � � �

� � �
�

� � �

�
� � � �

�
� � � �

�
� � �

�
� � � �

�
� � �

�
� � � �

�
� � �

�
�� �

�
� � � �

� � 	 �

� � 	 �

� � 	 � �

�
�
�

� �

�
�
�

� � 	 � �

� �
� �

� �
� � �

� �
� �

� �
� � �

� �
� � �

� �

� � 	 � �

� �
� �

� �
� � �

� �
� �

� �
� � �

� �
� � �

� �

� � 	 � ��

� �
� �

� �
� � �

� �
� �

� �
� � �

� �
� � �

� �

�
�

� �
� � � � ��

� �
� � � � ��

� �
� � � � �

�

� �
� � � � ��

� �
� � � � �

� �
� � � � ��

� �
� � � � �

� �
� � � � �

� �
� � � � �

� �
� � � � �

� �
� � � � �

� �
� � � � � � �

� � � � ��

� � 	 � ��

� �
� �

� �
� � �

� �
� �

� �
� � �

� �
� � �

� �

� � 	 � �

� �
� �

� �
� � �

� �
� �

� �
� � �

� �
� � �

� �

� � 	 � ! �

� �
� �

� �
� � �

� �
� �

� �
� � �

� �
� � �

� �

��

� �
� � � � ! �

� �
� � � � ! �

� �
� � � � ! �

� �
� � � � ! �

� �
� � � � ��

� �
� � � � ! �

� �
� � � � ! �

� �
� � � � �

� �
� � � � ��

� �
� � � � ! � � �

� � � � ! �

� � 	 � �"

� �
� �

� �
� � �

� �
� �

� �
� � �� �

� � �

� �

� �
� � � � �"

� �
� � � � �"

�
�
��

�
�

� �
� � � � �

� �
� � � � !

�

� �
� � � � ! �

� �
� � � � ��� �

� � � � �

�

�
� � � �

�
� � � �

�
� � � �

�
� � �

�
� � � �

Fig 5.2. Architecture

5.4. Architecture

 Figures 5.2 and 5.3 present the proposed architecture and pipeline scheduling for the

implementation of (3, 30) – array LDPC code of length 1830 with the circulant matrix

size of 61. The check node processing unit array is composed of 3 sub-arrays. Each sub-

array contains 61 serial CNUs which compute the partial state for each block row to

produce the check-node messages for each block column of H. Block row 1 is array of 61

simple CNUs. CNU array block row 2 and 3 are composed of dynamic CNUs (Fig 2b).

The variable node processing array is composed of 61 parallel VNU units which can

46

process 3 x 61 messages at each clock cycle. The sign bits will be stored in a FIFO

(implemented as RAM), however, there is no need to subject these values to shifts as

these values are not modified in check node processing partial state processing.

 In the array of simple serial CNU that is designed to do check node processing for

first block row in H matrix, the check node processing for each row in H matrix is done

such that all the comparisons are performed locally with in one CNU to update the partial

state each clock cycle and transfer the partial state to final state cd once every cycle. In

the array of dynamic CNU designed for second block row in H matrix, CNU 122 gets its

partial state from CNU 121, CNU 121 gets its partial state from CNU 120 and so on.

Array of dynamic CNU designed for the third block row in H matrix such that the

connection between partial state registers among various units achieve cyclic shifts of

[0,2,..,58]. Similar principle is used when making connections for the final state in the

CNU array to achieve reverse routing.

 As shown in Figure 5.3, initially the variable messages are available in row wise as

they are set to soft log likelihood information (LLR) of the bits coming from the channel.

Q Init is an SRAM of size N2 and holds the channel LLR values of two different frames.

It can supply p intrinsic values to the VNUs each clock cycle. The data path of the design

is set to 5 bits to provide the same BER performance as that of the floating point sum of

products algorithm with 0.1-0.2 dB SNR loss [32]. Each iteration takes 3+cd clock

cycles. For (3, 30) code this results in 6 x 33 clock cycles to process each frame when a

maximum number of iterations set to 6. For (3,6) code this results in 20 x 9 clock cycles

to process each frame when the number of iterations is set to 20.

47

Fig 5.3. Pipeline

48

5.5. Results and Performance Comparison

 The savings in message passing memory due to scheduling are 80% as we need to

store only the sign bits of variable node messages. Forward router and reverse routers are

eliminated. This results in the reduction of the number of multiplexers from

wlppd c ×××−×)(2log)1(2 (as routers are eliminated) to

� �)(2log3()1(cc dwlpd +×××−)1+ (to support transfer of partial state to final state in

the array of dynamic CNU). Here 5=wl and is the word length of the data path.

 Table 5.1 shows resource consumption of different components used in the design

for (3, 30) code of length 1830. Implementations for (3, 30) codes of lengths 1830 and

(3,6) code of length 1226 on a Xilinx Virtex 2V3000 device achieved 1.2 Gbps (system

frequency 153 MHz) and 340 Mbps (system frequency 140 MHz) respectively. Up to our

best knowledge our LDPC implementations achieves the highest throughput per given

FPGA resources. Figure 5.4 gives comparison of design metrics for our designs with the

other designs [37], [41] based on similar code parameters and min sum implementation.

 Tables 5.2-5.4 gives the ASIC implementation results and comparisons with the

state-of-the-art fixed code decoder architectures. The design in [21] based on 1-bit data

path. Though the routing congestion is decreased based on broadcasting and hard

decision, it is still an issue with soft decoders. In addition, the hard decision decoder has

very poor BER performance. The fully parallel decoder architecture in [15] is based on

modified array codes to reduce the routing congestion and these exhibit early error floors.

Thus this decoder may not be suitable for low error floor applications which require

BERs of less than 1e-12. However, the advanced circuit techniques described in [], may

be applicable to any LDPC decoder. The PLAs are used to implement non-linear

49

functions needed for SP decoding algorithm occupied most of the area. All the other logic

is implemented as standard static and dynamic CMOS logic. In the proposed architecture,

the non-linear function is not needed in the offset min-sum. So there is no logic that can

readily benefit from using the PLA based logic design. However, recent research

indicates that it is possible to do a mix of PLA based logic and standard cell design to

improve the frequency.

Table 5.1.

FPGA results (Device: Xilinx 2v8000ff1152-5)

 No. Slices No. 4-input
LUT

No. Slice Flip-
flops

Operating
frequency(MHz)

CNU simple 45 70 53 236

CNU dynamic 55 102 55 193

CNU array block
row 1 2599 4285 2980

CNU array block
row 2,3 3464 6438 2967

CNU array 9230 17143 8875

196

VNU 27 42 25 169

VNU array 1623 2562 1525 169

Top 11695 19732 10733 153

Total number
available 46592 93184 93184

50

p=61, rate 0.9, length 1830
p=211, rate 0.5, length 1266
M. Karkooti et al., rate 0.5, length 1536
T. Brack, et al., rate 0.8, length 3000

No. Slices
No. LUT's

Message
passing
memory (bits)

Input
buffer
(bits)

Throughput
(Mbps)

Throughput
per LUT (Kbps)

Frequency
(MHz)

11695

30520

11352

15534
19732

54855

20374

5490
3798

23040

18300

12660
15360 153

140
121

1270

585

127

64.4

10.7

6.2
180

Fig 5.4. Results comparison with M. Karkoot et al.,[37] and T. Brack, et al., [41]

Table 5.2

Summary of the proposed fixed-code decoder architecture, code 1

Fully Parallel
 LDPC decoder
[15]

TPMP
Architecture
regular
Array QC-LDPC

Decoded Throughput, td, 1 Gbps 5.78 Gbps
Area 52.5 mm2 9.9 mm2
Frequency 64 MHz 500 MHz
 Power Dissipation 690 mW 695 mW

Memory 34816 bits
(scattered flip-flops)

20820 bits for 2 input buffers
6246 bits for sign memory

LDPC Code Random LDPC code, rate 0.5,
length 1024

(3,6) array code, rate 0.5, length
2082

CMOS Technology 160 nm, 1.5V 130 nm, 1.2V
Decoding Schedule TPMP, SP, itmax=64 TPMP, SP, itmax=20
Area Efficiency for td, 19 Mbps/mm2 585.2 Mbps/mm2
Energy Efficiency for td, 10.1 pJ/Bit/Iteration 6.01 pJ/Bit/Iteration
Scalability of Design for other code
parameters and longer lengths

No Yes

51

Table 5.3

Summary of the proposed fixed-code decoder architecture, code 2

Fully Parallel
 LDPC decoder
[21]

TPMP
Architecture
regular
Array QC-LDPC

Decoded Throughput, td, 3.2 Gbps 3.0176 Gbps
Area 17.64 mm2 8.04 mm2
Frequency 100 MHz 500 MHz
Power Dissipation NA 324.4 mW

Memory 46350 bits for 2 input buffers
23175 bits for sign memory

LDPC Code RS-LDPC, (6,32) code, rate
0.8413, length 2048

(5,45) array code, rate 0.8889,
length 4635

CMOS Technology 180 nm,. 1.8V 130 nm, µ , 1.2V

Decoding Schedule TPMP, Hard decision SP,
itmax=32

TPMP, 5-bit soft decoding, offset
Min-sum, itmax=16

Area Efficiency for td, 181.4 Mbps/mm2 375.6 Mbps/mm2
Energy Efficiency for td, NA 6.72 pJ/Bit/Iteration
Scalability of Design No Yes

Table 5.4

Summary of the proposed fixed-code decoder architecture, code 3 and code 4

TPMP
Architecture
regular
Array QC-LDPC

TPMP
Architecture
regular
Array QC-LDPC

Decoded Throughput, td, 1.5 Gbps 9.85 Gbps
Area 3.39 mm2 19.26 mm2
Frequency 500 MHz 500 MHz
Power Dissipation 156.5 mW 890 mW

Memory 18300 bits for 2 input buffers
7320 bits for sign memory

104100 bits for 2 input buffers
41640 bits for sign memory

LDPC Code (4,30) array code of length 1830 (4,30) array code of length 10410
CMOS Technology 130 nm, 1.2V 130 nm, 1.2V
Decoding Schedule TPMP, SP, itmax=16 TPMP, SP, itmax=16
Area Efficiency for td, 442.4 Mbps/mm2 512 Mbps/mm2
Energy Efficiency for td, 5.64 pJ/Bit/Iteration 5.64 pJ/Bit/Iteration
Scalability of Design Yes Yes

52

Table 5.5

Area distribution of the fixed code TPMP architectures for Array codes, 130 nm
CMOS[62]

 Code1,

(3,6) array code,
rate 0.5, length
2082

Area (mm2)

Code 2,

(5,45) array code,
rate 0.8889, length
4635

Area (mm2)

Code 3,

(4,30) array code of
length 1830

Area (mm2)

Code 4,

(4,30) array code of
length 10410

Area (mm2)

CNU Array (sign
FIFO is not included)

5.7 2.8 1.3 7.6

VNU Array 1.6 0.8 0.4 2.1

Message Passing
Memory+ Channel

LLR memory

1.3 3.4 1.2 7.1

Wiring 1.3 1.0 0.5 2.5

Total chip area 9.9 8.0 3.4 19.3

 Table 5.6

Power distribution of the fixed code TPMP architectures for array codes, 130 nm
CMOS [62]

 Code1,

(3,6) array code,
rate 0.5, length
2082

Power (mW)

Code 2,

(5,45) array
code, rate
0.8889, length
4635

Power (mW)

Code 3,

(4,30) array code
of length 1830

Power (mW)

Code 4,

(4,30) array code of
length 10410

Power (mW)

Logic(CNU,VNU) 442.3 219.3 103.1 586.9

Memory 137.0 50.8 27.2 154.1

Leakage 0.4 0.3 0.1 0.8

Clock 75.3 35.1 17.0 96.3

Wiring 40.6 18.9 9.1 51.9

Total 695.6 324.4 156.5 890.0

53

CHAPTER VI

MULTI-RATE TDMP ARCHITECTURE FOR RATE-COMPATIBLE ARRAY

LDPC CODES

6.1. Introduction

 The main contribution of this chapter is an efficient turbo decoding message passing

(TDMP) architecture which utilizes the value–reuse property of OMS, cyclic shift

property of structured array LDPC codes, and the extension of block serial scheduling

[5]. The resulting decoder architecture has the following key advantages: 1) removal of

memory needed to store the sum of the variable node messages and the channel log-

likelihood ratios (LLR) when compared to other semi-parallel architectures [20], [38],

[51], [37], [41]. 2) 40%-72% savings in storage of extrinsic messages depending on the

rate of the codes when compared to other semi-parallel architectures [20], [38], [51],

[37], [41], 3) need of only one cyclic shifter instead of two cyclic shifters when

compared to the work in [20], [38], [51], [37], [41]. 4) removal of memory needed to

store variable node messages when compared to [37]-[41] and finally, 5) increase of

throughput by 2x as number of required iterations decrease by 50% when compared to

[37], [41], [51]. The last two advantages are also shared by other TDMP architectures

[20], [38].

 The rest of the chapter is organized as follows. Section 6.2 introduces the

background of array LDPC codes, and OMS, the decoding algorithm. Section 6.3

presents the equations which facilitate the decoding process. Section 6.4 presents the

value-reuse property and micro-architecture structure for CNU. The new data flow graph

and architecture for TDMP using OMS is included in section 6.5. Section 6.6 shows the

54

FPGA implementation results, and performance comparison with related work. Section

6.7 concludes the chapter.

6.2. Background

6.2.1. Array LDPC Codes

 The array LDPC parity-check matrix is specified by three parameters: a prime

number p and two integers k (check-node degree) and j (variable-node degree) such

that pkj ≤, [9]. This is given by

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−−

−

−

)1)(1(2)1(1

)1(242

12

kjjj

k

k

I

I
I

IIII

H

ααα

ααα
ααα

L

MMMM

L

L

L

 (6.1.a)

where I is a pp× identity matrix, and α is a pp× permutation matrix representing a

single left cyclic shift (or equivalently down cyclic shift) of I. The exponent of α in

H is called the shift coefficient and denotes multiple cyclic shifts, with the number of

shifts given by the value of the exponent. Rate-compatible array LDPC codes are

modified versions of the above for efficient encoding and multi-rate compatibility in [10]

and their H matrix has the following structure

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−

−−−

−−−

))(1()1(

)3(2)2(2)3(2

212

jkjj

kjj

kjj

IOO

IOO
IO

IIIIII

H

αα

ααα
αααα

LLL

MMMOMMM

L

L

LL

 , (6.1.b)

55

where O is the pp× null matrix. The LDPC codes defined by H in (6.1b) have a

codeword length kpN = , number of parity-checks jpM = , and an information block

length pjkK)(−= . The family of rate-compatible codes is obtained by successively

puncturing the left most p columns, and the topmost p rows. According to this

construction, a rate-compatible code within a family can be uniquely specified by a single

parameter, say, q with 20 −≤< jq . To have a wide range of rate-compatible codes, we

can also fix j , p , and select different values for the parameter k . Since all the codes

share the same base matrix size p ; the same hardware implementation can be used. It is

worth mentioning that this specific form is suitable for efficient linear-time LDPC

encoding [10]. The systematic encoding procedure is carried out by associating the first

KN − columns of H with parity bits, and the remaining K columns with information

bits.

6.2.2. Offset Min-sum Decoding of LDPC

 Assume binary phase shift keying (BPSK) modulation (a 1 is mapped to -1 and a 0

is mapped to 1) over an additive white Gaussian noise (AWGN) channel. The received

values ny are Gaussian with mean 1±=nx and variance 2σ . The reliability messages

used in belief propagation (BP)-based offset min-sum algorithm can be computed in two

phases: 1.) check-node processing and 2.) variable-node processing. The two operations

are repeated iteratively until the decoding criterion is satisfied. This is also referred to as

standard message passing or two-phase message passing (TPMP). For the ith iteration,

()i
nmQ is the message from variable node n to check node m , ()i

mnR is the message from

check node m to variable node n ,)(nΜ is the set of the neighboring check nodes for

56

variable node n , and)(mΝ is the set of the neighboring variable nodes for check node

m . The message passing for TPMP based on OMS is described in the following three

steps as given in [132] to facilitate the discussion on TDMP in the next section:

Step 1. Check-node processing: for each m and)(mn Ν∈ ,

() () ()()0,max βκδ −= i
mn

i
mn

i
mnR , (6.2)

()

()
()() 1min

\
i i

mn mn
iR Qn mn m n

κ −
= = ′′∈Ν

, (6.3)

where β is a positive constant and depends on the code parameters [32]. For (3, 6) rate

0.5 array LDPC code, β is computed as 0.15 using the density evolution technique

presented in [11]. The sign of check-node message ()i
mnR is defined as

() ()()
()

1

\

sgni i
mn n m

n m n

Qδ −
′

′∈Ν

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠
∏ , (6.4)

Step 2. Variable-node processing: for each n and)(nm Ν∈ ,

 () () ()

()

0

\

i i
nm n m n

m m m

Q L R ′
′∈Μ

= + ∑ , (6.5)

where the log-likelihood ratio of bit n is ()
nn yL =0 .

Step 3. Decision: for final decoding

() ()

()
∑
∈

+=
nMm

i
mnnn RLP 0 . (6.6)

A hard decision is taken by setting ˆ 0nx = if () 0n nP x ≥ , and ˆ 1nx = if () 0n nP x < . If

0=THx) , the decoding process is finished with ˆnx as the decoder output; otherwise,

repeat steps (1-3). If the decoding process doesn’t end within predefined maximum

57

number of iterations, maxit , stop and output an error message flag and proceed to the

decoding of the next data frame.

6.3. TDMP for Array LDPC

 In TDMP, the array LDPC with j block rows can be viewed as concatenation of j

layers or constituent sub-codes similar to observations made for AA-LDPC codes in [20].

After the check-node processing is finished for one block row, the messages are

immediately used to update the variable nodes (in step 2, above), whose results are then

provided for processing the next block row of check nodes (in step 1, above). We first

illustrate the vector equations for TDMP for array LDPC codes assuming that the H

matrix has the structure in (6.1.a).

[Initialization for each new received data frame]

)0()0(
, ,0 nnnl LPR

rrr
== , (6.7)

max,,2,1 iti L=∀ , [Iteration loop]

1,2, ,l j∀ = L , [Sub-iteration loop]

kn ,,2,1 L=∀ , [Block column loop]

()[] [] ()1
,

),(),(

,
−−= i
nl

nlS
n

nlSi
nl RPQ

rrr
, (6.8)

() ()[] ()()knQfR
nlSi

nl
i
nl ,,2,1,

,

,, L
rr

=′∀=
′

′ , (6.9)

[] ()[] ()i
nl

nlSi
nl

nlS
n RQP ,

),(

,
),(rrr

+= , (6.10)

where the vectors ()i
nlR ,

r
 and ()i

nlQ ,

r
 represent all the R and Q messages in each pp× block

of the H matrix, (,)s l n denotes the shift coefficient for the block in lth block row and nth

58

block column of the H matrix. ()[]),(
,

nlSi
nlQ

r
denotes that the vector ()i

nlQ ,

r
 is cyclically shifted

down by the amount (,)s l n and k is the check-node degree of the block row. A negative

sign on (,)s l n indicates that it is cyclic up shift (equivalent cyclic right shift).

)(⋅f denotes the check-node processing, which can be done using BCJR or SP or OMS.

For this work, we use OMS as defined in (2.6). If we are processing a block row in serial

fashion using p check-node units (6.9), then the output of the CNU will also be in serial

form. As soon as the output vector ()i
nlR ,

r
corresponding to each block column n in H matrix

for a block row l is available, this could be used to produce the updated sum

[]),(nlS
nP
r

(6.10). This could be immediately used in (6.8) to process block row 1+l except

that the shift (,)s l n imposed on nP
r

 has to be undone and a new shift (1,)s l n+ has to be

imposed. This could be simply done by imposing a shift corresponding to the difference

of (1,)s l n+ and (,)s l n .

 Note that due to the slight irregularity in array LDPC matrix defined in (6.1.b), each

block row l has a node degree 1j l− + . The variable-nodes in each block column n has a

node degree equal to),min(jn . We have to devise a simple control mechanism to

address this irregularity. One possible way to deal with this check-node irregularity is

setting the check-node degrees in the CNU processor unit based on the block row that is

being processed. Another simpler way to facilitate implementation is to assume that all

the block rows have equal check-node degree and set the check-node messages

corresponding to null blocks in H matrix to zero in order not to affect the variable-node

processing. ()
, 0i

l nR =
v

 if n l< in each iteration i. Similarly the variable-node messages

59

belonging to the null blocks are always set to positive infinity in order not to affect the

check-node processing. ()
,
i

l nQ = ∞
v

if n l< . For check-node update based on SP or OMS, the

message with maximum reliability won’t affect the CNU output. In the specific case of

OMS, it is easy to see this as the CNU magnitude is dependent on the two least

minimum.

6.4. Value-reuse Properties of OMS

 This section presents the micro-architecture of serial CNU for OMS, which was used

in our recent work on TPMP architecture [55]-[52],(see Chapters IV and V). The same

CNU can be used in TDMP architecture presented in the next section. For the sake of

continuity, the CNU is explained here again. For each check node m , ()i
mnR

()mn Ν∈∀ takes only two values, which are the two least minimum of input magnitude

values. Since ()mn Ν∈∀ , ()i
mnδ takes a value of either 1+ or 1− and ()i

mnR takes only 2

values, (6.3) gives rise to only three possible values for the whole set, ()i
mnR ()mn Ν∈∀

(chapter IV). In a VLSI implementation, this property significantly simplifies the logic

and reduces the memory.

60

 Fig 6.1. Serial CNU for OMS using value-reuse property.

 Fig. 6.1(a) shows the CNU micro-architecture for (5, 25) code while Fig. 6.1(b) shows

the block diagram of the same. In the first 25 clock cycles of the check-node processing,

incoming variable messages are compared with the two up-to-date least minimum

numbers (partial state, PS) to generate the new partial state, M1 which is the first

minimum value, M2 which is the second minimum value and index of M1. The final state

(FS) is then computed by offsetting the partial state. It should be noted that the final state

include only M1,-M1, +/-M2 with offset correction. Fig. 6.1(b) is the block diagram of

the same architecture. M1_M2 finder computes the two least numbers, according to the

incoming data and the current minimum numbers stored in partial state. The offset

module applies the offset correction, and stores the results in the final state module. R

selector then assigns one out of these 3 values, based on the index of M1 and the sign of

61

R message generated by sign XOR logic (6.4), to the output R messages. While the final

state has dependency on offset correction, the offset is dependent on the completion of

partial state. In operation, the final state and partial state will operate on different check-

nodes. The serial CNU finds the least two minimum numbers with 2 comparators in a

serial fashion and reduces the number of offset-correction computation from k to 2.

Normally, CNU (check-node unit) processing is done using the signed magnitude

arithmetic for (2.7) and VNU (variable-node unit processing) (2.9) is done in 2’s

complement arithmetic. This requires 2’s complement to signed conversion at the inputs

of CNU and signed to 2’s complement at the output of CNU. In the proposed scheme, 2’s

complement is applied to only 2 values instead of k values at the output of CNU. The

value re-use property also reduces the memory requirement significantly.

Conventionally, the number of messages each CNU stores is equal to the number of

edges it has, that is k . Now only four units of information are needed: the three values

that ()i
mnR may take and the location of ()1 i

mM , then check-node message to the VNU is

readily chosen by multiplexing.

6.5. Multi-rate Architecture Using TDMP and OMS

6.5.1. Block Serial Architecture

 A new data flow graph is designed based on the TDMP, and on the value reuse

property of min-sum algorithm described above (see Fig. 6.2.). For ease of discussion, we

will illustrate the architecture for a specific structured code: array code of length 1525

described in section II, 5=j , 25=k and 61=p , the discussion can be easily generalized to

any other structured codes. First, functionality of each block in the architecture is

62

explained. A check-node process unit (CNU) is the serial CNU based on OMS described

in the previous section. The CNU array is composed of p computation units that compute

the partial state for each block row to produce the R messages in block serial fashion.

Since final state of previous block rows, in which the compact information for CNU

messages is stored is needed for TDMP, it is stored in register banks.

 Fig. 6.2. LDPC decoder using layered decoding and OMS

There is one register bank of depth 1−j , which is 4 in this case, connected with each

CNU. Each final state is the same as the final state register bank in the CNU. Besides the

shifted Q messages, the CNU array also take input of the sign information for previous

computed R messages in order to perform R selection operation. The sign bits are stored

in sign FIFO. The total length of sign FIFO is k and each block row has p one bit sign

FIFOs. We need 1−j of such FIFO banks in total. p number of R select units is used for

63

Rold . An R select unit generates the R messages for)(25 k= edges of a check-node from

three possible values stored in final state register associated with that particular check-

node in a serial fashion. Its functionality and structure is the same as the block denoted as

R select in CNU. This unit can be treated as de-compressor of the check node edge

information which is stored in compact form in FS registers. The generation of R

messages for all the layers in this way amounts to significant memory savings, which

would be quantified in a later section. The shifter is constructed as cyclic down

logarithmic shifter to achieve the cyclic shifts specified by the binary encoded value of

the shift. The logarithmic shifter is composed of)(2log p stages of p switches. Since cyclic

up shift is also needed in the operation of the decoder, cyclic up shift by u can be simply

achieved by doing cyclic down shift with up − on the vector of size p . The decoding

operation proceeds as per the vector equations described in section III. In the beginning

of the decoding process, P vector is set to receive channel values in the first k clock

cycles (i.e. the first sub-iteration) as the channel values arrive in chunks of p , while the

output vector of R select unit is set to zero vector. The multiplexer array at the input of

cyclic shifter is used for this initialization. The CNU array takes the output of the cyclic

shifter serially, and the partial state stage will be operating on these values. After k clock

cycles, partial state processing will be complete and the final state stage in CNU array

will produce the final state for each check-node in 2 clock cycles. Then R select unit

within the each CNU unit starts generating k values of check-node messages in serial

fashions. The CNU array thus produces the check-node messages in a block serial

fashion as there are p CNUs are operating in parallel. The P vector is computed by

adding the delayed version of the Q vector (which is stored into a FIFO SRAM to till the

64

serial CNU produces the output) to the output vector R of the CNU. Note that the P

vector that is generated can be used immediately to generate the Q vector as the input to

the CNU array as CNU array is ready to process the next block row. This is possible

because CNU processing is split into three stages as shown in the pipeline diagram and

partial state stage and final state stage can operate simultaneously on two different block

rows. Now, the P message vector will undergo a cyclic shift by the amount of difference

of the shifts of the block row that is processed, and the previous block row that was just

processed. This shift value can be either positive or negative indicating that a down shift

or up shift need to be performed by the cyclic shifter. The shifted P sum messages are

subtracted by R message to get the shifted version of Q messages.

 The snapshot of the pipeline of the decoder is shown in Fig. 6.3.a. and 6.3.b Here,

the partial state stage in CNU (CNU PS) is operating on the 2nd block row from clock

cycles labeled as 0 to 24 (note that these numbers will not denote the actual clock

numbers as the snapshot is shown in the middle of the processing). Final state stage in

CNU (CNU FS) can not start until the end of PS processing, that is clock cycle 25. As

soon as the FS is done in clock cycle 26, R select is able to select the output R messages,

and P and Q messages processing starts. With the first block of Q message ready, PS for

the next block row can be started immediately. Note that all the logic blocks (other than

the storage elements) are active over 90% of the time. The only exception is the offset

module, which is composed of two 5-bit adders, in each CNU. The overall proportion of

all the CNU FS logic in the overall decoder is less than 4%.The control unit also contains

the information of array code parameters such as j,k,q– these could be changed to

support multi-rate decoding. The family of rate-compatible codes is obtained by

65

successively puncturing the left most p columns and the topmost p rows in the H matrix

defined in (1b) q times. Changing q from 0 to 3(=j -2) gives the code rates of 0.8 to

0.9. Changing k values from 15 to 61 while fixing j=5 results in code rates from 0.666 to

0.91. The Q FIFO needs to be of maximum depth p as the k can take a maximum value

equal to p.

6.5.2. Scalable Architecture

Note that the throughput of the architecture is increased by increasing p of the

code, and scaling the hardware accordingly. While the complexity of computational units

scale linearly with p , the complexity of cyclic shifter increases with the

factor pp 2log)2/(. So, it is necessary to change the architecture for large values of p .

Alternatively it may be needed in low throughput applications to have low

parallelization. To suit this requirement, minor changes in the proposed architecture are

necessary. Let us assume the desired parallelization is pM < . For the ease of

implementation, choose M close to the powers of 2. The cyclic shifter needed is MM × .

Since it is needed to achieve pp× cyclic shift with consecutive shifts of MM × , it is

necessary that the complete vector of size p is available in M banks with the

depth))/((Mpceils = and shifting is achieved in part by the cyclic shifter, and in part by

the address generation. Now, all the CNU and variable node processing is done in a time

division multiplexed fashion for each sub-vector of length M , so as to process the

vector of size p to mimic the pipeline in Fig. 6.3. Now, instead of taking one clock

cycle to process a block column in a block row

66

 Fig. 6.3. Block serial processing and 3-stage pipelining for TDMP using OMS a) Detailed Diagram

67

67

Fig. 6.3 continued b) Simple diagram

68

(layer), it takes s clock cycles. The FS register bank external to the CNU and FS registers

in CNU are now implemented as M banks of memory with depths equal to js and word

length is equal to the total number of bits to represent the four information entities of

final state of each check node (FS) viz, M1, -M1, M2 and M1 Index. In addition, we need

another memory with M banks with depth equal to s to store the partial state (M1, M2,

M1 Index and cumulative sign). Channel values need to be stored in a buffer of size

p as the decoder needs any M values out of this buffer at each clock cycle. Note that this

architecture is consuming less numbers of logic when compared to fully scaled

architecture, its memory requirements increased slightly. One way to look at the memory

requirements of the scalable architecture ()pM < is: all the logic resources, FS

registers, and PS registers are scaled down from p to M ,while having an external

SRAM of size equal to the number of FS, and PS registers used in the case of fully

scaled architecture (i.e. pM =). Note that the exact memory bank organization can be

changed by grouping different messages together, so less numbers of memory banks are

possible.

6.6. Implementation Results and Discussion

 We prototyped the proposed multi-rate decoder architectures on Xilinx Virtex

2V8000-5 device. The synthesis results and performance comparison with other recent

state of the art implementations are given in Table 6.1. More details on FPGA

implementation for required memory is given in Tables 6.2 and 6.3. The work in [42]

can be directly compared with the present work as both target different coding rates and

support code lengths of up to 10,000 and the BER performance of the regular codes

69

considered in both the architectures is similar. The work in [38] and [22] only supports

one fixed code length. Similarly the work in [41] supports one code rate only while

supporting different lengths from 1000-3000. The amount of memory that needs to be

used in multi-rate architectures is dependent on the maximum values of code parameters

that need to be supported. Also note that almost all the recent semi-parallel architectures

[3]-[8] are based on LDPC codes constructed from cyclically shifted identity matrices for

the ease of implementation. So, for a fair and uniform comparison, memory savings in

the next paragraphs are calculated on assuming the same kind of code parameters (size of

identity matrix used, p, check node degree, k, variable node degree, j and code length, N).

 We also implemented the proposed decoder architecture using the open source

standard cells vsclib013 [62] in 130 nm technology. The synthesis is done using synopsys

design analyzer tool, while layout is done using cadence’s silicon ensemble tool. Tables

6.4, 6.5 and 6.6 give the performance comparison as well as the decoder chip

characteristics. The original TDMP decoder [20] is based on more complicated BCJR

algorithm. The CNU for BCJR takes more area due to the need of several internal FIFOs.

In addition, Omega network is used in [20] instead of logarithmic shifter. The use of

logarithmic shifter saves area to store the control signals as well as the the absence of

control wires make the logarithmic shifter’s layout much more compact. The proposed

decoder has a frequency advantage also, as the CNU stage has 3 pipeline stages. The

decoder in [20] has fewer pipeline stages.

70

6.6.1. Memory Savings

1) Block Serial Architecture

 Consider the proposed implementation for (5,k) array LDPC codes. The parameters

for this family of codes are 5=j , ()60,11,10 max == kk L , .3,2,1,0,61 == qp where maxk is

the maximum check-node degree of all the codes that need to be supported. The proposed

TDMP architecture features large memory savings, up to 2x throughput advantage, as

well as 50% less interconnection complexity. The TDMP permits us to use a running

sum, which is initialized to channel log-likelihood ratio (LLR) values in the first

iteration. So, there is no memory needed to store the channel LLR values as these values

are implicitly stored in the Q messages. Since the maximum number of Q messages that

need to be stored are equal to 5max ×× pk , as opposed to storing pjkmax5 messages in

TPMP architectures. So, the total savings in Q memory are 80% as a direct result of

employing TDMP proposed in [3].

 The proposed architecture offers further advantages. Instead of storing all the R

messages, the compressed information, M1, -M1, +/-M2, and index of M1 is stored (FS

memory). R select unit can generate the R message by the use of an index comparator

and the sign bit of the R message which comes from the sign FIFO. This results in a

reduction of around 50%-90% of R memory based on the rate of the code when

compared to BCJR algorithm or Sum of Products algorithm. The total savings in R

memory is

()⎡ ⎤[]
%100

5
2log355

max

maxmaxmax ×
+×+−
pjk

jpkkpjk
.

71

The factor 5 comes due to the use of 5-bit quantization for R messages. So the savings of

R memory for (5,k) codes with 61max =k is 73%

 Also note that, due to the nature of block serial scheduling and the principle of on-

the-fly computation in the architecture, there is no need to store the P messages. The total

savings of memory bits is ()6max ×× pk . Note that the factor 6 comes due to the number

of bits used to represent the P message.

 The total savings in memory for the proposed block serial architecture, accounting

for R memory, Q memory, and P memory, when compared to TPMP architectures based

on SP and min-sum [18], [37], [41] is 82%. When compared to TDMP-BCJR

architecture [20] and TDMP-SP architecture [48], the total memory savings due to our

TDMP-OMS architecture is 72% since all TDMP architectures have the same savings in

Q memory. The total memory needed in our prototyped block serial architecture is 37210

bits.

2) Scalable Architecture

 In the case of scalable architecture, the above savings will apply for R memory, Q

memory. The savings for P memory will change slightly. Due to the nature of block serial

scheduling in the architecture, there is only the need to store the P messages for only two

blocks. The total savings of memory bits is
()

%100
6

626

max

max ×
××−

pk
ppk

. Note that the

factor 6 comes due to the number of bits used to represent the P message.

 Note that the scalable architecture features a partial state memory when compared to

the block serial architecture. However, this is small as it must contain the partial state for

only one block row at any time, is equal to ()⎡ ⎤[]pkk maxmax 2log25 +×+ bits.

72

 Consider the proposed implementation for (3,k) array LDPC codes. The parameters

for this family of codes are 3=j , ()32,7,6 max == kk L , .1,0,347 == qp The total savings

in memory for the proposed scalable architecture, accounting for R memory, Q memory,

and P memory, when compared to TPMP architectures based on SP and min-sum [6]- [8],

is 67%. When compared to TDMP-BCJR architecture [3] and TDMP-SP [4], the total

memory savings due to our TDMP-OMS scalable architecture is 54% since all TDMP

architectures have the same savings in Q memory. The total memory needed in our

prototyped scalable architecture is 131860 bits.

6.6.2.. Savings in Logic

 We designed a low complexity serial CNU based on OMS using the value reuse

properties. This has significant logic savings when compared to other implementations of

SP, BCJR. There is no need of costly look up tables as in the case of SP. There is no need

of internal message FIFOs as in the case of BCJR. A parallel CNU can also be designed

based on these value re-use properties [55], (Chapter IV) which out performs the parallel

CNU presented in [20]. In addition, we used the properties of layered decoding and array

codes to reduce the complexity from two cyclic shifters [20], [38], [51], [37], [41] to one

cyclic shifter. The removal of an M x M cyclic shifter for 6 bit messages results in a

savings of)(2log6 MM multiplexers and associated wiring congestion.

6.6.3.. Throughput

 Each TDMP iteration consists of j sub-iterations and each sub-iteration takes

k(=check node degree) clock cycles as defined in sections 6.2 and 6.3. Note that k can

take any value that is less than kmax supported by the decoder implementation. This

73

feature along with the ability to control the number of layers by puncturing with the

parameter q, makes the decoder to decode a wide range of different rate compatible array

LDPC codes.

 User data throughput ut is given by () ddu tkqjktratet)/(+−=×= , (6.11)

where dt is decoded throughput and is given by

() ()CCIitpkfCCIitNftd ×== maxmax // , (6.12)

where f is the decoder chip frequency and CCI stands for number of clock cycles required

to complete one iteration.

()CCLqjCCI −= , (6.13)

where CCL stands for the number of clock cycles to process one layer and is given by

⎡ ⎤ 2+p/MkCCL = . (6.14)

To achieve the same BER as that of the TPMP schedule on SP (or equivalent TPMP

schedule on BCJR), the TDMP schedule on OMS needs half the number of iterations

(Fig. 6.4) having similar convergence gains reported for TDMP-BCJR [20] and TDMP-

SP [22]. However, the choice of finite precision OMS results in a performance

degradation of less than 0.2 dB. 5-bit uniform quantization for R and Q messages and 6-

bit uniform quantization for P messages is used. The step size for quantization,∆ , and

offset parameter,β are set based on the code parameters [32].

74

Fig. 6.4. (a) Bit error rate performance of the proposed TDMP decoder using

OMS(j=3,k=6,p=347,q=0) array LDPC code of length N=2082 and
(j=5,k=25,p=61,q=0) array LDPC code of length N=1525. (b) Convergence speed up
of TDMP-OMS over TPMP-SP. Results shown for (j=3,k=6,p=347,q=0) array LDPC

code of length N=2082. Here Itmax= maximum number of iterations.

75

6.7. Conclusion

 We present memory efficient multi-rate decoder architecture for turbo decoding

message passing of structured LDPC codes, using the min-sum algorithm for check-node

update. Our work offers several advantages, when compared to the other state of the art

LDPC decoders, in terms of significant reduction in logic, memory, and interconnect.

This work retains the key advantages offered by the original TDMP work – however our

contribution is in using the value-reuse properties of OMS algorithm and devising a new

TDMP decoder architecture to offer significant additional benefits. The contribution of

this work is in using the value-reuse properties of OMS algorithm to reduce the memory

storage requirement up to 70% and devising a new TDMP decoder architecture to reduce

the router requirements by 50% and reduce the memory requirements for the storage of

sum of channel values and variable node reliability messages. We also presented the

variation of the architecture, scalable architecture that offers a throughput-hardware

resource trade-off.

76

Table 6.1

FPGA implementations and performance comparison

 T. Brack
Et al.[41]

D. Hocevar
et al.
[38],[22]

L. Yang
et al. [42].

Optimally scaled,
parallelization (M)=p=61

Scalable
(M<p
M=61
p=347)

Slices 11,729 NA1, 34,127 6,002 6,182
LUTs NA 72,621 24,570 7,713 8,022
Slice flip-flops NA 6,779 53,327 9,981 10,330
BRAM 76 32 102 12 129
Actual Memory
used
(in bits)

NA 173,892
(86 x 337 x 6)

566,784 37,210 131,860

Xilinx FPGA
Device used2

Virtex4-
LX100

Virtex2-V8000 Virtex2-
V8000

Virtex2-V8000 Virtex2-
V8000

Frequency 100 44 100 112 112
Code rate 0.8 0.5 5/8,7/8,1/2 0.5-0.9167 0.5-0.9063
Code parameters
Supported,

Code
length
N= 1000-
3000

Fixed
N=8888,
p=337,
Number of non-zero
blocks in H, Nnz=86

Different
Coding
Rates
N=10,000

p = 61,
j = 5,
k = 10,..61,
q = 0,…,3
N=pk=
610-3,721
Max. Nnz=295

p = 347,
j = 3,
k = 6,..32,
q = 0,1
N=pk=
2082-
11,104
Max.
Nnz=93

Code
Construction

Structured Structured Structured array LDPC array
LDPC

Check Node
Update

Normalized
MS

SP SP OMS OMS

Decoding
Schedule

TPMP TPMP or
TDMP

TPMP TDMP TDMP

Maximum
Iterations

10 TPMP 25 TPMP [22]
12 TDMP [38]]

24 TPMP

10 TDMP 10 TDMP

User Data
Throughput, tu

180 Mbps 40 Mbps [22]
80 Mbps [38]

66 Mbps 68-329
Mbps

113-319
Mbps

1One Virtex-2 slice has 2 LUTs, 2 slice flip-flops and other logic. 2Virtex 4 family has higher
capabilities than Virtex 2 family.

77

Table 6.2

Memory implementation for block serial architecture (j=5,k=10,…,kmax (=61),
p=61,M=p)

 Implementation Required Memory in Bits

Number of
BRAMs

Data access(bits),
per clock cycles,
Read,r,/Write,w.

R
memory(External
FS registers, j-1
layers)

Register bank
FIFO of depth j-
1

()⎡ ⎤[]()pjk 12log35 max −+× LUTs are
configured as
shift registers
(320 LUTs are
used to store
5124 bits)

1281, k, w
305 , 1, r

R memory(Internal
FS and PS
registers,1 layer)

Registers as part
of CNU

FS: ()⎡ ⎤[]pkmax2log35 +×
PS:

()⎡ ⎤[]pk 12log25 max ++×

Slices
flipflops are
used
(2318 slice
flip flops to
store 2318
bits)

1281, k, w
305 , 1, r
1037(max),1,w
1037,1,r

R memory, Sign
FIFO(j-1 layers)

2 Dual Port
BRAM

()pjk 1max − 1, Width =31,
Depth = 244
1, Width = 30,
Depth = 244

61 ,1,w
61 ,1,r

Q FIFO 10 Dual Port
BRAM

pkmax5 9, Width =30,
Depth = 61
1, Width = 35,
Depth = 61

305 ,1,w
305 ,1,r

P Memory NA 0 Not needed 0

78

Table 6.3

Memory implementation for scalable architecture (j=3,k=6,…,kmax
(=32),p=347,M=61)

 Implementation Required Memory in Bits Number of BRAMs
R memory(External FS
registers, j-1 layers)

34 Dual Port BRAM Same formula as in Table 6.2 34, Width =36, Depth = 12

R memory(Internal FS
and PS registers,1
layer)

62 Dual Port BRAM Same formula as in Table 6.2 34, Width =36, Depth = 6
28, Width =36, Depth = 6

R memory, Sign
FIFO(j-1 layers)

2 Dual Port BRAM Same formula as in Table 6.2 1, Width =31, Depth = 384
1, Width = 30, Depth = 384

Q FIFO 10 Dual Port BRAM Same formula as in Table 6.2 9, Width =30, Depth = 192
1, Width = 35, Depth = 192

P Memory 21 Dual Port BRAM p×× 62 21, Width= 36, Depth =6

79

Table 6.4

ASIC Implementation of the proposed TDMP multi-rate decoder architecture

Semi-Parallel
multi-rate
LDPC decoder
[20]

Multi-rate
TDMP
Architecture
regular QC-LDPC

LDPC Code
AA-LDPC, (3,6) code, rate 0.5,
length 2048

((5,k) rate compatible
array codes
p=61.
k=10,11,..61length
=pk(610,.,3721)

Decoded Throughput, td, 640 Mbps 590 Mbps
Area 14.3 mm2 1.6 mm2
Frequency 125 MHz 500 MHz
Nominal Power Dissipation 787 mW 257 mW
Memory 51,680 bits 37,210 bits
CMOS Technology 180 nm, 1.8V 130 nm, 1.2V
Decoding Schedule TDMP, BCJR, itmax=10 TDMP, OMS, itmax=10
Area Efficiency for td, 44.75 Mbps/mm2 369 Mbps/ mm2
Energy Efficiency for td, 123 pJ/Bit/Iteration 44.2 pJ/Bit/Iteration
Est. Area for 180 nm 14.3 mm2 ~3.06 mm2
Est. Frequency for 180 nm 125 MHz ~360 MHz
Est. Decoded Throughput(td) , 180 nm 640 Mbps 426 Mbps
Est. Area Efficiency for td, 180 nm 44.75 Mbps/mm2 139.2 Mbps/mm2
Energy Efficiency for td, 180 nm 123 pJ/Bit/Iteration 99.45 pJ/Bit/Iteration
Application Multi-rate application as well as

fixed code application
Multi-rate application as well as
fixed code application
Rate-compatible array codes are
considered for DSL applications.

Bit error rate Performance Good Good and similar to AA-LDPC
itmax= Maximum number of iterations.

80

Table 6.5

Area distribution of the chip for (5, k) rate compatible array codes, 130 nm
(note that the CNU array includes CNUs as well as FS registers)

 Area (mm2)
CNU Array 0.67
VNU Array 0.05
Memory 0.71
Pipeline flip-
flops

0.02

Cyclic shifter 0.08
Wiring 0.07
Total chip area 1.6

Table 6.6

Power distribution of the chip for (3,k) rate compatible array codes, 130 nm

 Power (mW)
Logic(CNU,VNU and
shifters)

162.7

Memory 45.4
Leakage ~0.1
Clock 32.5
Wiring 16.2
Total 257.0

81

CHAPTER VII

MULTI-RATE TDMP ARCHITECTURE FOR IRREGULAR QC-LDPC CODES

7.1. Introduction

 In this work, we propose to apply TDMP for the offset MS for block LDPC codes

used in IEEE 802.16e (Mobile WiMax) and IEEE 802.11n (High speed wireless local

area network). WiMax technology involves microwaves for the transfer of data

wirelessly. It can be used for high-speed, mobile wireless networking at distances up to a

few miles. The main contribution of this work is an efficient architecture that utilizes the

value–reuse property of OMS, cyclic shift property of structured LDPC codes and

enhancement of our previous work of block serial scheduling [51], (Chapter III). The

proposed architecture utilizes the value–reuse property of offset min-sum, block-serial

scheduling of computations and turbo decoding message passing algorithm. The decoder

has the following advantages: 55% savings in memory, reduction of routers by 50%, and

increase of throughput by 2x when compared to the recent state-of-the-art decoder

architectures.

 The rest of the chapter is organized as follows. Section 7.2 gives the background

about structured block LDPC codes, and TDMP. The data flow graph and architecture for

TDMP using offset MS is shown in Section 7.3. Section 7.4 presents the FPGA and

ASIC implementation results and discussion. Section 7.5 concludes the chapter.

82

7.2. LDPC Codes and Decoding

7.2.1. Block LDPC Codes of WiMax

 The block irregular LDPC codes have competitive performance and provide

flexibility and low encoding/decoding complexity [12]. The entire H matrix is composed

of the same style of blocks with different cyclic shifts, which allows structured decoding

and reduces decoder implementation complexity. Each base H matrix in block LDPC

codes has 24 columns, simplifying the implementation. Having the same number of

columns between code rates minimizes the number of different expansion factors that

have to be supported. There are four rates supported: 1/2, 2/3, 3/4, and 5/6, and the base

H matrix for these code rates are defined by systematic fundamental LDPC code of bM -

by- bN where bM is the number of rows in the base matrix and bN is the number of

columns in the base matrix. The following base matrices are specified: 12 x 24, 8 x 24, 6

x 24, and 4 x 24. The base model matrix is defined for the largest code length (N = 2304)

of each code rate. The set of shifts in the base model matrix are used to determine the

shift sizes for all other code lengths of the same code rate. Each base model matrix has 24

(= bN) block columns and bM block rows. The expansion factor z is equal to N/24 for

code length N. The expansion factor varies from 24 to 96 in the increments of 4, yielding

codes of different length. For instance, the code with length N = 2304 has the expansion

factor z=96 [12]. Thus, each LDPC code in the set of WiMax LDPC codes is defined by a

matrix H as

83

b

bbbb

b

b

H

NMMM

N

N

P

PPP

PPP
PPP

H =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

,2,1,

,22,21,2

,12,11,1

L

LLLL

L

L

 (7.1)

where jiP , is one of a set of z-by-z cyclically right shifted identity matrices or a z-by-z

zero matrix. Each 1 in the base matrix bH is replaced by a permuted identity matrix

while each 0 in bH is replaced by a negative value to denote a z-by-z zero matrix.

7.2.2. Block LDPC Codes of IEEE 802.11n

 These codes have the same structure as the Block LDPC codes of WiMax. The

expansion factor, defined as the size of the identity matrix z can be 27, 54 or 81 [13]. All

the base matrices have the same number of block columns Nb = 24, and the code length N

is zNb × .The code lengths (648; 1296 and 1944) and all the code rates (1/2; 2/3; 3/4 and

5/6) are specified in IEEE 802.11n standard draft [13].

 In TDMP, the block LDPC with j block rows can be viewed as concatenation of j

layers or constituent sub-codes similar to observations made for AA-LDPC codes in [20].

In TDMP, after the check-node processing is finished for one block row, the messages

are immediately used to update the variable nodes, whose results are then provided for

processing the next block row of check nodes. This differs from TPMP, where all check

nodes are processed first and then the variable-node messages will be computed. Each

decoding iteration in the TDMP is composed of j number of sub-iterations. In the

beginning of the decoding process, variable messages are initialized as channel values

and are used to process the check nodes of the first block row. After completion of that

block row, variable messages are updated with the new check- node messages. This

84

concludes the first sub-iteration. In similar fashion, the result of check-node processing of

the second block row is immediately used in the same iteration to update the variable-

node messages for third block row. The completion of check-node processing and

associated variable-node processing of all block rows constitutes one iteration.

The TDMP can be described with (7.2-7.5):

[Initialization for each new received data frame],

)0()0(
, ,0 mmml LPR

rrr
== , 1, 2, ,l j∀ = L , bNm ,,2,1 L=∀ (7.2)

max,,2,1 iti L=∀ , [Iteration loop]

1,2, ,l j∀ = L , [Sub-iteration loop]

kn ,,2,1 L=∀ , [Block column loop]

()[] [] ()1
,

),(),(

,
−−= i
nl

nlS
n

nlSi
nl RPQ

rrr
, (7.3)

() ()[] ()() knQfR
nlSi

nl
i
nl ,,2,1,

,
,, L

rr
=′∀=

′

′ , (7.4)

[] ()[] ()i
nl

nlSi
nl

nlS
n RQP ,

),(

,
),(rrr

+= , (7.5)

where the vectors ()i
nlR ,

r
 and ()i

nlQ ,

r
 represent all the R and Q messages in each non-zero

block of H matrix, (,)s l n denotes the shift coefficient for the lth block row and nth non-

zero block of the H matrix (note that null blocks in the H matrix need not be processed);

[]),(1
,

nlSi
nlR −

r
denotes that the vector 1

,
−i
nlR

r is cyclically shifted up by the amount (,)s l n , k is the

check-node degree of the block row. A negative sign on (,)s l n indicates that it is cyclic

down shift (equivalent cyclic left shift).)(⋅f denotes the check-node processing, which

can be done using BCJR, SP or MS. For the proposed work we use OMS as defined in

85

Chapter II and IV. In addition, we apply the connection for a message also to have two

dimensional correction for min-sum decoding. [33].

7.3. Multi rate Decoder Architecture Using TDMP and OMS

7.3.1. Architecture Description

 A new data flow graph is designed based on the TDMP and on the value-reuse

property of the OMS algorithm described in Chapter IV. For ease of discussion, we will

illustrate the architecture for the specific structured code denoted as rate ¾ code A. Note

that all the codes have the same number of block columns. By changing the parameter k

supplied to the CNU and by varying the parameter j, the number of block rows to be

processed, this architecture supports all the codes in the 802.16e standard. For rate 3/4

code A of length 1152 has j =6 block rows and check-node degree of the 6 block rows is

given by k_v= [13 12 12 12 12 13] and the block size is z = 48. Assume that the desired

parallelization is M=24. The cyclic shifter needed is MM × . The zz × cyclic shift is

achieved with cyclic shifts of MM × in combination with the appropriate address

generation and this works for only z=24,48 and 96. The complete P vector of size z is

available in M memory banks of depth 2)/(== Mzceils . The shifter is constructed as

a cyclic down logarithmic shifter to achieve the cyclic shifts specified by the binary

encoded value of the shift. The logarithmic shifter is composed of)(2log M stages of M

2-in-1 multiplexers. Cyclic up shift by u can be simply achieved by doing cyclic down

shift with uz − on the vector of size. Say now if we want to change the parallelization M

to 48. If we construct a single 48 x 48 cyclic shifter, it can only handle z=48. So, we use

two 24 x 24 cyclic logarithmic shifters to construct the 48 x 48 shifter while being able to

86

work as two independent 24x24 shifters to support the expansion factor z=24. We need to

introduce some additional multiplexers to achieve this. This way the decoder can support

the expansion factors of 24, 48 and 96. Similarly, the cyclic shifter implementation for

M=96, is constructed out of 4 24 x 24 cyclic logarithmic shifters. One should note that it

is not possible to achieve cyclic shifts specified by (,)s l n ,(=0,1,..z-1) on a vector of

length z with a cyclic shifter of size MM × if M is not a integer multiple of z, z = M.

This issue will be dealt with the use of a master-slave Benes network as explained later.

7.3.2. Decoder Operation

 Details on CNU processing are given in Fig 7.1. The decoder architecture is

presented in Fig. 7.2. Notice the similarity with the data flow graph for regular QC-LDPC

codes. (Fig.6.2.) All the check-node processing and variable-node processing is done in a

time division multiplexed fashion for each sub-vector of length as shown in Fig. 7.3. To

process a block in a block row (layer), it takes s clock cycles. A check-node process unit

(CNU) is the serial CNU based on OMS described in the previous section. The CNU

array is composed of M serial CNUs described in Chapter IV. As shown in the pipeline

(Fig. 7.3), the CNU array operates on the R messages and partial states of two adjacent

block rows. While the final state has dependency on partial states, P and Q messages are

dependent on the final states. Since the final state of the previous block rows, in which

the compact information for CNU messages is stored, is needed for TDMP. It is stored in

the FS memory. There is one memory bank of depth j , which is 12 in this case,

connected with each CNU. The FS memory for the entire CNU array is implemented as

M banks of memory with depth js and word length 20 bits, constituted of {M1, -M1,

+/-M2} with offset correction, and M1 index. In addition, we need another memory with

87

M banks with depths equal to s to store the partial state, with the word length 16 bits as

we need to store and retrieve (M1, M2, M1 index and cumulative sign). Note that we

need to store partial state for only one block row at any time.

Fig.7.1. Operation of CNU (a) no time-division multiplexing (b) time-division
multiplexing

88
88

Fig.7.2. Multi-rate LDPC decoder architecture for Block LDPC codes

89

Fig.7.3. Three-stage pipeline of the multi-rate decoder architecture.

Fig.7.4. Out of Order Processing for Rnew selection

PS processing Rnew selection

R selection for Rnew operates out-of-order to feed the data for PS processing of next
layer

90

 For the decoding of one layer, (7.3-7.5) are performed in sequence and these steps

are repeated for all the layers. As shown in Fig. 7.3, the CNU array operates on the R

messages and partial states of two adjacent block rows (layers). While the final state has

dependency on partial states, P and Q messages are dependent on the final states. In the

decoding process, a block row of check nodes are processed in serial fashion, the output

of the CNU is also in serial form. As soon as the output vector ()1
,
i
nlR

r
 corresponding to

each block column n , in H matrix, for a block row l is available. This could be used to

produce the updated sum []),(nlS
nP
r

in (7.5), which is then immediately used in (7.3) to

process the shifted vector for block row 1+l . The shift ()nlS , imposed on nP
r

 has to be

undone and a new shift ()nlS ,1+ imposed. This could be achieved by simply imposing a

shift corresponding to the difference of ()nlS ,1+ and ()nlS , .

 To accommodate the irregularity in block LDPC codes, the R selection unit for

Rold(()1
,
−i
nlR

r
 in (7.3)) and PS processing are executed in linear order for the current layer

(i.e. first non-zero block, second non-zero block in a layer), while order of R generation

for Rold processing is determined by the non-zero blocks of the next layer that has to be

processed because ()i
nlQ ,

r
in (7.3) has dependency on ()1

,
i
nlR

r
 in (7.4) of the previous layer.

Furthermore, since check node degree of each layer in Irregular Block codes may vary

widely, it is not efficient that each layer executes for the number of clock cycles equal to

the maximum check-node degree. In addition, due to data dependencies the processing of

the next layer may have to be stalled. To address these inefficiencies, we propose out-of-

order processing on Rnew generation. The R select unit for Rnew may be operating on any

of the previous layers (see Fig. 7.4). It should be pointed out that R generation is

91

independent of PS or FS processing, so it’s out-of-order processing will not impose any

additional restriction on the architecture. Even though it does require careful scheduling

and there will be some additional logic to account for selecting based on the M1 index.

 P values for a block are stored in a buffer each of size z as the decoder needs

M values out of this buffer at each clock cycle. We need to store only two blocks to

permit pipelined operation (i.e. one buffer is filled while the other buffer is used to

produce Q messages) and these blocks are accessed in ping-pong fashion for processing

of each new layer. Besides the shifted Q messages, the CNU array also takes input of the

sign information for previous computed R messages in order to perform the R selection.

An R select unit generates the R messages for k edges of a check node from three

possible values stored in final state memory word associated with that particular check

node in a serial fashion. Its functionality and structure is the same as the block denoted as

R select in CNU. This unit can be treated as a de-compressor of the check-node edge

information, which is stored in compact form in FS memory. It is possible to do the

decoding using a different sequence of layers instead of processing the layers from 1 to j

which is typically used to increase the parallelism such that it is possible to process two

block rows simultaneously [38]. In this work, we use the same concept of re-ordering, but

also for low complexity memory implementation. We need to schedule the order of layer

processing and partition the Q memory to limit the number of read/write accesses to two

for a memory bank. Q memory is partitioned into three dual port memory banks, with

each supporting two read/write accesses. Note that Q memory has to be further

partitioned to support vector processing. Also note that the decoder stopping criterion can

be done for each layer using cHT block similar to the process in [38]. However, the

92

proposed decoder needs 1 bit wide m x m cyclic shifter on hard decision values of P in

this process.

Master-slave Benes network

 To be able to accommodate different shifts needed for the WiMax LDPC codes, we

can use a Benes network as in [60], which is of complexity 1)(2log2 −M stages of M 2-

in-1 multiplexers. A memory can be used to store control inputs needed for different

shifts in case of supporting one expansion factor [20], [60]. [20] uses Omega network,

which is less complex than Benes network [60]. However both [20] and [60] will support

only base H matrix. Note that this memory for providing control signals to this network is

equal to ()1)(2log2
2

−MM bits for every shift value that needs to be supported. This will

be a very huge requirement for supporting all the WiMax codes. Note that the memory

needed for storing control signals for the Omega network is around 1.22 mm2 in, out of

the decoder chip area of 14.1 mm2.[20]. This is equivalent to storing the control signals

for one expansion factor and one base H matrix. So, if the same kind of scheme is used to

support 19 different expansion factors and 6 types of base H matrices in run time, the

control signal memory needs approximately 139 mm2. So, this approach clearly will not

work. We propose a simpler approach to generate the control signals using a Master-

Slave Benes router (Fig. 7.5). Assume that we need to perform a cyclic shift of 2 on a

message vector of length 4 using a 8x8 Slave Benes network. Supply the integers (2, 3, 0,

1, 4, 5, 6, 7) to the Master Benes network which is always configured to sort the inputs

and output (0,1,2,…7). During the sorting process, the Master Benes network can

generate the control signals on by virtue of comparators [40]. These signals can be used

93

in the Master network to accomplish sorting. Also, these signals can be used in the Slave

network to achieve the desired shift of 2. Note that the complexity of this approach adds,

almost doubles the overall logic requirements of the router.

Fig.7.5. Proposed Master-slave router to support different cyclic shifts that arise due to
a wide range of expansion factors z(=24,28,..,96) and shift coefficients(0,1,..,z-1).

7.4. Discussion and Implementation Results

 Table 7.2-7.4 gives the FPGA implementation and comparison results. The proposed

TDMP architecture features large memory savings up to 2x throughput advantage, as

well as 50% less interconnection complexity. The TDMP permits us to use a running

sum, which is initialized to channel log-likelihood ratio (LLR) values in the first

iteration. So, there is no memory needed to store the channel LLR values as these values

are implicitly stored in the Q messages. Since the maximum number of Q messages that

need to be stored are equal to 5×× ob zN , as opposed to storing 5×× onz zN messages in

TPMP architectures where bN is the maximum number of block columns of all the codes

that need to be supported, oz is the maximum expansion factor of the base matrix, nzN is

the number of non-zero blocks by considering the base H matrix, which has the

maximum number of non-zero blocks among all the base H matrices that need to be

94

supported. For WiMax LDPC codes, these parameters are 24=bN , 96oz = , and

76nzN = . So, the total savings in Q memory are 68% as a direct result of employing

TDMP proposed in [2].

 The proposed architecture offers further advantages. Instead of storing all the R

messages, the compressed information cumulative sign, M1, -M1, +/-M2, and index of

M1 is stored. R select unit can generate the R message by the use of an index comparator

and the XOR of the cumulative sign and the sign bit of the corresponding Q message

which comes from the sign FIFO. The total savings in R memory is

25 [5 3 (log ()) 1] 100%
5

l o l o

l

kN z k ceil k N z
kN

− + × + +
× , where lN is the number of layers or block

rows by considering the base H matrix, which has the maximum number of non-zero

blocks among all the base H matrices that need to be supported. The factor 5 comes due

to the use of 5-bit quantization for R messages. Among the different base LDPC codes in

WiMax, rate 5/6 code has the maximum check-node degree, 19=k and the maximum

number of block rows in the H matrix is 12. So the savings of R memory is 57%.

 Also note that, due to the nature of block serial scheduling and the scheduling of

layered processing in the architecture, there is only the need to store the P messages for

only two blocks. The total savings of memory bits

is () () %1006626 ×××××−×× oboob zNzzN . Note that the factor 6 comes due to the

number of bits used to represent the P message. So the savings are around 91% as

19max =k and, z0=96 for block LDPC codes in 802.16e.

 The total savings in memory accounting for R memory, Q memory, and P memory,

when compared to TPMP architectures based on SP [13] and min-sum [7], [8], [14] is

95

63%.When compared to TDMP architecture based on BCJR [2], the total memory

savings is 55% since both architectures have the same savings in Q memory.

 In terms of throughput and interconnect advantage, to achieve the same BER as that

of TPMP schedule on OMS, TDMP schedule on OMS needs half the number of

iterations. This essentially doubles the throughput. However, the choice of finite

precision OMS results in a performance degradation of less than 0.1 dB. 5-bit uniform

quantization for R and Q messages and 6-bit uniform quantization for P messages is used.

The step size for quantization,∆ , and offset parameter,β are set based on the code

parameters [11].

Table 7.1.

FPGA Implementation results of the multi-rate decoder (supports z=24, 48 and 96
and all the code rates)

(Device, Xilinx 2V8000ff152-5, frequency 110MHz)

Used

M=24 M=48 M=96
Available

Slices 1640 3239 6568 46592
LUT 2982 5664 11028 93184
SFF 1582 3165 6330 93184

BRAM 38 73 100 168
Memory (bits) 65760 65760 60288

Through-put (Mbps) 41~70 57~139 61~278

96

Table 7.2.

FPGA Implementation results, the multi-rate decoder, Fully Compliant to WiMax
(supports z=24,28,32,…,and 96 and all the code rates)

(Device, Xilinx 2V8000ff152-5, frequency 110MHz)

Used

M=24 M=48 M=96
Available

Slices 3746 8369 18664 46592
LUT 7939 15579 30858 93184
SFF 1582 3165 6330 93184

BRAM 38 73 100 168
Memory (bits) 65760 65760 60288

Through-put (Mbps) 41~70 57~139 61~278

Table7.3

Implementation comparison

M. Karkooti

et al
[37]

T. Brack
et al[41].

Slices 11352 14475
LUT 20374 N/A
SFF N/A N/A

BRAM 66 165
Throughput(Mbps) 127 180

Codes supported 1 code of
length 1536 and rate 0.5

3 codes of
length

1000,2000,
3000 and rate 0.8

Decoding TPMP-MS TPMP-MS
WiMax Code support No No

97

Fig. 7.6 User data throughput of the proposed decoder vs. the expansion factor of the
code,z, for different numbers of decoder parallelization,M

1 1.5 2 2.5 3 3.5 4
10

-5

10
-4

10
-3

10
-2

10
-1

10
0 FER vs. SNR, AWGN

Eb/No(dB)

FE
R QPSK, rate 1/2, length 2304

BPSK, rate 5/6, length 2304

Fixed point, Itmax= 10
Floating point, Itmax= 30
Fixed point, Itmax= 10
Floating point, Itmax= 30

 Fig.7.7. Frame-error rate results.

 Moreover, this architecture requires only one cyclic shifter instead of two cyclic

shifters [2], [4]. Note that the architecture features a partial state memory when compared

30 40 50 60 70 80 90

50

100

150

200

250

300

z factor of code

U
se

r D
at

a
th

ro
ug

hp
ut

 (M
bp

s)

rate 1/2
rate 2/3 A
rate 2/3 B
rate 3/4 A
rate 3/4 B
rate 5/6

M=24

M=96

98

to other architectures. However, this is small as it must contain the partial state for only

one block row at any time, is equal to 1536 bits. In the case of parallelization equal to

M= z0, then there is no need for P buffer. Also, PS memory bank and FS memory bank

need to store only R messages belonging to 11 layers. The P buffer is not needed as the

shifter employed is
oo zz × and it can perform the shift without the need of a buffer since

the input messages are available in the chunks of z0. There is no need for a PS memory

bank, since there are z0 CNU to handle the maximum number of rows in a block row (z0),

and consequently there is no time folding. The data throughput results are presented in

Fig. 7.6. Note that the throughput is dependent on the z factor of the code as this

determines the percentage usage of the available parallelization M. The implementation

has a performance penalty of less than 0.15 dB in SNR when compared to floating point

TDMP decoding (see Fig. 7.7.).User data throughput ut is given by du tratet ×= , where

dt is decoded throughput and is given by ()CCIitNftd max/= , where f is the decoder chip

frequency and CCI stands for number of clock cycles required to complete one iteration.

CCI is given by ()CCLNCCI b= . bN is the number of block rows (or layers) of the code

and CCL stands for number of clock cycles to process one layer and is given as,

⎡ ⎤ 2+z/MkCCL code-max= . where code-maxk is the maximum check node degree of the

chosen base H matrix. For instance, rate 3/4 code A, [12], explained in previous sections,

the check node degrees of 6 block rows is specified as [13 12 12 12 12 13] . So here

code-maxk =13. Here z is the expansion factor of the code used and M is the decoder

parallelization as explained before. Note that some codes support processing of two

99

layers in parallel and the decoder can accommodate this if sufficient parallelism is

available as can be seen from Fig. 7.6.

7.4.1. ASIC Implementation Results for WiMax LDPC Codes

 We have implemented the proposed decoder architecture using the open source

standard cells vsclib013 [14] in 0.13 micron technology. The synthesis is done using a

synopsys design analyzer tool, while layout is done using a cadence’s Silicon Ensemble

tool. Tables 7.4-7.9 give the performance comparison as well as the decoder chip

characteristics. The original TDMP decoder [20] is based on more complicated BCJR

algorithm. The CNU for BCJR takes more area due to the need of several internal FIFOs.

In addition, Omega network is used in [20] instead of logarithmic shifter. The use of

logarithmic shifter saves area to store the control signals as well as the the absence of

control wires make the logarithmic shifter’s layout much more compact. The proposed

decoder has a frequency advantage also, as the CNU stage has 3 pipeline stages. The

decoder in [20] has fewer pipeline stages.

7.4.2. ASIC Implementation Results for 802.11n LDPC Codes

 All the code lengths (648, 1296 and 1944, according to different expansion factors z

= 27, 54, and 81 respectively) and code rates (1/2, 2/3, 3/4 and 5/6) as specified in the

IEEE 802.11n standard [13] are supported in this architecture. Table 7.10 gives the

FPGA implementation and ASIC results for M = 81 are shown in Table 7.11, in which

VNU constitutes the P adder array and Q subtractor array. Note that the relatively large

memory area in ASIC implementation is due to the 133 shallow memory banks required

for the total number of 55344 bits. Similar memory area overheads are reported in [3].

Here, all calculations for the decoded throughput are based on an average of 5 decoding

100

iteration to achieve a frame error rate of 1e-6, while itmax is set to 15. The total power

dissipation is estimated to be 238.4mW by the Synopsys design analyzer. Recent work on

IEEE 802.11n LDPC decoder [15] consumes 375:14K logic gates and 88452 bits of

memory for 940 Mbps throughput. So the proposed decoder, when compared to this work

reduces the logic gate complexity by 6.45x and memory complexity by 2x for a given

data throughput (based on the results in Table 7.11).

7.5. Conclusion

 We present a memory efficient multi-rate decoder architecture for turbo decoding

message passing of block LDPC codes of IEEE 802.16e and IEEE 802.11n using the

OMS algorithm for check-node update. Our work offers several advantages when

compared to the other-state-of -the-art LDPC decoders in terms of significant reduction

in logic, memory, and interconnect. This work retains the key advantages offered by the

original TDMP work. However, our contribution is in using the value-reuse properties of

offset MS algorithm and devising a new TDMP decoder architecture to offer significant

additional benefits.

101

Table 7.4.

ASIC Implementation of the proposed TDMP multi-rate decoder architecture

Semi-Parallel
multi-rate
LDPC decoder
[12]

Multi-rate
TDMP
Architecture
regular QC-LDPC

LDPC Code
AA-LDPC, (3,6) code, rate 0.5,
length 2048

Irregular codes up to length 2304
IEEE 802.16e WiMax LDPC
codes

Decoded Throughput, td, 640 Mbps 1.37 Gbps
Area 14.3 mm2 2.1 mm2
Frequency 125 MHz 500 MHz
Nominal Power Dissipation 787 mW 282 mW
Memory 51,680 bits 60,288 bits
CMOS Technology 180,nm 1.8V 130 nm.2V
Decoding Schedule TDMP, BCJR, itmax=10 TDMP, OMS, itmax=10
Area Efficiency for td, 180 nm 44.75 Mbps/mm2 649.5 Mbps/mm2
Energy Efficiency for td, 180 nm 123 pJ/Bit/Iteration 21 pJ/Bit/Iteration
Est. Area for 180 nm 14.3 mm2 ~4.02 mm2
Est. Frequency for 180 nm 125 MHz ~360 MHz
Est Decoded Throughput(td),180nm 640 Mbps 989 Mbps
Est Area Efficiency for td, 180 nm 44.75 Mbps/mm2 246 Mbps/mm2
Est Energy Efficiency for td, 180 nm 123 pJ/Bit/Iteration 47.25 pJ/Bit/Iteration
Application Multi-rate application as well as

fixed code application
IEEE 802.16e
Multi-rate application .

Bit error rate Performance Good Very good and close to capacity

Table 7.5.

Area distribution of the chip for WiMax LDPC codes

Architecture 1 : supports z=24,48 and 96 and all the code rates)

Architecture 2: Fully Compliant to WiMax supports z=24,28,32,…,and 96 and all the
code rates. The only difference is the replacement of logarithmic cyclic shifter with
Master-slave Benes router. This will increase the complexity of router by almost 5x and
increase the power dissipation of the decoder by 70% when compared to the Architecture
1.

 Architecture 1,Area (mm2) Architecture 2,Area (mm2)
CNU Array 0.53 0.53
VNU Array 0.08 0.08
Memory 1.23 1.23
Pipeline flip-flops 0.03 0.03
Cyclic shifter 0.15 0.74
Wiring 0.09 0.12
Total chip area 2.11 2.73

102

Table 7.6.

Power distribution of the chip for WiMax LDPC codes

(supports z=24,48 and 96 and all the code rates)

 Architecture 1,Power (mW) Architecture 2, Power (mW)

Logic(CNU,VNU and shifters) 160.41 273.31
Memory 73.88 73.88
Leakage 0.09 0.11
Clock 32.08 54.66
Wiring 16.04 27.34
Total 282.5 429.3

Table 7.7.

ASIC Implementation of the proposed TDMP multi-rate decoder architecture for
802.11n LDPC codes

Semi-Parallel
multi-rate
LDPC decoder
[12]

Multi-rate
TDMP
Architecture
regular QC-LDPC

LDPC Code
AA-LDPC, (3,6) code, rate 0.5,
length 2048

Irregular codes up to length 1944
IEEE 802.11n LDPC codes

Decoded Throughput, td, 640 Mbps 1.1571 Gbps
Area 14.3 mm2 1.782 mm2
Frequency 125 MHz 500 MHz
Nominal Power Dissipation 787 mW 238 mW
Memory 51,680 bits 52,488 bits
CMOS Technology 180 nm, 1.8V 130 nm, 1.2V
Decoding Schedule TDMP, BCJR, itmax=10 TDMP, OMS, itmax=10
Area Efficiency for td, 180 nm 44.75 Mbps/mm2 649.5 Mbps/mm2
Energy Efficiency for td, 180 nm 123 pJ/Bit/Iteration 21 pJ/Bit/Iteration
Est. Area for 180 nm 14.3 mm2 ~3.41 mm2
Est. Frequency for 180 nm 125 MHz ~360 MHz
Decoded Throughput(td) ,180nm 640 Mbps 833 Mbps
Area Efficiency for td, 180nm 44.75 Mbps/mm2 244 Mbps/mm2
Energy Efficiency for td, 180 nm 123 pJ/Bit/Iteration 47.25 pJ/Bit/Iteration
Application Multi-rate application as well as

fixed code application
IEEE 802.11n
Multi-rate application

Bit error rate Performance Good Very good and close to capacity

103

Table 7.8.

Area distribution of the chip for IEEE 802.11n LDPC codes

Supports z=27,54 and 81 and all the code rates. Fully compliant to IEEE 802.11n

 Area (mm2)
CNU Array 0.44
VNU Array 0.07
Memory 1.04
Pipeline flip-flops 0.02
Cyclic shifter 0.12
Wiring 0.08
Total chip area 1.78

Table 7.9.

Power distribution of the chip for IEEE 802.11n LDPC codes

Supports z=27,54 and 81 and all the code rates. Fully compliant to IEEE 802.11n

 Power (mW)

Logic(CNU,VNU and shifters) 135.35
Memory 62.34
Leakage 0.07

Clock 27.07
Wiring 13.53
Total 238.40

104

Table 7.10

FPGA Implementation results for the multi-rate decoder . Fully compliant to IEEE
802.11n (Device, XILINX2V8000FF152-5, frequency = 110MHZ)

 M=27 M=54 M=81 Available

Slices 1836 3647 5514 46592
LUT 3317 6335 9352 93184
SFF 1780 3560 5341 93184

BRAM 46 89 133 168
Memory(bits) 56640 56640 55344

Throughput(Mbps)
z = 81
z = 54
z =27

119
119
119

238
238
119

356
178
119

Table 7.11

ASIC Implementation results for the multi-rate decoder for M= 81
(Frequency = 500MHZ)

Resource Area(mm2) Equivalent NAND-2 gates
CNUs 0.45 67500
VNUs 0.07 10125

Storage 1.04 N/A
Flip-flops 0.03 3375

Shifter and wiring 0.22 18900
Total 1.85 99900

Throughput(Mbps) 541, 1082 and 1618 z = 27, 54 and 81

 105

CHAPTER VIII

A PARALLEL VLSI ARCHITECTURE FOR LAYERED DECODING FOR

ARRAY LDPC CODES

8.1. Introduction

 In this chapter, we use the novel parallel micro-architecture structure (Chapter IV)

for the check-node message processing unit (CNU) for the offset min-sum (OMS)

decoding of LDPC codes based on value-reuse and survivor concepts. In addition, a

novel physical-layout-driven architecture for TDMP, using the OMS for array LDPC

codes, is proposed. The resulting decoder architecture has significantly lower

requirements of logic and interconnects when compared to the published decoder

implementations.. Section 2.3 introduced the background of array LDPC codes and OMS,

the decoding algorithm. Section 6.3 presented the TDMP and its properties for array

LDPC codes. Section 4.1 presented the value-reuse property and proposed micro-

architecture structure of CNU. The data flow graph and parallel architecture for TDMP

using OMS is included in section 8.2. Section 8.3 shows the ASIC implementation results

and performance comparison with related work and section 8.4 concludes the chapter.

8.2. Parallel Architecture Using TDMP and OMS

 A new data flow graph architecture (see Fig. 8.1) is designed based on the

properties of TDMP and on the value reuse property of OMS. For ease of discussion and

also for the sake of relevant comparisons with the state of the art work, we will illustrate

the architecture for a specific structured code: array LDPC code of length N=2082 and

 106

-

Layer 2

FS Registers

+

CNU
1-347

+

Rold

Rnew

+

+
+

R
select

Sign Registers

Q subtractor
Array

P Sum
Adder Array

Layer 1 Layer 1
Layer 2

Q shift

Mux(P Initialization
to) Channel

LLR

 FF

Shift
Wiring

Pshift P

Pshift

Fig.8.1. Parallel architecture for layered decoder.

K=1041 described in section 2, 3=j , 6=k and 347=p . A parallel CNU with input vector

of length 6 is based on the design described in Chapter IV. The CNU array is composed

of p CNU computation units that compute the R messages for each block row in fully

parallel fashion. Since R messages of previous 1−j block rows are needed for TDMP,

the compressed information of each row is stored in final state (FS) register banks. Each

final state register in a FS register bank contains M1, -M1, +/-M2 and index for M1. The

depth of FS register bank is 1−j , which is 2 in this case. There are a total of p such

register banks, each one associated with one CNU. The sign bits of R messages are stored

in sign flip-flops. The total number of sign flip-flops for each row of R messages is k

and each block row has pk sign flip-flops. We need 1−j of such sign flip-flop banks in

total. A total of p R select units is used for Rold . An R select unit, whose functionality

and structure is the same as the block denoted as R selector in CNU (Fig.4.3), generates

the R messages for)(6 k= edges of a check node from 3 values stored in final state

 107

register in parallel fashion. In the beginning of the decoding process, i.e., the first sub-

iteration of the first iteration for each new received data block, P matrix (of dimensions p

x k) is set to received channel values in the first clock cycle (i.e. the first sub-iteration),

while the output matrix of R select unit is set to zero matrix (6.7). The multiplexer array

at the input of P buffer is used for this initialization. Note that due to parallel processing,

each sub-iteration (6.8)-(6.10) takes one clock cycle. So, except for the first sub-iteration

of the first iteration, i.e., from the 2nd clock cycle, the P matrix is computed by adding the

shifted Q matrix (labeled as Qshift in Fig. 3) to the output matrix R (labeled as Rnew) of the

CNU array (6.10). The compressed information of R matrix stored in the register banks

FS is used to generate Rold for the lth sub-iteration in the next iteration (6.8). This results

in a reduction of R memory that is around 20%-72% for 5-bit quantized messages based

on the check-node degree k of the code. The proposed decoder supports a fixed value of

k, which is determined in the design time based on the error correction performance

required by application.

 Note that the P matrix that is generated can be used immediately to generate the Q

matrix as the input to the CNU array as the CNU array is ready to process the next block

row (6.8). Now each block column in the P message matrix will undergo a cyclic shift.

This shift is given by the amount of difference of the shifts of the block row that is

processed and the previous block row that was just processed in the previous sub-

iteration. A concentric layout is designed to accommodate routing and 347(=p) message

processing units (MPU) as shown in Fig. 8.2. An MPU consists of a parallel CNU, a

parallel VNU, and associated registers belonging to each row in the H matrix. The 2k

adder units, 1 R select unit associated with each parallel CNU is termed as the parallel

 108

variable-node unit (VNU). MPU i(0,1,2,…,346(=p-1)) communicates with its 5(=k-1)

adjacent neighbor MPUs (whose numbers are mod(i+1,p)...mod(i+5,p)) to achieve cyclic

down shifts of 1,2,...,5 (=n-1) respectively for block columns 2, 3, …,6 (=n)in the H

matrix (1). Similarly MPU i communicates with its 5(=k-1) adjacent neighbor MPUs

(whose numbers are mod(p-i-2,p)...mod(p-i-10,p)) to achieve cyclic up shifts of

2,4,..10(=(j-1)(n-1)), respectively for block columns 2, 3, …,6(=n) as noted in section

8.3. so the upshift needed on each block column n is 2n as j=3.

8.3. ASIC Implementation Results

 We have implemented the proposed parallel layered decoder architecture for (3,6)

code of length 2082 using the open source standard cells vsclib013 [62] in 0.13 micron

technology. The synthesis is done using Synopsys design analyzer tool, while layout is

done using Cadence’s Silicon Ensemble tool. The chip area is 2.3 mm x 2.3 mm and the

post routing frequency is 100 MHz. However, the additional IO circuitry (the serial-to-

parallel and parallel-to-serial conversion circuitry around the chip), which is application

dependent, is not accounted for in the chip area and is estimated not to exceed 15% of

chip area. Note that the only memory needed is to store compressed R messages and this

is implemented as scattered flip fops associated with each CNU. The ASIC

implementation of the proposed parallel architecture achieves a decoded throughput of

6.9 Gbps for 10 TDMP iterations and user data throughput of 3.45 Gbps. Each TDMP

iteration consists of j(=3) sub-iterations and each sub-iteration takes one clock cycle.

 109

...
...

...
...

.

.

.

...
...

M P U
1

M P U
2

M P U
3

(a)

M P U
6

(b)

Fig.8.2. a) Illustration of connections between message processing units to achieve
cyclic down shift of (n-1) on each block column n; b) Concentric layout to accommodate
 347 message processing units. Rectangles indicate MPUs while the arrowed lines
represent connections between adjacent MPUs. Connections for cyclic up shift of 2n are

not shown

User data throughput ut is calculated by the following formulae:

ddu tNKtratet *)/(* == ,where dt is decoded throughput and is given by

()CCIitfNtd */* max= ,where f is the decoder chip frequency and CCI stands for the

number of clock cycles required to complete one iteration. The symbols maxit , K, and N

are defined in section 8.2. The design metric CCI is equal to the number of layers in array

code i.e., j(=3). To achieve the same BER as that of the TPMP schedule on SP (or

equivalent TPMP schedule on BCJR), the TDMP schedule on OMS needs half the

 110

number of iterations (Fig. 8.3) having similar convergence gains reported for TDMP-

BCJR [20]. However, the choice of finite precision OMS results in a performance

degradation of 0.2 dB. 5-bit uniform quantization for R and Q messages and 6-bit

uniform quantization for P messages is used. The step size for quantization, ∆ , and offset

parameter, β are set to 0.15[32]. Table 8.1 gives the performance comparison with the

recent state-of-the-art work. The design data of 180 nm process for [15] and the present

work is extrapolated based on linear scaling in frequency and quadratic scaling in the area

of 180 nm CMOS process. The design in [21] is based on 1-bit data path. Though the

routing congestion is decreased based on broadcasting and hard decision, it is still an

issue with soft decoders. In addition, the hard decision decoder has very poor BER

performance. The fully parallel decoder architecture in [25] is based on modified array

codes to reduce the routing congestion and these exhibit early error floors. Thus this

decoder may not be suitable for low error floor applications which require BERs of less

than 1e-12. However, the advanced circuit techniques described in [25] may be

applicable to any LDPC decoder. The PLAs are used to implement non-linear functions

needed for SP decoding algorithm and occupied most of the area. All the other logic is

implemented as standard static and dynamic CMOS logic. In the proposed architecture,

the non-linear function is not needed in the offset min-sum. So there is no logic that can

readily benefit from using the PLA based logic design. However, recent research

indicates that it is possible to do a mix of PLA based logic and standard cell design to

improve the frequency.

 111

 When compared to the works in [15], [20], [21] and other published work, the work

presented here shows significant gains in area efficiency for decoded thrashput (td)user

data throughput (tu,) while having similar and good BER performance as that of [20].

Fig.8.3. BER performance of the decoder for (3,6) array code of N=2082.

8.4. Conclusion

 This chapter presented physical-layout-driven parallel decoder architecture for

TDMP of array LDPC codes. We showed the key properties of OMS such as value-reuse

and survivor, and designed a low complexity CNU with memory savings of around 20%-

72%. In addition, the properties of TDMP for array LDPC codes are used to remove the

interconnect complexity associated with parallel decoders. Our work offers several

advantages when compared to the other state-of-the-art LDPC decoders in terms of

significant reduction in logic, memory and interconnects.

 112

Table 8.1

 Proposed decoder work as compared with other authors.

 [20] [15] [21] This work
Decoded Throughput, td 640 Mbps 1.0 Gbps 3.2 Gbps 6.9 Gbps
Area 14.3 mm2 52.5 mm2 17.64 mm2 5.29 mm2

Decoder’s Internal
memory

51680 bits
(SRAM)
9216 bits (flip-
flops)

34816 bits
(scattered flip-
flops)

98944 bits
(scattered flip-
flops)

27066 bits
(scattered flip-flops)

Router/Wiring 3.28 mm2-Network 26.25 mm2-Wiring Details unknown 0.89 mm2-Wiring
Frequency, f 125 MHz 64 MHz 100 MHz 100 MHz
Nominal Power
Dissipation 787 mW 690 mW NA 75 mW

Area Efficiency for td, 44.7 Mbps/mm2 19.04 Mbps/mm2 181.4 Mbps/mm2 493.0 Mbps/mm2
Energy Efficiency for td, 123

pJ/Bit/Iteration
10.1 pJ/Bit/Iteration NA 1.1 pJ/Bit/Iteration

LDPC Code AA-LDPC, (3,6)
code, rate 0.5

Random and
Irregular code, rate
0.5

RS-LDPC, (6,32)
code, rate 0.8413

Array code, (3,6) code,
rate 0.5

Check Node Update BCJR SP SP Offset Min-Sum,OMS
Decoding Schedule TDMP, itmax=10 TPMP, itmax=64 TPMP, itmax=32 TDMP, itmax=10
Block Length, N 2048 1024 2048 2082
SNR(Eb /No) for BER of
1e-6

2.4 dB 2.8 dB 6.4 dB 2.6 dB

Average CCI due to
pipelining 40 1 1 3

CMOS Technology 180 nm, 1.8V 160 nm, 1.5V 180 nm, 1.8V 130 nm, 1.2V
Est. Area for 180 nm 14.3 mm2 ~66.4 mm2 17.64 mm2 ~10.1 mm2
Est. Frequency for
180nm

125 MHz ~56.8 MHz 100 MHz ~72 MHz

Est. Decoded
Throughput(td) 180 nm,

640 Mbps 887.5 Mbps 3.2 Gbps 4.98 Gbps

Est. Area Efficiency for
td, 180 nm

44.7 Mbps/mm2 13.36 Mbps/mm2 181.4 Mbps/mm2 493.0 Mbps/mm2

Est. Energy Efficiency
for td,, 180 nm

123
pJ/Bit/Iteration

14.5 pJ/Bit/Iteration NA 4.8
pJ/Bit/Iteration

Scalability of Design Yes No No Yes

 113

CHAPTER IX

SUMMARY

9.1. Key Contributions

This dissertation presented a systematic design of decoder architectures for QC-

LDPC codes using an on-the-fly computation paradigm. The ingredients of this paradigm

are reflected in the data flow graph design to minimize the logic, message passing

memory and router requirements

9.1.1. Key Contributions for Multi-rate Architectures for QC-LDPC Codes

Chapter III presented the multi-rate decoder architecture using the classic two

phase message passing schedule and describes the ways to achieve highly efficient

pipelined structures to minimize the message passing requirements and improve the

throughput. The required message passing memory is realized as the SRAM-FIFO which

also served as the internal FIFO for computations. The number of memory accesses is

50% less than the state-of-the-art decoders and this lead to improved energy efficiency. In

addition, due to the efficient pipelining techniques employed, the decoder has a

throughput advantage. The decoder in [12] has fewer pipeline stages due to the nature of

feedback loops in the CNU processing. In [5], the partial sums will go through a router

and reverse router and the final sum will have to go through another reverse router. This

would affect the timing as well as increase the complexity of the design. In addition, with

the code construction used in [5], the shifts needed are not necessarily cyclic. This would

result in costly implementation of a switching network instead of simple multi-stage

cyclic shifters.

 114

 Chapter IV presented the value-reuse properties of offset min-sum decoding

algorithm and the micro-architecture structures for the serial and parallel check-node

units. These implementations are better when compared to other implementation of min-

sum algorithm and its variants (offset min-sum and normalized min-sum).

Chapter VI presented the multi-rate architecture for rate compatible array LDPC

codes. This utilized the value-reuse properties of offset min-sum presented in Chapter III

and block-serial scheduling of computations presented in Chapter V, along with layered

decoding or TDMP proposed in [20]. This novel architecture has the following

advantages: removal of memory needed to store the sum of the variable node-messages

and the channel values, removal of memory needed to store the variable node-messages,

40%-72% savings in storage of extrinsic messages depending on the rate of the codes,

reduction of routers by 50%, an increase of throughput up to 2x. This architecture works

for any other regular QC-LDPC codes without any need of modifications in the hardware.

Chapter VII presented the ways to adapt the layered architecture (presented in

Chapter V) to the irregular QC- LDPC codes, Block LDPC codes. Block LDPC codes are

considered for various wireless standards such as IEEE 802.11n, IEEE 802.16e and IEEE

802.22. The techniques of data-forwarding and out-of-order processing are used to deal

with the irregularity of the codes. Another key advantage of layered decoder architectures

presented in Chapters VI and VII are the reduction of routers from 2 to 1. The

architectures benefit from the properties of layered scheduling which are not used in the

existing layered decoder architectures. Due to the fact that fewer number of non-zero

blocks have to be processed in the Block LDPC codes, the presented architecture for

Block LDPC codes achieves the best energy efficiency and area efficiencies when

 115

compared to the decoder architectures presented for regular QC-LDPC codes. When

compared with recent implementation of an 802.11n LDPC decoder [15], the proposed

decoder targeted for IEEE 802.11n, reduced the logic gate complexity by 6.45x and

memory complexity by 2x for a given data throughput. When compared to the latest state

of the art multi-rate decoders [20], this decoder design has an area efficiency of around

5.5x and energy efficiency of 2.6x for a given data throughput. The numbers are

normalized for a 180nm CMOS process.

In addition to the above key savings that apply for all the Block-LDPC codes,

Chapter VII described simpler ways to accommodate the parity check matrices with

different expansion factors. For the case of limited expansion factors, a base cyclic shifter

is used to achieve shifts for the vector lengths that are multiples of the input vector size of

the base cyclic shifter. For the case of wide range of expansion factors: A master-slave

router is proposed to accommodate different permutations that arise due to the need to

support 114 different parity check matrices in run time for IEEE 802.16e. This approach

eliminates the control memory requirements by generating the control signals for slave

data router with the help of a self routing master network.

9.1.2. Key Contributions for Fixed Code Architectures for Regular QC-LDPC

Codes

Some applications such as magnetic recording channel, high speed ether net and

optical links require very high throughputs. Here the channel is known beforehand, so a

fixed code can be designed based on the requirements of the application. This is in

contrast to the flexibility needed to accommodate different codes for varying channel

conditions in wireless applications.

 116

Chapter V presented a new fixed code architecture for regular array codes based

on the offset min-sum algorithm that reduces the need of message passing memory by

80% and the routing requirements by more than 50% when compared to other state-of-

the-art decoder architectures. This architecture is based on the scheduling of computation

that results in “on the fly computation” of variable node and check-node reliability

messages. This schedule is the variation of the scheduling scheme presented in Chapter

III. This architecture is scalable for any code length due to the concentric and regular

layout unlike the fully parallel architecture [3].

Chapter VIII used the novel parallel micro-architecture structure (Chapter IV) for

the check-node message processing unit (CNU) for the offset min-sum (OMS) decoding

of LDPC codes based on value-reuse and survivor concepts. In addition, a novel

physical-layout-driven architecture for TDMP, using the OMS for array LDPC codes, is

presented. The resulting decoder architecture has significantly lower requirements of

logic and interconnects when compared to the published decoder implementations. When

compared to the latest state-of-the-art multi-rate decoders, this design has an area

efficiency of around 10x and an energy efficiency of 25x for a given data throughput.

When compared to the proposed multi-rate decoders for Block LDPC codes, this layered

parallel decoder design has an area efficiency of around 2x and an energy efficiency of

10x for a given data throughput. When compared to the latest state-of-the-art fixed code

parallel decoders, this design has an area efficiency of around 36x and the energy

efficiency of 3x for a given data throughput. The numbers are normalized for a 180nm

CMOS process. Note that the layered parallel decoder architecture has the best energy

efficiency among all the presented architectures here. This advantage comes from the fact

 117

that the parallel architectures have lower switching activities when compared to the

multi-rate architectures.

9.1.3. Comparison with Turbo Decoders

It is interesting to note that the Semi Parallel Turbo Codec of 3GPP- HSDA [63]

has an energy efficiency of 10 nJ/ Bit/Iteration and an area efficiency of 1.65 Mbps/mm2.

This codec is not multi-rate and not code programmable. The work reported here for a

multi-rate and code programmable TDMP decoder for Block LDPC achieves an energy

efficiency of 47.3 pJ/Bit/Iteration and an area efficiency of 246 Mbps/mm2. Note that the

comparison is done for 180 nm CMOS technology.

Note that the Parallel Turbo Codec of 3GPP- HSDA [64] has an energy efficiency

of 2.72 nJ/ Bit/Iteration and an area efficiency of 5.14 Mbps/mm2. This codec does not

have the features of multi-rate, code programmability and scalability for higher code

lengths. The work reported here for a fixed code parallel TDMP decoder for regular array

LDPC codes achieves an energy efficiency of 4.8 pJ/Bit/Iteration and an area efficiency

of 493 Mbps/mm2. This decoder is also not code programmable but is scalable for any

code length and parameters in the design time. The comparison is done for 180 nm

CMOS technology.

9.2. Future Work

We showed that, if the memory approach is used for storing the control signals for

supporting the base parity check matrices as in the present state of the art [20], (for IEEE

802.16e fully compliant LDPC decoder in Chapter VII), it would have resulted in a large

chip area of around 140 mm2 (in 180 nm technology; 73 mm2 in 130 nm technology) just

 118

for storing the control signals. The proposed approach of Master-Slave router removes

this control memory overhead. However, this approach increased the area of the router

from 0.15 mm2 to 0.74 mm2 in 130 nm technology. This area overhead is much smaller

than the control memory overhead. However, by utilizing the fact that the limited set of

permutations (only cyclic shifts on different vector lengths) are needed, further

simplification of the master Benes router (that generates the control signals by sorting

the integer sequence) is possible. For this a different sorting algorithm needs to be

developed. In addition, the precision of the comparators at different stages can be adapted

based on the maximum number of bits that can differ at the inputs of the comparator.

 The parallel layered architecture proposed for regular array LDPC codes can be

easily adapted for other regular QC-LDPC codes. However, in this case, the routing

requirements will increase. Several research efforts are underway to design regular QC-

LDPC codes which have better error performance than the existing regular QC-LDPC

codes such as array LDPC codes. One criterion that can be considered in this design is:

having a limited set of differences of shifts among the block column of the regular QC-

LDPC. This would permit the decoder architecture to support a limited number of shifts

for each block column.

As of now, the semiconductor industry is seeing the integrated circuits at 65 nm

technology node. The migration of the designs presented here to the latest process will

give significant gains to the numbers reported here.

9.3. Conclusion

 The multi-rate and fixed code LDPC decoder architectures described in this

dissertation achieve the best reported energy and area efficiencies while achieving the

 119

highest throughputs. These architectures are based on minimizing the message passing

and computation requirements.

120

REFERENCES

[1] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill: 2000.

[2] S. Lin and D. J. Costello, Jr., Error Control Coding, 2nd ed., Englewood Cliffs:

Prentice Hall, 2004.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon limit error-

correcting coding and decoding: Turbo-Codes" in Proc. IEEE Int. Conf. on
Communications (ICC’93), Geneva, Switzerland, May 1993, pp.1064-1070.

[4] R. G. Gallager, Low-Density Parity-Check Codes, M.I.T Press, 1963. Available:

http://justice.mit.edu/people/gallager.html

[5] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity approaching

irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 619–637, Feb. 2001.

[6] D. MacKay and R. Neal, “Near Shannon limit performance of low density parity

check codes,” Electronics Letters, vol. 32, pp. 1645-1646, Aug. 1996.

[7] S. Chung, Jr., G. D. Forney, T. Richardson, and R. Urbanke, “On the design of

low-density parity-check codes within 0.0045 db of the shannon limit,” IEEE
Communications Letters, vol. 5, issue 2, pp. 58-60, Feb. 2001.

[8] A. Shokrollahi T.J. Richardson and R. Urbanke, “Design of capacity-approaching

irregular low-density parity-check codes,” IEEE Transactions on Information
Theory, vol. 47 issue 2, pp. 619-637, Feb. 2001.

[9] J. L. Fan, "Array codes as low density parity check codes," in Proc. 2nd

International Symposium on Turbo Codes and Related Topics, Brest, France,
Sept. 2000, pp. 543–546.

[10] A. Dholakia and S. Olcer, “Rate-compatible low-density parity-check codes for

digital subscriber lines,” in Proc. IEEE International Conference on
Communications, Jun. 2004, pp. 415–419.

[11] M.P.C. Fossorier, “Quasicyclic low-density parity-check codes from circulant

permutation matrices,” IEEE Trans. on Information Theory, vol. 50, no. 8, pp.
1788- 1793, August 2004.

121

[12] “Part 16: air interface for fixed and mobile broadband wireless access systems
amendment for physical and medium access control layers for combined fixed and
mobile operation in licensed bands”, IEEE P802.16e-2005, October 2005.

[13] IEEE 802.11 Wireless LANsWWiSE Proposal: High Throughput extension to the

802.11 Standard. IEEE 11-04-0886-00-000n.

[14] J. Castura, E. Boutillon and F.R. Kschischang, “Decoder first code design,” in

Proc. 2nd International Symposium on Turbo codes and Related Topics, Brest,
France, September 2000, pp. 459-462.

[15] A. J. Blanksby and C. J. Howland, "A 690-mW 1-Gb/s 1024-b, Rate-1/2 low-

density parity-check code decoder," IEEE J. Solid-State Circuits, vol. 37, no. 3,
pp. 404--412, March 2002.

[16] E. Yeo, P. Pakzad, B. Nikolic and V. Anantharaman, “High throughput low-

density parity-check decoder architectures,” in IEEE Global Telecommunication
Conference, 2001 (GLOBECOM'01), vol. 5, pp. 3019-3024.

[17] A. Selvarathinam, G. Choi, K. Narayanan, A. Prabhakar, and E. Kim, “A

massively scaleable decoder architecture for low-density parity-check codes,”
inProc. IEEE International Symposium on Circuits and Systems 2003 (ISCAS’03),
Bangkok, Thailand, vol. 2, May 2003, pp. 61-64.

[18] T. Zhang and K. Parhi, “A 56Mb/s (3, 6)-Regular FPGA LDPC decoder,” in Proc.

IEEE SIPS 2002 San Diego, CA, Oct. 16–18, 2002, pp. 127-132.

[19] Y. Li; M. Elassal,; M. Bayoumi, "Power efficient architecture for (3, 6)-regular

low-density parity-check code decoder," in Proc. IEEE International Symposium
on Circuits and Systems 2004 (ISCAS '04), vol.4, May 2004, pp 23-26.

[20] M.M. Mansour, N. R. Shanbhag, "A 640-Mb/s 2048-bit programmable LDPC

decoder chip," IEEE Journal of Solid-State Circuits, vol.41, no.3, pp. 684- 698,
March 2006.

[21] A. Darabiha, A. C. Carusone and F. R. Kschischang, "Multi-Gbit/sec low density

parity check decoders with reduced interconnect complexity," in Proc. IEEE
International Symposium on Circuits and Systems 2005 (ISCAS’05), Kobe, Japan,
May 2005.

[22] Y. Chen and D. Hocevar, “A FPGA and ASIC implementation of rate 1/2, 8088-b

irregular low density parity check decoder,” in Proc. IEEE GLOBECOM, San
Francisco, CA, Dec. 2003, pp. 113–117.

[23] Flarion Technology, Vector-LDPC Coding Solution Data Sheet. Available:

http://www.flarion.com/products/vector.asp.

122

[24] R. Singhal, G.S. Choi, and R. N. Mahapatra, "Programmable LDPC decoder

based on the bubble-sort algorithm,", in Proc. IEEE VLSI Design 2006, Jan 2006,
pp. 203-208.

[25] V. Nagarajan, N. Jayakumar, S. Khatri, and G. Milenkovic, "High throughput

VLSI implementations of iterative decoders and related code construction
problems", in Proc. Global Telecommunications Conference, 2004
(GLOBECOMM ‘04), vol. 1, 29 Nov.-3 Dec. 2004, pp. 361-365.

[26] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative

decoding of low density parity check codes based on belief propagation,” IEEE
Trans. Commun., vol. 47, no. 5, pp. 673–680, May 1999.

[27] A. Prabhakar and K. Narayanan, “A memory efficient serial LDPC decoder

architecture,” in IEEE International conference on Acoustics, Speech and Signal
Processing, 2005 (ICASSP 2005), Philadelphia, PA, vol. 5, 18-23 March 2005,
pp. v/41: v/44.

[28] C. Jones, E. Valles, M. Smith and J. Villasenor, “Approximate-min constraint

node updating for LDPC code design,” in IEEE Conference on Military
Communications, 2003(MILCOM 2003), 13-16 Oct 2003, pp. 57-162.

[29] J. Chen and M. Fossorier, “Near optimum universal belief propagation based

decoding of low-density parity check codes,” in IEEE Transactions on
Communications, vol. COM-50, pp. 406-414, March 2002.

[30] J. Chen and M. Fossorier, “Density evolution for two improved BP-based

decoding algorithms of LDPC codes,” IEEE Communication Letters, vol. 6, pp.
208–210, May 2002.

[31] F. Guilloud, E. Boutillon and J.L. Danger “�-Min decoding algorithm of regular

and irregular codes,” in Proc. 3rd International Symposium on Turbo Codes &
Related Topics, Brest, France, Sept 2003, pp. 451-454.

[32] J. Chen, A. Dholakia, E. Eleftheriou, M.P.C. Fossorier and X.Y. Hu, “Reduced-

complexity decoding of LDPC codes,” IEEE Trans. on Communications, vol. 53,
no. 8, pp. 1288-1299, August 2005.

[33] J. Zhang, M. Fossorier, D. Gu and J. Zhang, “Two-dimensional correction for

min-sum decoding of irregular codes,” IEEE Communication letters, vol. 10, issue
3, pp. 180-182, March 2006.

[34] J. Zhao, F. Zarkeshvari and A.H. Banihashemi, “On the implementation of min-

sum algorithm and its modifications for decoding low-density parity-check
codes,” IEEE Trans. on Communications, vol. 53, no. 4, pp. 549-554, April 2005.

123

[35] S.Y. Chung, T.J. Richardson and R.L. Urbanke, “Analysis of sum-product
decoding of low-density parity-check codes using a gaussian approximation,”
IEEE Trans. Inform. Theory, vol. 47, no. 2, Feb 2001.

[36] E. Eleftheriou and S. Olcer, “Low density parity-check codes for digital

subscriber lines,” in Proc. Intl. Conf. on Communication 2002, New York,
pp.1752-1757.

[37] M. Karkooti, and J.R. Cavallaro, “Semi-parallel reconfigurable architectures for

real-time LDPC decoding,” in Proc. International Conference on Information
Technology: Coding and Computing, 2004 (ITCC 2004), vol. 1, pp. 579 – 585.

[38] D. Hocevar, “A reduced complexity decoder architecture via layered decoding of

LDPC codes”, in IEEE Workshop on Signal Processing Systems (IEEE SIPS),
October 2004, pp. 107-112.

[39] H. Sankar and K. R. Narayanan, “Memory-efficient sum-product decoding of

LDPC codes,” IEEE Trans. Comm., vol. 52, no. 8, pp. 1225- 1230, August 2004.

[40] B. Gocal, “Bitonic sorting on Bene networks”, in Proceedings of the 10th

International Parallel Processing Symposium (April 15 - 19, 1996). IPPS. IEEE
Computer Society, Washington, DC, 749-753.

[41] T. Brack, F. Kienle, and N. Wehn, “Disclosing the LDPC code decoder design

space,” in Proceedings of Design Automation and Test in Europe (DATE)
Conference, March 2006, pp. 200-205.

[42] L. Yang, M. Shen, H. Liu, and C. Shi, "An FPGA implementation of low-density

parity-check code decoder with multi-rate capability," in Proceedings of the Asia
and South Pacific Design Automation Conference, 18-21 Jan. 2005, vol. 2, pp.
760- 763.

[43] E. Kim and G. Choi, "Diagonal low-density parity-check code for simplified

routing in decoder," in IEEE Workshop on Signal Processing Systems (IEEE
SIPS), Nov. 2005, pp. 756-761.

[44] Z. Wang and Z. Cui, "A Memory Efficient Partially Parallel Decoder Architecture

for QC-LDPC Codes," Conference Record of the Thirty-Ninth Asilomar Conf. on
Signals, Systems and Computers, 28 October-1 November 2005, pp. 729- 733

[45] H. Zhong and T. Zhang, “Block-LDPC: A practical LDPC coding system design

approach,” IEEE Trans. on Circuits and Systems-I, vol. 52, no. 4, pp. 766-775,
April 2005.

[46] T. Zhang and K.K. Parhi, “A 54 MBPS (3, 6)-regular FPGA LDPC decoder,” in

Proc. IEEE SIPS, pp.127-132, 2002.

124

[47] S. Olcer, “Decoder architecture for array-code-based LDPC codes,” in Global
Telecommunication Conference, 2003 (GLOBECOM'03), vol. 4, Dec 2003, pp.
2046-2050.

[48] E. Liao, E. Yeo and B. Nikolic, “Low-density parity-check code constructions for

hardware implementations,” in IEEE Intl. Conf. on Communications, (ICC 2004),
vol. 5, 20-24 June 2004, pp. 2573-2577.

[49] M. M. Mansour and N. R. Shanbhag, "Low power VLSI decoder architectures for

LDPC codes,'' in Proc. International Symposium on Low Power Electronics and
Design (ISLPED), Monterey, CA, August 2002, pp. 284-289.

[50] P. Bhagawat, M. Uppal and G. Choi, “FPGA based implementation of decoder for

array low-density parity-check codes,” in IEEE International Conference on
Acoustics, Speech and Signal processing, 2005 (ICASSP 2005), vol. 5, 18-23 Mar
2005, pp. 29-32.

[51] K. Gunnam, G. Choi and M. B. Yeary, “An LDPC decoding schedule for memory

access reduction”, in IEEE International Conference on Acoustics, Speech and
Signal processing, 2004 (ICASSP 2004), vol. 5, 17-21 May 2004, pp. V- 173-6.

[52] K. Gunnam, W. Wang, E. Kim, G. Choi and M.B. Yeary, “Decoding of quasi-

cyclic LDPC codes using an on-the-fly computation,” Accepted for 40th
Asilomar Conf. on Signals, Systems and Computers, October 2006.

[53] K. Gunnam, G. Choi and M. B. Yeary, “A parallel layered decoder architecture

for array LDPC codes,” Accepted for IEEE VLSI Design Conference, January
2007

[54] K. Gunnam, G. Choi, W. Wang and M.B. Yeary, “VLSI architectures for turbo

decoding message passing using min-sum for rate-compatible array LDPC codes,”
Accepted for International Symposium on Wireless Pervasive Computing
February 2007.

[55] K. Gunnam and G. Choi, “A low power architecture for min-sum decoding of

LDPC codes,” TAMU, ECE Technical Report, May 2006, TAMU-ECE-2006-02.
Available: http://dropzone.tamu.edu/techpubs

[56] K. Gunnam and G. Choi, “Architectures for decoding of structured LDPC codes

using the on-the-fly computation paradigm”, TAMU, ECE Technical Report, May
2006, TAMU-ECE-2006-04. Available: http://dropzone.tamu.edu/techpubs

[57] K. Gunnam, G. Choi, M. B. Yeary and M.Atiquzzaman, “VLSI architectures for

layered decoding for irregular LDPC codes of WiMax”, TAMU, ECE Technical
Report, July 2006, TAMU-ECE-2006-08. Available:
http://dropzone.tamu.edu/techpubs

125

[58] K. Gunnam, G. Choi, W. Wang and M. B. Yeary, “VLSI architectures for layered

decoding for irregular LDPC codes of IEEE 802.11n,” TAMU, ECE Technical
Report, July 2006, TAMU-ECE-2006-11. Available:
http://dropzone.tamu.edu/techpubs.

[59] H. Zhong and T. Zhang, "Block-LDPC: A practical LDPC coding system design

approach", IEEE Trans. on Circuits and Systems I, vol. 52, no. 4, pp. 766-775,
April 2005.

[60] G. Malema and M. Liebelt, "Interconnection network for structured low-density

parity-check decoders," Asia-Pacific Conference on Communications, 03-05 Oct.
2005, pp. 537- 540.

[61] M. Rovini, N. E. Insalata, F. Rossi, L. Fanucci, “VLSI design of a high throughput

multi-rate decoder for structured LDPC codes,” in Proc. 8th Euromicro
Conference on Digital System Design, Sept. 2005, pp. 202-209.

[62] Open source standard cell library. Available online:

http://www.vlsitechnology.org Accessed January, 2006.

[63] M. Bikerstaff L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A 24 Mb/s radix-4

LogMAP turbo decoder for 3GPP- HSDPA mobile wireless,” in IEEE Int. Solid-
State Circuits Conf.(ISSCC) Dig. Tech. Papers, 2003, pp. 150–151.

[64] M. Bougard B. Bougard, A. Giulietti, V. Derudder, J. Weijers, S. Dupont, L.

Hollevoet, F. Catthoor, L. Van der Perre, H. De Man, R. Lauwereins “A scalable
8.7 nJ/bit 75.6 Mb/s parallel concatenated convolutional (turbo-) codec,” in IEEE
Int. Solid-State Circuits Conf.(ISSCC) Dig. Tech. Papers, 2003, pp. 152–153.

 126

VITA

Kiran Kumar Gunnam is a Ph.D. candidate in the department of electrical and

computer engineering at Texas A&M University. He obtained his MS degree in electrical

engineering from the same department in May 2003. He has 6+ years of research and

development work experience in real time implementation of communication and signal

processing systems on VLSI and programmable platforms. He has 3+ years of industry

research work experience at Intel, Schlumberger and Starvision Technologies. He has 3+

years of academic research work experience in Texas Engineering Experiment Station at

Texas A&M University. His academic research contributed in a novel navigation sensor

signal processing design (Visnav) which is now a commercial product and is considered

for unmanned aerial refueling and space docking applications.

He is a recipient of the TAMU Ph.D. scholarship of $10,000 for VLSI

architectures for communication systems and TAMU-Starvision Ph.D. scholarship of

$11,000. In addition, he received TAMU tuition waivers and tuition scholarships of

around $39,000 covering his graduate education for 2000-02 and 2005-06.

 His contact e-mail address is kiran-k-gunnam@ieee.org. He can also be contacted

through,

Dr. Gwan Choi
Associate Professor
Dept of Electrical & Computer Engineering
320D WERC MS-3259
Texas A&M University
College Station, TX 77843
gchoi@ece.tamu.edu 979-845-7486

