
COGNITIVE SKILLS IN

MODELING AND SIMULATION

Volume II

A Dissertation

by
RICHARD J. MAYER

Submitted to the Graduate College of
Texas A&M University

partial fulfillment of the requirement for the degree
DOCTOR OF PHILOSOPHY

December 1988

Major Subject: Industrial Engineering

RICHARD J. MAYER

ALL RIGHTS RESERVED

COGNITIVE SKILLS IN

MODELING AND SIMULATION

Volume II

A Dissertation

by
RICHARD J. MAYER

Approved as to style and content by:

Don T. Phillips
(Chair of Committee)

Leland T. Blank
(Member)

Peter J. Sharpe
(Member)

•i. 7 c*
. " u '.1 v-v

Donald K. Friesen

(Member)
Guy H. Bailey7
(Member)

G. Kemblef^ennett
(Head of Department)

December 1988

Ill

TABLE OF CONTENTS

Page

Volume I

1 INTRODUCTION AND RESEARCH OBJECTIVES 1

1.1 Research Goals 1

1.2 Research Objectives 2
1.3 Background 2

1.3.1 New Paradigms for Simulation 5
1.3.2 Summary of Previous Research 8

1.4 Statement of Major Hypotheses 13
1.4.1 Methodological (Conceptual) Contributions to AI

Foundations 16

1.4.2 AI Hypothesis Testing 16
1.5 Approach and Products 17

1.5.1 Research Products 18

1.6 Organization of the Dissertation 20
1.6.1 Summary of Section Contents 20

2 CHARACTERIZATION OF COGNITIVE PROCESSES 22

2.1 Overview of the Process 22

2.2 Perception of Systems 25
2.2.1 Formulating System Descriptions 25
2.2.2 Planning and Understanding 32

2.2.2.1 Goal Detection 34

2.2.2.2 Plan Proposing 35
2.2.2.3 Plan Projection 36

2.2.3 Reasoning With Common Sense Theories of System
Dynamics 37

2.3 Identification of Symptoms and Concerns 39

IV

TABLE OF CONTENTS (Continued)

Page

2.4 Performing Problem Analysis 40
2.5 Problem Solving 42

2.5.1 Characteristic Driven Design 43
2.5.2 External Constraint Driven Design 43
2.5.3 Element Driven Design 44
2.5.4 Formulation of Analysis Goals and Model Require¬

ments 44

2.6 Characterization of the Customer/Analyst Discourse 45
2.6.1 Understanding System Descriptions and Customer

Needs 47

2.7 Formulation of Analysis Requirements 51
2.8 Analysis and Experiment Planning 52

2.8.1 Non-hierarchical Planning Systems 55
2.8.2 Hierarchical Planning Systems 57
2.8.3 Script or Variant Planning Systems 60
2.8.4 Opportunistic Planning Systems 60

2.9 Model Design and Specification 61
2.10 Results Interpretation 63
2.11 Summary 65

3 KAMSS ARCHITECTURE 66

3.1 Design Rationale 69
3.2 Usage Scenarios 73

3.2.1 Scenario #1 Acquaintance 75
3.2.2 Scenario #2 Capture of System Descriptions 75

V

TABLE OF CONTENTS (Continued)

Page

3.2.3 Scenario #3 Using Sketch Input to Augment Text . . 82
3.2.4 Scenario #4 Model Design Support 86
3.2.5 Scenario ^5 Model Generation Support 88
3.2.6 Scenario #6 Causal Reasoning/Qualitative Simulation 89
3.2.7 Scenario ^7 Quantitative Simulation Execution ... 90
3.2.8 Scenario #8 Interpretation of Simulation Results . . 91
3.2.9 Scenario #9 Decision Scenario Packaging 91

3.3 User Types 92
3.4 KAMSS Architecture and Major Subsystems 94

3.4.1 Information/Knowledge Base Management 96
3.4.1.1 Types of Information/Knowledge 101

3.4.2 User Interaction 104

3.4.3 System Resource Manager 108
3.4.4 System Description Capture Environment 108
3.4.5 Model Development Support Environment 112
3.4.6 Analysis Support Environment (ASE) 114
3.4.7 Packaging and Construction Utilities 114

3.5 Implementation Issues for KAMSS 117
3.5.1 Overview of Existing Tools and Their Applicability . 117
3.5.2 Prototypes: Functionality and Rationale 120

4 NATURAL LANGUAGE PROCESSING ISSUES 125

4.1 Issues of NLU, NLG, and Discourse Processing 125
4.2 Processing of Utterances 128
4.3 Overview of Existing NLP Methods 129

4.3.1 NLU Approaches 129
4.3.2 NLG Approaches 131

VI

TABLE OF CONTENTS (Continued)

Page

4.4 Methodology for Utterance Analysis 133
4.5 Approaches Recommended 140

4.5.1 Natural Language Processing Approach 140
4.5.2 Natural Language Generation Approach 147
4.5.3 Discourse Management Approach . 149

4.6 Summary 151
5 ONTOLOGY AND REPRESENTATION STRUCTURES FOR

KAMSS 153

5.1 Relevance of Consideration of Semantics 156

5.2 Orientation Relative to Existing Theories 159
5.3 Systematic Relative Meaning (SRM): A Methodology for Seman¬

tic Theory Development 161
5.3.1 Basic Building Blocks 164

5.3.1.1 Properties 164
5.3.1.2 Bindings 165
5.3.1.3 Stakes: A basis for reference and ordering . 166

5.4 Situation Based Semantics 168

5.4.1 Set-Theoretic Notation Conventions 172

5.4.2 Symbols Used as Variables to Represent Primitives . 172
5.4.3 Special Space-Time Relations 173
5.4.4 Situation Types 173
5.4.5 States of Affairs 175

5.4.6 Courses of Events 175

5.4.7 Structures of Situations 176

5.4.8 Classifiers and Worlds 177

5.4.9 Persistence of Information and Informational Relations 177

5.4.10 Indeterminates, Event Types, and Roles 179
5.4.11 Indexed Event Types 181
5.4.12 Schemata 182

vii

5.4.13 Necessary, Nomic, Conventional, and Conditional
Constraints 182

5.4.14 Constraint Types and Indexed Constraint Types . . 184
5.5 Problems with Existing Theories 185
5.6 The Base Ontology 187

5.6.1 Ensembles 188

5.6.2 Measures 190

5.6.3 Individualization of Parts of Individuals 191

5.6.4 Space and Time 192
5.6.5 Time 193

5.6.6 Generalizations and Specializations 193
5.6.7 Types, Sorts, Kinds and Classes 195
5.6.8 Situations Revisited 197

5.6.9 Extensions to Conditional Constraints 197

5.6.10 Accounting for Change 198
5.6.10.1 Processes 200

5.6.10.2 Actions 201

5.6.11 Model Ontology 202
5.7 Representation Structures in KAMSS 202

5.7.1 Language Requirements 203
5.8 Another Notational Anomaly (ANNA) 206

5.8.1 Symbols, Gramatical use, Interpretation use, and
Interpretations 206

5.9 Summary 212
6 REASONING IN KAMSS 213

6.1 Observations on Reasoning in KAMSS 213
6.2 Types of Reasoning in KAMSS 214
6.3 Data Driven Inference 217

6.3.1 Construction of the Meaning of an Utterance 219
6.4 Adaptive Reasoning, A Frame of Reference Based Reasoning

Method 221

6.4.1 Formalizing the AR Theory 224
6.5 Summary 230

Vlll

TABLE OF CONTENTS (Continued)

Page

7 THEORY OF MODELING 231

7.1 Modeling and Semantics 231
7.1.1 The Role of Context, Viewpoint, and Purpose 232

7.2 Modeling for Causal Reasoning and Deductive Simulation . . . 233
7.2.1 Generation of Qualitative Models from System De¬

scriptions 236
7.2.2 Example of Qualitative Simulation Process 238

7.3 Quantitative Simulation Model Design 242
7.3.1 Summary 247

Volume II

8 PROTOTYPE IMPLEMENTATIONS 2488.1IDEF1/ES and IDEF3: Methodologies For Knowledge Acquisi¬
tion 248

8.1.1 IDEF1 Formalization 251

8.1.1.1 Lexicon 251

8.1.1.2 Grammar 252

8.1.1.3 IDEF1 Formal Semantics 255

8.1.2 IDEF1/ES Method Description 257
8.1.2.1 Entity Representation Extensions 258
8.1.2.2 Event Representations 263
8.1.2.3 Rule Collection 266

8.1.2.4 Predefined Link Types 269
8.1.2.5 Links Between Links 272

8.1.2.6 Examples of IDEF1/ES Application . . . 279
8.1.2.7 IDEF1/ES Conclusions 279

8.1.3 IDEF3 Method Description 279
8.1.3.1 Requirements for IDEF3 281

IX

8.1.3.2 IDEF3 Design Concepts and Philosophy . 282
8.1.3.3 Basic Concepts of IDEF3 284
8.1.3.4 IDEF3 Syntax 285

8.1.4 Illustrating the Process Model 285
8.1.5 Object State Transition Description 288

8.2 SDCE: A System Description Capture Environment 288
8.3 FCT Prototype 299
8.4 MDSE Prototypes 306

8.4.1 Implementation Model Support 306
8.4.2 Simulation Model Design Support 306
8.4.3 IDEF Model Development Support 308
8.4.4 Generalized Model Generator 315

8.5 OBSIM: An Object Based Simulation Language 315
8.5.1 Entity Tracing Versus Condition Triggering 318
8.5.2 OBSIM Language Constructs 319
8.5.3 Deficiencies / Shortcomings of the Object Paradigm . 321
8.5.4 OBSIM Summary 323

8.6 OBMODLER: An Object Based Model Design Support System 323
8.6.1 OBMODLER Summary 329

9 CONCLUSION 330

9.1 Summary of Contributions 330
9.2 Areas for Further Research 332

9.3 Implementation Considerations 335

REFERENCES 337

VITA 354

X

LIST OF FIGURES

Figure Page
Volume I

2.1 DECISION MAKING BASED ON MODELING AND SIMULA¬
TION ANALYSIS 23

2.2 TYPICAL SYSTEM DESCRIPTION SKETCH 27

2.3 INTERACTION OF OBJECTS, TIME, AND OBJECT CONDI¬
TION 28

3.1 LOGICAL VIEW OF THE MAJOR COMPONENTS OF KAMSS 68

3.2 SYSTEM DESCRIPTION CAPTURE SCENARIO 76

3.3 TYPICAL TEXT INTERACTION WITH KAMSS 78

3.4 TEXT DESCRIPTION OF A MANUFACTURING SITUATION 80

3.5 SUMMARIZATION OF KAMSS UNDERSTANDING OF A
SYSTEM 81

3.6 SKETCH CREATION IN KAMSS 83

3.7 DEFINING THE SYMBOL SEMANTICS OF A SKETCH ... 84

3.8 POINTING TO SKETCH OBJECTS AND AREAS 85

3.9 ARCHITECTURE VIEW OF THE MAJOR COMPONENTS OF
KAMSS 95

3.10 INFORMATION/KNOWLEDGE BASE VIEW OF KAMSS ... 97
3.11 LEVELS OF INFORMATION/KNOWLEDGE REPRESENTA¬

TION IN KAMSS 102

3.12 LEVELS AND VIEWS IN THE DOMAIN LEVEL 103

3.13 USER INTERACTION SUBSYSTEM 107

3.14 SDCE ARCHITECTURE Ill

3.15 MDS ARCHITECTURE 113

3.16 ASE COMPONENTS 115

3.17 KAMSS PACKAGING AND CONSTRUCTION UTILITIES . . 116

3.18 KAMSS IMPLEMENTATION ARCHITECTURE 121

4.1 CLASSES FOR UTTERANCE ANALYSIS 136

4.2 IDEF1/ES SEMANTIC MODEL 137

XI

LIST OF FIGURES (Continued)

Figure Page

4.3 USE OF IDEFO IN DOMAIN ANALYSIS 139

4.4 VERB CLASSES IN PROTOTYPE KAMSS 144

4.5 CASEMARKERS AND THEIR HIERARCHY IN KAMSS ... 145

6.1 REASONING COMPONENTS 215

6.2 REASONING MODELED AS CHAINS OF INFORMATION
FLOW 223

7.1 CONCEPT MODEL OF SIMAN 244

Volume II

8.1 ELEMENTS OF A METHOD 249

8.2 IDEF1 SYNTAX EXTENSIONS FOR INSTANCES AND TYPES 259

8.3 IDEF1 SYNTAX EXTENSIONS FOR DESCRIBED ENTITIES . 260

8.4 NAMED EVENT CLASSES, INSTANCES, AND TYPES 264
8.5 DESCRIBED EVENT CLASSES, INSTANCES, AND TYPES . . 265
8.6 SYNTAX FOR RULE COLLECTIONS 267

8.7 NEW LINK TYPES 270

8.8 NEW LINK TYPES CONTINUED 271

8.9 INCLUSIVELY INDEPENDENT CONSTRAINT ON RELA¬
TIONS . 274

8.10 EXCLUSIVELY DEPENDENT CONSTRAINT ON RELATIONS 275

8.11 EXCLUSION CONSTRAINT ON RELATIONS 276

8.12 UNIQUENESS CONSTRAINT ON RELATIONS 277
8.13 SUBSETTING CONSTRAINT ON RELATIONS 278

8.14 EXAMPLE OF TYPES, CLASSES, DESCRIPTIONS, AND
INSTANCES 280

8.15 INTERACTION OF OBJECT, TIME, AND OBJECT CONDI¬
TION 283

8.16 VIEWPOINT, PURPOSE, CONTEXT, AND SCENARIO DE¬
SCRIPTIONS 286

8.17 PROCESS NETWORK SYMBOL SUMMARY 287

xii

LIST OF FIGURES (Continued)

Figure Page

8.18 OBJECT STATE TRANSITION SYMBOL SUMMARY 289

8.19 LOGICAL VIEW OF THE MAJOR COMPONENTS OF THE
SDCE 291

8.20 SKETCH PAD EDITOR FOR FACILITY DESCRIPTION CAP¬
TURE 292

8.21 PRODUCT DESCRIPTION CAPTURE 293

8.22 ORGANIZATION PROCESS DESCRIPTION CAPTURE ... 294

8.23 SDCE TYPE EDITOR 295

8.24 SDCE BLOCK EDITOR 297

8.25 SDCE OBJECT EDITOR 298

8.26 FACT COLLECTION TOOL CHARACTERISTICS 301

8.27 DIALOG CAPTURE USING FCT 303

8.28 FCT CLASSIFICATION SCHEMES 304

8.29 FCT DESCRIPTION FORM FOR PHYSICAL OBJECT TYPES 305

8.30 SDCE BASED MECHANISM DESCRIPTION CAPTURE TOOL
FOR DIAGNOSIS 307

8.31 IDEF1 REPRESENTATION OF IDEF0 310

8.32 IDEF0 MODELING SUPPORT SCREEN 311

8.33 MULTIPLE MODELING SUPPORT 312

8.34 IDEF1 REPRESENTATION OF IDEF1 313

8.35 IDEF1 MODEL BUILDER SUPPORT INTERFACE 314

8.36 USE OF METAMODELER TO GENERATE MODELING SUP¬
PORT ENVIRONMENTS 316

8.37 OBSIM OBJECT HIERARCHY 320

8.38 LOOPS RULE SET FOR OBSIM QUEUE PRIMITIVE INIT
METHOD 322

8.39 OBMODLER REPRESENTATION OF A SYSTEM DESCRIP¬
TION 325

8.40 ASSIGNMENT OF SIMULATION MODEL CONSTRUCTS ON A
SYSTEM DESCRIPTION 326

8.41 REUSING PREVIOUSLY DEFINED SYSTEM DESCRIPTIONS
OR MODELS 328

248

8. PROTOTYPE IMPLEMENTATIONS

This section summarizes the major engineering proof of concept prototypes which
were constructed during the course of this research. The purpose of a proof of
concept prototype implementation is to demonstrate the maturity of a particular
design concept. The following prototypes are presented in this section:

1. An IDEF Based Methodology For Knowledge Acquisition (IDEFl/ES),

2. A Process Flow and Object State Modeling Method (IDEF3),

3. System Description Capture Environment Prototype (SDCE),

4. A Fact Collection Support Tool Prototype (FCT),

5. Model Development Support Environment Prototypes (MDSE),

6. An Extensible, Object-Based Simulation Engine (OBSIM),

7. Model Design Support from System Description Sketches (OBMODLER).

Each of these prototypes were constructed to test the feasibility of performing a

particular task or providing a particular tool. They also serve as the experience
base from which an assessment of full scale development resources can be esti¬
mated. Finally, the construction of such systems provides a reference point for
discussion of architectural concepts, particularly in the areas of knowledge base
construction.

8.1 IDEFl/ES and IDEF3: Methodologies For Knowledge Acquisition

The following subsections will describe the IDEFl/ES and the IDEF3 methods.
The components of a method are displayed in Figure 8.1. Of these components,
we will present the concepts and display syntax. We will provide an overview of
the motivation behind the concepts but will not provide the formal syntax and se¬

mantics of each method. We will also provide some insight into the technique for
application of each method. Since the IDEFl/ES is built directly from the IDEF1
base and since the IDEF3 heavily utilizes the IDEF1 concepts, for reference the

(one) (one)

LEHICON GRAMMAR

FIGURE 8.1: ELEMENTS OF A METHOD.

250

formal semantics of the original IDEF1 method are provided in the following sub¬
section. 1

The IDEF1/ES additions to the IDEF1 semantics can be summarized as follows:

1. Addition of the concept of Entity “Types” (allowing indexicality over subsets
of properties in an entity binding),

2. Recognition of the individual named entity member (real world object image)
as a necessary mechanism for assertional statements,

3. Provision for representation of the individual named real world object (type
instance) as a necessary mechanism for assertional statements,

4. Allowance for the explicit representation of entity “Types,” “Instances,”
“Classes,” and “Members,” indexed by definite (or indefinite) descriptions,

5. Introduction of the notion of event “Types,” “Instances,” “Classes” and
“Members” with provision for both “Named” and “Description” references
to each,

6. Expansion of the declarative constraint specification capabilities of IDEFl to
include:

6.1. Uniqueness constraints on relations,

6.2. Subsetting constraints on relations,

6.3. Exclusion constraints on relations,

6.4. Inclusively independent constraints,

6.5. Exclusively dependent constraints,

1 This semantics was the result of a cooperative effort between the author, Dr.
Chris Menzel, and Timothy Ramey, the original developer of IDEFl. Many of
the insights are theirs; I assume the responsibilities for the errors.

251

7. Procedural constraint specification, and the representation of procedural
constraint collections,

8. Procedural, enumerative, and declarative cardinality constraints,

9. Timing and sequencing constraints,

10. Quantification over constraints, :

11. Definition of rules for the kinds of relationships which can be established
between the model element types.

The IDEF3 methodology was designed for the capture of scenario based pro¬

cess flow descriptions and the relation of those flows to enterprise object states.
A need was identified in the manufacturing system description capture area for
a method which would support the description of the timing, sequencing, and
causality relationships between states of affairs and states of change. Expressing
such relationships involves the identification of triggers (causality relations), ini¬
tiation conditions, and completion conditions on the activities. The identification
of these pieces of information requires specification of:

1. Timing constraints on individual activities and on groups of activities,

2. Sequencing constraints on groups of activities,

3. Attribute values and attribute value constraints.

The resulting method integrates information from the IDEFO, IDEF1, and
IDEF1/ES methods.

8.1.1 IDEF1 Formalization

8.1.1.1 Lexicon

A language consists of two components: a lexicon and a grammar. The IDEF1
lexicon is a finite set with the following elements:

1. Entity class names: Ai, A2, ..., An,

2. Owned attribute class names: a1? a2, ..., am,

252

3. Three types of link names:

3.1. Lj, Lj, .. ., Li (“weak” one-to-many),

3.2. LJ, LJ, .. ., L* (“strong” one-to-many),

3.3. Lj , L2 , ..., L“" (one-to-one),

Punctuation: [,], G)> G >? and , (comma)

In the metalanguage we will use the following to discuss the syntax: ‘e’ (perhaps
with primes and subscripts) will range over entity class names, ‘u?’ will range over

owned attribute class names. ‘A-4’, ‘A*’, ‘A°’ will range over the appropriate link
names, and ‘A’ will range over link names generally.

8.1.1.2 Grammar

1. If Ai,..., An are pairwise distinct link names and w is an owned attribute
class name, then u> • Ai • ... • An is an inherited attribute class name. We
will use V to range over inherited attribute class names and ‘o’ to range

over attribute class names generally. An inherited attribute class namel= u) • Ai • ... • Xn is one-to-one iff Aj is a one-to-one link name.

2. For any inherited attribute class name i — a • A, let 7ri(i) = a and 7r2(^) = A.
For owned attribute classes u;, 7Ti(u>) = 7r2(u>) = a;.2

3. If Q],..., an are pairwise distinct attribute class names such that either each
is a one-to-one inherited attribute class name or none is, then (ai,. .. , an)

is a key class name, ‘/c’ will be used to range over key class names.

4. For any key class name k = (a1?.. . ,an), where n > 1, let AN(k) =

{au...,any

2
7Ti (t) represents an attribute class in a key class of some parent entity class
that is composed with some link to form an inherited attribute class in some
child entity class.

3 {ai,... ,Qn}) that is, is the set of attribute class names between the parenthe¬
ses in K] it is not a metalingistic symbol for a construction in the grammar.

2535.If £ is an entity class name and Ki,..., /cn, n > 1, are key class names such
that

5.1. For no distinct < n, AN(k1) C AN(nj),

5.2. I = {ti,. .. is a set of inherited attribute class names such that
for any A-'', if | 1 < i < m and 7T2(t) = A} ^ 0, then there is a

1 < j < n, such that | 1 < i < m and 7T2(f.) = A} = /Cj, and for all
i-i,1 < i < ra, there is exactly one such kj such that Li G /Cj, and

5.3. O = {u>i,... is a set of owned attribute class names such that
lj{AN(k,{) | i < n} C I U O, then

^ ^ 1 ? • * • ? ^71) (^1 J • • • 5

is an entity class scheme. will range over entity class schemes.

6. For any entity class scheme <r in the above form, let ECN(a) = e, KCN(cr) =
*cn}, IAN (a) == {ti,..., tm}, and OAiV(cr) = {wj,. .., uk}.

7. For any entity class schemes <r, cr', we say that <j is linked to a' via A if for
some l G IAN (a), X = 7r2(t) and for some k G KCN(a'), 7r1(t) G AJV(/c)*

8. Let 5 C ECS, let S' = {crj,..., <rn} C 5, let L = {Aj,..., An_!} C {7r2(l) |
i G U{IAN(a) I O- G S'}, and let P = {S,L}. Then,

8.1. P is a walk (from <?i to <rn) in S iff for all i < n, a* is linked to <n-\-1 via
Ai or 1 is linked to cr^ via A;.

8.2. P is a path (from c* to an) in 5 iff for all i < n, is linked to cr;+i via
At-

8.3. If P is a path, P is increasing iff for all i < n there is a X~* such that
Ai = A-*, and P is decreasing iff for all i < n there is a A# such that
Xi = A*.

254

8.4. If P is a walk, P is increasing iff P1 = {5, L'} is an increasing path,
where V is the result of replacing all the strong many-one link names in
L with new one-to-one link names.

8.5. P is cyclic iff — crn.

8.6. 5 is connected iff for all <r,cr' G 5, there is a walk from a to a' in S.

9. A set S C ECS is a prediagram iff:

9.1. S' is finite and connected,

9.2. for all distinct <r,cr' G 5, ECN(a) ± ECN(a'), OAN(a) n OAN(a') = 0,
and {7r2(t) | i G IAN(<r)} H {7r2(0 | ^ G IAN(o-')} = 0,4

9.3. for all <j G 5, and for all ,..., G IAN(cr) such that for all i,j < n,

tt2(i-i) = 7r2(^), there is exactly one o' G S and one n G KCN(at) such
that {7Ti(ti),...,7ri(t„)} C AN(k,).5

10. A prediagram S is an IDEF1 diagram iff:

4 This requirement is simply that different entity class schemes cannot have the
same entity class name, cannot share any of the same owned attribute class
names, and their inherited attribute class names must differ at least in their
rightmost link name; this amounts to the requirement that no more than one

entity class scheme can be linked to any other via a given link name.

It should be noted that the first two parts of this requirement might appear to
contradict a common modeling practice — inheritance is usually represented
by writing the same attribute class name in two boxes. In fact, though,
in a fully specified IDEF1 model, the complete “heritage” of an inherited
attribute class is represented, links and all, essentially as is required explicitly
here. It is recommended that the above mentioned practice be very carefully
reconsidered as a part of rethinking the notion of inheritance as a whole as
it is a potential cause (indeed an actual cause) of great confusion and lack of
clarity.

5 This is the requirement that all inherited attribute classes that are “inherited
through” the same link “come from” the same key class in the entity class at
the “front” of the link.

255

10.1. For all <7, <7' £ S and for all A-*, if <j i s linked to <j' via A-*, then there is
a k £ KCN(a) such that for all a £ AN(k), 7^(0:) = A-*, and there is a

k' £ KCN(tr') such that for all ct, ^(a) £ AN(k,') iff a £ AN(k);6

10.2. For all cr, a' £ 5, if <7 is linked to a' via a many-to-one link A, then there
is no k, £ KCN(a) such that for some k,' £ KCN(o-'),{7V2(a)\a £

A7V(/c)} C AAr(Ac');7 and

10.3. No cyclic walk in S is increasing.

8.1.1.3 IDEFl Formal Semantics

To provide formal interpretations for the well-formed (but as yet meaningless)
expressions generated by the syntax, a mathematical structure is defined to

interpret the elements of our chosen lexicon (other than punctuation). Specifically
an information structure S is a 4-tuple (£,V, C,T>) such that:

1. £ is a finite set of pairwise disjoint finite sets.

6 This requirement is especially emphasized in IDEFl. In English, it says that
if one entity class scheme is linked to another via a one-to-one link name,
then some key class name of the former must “replicate” a key class name of
the latter, in the sense that the latter’s key class name can be obtained by
dropping the rightmost link name (the one that “causes” the link) from all
the attribute class names in the relevant key class in the former. The semantic
intuition is that if one entity class is linked to another via a one-to-one link
function, then the attribute values that individuate the members of the latter
class will suffice to individuate the members of the former, since no two of its
members is mapped to the same member of the latter.

7 In English, if an entity class name <7 is linked to another a1 via a many-to-
one link (of either sort), then there cannot be a key class name in cr that
“replicates” (in the sense described above) all or part of some key class name
in a'. The guiding intuition here is that if one entity class E is linked to
another E' via a many-to-one link function, then at least two members a and
b of the former get mapped to the same member c of the latter, in which case
the set of values we get by applying the attributes in any key class of E' to c
will not suffice to distinguish a and b.

256

2. C is a function on S x £ such that C(e, e')=ee' (i.e. the set of all functions
from e into er);

3. V is a function on N whose range is a set of sets such that for all e £ £,
i £ N, e fl V(z) = 0;

4. T> is a function on £ x N such that Z>(e, i)=e(V(i)).

Intuitively, £ represents the meanings of the entity class names, viz., the entity
classes they denote. The purpose of the other objects is to associate two kinds of
things with each element of £:

1. A set of link functions which associate elements of the entity class with
elements of other entity classes,

2. a set of owned attribute classes each of which maps every element of the
entity class to a specific value in a given set of values.

The notion of an inherited attribute class is captured by composing link functions
with owned attribute classes. For example, the meaning of the inherited attribute
class DEPT-NAME within the EMPLOYEE entity class is the composition of
the owned attribute class DEPT-NAME within the DEPARTMENT entity class
with the link function WORKS-FOR that maps each employee to the department
he or she works for. Key classes are then constructed out of the two types of
attribute classes in the obvious way.

We will now make this more precise by means of a function val that maps ele¬
ments of the lexicon into objects in our structure. Formally, we say that an in¬
terpretation X is a pair (<S, val), where S is an information structure and val is a

function on LEX such that:

1. For all e, val(e) £ £.

2. For all w, val(uj) £ (J{X)(e,i) | e £ E,i £ N}.

3. For all A-va/(A-t) £ {/ £ C \ l is injective (one-to-one)}.

4. For all A*, val(A*) £ {l £ C | l is surjective (onto)}.

257

5. For all A°, val(A°) G C.

Given an interpretation X = (S,val), we define va/7 recursively to be an extension
of val such that for every i G IAN((t),<j G S,val'(i) = vaV{,K1 (*.)) o val{7r2(^)).
Then we say that X satisfies a set S of entity class schemes (and in particular, an
IDEF1 diagram) iff

1. For all <7 G 5,

1.1. For all l G IAN (cr), dom^val* (l)) = val{ECN{<r))\

1.2. For all uj G OAN((r)ydom(val(a;)) = val(ECN(<r))-

1.3. For all k — (aj,..., an) G KCIV^), and f or all a, y G val(ECN(cr)),
(ua/'(a!)(®),..., va/f(o:n)(a;}) ^ {val\a1)(y),..., va/'(an)(y)), and there
is no i < n such that for all x,y G val(ECN (cr)), {val'(ai)(*)>
..., va/'(a*_i)(aj), vaZ'(at+i)(z),..., va/'(an)(aO) 7^ {va^(ai)(s/)>. • •,

uaZ'(a;_i)(?/), vaZ'^+j)(y),..., vaZ'(an)(2/));.

2. For all cr,*/ G S’, if <t is linked to a' via A, then rng(val(A)) C val(ECN(cr*)).

8.1.2 IDEF1/ES Method Description

One of the critical tools needed to implement the KAMSS concepts presented
in Section 3 is a knowledge acquisition method to be used by both the initial
builders of the KAMSS, by the installer of KAMSS at a particular facility, and
by personnel responsible for the maintenance of the knowledge bases and system

description bases. In this section we describe such a method derived from the ex¬

isting IDEF1 information modeling tool [Ramey 1981]. This method, referred to
as IDEF1/ES, was designed for human use during the analysis of manufacturing
system description texts and construction of the requisite knowledge bases. It
was designed to be consistent with the situation semantics presented in Section 5.
The Air Force IDEF1 methodology was chosen as the base for this method devel¬
opment because of the widespread familiarity with this methodology which exists
in the manufacturing community, and because the theory on which it was based
was the easiest to extend to include the necessary concepts.

258

The IDEFl/ES reflects our experience base with respect to knowledge acquisition
needs for representation support [Friel and Mayer 1985]. The elements of this
methodology were motivated by the ontology developed in Section 5 of this
dissertation. This methodology can adequately capture the information necessary

to drive the SDCE components of the KAMSS. Finally, this methodology was

designed to be able to represent the domain knowledge in the prototype systems
described in [Mayer 1986; Friel 1987; Krishnamurthi, et:al 1986a, b, c; Sterle, et
al 1986; Mayer, et al 1987].

The basic intuition behind IDEFl/ES is that our interaction with the manufac¬
turing system occurs at several levels. At one level, we acquire information about
the physical word via our sensory mechanisms. At another we acquire and struc¬
ture information at a concept level through abstraction and generalization and
via communication with other humans. At yet another level, we acquire informa¬
tion via symbol sets accumulated by the information system in the environment.
The original IDEF1 was designed to model the last of these views. Our exten¬
sions in IDEFl/ES provide the capability to represent the other views and the re¬

lationship between these views. As well, the constraint specification extensions for
both views provide the needed mechanisms for capturing the “behavior enabling”
knowledge which determines the dynamics of the system over time.

8.1.2.1 Entity Representation Extensions

As previously mentioned, the primary extensions to the concept of an entity are

the introduction of the notion of entity types, named instances, named members,
and described types/instances and described classes/members. The graphical
syntax introduced for these extensions is displayed in Figure 8.2 and 8.3.

The semantics of the entity type concept is a rather complex extension to the
original semantics of IDEF1 presented above. The original IDEF1 only recog¬

nized the existence of “class” concepts. A “class” in the original IDEF1 is a “set”
denoted by the entity class label and defined intensionally as a set of attribute
classes, having an extension which was a set of sets of attribute-value pairs. This
was an important departure from traditional data modeling constructs and also a

departure from existing information modeling constructs at the time. The exist¬
ing methods used the members of a set to represent the physical objects them¬
selves. Thus, an employee relation represented a “set” of employees. Actually

NAMED ENTITY INSTANCES SYMBOL

ENTITY TYPE SYMBOL

May Inherit Attributes or Properties from Other Entity Types

May Be Source of Property Inheritance for Entity Classes,
Instances, & Other Types

FIGURE 8.2: IDEF1 SYNTAX EXTENSIONS FOR

INSTANCES AND TYPES.

ENTITV TVPE SYMBOL

May Inherit Attributes or Properties from Other Entity Typ

May Be Source of Property Inheritance for Entity Classes,

Instances, O' OtherTypes

FIGURE 8.3: IDEF1 SYNTAX EXTENSIONS

FOR DESCRIBED ENTITIES.

261

even though this is the way it is described, in actuality an intensional sort of
thing was meant. One whose extension at any point in time was to be a set. The
important point which must be understood in order to justify the entity type con¬

cept is that the intentional definition of the IDEF1 entity class is meant to be
fixed. In other words the attribute classes which contribute to the definition of

an entity class are assumed not to change over time. Thus an entity class can be
viewed as the sort of thing whose intensional definition's a set whose extension is
fixed (it is the set of attribute use classes which are displayed by that entity class,
nothing more, nothing less). The extension of an entity class at any point in time
was intended to be a set each of whose members were a set of pairs of displayed
attributes and a value. The notion of an entity type relaxes this restriction.

The basic idea of introducing the concept and modeling construct for a “type”
is to allow the representation of concepts in a system description which are

inherently ill defined. The rationale for introducing such a construct is that
many of the “rules of operation” in an environment are based on such ill defined
concepts (if this were not the case there would be no real need for a judicial
system!). It is important to note that a type, cannot be modeled consistently as

a “set”. Not only does it lack a consistent extension, but also it lacks a consistent
intension. Thus while one can name a type one cannot consistently describe or

characterize a type. This would appear to make it a fairly slippery and possibly
useless concept. However one can make assertions about a type, and herein
lies its value. It also turns out that if one recognizes which assertions can be
made about types versus those which can only be made about classes, many
of the traditional paradoxes associated with semantic nets, and many of the
limitations associated with information models disappear. The rules governing
link participation introduced in IDEF1/ES are designed to restrict the user

to avoid such paradoxes, as will be described in a later subsection on relation
restrictions. One of the other important roles which the type concept plays is
in the specification of the source of descriptive attribute classes within an entity
class. In the original IDEF1, the only attribute classes which could be inherited
across a link were members of the key attribute classes. With the introduction
of types in IDEF1 /ES came the ability to define a number of specialized link
types. One of those link types is the “characteristic type” link. Via a link of this
type between an entity type and an entity class, one can specify the source of

262

descriptive attribute classes in the entity class. The semantics of a type instance
similarly depart radically from the IDEF1 notion of entity (entity class member).

The entity member extension is an attempt to elevate entity members to “first
class” model elements. In the computer science jargon relative to language
theories, “first class” elements are those language elements which can be directly
referred to as well as used. Thus for example, in Lisp, “functions” are first class
elements as in Lambda calculus. In traditional IDEF1, the concept of entities
as information images of real world objects was obviously recognized; however,
they could not be directly referred to. Only the classes of information about
them could be addressed. This restricted the ability of the IDEF1 methodology
to make assertions about the properties of a specific individual image. The
limitation of such a restriction becomes particularly evident when attempting to
express specific rules in a system description such as If the “production order” for
the part is complete then a “work order” is issued. The type instances provide
the extension to the IDEF1 modeling methodology that allows one to directly
reference physical or conceptual objects. It should be noted that an entity class
member is not the same as a type instance! What is displayed in the entity
class member is the same information as one would find in the set of attribute

- value pairs (associated with, assigned to, or observed upon) the type instance
by the organizations information system. The difference is in what the displayed
information stands for. In the case of the type instance, the information stands
for the particular attributes of the referenced object. In the entity class member,
the information stands for itself (the name of the thing is the thing named).

The need for the capability to represent concepts referred to by descriptive
reference is again in support of the need to represent the kinds of constructs
found in the sample system descriptions. It is quite common for a person to
refer to concepts for which there is no special name (or label) but rather only a

description. For example:

1. “Semi-finished parts,”

2. “Approved production orders,”3.“Non-conforming parts awaiting rapid rework”.

263

The issue associated with such a reference is, of course, to what the reference
refers (i.e., the describing conditions or the described object). To remain consis¬
tent with the IDEF1 entity class scheme, the choice for the referent of a definite
description of an entity class or entity class member is the describing conditions.
Similarly for the referent of a definite description of a type. However, the choice
for the referent of a definite description of a type instance is the described object.
The intended use of definite descriptions is to serve as convenient mechanisms for
the description of antecedents of rule classes. They are also useful in the repre¬

sentation of state change conditions and as links between entity classes and event
classes.

8.1.2.2 Event Representations

One of the key shortfalls of IDEF1 semantics needed for knowledge acquisition
is the capability to represent time and location staked situations and states of
affairs. This shortfall also restricts the ability of the IDEF1 method in the rep¬

resentation of conditional constraints which must reference these structures. The

introduction of classes, types, and instance structures of events represents our at¬

tempt to fill these voids. Figures 8.4 and 8.5 display the syntax for event struc¬
tures. The following paragraphs will describe the semantics of those structures.

1. Event Classes: The notion of an event class is a natural extension to

the notion of an entity class. It provides a means of representing change.
Just as the entity class represents information which is managed by the
organization and not either all of the information in an organization or all
of the objects in the environment of the organization, event classes represent
the set of information which is managed or maintained about change. Thus,
the notion of event classes is modeled as an intensionally defined set. The
definition of that set is comprised of a set of attribute classes. Like the
entity class, an event class must have an attribute class which assumes a

value which is unique for each instance in the event class. Unlike the entity
class, the composition of the key attribute class is structured. That is, there
is the need for not only a unique identifier but also a stake reference of
some variety (i.e., time reference, location reference, etc.) The event class
symbol used in IDEFl/ES is shown in Figure 8.4. An event class is defined

EVENT CLASS SYMBOL

/

V
A

t: v | < RANGE
: v | < v - r >—
< RULE-NAME

Time Marker, Duration, or

Frequency

Location Marker

Attributes Established

Event Class Label

NAMED EVENT INSTANCES SYMBOL

participating
ENTITIES WITH

ATTRIBUTE

ASSIGNMENTS

EUENT TYPE SYMBOL

PARTI C I PRNTS

May Inherit Participants, Properties, and/or Their Restrictions
from Other Euent Types

May be Source of Property or Participants for Euent Classes

FIGURE 8.4: NAMED EVENT CLASSES, INSTANCES,
AND TYPES.

265

DEFINITE DESCRIPTIONS
OF EVENT INSTANCES SYMBOL

FIGURE 8.5: DESCRIBED EVENT CLASSES, INSTANCES, AND TYPES.

266

to involve a fixed set of entity classes (i.e., what is indexed over what is the
stakes (e.g., time) and the attribute values of a fixed set of entity classes).

2. Event Types: The notion of an event type is introduced to allow the
representation of change concepts which extend over many situations. The
event type can be thought of as an event class where the participating entity
classes are undefined. For example, the event type allows the modeler to
represent a generic “creation event” without saying anything specific about
the information which is “managed by the environment” about that sort of
change. Thus, event types provide for “change information” specification
while the entity types provided for “static information” specification.

3. Event Instances: Finally, the event instance concept is introduced to
allow for the representation of a specific real world event. Note that event
instances must refer to entity instances and hence to objects in the real
world. Thus, an event instance is not the same as an instance of an event
class. The latter refers to a collection of information not the actual event.

4. Described Events: Just as in the case of entities, there are many situa¬
tions where events are referred to by descriptive reference. To allow for the
representation of such phenomena, a syntax is provided for described event

classes, types and instances. The IDEF1/ES syntax for these representations
is displayed in Figure 8.5.

8.1.2.3 Rule Collection

Rule collection allows the represention of conditionals and conditionally specified
constraints which fall outside of the standard constraint set specified by the
IDEF1/ES link types as outlined further. In essence, one can consider the built
in link types as predefined macros of rule collections. These prepackaged rule
collections were chosen to allow the easy representation of the most commonly
used constraints. The restrictions associated with their definitions also help insure
the proper semantics of a specification. However, it should be noted that all of
these predefined link types could be defined as rule collections. The symbol used
to represent rule collections is displayed in Figure 8.6. The “rule name” is used
both as a reference and as an index into a backup form which actually contains
the rules. The “rule name” is optional in that the actual rule can be inserted into

267

Consequent
Connection

Model Element #

FIGURE 8.6: SYNTAX FOR RULE COLLECTIONS.

268

the circle. This is to allow for use of “un-named” rules (similar to Lisp Lambda
forms).

The design of a rule language for IDEFl/ES required the definition of a textual
language for the constructs in the IDEF1 as well as the IDEFl/ES extensions.
That is, in order to speak about the existence of an entity in an antecedent to
a rule or the attribute value of an attribute within a particular entity class in a

textual form, we need a representation structure for those concepts which is not
graphical. Actually through the use of the “pointer” link types as described in
the next section, we can indicate the participation of such objects graphically.
However, for complex models or complex rules, such graphical representations
become very obscure. A nongraphical syntax is also helpful in the automation
of the analysis of the information in these models.

Another aspect of rule specification is applied rule application control. That is,
when is a rule applied, how is it to be applied, and over what domain should it
apply when in fact it is applied. In the IDEFl/ES, these control specification
problems can be considered as operating at two levels. The first level is within
a rule set itself. The second level is on the rule set level. When there is only one

rule in the rule set, the control of the rule set application defaults to the rule set

application control. The “prologue” section of the rule set specification is used
to specify the control stategy to be applied. One can think of this control logic
as instructions to the individual IDEFl/ES model objects telling them how and
when to execute the encapsuled rules. Thus, the rule sets can be thought of as
becoming “attached” to a conceptual object which is composed of the types,
classes, and instances which participate in the condition sets of its member rules.
Such rule sets fire when they are told to fire. Thus, they can be considered to
be procedural in nature. The other class of rule activations which we want to
be able to represent are those rules which are conceptually non-procedural in
nature. Such rules can be thought of as being written as instructions to an overall
concept/information manager. The representation of this rule type requires the
specification of the rule selection and application logic of the concept manager, as

well as the identification of which rule sets fall into its domain.

There are two syntaxes for rule specification. One is English-like, allowing both
indicative and subjective conditional specifications. The other is modeled after

269

the production rule languages [Inference 1985; CLIPS 1986; Carnegie Group 1986;
Stefik 1986].

8.1.2.4 Predefined Link Types

As mentioned in the preceeding section, there are a number of predefined rules
which are available to the modeler as link types. These links carry with them
the necessary constraints for use that help to insure proper application by the
modeler. Such application constraints, if followed, prevent most of the logic
paradoxes which have plagued semantic net modeling methods over the past 15
years [Brachman 1983]. Figures 8.7 and 8.8 display the current set of link types
provided in IDEF1/ES. One of the link types provided (the pointer in Figure 8.8)
required the redefinition of the non-specific one-to-one link of IDEF1. Outside of
this redefinition, all of the previous link types of IDEFl are still available. The
following items provide a description of the semantics of the new link types.

1. Subset / Superset Links: Because of the recognition in IDEF1/ES of
the distinction between classes types and instances, there are a number of
natural restrictions which can be placed on the use of the subset / superset
links. For example, one cannot say that a class is a subset of a type since
a type is not modeled as a set in any fashion. Also since the semantics of
an instance is the described object and the semantics of an instance of a
class is a set of symbols the subset / superset relation does not apply to the
relations between instances and classes. In fact, the only places where the
subset / superset relation can be used is in the relationship between classes
(i.e., entity classes, and event classes of the named or described variety).

2. Characteristic Type Links: The characteristic type link is provided to
show the type of binding which can exist between a class and a type. It
means to represent that the information displayed in an instance of a class
is information carried by the type concept. Unlike the link between entity
classes which denote existential relationships, the characteristic link does
not carry any such connotation. Note that because of the definition of the
semantics of an IDEFl class, there cannot be a characteristic type link
between a class and another class. It is possible, however, for an instance to
serve as the characteristic type of a class.

NEW LINK TYPES

Subset / Superset
Restricted to Relations between
Definite Descriptions and Classes

Characteristic type
Restricted to Relations between
Classes and Types

Conceptual containment
Restricted to Relations between
Definite Descriptions

Generalization / Specialization
Restricted to Relations between Types,
or between Types and Instances when
used in the Abstraction Sense

Participation
Restricted to Relations between Entity
Classes and Event Classes

FIGURE 8.7: NEW LINK TYPES.

Links in the Box

Association
Used to Denote Rule
Collections as Value
Restrictions on

Property Values

^ Instance Restricted
to Relations between
Named Objects and Classes

FIGURE 8.8: NEW LINK TYPES CONTINUED.

272

3. Conceptual Containment Links: This is a type of link which is used to

express that one description includes another. This type of link is restricted
to use with descriptive classes, types, and instances only. When used, it
refers to the descriptive component only of these concepts (i.e., the label
inside the header box.)

4. Generalization / Specialization Links: These types of links are used to
express relations between types and between types and instances. When used
between types, the generalization links capture the semantics of “is a” and
“is a kind of” relations between types. Such links can be used to construct

type hierarchies or general type networks.

5. Participation Links: As mentioned in the previous section on event repre¬

sentation, an event class must involve at least one entity class. The partic¬
ipation links are available as a mechanism for illustrating the relationships
between event classes and entity classes.

6. Links in a Box: Because of the addition of the event constructs and the

rule sets each with participating entity classes, there is a need to provide
links which allow one to point into classes, types, and instances to indicate
participating or affected attributes. These pointer links have no inherent
semantics, rather they just serve as convenient notational devices.

7. Instance Links: Instance links provide a means of relating instances to
classes and types. An instance link between an instance and a type is a form
of a specialization link. The semantics being that the instance is “AKO”
(e.g., a kind of) related to the type. The semantics of the instance link to
the class indicates that the information modeled in the class structure serves

as a prototype for the instance within the formal information system. It does
not indicate that the instance is an instance of the class as discussed above.

8.1.2.5 Links Between Links

One of the differences between IDEF1 and IDEF1/ES as discussed in a previous
section was the recognition of “entity instances” as first class model elements.
In addition to this, we have also allowed the links described in the previous
section and by default, the rule sets as well, to stand in relations and hence be

273

referable to. This allows the modeler to express an entire new class of constraints
relative to the participation of entities in the existing links. The set of constraints
provided (with the associated symbols) are displayed in Figures 8.9 through 8.13.
Most of these constraints types have been identified as necessary by the original
developers of IDEF1 [Ramey 1983] and ENALIM [Nijssen 1982].

1. Inclusively Independent Constraints: The inclusively independent
constraint allows one to represent the situation where a single relation
maps a dependent entity class into multiple independent entity classes
simultaneously (see Figure 8.9).

2. Exclusively Dependent Constraints: The exclusively dependent con¬
straint allows one to represent the situation in which two dependent entity
classes share a common range but not simultaneously. Thus, in Figure 8.10
a bond issue is either a corporate bond issue or a municipal bond issue but
never both.

3. Exclusion Constraints: An exclusion constraint between two relations

that share a common range and a common domain implies that an element
in the domain cannot be mapped by both relations to the same element in
the range. Thus, in Figure 8.11, an employee cannot be his own backup on a

job assignment.

4. Uniqueness Constraints: A uniqueness constraint between two relations
that share a common domain implies that two different elements in the
domain which map to the same element in the range of one of the relations
cannot map to the same element in the range of the other relation. For
example, in Figure 8.12, the uniqueness constraint implies that an employee
can only work on one job in a project or conversely, that a project will have
different employees on each job.

5. Subsetting Constraints: A subsetting constraint between two relation
classes which share a common range implies that if one relation instance is
realized, then the other must also be realized. For example in Figure 8.13,
an employee who has a child must have a dependent. Note that the syntax
indicates the direction of the existential dependency (i.e., an employee may

have a dependent who is not a child).

INCLUSIVELY INDEPENDENT SYMBOL

Reading:
A machinist tool assignment requires

both a machinist and a tool.

FIGURE 8.9: INCLUSIVELY INDEPENDENT CONSTRAINT

ON RELATIONS.

Reading: A bond issue is either a corporate bond or a
municipal bond.

FIGURE 8.10: EXCLUSIVELY DEPENDENT CONSTRAINT

ON RELATIONS.

Reading: An employee cannot be his own backup
on a job assignment.

FIGURE 8.11: EXCLUSION CONSTRAINT ON RELATIONS.

Reading:

An Employee can only work on one Job in a Project.

FIGURE 8.12: UNIQUENESS CONSTRAINT ON RELATIONS.

Reading:
An Employee who has a child must have a dependent.

FIGURE 8.13: SUBSETTING CONSTRAINT ON RELATIONS.

279

8.1.2.6 Examples of IDEFl/ES Application

Figure 8.14 provides an example of the use of the above described concepts of
IDEFl/ES.

8.1.2.7 IDEFl/ES Conclusions

We have developed a concept modeling tool which can be used to represent the
knowledge and information which is necessary to support:

1. The analysis required to design natural language processing interfaces to the
KAMSS,

2. The knowledge engineering to design the knowledge base components of the
KAMSS subsystems,

3. The information engineering necessary to design the database components of
the KAMSS.

By building from an existing information modeling methodology, we believe
that we will minimize the necessary relearning required to use the proposed
method. This is particularly important because the construction of knowledge
based systems in manufacturing domains is done simultaneously with major
initiatives in information integration. The ability to build from models already
constructed in the gathering of information for a KAMSS implementation is
critical in speeding its introduction into the manufacturing environment. In fact,
the extensions encompassed in the IDEFl/ES address all of the shortfalls which
have been identified with current information modeling methods [Mayer et al.
1988]. As such, there is the possibility that it could replace the existing modeling
techniques providing a uniform method for both information and knowledge
engineering.

8.1.3 IDEF3 Method Description

One of the primary mechanisms used for description of the world is relating a

story in terms of an ordered sequence of events or activities. The original IDEFs
were developed for the purpose of enhancing communication among people who
needed to decide how their existing systems were to be integrated. IDEFO was

designed to allow a graceful expansion of the description of a system’s functions

280

FIGURE 8.14: EXAMPLE OF TYPES, CLASSES, DESCRIPTIONS,
AND INSTANCES.

281

through the process of function decomposition and categorization of the relations
between functions (i.e., in terms of the Input, Output, Control, and Mechanism
classification). IDEF1 was designed to allow the description of the information
that an organization deems important to manage in order to accomplish its
objectives. The third IDEF (IDEF2) was originally envisioned as a user interface
modeling method. However, since the ICAM Program needed a simulation
modeling tool, the resulting IDEF2 was a method providing a framework for
specification of mathematical simulations. It was the intent of the methodology
program within ICAM to rectify this situation, but limited funding did not
allow this to happen. As a result, the lack of a method which would support
the structuring of descriptions of the user view of a system has been a major
shortcoming of the IDEF system. The basic problem from a methodology point of
view is the need to distingush between a description of what a system (existing
or proposed) is supposed to do and a representative simulation model that
will predict what a system will do. The latter was the focus of IDEF2, the former
will be the focus of IDEF3.

In many situations, users of the IDEFO method have resorted to special exten¬
sions to the IDEFO syntax and technique in order to modify this method to sat¬

isfy the need to represent the logical progression of activities which describe the
“behavioral” characteristics of the modeled system.

In relation to the KAMSS, the IDEF3 provides a framework for entering these
descriptions of process flows and object states in a manner which minimizes
the error in making such descriptions and which assures the viability of the
qualitative reasoning analysis described in Section 7.

8.1.3.1 Requirements for IDEF3

The previous discussion of the motivation behind the definition of a new method
for process flow and object state description points to two specific needs. One
need is for a method to support the development of a mechanistic description of
“how” a system works. That is, how a set of components is organized to solve a

particular type of problem. Another is the need to describe “how” an existing or

proposed organization of activities accomplishes a desired sequence of states of
affairs. Additionally, a third need is for a method to support the description of

282

what the “interaction” will be between agents and the objects acted upon in the
system. Agents in this sense may be humans or any other system component.

IDEF3 must provide the concepts, syntax, and procedures for building require¬
ments models which are descriptions of a system adequately detailed to determine
if a system described will actually work.

8.1.3.2 IDEF3 Design Concepts and Philosophy

There are a number of problems associated with any attempt to describe change.
Some of these problems are definitional in nature such as defining terms as “pro¬
cess,” “event,” and “activity” as well as characterizing the difference between
these concepts. Presuming a consistent definition, the next stumbling block comes

from the difference between the orderings and relations which can be established
between “types” of such concepts and those which apply to “instances” of such
concepts. For example, simple relations like “before” which can unambiguously
be applied to event instances (e.g., I ate supper before I typed this section) re¬

quire considerable elaboration if applied at the “type” level. If one activity type

precede (follows, overlaps, etc.) another activity type, it may not necessarily im¬
ply that all possible instances of one- activity type precedes all possible instances
of the other. More often, it means that the instances of the two activities are

pairwise related such that each instance of one activity precedes a correspond¬
ing instance of another activity. Such ambiguity can be resolved with additional
specification mechanisms although there is a trade-off of understandability versus

accuracy.

Unfortunately as the level of specificity goes up, there is a corresponding decrease
in the comprehensibility of the models. The basic situation is an untenable one.

Descriptions of large systems can either be accurate or comprehensible. In Figure
8.15, we see one classical way of dealing with the complexity of descriptions
involving process specifications and object states. In Figure 8.15a, we see a

representation of the totality of the information which we are attempting to
relate as a three space of objects, their conditions, and time. In Figure 8.15b, the
hexagons represent external events that start a process flow or create an object
in a condition. The circles represent objects in various conditions. The squares

represent activities which change an object’s condition. The horizontal flows
illustrate a path where the object is changing based on the performance of the

283

FIGURE 8.15: INTERACTION OF OBJECT, TIME,
AND OBJECT CONDITION.

284

actions (represented by square boxes with dotted lines showing the transition
the activity is responsible for). One example of this is the change of a purchase
request into a purchase order. The vertical line of circles represents changes
in the condition of a particular object (for example the change of a proposed
purchase request into an accepted purchase request).

Complexity also can be controlled through introduction of views, levels, and prop¬

erties. We also note that in practice, adequacy is given precedence over accu¬

racy in the description of process flow. Therefore, we set as a design goal for the
IDEF3 that the modeler should be able to gracefully introduce complexity and
expose that complexity as necessary in the syntax of the modeling system. To
this end we will start with as complete a characterization of the basic concepts of
the IDEF3 method but introduce a simple syntax for the initial model construc¬
tion. To a certain extent this approach to modeling parallels the IDEF1 method
with its five phases. However, the approach we are attempting designs the ab¬
straction into the modeling concepts themselves rather than into the discipline.

8.1.3.3 Basic Concepts of IDEF3

The basic concepts of IDEF3 include: space, time, situation, event, action, pro¬
cess, state, and conditional. Around these basic concepts, we are building a num¬

ber of primitive relations which are useful for describing most of the characteris¬
tics necessary to capture in the description how the activities, agents and objects
integrate into an operational scenario. The basic relations fall into the following
categories:

1. Temporal relations,

2. Sequence relations,

3. Causality relations,

4. Containment relations,

5. Typing relations.

The syntax for expressing process flow and object state is based on these con¬

cepts. As expected, we will normally represent instances of the concept types

285

with a node symbol and instances of the relation types with links between the
node symbols. Where possible we will use the position of the nodes on a page and
the left / right ordering of the nodes to indicate sequence relations.

8.1.3.4 IDEF3 Syntax

There are actually two different model types in IDEF3, these are the process

model and the object state model. :

The following subsections describe a proposed syntax for the process flow and
object state models. This syntax supports the creation of the individual models
as well as the indication of the integration links between these submodels and the
IDEFO and IDEF1 models. Because of the complexity of the collection of these
models as well as the individual models themselves, it is obvious that automated
tools will be required to effectively handle comprehensive models of this sort.
However since such tools will not be available at all times, some practical rules
of thumb and guidelines for constructing these models manually and tracking the
information included within these models will be provided.

As with the IDEFO and IDEF1 methods, a process flow model must be accom¬

panied by a statement of viewpoint, purpose, and context. In addition an IDEF3
model will have a “scenario” label. The descriptions of these four textual compo¬
nents of an IDEF3 model are given in Figure 8.16. The relationship between an

IDEF3 model set and IDEFO or IDEF1 is dependent on the set-up of the view¬
point, purpose, and context for the three models. For a meaningful integratation
with existing IDEFO and IDEF1 models, careful coordination of the viewpoint,
purpose, and context must be maintained across all models.

8.1.4 Illustrating the Process Model

The process model captures a network of relations between actions in a specified
scenario. The basic symbol set of the IDEF3 process model is displayed in Figure
8.17. The structural component is based on the conventions of the “Graphical
BNF” diagramming technique (as recommended by Tim Ramey). Though not
displayed in Figure 8.17, each model element in the process model carries the
following attributes:

1. Name (unique across the process flow),

286

Viewpoint Statement:

Characterizes the perspective of the information
presented in the model.

Purpose Statement :

Describes the intended use of the model.

Context Statement:

Establishes the boundary of the model. In IDEF3 the
context statement functions primarily as a means of
classification of events as being internal or external to
the system.

Scenario:

The label serving a the name for the process being
described in the organization.

FIGURE 8.16: VIEWPOINT, PURPOSE, CONTEXT,
AND SCENARIO DESCRIPTIONS.

287

Events: Ingoing:
Event
Name

" W

Outgoing: Event
Name

Actions:
IDEFr

Activity Name
<Planned Duration>

Model Reference

Sequence: Iteration:

FIGURE 8.17: PROCESS NETWORK SYMBOL SUMMARY.

288

2. Label (displayed with the symbol),

3. Description (a glossary entry).

8.1.5 Object State Transition Description

The basic form of the object state transition diagram at this point in time is that
of an augmented transition network. Figure 8.18 displays the basic elements of
the object state model. The nodes (solid boxes) in the network represent object
states. The dashed boxes attached to the nodes contain lists of attributes whose

specified values must be realized before a transition can be attempted. Note that
the attribute-value pairs may contain entries that are not in the object state. The
labels on the arcs are names of other object transition networks. The meaning of
a labeled arc is that the corresponding object state transition must be completed
before the transition can be completed. Though not displayed in Figure 8.18,
each model element in the process model carries the following attributes:

1. Name (unique across the process flow),

2. Label (displayed with the symbol),

3. Description (a glossary entry).

8.2 SDCE: A System Description Capture Environment

The System Description Capture Environment (SDCE) is a development effort
targeted at establishment of a knowledge based system for the:

1. Collection,

2. Organization, and

3. Analysis

of manufacturing knowledge in a plant. The SDCE prototype provides a proof
of concept for the SDC part of the KAMSS. The SDCE provides the expertise
of an experienced manufacturing systems analyst to assist the decision maker in
organization of data about his manufacturing facility. This base of information
supports the automatic generation of simulation models thus reducing the time

289

Object State
Description

Object Name
<Attribute C1ass> [<Va!ue *>] <EC#.ACN>
<Attribute Class> [<Value *>] <EC#.ACN>

Pre-Transition
Restriction

[<Value>*
[<Value>’'

n.

<Attribute Class> [<Value>*]3 oiass> [<vaiue> j j
IDEF1 Model
Reference

<Process
Model
Name>

o, 1
< Object State Transition Name >

Object State Description

Post-Transition
Restriction

FIGURE 8.18: OBJECT STATE TRANSITION SYMBOL SUMMARY.

290

and expense in the analysis of proposed changes or critical problems. The use

of the SDCE in a specific facility over time will result in the establishment of a
knowledge base which contains a description of not only the basic objects in that
environment (machines, products, tools etc.) and their relationships, but also
the “manufacturing logic” which determines how the system works. This logic
includes the operating policies of all levels of management in the facility. It also
includes the design rational which was determined at the time of the design of
the layout of the facility. Figure 8.19 presents an overview of the structure of the
SDCE.

The current SDCE was constructed under contract to Chrysler Motors Corporation.8
In the course of that research several versions, of the knowledge representation
component, the description capture component, and the description browsing
component were constructed and tested. Initially the idea we pursued was one

of having an extensive (but fixed) ontology based on an object hierarchy and spe¬

cialized editors/browsers for each major concept type. Thus, we designed a “Fa¬
cility Layout” editor (see Figure 8.20) for capture of the facility descriptions, a
“Bill of Materials” editor (see Figure 8.21) for capture of product descriptions,
and a “Process” editor for capture of descriptions of the process and associated
control logic organized by the responsible organization (see Figure 8.22), and a

“Type” editor (see Figure 8.23) for capture of the ontology.

As we attempted to apply these components to the system descriptions which had
been gathered, we found that there was no way to control (or accommodate) the
fluid nature of an actual description. Simply put, the notion of mere instantiation
of a predefined type (or class) was insufficient. As pointed out in Section 5,
concepts of the “type” category do not have a fixed set of definitions. However,

8 The project team included: the author who served as the knowledge engineer
and system architect, John Morris who served as the lead designer and pro¬
grammer, Jackie Wheeler and Sherri Messimer who served as the principle
user interface designers, documenters and quality control personnel, Tom Blinn
who was responsible for the SDKD implementation, Paul Squiterri who served
as the modeler, Dr. Guy Bailey who assisted with the linguistic analysis, Dr.
Chris Menzel who assisted in the ontology and knowledge base structure de¬
sign, and Murali Krishnamurthi who served as a systems consultant.

291

FIGURE 8.19: LOGICAL VIEW OF THE MAJOR COMPONENTS
OF THE SDCE.

TrentonEnginePlant

SystemDescriptionCaptureEnvironment Sketchpad

t234337«910II1213HIS16171«142021222323232327232430
Sketch: IconLine LabelPolygon Grid: Grid:YesNo GridIntervalLength(ft.):30 GridRange:30 Scale:1 CursorPosition: XPosition:647.7 YPosition:160.fi RelativeXPosition: RelativeYPosition:

547.7 fi0.fi

ReferencePoint:top-leftcorner

□Polygon^Line Polygon Line Polygon rtmwflffiMi

ProductDescription Sketchpad ToolTreeDescription

FIGURE8.20:SKETCHPADEDITORFORFACILITY DESCRIPTIONCAPTURE.

292

EditBillOfMaterialEditProductListEditPurchasePartList BillOfMaterialsofRacingBike racingrearwheel,1 racingfrontwheel,1 shinano600conponentset(lesshubs),1 cellinehandlebars,1 cellinehandlebarsten,1 specializedseatpost,1 avocetgx20seat,1

ProductPfscription
Products Mountainbike Mountainrearfrontwheel Mountainrearwheel Iracingbikel racingfrontwheel racingrearwheel touringbike touringfrontwheel touringrearwheel widgit PurchasePart avocetgx20seat cellinehandlebarsten cellinehandlebars gigit navicrins shinano600conponentset(lesshubs) specialized11/8in.tube specialized19nnultra-lighttube specializedfrontracinghub specializedracingtire specializedrearracinghub specializedseatpost specializedtouringItire

OpenPlant LoadingKBS1:>JOHM>PLHMTS>kdw.1isp.12intopackageUSER(reallyCOMttOM-LISP-USER) ProductDescription OpenPlant LoadingKBS1:>JOHM>PLfiliTS>TrentonBicyclePlant.LISP.1intopackageUSER(reallyCOtUIOti-LlSP-USE R) DisplayBonForProductracingbike

DepartmentDescription NewPlant OpenPlant ProductDescription SavePlant

a

FIGURE8.21:PRODUCTDESCRIPTIONCAPTURE.
293

ifystfwpesfnp(mF .■p€pgrimenf■pescfiptibriMode*

DefineObjectFlow
EditDepartmentInputsEditDepartmentOutputs

OperationSummaryofWheelAssembly inspecthubs laceandtruewheel addontubeandtire inflatetube ProcessLogic

Departments ~]UC^Aaiuiciiwi£.f departnent429 department431 departnent437 departnent438 departnent439 ^department522 |frameassembly| wheelassembly1 ResourcesofWheel
Products mountainbike mountainrearfrontwhee mountainrearwheel racingbike racingfrontwheel racingrearwheel touringbike touringfrontwheel touringrearwheel widgit

:□

PurchasePart avocetgx20seat cellinehandlebarstem cellinehandlebars fgigit nauicrims shimano600componentse specialized11/8in.tL specialized19nnultra- specializedfrontracinc specializedracingtire specializedrearracing ^specializedseatpost specializedtouringIti
DepartmentDescription NewPlant OpenPlant ProductDescription SavePlant

Mouse*ft:SystemDescriptionCaptureMepu.'
Toseeothercommands,pressShift,Control,Meta-Shift,orSuper. FIGURE8.22:ORGANIZATIONPROCESSDESCRIPTIONCAPTURE.

294

•Huh?.{"Abort'} Huh?£ftbortj Huh?

TypeEditor:Warren2-TopLevel
TypeViewer:loaderadvances

EventRelations JObjects)-

LoaderAdvances

LoaderAdvancesoccurs beforePause1 LoaderAdvancesuses Cab Loader BsUConveyor B^/UCabCarrier

■|Description[- lDurationl-

-Qloaderadvancesundercab̂ Eventdurationis5
(ObjectRelationsl-

LoaderAdvancesrequiresthese objecttoobjectrelations: On(Cab,BsUCabCarrier) On(B/UCabCarrier,B/UConveyor)
FIGURE8.23:SDCETYPEEDITOR.

295

296

the problem goes much deeper than this. The process of description formulation
appears to be one of:

1. Breaking the subject matter into parts by formulation of names or definite
descriptions of the whole and each part,

2. Assigning categories to each part,

3. Naming relations between the parts,

4. Identification of regularities between the parts,

5. Treating each part, relation, or regularity as a piece of subject matter and
recursing the process.

Thus, a description of a transfer device might include The BIW conveyor is an

induction motor conveyor with The key is the “with” clause. If one attempts
to build a type hierarchy which can accommodate all of the possible completions
of this clause one essentially must end up with an infinite hierarchy. In order to
address this problem we developed the following capabilities:

1. A block diagram editor (see Figure 8.24) which supports:

1.1. Declaration of a block category to one defined in the concept editor,

1.2. Linking one block to another,

1.3. Declaration of a link category to one defined in the concept editor,

1.4. Grouping blocks, links, or blocks and links together into a composite
description which may have a category assigned to it,

1.5. Elaboration of a block, or link, or group with any number of additional
block diagrams,

2. Relaxation of the strict hierarchy restriction on the type editor to allow
networks of concept structures to be described (see Figure 8.25),

3. Addition of a text annotation capability to handle the capture of arbitrary
textual annotations in any mode of the object or block editors.

BLOCKEDITOR

Cormand:

ressShlftfMeta-Shift,Super,'orHyper. FIGURE8.24:SDCEBLOCKEDITOR.

to CO

—I

SDCEOBJECTEDITOR

Notes
OutIIne t.DesignLogic 2.DesignRationale 3.GeneralNotes 4.GraphConponents CommandsWindow

Graph (BLOCK-VIEU-COnPOHEflT) (AREA) (FLQU-DIRGRflH)
(STRATEGY) CUM)

(TASK)

PROCESS) ACTIVITY)

Connand:SetConfiguration(Outllne-flnd-GraphorGraph-Only[defaultQutl1ne-flnd-Graph])Graph-Only [15:21:03ProcessScreenHardcopygotanerror SelectBackgroundDynamicLispInteractor2bytypingFunctlon-O-S.] [15:21:06ProcessScreenHardcopygotanerror SelectBackgroundDynanlcLispInteractor3bytypingFunct1on-0-S,3 [15:21:23ProcessScreenHardcopynotantr-rorConnand:|
FIGURE8.25:SDCEOBJECTEDITOR.

to
C.O

OO

299

The effectiveness of this approach is currently being proven in application within
the Simulation and CIM Planning groups at Chrysler Motors. Currently the
block editor supports the editing of properties of a block, group, or link. In this
mode the user is presented with a menu consisting of the attributes of the type

assigned to that block and their default values. The user can modify the default
values interactively. Work is currently underway to allow the extension of the
attributes of the type assigned to a block from the property editing mode and
have the resulting new object type entered as a specialization of the initial object
type. This will allow the graceful extension of the terminology component of the
system as a natural part of the description capture process.

The SDCE is implemented on the Symbolics lisp machine using the program

framework, dynamic window, and presentation type utilities of that system.
Initially we implemented the type system within the Flavors substrate. However,
in order to support the flexible redefinition of object descriptions and to support
the multiple interpretation of those descriptions, we were forced into the design
and development of our own SDCE object manager.

8.3 FCT Prototype

The Fact Collection Tool (FCT) was selected for prototyping to determine the
feasibility of providing direct automation to the data gathering part of the de¬
scription process. During this data gathering phase, an analyst is collecting “as¬
sertions” made by the domain experts in the environment as well as his own “ob¬
servations” on the environment. One of the traditional problems has been how to

organize and transfer these facts. The FCT prototype represents an approach to

providing a micro-based “analyst notebook” which is capable of directly captur¬

ing in the form of statements both types of facts. Once captured, the statements
can be “interpreted” via classification into a set of semantic categories and further
elaborated.

The objective of the FCT concept is to provide a knowledge recording (or experi¬
ence capture) tool for the analyst to capture and record the facts described by the
domain expert or directly observed. This tool must be friendly enough that all

300

information that an interviewed person might give verbally may be typed in with¬
out disrupting the train of thought of the speaker. It must also work on hardware
that is portable so that it may be taken to the site or to the analyst’s workplace.

To achieve these goals, the current prototype FCT was written in ‘C’ on an IBM
PC class machine9. In this way it could even be used on inexpensive portables.
The user interface design on this system was deemed to be a critical aspect
to the successful accomplishment of the design goals. Speed of data entry was

considered high on the priority list for this design. Thus, for example, it was
determined that such a system would have to be driven by key sequences and not
menus in order to perform at a satisfactory speed. The current FCT prototype
operates in a stand-alone mode. In the future, it will be integrated with the
SDCE in such a way that concept classes can be downloaded and facts collected
can be uploaded into the SDCE description data base.

The design used has the flavor of a “semantic net” construction tool in which the
user interactively:

1. Captures textual sentences which “represent” an acquired fact,

2. Categorizes both the entire text as well as individual words and phrases in
the text,

3. Provides further description of the categorized items.

The major modes of the FCT and the features supported by each mode are

shown in Figure 8.26.

The main task of the FCT is to accept, store, describe, and relate free form
textual statements. When an analyst is in a fact-finding mode, he is acquiring
labels (e.g. names, symbols, or descriptive phrases) whose reference is to concepts
or objects in the domain of interest as well as complex relations between these

9 The FCT prototype was developed under contract to the Air Force. The
project team included: the author who served as the system architect, William
Forsythe and Joel Toland who served as the lead designers and program¬
mers, Mr. Stu Coleman and Dr. Thomas Cullinane who served as technical
consultants

FEATURES

• Session Structure • Dynamic Description • Dynamic Categorization
- who -where Capture of Dialogue (Text)
- when Elements

• User-Extendable Lexicon - Activity
• Issues / Objectives - Physical Object
• Technique(s) / • Dynamic Categorization - Artifact

Session Guide of Dialogue - Organization
• Notes / Ticklers - General - System
* Session Chronology - Rule - Process / Scenario

• Post-Session - Relation - Event

Observations - Problem - Descriptor
• Multiple Category Assignment
• User-Extendable Categories
• Categories Map to

Method Requirements

Template for Each
Category

Captures Descriptive
Features / Properties

User-Extendable
Templates

Features / Properties
Map to Method
Requirements
Fact Categorization
Linkage
Error Tolerance /

Correction
Context "Dragging"

FIGURE 8.26: FACT COLLECTION TOOL CHARACTERISTICS

302

objects. The reference label can take the form of “names” (e.g. Engineering
Department) or descriptive phrases (e.g., the induction motor conveyor in the
fabrication department). A pop-up statement capture window is provided for
inputting one statement at a time. These statements are assumed to be related,
but to contain one idea or piece of information.

The second task of the FCT is to assist the interviewer in organizing his thoughts
and questions. To accomplish this, the modeler may classify the statement and
any word in the statement as he types. The four statement types are general,
rule, relation, or problem statement. The eight main word classifications are

activity, physical object, artifact, organization, automated system, process /
scenario, descriptor, or event. By classifying a word, that word is placed in a

database, and a “tag” associates the entry with the statement from whence it
came. At any time the modeler may call up a listing of all entries in a class, or
a class specific data form to be filled out about that entry. A ninth class is recall
where the modeler marks a word as being of some unknown class when he is not
sure which class it should be. In this way, he may look at the entry later and
decide where it belongs.

At any point the modeler may change the classification of an entry. The FCT
will also accept duplicate entries so as to relieve the burden of remembering what
information has already been classified. The modeler may later determine that
multiple entries are the same and combine them into a single entry retaining all of
the tags to the original statements. These tags, along with time stamps, will help
the modeler to reconstruct the meeting in order to help him determine the exact

meaning of an entry by viewing the context in which the entry was used.

An example scenario of dialog capture is displayed in Figure 8.27. This figure
illustrates the general process of statement capture, label / phrase classification.
Figure 8.28 displays the 10 classification categories provided by the prototype
FCT. Figure 8.29 displays a description capture form for a label whose referent
has been classified as being of type “Physical Object”.

303

Long lead items are ordered by advance material requests.
t
F2

t
F7

t
F 3

FIGURE 8.27: DIALOG CAPTURE USING FCT.

Activity
Physical Object

Artifact

Organization
System

Process/Scenario
Event
Link

Descriptor
Statement

FIGURE 8.28: FCT CLASSIFICATION SCHEMES.

305

DIALOGUE

Statement Class: Problem

The cost of building parts is increasing. In order to
compete it has beecome necessary to make most
parts in a Transfer Press.

OBJECT

Name: a Transfer Press

Part of:

Contains. Qonta,ns Dies j Presses , lifters, Stages,
Stations, a base

Important Characteristics:
Fully automated material handling. Limited

height. Limited number of dies.

FIGURE 8.29: FCT DESCRIPTION FORM FOR PHYSICAL

OBJECT TYPES.

306

8.4 MDSE Prototypes

The model development support environment efforts spanned several projects.
The following describes initiatives in each of the modeling areas described in
Section 3.

8.4.1 Implementation Model Support

One of the requirements identified in Section 3 which the KAMSS must support is
the rapid prototyping of engineering decision applications (implementation mod¬
els). The SDCE has been used as a platform for providing the initial capabilities
of an Engineers Programmers Workbench.

By moving away from specialized editors to the block diagram editor concept
(which is specialized by the types assigned to the blocks), the current SDCE
can be used to capture descriptions of software designs. In fact the object editor
provides an option to save the object network as Flavor declarations which
provides a means for engineers to rapidly develop applications using object
programming.

The block diagram editor can also be used to capture descriptions of situations
for applications other than factory and software descriptions. It is currently being
used as a means of capturing device descriptions for a causal model -based diag¬
nosis application (see Figure 8.30). In this application the user who is describing
a piece of equipment (or a system) is restricted to the object types used by the
causal model based reasoner.

8.4.2 Simulation Model Design Support

A simulation model design support system is being built on top of the SDCE pro¬

totype using the block diagam editor and object editor to support the design of
simulation models based on the SIMAN simulation language constructs. This
system provides much of the same capabilities as were originally prototyped in
the OBMODELER described in the next subsection of this section. Using the
SDCE Object editor, a type hierarchy was defined of the SIMAN modeling con¬

cepts. The model designer starts with a block diagram description of the system
to be modeled and overlays the groups (or blocks) which represent the abstraction
or elaboration of the system description into a model design. The modeler can

BEHR-DSOBJECTGRAPH

Listener

Modeller

DiagramOnlyModellerGraph
DiagramOnlyGraph

ChangeComponentType ChangeVisualCharacteristics CreateBlock CreateComponentExpansion
CrelteGroup Creitelink OiipliyComponen EditBlockText

EditComponentPropertiesNewDiagramRenameDiagram ExpandComponentRedisplaySaveDiagram
tPropertiesLoadDiagramRemoveComponentToggleDrawSquares MoveComponentRenameComponent

Diagram

PLC-POWER-SUPPLY

FIBER-OPTICS

SOENOID-PANEL

CommandWindow
HConnand:RenoueConponent8<block:BLOCK-VIEU-COMPONENTQ> Connand:RenoweConponent8<block:BLOCK-UIEU-CONPONENTS> Connand:Redisplay Connand:Redisplay Connand: LoadDiagran:BEHR-PRINT-BOOTH Connand:LoadDiagranBEHR-PRINT-BOOTH Connand:Redisplay Connand:

FIGURE8.30:SDCEBASEDMECHANISMDESCRIPTION CAPTURETOOLFORDIAGNOSIS.

30

i

308

examine the system characteristics interactively during the specification of the
SIMAN model element characteristics. This allows the simulation analyst and the
domain expert to operate independently using the SDCE as the vehicle for com¬
munication. The domain expert can easily see what parts of the system are being
modeled and examine the abstractions made by the modeler.

An analyzer is under development which will accept this graphic simulation
design and produce the SIMAN code for each of the components specified in the
model. As experience is gained in the use of this support mode of operation, the
results of Section 7 will be used to develop more intelligent assistance for the
model design process.

8.4.3 IDEF Model Development Support

The Integrated Model Development Support Environment is a suite of integrated
software tools that provide intelligent support for system modeling. This proto¬
type was constructed as a proof of concept demonstration of the MDS component
of the KAMSS. The initial prototypes have focused on support for the IDEFO and
IDEF1 modeling and on the construction of a generalized tool for building such
modeler tools called the “MetaModeler.” The IDEF tools assist in the complete
process of function and information modeling10. The current IDEF model build¬
ing system is only loosely integrated with the SDCE (callable as an option from
the SDCE framework).

10 The MDSE prototype was developed under contract to the Air Force. The
project team included: the author who served as the system architect, Mr.
Tom Sheppard (Symbolics Inc.) who served as the lead designer and program¬
mer of the MetaModeler and the IDEF1 modeling tool, A1 Underbrink and
Martha Wells who served as the principle designers and programmers for the
discription collection and data dictionary components, Louis Decker and Keith
Ackley who served as the lead designers of the IDEFO modeling tool, Paula
Mayer and Charles Bodenmiller who developed the English language model
summary generator, Steve Cook who developed the report generation and
hardcopy output utilities, Terre Layton responsible for testing and documen¬
tation, Mr. Stu Coleman and Dr. Thomas Cullinane who served as technical
consultants

309

An effective modeler support environment must also support the integration of a
large number of models being developed either by the same modeler or different
modelers. It must also support reuse of existing models. A great deal of the work
done by a modeler involves the integration of a model or a part of a model into
another model. This integration is similar to the merging of two models to form
a third. The main difference between this and the creation of a model is that in

these cases the model elements already exist. -

The design of the IDEFO modeler is based upon the MetaModeler concept. The
MetaModeler allows a description of the information to be entered and generates
the basic functionality necessary for a graphics-oriented tool. An IDEF1 model
of IDEFO was developed to use as input to the MetaModeler. The IDEFO model
developed is shown in Figure 8.31. An appropriate description was created for
the MetaModeler, supplied to the MetaModeler, and an IDEFO modeling tool
was generated. Figure 8.32 displays the single screen version of the IDEFO model
builder.

A major portion of the development of the prototype IDEFO modeler was the
user interface. The command interpreter, mouse gesture handler, and graphic
display were design and constructed to complete the IDEFO tool. Much of the
functionality was intentionally designed to run concurrently with the IDEFl
modeling tool. The user has the ability to operate on models of either modeling
methodology with each loaded into the AutoIDEF system at the same time.

As the IDEFO tool is integrated with.the IDEFl tool through the MetaModeling
framework, it is possible for the modeler to build such models simultaneously
pulling concepts from one to the other. Figure 8.33 illustrates such a dual model
session.

The modeling support for IDEFl was also constructed using the MetaModeler
generation capabilities. The IDEFl model of IDEFl which was used as input
to this generation feature is shown in Figure 8.34. Figure 8.35 displays a sample
screen from the IDEFl modeler.

FIGURE8.31:IDEFlREPRESENTATIONOFIDEFO.

ModelBuilder

nod;,i:Samplevieu:AO

C»p't<l

Hattrlals,-
tlanufac- turing

Marketing

norvfy»Honey
Selectconoletion A-

88

3;"Environnent" "SuccessfulBusiness'
Iff/

X"Manufacturinq'l
B2 83

"Marketing* "Sales*

_

>CreateRelation activity;I

Product Types:
Hardware Software

Parts:
QuantityQuality

FIGURE8.32:IDEFOMODELINGSUPPORTSCREEN.
311

ModelBuilder

node!:Samplevleu:AO

nodel:parts-tppvleu:Initial-View(selected)
Manufac¬ turing

Svv'vt

Prodvct a
Marketing

1~
8<EIITITY-CLRSScad-d*sign> KEY-CLASSES (part-iddeslgn-ld) ATTRIBUTE-CLASSESpart-idpart-nanedesign-id

Wfl

lnUir-iiL

m

1TGSW&f.SMS

Iff

*iuM3

•yy

FIGURE8.33:MULTIPLEMODELINGSUPPORT.

312

313

FIGURE 8.34: IDEF1 REPRESENTATION OF IDEF1.

IDEF1ModelBuilder

mod«l:costpartview:Initial

model:IDEFIofIDEFBIview:Initial-View
ATTRIBUTE-CLRSSEE(bardept*) XEMTITY-CLASS«C> KEY-CLRSSES (()) AT?RIBUTE-CLRSBES() ><EMTITY-CLKSSpart* KEY-CLRSEE6 ((pert*)) RTTRIBU1E-CLRSSES(yearnouelpart*)

•<EMIITY-CUISSIDCFIofIDCFBl'donain* KEY-CLASSES ((Don)) RTIRIBUIE-CLRSSEE(Don)

model:IOEF1view:Initial (selectedpaneformodelbuilding)

InspectAttributeClass LoadModel MergeEntityClasses Move...(3) Refresh ReIanMet RenoveAttributesFronKeyClass
.

oothercorrimandBrpres#Shift FIGURE8.35:1DEF1MODELBUILDERSUPPORTINTERFACE.
314

315

8.4.4 Generalized Model Generator

The MetaModeler effort has focused on development of an object based code
generation system which would accept formal descriptions of a methodology and
produce an intelligent modeling support tool from that description. The current
version of the MetaModeler generates a basic model data management tool to
which the developer must add the user interface (see Figure 8.36).

The MetaModeler provides a general way to create a computerized tool for any
modeling methodology. It provides a specification language that allows the de¬
scription of the syntax and grammar elements of modeling methodology. The first
step in the use of the MetaModeling tool is to describe the information structure
and semantics of the methodology for which a modeler is to be designed. Using
IDEFl, the programmer describes the entity classes and link classes in the specific
MetaModeler language. The third step is to let the MetaModeler generate the
model tool. The last step in the process is to add the user interface. Currently
only the graphical display object management and link routing of this last step is
automatic. The code generated by the MetaModeler consists of a set of Flavors
object definitions and Lisp methods.

The current MetaModeler was used in the development of the IDEFl and IDEFO
modeling tools. The value of the MetaModel concept was proven in the develop¬
ment of these modeling tool in terms of development time savings and integrata-
bility of the resulting systems. The concepts behind the MetaModeler are still
undergoing an evolutionary process and continue to change as more experience is
gained with its use.

8.5 OBSIM: An Object Based Simulation Language

The objective of this language development was to establish a framework for the
development and evaluation of prototype simulation languages for the model
generator component and the simulation engine component of the KAMSS. The
current implementation is being used to investigate the following three simulation
concepts:

1. Separation of the user supplied system description from the design of the
simulation model.

316

FIGURE 8.36: USE OF METAMODELER TO GENERATE

MODELING SUPPORT ENVIRONMENTS.

317

2. Provision of both entity tracing and condition triggering types of simulation
modeling support in the same environment.

3. Use of an electronic blackboard concept for system definition and simulation
model design support.

OBSIM is currently implemented in the LOOPS [Bobrow and Stefik 1983] lan¬
guage on a XEROX 1108 AI workstation with low level functions programmed in
InterLisp [Kaisler 1986].

As described previously in this dissertation, a simulation analysis process is initi¬
ated with the definition of the customer’s goals for analysis and system descrip¬
tion. One of the problems inherent in existing simulation support environments
is that the languages which are provided for these environments only support
the specification of the simulation model of the system. Thus, while very pow¬

erful aids are provided by the system, they tend only to support the needs of the
simulation analyst and not those of the end customer. To understand the repre¬

sentations constructed in these tools requires that the customer be trained in the
techniques of both simulation modeling and the particular underlying language
constructs. In OBSIM, we have attempted to provide support for both the system

description and the translation of that description into a simulation model. Using
an object based system description language similar to GEIST [Balzar and Gold¬
man 1982], the customer’s description can be recorded and displayed to what¬
ever level of detail is required to satisfy the user. Rather than use the formal ax¬
iomatic procedural description language common to most system specification
languages we have adopted the rule based language similar to the rule language in
LOOPS.

The simulation model design proceeds by the assignment of model objects to

system description objects or groups of objects. The simulation analyst can
choose from a primitive set of OBSIM model objects or he can utilize modeling
objects from existing simulation languages. In the analysis of what knowledge
an expert simulation analyst possesses about the design of simulation models, we
dicovered that much of that knowledge has been encapsulated into the modeling
constructs which are available in existing simulation languages. Therefore in
the OBSIM language, we have taken advantage of the inheritance properties of

318

the LOOPS object programming capabilities to implement equivalent modeling
constructs. Thus, an analyst can use SLAM activities or GPSS delay blocks
[Schriber 1972] intermingled with his own customed designed modeling constructs.
This approach differs from other object based simulation languages where the
simulation construct set is essentially fixed [IntelliCorp 1985b].

8.5.1 Entity Tracing Versus Condition Triggering

One of the standard ways of characterizing discrete event simulation models is
the distinction by event, activity, or process orientation. However, in examining
the types of analysis which are performed using these modeling approaches, there
appears to be two categories of analysis approaches. The distinction is based on

what is being observed about the system under study. In traditional manufactur¬
ing studies, the primary orientation is focused on the tracing of items through a

series of processes. In the man-machine, software architecture, and control logic
simulations, the orientation is primarily focused on observing the triggering se¬

quence determined by condition satisfaction and resulting in the actions taken by
the system. The goals of the entity tracing type simulations normally focus on

prediction of resource contention and overall system performance. The goals of
the condition triggering type of simulation normally focus on fault analysis or the
determination of the cause of the conditions which gave rise to a particular be¬
havior. When analyzing systems using the entity tracing approach, alternatives
are expressed by changing levels of resources, number of entities in the system,

changing the characteristics of a process, or changing the flow of entities through
the processes. When analyzing systems using the condition / triggering paradigm,
the design issues at hand normally dictate the changing of the logical structure of
the system or the rules which govern the system operation.

The simulation languages which have evolved to support these different analy¬
sis/usage paradigms have focused (appropriately so) on making it easy to change
those components which are frequently changed. Thus, for example, changing a

single parameter on a branch node in a network language can drastically change
the flow of items through the system. However, as today’s manufacturing sit¬
uations demand examination of the integration aspects of men, machines, de¬
cision logic, and software control (particularily in evaluation of CIM applica¬
tions) the need to integrate these two paradigms is beginning to surface. OB-

319

SIM supports the integration of both kinds of analysis by allowing the specifica¬
tion of entity flow through the traditional network stuctures and the representa¬
tion of conditional logic through LOOPS rule sets which can exist as stand-alone
“logic” nodes or be attached to another standard modeling concept as a special
purpose method. Thus, for example, experimenting with different control logic
and structures in an FMS situation is as easy as the changing of the English-like
IF...THEN rules associated with the supervisory control object.

8.5.2 OBSIM Language Constructs

The OBSIM language consists of four basic classes of objects. The core set of ob¬
jects and their interaction is displayed in Figure 8.37. System description objects
are used in the construction of the user’s definition of his system and his goals for
analysis. The modeling class of objects contains the primitive dynamics represen¬

tation objects and the higher level simulation primitives built as mixins of these
primitives. The simulator objects are those required to actually simulate a model
design (e.g., Supervisor, Clock, Statistics Collector, Deviate generator, etc.). The
fourth class of objects are those which provide the development support for the
definition and analysis project. These objects are structured around the typi¬
cal life cycle artifacts associated with a simulation analysis (e.g., runs, models,
system definitions etc.). The entire OBSIM language has been implemented in
LOOPS objects and rules. Thus, the user of OBSIM or a researcher interested in
examining alternative language constructs, can easily modify the behavior of the
OBSIM system by redefining the basic object types or by redefining the behavior
of the existing objects by modification of the rules which are used to specify the
methods which prescribe that behavior. Figure 8.38 displays the structure of a
typical rule method attached to an OBSIM object.

OBSIM was originally conceived of as a tool for simulation language experimen¬
tation. That is, as a workbench for the construction of new simulation modeling
concepts. Using the set of primitives built into OBSIM and the object oriented
programming and rule programming paradigms of the LOOPS language the user

can construct new concepts through the following steps:

1. Create a new LOOPS class object with the name of the desired concept.

320

FIGURE 8.37: OBSIM OBJECT HIERARCHY.

321

2. Assign as “superiors” of that new object, the primitives of the OBSIM
language from which the new concept will inherit basic behavior or attribute
characteristics.

3. Modify rules of the methods of the mixed in objects to create the specialized
behavior of the new concept type.

A simulation model consists of a set of instances of the object classes displayed in
Figure 8.37. A simulation run is made by creating an instance of a supervisor ob¬
ject and sending it a message “run.” To illustrate the operation of the simulation
model, the user creates instances of the “probe” object which automatically cre¬

ates display gauges such as dials, vertical or horizontal bar graphs, or digital me¬
ters which become attached to the particular value of the attribute of the model
object which one wishes to display.

8.5.3 Deficiencies / Shortcomings of the Object Paradigm

Object oriented programming was originally introduced as a programming mecha¬
nism for modularization of code [Sutherland 1963; Kay 1969; Cannon 1982]. As
such, there are definite property and behavior representation shortfalls which
arise when attempting to use these programming objects to model real world ob¬
jects. For instance, the message passing paradigm works quite well in modeling
the perceived interaction between a foreman and an operator. But implementa¬
tion constraints which do not allow for parallel activities (essentially treating the
passing of a message as a procedure call) limit the level of behavior representation
possible. Similarly, the fact that messages in typical object oriented implemen¬
tations are not themselves first class objects means that at best they can only be
used to define a fixed communication protocol between the agents of the system.
More recent extensions to the object oriented paradigm are attempting to solve
both of these problems (see [Hewitt 1980] for a discussion of ACTORS). Even
with the extensions made in the ACTOR languages there is yet another problem
with the object / message paradigm. This problem is due to the fact that many
natural constraints of the world do not conveniently fit into the message passing
paradigm.

Constraints which reference time and location are particularly notable, for exam¬
ple, the constraint that no two physical objects can occupy the same location at

322

Rule Set Activity.Init
Work Space Class : Activity ;

Temperory Variables : Requisition time ; :

Control Structure : DOALL ;

Args : item ;

(* If activity does not require resources just set up an end of service event *)

If "-resources THEN entity item
status busy
time (<s- . distribution Get sample : parameters)
time <— time + Tnow

(*— $ Supervision log self time item 'complete)
(item update location self)

IF resources requisition (<— : resources Request 1)
THEN entity <— item

status busy
time («— : : distribution Get Sample : parameters)
time time + Tnow

($ Supervision log self time item ’Complete)
(**- item Update location self)

IF resources ~ requisition
THEN

(self Wait For resources)

FIGURE 8.38: LOOPS RULE SET FOR OBSIM QUEUE
PRIMITIVE INIT METHOD.

323

the same time as might be desired in the animation of a simulation model or in
the representation of the movement of physical parts on a conveyor. Implementa¬
tion of these types of concepts in the traditional manner requires the entire space

of objects to be polled on the change of one objects attributes. While this can

certainly be done, it is both computationally expensive and conceptual^ inele¬
gant. One work around which we have devised is the creation of a separate object
for each such “global” property which must be managed. Such a construct allows
for enforcement of global constraints to be modeled as communication via shared
memory. In actuality, the original object oriented programming implementation
in Sketchpad [Sutherland 1963] was totally implemented using the shared mem¬

ory concepts. Difficulties with the complexity of managing a heterogeneous mes¬

sage traffic precipitated the later movement away from this global memory con¬

cept. By structuring the partitioning of such a global memory into heterogeneous
chunks, we avoid the management complexity problems.

8.5.4 OBSIM Summary

We have demonstrated the use of object oriented paradigms as a mechanism
for constructing a flexible simulation language design system. We have shown
that the rule processing capabilities and the provision of both entity tracing
and condition/triggering paradigms (which are key requirements on the KAMSS
simulation engine) can be accomplished. We have also shown that the object/rule
implementation approach allows the integration of a large number of previously
considered distinct modeling constructs. Finally, we have shown a mechanism for
overcoming a serious problem in the use of object based systems for representing
and implementing globally active contraints.

8.6 OBMODLER: An Object Based Model Design Support System

The OBMODLER is an infinite blackboard, menu, and icon driven modeling sup¬

port system which was prototyped during this research effort. The OBMODLER
provides a graphics based alternative to the definition of a system which then can

be translated into an OBSIM model automatically. In addition to the standard
documentation, storage, retrieval, verification, and translation functions, the de¬
sign goals of the OBMODLER include the following:

324

1. Ability to add, change, delete, and move system definition and model compo¬
nents at will on the viewport.

2. Ability to construct the entire model as one interrelated entity on the black¬
board and rapidly pan the viewport over the entire set of resulting networks.

3. Ability to have prompting provided for the required parameters of each node
type.

4. Ability to select portions of the model to reuse in other models, (ie. ability
to select nodes from one model and move them to other models.)

5. Ability to tie the simulation model in its graphics form to the model in its
run time state to support the use of the graphical representation in the
debugging of a simulation model.

The system definition and model design can be built as the modeler thinks about
his problem. This means that no particular order is imposed on the definition of
the structures and objects being declared. Nodes are added to the blackboard
as the modeler thinks of objects or constructs he needs to include in the system

description. The system definition nodes need not be assigned a simulation model
concept until the designer desires to incorporate them into the analysis model.
Such nodes are merely placed in a boxed or unboxed format on the screen as

in Figure 8.39. The modeler has the option to assign a modeling construct to
each particular node at creation or simply leave the node on the blackboard as a

reminder as shown in Figure 8.40. The system description in the form of a set of
linked nodes provides a convenient representation of the system description data
which the analyst has acquired.

The modeler can connect the nodes together to form a network which will be
interpreted in a manner similar to network simulation systems except that solid
physical lines always represent the flow of an object, dashed lines represent the
flow of messages, and dotted lines relate merely an association. The modeler can
also lasso a group of nodes and assign them a modeling construct to represent a

logical grouping of associated description objects with a single model construct.

325

SHEET METAL CENTER DESCRIPTION

FIGURE 8.39: OBMODLER REPRESENTATION OF

A SYSTEM DESCRIPTION.

326

FIGURE 8.40: ASSIGNMENT OF SIMULATION MODEL CONSTRUCTS

ON A SYSTEM DESCRIPTION.

327

The modeler works on a scrollable viewport positioned over a portion of the
blackboard. In the model design or editing mode, the modeler can choose from
a variety of predefined modeling icons. Some of these icons represent familiar
SLAM, GPSS, SIMAN and GEMS symbol types. Others represent predefined
physical object types, such as a 5-axis Sundstrand Omnimill or a Local Area
Communication Network. Still others represent complete canned models such
as a grinding cell with its own material handling, inprocess storage, and control
logic. One of the top level features provided by OBMODLER is the capability
for the modeler to add to or remove from this set of primitive icon symbols.
For example, if the modeler finds it convenient to add the SLAM GOON node
as a primitive, he can construct the icon which represents that node, build the
translation of that node into the OBSIM language, and add it to the list of icons.
The icons are then displayed when the initial (OPENSESAME) command is
given. The modeler can also open up displays of previously constructed system
descriptions or models and “lasso” subsections of those models and pull the
selected parts into his current work area (see Figure 8.41).

The resulting model is set up in such a way that it can also be used to monitor
the results of an ongoing simulation in several interesting ways. Building upon

the active value implementation of the data-driven programming concepts of
LOOPS, any attribute value of a simulation modeling object can be defined
as an active value. The active value can trigger a function when it is accessed
or changed or both. Even the blackboard representation of that node can be
affected. Thus, for example, activities can be made to invert to white lettering
on black background when the activity is busy. Also, a set of modeling objects
called probes are provided which allow the modeler to indicate that a value or a

particular set of values is to be continuously monitored and displayed during the
execution of a simulation. The association of a probe with a node attribute would
cause a gauge to be displayed which would show the value of the attribute during
the simulation. The gauge itself is an object which the modeler can tailor to his
specific requirements. While there are many built-in gauges (linear vertical and
horizontal gauges, round dial gauges, simple LED gauges and pointer gauges), it
is a simple matter to mix these types together or to create a new class of gauges.

328

SHEETMETAL CENTER DESCRIPTION

Shear Parts Decrease Form

/

/ /

:/

/

Copy All
Copy One

/

Spagetti Pull
1
/
/

/
/

/

/

/

^
SHEET METAL FORMING DESCRIPTION
7
/
/
/

/
/
/

/
/
/

/
/

FIGURE 8.41: REUSING PREVIOUSLY DEFINED SYSTEM

DESCRIPTIONS OR MODELS.

329

8.6.1 OBMODLER Summary

We have demonstrated that the separation of system description and model
design in an integrated support environment can be accomplished. We have also
shown that the object/rule implementation approach allows the integration of
a large number of previously considered, distinct modeling constructs. Finally,
we have implemented in the OBMODLER a support tool which integrates these
concepts with an infinite electronic blackboard for definition and display.

330

9. CONCLUSION

In this dissertation, we presented the hypothesis that the primary view of simula¬
tion by non-simulation analysts is one of reasoning about the structure of a system
or reasoning about implications of a proposed change to a system. This hypothesis
can be rationalized by examination of the cognitive processing activities required
to understand, plan, recognize problems with, and evolve a manufacturing system.
With this perspective in mind and the tools of knowledge based systems, we can

consider the development of a new generation of system modeling and analysis
support environments. The environments envisioned would essentially encompass

the knowledge and skills of a human systems analyst as well as the analysis tools
of existing systems. However the problems associated with realizing such environ¬
ments are extensive. What we have presented in this work is a description of the
cognitive tasks which must be supported, a conceptual approach to the develop¬
ment of such a capability, an architecture for an operational system of this com¬

plexity, an outline of the basic semantic and reasoning concepts which underly
this architecture, and some of the tools needed to realize the eventual system.

9.1 Summary of Contributions

The results presented in each section of this dissertation are:

Section 1 was meant to establish the rational for the view that current modeling
and simulation support system concepts are inadequate for the task at hand.
In this section we also pointed out that for the techniques of knowledge based
systems to be profitably applied to this problem area, we must first attempt to
apply the methods of AI to the problem.

In Section 2 we have attempted to characterize the kinds of cognitive activities
which a human goes through in order to understand his environment, recognize
its deficiencies, and construct and use models as mechanisms for dealing with
those problems. We showed how our observations and experiences in these
activities could be related to prevailing AI models of human cognitive activities
from language understanding to planning and common sense reasoning about
physical systems. This characterization has merit, but from an engineering
standpoint, we can use it as a definition of requirements for a next generation
modeling and support package as discussed in Section 3.

331

In Section 3 we developed the requirements, philosophy of operation, and archi¬
tecture for a knowledge acquisition and modeling support environment (KAMSS)
which could support a broad range of the cognitive activities identified in Sec¬
tion 2.

In Section 4 we examined the issues of natural language processing from three
points of view: understanding (NLU), generation (NLG), and discourse manage¬
ment (DM). While the general problem of natural language understanding is very
difficult, we presented workable approaches to the subset of that processing which
would be sufficient for the requirements of a system like KAMSS. More impor¬
tantly we developed a method, though originally conceived for the analysis re¬

quired to build natual language interfaces, that can be used for the definition and
design of the knowledge bases within the KAMSS system.

In Section 5 we present the general issues associated with the representation and
manipulations of the “meaning” of symbols. We proposed a basis for a theory
of semantics which can usefully be employed to support the concept discovery
and reasoning required of the KAMSS. This theory is a natural extension of the
“Situation Semantics” work [Barwise and Perry 83].

In Section 6 we present a reasoning method which combines previous concepts
in belief revision [Harmon 86] with syntactic reasoning methods [Hass 86] to
provide a new approach which views reasoning as a process of the construction
of information chains. We showed that such an approach can accommodate the
types of reasoning required in KAMSS including both traditional deductive and
inductive methods as special cases.

In Section 7 we came back to the issues of “what constitutes a model” and the

process of modeling itself. The purpose was to illustrate that armed with the
theories of semantics and reasoning from Sections 5 and 6, the mathematical
notions of modeling and simulation could be shown to be special cases of a more

general process of reasoning about the consequences of situations in the world
around us. This section also illustrates how the techniques proposed can provide
a usable framework for model design automation without resorting to pre-canned,
parameterized models.

332

In Section 8 we describe the results of prototyping activities which were under¬
taken to support critical areas or claims within this dissertation. These proto¬

types were meant to illustrate the engineering soundness of the concepts pre¬

sented and to serve as proof of engineering prototypes for the construction of the
actual KAMSS system.

9.2 Areas for Further Research

In retrospect, the work presented in this dissertation has raised as many questions
as it has answered. Every issue resolved would give rise to yet more untouched
issues. In the terms of Section 5, the bindings are deeply nested. The following
are a few of the areas which need more detailed investigation before KAMSS can

be considered a reality:

1. There is a need for detailed IDEFO models for each major mode of operation
of the KAMSS. The IDEFO modeling of the cognitive activities identified in
Section 2 would be the basis for starting this process.

2. There is a need for more IDEF1/ES models of the manufacturing system
description domain from the various viewpoints characterized in Section 3.
These models are required to complete the design of the manufacturing view
of the KAMSS knowledge base.

3. There is a need for more work in the conceptualization of the dialog man¬

ager, particularly in the area of methods for interaction focusing. This area

appears to be lacking in published works of any significance. Even the natu¬
ral language processing literature has overlooked this important area.

4. The cognitive activities involved in the interpretation of model results pre¬

sented in Section 5 are sketchy at best. This area is much more complex
than originally anticipated and could use a great deal more research.

5. More work on the abstraction mechanisms in the design of models from
system descriptions is needed before the MDS can be extended into the
model generation domain. This work represents approximately six man-

months of detailed knowledge engineering with several modeling experts.

333

6. Relative to the issues of an adequate theory of semantics there is consider¬
able additional work required before the basis presented can be implemented
in a generalized support mechanism. These enhancements include:

6.1. Develop a formal ontology for product descriptions that include form/
feature representations.

6.2. Enhance the notion of attitudes to account for three levels of knowledge
possession (action enabling possession, buzzword possession, display
possession).

6.3. Provide a theory of reliable acquisition of knowledge as a precondition to
behavior enabling possession of knowledge.

6.4. Resolve the issues of knowledge acquisition with the information con¬

veyed by an utterance versus the information displayed by that utter¬
ance.

6.5. Account for sentence negation.

6.6. Account for customer beliefs which change over time.

6.7. Elaborate the concept of “stakes” to take into account:

6.7.1. Partial orderings versus linear time.

6.7.2. Law of strict causality.

6.7.3. Absolute time relations (time sequence).

6.7.4. Optionality of global time.

6.8. Characterize the semantics of the man-machine interface.

7. Relative to the issues of an adequate theory of reasoning, there is consider¬
able additional work required before the basis presented can be implemented
in a generalized support mechanism. These enhancements include:

7.1. Formalize the adaptive reasoning approach which can be shown to be
able to generate the classical logic systems in the context of certain

334

observations. Thus, rather than attempting to show that our reasoning
method is “complete” or “sound,” we would show that our reasoning
method could result in the discovery of formal logic methods.

7.2. Develop an axiomization of the discovery and method components of the
AR concept presented in Section 6.

7.3. Characterize the process of reasoning about another agents beliefs.

7.4. Extend the notion of contraint reasoning to include reasoning about
cause and affect as the basis for the use of mechanistic reasoning in
model design.

7.5. Define analogical reasoning and its role in model reuse.

7.6. Describe constraints as the means by which events are propagated.

8. The treatment of natural language understanding and generation only began
to scratch the surface of the methods required to provide a robust version of
a KAMSS. Much of the available research and tools are derivatives of syn¬

tactic theories. Linguistics considerations for semantics and the pragmatics
of language are only just beginning to emerge. There is a need to evaluate
the syntactic reasoning mechanisms and the semantics presented in Sections
5 and 6 with the concepts presented in Section 4 in order to develop a sound
theoretical basis for a set of usable tools to implement NLP systems.

9. There is a need to extend the concepts developed in this dissertation to other
modeling and analysis methods in operations research. An ultimate goal of
KAMSS is to support the selection of the “best” modeling technique for the
problem at hand, and not merely brute force the simulation of every problem
situation.10.The system description knowledge base which is constructed for KAMSS
could easily support many of the system engineering decision activities in
a manufacturing system or software development process. It would be very

interesting to consider the KAMSS architecture as the basis for an integrated
system development support environment.

335

9.3 Implementation Considerations

Before a full scale implementation of the KAMSS is possible, there are at least
three other prototype activities necessary to organize the full scale development.
These are:

1. A more robust Qualitative Reasoner from System Descriptions (QUARS),

2. Model Generation from System Descriptions (MODGEN) for both qualitative
and quantitative models,

3. Situation Based System Description Knowledge Database (SDKD).

QUARS must be extended to demonstrate the feasibility of applying the syntactic
information chain reasoning concepts presented in Section 6 to system descrip¬
tions whose representation was consistent with the SRM concepts presented in
Section 5. The pattern matching features, context mechanisms, and schema in¬
heritance capabilities of ART on the Symbolics 3640 would make this the logi¬
cal tool for the prototype implementation. However, as discussed in Section 3 of
this report, there are several limitations on this implementation mechanism which
would probably prohibit a scaled up version of this prototype. The availability of
the Symbolics Joshua toolkit combined with the current SDCE prototype would
provide the basic structure for further research on this problem.

MODGEN must be designed to demonstrate the feasibility of directly generating
simulation models from system descriptions provided in the SDCE format. A
combination of the Symbolics products Joshua and Statice could be used as

the development environment combined with a rudimentory discourse manager,

discourse generator, and concept manager. These tools would be written in
Common Lisp and Flavors on the Symbolics 3640 for easy integration with the
Symbolics tools.

The SDKD was actually prototyped as a part of the SDCE where the primary
issues were representation completeness and access efficiencies. What is needed
is a stand alone implementation concerned with the issues of efficiencies for large
description databases and distribution of such data bases. Based on the structure

presented for descriptions as named collections of noticed characteristics (bags of
facts), an approach which combined predications from Joshua for the logic based

336

fact types with partially populated Rete nets for the syntactic based fact types
with instantiated instance variables for the procedural fact types is probably the
direction which must be taken. As Statice supports each of these structures it
would probably serve as a logical platform for such an experiment.

337

REFERENCES

Adelsberger, H. H., and Neumann G. 1985. Goal Oriented Simulation
Using Prolog. Proceedings of the 1985 SCS Conference on Modeling
and Simulation on Micro-Computers, SCS, San Diego, CA, (Jan.).

Adelsberger, H. H., Pooch, U., Shannon, R., and Williams, G. 1985. Rule
Based Object Oriented Simulation Systems. Proceedings AI, Graphics,
and Simulation Conference, SCS, San Diego, CA, (Jan.).

Aiello, N., Bock, C., Nii, H., and White W. 1981. AGE Reference Manual
AGE-1. Heuristic Programming Project. Computer Science Depart¬
ment, Stanford University, Stanford, CA.

Alford, M., Smith, T., and Smith, D. 1979. Formal Decomposition Applied
to Axiomatic Requirements Engineering. Final Report, Project
34674-6921-009. TRW Defense and Space Systems Group, Huntsville,
AL.

Allen, B. P., and Wright, J. M. 1983. Integrating Logic Programs and
Schemata. Proceedings of the Eighth International Joint Conference on

Artificial Intelligence. Morgan Kaufmann Publishers Inc. San Mateo,
CA, pp. 340 - 342.

Allen, J. 1987 Natural Language Understanding. The Benjamin/Cummings
Publishing Company, Inc., Menlo Park, CA.

Appelt, D. E. 1980. A Planner for Reasoning about Knowledge and
Action. Proceedings of the First Annual National Conference on

Artificial Intelligence, Morgan Kaufmann Publishers Inc. San Mateo,
CA, pp. 131 - 134.

Balzar, R. M., and Goldman N. M. 1982. Operational Specification as the
Basis for Rapid Prototyping. Proceedings Second Software Engineering
Symposium. ACM SIGSOFT, (April).

Barber, G. R. 1982. Office Semantics. Ph.D. dissertation, Dept, of Elec¬
trical Engineering and Computer Science, Massachesetts Institute of
Technology, Cambridge MA.

Barwise, J. 1984. The Situation in Logic - I. Report No. CSLI-84-2,
The Center for the Study of Language and Information, Stanford
University, Stanford, CA.

Barwise, J. 1985a. The Situation in Logic - II: Conditionals and Condi¬
tional Information. Report No. CSLI-84-2, The Center for the Study
of Language and Information, Stanford University, Stanford, CA.

Barwise, J. 1985b. The Situation in Logic - III: Situations, Sets and the
Axiom of Foundation. Report No. CSLI-84-2, The Center for the
Study of Language and Information, Stanford University, Stanford,
CA.

Barwise, J., and Perry, J. 1983. Situations and Attitudes. MIT Press,
Cambridge, MA.

Barwise, J., and Perry, J. 1985. Shifting Situations and Shaken Attitudes.
Report No. CLSI-85-13, The Center for the Study of Language and
Information, Stanford University, Stanford, CA.

Baskaran, V., and Reddy, Y. V. 1984. An Introspective Environment
for Knowledge Based Simulation. Proceedings of the 1984 Winter
Simulation Conference, SCS, Dallas, TX, (Nov.),

Benzon, W. 1987. Reactions to Darden. AI Magazine Vol. 8, No. 4,

Letters, Winter.

Bobrow, D. G., ed. 1985. Qualitative Reasoning About Physical Systems.
MIT Press, Cambridge, MA.

Bobrow, D. G., and Collins, A. 1975. In Representation and Understand¬
ing: Studies in Cognitive Science. Bobrow and Collins, Eds. Academic
Press, Inc., Orlando, FL.

339

Bobrow, D. G., and Stefik, M. 1983. The LOOPS Manual. Intelligent
Systems Laboratory, Xerox Corporation, Palo Alto, CA.

Bobrow, D. G., and Winograd, T. 1977. An Overview of KRL, A Knowl¬
edge Representation Language. Cognitive Science, Vol. 1, No. 1.

Brachman, R. J. 1983. What IS-A Is and Isn’t: An Analysis of Taxonomic
Links in Semantic Networks. Computer. (Oct.) pp. 30-36.

Brachman, R. J. 1985. ‘I Lied About the Trees’ Or, Defaults and Defini¬
tions in Knowledge Representation. The AI Magazine. (Fall) pp. 80 -
93.

Brachman, R. J., Fikes, R. E., and Levesque, H. J. 1983. KRYPTON: A
Functional Approach to Knowledge Representation. IEEE Computer.
(Oct.) pp. 67 - 73.

Bunt, H. 1985. The Formal Representation of (Quasi-) Continuous Con¬
cepts. In Formal Theories of the Commonsense World, J. Hobbs and
R. Moore Ed. Ablex Publishing Corporation, Norwood, NJ.

Campbell, J. 1984. Implementations of Prolog. J. A. Cambell ed., Ellis
Horwood ltd., John Wiley and Sons, New York, NY.

Cannon, H. 1982. Flavors, A non-hierarchical approach to object-oriented
programming. Unpublished report, Copyright (c) 1982 by Howard I.
Cannon, Symbolics, Inc. Cambridge MA.

Carnegie Group. 1986. The Language Craft Reference Manual Version 3.1.
Carnegie Group Inc., Pittsburgh, PA.

Carnegie Group. 1987. The Knowledge Craft Reference Manual Version
3.1 Vols. 1, 2, & 3. Carnegie Group Inc., Pittsburgh, PA.

Cleary, J., Goh, K., and Unger, B. 1985. Discrete Event Simulation in
Prolog. Proceedings AI, Graphics, and Simulation Conference. SCS,
San Diego, CA, (Jan.).

340

CLIPS Reference Manual, Version 3.0. 1986. Mission Planning and Anal¬
ysis Division, Artificial Intelligence Section, Johnson Space Center,
NASA.

Clocksin, W., and Mellish, C. 1981. Programming in Prolog. Springer-
Verlag, New York, NY.

Cohen, P., and Feigenbaum, E. A. 1981. The Handbook of Artificial Intelli¬
gence. Vol. III. William Kaufman, Inc., Los Altos, CA.

Corynen, G. C. 1975. A Mathematical Theory of Modeling and Simula¬
tion. Phd. Disertation, Department of Engineering and System Sci¬
ence, University of Michigan, Ann Arbor, MI.

Davey, A. 1978. Discourse Production: A computer model of some aspects

of a speaker. Edinburgh University Press, Edinburgh, United King¬
dom.

Davis, R. 1984. Reasoning from First Principles in Electronic Trou¬
bleshooting. Developments in Expert Systems. Academic Press, pp.
1 - 21.

Davis, R. and Brown J. 1984. Qualitative Physics Based On Confluences.
Artificial Intelligence 24. pp. 7-83.

Deshler, M. 1981. The IDSS 1.4 User Reference Manual. Contract ^
F33615-78-C-5231, United States Air Force, AFWAL/MLTC. WPAFB,
OH.

Doyle, J. 1979. A Truth Maintenance System. Artificial Intelligence 12.

pp. 231-272.

Dyer, M. 1983. In-Depth Understanding, A Computer Model of Integrated
Processing for Narrative Comprehension. MIT Press, Cambridge, MA.

Elmaghraby, A. S., and Jangannathan V. 1985. An Expert System for
Simulationists. Proceedings AI, Graphics, and Simulation Conference.
SCS, San Diego, CA, (Jan.).

Fahlman, S. E. 1985. NETL A System for Representing and Using Real-
World Knowledge. The MIT Press, Cambridge, MA.

Fikes, R., and Kehler, T. 1985. The Role of Frame-Based Representation
in Reasoning. Communications of the ACM. Vol. 28, No. 9, pp. 904 -
920.

Fillmore, C. J. 1968. The Case for Case. Universals in Linguistic Theory.
Bach and Harms, Eds., Holt, Rinehart, and Winston, Inc., New York,
NY.

Fodor, J. D. 1977. Semantics: Theories of meaning in generative grammar.

Harvester Press, Hassocks, Sussex.

Forbus, K. D. 1984. Qualitative Process Theory. M.I.T. AI Laboratory
Technical Report No. 789 M.I.T., Cambridge, MA.

Frege, G. 1960. On sense and reference. In Translations from the Philo¬
sophical Writings of Gottlob Frege. P. Gretch and M. Black Eds. Ox¬
ford: Basil Blackwell.

Friedman, J. 1966. Directed random generation of sentences. Communica¬
tions of the ACM, 7:2, pp. 40 - 46.

Friel, P. G., 1987. Automotive Cooling System Designer. KBS Technical
Report. Chrysler Motors Corporation, Detroit MI.

Friel, P. G., and Mayer, R. J. 1985. Life Cycle Methods, Tools, and En¬
vironments for Support of the Expert System Development Pro¬
cess.Proceedings First Annual Workshop on Robotics and Expert Sys¬
tems. NASA Sz Instrument Society of America, Clearlake, TX.

Futo, I. 1984. System Simulation and Co-Operative Problem Solving on

a Prolog Basis. Implementations of Prolog. J. A. Cambell ed., Ellis
Horwood Ltd., John Wiley and Sons, New York, NY.

Futo, I. 1985. Combined Discrete/Continuous Modeling and Problem
Solving. Proceedings AI, Graphics, and Simulation Conference. SCS,
San Diego, CA, (Jan.).

Gaines, B. R., and Shaw, M. L. G. 1985. Expert Systems and Simulation.
Proceedings AI, Graphics, and Simulation Conference. SCS, San
Diego, CA, (Jan.).

Genesereth, M. R., and Ginsberg, M. L. 1985. Logic Programming. Com¬
munications of the ACM. Vol. 28, No. 9, pp. 933—941.

Grishman, R., and Kittredge, R., Eds. 1986. Analyzing Language in Re¬
stricted Domains: Sublanguage Description and Processing. Lawrence
Erlbaum, Hillsdale, NJ.

Hass, A. R. 1986. A Syntactic Theory of Belief and Action. Artificial
Intelligence, Volume 28, No. 3, pp. 245 - 292.

Harman, G. 1986. Change in View, Principles of Reasoning. The MIT
Press, Cambridge, MA.

Hayes, J. 1979. The Naive Physics Manifesto. In Expert Systems in the
Micro-Electronic Age, D. Michie Ed. Edinburgh University Press,
Edinburgh, Scotland.

Hayes-Roth, B., and Hayes—Roth, F. 1978. Cognitive Processes in Plan¬
ning. ONR Report ff R-2366-ONR.

Heidorn, G.E. 1972. Natural Language Inputs to a Simulation Program¬
ming System. Naval Postgraduate School, Monterrey, CA.

Hewitt, C. 1980. The Apiary Network Architecture for Knowledgeable
Systems. In Conference Record of the 1980 Lisp Conference. Stanford
University, Stanford CA.

Hobbs, J. 1985. Introduction. In Formal Theories of the Commonsense
World, J. Hobbs and R. Moore Eds. Ablex Publishing Corporation,
Norwood, NJ.

Hobbs, J. 1986. On the Coherence and Structure of Discourse. In The
Structure of Discourse, L. Polanyi Ed. Ablex Publishing Corporation,
Norwood, NJ.

Hobbs, J., Blenko, T., Croft, B., Hager, G., Kautz, H., Kube, P., and
Shoham, Y. 1985. Commonsense Summer: Final Report. Report No.
CLSI-85-35, The Center for the Study of Language and Information,
Stanford University, Stanford, CA.

Hobbs, J., Croft, W., Davies, T., Edwards, D., and Laws, K. 1987. The
TACITUS Commonsense Knowledge Base (Draft). Artificial Intelli¬
gence Center SRI International, Menlo Park, CA.

IDEFO. 1980. IDEFO Short Course, KBS Laboratory, Department of
Industrial Engineering, Texas A&M University, College Station TX.

IDS. 1987. Integrated Design Support Prospectus, IDS Program Office,
United States Air Force, AFWAL / FIBAB, Wright-Patterson Air
Force Base, OH, 45433, August.

IISS. 1983. ICAM Integrated Information Support System Test Bed
System Design Specification. SDS620140000, AFWAL /MLTC,
WPAFB, OH.

Inference Corporation. 1985. ART Reference Manual. Inference Corpora¬
tion, Los Angeles, CA, (April).

IntelliCorp. 1985a. KEE Software Development System User’s Manual.

IntelliCorp, Menlo Park, CA.

IntelliCorp. 1985b. The SIMKIT System, Knowledge Based Simulation in
KEE. IntelliCorp, Menlo Park, CA.

International Standards Organization. 1981. Concepts and Terminol¬
ogy for the Conceptual Schema. Preliminary Report. ISO TC
97/SC5/WG5, edited by J. J. van Griethushsen, (Feb.).

Israel, D. J. 1983. The Role of Logic in Knowledge Representation. IEEE
Computer. (Oct.) pp. 37-41.

Kaisler, S.H. 1986. INTERLISP. John Wiley and Sons, NY.

Katz, J.J. 1980. Propositional Structure and Elocutionary Force: A Study
of the Contribution of Sentence Meaning of Speech Acts. Harvard
University Press, Cambridge, MA.

Kay, A. 1969. The Reactive Engine. Ph.D. Thesis, University of Utah,
Salt Lake City, UT.

Kittredge, R., and Lehrberger, J. 1982. Sublanguage: Studies of Language
in Restricted Semantic Domains. Walter de Gruyter, Berlin.

Kiviat, P. J., Villanueva, R., and Markowitz, H. M. 1973. Simscript II.5
Programming Language. C.A.C.I., Los Angeles, CA.

Ko, H., and Wheeler, J. 1983. A Computer Simulation Methodology by
LISP and SANS. Proceedings of the Summer Computer Simulation
Conference. , SCS, San Diego, CA, (July).

Kowalski, R. 1979. Logic for Problem Solving. North-Holland, New York,
NY.

Kowalski, R. 1981a. Logic for Data Description. Internal Research Paper.
Imperial College, London.

Kowalski, R. 1981b. Amalgamating Language and Meta-Language in
Logic Programming. Internal R&D Report. School of Computer and
Information Science, Syracuse University, Syracuse, NY.

Krishnamurthi, M., Mayer, R. J., and Friel, P. G. 1986a. Integrating
Expert Systems into Engineering Environments. Proceedings of
the 1986 IEEE AI Workstation & Systems Technology Conference.
(Atlantic City, NJ.). IEEE, New York, (Jan.).

Krishnamurthi, M., Mayer, R. J., and Friel, P. G. 1986b. Machine Fault
Diagnosis: Combining Deep and Shallow Modeling Approaches for
Practical Extensible Applications. Proceedings of the 1986 SME
Ultratech Conference. (Long Beach, CA.). SME, Dearborn, MI,
(Aug.).

Krishnamurthi, M., Mayer, R. J., and Friel, P. G. 1986c. Robot Diagno¬
sis Using Deep and Shallow Modeling Approaches. Proceedings of
ROBEXS ’86. Instruments Society of America, Houston, TX.

Kuipers, B. 1984. Commonsense Reasoning About Causality: Deriving
Behavior from Structure. Artificial Intelligence 24. pp. 169 - 123.

Kuipers, B. and Patil, R. 1987. Qualitative Simulation and Causal Models.
National Conference on Artificial Intelligence Tutorial No: HA 4-

(Seattle, WA.). Morgan Kaufmann Publishers Inc. San Mateo, CA,
pp. 7-9.

Lenat, D., Prakash, M., and Shepherd, M. 1986. CYC: Using Common
Sense Knowledge to Overcome Brittleness and Knowledge Acquisition
Bottlenecks. AI Magazine, Vol. 24, No. 4, pp 65 - 84

Liu, D. 1987. Intelligent Manufacturing Planning Systems. In Smart
Manufacturing with Artificial Intelligence. Computer and Automated
Systems Association of SME, Dearborn, MI.

Lloyd, J. 1984. Foundations of Logic Programming. Springer-Verlag, New
York, NY.

Marcus, M. 1980. A Theory of Syntactic Recognition for Natural Language.
MIT Press, Cambridge, MA.

Markowitz, H., Malhotra, A., and Pazel, D. 1978. EAS-E: An Executable
Application Design Language. IBM Research Report #RC7349
(^31614). (Oct.). Department of Computer Science, IBM Thomas
J. Watson Research Center, Yorktown Heights, NY.

Mayer, P. S. D. 1988. A Computational Approach for Processing Locative
and Temporal Information in Clinical Medical Records. Phd Disserta¬
tion, Department of Computer Science, Texas A&M University, Col¬
lege Station, TX.

Mayer, P. S. D., Bailey, G., Mayer, R. J., Hillis, A., and Dvoracek, J. 1987.
Locative Inferences in Medical Texts. Proceedings of the 1987 Hawaii
International Conference on System Sciences. (Kailua-Kona, Hawaii.).
Western Periodicals Company, North Hollywood, CA. (Jan.).

Mayer, R. J. 1983. Simulation Model Generation from System Specifica¬
tions. KBS Technical Report, Knowledge Based Systems Laboratory,
Department of Industrial Engineering, Texas A&M University, College
Station, TX.

Mayer, R. J. 1985. IDEF1 Short Course, KBS Technical Report, Knowl¬
edge Based Systems Laboratory, Department of Industrial Engineer¬
ing, Texas A&M University, College Station TX.

Mayer, R. J. 1986. Design Concepts of the OBSIM and OBMODELER
systems. KBS Technical Report, Knowledge Based Systems Labora¬
tory, Department of Industrial Engineering,Texas A&M University,
College Station, TX.

Mayer, R. J., et al. 1988. Integrated Information System Evolution
Methodologies and Environments. KBS Technical Report. U.S. Air
Force AFWAL/MS, WPAFB, OH.

Mayer, R. J., Friel, P. G., Krishnamurthi, M., and Underbrink, A., 1986.
A Characterization of Expert System Development Tools for Man¬
ufacturing Applications. KBS Technical Report. U.S. Air Force
AFWAL/MS, WPAFB, OH.

Mayer, R. J., Friel, P. G., Krishnamurthi, M., Underbrink, A., and Wells,
M., 1987. Artificial Intelligence Applications in Automotive Produc¬
tion. KBS Technical Report. Chrysler Motors Corporation, Detroit
MI.

Mayer, R. J., and Young, R. 1984. Simulation Model Generation from Sys¬
tem Specifications. Proceedings of the Winter Simulation Conference,
SCS, Dallas, TX, (Nov.).

McArthur, D. 1981. An Object-Oriented Language for Constructing
Simulations. Proceedings of the Seventh International Conference on

Artificial Intelligence. Morgan Kaufmann Publishers Inc. San Mateo,
CA, pp. 809 - 814.

McDermott, D. 1985. Reasoning about Plans In Formal Theories of the
Commonsense World, J. Hobbs and R. Moore Ed. Ablex Publishing
Corporation, Norwood, NJ.

McDonald, D. 1982. Natural Language Generation as a Computational
Problem. In Computational Models of Discourse, M. Brady Ed. MIT
Press, Cambridge MA.

McRoberts, M., Fox M., and Husain, N. 1985. Generating Model Abstrac¬
tion Scenarios in KBS. Proceedings AI, Graphics, and Simulation Con¬
ference. SCS, San Diego, CA, (Jan.).

Mellish, C. 1985. Computer Interpretation of Natural Language Descrip¬
tions. Ellis Horwood Limited, Halsted Press, Chichester, UK.

Mesarovic, M. D., Macko, D., and Takahara, Y. 1970. Theory of Hierarchi¬
cal, Multilevel, Systems. Academic Press, New York, NY.

Mesarovic, M. D., and Takahara, Y. 1975. General Systems Theory Mathe¬
matical Foundations. Academic Press, New York, NY.

Minsky, M. 1974. A Framework for Representing Knowledge. MIT AI
Memo 306, Cambridge, MA.

Moore, R. 1980. Reasoning about knowledge and action, Technical Report
191, SRI International, Menlo Park, CA.

Morrison, K. 1986. Requirements for a Manufacturing System Description
Capture Environment (SDCE). Chrysler Motors Outer Drive Manufac¬
turing Technology Center, Detroit MI.

Nance, R. E. 1981. The Time and State Relationships in Simulation.
Communications of the ACM. Volume 24, No. 4, April.

Nelson, S. S. 1977. Control Issues in the Development of a Conversational
Simulation Language. Ph.D. dissertation, Dept, of Computer Science,
University of Pittsburgh, Pittsburgh, PA.

Nijssen, G. M. 1982. An Architecture for Knowledge Representation. In¬
ternal Research Report. Control Data Corporation, Europe, Brussels,
Belgium.

Nilsson, N. J. 1980. Principles of Artificial Intelligence. Tioga Publishing
Company, Palo Alto, CA.

O’Keefe, R. 1986. Simulation and Expert Systems - A Taxonomy and
Some Examples. Simulation 46:1.

349

O’Shea, T., Eisenstadt M. 1984. Artificial Intelligence, Harper &■ Row,
New York, NY.

Overstreet, M., and Nance, R. 1985. A Specification Language to Assist in
Analysis of Discrete Simulation Models. Communications of the ACM,
Vol. 28, No. 2.

Pegden, C. D. 1982. Introduction to SIMAN. Systems Modeling Corpora¬
tion, State College, PA.

Phillips, D. T. 1979. GEMS Model of a Tool Joint Manufacturing System.
Report No. GEMS-11-79, NSF/ASRA Grant No. APR 76-22610.

Pritsker, A. A. B. 1977. Modeling and Analysis Using Q-GERT Networks.
John Wiley and Sons, New York, NY.

Pritsker and Associates Inc. 1983. The IDSS Prototype (2.0) Users Refer¬
ence Manual. Pritsker and Associates, West Lafayette, IN.

Pritsker and Associates Inc. 1984. The IDSS Build 1 Final Report.
Pritsker and Associates, West Lafayette, IN.

Pritsker, A. A. B., and Pegden, C. D. 1979. Introduction to Simulation and
Slam. John Wiley and Sons, New York, NY.

Pritsker, A. A. B., and Young, R. E. 1975. Simulation With GASP/PLI.
John Wiley and Sons, New York, NY.

Ramey, T. L. 1981. ELKA Information Modeling. Internal Research
Report. Hughes Aircraft Co., Fullerton, CA.

Ramey, T. L. 1983. GuideBook to Systems Development. Internal Re¬
search Report. Hughes AirCraft Co., El Segundo, CA.

Reddy, Y. V., Fox, M. S., and Husain, N. 1985. Automating the Analysis
of Simulations in KBS. Proceedings AI, Graphics, and Simulation
Conference. SCS, San Diego, CA, (Jan.).

Reilly, K., Jones, W., and Dey, P. 1985. The Simulation Enviroment
Concept, Artificial Intelligence Perspectives. Proceedings AI, Graphics,
and Simulation Conference. SCS, San Diego, CA, (Jan.).

Ritchie, G. D. 1984. AM: A Case Study in AI Methodology Artificial
Intelligence 23. pp. 249 - 268.

Sacerdoti, E. 1977. A Structure for Plans and Behavior. Elsevier, New
York, NY.

Sager, N. 1981. Natural Language Information Processing. Addison-
Wesley, Reading, MA. 1981.

Schank, R. 1975. Conceptual Information Processing. North-Holland,
Amsterdam.

Schank, R. 1982. Dynamic Memory. Cambridge University Press, New
York, NY.

Schank, R., and Abelson, R. 1977. Scripts Plans Goals and Understanding,
An Inquiry into Human Knowledge Structures. Lawrence Erlbaum
Associates Publishers, Hillsdale, NJ.

Schmolze, J., and Brachman R. 1982. Proceedings of the KL-One Work¬
shop. Bolt Beranek and Newman Inc.

Schriber, T. 1972. A GPSS Primer. The University of Michigan Ann
Arbor, Industry Program of the College of Engineering, IP-841.

Shannon, R., and Mayer, R. 1986. Models and Artificial Intelligence. Sub¬
mitted for publication in Knowledge Based Modeling and Simulation
Methods, North Holland Press.

Shannon, R., Mayer, R., and Phillips, D. 1986. Knowledge Based Simu¬
lation Techniques for Manufacturing. Proceedings of the SME AI in
Manufacturing Conference. (Longbeach, CA.). SME, Dearborn, MI

351

Sharvy, R. 1966. Logic: An Outline. Littlefield, Adams, and Co., Totowa,
NJ.

Simmons, R. F., and Slocum, J. 1972 Generating English discourse from
Semantic Networks. Proceedings of the Seventeenth Meeting of the
Association for Computational Linguistics Stanford, CA. (August).

Soloway, E. et al. 1982. MENO-II: An AI-Based Programming Tutor.
Research Report ^258. Department of Computer Science, Yale
University, New Haven, CT.

Sowa, J. 1983. Conceptual Structures: Information Processing in Mind and
Machine. Addison-Wesley Publishing Company, Reading, MA.

Stefik, M. 1981. Planning with Constraints (MOLGEN: Part 1). Artificial
Intelligence 16. pp. Ill — 140.

Stefik, M., Bowbrow, D., Mittal, S., and Conway, L. 1983. Knowledge
Programming in LOOPS: Report on an Experimental Course. The
AI Magazine. Volume 4, No. 3.

Stefik, M., and Bowbrow, D. 1986. Object-Oriented Programming:
Themes and Variations. The AI Magazine. Vol 6, No. 4.

Sterle, M., Snow, P., Wheeler, J., Mayer, R. J. 1986. Weed Control Advi¬
sor for Rice Production Technical Report. Rice Producers Association,
Beaumont, TX.

Stoy, J.E. 1985. Denotational Semantics: The Scott-Strachey Approach to

Programming Language Theory. MIT Press, Cambridge, MA.

Sutherland, I. E. 1963. Sketchpad: A Man Machine Graphical Communi¬
cation System. Ph.D. Dissertation, Department of Electrical Engineer¬
ing, MIT, Cambridge, MA.

Symbolics Inc. 1986. Programming the User Interface. Symbolics Inc.
Cambridge, MA.

352

Teichroew, D.,and Hershey, E. A. 1977. PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Information
Processing Systems. IEEE Transactions on Software Engineering, Vol.
SE-3, No. 1, pp. 25 - 30.

Teitelman, W. and Masinter, L. 1981. The InterLisp Programming Envi¬
ronment. IEEE Computer, pp. 25 — 33.

Turner, R. 1984. Logics for Artificial Intelligence. Ellis Ilorwood Limited,
Chichester, UK.

Waters, R. C. 1984. KBEmacs: A Step Toward the Programmer’s Appren¬
tice. M.I.T. AI Laboratory Technical Report No. 753. M.I.T., Cam¬
bridge, MA.

Weizenbaum, J. 1966. ELIZA Communications of the ACM, 9, pp. 36 -
45.

Wilensky, R. 1983. Planning and Understanding, A Computational Ap¬
proach to Human Reasoning. Addison-Wesley Publishing Company,
Reading, MA.

Wilkens, D. 1984. Domain Independent Planning. Artificial Intelligence.
Vol 22, pp. 269 - 301.

Winograd, T. 1983. Language as a Cognitive Process. Addison-Wesley
Publishing Company, Reading MA.

Woods, W. A. 1970. Transition Network Grammars for natural language
analysis. Communication of the ACM, 13:10, pp.30 - 36.

Woods, W. 1975. What’s in a Link: Foundations for Semantic Networks.
Representation and Understanding, Studies in Cognitive Science.
Bobrow, D. and Collins, A. (editors), Academic Press, Inc. New York,
NY.

Yngve, V. H. A. 1962. Random Generation of English Sentences. In The
1961 Conference on Machine Translation of Languages and Applied
Language Analysis. Her Majesty’s Stationary Office, London.

Zeigler, B. 1975. Theory of Modeling and Simulation. Addison-Wesley,
Reading MA.

Zeigler, B. 1984a. Multifaceted Modeling and Discrete Event Simulation.
Academic Press, New York, NY.

Zeigler, B. 1984b. Multifaceted Modeling Methodology: Grappling with
the Irreducible Complexity of Systems. Behavioral Science. Volume
29.

Zeigler, B. 1984c. System-Theoretic Representation of Simulation Models.
TIE Transactions. Volume 16, No. 1, March.

