
COGNITIVE SKILLS IN

MODELING AND SIMULATION

Volume I

A Dissertation

by

RICHARD J. MAYER

Submitted to the Graduate College of
Texas A&M University

partial fulfillment of the requirement for the degree of
DOCTOR OF PHILOSOPHY

December 1988

Major Subject: Industrial Engineering



0 1988

RICHARD J. MAYER

ALL RIGHTS RESERVED



COGNITIVE SKILLS IN

MODELING AND SIMULATION

Volume I

A Dissertation

by

RICHARD J. MAYER

Approved as to style and content by:

Don T. Phillips
(Chair of Committee)

Leland T. Blank

(Member)

Donald K. Friesen
(Member)

S~XXhi( V) Jtf
G. Kemble Bennett

(Head of Department)

Peter J. Sharpe
(Member)

6**■*? ^
Guy H. Bailey
(Member)

December 1988



Ill

ABSTRACT

Cognitive Skills in Modeling and Simulation
(December 1988)

Richard J. Mayer, B.S., Purdue University, West Lafayette, Indiana
M.S., Purdue University, West Lafayette, Indiana
Chair of Advisory Committee: Dr. Don T. Phillips

Major advances in simulation techniques have resulted from refinements to our

understanding of the modeling and analysis processes. Previous work has pro¬

vided the framework for advances in the three major support technologies of (1)
algorithms, (2) data structures, and (3) statistical methods. The emergence of
theories in knowledge acquisition and reasoning from the domain of Artificial In¬
telligence (AI) provide new methods for study of the cognitive processes of the
customer and the simulation analyst within a decision scenario framework. The
availability of software and hardware tools for implementing these theories pro¬

vide a promising mechanism for the construction of advanced modeling systems
based on the results of relevant models and theories related to the cognitive pro¬

cess.

This research establishes a base from which an intelligent, model based, systems
simulation environment can be constructed. The ultimate goal of such a system
is to partially or totally replace the existing human systems simulation analyst.
This dissertation will address the underlying theories and strategies of how those
cognitive processes can be represented and supported in a knowledge based
environment.



IV

To Paula

Simon

Anna



ACKNOWLEDGMENTS

It would be impossible to list all of the individuals who made possible this work.
I would particularly like to acknowledge the members of my committee. This
dissertation could not have been accomplished without the assistance of my
committee chairman Dr. Don T. Phillips. Don has been a long term associate,
mentor, and friend. Without his guidance and support, such a broad and complex
research program could never have been tackled, much less finished. Dr. Leland
T. Blank led me in the establishment of the Knowledge Based Systems (KBS)
Laboratory and provided support for this research effort. Dr. Peter Sharpe’s
enthusiasm for the topics covered in this research provided the impetus for me
to complete this work. Dr. Don Friesen introduced me to the areas of formal
languages and artificial intelligence and served as a model of professionalism in
these fields. Dr. Guy Bailey assisted me with the natural language problems and
initial ontology issues associated with this work. Dr. Marty Newcomb expertly
guided this work through to completion.

I would also like to acknowledge the many other professional associates at Texas
A&M who directly contributed to the completion of this work. I would like
to extend my appreciation for the professional, organizational, and personal
support provided by Dr. G. Kemble Bennett, Head of the Industrial Engineering
Department. I would also like to acknowledge the commitment and support
provided by Dr. Herbert H. Richardson, Dean of Engineering, and the Texas
Engineering Experiment Station which made possible the Knowledge Based
Systems Laboratory environment which was critical to the accomplishment
of this research. Without the patient tutorage and contributions of Dr. Chris
Menzel, none of the difficult portions of the following work could have ever been
realized. Without the help of Ms. Paula S.D. Mayer, neither the cognitive nor

mechanical components of this research could have been performed. I would
also like to thank Ms. Patricia G. Friel for the countless hours of review and

discussion which transformed disjointed ideas into a somewhat contiguous whole.
I would like to acknowledge Dr. Robert Shannon who contributed greatly to the



VI

initial structuring of the problem areas through our collaborations on several
key publications. I should also note that without the example and inspiration
provided by Dr. Brian Deuermeyer, I could never have charted such a unique
path myself. Finally, I would like to thank the entire faculty and staff of the
Department of Industrial Engineering who accepted me as a colleague and whose
friendship and sacrifices on my behalf made this effort possible.

Much of the intuition and experience upon which this research was initiated re¬

sulted from my previous work with the United States Air Force Integrated Com¬
puter Aided Manufacturing program. I would like to acknowledge the contribu¬
tions of the professionals who guided me during those formulative years and who
have continued to provide encouragement, support, and desperately needed tech¬
nical advice during this research effort. Therefore, I would like to acknowledge
Dr. Robert Brown, Stu Coleman, Dr. Tom Cullinane, Sam Nusinow, Reuben
Jones, Dr. Alan Pritsker, Mr. Nate Tupper, and Dr. Vincent Russo.

I would like to particularity acknowledge Mr. Timothy Ramey who contributed
to many of the ideas and concepts during the development of this research.
My sincerest hope is that one day Tim is afforded a similar opportunity as I
have enjoyed so that he can set straight the errors and oversights which I have
unwittingly introduced in my interpretation of those ideas.

I would also like to extend my appreciation to Nick Berstein, Paul Condit, and
Mark Hoffman of the United States Air Force who provided support for much
of the formalization and methodology components of this research. I would
also like to acknowledge Dr. Ken Morrison, Dr. Frank Plonka, Joe Bulat, and
William Knappenberger of Chrysler Motors who believed in the potential for this
work and provided funding to support its realization. I would like to thank Mr.
Phil Walker for his assistance in collecting system descriptions as well as for his
concepts and ideas and for serving as my expert knowledge source.

Finally, I would like to acknowledge the contributions of the research staff of the
Knowledge Based Systems Laboratory who were responsible for transforming
loosely defined concepts and notions into working systems. The KBS Laboratory
was initially conceived as an environment where students and researchers could
gather together and share ideas, experience, and resources. Pat Friel, Paula



Vll

Mayer, Murali Krishnamurthi, A1 Underbrink and I recognized the need for
such an environment as we were planning our respective research programs in
1984. The bottom line (as should become evident to any reader willing to plough
through this thesis) is that in order to investigate the currently interesting set of
cognitive skills in modeling, design, language understanding, or mechanism fault
reasoning requires a broad knowledge of many different areas within the Artificial
Intelligence domain. Without an institution such as the KBS lab, this type of
research would be difficult if not impossible to perform. I certainly know that
without the constant technical and moral support of this initial group, my work
would never have come to fruition.

In the body of this dissertation I have made every attempt to recognize contribu¬
tions from the other researchers in the KBS Laboratory which include: Sue Wells,
Mark Sterle, John Morris, Jeff Lockledge, Sherri Messmer, Jackie Wheeler, Paul
Squitteri, Tom Blinn, Mike Futrell, Janice Jordan, Lou Decker, Keith Ackley,
Steve Cook, Min-Jin Lin, Arthur Keen, Chaun-Jun Su, Chun-Jack Huang, Les
Sanders, Uday Reddy, Joel Toland, Howard Brodaie, Charles Bodenmiller, Terri
Layton, Paul Collier, and Rhonda Carter. Each of these individuals have made
the work not only intellectually stimulating, but also personnally rewarding.

I would like to thank my parents, Raymond and Patricia, for the opportunities
they provided thoughout my life. Every accomplishment is built on previous
foundations. Through their sacrifices the foundations for this accomplishment
were laid. Also I wish to acknowledge my brothers and sisters who provided me

the acceptance and emotional support necessary to take on this endeavor.

I must acknowledge the constant assistance, support, love, and sacrifice from
my children, Simon and Anna, that have made the last five years possible. This
work can not make up for all that I missed in their daily routines - soccer games,

school meetings, and social events, and I know that I could not have done it
without them.

Finally, I must acknowledge the support, love, and companionship provided by
wife Paula. Without her encouragement, I would not have started much less
completed this effort.



vm

TABLE OF CONTENTS

Page

Volume I

1 INTRODUCTION AND RESEARCH OBJECTIVES 1

1.1 Research Goals 1

1.2 Research Objectives 2
1.3 Background 2

1.3.1 New Paradigms for Simulation 5
1.3.2 Summary of Previous Research 8

1.4 Statement of Major Hypotheses 13
1.4.1 Methodological (Conceptual) Contributions to AI

Foundations 16

1.4.2 AI Hypothesis Testing 16
1.5 Approach and Products 17

1.5.1 Research Products 18

1.6 Organization of the Dissertation 20
1.6.1 Summary of Section Contents 20

2 CHARACTERIZATION OF COGNITIVE PROCESSES 22

2.1 Overview of the Process 22

2.2 Perception of Systems 25
2.2.1 Formulating System Descriptions 25
2.2.2 Planning and Understanding 32

2.2.2.1 Goal Detection 34

2.2.2.2 Plan Proposing 35
2.2.2.3 Plan Projection 36

2.2.3 Reasoning With Common Sense Theories of System
Dynamics 37

2.3 Identification of Symptoms and Concerns 39



IX

TABLE OF CONTENTS (Continued)

Page

2.4 Performing Problem Analysis 40
2.5 Problem Solving 42

2.5.1 Characteristic Driven Design 43
2.5.2 External Constraint Driven Design 43
2.5.3 Element Driven Design 44
2.5.4 Formulation of Analysis Goals and Model Require¬

ments 44

2.6 Characterization of the Customer/Analyst Discourse 45
2.6.1 Understanding System Descriptions and Customer

Needs 47

2.7 Formulation of Analysis Requirements 51
2.8 Analysis and Experiment Planning 52

2.8.1 Non-hierarchicai Planning Systems 55
2.8.2 Hierarchical Planning Systems 57
2.8.3 Script or Variant Planning Systems 60
2.8.4 Opportunistic Planning Systems 60

2.9 Model Design and Specification 61
2.10 Results Interpretation 63
2.11 Summary 65

3 KAMSS ARCHITECTURE 66

3.1 Design Rationale 69
3.2 Usage Scenarios 73

3.2.1 Scenario #1 Acquaintance 75
3.2.2 Scenario #2 Capture of System Descriptions .... 75



X

TABLE OF CONTENTS (Continued)

Page

3.2.3 Scenario #3 Using Sketch Input to Augment Text . . 82
3.2.4 Scenario #4 Model Design Support 86
3.2.5 Scenario #5 Model Generation Support 88
3.2.6 Scenario #6 Causal Reasoning/Qualitative Simulation 89
3.2.7 Scenario #7 Quantitative Simulation Execution ... 90
3.2.8 Scenario #8 Interpretation of Simulation Results . . 91
3.2.9 Scenario #9 Decision Scenario Packaging 91

3.3 User Types 92
3.4 KAMSS Architecture and Major Subsystems 94

3.4.1 Information/Knowledge Base Management 96
3.4.1.1 Types of Information/Knowledge .... 101

3.4.2 User Interaction 104

3.4.3 System Resource Manager 108
3.4.4 System Description Capture Environment 108
3.4.5 Model Development Support Environment 112
3.4.6 Analysis Support Environment (ASE) 114
3.4.7 Packaging and Construction Utilities 114

3.5 Implementation Issues for KAMSS 117
3.5.1 Overview of Existing Tools and Their Applicability . 117
3.5.2 Prototypes: Functionality and Rationale 120

4 NATURAL LANGUAGE PROCESSING ISSUES 125

4.1 Issues of NLU, NLG, and Discourse Processing 125
4.2 Processing of Utterances 128
4.3 Overview of Existing NLP Methods 129

4.3.1 NLU Approaches 129
4.3.2 NLG Approaches 131



XI

TABLE OF CONTENTS (Continued)

Page

4.4 Methodology for Utterance Analysis 133
4.5 Approaches Recommended 140

4.5.1 Natural Language Processing Approach 140
4.5.2 Natural Language Generation Approach 147
4.5.3 Discourse Management Approach 149

4.6 Summary 151
5 ONTOLOGY AND REPRESENTATION STRUCTURES FOR

KAMSS 153

5.1 Relevance of Consideration of Semantics 156

5.2 Orientation Relative to Existing Theories 159
5.3 Systematic Relative Meaning (SRM): A Methodology for Seman¬

tic Theory Development 161
5.3.1 Basic Building Blocks 164

5.3.1.1 Properties 164
5.3.1.2 Bindings 165
5.3.1.3 Stakes: A basis for reference and ordering . 166

5.4 Situation Based Semantics 168

5.4.1 Set-Theoretic Notation Conventions 172

5.4.2 Symbols Used as Variables to Represent Primitives . 172
5.4.3 Special Space-Time Relations 173
5.4.4 Situation Types 173
5.4.5 States of Affairs 175

5.4.6 Courses of Events 175

5.4.7 Structures of Situations 176

5.4.8 Classifiers and Worlds 177

5.4.9 Persistence of Information and Informational Relations 177

5.4.10 Indeterminates, Event Types, and Roles 179
5.4.11 Indexed Event Types 181
5.4.12 Schemata 182



Xll

5.4.13 Necessary, Nomic, Conventional, and Conditional
Constraints 182

5.4.14 Constraint Types and Indexed Constraint Types . . 184
5.5 Problems with Existing Theories 185
5.6 The Base Ontology 187

5.6.1 Ensembles 188

5.6.2 Measures 190

5.6.3 Individualization of Parts of Individuals 191

5.6.4 Space and Time 192
5.6.5 Time 193

5.6.6 Generalizations and Specializations 193
5.6.7 Types, Sorts, Kinds and Classes . 195
5.6.8 Situations Revisited 197

5.6.9 Extensions to Conditional Constraints 197

5.6.10 Accounting for Change 198
5.6.10.1 Processes 200

5.6.10.2 Actions 201

5.6.11 Model Ontology 202
5.7 Representation Structures in KAMSS 202

5.7.1 Language Requirements 203
5.8 Another Notational Anomaly (ANNA) 206

5.8.1 Symbols, Gramatical use, Interpretation use, and
Interpretations 206

5.9 Summary 212
6 REASONING IN KAMSS 213

6.1 Observations on Reasoning in KAMSS 213
6.2 Types of Reasoning in KAMSS 214
6.3 Data Driven Inference 217

6.3.1 Construction of the Meaning of an Utterance .... 219
6.4 Adaptive Reasoning, A Frame of Reference Based Reasoning

Method 221

6.4.1 Formalizing the AR Theory 224
6.5 Summary 230



Xlll

TABLE OF CONTENTS (Continued)

Page

7 THEORY OF MODELING 231

7.1 Modeling and Semantics 231
7.1.1 The Role of Context, Viewpoint, and Purpose .... 232

7.2 Modeling for Causal Reasoning and Deductive Simulation . . . 233
7.2.1 Generation of Qualitative Models from System De¬

scriptions 236
7.2.2 Example of Qualitative Simulation Process 238

7.3 Quantitative Simulation Model Design 242
7.3.1 Summary 247

Volume II

8 PROTOTYPE IMPLEMENTATIONS 2488.1IDEF1/ES and IDEF3: Methodologies For Knowledge Acquisi¬
tion 248

8.1.1 IDEF1 Formalization 251

8.1.1.1 Lexicon 251

8.1.1.2 Grammar 252

8.1.1.3 IDEF1 Formal Semantics 255

8.1.2 IDEFl/ES Method Description 257
8.1.2.1 Entity Representation Extensions .... 258
8.1.2.2 Event Representations 263
8.1.2.3 Rule Collection 266

8.1.2.4 Predefined Link Types 269
8.1.2.5 Links Between Links 272

8.1.2.6 Examples of IDEFl/ES Application . . . 279
8.1.2.7 IDEFl/ES Conclusions 279

8.1.3 IDEF3 Method Description 279
8.1.3.1 Requirements for IDEF3 281



XIV

8.1.3.2 IDEF3 Design Concepts and Philosophy . 282
8.1.3.3 Basic Concepts of IDEF3 284
8.1.3.4 IDEF3 Syntax 285

8.1.4 Illustrating the Process Model 285
8.1.5 Object State Transition Description 288

8.2 SDCE: A System Description Capture Environment 288
8.3 FCT Prototype 299
8.4 MDSE Prototypes 306

8.4.1 Implementation Model Support 306
8.4.2 Simulation Model Design Support 306
8.4.3 IDEF Model Development Support 308
8.4.4 Generalized Model Generator 315

8.5 OBSIM: An Object Based Simulation Language 315
8.5.1 Entity Tracing Versus Condition Triggering 318
8.5.2 OBSIM Language Constructs 319
8.5.3 Deficiencies / Shortcomings of the Object Paradigm . 321
8.5.4 OBSIM Summary 323

8.6 OBMODLER: An Object Based Model Design Support System 323
8.6.1 OBMODLER Summary 329

9 CONCLUSION 330

9.1 Summary of Contributions 330
9.2 Areas for Further Research 332

9.3 Implementation Considerations 335

REFERENCES 337

VITA 354



XY

LIST OF FIGURES

Figure Page
Volume I

2.1 DECISION MAKING BASED ON MODELING AND SIMULA¬
TION ANALYSIS 23

2.2 TYPICAL SYSTEM DESCRIPTION SKETCH 27

2.3 INTERACTION OF OBJECTS, TIME, AND OBJECT CONDI¬
TION 28

3.1 LOGICAL VIEW OF THE MAJOR COMPONENTS OF KAMSS 68

3.2 SYSTEM DESCRIPTION CAPTURE SCENARIO 76

3.3 TYPICAL TEXT INTERACTION WITH KAMSS 78

3.4 TEXT DESCRIPTION OF A MANUFACTURING SITUATION 80

3.5 SUMMARIZATION OF KAMSS UNDERSTANDING OF A
SYSTEM 81

3.6 SKETCH CREATION IN KAMSS 83

3.7 DEFINING THE SYMBOL SEMANTICS OF A SKETCH ... 84

3.8 POINTING TO SKETCH OBJECTS AND AREAS ...... 85

3.9 ARCHITECTURE VIEW OF THE MAJOR COMPONENTS OF
KAMSS 95

3.10 INFORMATION/KNOWLEDGE BASE VIEW OF KAMSS ... 97
3.11 LEVELS OF INFORMATION/KNOWLEDGE REPRESENTA¬

TION IN KAMSS 102

3.12 LEVELS AND VIEWS IN THE DOMAIN LEVEL 103

3.13 USER INTERACTION SUBSYSTEM 107

3.14 SDCE ARCHITECTURE Ill

3.15 MDS ARCHITECTURE 113

3.16 ASE COMPONENTS 115

3.17 KAMSS PACKAGING AND CONSTRUCTION UTILITIES . . 116

3.18 KAMSS IMPLEMENTATION ARCHITECTURE . 121

4.1 CLASSES FOR UTTERANCE ANALYSIS 136

4.2 IDEF1/ES SEMANTIC MODEL 137



XVI

LIST OF FIGURES (Continued)

Figure Page

4.3 USE OF IDEFO IN DOMAIN ANALYSIS 139

4.4 VERB CLASSES IN PROTOTYPE KAMSS 144

4.5 CASEMARKERS AND THEIR HIERARCHY IN KAMSS ... 145

6.1 REASONING COMPONENTS 215

6.2 REASONING MODELED AS CHAINS OF INFORMATION
FLOW 223

7.1 CONCEPT MODEL OF SIMAN 244

Volume II

8.1 ELEMENTS OF A METHOD 249

8.2 IDEF1 SYNTAX EXTENSIONS FOR INSTANCES AND TYPES 259

8.3 IDEF1 SYNTAX EXTENSIONS FOR DESCRIBED ENTITIES . 260

8.4 NAMED EVENT CLASSES, INSTANCES, AND TYPES .... 264
8.5 DESCRIBED EVENT CLASSES, INSTANCES, AND TYPES . . 265
8.6 SYNTAX FOR RULE COLLECTIONS 267

8.7 NEW LINK TYPES 270

8.8 NEW LINK TYPES CONTINUED 271

8.9 INCLUSIVELY INDEPENDENT CONSTRAINT ON RELA¬
TIONS 274

8.10 EXCLUSIVELY DEPENDENT CONSTRAINT ON RELATIONS 275

8.11 EXCLUSION CONSTRAINT ON RELATIONS 276

8.12 UNIQUENESS CONSTRAINT ON RELATIONS 277
8.13 SUBSETTING CONSTRAINT ON RELATIONS 278

8.14 EXAMPLE OF TYPES, CLASSES, DESCRIPTIONS, AND
INSTANCES 280

8.15 INTERACTION OF OBJECT, TIME, AND OBJECT CONDI¬
TION 283

8.16 VIEWPOINT, PURPOSE, CONTEXT, AND SCENARIO DE¬
SCRIPTIONS 286

8.17 PROCESS NETWORK SYMBOL SUMMARY 287



XVII

LIST OF FIGURES (Continued)

Figure Page

8.18 OBJECT STATE TRANSITION SYMBOL SUMMARY .... 289

8.19 LOGICAL VIEW OF THE MAJOR COMPONENTS OF THE
SDCE 291

8.20 SKETCH PAD EDITOR FOR FACILITY DESCRIPTION CAP¬
TURE 292

8.21 PRODUCT DESCRIPTION CAPTURE 293

8.22 ORGANIZATION PROCESS DESCRIPTION CAPTURE ... 294

8.23 SDCE TYPE EDITOR 295

8.24 SDCE BLOCK EDITOR 297

8.25 SDCE OBJECT EDITOR 298

8.26 FACT COLLECTION TOOL CHARACTERISTICS ...... 301

8.27 DIALOG CAPTURE USING FCT 303

8.28 FCT CLASSIFICATION SCHEMES 304

8.29 FCT DESCRIPTION FORM FOR PHYSICAL OBJECT TYPES 305

8.30 SDCE BASED MECHANISM DESCRIPTION CAPTURE TOOL
FOR DIAGNOSIS 307

8.31 IDEF1 REPRESENTATION OF IDEF0 310

8.32 IDEF0 MODELING SUPPORT SCREEN 311

8.33 MULTIPLE MODELING SUPPORT 312

8.34 IDEF1 REPRESENTATION OF IDEF1 313

8.35 IDEF1 MODEL BUILDER SUPPORT INTERFACE 314

8.36 USE OF METAMODELER TO GENERATE MODELING SUP¬
PORT ENVIRONMENTS 316

8.37 OBSIM OBJECT HIERARCHY 320

8.38 LOOPS RULE SET FOR OBSIM QUEUE PRIMITIVE INIT
METHOD 322

8.39 OBMODLER REPRESENTATION OF A SYSTEM DESCRIP¬
TION 325

8.40 ASSIGNMENT OF SIMULATION MODEL CONSTRUCTS ON A
SYSTEM DESCRIPTION 326

8.41 REUSING PREVIOUSLY DEFINED SYSTEM DESCRIPTIONS
OR MODELS 328



1

1. INTRODUCTION AND RESEARCH OBJECTIVES

“It sometimes happens in science that the vocabulary of a particular theory
becomes so ingrained that the scientist starts confusing the empirical data with
its theory-laden description.” [Barwise and Perry 1983}.

1.1 Research Goals

The goals of this research are fourfold:

1. To advance the understanding of the processes of:

1.1. How a domain expert becomes aware of how the system in his domain
functions,

1.2. How the domain expert identifies problems in that system,

1.3. How solution concepts are formulated,

1.4. How modeling and analysis of models are used in the problem solving
process.

2. To establish a system which can assist in this discovery, design, and model
building process (hereafter referred to as the Knowledge Acquisition and
Modeling Support System KAMSS),

3. To identify the major theoretic and method needs of such a system, and to

develop the critical concepts to fill those voids,

4. To develop prototypes of the key components of the theory, methods, and the
system concept required to illustrate viability of the developed concepts.

Thus, it is by design that this research addresses the totality of a complex sys¬

tem. The purpose was to establish a framework with the necessary motivations,
design structures, theoretic concepts, methods, and proof of viability prototypes.
This framework has served as a mechanism for structuring the development of

This dissertation follows the style and format of the journal ACM Computing
Surveys.



2

the pieces of the KAMSS for application in manufacturing, engineering, and inte¬
grated information system development domains.

1.2 Research Objectives

Relative to the above stated goals the following objectives were established:

1. Perform the required data collection and knowledge acquisition required to
establish the basis from which to analyze the requisite cognitive processes.

2. Characterize the cognitive processes involved in the acquisition of an under¬
standing of a system, the use of that understanding in problem identification,
solution design, and modeling.

3. Define the requirements for a KAMSS based on that characterization and on

a needs analysis performed with actual end users of such a system (manufac¬
turing engineers, systems analysts, and simulation modelers).

4. Develop an architectural design of a KAMSS which satisfies the stated
requirements and which satisfies the design goals of:

4.1. Integration with existing engineering and manufacturing information
systems,

4.2. Provision of Intelligent Assistant support to both the domain experts
and the simulation modelers.

5. Establish the basic concepts and theoretical foundations for the knowledge
bases and reasoning methods required for development of such a system.

6. Construct relevant methods and prototypes which provide a basic technology
for construction of the eventual system and demonstrate the feasibility of the
concepts proposed.

1.3 Background

The impetus behind the research reported in this dissertation stems from expe¬

riences of the author over the past ten years in the application of simulation and
modeling to manufacturing systems. This experience also includes participation



3

in the development of languages, tools, and environments to support the use of
modeling and simulation in manufacturing system development and operations
decision analysis. A recurring phenomenon during this period was the persistence
of the semantic gap which existed between the way the customer understood his
environment and the models and simulations which were constructed to assist

that person in making decisions within that environment. Another frustrating
fact was that the decision makers were never quite able to actually use the lan¬
guages, tools, and environments which were constructed to provide them access to
the modeling and simulation technology. Even after many man-years of develop¬
ment effort, the manufacturing decision makers continued to be dependent upon
the availability of the human simulation analyst for access to that technology.

One of the reasons behind this breakdown in technology implementation is the
semantic gap between the concepts and tools used in the modeling and simulation
process and those used in the common sense reasoning of the manufacturing
decision maker. Another reason is the gap between the common sense notion of
simulation and the mathematically based simulation theory which is supported by
the available tools. In* Section 2, we will present a set of hypotheses proposing
that the primary view of (and the need for) simulation by a non-simulation
analyst is one of reasoning about the structure of a system, or reasoning about
implications of a proposed change to a system. The difference between the two
forms is significant and complex. On the mathematical simulation side, we are

primarily dealing with models which are an approximation to the truth (known
to be false but close!) On the reasoning side we are dealing with an abstraction
of the truth (known to be incomplete but true!) [Kuipers and Patil 1987]. Both
forms are required; however, the absence of automated support for the latter has
impeded the acceptance and usefulness of the former.

The importance of this form of deductive simulation extends beyond the realm
of improved management decision making. To be successful (as well as safe) the
complex design and manufacturing systems of the future must have the capability
to fall back on a knowledge base of reasoning capabilities which include domain
common sense, qualitative, and causal reasoning methods. They must be capa¬

ble of understanding how unplanned behavior comes about and the limitations
of the resources they have control for responding to those situations. This kind



4

of capability requires the representation and manipulation of qualitative infor¬
mation about the physical and organizational systems within their purview. The
concepts, formalizations, and methods investigated in the course of this research
can be directly applied to the provision of these types of capabilities in future sys¬

tems. 1

As another illustration of this point it is seldom that someone (other than a

simulation analyst) describes an operation in terms of “activity nodes, queue
nodes, select nodes, or activity cycles.” These are only a few of the modeling
concepts (transformed into programming mechanisms) which have come into use

over the past twenty years. The recent generation of simulation languages have
added additional syntactic sugar to try to bridge the gap between the customer
and the simulation technology with little success. The problem stems from
the fact that current simulation language constructs are focused on providing
additional ease for the specification of a simulation model implementation design.

1 Recently I was engaged in a conversation with a plant engineer in a large
petroleum refinery during which the point was made that the simulation
analyses that the industrial engineers performed were generally useless. The
position was defended by relating incidents in which the consequences of
a change were not taken into consideration by the analysts. In one of the
examples, the “IEs” were proposing the replacement of a hazardous waste
disposal system which used 55 gallon drums with one which used 500 gallon
containers. The simulation apparently demonstrated remarkable savings
in handling, acquisition, and transportation costs. Unfortunately, (as was
delightfully pointed out) “no one ever considered whether the floors in the
plant could support the new containers and associated handling equipment.”
What was interesting about the discussion is that the plant engineer had
expected the simulation to “tell them to check that out.” He expected that the
simulation modeling system would have the capability to analyze a proposed
design in a manner which included reasoning about the logical consequences of
the proposed change. While I immediately defended the honor of my elected
profession, I could see the reasonableness of his argument. The theoretical
design and implementation requirements for providing the kind of reasoning
capability in a modeling and analysis support environment which that plant
engineer expected to see is the major focus of this dissertation. So, in a
manner of speaking, this dissertation is an investigation into the consequences
of attempting to add reasoning capabilities to a modeling and simulation
support environment.



5

Unfortunately there is a complex set of system analysis, analysis planning, and
model design activities which must precede model implementation. There has
been no simulation modeling system developed which supports these additional
activities.

1.3.1 New Paradigms for Simulation

Major advances in simulation techniques have in the past resulted from refine¬
ments to our understanding of the modeling and analysis process. Previous work
has provided the framework for the application of advances in the three major
support technologies of:

1. Algorithms,

2. Data structures,

3. Statistical methods.

The emergence of theories in knowledge acquisition, semantics, and reasoning
from the domain of Artificial Intelligence (AI) provide new methods for study of
the cognitive processes of the customer and the simulation analyst within a deci¬
sion scenario framework. The availability of software and hardware tools for im¬
plementing these theories provides a potential mechanism for the construction of
advanced modeling systems based on the results of relevant models and theories
related to the cognitive process. One of the objectives of this dissertation is to
characterize the cognitive processes of the customer and analyst within a decision
scenario framework. This characterization is presented in Section 2.

In this document the terms “customer” and “domain expert” are used to refer to
the manufacturing decision maker who is assumed to be experienced in his own
discipline but is not considered to be trained in simulation modeling or system
analysis. The term “analyst” is used to refer to a person trained in the use of
simulation modeling and analysis. The analyst may or may not have expertise
in the manufacturing domain where he is applying his analytical skills. However,
it will be pointed out in Section 2 that often the most effective analysts for a
particular problem area are those who have experience with solving problems in
that area (i.e. an analyst with experience in material handling system design will



6

often be more effective in the construction of simulation models in that domain

than an analyst without such experience).

The objective of this research is to establish a base from which an intelligent
environment can be constructed for:

1. Capture of a system description,

2. Automatic model generation,

3. Qualitative and quantitative simulation,

4. Deductive problem analysis,

5. Problem solution recommendation.

The ultimate goal of such a system is to partially or totally replace the existing
human systems simulation analyst. This dissertation will address the underlying
theories and strategies of how the following cognitive processes can be represented
and supported in a knowledge based environment. Our focus is to examine how:

1. The customer understands and operates within his manufacturing system,

2. The customer recognizes symptoms or formulates concerns,

3. The customer analyzes his environment and identifies the causes of symp¬
toms,

4. The customer designs solutions to these problems,

5. The customer uses models to aid in the analysis and solution design tasks,

6. The customer comes to the recognition that a simulation analysis can sup¬

port his decision making or analysis process (including investigation into the
common sense notion of simulation),

7. The customer constructs goals for simulation analysis,

8. The customer communicates an understanding of the system (the system
description) to the systems simulation analyst,



79.The customer communicates a need for information (goals for analysis) to the
systems simulation analyst,

10. The analyst understands the system description and customer needs,

11. The analyst determines the requirements for the model and the necessary
simulation analysis (particularly how the analyst uses past experience to
anticipate unstated customer needs),

12. The analyst determines the model architecture and experimental approach
which will meet the analysis requirements,

13. The analyst uses experience with a particular set of modeling constructs to
build a detailed specification of the model design,

14. The analyst uses the results of the statistical analysis of the simulation
output data to meet the original information requests (or goals) of the
customer.

The concepts presented here are unique from both the view of the simulation dis¬
cipline and from the AI perspective. The uniqueness from the AI point of view
arises from the fact that the process under study involves the interaction of natu¬
ral skills (i.e., the ability of a person to describe the dynamics of his own environ¬
ment) and learned skills (i.e., the ability of the systems analyst to conceptualize,
design, and build usable computer simulations from the customer’s description).
The characterization of the cognitive processes provided in Section 2 forced the
evolution of the knowledge based systems design presented in Section 3. The re¬
quirements of this architecture led to the formulation of a new theory of knowl¬
edge acquisition semantics and reasoning presented in Sections 5 and 6. The in¬
tended contribution of this work to the modeling and simulation disciplines comes

from the focus on the modeling of common sense reasoning about system dynam¬
ics as the basis for design of an advanced modeling and simulation environment.

Current simulation languages have evolved to support the efficient programming
and execution of a simulation model. Thus, they are able to contribute to the
decision making process only in the actual analysis phase. The support of the
other phases of the decision making process has awaited the characterization of



8

the actual thought processes which occur in these phases and the development
of the representation and reasoning capabilities required to emulate / support
the activities in those phases. The concepts presented in Section 2 provide that
characterization and have allowed us to design a knowledge based environment
which will be able to provide support of all phases of the decision making process.
This support spans:

1. Acquisition of descriptions of the engineering or manufacturing environment,

2. Representation of the semantic content of those descriptions in a form which
supports:

2.1. Tailoring of the description acquisition mechanism,

2.2. Incremental expansion of the underlying ontology mechanisms,

2.3. Model generation,

2.4. Specialized domain reasoning,

2.5. Application generation support.

3. Model and analysis application generation,

4. Data connectivity to existing company information systems,

5. Experimental design and execution,

6. Results interpretation.

1.3.2 Summary of Previous Research

Fundamentally, there are four major approaches to the application of AI methods
to the activities associated with modeling and simulation analysis.

1. The first approach would be to utilize the methods and theories of AI to
model the cognitive processes associated with model building, model based
decision making, and simulation analysis.



9

2. The second approach is the emulation of the common sense reasoning about
the causal and qualitative aspects of the system structure and dynamics.

3. The third is to combine quantitative simulation models from a specific
domain with expert systems constructed for human experts in that domain.

4. The fourth approach is focused on utilizing existing programming languages
and tools developed to support AI investigations or expert system application
developments to construct simulation models in a particular analysis arena.

With respect to the first approach, the most significant work to-date appears to
be that of George Heidorn [Heidorn 1972]. Heidorn’s Natural Language Process¬
ing System (NLPS) supports the development of queuing system simulations in
GPSS from natural language input. In an interactive session the user describes
a problem situation to NLPS. Through the use of a set of encoding and decod¬
ing rules the NLPS constructs an internal representation (IPS) of the described
situation in the concepts of a queuing system model and hence is able to query

the user for additional information which is required to make that model com¬
plete. When a complete model is developed, the user can request that a simula¬
tion model be constructed. The system generates a model based on the IPS and
queries the user for such experimental parameters as the length of run. The sys¬

tem was developed as a study in natural language processing, not as a study in
modeling support environments. However, it provides a landmark demonstration
for many of the concepts which will be developed in this dissertation including:

1. Interactive user dialog to describe a user’s problem,

2. Ability to store a problem description and answer questions about that
problem description (limited to queuing model domain of discourse),

3. Ability to generate a simulation implementation from a problem description.

Limitations of the NLPS include:

1. Use of queuing model semantics as the basis for internal representation which
limits the type of descriptions which can be captured,



10

2. Lack of a capability for the user to input the goals for analysis which means

that rather than design a particular model the NLPS generates a standard
model,

3. The natural language processing paradigm is based on a multi-level pattern
matching approach which is dependent on a complete lexicon which means

that for practical usage the system would have to be greatly expanded.

Of the other literature reviewed to date, relative to the use of Artificial Intelli¬
gence / Expert System (AI / ES) methods in the system modeling and simulation
domain, only Gaines [Gaines and Shaw 1985] appears to recognize the basic dif¬
ference between the concept of a simulation model and the models of cognition
embodied in an ES. However, he falls short of actually identifying the need to

perform the tasks implicit in the first approach. Neither does he report on any

actual work performed in this area. McArthur [McArthur 1981] makes reference
to attempting to accomplish the first task, but only in a passing comment to the
fact that object oriented programming supports a notion of “egocentric” model¬
ing. I believe the failure to recognize the potential for application of AI methods
to simulation support system design lies somewhere in the tendency of engineers
to want to view programming methods strictly as mechanistic tools for the con¬

struction of products, rather than as a medium for experimenting with concepts
about how people think (a domain largely in the past relegated to students of
psychology and philosophy).

The work reported in [Elmaghraby and Jangannathan 1985] could be classified
in the first area, except that in this description of a simulation language selection
system under construction there is no mention of analyzing the planning strate¬
gies of the expert, nor of any attempt to assist the end user with the characteriza¬
tion of a particular application. This work appears to be entirely property driven
using a deterministic procedural set of decision logic (more appropriate to a group

technology decision table based stratagem).

McRoberts in [McRoberts et al. 1985] describes ongoing work in the study of
generation of model abstractions from system descriptions. However he fails to

recognize that the emulation (or even study) of the human process in modeling
has any merit. Therefore, he falls back on traditional deduction techniques



11

based pn general statistical and systems theoretic methods and presumes as a

starting point an existing “detailed model which is free from run time errors.”
This appears to contradict the initial hypothesis that customers can describe
their systems, but need help in the development of simulation models of those
systems, since it presumes a simulation model as the starting point of his method.
It is interesting to note that he does admit failure with all but the simplest of
reduction approaches.

Work along the lines of the second approach most closely parallels the focus of
this dissertation. This work includes research in the areas of:

1. Causal reasoning (e.g., qualitative physics [Davis and Brown 1984; Kuipers
1984]),

2. Common sense reasoning about physical systems (e.g., naive physics [Hayes
1979; Hobbs 1985]),

3. Continuous process qualitative reasoning (e.g., qualitative process theory
[Forbus 1984; Kuipers 1984]),

4. Planning and mechanical system design (e.g., reasoning about plans [McDer¬
mott 1985]; common sense planning and understanding [Wilensky 1983]),

5. General theory of natural language semantics (e.g., based on situated agents
[Barwise and Perry 1983] for continuous concepts [Bunt 1985]).

Each of these works addresses the problem of common sense reasoning about
the causal and qualitative aspects of system structure and dynamics from either
natural language descriptions of the system or from common sense models of
those systems. The work by Bunt, Hayes, and Barwise focuses primarily on

representational issues as addressed in Section 5 of this dissertation. The work
by McDermott and Wilensky focuses on the planning issues which we found were

required for generation of qualitative models from the descriptions. Finally, the
work by De Kleer, Forbus, and Kuipers addresses the problem of reasoning with
qualitative models formed from these representations.

Relative to the third approach, O’Keefe provides an interesting taxonomy for all
the possible uses of an ES with a simulation model (i.e., ES’s inside simulations,



12

simulations inside ES’s, ES’s on the front of simulations, ES’s on the rear of
simulations, ES’s loosely coupled to simulations, ES’s and simulations as a part
of something bigger, etc.) [O’Keefe 1986]. To a large extent, this article reflects a

general naive understanding which many simulation modeling experts appear to
have (at least as indicated by their literature) relative to what AI technology is
all about. Several of the statements made in this article are so absurd that they
deserve comment. The opening sentences of the paper claim that, “Simulation
and expert systems are remarkably similar. Both employ various representations
to model some aspect of an uncertain world, with the model being formed as a

piece of computer software.” Of course, the fact that what constitutes a model,
what is being modeled, the criteria for interpretation, and that the criteria
for acceptability are altogether different in the two disciplines is completely
overlooked.

The paper also seems to confuse the notion of “rules” as a method for encoding
knowledge with “flow of control” language constructs that utilize “IF — THEN”
syntax. In several other instances, the author equates implication and compu¬
tation with inference, (i.e., “What makes simulation and expert systems meth¬
ods similar is that they are each based on a modular representation of a system,
with an inference mechanism that drives this representation.” and “Representa¬
tion within simulation include events, activities, process interaction, and differen¬
tial equations, where the inference mechanism for the first three is a next-event
time-scheduling algorithm, and the subsequent is an equation solving time-slicing
method.”)

Possibly the most misleading claim of this paper is that “Rather than test an
expert system on a user or a real environment, the expert system can be tested
on a simulation.” Considering that such a test would require that the simulation
embody not only the complete knowledge of the expert in order to evaluate the
responses of the ES, but also a complete enough understanding of the problem to
generate a representative sample of problems, makes one question the rationale
for constructing the ES in the first place. At least all of the knowledge which was
supposed to be encoded in the ES would have to be present in the simulation in
order to test the ES!



13

Reddy [Reddy et al 1985] identifies the task of automating the “instrumentation
of a simulation model” as a domain within which an ES could profitably be em¬

ployed. The general notion proposed is that a customer should be able to specify
a system performance goal (note that this is different from an analysis goal) and
the ES would automatically instrument the model to collect the appropriate data
needed to generate the system performance measures. He provides an excellent
characterization of the various types of performance data which an ES would be
required to instrument the model to collect. However, he has not actually built
the proposed ES nor does he address the reasoning process which would have to
be captured in such an ES. Finally he limits his attention to only numeric based
performance measures and does not presume that the ES would have any knowl¬
edge of the application domain.

The work reported in [Baskaran and Reddy 1984; Cleary et al 1985; Reilly et
al. 1985; Futo 1984; Futo 1985; Adelsberger and Neumann 1985; Adelsberger
et al. 1985; Ko and Wheeler 1983; Shannon et al. 1986; Mayer 1986] falls into
the fourth category of investigations - the use of existing AI/ES programming
methods to attack the development of more effective simulation modeling environ¬
ments. The work written in Prolog reported in [Adelsberger and Neumann 1985;
Adelsberger et al. 1985; Futo 1985; Futo 1984] is interesting in that they propose

the representation of simulation goals as Prolog goals with the idea that a Pro¬
log interpreter could be used to automatically perform the necessary backtrack¬
ing to achieve the simulation goal. This approach is interesting for two reasons.

First, it assumes that the notion of a simulation goal is the same as the head of a
Horn clause. Secondly, it would lead one to believe that “intelligent backtracking”
strategies exist which could alleviate the obvious combinatorial search problems.
However, the discovery of such strategies is a major unresolved research issue in
the logic programming community [Campbell 1984; Lloyd 1984].

1.4 Statement ofMajor Hypotheses

In pursuit of the goals of this research, the following tenets have guided the
investigation to-date, and hence form the basis of the approach taken:



14

1. There is disparity between the way humans understand and reason about
system dynamics and the formal reasoning methods embodied in the un¬

derlying mathematical theory of modeling and simulation (see [Bobrow and
Collins 1975; Schank 1982; Wilensky 1983; Dyer 1983; Harman 1986; Turner

1984] versus [Corynen 1975; Mesarovic and Takahara 1975; Ziegler 1975;
Ziegler 1984b, Pritsker 1977]). This incompatibility limits the usefulness of
existing methods both from the point of view of what can be modeled and
of what use can be made of the models which are constructed. Other formal

bases for reasoning can be expected to give rise to completely new methods
of simulation analysis which can be applied in semantic domains and which
reduce to the traditional simulation methods as a special case.

2. The modeler is communicating in a world of representations, while the cus¬

tomer is dealing in a world of descriptions. Thus, for a modeling and sim¬
ulation support environment to be successful, it must provide support for
the capture of both system descriptions and model designs. Such an envi¬
ronment must provide for tracking the allocation of the system description
elements to the model elements which occurs during the model design. The
modeling environment must also provide for the augmentation of the model
design representation with the rationale for the choice of model structure or

model component specification. One of the goals of this study was to define
a structure and representation for “descriptions” as separate from “models”.
Another was to show that development of analysis tools which operate on the
such descriptions can accelerate the provision of useful results to the decision
maker and in many cases eliminate altogether the need to actually perform
quantitative simulation.

3. The simulation model generation process is primarily an engineering design
process and not a system description process. The analyst uses a system

description and a question (or set of questions) to be answered to decide
on the level of abstraction, the boundaries and the components of a model
based upon the data he needs to extract from an experiment. That model,
within a particular modeling environment is then used as the experimental
medium. Thus, just as a chemist designs an apparatus to establish and
control an environment for the examination of the properties of a chemical
system, the simulation analyst designs a model architecture and components



15

to support his experimentation with a particular manufacturing system

(real or imagined). It is conjectured that failure to recognize this fact is a

major reason behind the communication problems which exist between the
simulation modeler and the customer. Assuming this view also sheds light
on the unsolved problem of simulation model reuse. To achieve effective
economies of reuse of the analysis investment we must find a way to capture
and store the system description itself, and largely automate the model
design based on that description and new questions to be answered.

4. The design process is primarily an inductive process. That is, the human de¬
signer guesses a solution based on experience and then adjusts that solution
to the particular problem requirements. This process paradigm is assumed
to hold both at the level of design of solutions to a particular manufacturing
problem and also at the level of design of the model and reasoning or anal¬
ysis technique being used to understand the manufacturing problem. Thus,
if the goal is to combine the simulation analysis capability with the poten¬
tial for goal seeking behavior (e.g., self-modifying design behavior), then the
system must include the capability to perform at least element driven design
[Mayer 1985]. This must be supported with an ability to decompose defined
system elements into components. Such behavior is possible, but the major
limiting factor is the inability of the system to recognize when a component
level solution is reached (i.e., to embody the system with the capability to
“know when something can be built11) [Ramey 1983]. To achieve this level
of design capability requires a more complete representation of “the way the
world is” than is achievable in current analytic models. This led to the study
of semantics of natural language and information flow as a model of the pri¬
mary human reasoning process.

5. There are two major approaches to the process of constructing a simula¬
tion based analysis plan. These two approaches can be profitably combined.
The first, will be characterized as entity tracing [Pritsker and Pegden 1979;
Phillips 1979; Pegden 1982] the second as condition / trigger tracing [Deshler
1981; Markowitz et al. 1978; Kiviat et al. 1973]. Entity tracing is most com¬

monly found in applications which involve the study of population behavior,
and has been the traditional method for manufacturing applications. Condi¬
tion / trigger tracing is most commonly found in applications involving the



16

study of complex logic systems, and has been the traditional method used
in software and procedural system analysis. Considering a target quantita¬
tive simulation language with both capabilities allows for the automation of
the quantitative simulation model design from qualitative models extracted
directly from the system descriptions.

1.4.1 Methodological (Conceptual) Contributions to AI Foundations

Because of the relative early stage of AI concepts as a scientific paradigm, AI
approaches tend to fit poorly into the traditional “experiment driven scientific
method”. This problem is recognized by the AI community and activities are

constantly under way to formulate realistic guidelines for AI research. The
following excerpt from Ritchie [1984] provides insight into the ways information
is structured in this dissertation:

“There are various ways in which the typical AI project (e.g., a doctoral thesis)
could contribute to our collective knowledge:

1. It could introduce, in outline, a novel (or partly novel) idea or set of ideas.
For example, ideas such as ‘consider a semantic structure as a computational
procedure’, or ‘regard computation as a sequence of messages between
autonomous entities’.

2. It could elaborate the details of some approach. That is, starting from some

idea, the research could criticize it, or fill in further details, in order to
transform a slogan-like idea or metaphor into a fuller theory. This activity
is comparable to theory-construction in a traditional science, but it is not

directly tied to some standard means of testing, as will be discussed below.

3. It could apply some articulated theory to some actual subject matter or
data, and report the consequences. This is the nearest counterpart to tra¬
ditional “experiment”, but it differs in some important respects. Typically,
the practical investigation proceeds by writing and running a computer pro¬

gram, and the assessment of the result of this activity is difficult, since AI
ideas tend not to be formulated in such a way as to allow specific success /
failure judgments.”



17

1.4.2 AI Hypothesis Testing

Relative to the last type of contribution, Ritchie goes on to suggest that “an
empirical AI ‘experiment’ can be scrutinized in various ways:

1. Experiment design (static): Does the structure of the program reflect the
theory it purports to test?

2. Experiment design (dynamic): Does the internal processing behavior of the
program correspond to the dynamic aspects of the theory (if any)?

3. Consistency: Has the program been successfully run (repeatedly)?

4. Results: What were the consequences, in terms of internal behavior and, in
terms of output, of the program’s execution?

5. Interpretation: What do these results mean in terms of the theoretical
constructs?

6. Conclusions: What are the consequences for the theory of the interpreted
results?”

The evaluation of our hypotheses should also be based on their ability to con¬

tribute to an improved theory of the cognitive processes involved in modeling,
analysis planning, and system understanding. The value of such improvements to
the research and industrial communities must be evaluated based on their contri¬

bution to an improved theory of simulation and the utility of existing simulation
analysis methods in practical applications [Overstreet and Nance 1985].

1.5 Approach and Products

The approach followed in the course of this research built upon our experience
in knowledge based systems research and development as well as experience in
the methods for large scale integrated information systems development. Since
the KAMSS spans both these domains the process required continual revision
and tuning. Thus, the following steps reflect a summarization of the “should be”
approach rather than a documentation of the “as was” approach.



18

1. Perform knowledge acquisition and knowledge engineering for the process

identified in the process characterization.

2. Perform analysis of written manufacturing and engineering system descrip¬
tions.

3. Develop ontology for domain concepts.

4. Define user requirements for support.

5. Define functional requirements for the KAMSS.

6. Define KAMSS system architecture.

7. Examine the role of natural language processing technology for the KAMSS
architecture.

8. Develop a method for semantic theory evolution. Illustrate that method
by application to Situation Semantics to show how that theory could be
extended to accommodate the needs of KAMSS.

9. Develop a model of reasoning sufficiently robust to account for the types of
reasoning support required of the KAMSS.

10. Determine the impact of the characterization of the cognitive processes,

the semantic theory, and reasoning models on the quantitative simulation
model design process. Illustrate how these products enable the development
of a qualitative simulation (or causal reasoning) capability to augment the
quantitative modeling process.

11. Develop prototypes of the various components (and component methods) of
the KAMSS needed to establish viability of the design and the underlying
principles.

Each of these tasks required the performance of literature reviews, examination of
the state of the art, identification of voids, development of hypothesis, design of
solutions based on the hypothesis, and testing or evaluation of the solutions either
via prototype or argument. It should be noted that the “system” orientation of
this effort led to a pragmatic approach to each of the tasks. Thus, rather than



19

attempt to develop from scratch (particularly in the theory oriented areas) the
focus was on selection of something close and modification to suit the needs.

1.5.1 Research Products

Using the above described approach the research objectives were met through the
production of the following products:

1. The characterization of the system understanding, analysis and modeling
process provided in Section 2 from the domain expert and system analyst
points of view,

2. The KAMSS requirements and architectural design presented in Section 3,

3. A methodology for discovery and organization of a domain ontology pre¬

sented in Section 4,

4. A strategy for natural language processing and generation which embodies
both application of an existing ontology and the extension of that ontology,

5. A methodology for semantic theory development,

6. An application of that method for semantic theory development to the
extension of situation semantics to encompass the base ontology components
required to support description acquisition and reasoning in the KAMSS
environment,

7. A representation scheme for capturing “descriptions”,

8. A reasoning method (based on establishment of chains of information flow)
flexible enough to support both the description acquisition, modeling, and
qualitative reasoning requirements of KAMSS,

9. A reasoning method using tokenization and constraint propagation for
discrete qualitative simulation,

10. A methodology for modeling ontology elements (IDEF1/ES),

11. A methodology for capture of process flow and object state descriptions
(IDEF3),



20

12. An object based simulation language development environment which sup¬

ports both the event tracing and condition trigger tracing paradigms,

13. A prototype system description capture environment,

14. A prototype model development support environment,

15. A prototype qualitative simulation environment.

1.6 Organization of the Dissertation

The remainder of this dissertation is logically organized into three major parts
(eight sections). The first part presents a characterization of the thought pro¬
cesses involved in decision making based on the use of models and simulation
(Section 2), and the conceptual design of a Knowledge Acquisition and Modeling
Support System (KAMSS)(Section 3). The second part (Sections 4 through 7) ex¬

amines the basic theoretical foundations required to realize the KAMSS architec¬
ture. The third part (Sections 8 and 9) describes the proof of engineering proto¬
types which were constructed to demonstrate particular elements of the KAMSS
concept (or as tools which would be needed to construct an actual KAMSS) and
the conclusions of this research effort.

1.6.1 Summary of Section Contents

The results of the research directed at the objectives stated above are presented
in the remaining sections of this dissertation. The following paragraphs provide
an overview to the contents of each section.

Section 2 is an introspection of the thought processes associated with the assimi¬
lation of an understanding of a manufacturing system, the construction of models
of that system and the performance of simulation analysis based on those models.
Section 3 describes an architecture for what amounts to the automation of the

analyst function in the support of this process. This architecture is provided for
the purpose of illustrating the kind of automation support which would logically
follow from an understanding of the cognitive processes described in Section 2.

Sections 4 through 8 contain results needed to establish the architectural viabil¬
ity of the concepts presented in the KAMSS architecture. Section 4 describes the



21

natural language processing technology required to support the user interaction
features of the KAMSS. The linguistic theory underlying the discourse processing
and generation which the KAMSS must perform is reviewed. A methodology is
presented for the development of domain specific ontologies. This methodology
allows application of the KAMSS to domains other than engineering and manu¬
facturing. Section 5 delineates a theory of semantics serving as the basis for rep¬
resentation of the system description information as well as the model design in¬
formation. Section 6 describes a set of reasoning strategies required to support
the inductive reasoning and deductive logic mechanisms needed to interact with
the user during the information acquisition process, as well as to build and ma¬
nipulate the respective models. This section elaborates the concepts presented
in Section 5 to explain the process of understanding and describing system dy¬
namics. It focuses on how this understanding is used in common sense causality
determination processes.

Section 7 compares and contrasts the mathematical definition of a model which
underlies current simulation practice with the customer’s representation of a
system. This representation is what the customer considers as a model of his
system. This section explores the issues of the differences between these two
representations and outlines the abstraction techniques for generating various
models consistent with the customer understanding of his system. Finally this
section describes a technique for using common sense reasoning as a simulation
process. The benefits of such a capability over traditional mathematical modeling
techniques is described. Section 8 describes the various prototypes which were
constructed for the purpose of engineering proof of concept systems. The final
section summarizes the findings of this research, overviews the problems of scale-
up of the prototypes and outlines areas for future research.



22

2. CHARACTERIZATION OF COGNITIVE PROCESSES

The goal of this section is to provide a characterization of the cognitive processes

involved in decision making based on the use of models and simulation. The pur¬

pose of this characterization is two-fold. First, it provides the answers to the
questions posed about the cognitive processes of the customer and the analyst.
Second, the characterizations are used as requirements for the KAMSS architec¬
ture described in Section 3 and the data necessary to support the semantic theory
and reasoning strategies presented in Sections 5 and 6.

2.1 Overview of the Process

The process of making decisions based on the use of models and simulation
analysis is depicted as a cyclic process in Figure 2.1. The process involves two
major roles: that characterized as the customer role and that referred to as

the system simulation analyst role. The decision making process starts with
observations made on the existing (or planned) environment, which subsequently
give rise to the recognition of known failings in the existing system (symptoms)
or perceived possible failings (concerns). The process taken by a customer to
determine the underlying cause of these observations leads to the determination
that simulation might provide a vehicle for validating a suspected cause/effect
relationship or determining the performance characteristics of a desired change.
At this point the customer usually engages the services of the system simulation
analyst. The precise nature of the interaction, and what is communicated to the
analyst, is dependent on the type of decision process with which the customer
is involved (e.g. situation explanation, problem cause identification, design
generation, design analysis, etc.).

The analyst (or group of analysts) generally performs an evaluation of the cus¬
tomer’s system, desired analysis results, and system description provided by the
customer. This evaluation is combined with the “goals” of the customer and re¬

sults in a set of requirements for the simulation analysis. This set of requirements
is used as a basis for the process of model and experiment design. The process

of model design is viewed as a two step process, with the first step responsible
for the definition of the model structure and components, and the second step



FIGURE 2.1: DECISION MAKING BASED ON MODELING
AND SIMULATION ANALYSIS.



24

responsible for the detailing of the characteristics of the components and the sys¬

tem interfaces [Mayer 1985; Mayer and Young 1984; Ramey 1983]. The process of
experiment design parallels the process of model design, and may in fact be insep¬
arable from that process [Corynen 1975; Zeigler 1984a].

Depending on the implementation method used, the construction of an executable
version of the model can be a separate activity or it can be a side effect of the de¬
tailed design specification. Most of the research to date on simulation language
design has focused on improving the power and usability of the detailed design
model specification language structures which are used in the programming pro¬

cess [Mayer and Young 1984; Mayer 1986; Overstreet and Nance 1985; Shannon
et al. 1986]. A part of the construction process is the verification of the function¬
ality and behavior of the programmed model. It is interesting to note that there
has been little work reported in the area of language development to support the
specification of the experimental design. It is also interesting to note that the ver¬

ification phase of the simulation process rarely includes a detailed requirement for
either the verification or the validation of the experimental design. An important
consideration of the construction process is the development of data interfaces
with existing factory information systems. These interfaces are often required to
allow the execution of the desired experiments in a timely and cost effective man¬

ner.

The next major step in the simulation analysis process involves the validation
of the programmed model and a comparison of the experimental model against
observations on the real system. This step is frequently overlooked either because
sufficient “real world” data is too costly to obtain or because the “real world”
system does not yet exist. In both cases (and even in the cases where validation
experiments are performed) the actual validation is normally performed via
expert consensus that there is a “reasonable” (supportable) argument for the
hypothesis that the model actually represents the behavior of the existing or

proposed system. This latter form of validation in fact is often referred to as the
“qualitative” analysis.

Following a validation process, the analyst executes the planned experiment which
generally involves executing multiple “runs” of the simulation program collecting
both raw data in the form of traces and summarized data in the form of plots,



25

histograms, and/or tabulated data. The analyst then performs a statistical or
logical analysis of that data and synthesizes a picture of the predicted behavior of
the modeled system. This process is often referred to as “results interpretation”.
It should, in fact, be called “results analysis” because the next step taken by the
analyst is to use these statistical analysis results and interpret or “understand”
them in the context of the original goals which the customer identified. This
process may cause the redefinition, and reinitialization of the preceding steps.
That is, the customer may decide that simulation analysis is not the type of
analysis really needed. The analyst may decide that the analysis requirements
were incorrect or both might decide that the model or experimental design must
be modified.

The following sections provide a description of the major cognitive processes

involved in each of the above described tasks and the relationship of current AI
theories of similar cognitive processes.

2.2 Perception of Systems

The intent of this section is to investigate the question of “How does a person

come to know about and understand a manufacturing environment f” We will
first discuss the indicators of such cognitive processes by an examination of
the way people describe their manufacturing situation. We will then discuss
considerations which arise by examination of previously proposed [Wilensky 1983]
theories of common sense planning and situation understanding. We conclude
that the human is attuned to certain uniformities of property values which extend
over space and time. These uniformities allow him to carve up the system into
individual parts of the system which stand in relation to other parts of the system
in order to achieve an order or structure. We will also conclude that part of
the perception process involves developing a common sense theory of system
dynamics. This theory (which includes common sense notions of cause and effect)
is used in many of the decision making steps outlined in the previous section.

2.2.1 Formulating System Descriptions

When people are asked to describe their manufacturing system, the normal re¬
sponse combines several descriptive mechanisms. Typically they will first describe
the product “These parts range from large cylindrical rollers to precision gears



26

and cams. ” Next they will describe the “physical situation” The production facil¬
ity is organized into five fabrication areas feeding the assembly area, and the “or¬
ganizational structure”. Finally, they will generally construct a series of scenarios
which define a sequence of events causally linked, precedence sequenced in time,
or procedurally linked by the operational policy of the organization and normally
focused on the product. It is often difficult to formulate a single scenario which
captures the entire collection or “sequences of events”. One reason for this diffi¬
culty is that the interaction between the scenarios is either indirect or because the
situations which are being described are realized in parallel. Normally the dialog
will focus on a single thread of activities or events corresponding to a particular
organizational viewpoint which the person believes provides a basis for the justi¬
fication of a particular hypothesis. Typically, the description is augmented with a

graphical interpretation such as that illustrated in Figure 2.2. These illustrations
are used during the discourse as a way for the customer to essentially transport
his “resource” situation (knowledge of the way the world is [Barwise and Perry
1983]) to the location of the discussion.

There are at least two different types of event ordering which are typically in¬
cluded in these system descriptions; the first can be characterized as “arrival or¬
dering” and the second as “activation ordering”. Activation ordering of events
implies a binding between events which is assumed to be causal in nature (ie. the
occurrence of event a precipitates the occurrence of events (3, 7, etc.) “Before the
ARAC can begin to function, there are several setup activities required.”. Arrival
ordering merely implies a relation between events (ie. a condition for event (3 to
occur is that event a. has occurred) “The Material Planner issues a Request for
Procurement to the Buyer upon receipt of a work order. ”.

The task of formulating and communicating this type of system description is one

of structuring the presentation of a path through the Time, Condition, Object
space illustrated in Figure 2.3. The initial description of the products of the
facility provides an effective basis for the initial communication of the “Object”
portion of this space. By describing the state transitions of these objects over

time a framework for the “Conditions” portion of this space is established. This
framework can then be exploited as a mechanism for structuring the descriptions
of the activities which are known (or believed) to provide the causal basis for



FIGURE 2.2: TYPICAL SYSTEM DESCRIPTION SKETCH



External
Event

External
Event

FIGURE 2.3: INTERACTION OF OBJECTS, TIME,
AND OBJECT CONDITION.



29

the state changes. The sketch illustrated in Figure 2.2 is illustrative of a path
through this space using an activity orientation.

One of the basic differences between the type of system descriptions of manufac¬
turing systems, versus electrical [Davis 1984] or physical [Forbus 1984] systems, is
the focus of manufacturing descriptions on the “procedural rationale” which links
activities. For example “EAMRs are created by Engineering at the conceptual and
preliminary design stage of a new program in order to allow time for Material to
procure long lead time items...” These constructs are the primary indicators of
the understanding that the speaker has about the organization system dynamics.
In a very real sense these constructs convey the manufacturing “logic” as under¬
stood by the speaker. Language constructs which typically indicate this type of
“procedural rational” include subordinating prepositions such as:

1. As required to...

2. According to...

3. In order to...

4. To account for...

5. For the purpose of...

6. Due to...

as well as situation constraint representations formulated in terms of the familiar
“If - Then, and When - Then” structures.

One important observation which can be made on the manner in which people
describe manufacturing systems is that the descriptions are almost always incom¬
plete. That is, a single individual rarely is encountered who can give a uniform
description of the entire system. The boundaries of the knowledge of the indi¬
vidual are usually marked with a specific declaration of uncertainty or a radical
change in level of detail in the description and a corresponding lack of causal ra¬
tionale attributed to the elements of the description. Another important observa¬
tion which can be made about the perception of systems which will become rele¬
vant in the later discussions about providing automated support for modeling is



30

that the individual is a part of the system. Thus internalization of the knowledge
acquired about the system will certainly occur for the portion of the system func¬
tions which the individual performs. This implies a lack of objectivity that will
likely handicap the individual in recalling, describing, and explaining the percep¬

tions which have been developed.

Finally, review of actual system description texts (as well as drawing on our expe¬

rience with interviewing manufacturing engineers, supervisors, and management
decision makers) indicates that, in many (if not most) situations, objects are re¬

ferred to not by a “name” but rather by some sort of definite description. For
example:

1. The lathe in the machine shop,

2. Long lead time items,

3. A problem EAMR,

4. The loading robot,

5. The shop supervisor.

This tendency is more prevalent in the description of a system than in the actual
operational discourse of the environment. The tendency to use definite descrip¬
tions is driven by the need to express patterns of behavior and rules. That is,
one of the roles that definitive descriptions can conveniently serve is as a variable
which can be incorporated into conditional structures to express rules of behav¬
ior or explanations. The definite descriptions provide the language mechanism for
generalization. For example:

1. ‘Items not meeting specified requirements because of incomplete operations are

routed through the rapid rework areas.’

2. ‘When semi-processed units are received, they are checked by the material
receiving department personnel.’

3. ‘ The rough and semi-finished parts procured from vendors are stored on

racks.’



31

What can be hypothesized from the above observations is that the perception of a
system is built upon the following mechanisms:

1. Perception of collections of properties which maintain a uniformity over time
with respect to their value assignments and co-locational occurrence, (These
uniformities are the system parts.)

2. Perception of interrelationship of parts,

3. Associations of the collection of parts with a particular set of tasks, which
these parts (standing in a particular relation) support,

4. Associations of the collection of parts with a particular problem, which these
parts (standing in a particular relation) attempt to solve,

5. Development or acquisition of a theory of system dynamics which can be
used to explain the behavior (transformations / state changes) of the system
over time.

This perception of a system is quite complex. It includes an organization of
perceptions built up over time, as well as perceptions, extending through time. If
we consider the original psychological notion of schema as a network of concepts
[Sowa 1983], then the concept of a “system” can be considered as a special type
of schemata. The process of perceiving a system then can be characterized as

the process of building a particular schema or set of schemas over time. If we
consider the original notion of a script as a framework for organizing series of
events [Schank and Abelson 1977], then the development of a concept of system
dynamics can be considered as a process of the development of a set of these
script frames with the appropriate schema attached. It can thus be argued that
the process of describing a system is synonymous with the process of perceiving
the system, in that it forces the individual to discern the elements of the system,

identify them as unique, and construct a scenario for describing their interactions
over time. The scenario has many of the characteristics of a plan. It can be
viewed as a collection of assertions each of which provides a description of a state
of affairs or a state of change. However, rather than being a partial simulation
of the future (as one would find in a plan) it is an explanation of the past. Thus
the assertions serve as the vehicle for explanation. If an assertion is presented as



32

the effect of an action, then that action is considered the causal explanation of
the assertion. If on the other hand the assertion is true at the initial state of the

scenario then the causal explanation is ascribed to the environment of the system
and relative to the system description it is considered as a premise.

The description of a system then is considered to have three parts:

1. The description of the parts,

2. The scenario(s) executed by the system in its operation,

3. The function of the parts (i.e. the role played by the parts in the sce¬

nario^)).

To understand how such descriptions are acquired and used in a problem solving
environment we need to look more closely at the issues involved in common sense

planning and situation understanding which is the focus of the next section.

2.2.2 Planning and Understanding

Another way that we can hope to learn about how people develop knowledge and
understanding of a manufacturing system is to examine previous work in common
sense planning and understanding. Much of the success of AI/ES programs to
date have been on problem-solving programs which start with a well defined ini¬
tial state of the world and which proceed to search a well defined solution space

to achieve a well defined goal [Mayer 1986; Friel and Mayer 1985]. These types
of cognitive activities predominate many of the engineering and manufacturing
technical activities. However they do not accurately characterize the more pre¬

dominant activities of the workplace. As pointed out [Barber 1982; Wilensky
1983] the goals of organization based systems are vague, the information relevant
to achieving the goals is not clear and there is more than one individual working
(sometimes in conflict) to achieve the perceived goal. The perception of systems
and their problems in these situations is a result of the activities of understanding
the work situation, and using common sense planning to accomplish goals within
that environment. Thus, while the system can be viewed as a problem solving
mechanism, the individual within that system is more than a passive component



33

[Ramey 1983]. The individual is an intelligent agent which attempts to under¬
stand his role and will contribute over time to the modification of the system it¬
self.

The above implies that a person’s perception of a system is intimately linked to
the daily activities of common sense planning and understanding. Through the
process of inferring the existence of a goal from the observance of actions, the
individual develops the information needed to explain the existence of the goal.
This explanation becomes the basis for the formation of the system concept. The
individual must also use this understanding of the process to infer his own goals
based upon knowledge of the mission of the system and the current situation.
The planning process uses these goals to guide the structuring of a sequence of
actions to achieve the goals. The explanation structure which was generated dur¬
ing the understanding process is used as an important source of constraints for
the planning mechanism and also as a mechanism for the evaluation of the “ac¬
ceptability” of a plan. But much more information is needed to construct a plan.
Part of that information is knowledge of physical and organizational dynamics
(i.e. common sense knowledge of cause/effect relations which can be used as the
basis for action postulation). Another important piece of information is knowl¬
edge of past plan failures which provide templates for guiding the structure of the
plan [Dyer 1983]. This information is used in a continuous planning process which
involves the following activities [Wilensky 1983]:

1. Goal Detection,

2. Plan Proposing,

3. Plan Projection,

4. Execution,

It is in analysis of the daily implementation of the first three of the above de¬
scribed set of activities that we can postulate how a person acquires his knowl¬
edge of the system and develops perceptions of symptoms and concerns. This
analysis can also identify characteristics of the support environment which must
be provided to support the customer in his situation analysis process.



34

2.2.2.1 Goal Detection

One of the important elements of this process is the recognition that something
has changed in the environment or in the system itself. The recognition process

may be restricted to a change in a property of the system already recognized
(the level of in-process inventory is 26 weeks). Or it may be a recognition of
the emergence of a new property as being important to the description of an
existing object (the inventory level is rising), or the deletion of an old property
from consideration. Finally it may involve the recognition of the emergence of
new object instances (as in the arrival of a new order) or in the emergence of
a new class of object types into the individual’s perception. The emergence of
these new perceptions causes the formulation of percepts and the association of
these percepts to existing concepts or the addition of new concepts [Sowa 1983].
Since these new phenomena must fit within the existing perception of the system
one of the sources of symptoms and concerns is the inability of the individual
to explain the role of these noticed phenomena in his existing “theory” of the
system. Such problems become “important” or “interesting” if they affect the use

of that theory in the plan formulation activity of the individual.

Another important aspect of the noticing activity comes about by the fact that
the planning and understanding processes run continuously and in parallel. This
means that the noticing activity is monitored in the context of a known plan
and its projection. A mismatch between the anticipated outcome of a plan or

any part of the plan is grounds for the recognition of a plan failure. It is in
the attempt of the individual to explain why a plan failed that we come across

our second common sense notion of system dynamics as will be explained in
Section 2.2.3. The fact that all discrepancies or plan failures do not result in the
recognition of a symptom or concern can be explained by the notion of Theme
Abstraction Units (TAU) introduced in [Dyer 1983]. Dyer proposes the existence
of these TAUs as a sort of condensed experience base for how plans can fail in
an uncertain environment. Thus, for example, taking an action prior to plan
projection is an example of the “look before you leap” TAU. Dyer proposes
that the collection of adages of a culture (which would include a specific work
environment) are used by the individual both as a mechanism for evaluation of
plans during the plan formulation or projection process and also as a mechanism
for explaining the failure of plans. Dyers proposal is useful for explaining how one



35

is able to perceive a “problem” in a system. Based on his ideas we can postulate
that, it is only when we cannot explain a noticed failure of a plan via one of these
TAUs that we accumulate evidence of a problem in the system.

2.2.2.2 Plan Proposing

As Wilensky describes this process [Wilensky 1983], plan proposing is the act of
deciding on a network of tasks which will accomplish a perceived goal. His view
of the planning process focuses on the existence of a set of goals for the planning
process (called meta-goals) and plans for achieving these goals (called meta¬
goals). The meta-goals are potentially organized into themes that are situations
under which particular meta-goals should be pursued. The highest level meta¬
themes include:

1. Don’t waste resources,

2. Achieve as many goals as possible,

3. Maximize the value of the goals achieved,

4. Avoid impossible goals.

These meta-themes are particularly relevant to our particular concern. If they ac¬

curately characterize the common sense reasoning processes involved in planning
and understanding in the daily work environment, then we can conclude that a
major part of the concern of the manufacturing decision maker is the balancing
and tradeoff between these meta themes. This balancing requires several types of
knowledge. The first is knowledge of the “things” (i.e. resources) needed to attain
a goal. Resources can be characterized as:

1. Time,

2. Consumable objects,

3. Non-consumable objects,

4. Abilities,

5. States (e.g. locational proximities).



36

The second meta-theme implies the ability of the decision maker to recognize
both inconsistencies between goals and subsumption relations between goals (i.e.
know when the achievement of one goal entails achievement of another). Finally
it identifies the fact that goals can occur in two different manners, either as the
result of the recognition of a theme situation, or as the result of attempting to
satisfy a precondition of a task plan.

The impact of Wilensky’s goal driven multilevel planning paradigm is particularly
important to the design of the explanation generation capability in KAMSS.
From this theory we can see that when the request for an explanation of an event

requires an item which could be reasoned as a logical consequence of a plan, then
the meta-theme rational for the plan itself is generally what the customer would
expect the system to produce as an explanation.

2.2.2.3 Plan Projection

The notion of a capability to generate possible worlds which reflect conditions
which would exist after a plan has executed, we believe to be at the heart of the
common sense notion of simulation. In considering what actually happens (from
a reasoning point of view) during this plan projection process, we get a clear
picture of the differences between this process and the capabilities of traditional
mathematical simulation. One important difference is that the traditional model
of simulation (as proposed by Zeigler [Zeigler 1984a]) presupposes the existence of
a set of interacting processes. On the other hand consider yourself sitting in front
of the word processor creating this text (as I happened to be doing some time
ago). As you consider the task at hand and the possible outcomes of performing
this task, you project an interpretation of the words and concepts that you are

formulating as they will be interpreted by the readers of the document. You then
envision the opinions which will be formulated and the likely actions which will
result from those opinions. You are constructing possible situations, evaluating
the desirability of those situations and constructing/validating a plan which
will presumably result in an acceptable outcome. In fact it is only after you
have done such a projection that you have a complete enough task network to
consider classification of some of those tasks as measurable processes which could
be formulated into a simulation model.



37

2.2.3 Reasoning With Common Sense Theories of System Dynamics

Describing the cause and effect of noticed changes is the basic focus of system
dynamics. Individuals construct “theories” of system dynamics to support the
perception, planning, and understanding of tasks previously described. The term

system dynamics is chosen for the purpose of this discussion not to refer to the
classical input/output notion of mathematical theories of system behavior, but
rather to refer to the collection of physical, organizational, and logical cause and
effect explanations for noticed phenomena in each of these areas. Ken Forbus
identifies three properties which a theory of dynamics must possess if that theory
is to be useful in supporting common sense reasoning about “physical” systems
[Forbus 1984]. First it must specify direct effects and the means by which effects
are propagated. Second, it must provide some means of handling the problem of
decomposability (i.e. describing the behavior of a complex system in terms of the
behavior of some decomposition of that system into parts). Finally it must allow
for graceful extensions. On this last point he elaborates to include a notion of
monotonicity in deduction on observations which (unfortunately) causes problems
outside of the world of physical phenomena. This point will be taken up in more

detail in Section 6. We add another important characteristic - that a theory of
common sense reasoning about system dynamics must be learnable. That is,
one of the quality measures of any such theory would be the reasonableness of
acquisition of the ontology, domain knowledge and reasoning methods. As the
next section will describe, these common sense theories are central to the process

of planning and understanding of the individual’s environment, therefore they
must be acquired by each individual.

The important issue at this point is that individuals use internalized theories
of system dynamics to assist in the planning and understanding processes. The
following is a discussion of some of the cognitive tasks which are supported using
these common sense models of reasoning.

1. Situation Understanding: Situation understanding refers to the process of
inferring goals from observations of actions. This process relies on acquired
theories of system dynamics and is a possible source of new theories.



38

2. Situation Anticipation: One of the characteristics of “intelligent” objects is
the ability to project a current situation into the future, predict a new situ¬
ation, and affect current behavior as though the predicted situation was ac¬

tual. This process is different from the plan projection task (described below)
in the reasoning mechanisms involved (conditional constraint formulation),
and in the fact that it is performed in the absence of any definite delineation
of the actions which will lead to the future state. Situation anticipation plays
a major role in the generation of “concerns” described above, since concerns

are generally considered to be perceived failings (or shortcomings) of an ex¬

isting system based upon an anticipated future world. Thus, for example, the
manufacturing engineer may believe that the material handling system is in¬
adequate based on his anticipation for a major influx of new business and not
on actual shop load.

3. Plan Projection: The deduction of future situations from a current situation
based directly on the cause/effect structures of the theory of system dynam¬
ics being used, the perceived situation, and the formulated plan of actions.
In performing plan projection the human applies the believed cause/effect re¬

lationships to the current situation and a formulated plan in order to predict
what a future situation will be like after the actual execution of the plan.

4. Post Mortem Analysis: The construction of an explanation of how a partic¬
ular situation, state of affairs, or course of events has come about. This ex¬

planation normally attempts to show that the particular phenomena could
be “deduced” from a set of universal laws applied to the set of objects and
relations in the system, starting from a given initial state.

5. Consistency Analysis: Judgment of the reasonableness, acceptability or con¬

sistency of the results of any of the above tasks. For example, the evaluation
of the reasonableness of the assumptions made or the soundness of the rea¬

soning process used. Generally used in a critical or comprehension mode.

6. Observation Interpretation: Deduction of what is happening (i.e. what is the
situation) and the individuals, objects, and actions involved from a partial
set of observations.



39

7. Experiment Planning: Based on a hypothesis and/or observation interpre¬
tations, “experiment planning” is planning of required actions or situations
which will allow the collection of observations needed to support or disprove
the hypothesis. Experiment planning requires an underlying concept of the
“inner workings” of the system to know what aspects of the system are ob¬
servable and how to design mechanisms for collecting these observations.

8. Causal Reasoning: Formulation of a structure of descriptions asserted as

reasons for the existence of known facts. This is one of the most typical
forms of common sense reasoning based on an understanding of the system
dynamics. Unfortunately it is often confused with deductive argument — the
latter providing only a method for giving reasons for believing a fact.

One important point which can be made about the above forms of reasoning,
which use common sense theories of system dynamics, is that each of the above
represents a type of “simulation” in the common sense notion of the term. The
fact that these reasoning tasks are generally performed with the assistance of the
analyst (during the problem definition phase of an analysis effort) is what gives
rise to the common phenomena of the customer being satisfied with the services
of the analyst prior to the model ever being constructed. In fact, it is common

for simulation projects to fail because the analyst does not get the opportunity
(or does not take the time) to “communicate” these reasoning acts with the
actual decision maker. What happens in these situations is that the customer
claims he is “unaware” of the “assumptions” of the model when in fact he is not
concerned with the assumptions at all. Rather, he is disappointed by not having
the opportunity to acquire a better “theory of his system dynamics” for future
use in decision making.

2.3 Identification of Symptoms and Concerns

The second question posed in Section 1 was related to how the customer comes
to recognize (or becomes aware of) problems in his environment. This section
discusses the process of recognition of symptoms and concerns, and considers
how the above presented theories of common sense planning, understanding, and
reasoning with theories of system dynamics can provide some insight into this
process.



40

In the “Guidebook to Systems Development” [Ramey 1983] “symptoms” are de¬
fined as active failings of a system, “concerns” are defined as perceived failings of
a system. There are three possible causes of symptoms. The first is that the task
or problem has changed. The second is that the individual’s perception of the
system has evolved to the point at which the original framework no longer can ac¬

count for the observed phenomena. The third is that the underlying mechanisms
causing the observed phenomena have changed. It should be recognized that at
least the first two of these phenomena can occur without the recognition by the
individual of a “symptom”. For example the change of problem may be merely a

change in focus, in which case the original system is still considered to exist as an

independent, subordinate, or cooperating system to the one which addresses the
current problem focus. For example, we may consider the material handling sys¬

tem as a system in its own right. Simultaneously we may consider it to be a sub¬
system of the shop work control system if the physical or operational constraints
of the material handling system are used to enforce job sequencing. The second
reason is closely associated with the formulation of the system concept in the first
place, and can be considered to be a part of the process of learning about a sys¬

tem.

One of the ways in which individuals use their perceptions of systems is in the
activities of “understanding their environment” and “planning to achieve goals.”
When (in this continual process of planning and understanding) the level of
mismatch between anticipated observations and actual observations becomes
significant enough to disrupt our ability to understand “what is going on” or to
effectively “carry out our plans” then we classify the disparity as a symptom.

2.4 Performing Problem Analysis

Up to this point we have postulated processes for understanding the manufactur¬
ing situation and recognizing symptoms or concerns in that environment. When
an individual is faced with a number of these irritating facts an attempt is gen¬

erally made to ascribe a reason or cause for them. The collection of facts taken
together is the problem. Thus one of the tasks is to decide which facts should be
grouped together. This is referred to as problem identification. Once the prob¬
lem has been identified, the formulation of a hypothesis that explains the symp¬

toms by stating their cause is referred to as problem analysis. Up to this point,



41

all tasks previously described can be internalized by the individual. However, the
performance of this part of the process in an organization requires communication
with the other individuals within that organization. This communication process

can be very difficult indeed. For the recognition of the set of facts may not be
uniform across individuals. This is particularly true in the case of concerns.

As described above, the perception of both symptoms and concerns presupposes

a perception of the system and a knowledge of a theory of dynamics which can be
used as the reference point for the recognition. However, it is often the case in all
of our experiences that we spend considerable effort bringing others to recognize
the systems which appear so obvious to ourselves. If we examine the process of
communication between individuals, we can shed some light on the importance
of the problem identification task and some of the skills required to successfully
perform that task.

One of the first tasks of communication associated with the problem identification
task is the description of one’s perception of what is the system under discussion.
One of the problems with communication of a system is that our perception of
what constitutes “a system” as described above is a collection of objects which
stand in particular relation to,one another such that they serve to address a par¬

ticular problem. In order to communicate such a “binding” without specifically
identifying each of the component parts and each of the specific relations one

often resorts to searching for a symbol (generally a name or a descriptive refer¬
ence) which appears to have a connotation which includes the perceptions which
we mean to communicate. Once the system description has been communicated
then we can consider the listener to share a common “resource” situation. This

resource situation is then used to identify the observable phenomena which one

considers as the indicator of a failing in the system. Often this process involves
convincing the listener that he has seen but has not observed.

Once the observations are ‘on the table’ then the issue becomes one of evaluating
the various “theories of system dynamics” which each participant has relative
to the system under discussion. In order for the phenomena observed to be
recognized as a “failing” or shortcoming of the system some common agreement
of “how” the described system should work must be obtained. This process

generally includes each individual attempting to give an “account” of the natural



42

or conventional constraints which he sees to exist between situations and how the

observed phenomena fit (or do not fit) into these accounts.

It is also during this process of problem analysis that most all of the forms of
non-formal fallacies and language ambiguity raise their ugly heads. Emotive
fallacies such as Ad Populum, Ad Hominem, Poisoning the Well and so forth
are quite prevalent [Sharvy 1966]. This is one of the reasons why the call for
“computer simulation” is often raised. What is being sought is a “neutral”
mechanism which can be “programmed” with a theory of dynamics that can then
reason through the logical consequences of that theory to explain the observed
phenomena or identify a failing in the theory to account for the phenomena.

2.5 Problem Solving

How people actually solve problems and perform design activities is one of the
major challenges to researchers in AI. Ramey has observed that the designer does
not necessarily deduce the proper system structure from the problem require¬
ments but rather hypothesizes a solution and then uses a form of inductive rea¬

soning to demonstrate that his solution is appropriate [Ramey 1983]. Assuming
the validity of the cognitive skills enabled by an internalized theory of system dy¬
namics (described in Section 2.2.3) we can explain a part of this process. Presum¬
ably, situation understanding, post mortem analysis, and observation interpreta¬
tion have been used in the process of reaching the point of the recognition that
a solution is needed. At this point the person is required to postulate a world
within which the “problem” would not exist. This is a natural role for the use

of the situation anticipation skill. The question is, “What to focus the application
of this skill upon?” If the person focuses on the symptoms or concerns, then we

see the classic problem of solutions which treat the symptoms and not the disease
(e.g., solving a problem with lateness by increasing the lead time). Alternatively,
a person can focus this skill to an underlying theory of system dynamics. This
results in situations sometimes characterized as “explaining the problem away”.
Finally, a person can focus this skill to the “system” its structure, components,
and behavior. This focus allows the formulation of conditional constraints which

define (presumably) a world in which the system elements which exist or the in¬
teraction between the elements which exist are such that the perceived problems
do not exist.



43

2.5.1 Characteristic Driven Design

This type of solution design approach is by far the rarest and certainly the most
abstract. In this approach, the designer begins by partitioning the problem
requirements based on abstract criteria such as:

1. Common functionality,

2. Common mechanism,

3. Usage patterns.

These partitioned classes are used to define abstract mechanisms which one

attempts to match against known characteristics of solution approaches. If
no matches are found, the process essentially recurses to a lower level until a
match is discovered. As the system elements are identified and matched against
characteristics of known solutions, the design structure is examined for part
balance and adherence to physical constraints. It is only generally after the major
part of the design is completed that the focus is turned to the system interfaces.

2.5.2 External Constraint Driven Design

This approach to systems design is generally used in situations where problem
requirements or the problems themselves are poorly formulated. The customer

develops solution concepts which start by treating the solution as a black box.
Through the construction of usage scenarios, the characteristics which that
black box must exhibit are identified. The usage scenarios can be thought of
as scenarios in which the black box solves the problems at hand. Once these
scenarios are defined, the customer then has a set of solution characteristics
which he uses to “partition” the available technologies. That is, he matches the
solution characteristics with characteristics of the technologies of which he is
aware, allowing him to eliminate large classes of alternatives quickly. Once he
has established the “potentially viable” set of solutions, the customer will pick
a particular element of the solution and use that selection to “force fit” other
parts of the solution. The second and third part of this type of design process is
very similar to the process of opportunistic planning with constraint propagation.
This type of design approach can be characterized as inside-out design, since the



44

process essentially starts with the selection of a critical system element which
forces the form of the rest of the elements until the system interfaces are met.

2.5.3 Element Driven Design

This characterization of the design process appears to be similar to that of the
external constraint driven approach except that the process works from the
outside in. That is, the designer chooses the pieces of the system wThich he knows
he will need (generally dictated by the presumed system interfaces) and through
process or item tracing determines both the functionality and implementation
characteristics that the new system must exhibit. This strategy is generally
supported by the designer’s belief about the relative difficulty of certain parts
of the system design. Based on these beliefs, the designer will often initiate the
design process around the “most difficult” areas under the presumption that
solving the problems in these areas will constrain the remaining areas to the point
that they become candidates for a “characteristic driven” design process.

2.5.4 Formulation of Analysis Goals and Model Requirements

According to Minsky [Minsky 1974], “a model is not simply a model; it is a model
which can answer certain questions about a certain object for a certain ques¬

tioner” [Zeigler 1984c]. Systems are not modeled simply for the sake of modeling.
The objectives arise from the needs of decision makers to analyze and understand
a problem and/or to evaluate and assess the outcomes of contemplated decisions.
A contemplated decision may be in the form of a design or physical change in the
system, a modified control action, or a new policy or procedure.

The objectives or goals of the user will dictate the appropriate design of the
model, the experiment to be run with it, and the analysis to be performed. Such
objectives must:

1. Specify the part of the real system which is of interest,

2. The purpose of the analysis,

3. The response or performance variables of interest,

4. The degree of accuracy in measuring the response(s) needed.



45

Consider the task of symptom identification. The person has information through
means of direct observation or communication that does not square with his ex¬

pectations. Is his perception of the system incorrect or incomplete? Possibly his
understanding of the system dynamics is flawed. Any of these might be the case.

It is the application of the skills of post mortem analysis, and observation inter¬
pretation which he must use to make this determination. However, the applica¬
tion of these skills often identifies holes in the understanding of the individual.
One type of hole can be characterized as lacking information. The individual then
may set as his goal for analysis the collection of this missing information. On the
other hand, the void may be in the understanding of the system dynamics itself.
In this case the goal for analysis may in fact be the extension of his existing the¬
ory of the system operation to fill this void.

Alternatively, consider the above described task of problem analysis. It is reason¬

able to assume that, in the process of attempting to communicate the “observed
facts” to other persons inside or even exterior to the organization, the need for
corroborative information will be identified. The individual makes use of his ex¬

periment planning skill to develop a plan for acquiring the information needed to

support his story. But in many cases the observations for these experiments are

not easily made. For example, what he might like to do is recreate a situation
which existed just prior to an observation which gave rise to his recognition of a
problem with the plan of instrumenting the situation (possibly with human wit¬
nesses) for corroboration. The analysis goals in this situation essentially consist of
both the observations desired and the corroboration of these observations (i.e. if
you had only been there you would have seen ...).

2.6 Characterization of the Customer/Analyst Discourse

Possibly one of the most important aspects of the interchange between the
customer and the analyst is what each perceives the other knows or believes.
Another observation which can be made about the interaction between the

customer and the analyst is that the customer is often looking for “holes” in
his train of thought. This is one of the reasons that a customer will look for an
analyst with “experience” in modeling and simulating situations similar to his
own. Such experience contributes little to the actual construction capabilities
of the analyst; in fact it may degrade them. However such experience generally



46

contributes to the analyst’s knowledge of “similar situations” and how those
systems worked. Thus the customer is looking for:

1. Alternative explanations of the observed phenomena,

2. Alternative solution or design concepts.

3. Critique of the rationale he has used to arrive at his conclusions,

4. Actual analysis and simulation experimentation.

From his common sense experience, the customer is also aware that he has often
been able to figure out what another person knows by “simulating” the other
person’s reasoning. Therefore, he is confident that if there are inferences which
he could make with the facts at hand, but which he has not made for one reason

or another, then the analyst armed with the power of “computer simulation” will
surely be able to find the missing links.

The analyst from his experience will expect that the customer generally does not
understand:

1. The simulation methods he was hired to perform,

2. The actual problem situation and the associated cause / effect relations,

3. The implications of the solutions concepts, if any, proposed.

However the mature analyst understands the customer / client relationship, he
is generally sophisticated enough to know the limitations of his own knowledge
of the actual situation. The mature analyst also is familiar with the “facts” of
life in an organizational situation, the typical rivalries and competition between
elements of that organization, the flow of power and control, and the way change
can be effected to accomplish personal gain. This knowledge allows the analyst to
survive, know the relative acceptability of the suggestions he will make, and know
the level of confidence he can place in the information provided directly by the
customer.

The customer/analyst interaction then proceeds in an iterative fashion in which:



47

1. The customer provides a partial system description, perceived problems, and
poorly formed analysis goals.

2. The analyst attempts to understand the system description, weigh the
problems against the evidence provided by the customer, and structure an

analysis plan which will result in the data needed to satisfy the analysis
goals.

3. The analyst presents a summary of the system description back to the
customer for validation.

4. The customer critiques the summary, usually repeating previously provided
description and either expanding the description or refining the detail of the
description.

2.6.1 Understanding System Descriptions and Customer Needs

One of the problems with understanding the customer’s system description is
that the customer is generally more aware of the special cases than of the general
operation of the system. This is partially due to the fact that the special cases
tend to be “noticed” and are less likely to be internalized. Thus one of the main
tasks of the analyst is to prompt the user to “stand back” and describe the basic
system dynamics. This normally proceeds by getting the customer to describe
major events and the arrival or activation causality between events. The following
passage is provided to illustrate some of the syntactic and semantic features
which characterize a customer’s description of his system to an analyst:

OPERATIONS AT JOE’S JOB SHOP

“In this shop we make the parts we need to repair the presses

which we service. These parts range from large cylindrical rollers
to precision gears and cams. We turn out 50 to 75 items a week
depending on their complexity and who I have working in the
shop. Since we specialize in particular presses and have been in
this business over 20 years, we have built up a fairly good stock of
used parts which we can often refurbish to fill an order. We also
have a pretty good handle on what kind of raw stock we need to
keep on hand to make the parts we need.



In this shop the average number of operations on a part is eight.
We have a senior partner who determines what the operations
are and writes them on the production order along with the part
number, press identification, quantity, and need date. If the part
is a used part we need to clean it in the hot tank first and then
mic it before he can plan it out. Our shop foreman is responsible
for scheduling the work in the whole area. He generally makes his
decisions based on who showed up for work, and what machines
are available. Some of the older equipment gives us quite a bit of
down time. The foreman sorts through the orders and unless there
is a particular ‘hot job’ he will first try to pick one which is for the
same press that the worker just finished a part for. This helps keep
the workers busy since he doesn’t have to sort through the rack of
press specs. Of course if the part has additional operations required
and if the machine needed to do those operations is available and if
the worker can run that machine then the foreman moves the job
to that machine and gets the fellow back to work. We make the
worker report to the foreman each time he finishes an operation
because we pay on an incentive basis and because hot jobs come in
all the time. If we can’t do the next operation on the job we put
it in the inprocess stores and find another job for the worker to do.
We do maintain standard hours for our jobs. This information is on
the order, split out by setup and run times. This way the foreman
can keep track of how much work is left on a particular job. We
have been trying to get the foremen to calculate the the slack time
(you know the due date minus todays date minus the amount of
remaining processing time) and pick the job with the smallest slack
time. However I think most of them do it by feeling. We do keep a

running estimate of the amount of work against each machine and
if any machine gets more than ten days work scheduled for it we

take the low priority non- critical jobs and farm them out.

We run an eight hour shift five days a week unless there is a large
overload then we will work overtime. Overtime runs about 10 %

each month. We have 20 machines, 15 operators, two foremen three



49

machinists, who generally do setups and critical jobs, and three
travelers who move work around and do most of the running for
odds and ends. We also have two people who manage the raw stock
and used parts inventory. They also pack the finished parts for
shipment to the mechanics in the field.

Since we were unionized last year we had to hire two dock workers
and operate under some rather strict rules. The travelers can only
move parts and if the part weighs over 50 lbs they have to use a

forklift of which we have only two and one is so large that it can

only service two of the machines. The machinists and operators
can’t move parts and the operators can’t set up their own machines.
Also the stock room workers can’t load or unload trucks nor can

they move parts outside of their stock area. The managers can’t
move the work or setup or run the machines and of course the
planners and the rest of us can’t order the operators or machinists
to do anything! But so far every thing seems to be working out ok.

We’ve been thinking of replacing two of the older machines with
one of (company x’s) new NC machines. We know that the start up
costs will be significant in training, programming and tape proofing.
What we would like to find out is if the improved throughput
and reliability will pay off. But we also are concerned whether the
systems will fit into our overall operations.”

Contrasting this dialog to that typically analyzed in articles/books on natural
language understanding [Dyer 1983; Wilensky 1983; Winograd 1983; Schank and
Abelson 1977; Allen 1987], linguistics, logic and semantics [Fodor 1977; Barwise
and Perry 1983; Mellish 1985] points out many interesting differences. First,
the extensive use of first person present tense (e.g., We, I ) particularly in the
presence of the verb “have”. Secondly, there is extensive use of demonstrative
pronouns (e.g., this, that, these) as a form of situation reference. The speaker
is addressing a listener, not writing a text. The speaker is also often using an

“attitude” form of utterance. That is, a form which often presumes that the
listener has “seen” or can see the situation which he is describing. In fact many
of the sentences could have been preceded by the phrase “as you can see” or “as



50

you saw”. This form of utterance is similar to the “seeing” verbs of [Barwise and
Perry 1983] which are used to report perceptions and cognition.

Another (possibly not unanticipated) phenomenon is the extensive use of figures
of speech such as; “mic”, “this way”, “by feeling”, “overtime runs”, “pay off”,
“turn out”. Also much of the text presumes background knowledge of:

1. How manufacturing generally works,

2. How organizational structures work in manufacturing, and how unionization
affects an organization,

3. Meaning of specific terms and phrases such as:

3.1. Rollers, gears, and cams,

3.2. Hot tank versus hot jobs,

3.3. Slack time,

3.4. Inprocess stores.

These phenomena are indicative of what might be referred to as a “manufactur¬
ing sublanguage” [Sager 1981; Kittredge and Lehrberger 1982; Grishman and
Kittredge 1986]. However, from the texts analyzed it is not clear that there is
enough consistent structure for such a classification.

The extensive use of “because”, “in order to”, etc. structures provide explana¬
tion directly in the text for the rationale of “why things are the way they are”.
These structures provide an initial insight into the speakers understanding of his
system’s dynamics. Other insights into his set of beliefs in this area include the
general description of the flow of an item through the shop, the description of the
product characteristics, description of the organizational decision making and per¬

sonnel interactions, and the description of the processing on a typical job.

Another observation which will become important in the design of the description
capture environment is the heavy use of plurals and in general mass nouns,
particularly in the description of the objects which change over time. The use

of word structures like parts, workers, travelers, etc. indicate the use of plurals



51

and mass nouns as a language mechanism for describing “general situations” or
situation schemas, rather than specific situations. One of the techniques which
will become important in the automation of the analysis activities will be the
use of these general schemes as frameworks for the generation of specific situation
scenarios.

2.7 Formulation of Analysis Requirements

During the interview and analysis process, the analyst will participate in many

discussions similar to the one which was characterized in the last section. From

information gathered in such discussions presumably one will eventually glean
the data required to build a model. In [Zeigler 1984a] a detailed description is
supplied concerning the activities associated with system/model specification.
However, little or no description is given concerning how one decides what the
requirements are for that specification. That is the issue we are concerned with
in this section. A “simulation analysis” is a system development process. When
an analyst is “sizing up a job” or “bidding on a job”, or “analyzing a customer’s
problem,” essentially what he is doing is a “needs analysis” and “requirements
definition” for the analysis system which he is going to design, construct, and use!

One of the unfortunate handicaps that the simulation analyst often operates un¬

der is the presumption (possibly self induced) that the customer has actually
engaged his services to employ a mathematical simulation. Thus when he ap¬

proaches the job he naturally presumes that the solution technology has already
been decided upon. This is actually a rare situation. As [Morrison 1986] noted
typically the customer actually wants to know one of two things:

1. Will my new system design “work”?

2. Why doesn’t the existing system work?

Both of these questions presume that the analyst knows about the type of system
he is attempting to analyze. Therefore, the process of formulation of analysis
requirements must include the development by the analyst of a perception of
the system, formulation of notions of symptoms and concerns, identification of
possible problem classes, and conditions for the solution of these problems.



52

Unlike the system designer, however, the simulation analyst need not formulate
the complete necessary conditions for the solution to a problem, in fact generally
what he must produce is the inverse (i.e. the conditions under/which the problem
would be identified). These conditions then simply become the requirements
for the model which will be designed. The model and experiment must clearly
indicate a problem situation (if one exists). This implies that the analyst must at
least implicitly anticipate the problems which could exist in a system. Hence the
benefit of experience in analyzing a particular type of system!

The preparation of the analysis requirements then includes the assimilation of
both the kind of information which a designer would need to design solutions
[Mesarovic et al. 1970], and the kind of information a diagnostician would need
to diagnose a problem. Both cognitive skills require knowledge of the system
architecture, the system elements, their properties, and the connectivity (i.e. how
one element affects another) which is essentially the theory of system dynamics.
Fortunately for the analyst, models exhibit many of the same features as less
formal natural languages (as will be described in some detail in Section 5, and
7). One of these characteristics is the efficiency of models (i.e. the capability
for the same model to mean different things in different situations). In fact
this capability is what actually distinguishes a model from a specification. This
feature allows the analyst to extensively use default assumptions concerning the
conditions which the analysis system must satisfy. The process of model design,
construction, and experiment execution, then, can be used to some extent to
debug these specifications.

2.8 Analysis and Experiment Planning

The planning activity of the simulation analyst is one of the most complex and
central issues to the conduction of a successful simulation analysis. It is during
this planning activity that the analyst merges the analysis requirements with his
knowledge of such constraints as:

1. The resource constraints of the project,

2. The constraints of mathematical simulation methods,3.The constraints of statistical methods,



53

4. The data availability constraints,

5. The programming language constraints of a particular simulation model
implementation language.

The experienced simulation analyst brings the knowledge of these constraints to
bear on the development of an approach which includes:

1. An overall time sequenced plan for the analysis activities (i.e. how much
time (and effort) will be spent in the gathering of system descriptions, design
of the model and experiments, collection of data, analysis of data, model
construction and verification, model validation, experimentation, and results
analysis),

2. The level of abstraction to be used, and a preliminary model architecture,

3. The associations which will be made between the model components and the
system description objects (i.e. the modellers view of the real world),

4. The property specifications which will be required to implement the causal
behavior required and to gather the data for analysis,

5. The preliminary experimentation strategy,

6. Estimates on the actual time and resources required to conduct the analysis,

7. Strategies for display and explanation of the analysis results.

The planning of an experiment to be run with the model is also driven by the
goal or purpose of the analysis. There can be a number of different reasons for
doing the analysis including: evaluation, comparison, prediction, sensitivity anal¬
ysis, optimization, establishing functional relations, studying transient behavior,
finding bottlenecks, etc.

The analyst uses the purpose of the study to determine the statistical objectives
to be achieved by the experiment. This sets the line of interactive questioning
that would be followed with the customer to define the experiment. One of
the difficulties encountered in this process is the fact that a particular study
might have more than one “measure of effectiveness”. In such cases it will be



54

necessary for the customer to designate one as the primary and the others as

secondary. More commonly, the customer is not aware of any particular desire for
any particular “measure of effectiveness”. In fact the “measures of effectiveness”
are a side effect of the analysis requirements as established by the analyst. In
addition to “measures of effectiveness” the analyst must also concern herself with
the identification of measures of “indication”, “approximation”, and “imitation”
as will be discussed in Section 7. These measures are used by the analyst to
calculate required sample sizes, etc., and to identify the mechanisms which will
need to be in the model design to allow collection of specific data.

As stated earlier, the goal selected will determine the line of interactive inquiry
that the analyst pursues. For example, assume the customer says the goal is to
explore functional relationships between system elements . This implies that
a factorial design will be required. The analyst would then solicit information
as to what variables are of interest, the highest and lowest values of the range

of interest, whether each variable is quantitative or qualitative etc. From this
information (as well as the measure of system effectiveness to be used), the
analyst can determine a factorial design to be used as well as the number of
replications to be run. The customer would then be solicited for other statistics
that might be of secondary interest. From the above dialog, the analyst designs
the experiment to be run to obtain the answers needed.

Thus the analysis and experiment planning activities encompass the development
of a high level design of each of the components in the analysis activity as well as
the delineation of the tasks involved in these activities. The mechanisms which

are employed in this more structured planning activity have been addressed
by many of the AI studies of planning. The state of the art in understanding
planning processes is best understood by reviewing the historical developments in
AI directed towards duplication of these capabilities. AI efforts in planning have
generally focused on the following problem areas:

1. General Methods (e.g. GPS),

2. Treatment Planning (e.g. Emycin),3.Robot Task Planning (e.g. STRIPS, ABSTRIPS, HACKER),



55

4. Laboratory Task Planning using constraint propagation (e.g. MOLGEN),

5. Story Planning/Text Understanding (e.g. PAM, PEARL, PANDORA,
FAUSTUS, ELI),

6. Assembly Instruction Planning (e.g. NOAH),

7. Repair Planning (e.g. NONLIN).

From a methodology point of view, approaches to planning can be separated into
four major classes [Cohen and Fiegenbaum 1981]:

1. Non-hierarchical planning,

2. Hierarchical planning,

3. Script based (e.g. variant) planning,

4. Opportunistic planning.

2.8.1 Non-hierarchical Planning Systems

Non-hierarchical planning systems work with a single representation of the
plan, developing a sequence of tasks to achieve the goal of the plan. While the
plan itself may have a natural hierarchy, the system produces this plan in a

linear sequence of steps. A complete plan is not available until the last step
(at whatever level of detail) is determined. Thus the systems do not have the
capability to distinguish which tasks are key to solving the problem versus those
tasks which are simply there for resolving details. The fact that these systems
often are capable of generating and manipulating complex hierarchies of goals and
subgoals often makes the identification of an appropriate classification difficult.
The advantage of non-hierarchical planning approaches is in the simplicity of
the planning system structure. The STRIPS [Nilsson 1980], HACKER [Oshea
1984], INTERPLAN [Cohen and Fiegenbaum 1981] systems are examples of non-
hierarchical planning approaches.

STRIPS was the “original” planner that explored the concept of associating add-
fists and delete-lists with an action as a means of representing rules. Means-
ends analysis provided the basis concept for the processing cycle that was used



56

in STRIPS as well as in such later planners as MOLGEN. The cycle may be
summarized as follows:

1. Compare the current goal to an initial state.

2. Find differences between the two.

3. Look for an action to reduce the difference.

Besides the problem of failing to distinguish between major considerations and
minor details, STRIPS suffered from two other notable limitations:

1. Since goals that could not be immediately satisfied were simply stacked in a

LIFO manner, subgoals could be satisfied repeatedly in the course of solving
a problem.

2. Since the comparison step in the planning cycle could produce multiple
differences, and since alternative actions could be available to reduce a given
difference, many paths to a goal could exist. Yet no provision was made in
STRIPS for choosing wisely among these alternatives.

HACKER addressed the general problem of how to deal with conjunctive sub¬
goals by including a capability to reorder subgoals and try again if an initial arbi¬
trary ordering produced a dead end. Philosophically, the HACKER design made
the assumption that people generally plan by making a hastily contrived plan and
then debugging it. That is, any ordering of steps is assumed to be as likely to be
correct as any other. Later systems, such as NOAH and MOLGEN used the al¬
ternative least commitment approach; but it should be noted that the latter ap¬

proach assumes a sparse solution space, contrary to the HACKER assumption. In
the “analysis planning” domain the experiment planning subtask appears most
amenable to the HACKER approach.

INTERPLAN varied the HACKER approach to ordering goals by adding the
capability to promote subgoals over superordinate goals if the original ordering
proved futile. This approach may result in achieving a goal more than once, but
in making possible a solution that HACKER could not find.



57

The Waldinger system further varied the general HACKER approach by adding
the concept of goal regression. Basically, Waldinger noted that a goal that has
already been achieved can by violated by a subsequent action, but that the goals
can be reordered such that the offending action and its goal are moved back out
of the way of the goal that would have been violated otherwise.

Non-hierarchical planning approaches do not appear to approximate any of
the analysis planning tasks presented above. What they do provide is some

insight into the basic mechanisms for plan construction which are used in the
hierarchical, variant, and opportunistic methods described below.

2.8.2 Hierarchical Planning Systems

Hierarchical planning systems on the other hand create and manipulate complete
plans at various levels of abstraction. The general idea is to be able to completely
reason a solution to lower levels of detail. Different approaches to hierarchical
planning are distinguished by the choice of what is abstracted. For example,
ABSTRIPS [Nilsson 1980] abstracts the goals of prioritization of the importance
of the classes of goals both in the statement of the problem to be solved and in
the description of the rule conditions and effects. Thus ABSTRIPS produces a

complete plan for the “important” part of the problem using tasks which have
been simplified to consider only the important constraints and produce the
important results. Once this high level plan has been worked out, the ABSTRIPS
system attempts to satisfy the next level of goals within the framework of the
high level plan. The basic idea is to split the logs before worrying about shaving
the bark! The set of operators can be essentially the same at each level; what
changes are the conditions under which an operator can execute and the effect
that an operator (task) has.

The NOAH system, on the other hand is designed for those planning problems in
which a hierarchy of tasks naturally exists. For example, building a wall breaks
down into activities of setting a foundation, procuring bricks, mixing mortar,
laying the bricks, and tacking the corners. Thus the NOAH system attempts
to create levels of plans with the appropriate level of problem solving tasks.
When the interactions of the tasks have been resolved at a high level NOAH
then attempts to refine the plan to the next lower level by refining the individual



58

operators, and reassessing the interaction constraints at the lower level. Thus
NOAH type systems can be said to abstract the problem solving operators.

The third type of hierarchical planning system abstracts both the operators

(tasks) and the objects which those operators create or use. The MOLGEN [Ste-
fik 1981] system is an example of this class of system. Thus the brick and mortar
example in a MOLGEN framework would be planned at the build wall level, the
procure materials and tools level, and then the detailed activity level. The MOL¬
GEN planner might generate specific constraints that the bricks must satisfy in
order for the detailed activity to be successfully accomplished. MOLGEN effects
the refinement of tasks and objects through a process of constraint propagation,
and delayed binding. Simply, constraint propagation means that the planner has
the capability to move horizontally or vertically through the levels of plans de¬
positing additional constraints which the activities must accomplish or the objects
must satisfy. Delayed binding refers to a least commitment strategy for decision
making at any level. This strategy (which is similar to “Just in Time” decision
making in system development methodologies) means that the system attempts
to be as noncommittal as possible in selecting a specific task or object. The gen¬

eral idea of such a strategy is that by delaying the decision making more infor¬
mation will be available to make the correct decision thus reducing the number
of decisions which must be undone and reducing the backtracking. This type of
mechanism appears to be consistent with the activities in model abstraction and
preliminary experiment planning identified above.

Besides the hierarchy introduced in the planning task itself, MOLGEN also imple¬
ments a hierarchy in its own control structure. That is, it plans about planning
using a three level structure representing strategy, design, and domain knowledge.
In separating the strategy and design levels from the domain level, it reaches for a

means of planning over multiple domains. Relative to the characterization of the
“analysis planning” activities of the simulation analyst this type of planning pro¬

vides an excellent characterization of the model architecture planning. That is,
the analyst treats the development of the preliminary model architecture as the
planning of a set of mechanisms which will produce the desired data goals. The
high level architecture is viewed as requiring a series of subtasks to be realized.
These subtasks are cast as model components and the process continues in a re¬

cursive fashion.



59

A more recent system, SIPE [Wilkens 1984], extends the NOAH concepts of
hierarchical planning and parallel actions, borrows somewhat from the MOLGEN
idea of propagating constraints on objects, and adds a few ideas of its own.

Designed as an attempt to achieve domain independence in a planning system,
SIPE has generated plans in four domains: a blocks world, cooking, aircraft
operations, and travel planning. One of the major contributions of SIPE is the
introduction of a formalism for describing operations that explicitly ties both
objects that participate in an operation and constraints on those objects to
the operation itself. It also introduces the notion of resources needed by an

operation, though there is no concept of a resource type or of a decision making
basis for resource allocation. The operation formalism serves further to clarify the
relationship between various levels in the hierarchy. That is, preconditions (which
would have formed subgoals in earlier systems) are used in SIPE to determine
the applicability of the operator and to identify explicitly conditions that should
have been satisfied at a higher level in the hierarchy. Conversely, goals in SIPE
specify those subgoals that must be achieved at the next lower level in order
to accomplish the operation at the current level. Thus, the goal portion of the
operation record tells how the operations can be done while the precondition
portion of the record tells what must have already been done.

A second contribution of SIPE is an extension of the NOAH method of dealing
with ordering constraints on operations. NOAH could identify harmful interac¬
tions through the TOME; SIPE is able to identify also interactions that are fortu¬
itously helpful to the planning process. A third contribution is the introduction of
deductive operators that serve to determine consequences of actions beyond those
explicitly mentioned in add-lists / delete-lists. A fourth contribution concerns the
scoping of actions. When a node was expanded in NOAH it was assumed that
the last node generated in the expansion was the one that actually accomplished
the higher level action. In SIPE the parent node can specify which node in the
expansion serves this purpose. Further, nodes in an expansion can specify which
other node in the same expansion is supported by their action — thus establish¬
ing a scope for a node. This helps in identifying the purpose of the node as well
as in avoiding harmful interactions. SIPE is also the first system to establish a

classification for constraints, effectively setting a basis for a generalized constraint



60

language. Initially designed as a highly interactive system, in part to allow hu¬
man decision making to aid the system during the development process, SIPE is
still under development.

2.8.3 Script or Variant Planning Systems

Script or variant planning approaches in the AI held are very similar to the
variant approaches attempted in process planning. In fact the HICLASS system

[Liu 1987] is an example of an AI based generative process planning system
which is based on an AI script approach. In the script worlds the planning
system has a data base of skeleton plans which are pattern matched against
a problem situation. The “best fit” plan is then refined to accommodate the
problem specific details. This type of planning strategy has been used extensively
in text and story understanding and generation (hence the origin for the term
script) [Schank and Abelson 1977; Winograd 1983; Wilensky 1983]. While this
type of planning may appear too simplistic a model for many of the analyst
planning functions it is a reasonable model of the analysis project planning
activity where the gross level tasks tend to follow a predefined sequence.

2.8.4 Opportunistic Planning Systems

Opportunistic planning is based on a paradigm of human reasoning [Hayes-Roth
and Hayes-Roth 1978] whose essence is that the human planner does not gener¬
ally develop a plan all in one piece, either at the detail level or the abstract level.
Rather the planner tends to develop plans for parts or clusters of the problem.
These clusters may be planned using the planning strategy which is appropri¬
ate for that particular part of the problem. The clusters are linked together to
form larger portions of the plan as the opportunity arises. Implementation of the
Hayes-Roth model can be viewed as a set of parallel processes communicating
through a common database containing the current state of the planning process.

The cooperating specialists address different parts of the problem as the informa¬
tion which they need is posted on the “blackboard”.

The Hayes-Roth model recognizes five separate planes of planning decisions.
The first plane is called the “plan” plane. This plane is the plane of operations
planning at various levels of abstraction. The second plane is called the “plan
abstraction” plane. Decisions in this plane motivate the initiation of specialists



61

in the first plane. The third plane is called the “meta-plan” plane. The decisions
made at this level are about how to solve a particular part of the problem. Thus
issues concerning the choice of a problem solving model or strategy are resolved
at this level. An interesting and important concept which is addressed at this
level is the formulation of the concept of what constitutes a “well formed” plan.
The fourth plane is called the world knowledge plane, which contains the various
levels of world knowledge available to the system. This includes knowledge
about the problem situation, and constraint knowledge which is not specific to
the rule structures of any one specialist. The fifth plane is called the executive
plane. The decisions with respect to resource allocation, scheduling, and access to
information are made at this level.

This “opportunistic” planning model would seem to best characterize the ap¬

proach that the analyst takes towards the overall analysis task. That is, he may

work on the model architecture design for a while, then switch to the experiment
planning, then when a problem is detected, or when there is simply not enough
determined about the model to continue with the experiment planning, he will
revert back to the model planning. One of the powerful features of the “oppor¬
tunistic” model is that it places few restrictions on the planning models which are

used for the subparts.

2.9 Model Design and Specification

The design of a model is similar in many respects to the design processes which
we have already discussed. The analyst has in mind the analysis goals, the system
description, and general constraints of the implementation mechanism at his dis¬
posal. He also is aware of the resources available for the analysis in terms of per¬
sonnel time, computer resources, etc. The design approach depends considerably
on the level of detail of the system description, and on the analysis goals. The
design process itself depends on the component base and the experience of the de¬
signer in using these components. Of the design models presented earlier in this
section, the external constraint approach appears to best characterize the process

most often used. This is particularly true in entity tracing types of simulations.
Through the construction of a scenario of processing of an entity or series of enti¬
ties the modeler identifies (or establishes) the requirements for model components
which perform:



62

1. Creation of an entity,

2. Assignment of attribute values,

3. Monitoring of interesting statistics,

4. Resource consumption,

5. Time delays,

6. Flow (routing) logic,

7. Processing logic.

The model design is generally performed in the context of an existing model plan
conceived during the analysis planning phase. The analysis plan is used to focus
the scenario construction process.

Model specification refers to the detailed design of the model components which
were previously identified in the model architecture design process, as well as
the specification for the interfaces between these model elements. With existing
simulation languages this detailed specification can often times take the form of
the coding of the model in a third generation language (e.g. Slam, Siman, GPSS,
Autosimulation, etc.). The major difference conceptually between the model
design and the model specification is that in the specification stage the analyst
is much more concerned with the behavior of the modeling engine itself, and
the implementation details / constraints of the specific programming language.
Thus in the model specification phase such issues as the precise specification of
the representation of the values of the attributes of the model objects need to
be considered. Issues relative to parameterization of the model to support the
execution of the desired configurations for the runs of the models required by
the experimental design must be determined. Similarly the programming details
associated with the implementation in a particular machine environment (sizes of
data versus program, overlays, execution costs, etc,). Finally the programming of
the results analysis routines, interface to data files, interface to statistical analysis
packages and graphical animations must be addressed.



63

Addressing the full scope and characterization of what a programmer knows
about programming is beyond the scope of this research (for insight into this
area see [Minsky 1974; Soloway et al. 1982; Waters 1984]). What is important
to note is that these programming activities are actually a small part of the
overall model design and decision making process and that current (or near
current) simulation support environments already provide many good support
tools for these activities. What we will attempt to provide is some insight into
the knowledge structure, sources and reasoning mechanisms which a modeler
uses to construct his abstractions of the world which enable him to formulate the

model constructs which are the focus of the specifications. In Section 5 we will
present a formalization of situation recognition which includes a formalization of
action, time and change which we will use in Section 7 to construct a mechanism
for implementation model generation.

2.10 Results Interpretation

Results interpretation is what the analyst does with the results of the analysis
after the experiment is conducted and the data has been statistically analyzed.
The primary activity of this task is the construction of a “theory of how things
work” which can explain the output statistics of the simulation analysis. Another
equally important activity is the generation of “why” the current customer’s
“theory of system dynamics” does or does not predict the observed behavior.
Sometimes this is as simple as showing a void in the considerations taken into
account by the customers understanding of his system or design. At other times
it is a process of identifying errors in the “logic” which the customer is employing.
Most often however, it requires the education of the customer into a new “theory
of system dynamics” which can require considerable explanation and example
generation. For example, if the customer is laboring under the belief that idle
machines mean lost production then explaining the fact that within tightly
coupled systems scheduling machines to maximum capacity can be disastrous will
be difficult.

One of the most important aspects of “results interpretation” is the translation
by the analyst of what he has learned from his model of the world into general
“truths” which the customer can use. That is, he must be able to generalize
the results he has obtained into axioms which the customer can utilize in his



64

understanding of how the system works. The customer can then reconcile these
newly discovered constraints with those he already holds. This reconciliation can

result (and often does) in the identification of inconsistencies. If the customer
resolves these inconsistencies in favor of the analysis results then he modifies his
theory of the system dynamics. Otherwise, he rejects the model (or at least the
interpretation of the analysis results).

Part of the difficulty encountered in results interpretation is sourced in the type
of question the analyst is attempting to answer. Questions which involve “pos¬
sible worlds” types of reasoning (e.g. Can the west end loader system handle 80
jobs per hour?) require the analyst to explore configuration or operational rule
structures which are completely foreign to the experience base of the customer.
Should such a “possible world” prove to exhibit the desired performance behavior
the analyst is faced with both the task of communicating the new system descrip¬
tion as well as the explanation (in terms of operational axioms) which justify his
results.

Results interpretation can thus be couched in terms of the system description pro¬

cess described in Section 2.2.1. That is, the analyst must describe the predictions
of the experimentation in terms of a scenario with the important cause / effect
relations explained. Such an activity goes beyond presentation techniques such as

animation or graphical summarization of statistics. It requires an in-depth knowl¬
edge of the preconceived notions of the customer, the relation of the model struc¬
tures to this understanding, and an explanation strategy. The presentation tech¬
niques are merely mechanisms in the explanation strategy. The underlying goal is
to explain how behavior comes about. It is our conclusion that this process of re¬
sults explanation must rely heavily on arguments based on qualitative reasoning.
In this light it will be proposed in Sections 3 and 7 that qualitative simulation
methods be used not only as a basis for quantitative simulation model design and
generation but also as a basis for automation of the results interpretation process

itself.



65

2.11 Summary

The goal of this section was to provide a characterization of the cognitive pro¬

cesses involved in decision making based on the use of models and simulation.
This characterization was initially presented from a high level view. Subsequently
each step in the process was examined and models for the reasoning processes in
that step were proposed. One of the key points made in this chapter is the recog¬

nition that simulation models are not descriptions but designed abstractions from
descriptions. Another key point that was made is that the customer uses inter¬
nalized theories of dynamics to qualitatively evaluate proposed causes of problems
and proposed solutions to these causes. These two points will show up as driv¬
ing requirements for the KAMSS architecture described in the next section. They
also provide much of the structure and motivation behind the semantic theory
and reasoning strategies presented in Sections 5 and 6.



66

3. KAMSS ARCHITECTURE

This section outlines a design for a knowledge based support environment for
decision making using modeling targeted to simulation analysis. This architecture
is based on a number of unique concepts which differentiate it from current
simulation support environments. These concepts include:

1. Support for the system description process separated from the system model¬
ing process.

2. Use of a system description representation based on a generalized semantic
model rather than a mathematical model-theoretic semantics.

3. Generative model design as well as a library of reusable model types.

4. Provision of both sketch and natural language input in a “dialog” mode.

5. Full access to the underlying knowledge representation mechanism in all
modes of the user interface.

6. Support for qualitative analysis of a system description as a form of common
sense reasoning about system dynamics.

7. Support for object and rule based simulation analysis.

8. Use of annotated text as a mechanism for the implementation of long term

storage of a knowledge base.

9. Support for the interpretation of simulation experiment results in addition to
the more traditional support for statistical analysis of simulation results.

This architecture is also unique from the point of view of the interface style that
it provides. We will refer to this style as “common-intuitive”. A “common-
intuitive” style of user interface to a computer software system is one which
attempts to accurately reproduce the situation of an activity were that activity
to be performed without the computer. Many of the “visi-” microcomputer-based
systems attempt (sometimes rather successfully) to provide this style of interface.
In the KAMSS there are really two role models which should be supported.
When the KAMSS is in use by the customer, he would expect it to respond and



67

act in ways similar to the way a human analyst responds. When the system is
in use by a systems analyst, he would expect that the system would act like a

customer in some modes (when answering questions about a system) and like a

programmer, statistician, or designer in other modes.

The previous section provided a characterization of the process of decision making
involving the use of modeling and simulation. What is important is that such a

process involves a large number of complex cognitive skills. A system to support
such a collection of activities will involve the application of either a large number
of specialized skills or the use of a generally weak reasoning process with a

large knowledge base. We have chosen the latter approach in order to provide
a generalized platform which can be customized during use. The design of an
effective environment for automated support of that process must provide the
capability of either transparently isolating a large number of those portions of
the task which it cannot support, or providing a general set of mechanisms which
can be extended during use. The approach of this research is along the lines of
the second alternative.

The KAMSS concept calls for an extension of the notion of user profiling to
include the concept of usage situation. The usage situation accounts for the
perceptual limitations of the KAMSS as an imitation of the human performing
in a similar situation. Thus, limitations in perceptions caused by the fact that
the mechanisms only allow at most for keyboard and mouse input must be taken
into account in the design of the knowledge systems responsible for the discourse
management. The prototype components of KAMSS constructed to date have
made extensive use of presentation objects in presentation style interfaces to
effect this type of user interface action anticipation [Aiello et al. 1981; Genesereth
and Ginsberg 1985; Symbolics 1986]. The usage situation takes into account not
only mode of use but the existence of description or model fragments as well as
the semantics of the ontology underlying the input.

Figure 3.1 provides a logical view of the KAMSS. This view shows three primary
modes of operation. The normal usage of these modes would depend on the type
of user. The manager, for example, would start with the creation of a system
description (via the SDCE), move to the design of a model (via the MDS),
and then possibly request a particular scenario to be simulated (invocation of



68

- Business Rules
- Facilities
- Equipment
- Tools
- Skills (People)

- Qualitative Models
- Quantitative Models

FIGURE 3.1: LOGICAL VIEW OF THE MAJOR COMPONENTS OF KAMSS.



69

the SE). A simulation analyst, working on the design of a model which was

too complex for the MDS generation capability would enter the MDS and use

its interface to the System Description Data Base (SDDB) to obtain a system
overview, and then refine the model architecture generated by the MDS (and
stored in the Logical Model Library) for the particular problem. The analyst
can also directly access, edit, or create “Implementation Models” stored in the
Implementation Model Data Base (IMDB). The differences between “logical
models” (LM) and “implementation models” (IM) will be discussed in more

detail later in this section. Essentially the term logical models cover models
constructed / generated for the purpose of supporting qualitative simulation and
“common sense” reasoning. Implementation models cover traditional quantitative
simulation models and stand alone or integrated application programs.

3.1 Design Rationale

Decision making using simulation requires a great deal of expertise to translate
the needs, goals, and objectives of the user into the appropriate model, using the
right data, executed under the correct design of experiment and analyzed appro¬

priately. The use of KAMSS will follow a very different strategy in which the
manufacturing decision maker defines knowledge about the system (i.e., the de¬
scription of the objects in his environment and the business rules of operation,
etc.) through a dialog with KAMSS. The KAMSS system would participate in
the evaluation of symptoms and concerns which the decision maker identifies.
This “capture” of a system description is supported by an extendible type and
class based ontology which generates a framework that is tailored to the “ontol¬
ogy” represented in the type / class network. This framework provides both form
and structured text input of system descriptions organized around visual layouts
(block diagrams or sketches).

In posing questions to the KAMSS, the user invokes data retrieval and deduc¬
tion based on the current state of the system descriptions. Inability to answer the
question directly from the knowledge base triggers the KAMSS to attempt to de¬
duce the needed results using theorem proving methods described in Section 6.
As the KAMSS maintains both class and type based representations in its knowl¬
edge base, these methods could cause the dispatching of remote query processes



70

across the network interfaces to the manufacturing / engineering or business sys¬

tems to acquire the data necessary to respond to the query. Failing those meth¬
ods, the second course of action is to generate a “token” or model world in which
constraint propagation (primarily over temporal and mechanism constraints) is
used in conjunction with qualitative simulation to derive the needed answer as

described in Section 7. Failing these methods KAMSS would use the results to

pose a list of tests, measurements, or observations which the user would need to

perform. Through this interaction, the need for math model based simulation
analysis may be identified and, in that case, the KAMSS would design the ap¬

propriate model. Extension to the background knowledge base of such a support
environment to include experience rules for generation of design alternatives in a

particular domain would allow the manufacturing user the option to enter design
goals and let the system generate the series of models and model runs necessary

to find an acceptable design solution.

The KAMSS design must include the foundation software packages and a system
architecture that will be easily adaptable to end-user requirements in a broad
range of business environments and system development applications. The
adaptability should allow for both expansion and contraction of the system to
allow for tailoring to various levels of hardware capabilities. A realistic design
goal should be speeding up-the system modeling and/or simulation process by
a factor of ten to a hundred over current methods. The design must encompass
a system description capture environment as well as a model generation and
simulation support environment. It must also provide an engineer’s programmer’s
workbench, that is, a programming environment that provides the “occasional”
programmer with support for; generation of analysis utilities to package around
a standard analysis program, generation of stand alone analysis tools driven off
of data acquired through the SDCE or a MDS session, or rapid prototyping of
manufacturing engineering knowledge based applications.

Necessary features of the KAMSS include:

1. Interactive natural language and sketch user input,

2. Full access to the description ontology base for the user interface support
utilities,



71

3. Intelligent assistance to the system definition process including:

3.1. End-user extendible classification ontology,

3.2. Data acquisition framework, form and structured text input generated
from the classification ontology,

3.3. Classification support to assist in the instance typing process,

3.4. Support for hypertext use throughout the classification structure and
description knowledge base,

3.5. Provisions for location, copy / merge and edit of element descriptions.

4. Intelligent support of the model design process,

5. A reasoning mechanism for performing qualitative problem analysis and
business rule simulation,

6. An object-oriented, rule-based simulation engine for math modeling based
simulation,

7. Dynamic output display using animation graphics,

8. Automated statistical analysis programs,

9. Intelligent support for the interpretation of the simulation analysis results
relative to the model design and analysis goals,

10. Interface construction utilities for integration with factory information
systems,

11. Interface utilities for piping results from one analysis instance to another to
form an “analysis scenario”,

12. Utilities to support the packaging of decision scenarios for use outside the
KAMSS environment.

The primary goal is to support management decision making by automating the
analyst role, in the modeling and simulation process, using a knowledge based



72

support environment that can perform many of the functions which traditionally
are performed by the human analyst. For this to happen, it is necessary to step
back from the mire of traditional simulation languages and develop a modeling
and simulation system which provides a more natural environment for system de¬
scription, model expression, and experimentation. There are important differences
between what is being done today and the proposed knowledge based modeling
and simulation system. The primary one is the desire to move away from the tra¬
ditional focus on the modeling of an environment to focus on a system description
which can be used as the basis for generating models of many different varieties.

In order to use simulation correctly and intelligently today the practitioner is
required to have expertise in a number of different fields. This generally means

extensive knowledge of probability, statistics, design of experiments, modeling,
computer programming, and simulation languages. This translates to about
720 hours of formal classroom instruction plus another 1440 hours of outside
study (more than 1 man-year of effort) — and that is only to gain the basic
tools. In order to really become proficient, the practitioner must then go out and
gain real world, practical experience (hopefully under the tutelage of an expert)
[Shannon and Mayer 1986]. The goal for the development of the KAMSS is to
make it possible for engineers, scientists, and managers to do system analysis and
simulation studies correctly and easily without such elaborate training.

Regular demands for simulation analysis of ever increasing complexity is becom¬
ing the. norm in many environments. For example, simulation support in a large
corporation requires capabilities to model at several levels. Modeling at the man¬

ufacturing engineering and manufacturing management level for each operation is
required both to plan new facilities and to investigate problems with existing fa¬
cilities. Modeling at the vice-president of manufacturing staff level must support
the integration of multiple models of upwards of 20 operations in order to evalu¬
ate the product and manufacturing strategic plans. What is needed is a common

definition of each of the production operations and of the company as a whole,
from which different models from different viewpoints could be constructed. Such
a system definition would be carried forward year after year, in contrast with
the individual non-reusable models currently being developed. One of the design
goals of KAMSS is to establish the technology to allow the decision makers and



73

their staffs to quickly generate models needed for a decision scenario with mini¬
mum support from experienced modellers. Such support can only be provided if
a rich description base has been put in place. However, the description base can

be collected by the domain experts over a longer period of time, using the SDCE
component of KAMSS. This will free the systems analyst and simulation mod¬
eller to focus on creating / expanding the modeling knowledge of the system it¬
self. This goal requires natural language and sketch input capabilities for the cre¬

ation of the system descriptions and intelligent support of the model generation
based on that system description.

3.2 Usage Scenarios

As described in the section covering system design in Section 2, one of the most
common ways to explore the requirements for a new system is to try to delineate
scenarios of use of that system. In this section we summarize the customer
and analyst tasks which the KAMSS is intended to support and then define
nine major scenarios of use of the KAMSS. The intended usage scenarios of
KAMSS described below are modeled after the interaction process described
in Section 2. Through these scenarios we have characterized the philosophy of
KAMSS operation and scoped the requirements on the architectural approach to
the KAMSS design.

Customer / User Tasks Supported:

It is envisioned that the customer would use KAMSS to support the following
tasks:

1. Ongoing development of an evolving description of the facility,

2. Rationalization of an observation as a symptom or concern,

3. Situation explanation,

4. Problem analysis,

5. System change planning,



74

6. Model generation,

7. Simulation modeling,

8. Causal reasoning and qualitative simulation,

9. Analysis application generation.

Thus, from the customer / user point of view the KAMSS should embody the
capabilities, knowledge, and characteristics of an experienced systems analyst
with simulation modeling capabilities.

Analyst / User Tasks Supported:

The KAMSS philosophy recognizes that initially the analyst will be a major user
of the KAMSS system. Even with the capabilities proposed for direct customer
use, it is probable that the initial users will still be systems analysts who have
been charged by the customer to assist them in the solution to some problem. It
is also the case that in many instances the customer is acquiring analyst support
because of the system design expertise of the analyst as well as the modeling
expertise. It is envisioned that the analyst would use the KAMSS to support the
following tasks:

1. Organization of acquired system description information and data,

2. Access to the current system definition,

3. Causal reasoning and qualitative simulation,

4. Access to previously defined models for the purpose of re-execution,

5. Model design support,

6. Experiment design support,

7. Support for the interpretation of experiment results relative to the current

system configuration,

8. Configuration of “deliverable” or packaged versions of a decision scenario,



75

9. Construction of specialized factory information system interfaces to a deci¬
sion scenario,

10. Application development.

It is anticipated that the analyst / user would require support for many of the
same tasks as the customer / user. In fact, the best way to characterize the
analyst / user is as an “experienced” customer / user.

3.2.1 Scenario #1 Acquaintance

The initial encounter of the user (customer or analyst) with the system will be
the most difficult to manage from both the user’s point of view and the KAMSS
point of view. The goal of the system design is to require minimal training for
use. Thus, the user would expect to log in to the system and begin a dialog in
much the same structure and format as a dialog with a human analyst. Part of
this dialog will be the explanation by the KAMSS of its role and the services
it can perform. During these initial sessions the KAMSS would be expected to

develop a user profile of the customer. This includes the construction of a user

specific lexicon, and a model of the tasks which the user performs, as well as the
initial model of the user’s perception of his environment. As will be described '
in a later section, the KAMSS has a system description (similar to a conceptual
schema) which “knows about” typical usage patterns. This usage profile allows
the system to “anticipate” the functionality requirements of the typical user. The
user profile is merged on top of the typical profile so that it is always available as

a default profile.

3.2.2 Scenario #2 Capture of System Descriptions

A high-level view of the overall scenario of a system description capture process

is illustrated in Figure 3.2. This scenario can be viewed as having three major
subparts. The set-up mode involves determination of the adequacy of the existing
knowledge representation structures for capturing the description of the situation
at hand. If inadequacies are detected then the underlying framework must be
extended incrementally. The acquisition mode covers the actual collection and
typing of the system description. The usage mode in this scenario refers primarily
to the validation process via browsing of the assembled description, invoking of
summary generation, and specific query processing.



76

Acquisition

Data / Info /

Knowledge
Representation
Definition

Determine if
SDC Provided Types
are Sufficient

/
Type
Editor /

Browser

Class 3
User

Enter
Relation

Description

N Enter
Rule

Description

m

Enter

Object
Instance

Description

APPLICATIONS

r
Ad Hoc
Conditional
Queries

Instance

Browsing

Summary
Text
Generation

-Aliasing system

Application
Definition

Editor
Class 2
User

Framework Describer

— Form Input
Utility

Classification Assistant

Analysis
Application

T 1"*

Programmer Integration
Workbench Support

Model

Development

FIGURE 3.2: SYSTEM DESCRIPTION CAPTURE SCENARIO.



77

The term “textual input” is slightly misleading since the actual form of input is
intended as an interactive dialog between the user and the system. This dialog
will include the use of:

1. Forms and menus,

2. Sketches and structured diagram input (see IDEF1/ES in Section 8),

3. Commands,

4. English declarative and interrogative sentences,

5. Context sensitive notes,

6. Files of preprocessed text descriptions,

7. KAMSS generated queries,

8. KAMSS generated summary text, and figures.

The use of a dialog style of interaction allows the system the advantage of being
able to disambiguate user-text via formulation of direct questions. The difficulty
arises from the fact that between sessions with the user the system must be able
to “remember” the context of the previous sessions. Part of that “memory” is
encapsulated in the system description which is constructed from the previous
session, as well as the user profile and sketch inputs. However, there are other
more transient memory elements which must be managed such as:

1. Unanswered questions which may require repeating portions of what “was
stated” in order to jog the memory of the user.

2. Portions of contextual structures that were built for the process of “under¬
standing” the user’s statements.

3. An “agenda” of items which the user has mentioned but not yet completed
the description for.

A typical interaction scenario is illustrated in Figure 3.3. An advantage of the
interactive dialog form of input is that the system can restrict the user to simpler



input -> OUR FACILITY PRODUCES SHEET METAL PARTS FOR
AIRCRAFT APPLICATIONS.

input -> PRODUCTION ORDERS ARRIVE FROM PRODUCTION
CONTROL DAILY.

input -> THE TYPICAL ROUTE FOR AN ORDER IS; SHEAR, FORM,
PUNCH, DEGREASE, PAINT, LABEL.

input -> O.K?

question --> is an order for a single part?

input -> YES

question —> What is an order ?

input -> ORDER IS A JOB RANGING IN SIZE FROM 1 TO 2,000
PRODUCT UNITS.

FIGURE 3.3: TYPICAL TEXT INTERACTION WITH KAMSS.



79

syntactic forms of input. After all, one of the favorite interview ploys used by
human analysts is the “play dumb” mode. In this mode the analyst conditions
the customer to use simple direct statements by simply questioning every complex
statement uttered.

One of the primary issues which must be addressed in the acquisition portion of
the KAMSS is proof of competence. That is, how will the user “know” how much
KAMSS has “understood” of what it has been told. We believe that the best way

for the illustration of the interned knowledge of a particular manufacturing situ¬
ation to be displayed is through the generation of summary textual descriptions.
The ability to respond to queries about the description provided would also be an

effective mechanism for the illustration of the “understanding” which KAMSS has
of a particular situation. However, the reasoning required to answer particular
classes of questions begins to get into the analysis scenario domains and so will
be discussed in a later section. An example of the summarization which would be
produced after interning of the text illustrated in Figure 3.4 is displayed in Figure
3.5.

Another issue associated with input of the system description is the need to be
able to extend the capability of KAMSS to “understand” the input presented.
This requires the capability to interactively (and incrementally) extend the
ontology portion of the KAMSS knowledge base as well as the system description
itself. This can be accomplished (as in the prototype SDCE) by integration of
the knowledge representation structure into all of the user interface facilities.
A change in the ontology structure must automatically generate the necessary

form and declarative statement structures necessary for acquisition of instance
data understood by the additional concepts. It also requires the ability to freely
associate both concept types (or classes) and instances. Finally, it becomes
necessary to allow annotations about any concept or instance. This last feature
is provided in the SDCE prototype through a “hyper-text” capability. Such an

approach has the additional side effect that the representation system can be used
as a sophisticated application program generation utility.



80

Examples: Process Flow for Cab Elevator - BIW to uniprime.

1. Cab stopped and located.

2. Box (or empty box carrier) stopped behind cab. Read by
limit switch to see if box is present.

3. Elevator/transfer extends beneath cab - 6 sec.

4. Elevator/transfer lifts cab off carrier - 2 sec.

5. Elevator/transfer retracts with cab - 6 sec. After this
step, the cab carrier is now empty and is released. If the
path is clear, the cab carrier proceeds through the box transfer
station (on BIW conveyor) back to the body shop. This is
simultaneous with - the matching box (or empty carrier)
behind the cab is released to the box transfer station where
the box is loaded (if present) or continues through if no box
is present.

6. Elevator/transfer lowers with cab - 10 sec.

7. Elevator/transfer extends with cab - 6 sec..

8. Elevator/transfer lowers cab to position on uniprime carrier
2 sec.

9. Elevator/transfer retracts from beneath cab - 6 sec. After this
step, the uniprime carrier holding the cab is released. If the path
is clear, the carrier and the cab proceed in to the box transfer
station to pick up the matching box (if there), or continue through
the box transfer station.

10. Elevator/transfer raises in readiness for next cab from BIW -

FIGURE 3.4: TEXT DESCRIPTION OF A MANUFACTURING SITUATION.



81

The west loader elevator/transfer equipment transfers cabs and
boxes from the BIW conveyor to the uniprime conveyor. The
elevator/transfer equipment consists of four stations: 2 main
stations and 2 standby stations. The first station in each pair
handles the cabs, and the following station handles the box.
Standby stations are located on the west side of the conveyors,
and the main stations are located on the east side. The cab and
the box arrive from BIW conveyor on separate carriers via the
inverted Power and Free conveyor. Usually there is a box following
every cab, but not always. When there are two cabs in a row, an
empty box carrier is between them. The BIW delivery conveyor occupies
the uppermost level parallel to and directly above the uniprime
conveyor. The cab and box are transferred to a common overhead
Power and Free carrier on the uniprime conveyor via the elevator/
transfer equipment.

FIGURE 3.5: SUMMARIZATION OF KAMSS UNDERSTANDING

OF A SYSTEM.



82

3.2.3 Scenario #3 Using Sketch Input to Augment Text

If there is one true statement about collecting system descriptions from a user

it is that “a picture is worth a thousand words”. This is particularly true if
you anticipate asking the user to type, rather than speak his input. The sketch
facility of the KAMSS must allow the user to interactively create a drawing to
illustrate his text. Since it cannot be assumed that the user would learn, or
correctly use, a modeling formalism, the approach taken is to query the user on

input of each symbol. The system will provide a standard library of symbols
similar to a Apple Corporation “MacDrawsystem. Figures 3.6 through
3.8 illustrate the style of use of the sketch input and the interaction between the
sketch and the text modes. In Figure 3.6 the user has input a series of symbols to
describe the interaction of several “objects” in his environment. The purpose of
the sketch input is not to enforce any particular semantics on the use of symbols
but rather to “discover” the semantics of the symbols which the customer is
using, and assist the user in a consistent choice of symbols. Figure 3.7 illustrates
the KAMSS query of the user to force the user to characterize the “type” of
object represented by a particular symbol. Figure 3.8 illustrates the integration
of this sketch input with dialog input. The user has the capability to point
to objects in his sketch while constructing sentences in the dialog portion of
the input device. Figure 3.8 also illustrates the type of consistency checking
which the KAMSS would perform on the use of symbols after they had been
defined. When an inconsistency is detected the KAMSS could suggest the use

of alternative symbols (different borders, shading, or even shape) for the new

concepts.

Such sketch utilities would support the acquisition of facilities and product de¬
scriptions as well as function descriptions and product or data flow process de¬
scriptions. The support of such interaction requires both scope / zoom capabili¬
ties as well as abstraction and specialization capabilities.

As described in Section 8 the prototype SDCE developed provides a block dia¬
gram sketch utility which provides three symbol types, blocks, links, and groups

with two line types resulting in six different usable symbols. The advantage of
this approach is that generalized routing and placement support can be provided



+

\

□

o

V.

&
E

COMMAND/RESPONSE

WINDOW

SYSTEM QUERIES

FIGURE 3.6: SKETCH CREATION IN KAMSS.



84

+

\

□

o

2
E

COMMAND/RESPONSE

WINDOW

SYSTEM QUERIES

> what does the j——j
» ACTIVITIES stand for?

» AN ORGANIZATION
> what does the

stand for? CD

FIGURE 3.7: DEFINING THE SYMBOL SEMANTICS OF A SKETCH.



2
K

COMMAND/RESPONSE SYSTEM QUERIES

WINDOW

DIALOG WINDOW

FIGURE 3.8: POINTING TO SKETCH OBJECTS AND AREAS.



86

allowing the user to focus on the description and not on the geometry of the illus¬
tration. In examination of the sketches used by domain experts and analysts we

noted that sketches of two varieties were commonly used. The first variety (which
we call the “block diagram”) is used to illustrate descriptions which are indepen¬
dent of geometric or locational information. This first variety is also frequently
devoid of timing or temporal relations (though this is less common). The second
variety (which we refer to as “sketches”) actually embody some abstraction of
the locational relations between the components of the illustration. Thus, if two
components are physically adjacent on the illustration the “adjacent” and “near”
relations are intended.

3.2.4 Scenario #4 Model Design Support

By model design support we mean:

1. The ability of the KAMSS to support the creation of models which would be
used for constraint based deduction.

2. The support of an experienced modeller in the construction of a simulation
model for a particular purpose from a specific system description.

3. The construction of implementation models which are essentially executable
applications.

Under the first scenario, it is assumed that a system description already exists
and the user is accessing this database for the answer of a particular question
which can be deduced from the contents of the knowledge base. However the type
of question posed, or the description assertions actually available, or the type
of reasoning required generally will dictate an interpretation of the description
into a particular framework. This mode would assist the user in the construction
of that abstraction from the description itself. The use of these type of models
is discussed in further detail in the scenario on causal reasoning and qualitative
simulation.

Under the second scenario the model designer would initiate the session by open¬

ing a model design window. As illustrated by this author’s OBMODELER pro¬

totype described in Section 8 , the designer is presented with a set of language-
specific modeling icons as well as any problem specific modeling icons which he



87

has developed. The modeller can then ask for an analysis of the system descrip¬
tion database in a semantic pattern directed fashion. For example, the modeller
can ask for an identification of all mention of “objects which move” or the “agents
of object creations”. The modeller can also display the customer created sketches
and query for the meaning of the various symbols displayed. Once such data has
been retrieved and displayed, the modeller can use a “point and pull” method for
directly moving object names, characteristics or property values from the system
description to the modeling work sheet. The modeller is also provided with an

“ask about” note facility which allows him to record questions relative to a par¬

ticular SD object (e.g., “how many parts can be stored in front of the drill press”
or “what is the average time for a purchase request to route through the signa¬
ture process”). These notes can be printed out by the modeller, or they can be
mailed to the customer responsible for the system description (i.e. attached to his
message queue for display on subsequent login).

Since each model entity and the rules for model formulation are stored in the
KAMSS system definition, the modeller can request consistency and completeness
analysis as the model progresses. The modeller can also specify “probe points” in
the model structure where certain attributes of entities or system states are to be
collected. Traditional support for specification of the experiment, results analysis,
and results presentation frames would also be required.

Under the third scenario the user would describe via the representation system
the information for a particular application and rules which describe the con¬

straints on:

1. Instantiation / acquisition of an information instance,

2. User interaction,

3. Information application logic,

4. Processing control.

From this specification of an implementation model, the user could cause an

execution of the specification. In effect, the model provides a very high level
programming language.



88

3.2.5 Scenario #5 Model Generation Support

A primary goal of the KAMSS is to provide the capability for automatic genera¬

tion of models from two sources of inputs: the system descriptions and the anal¬
ysis goals. Under the “Model Generation Support” scenario, the user (generally
participating in the customer role) would request the system to initiate a model
generation mode. The system would first have to discern what type of model the
customer was actually interested in obtaining. Initially three types of models are

to be supported. The first is of the information/concept structure and relation
variety based on the IDEF1/ES method described in Section 8. The second is of
the game theoretic variety required to perform constraint propagation. The third
is of the process flow time based simulation variety as implemented in the OBSIM
language. Presuming a simulation model is the desired result, the system must
first interpret the information acquisition goals of the customer. The user will be
queried for these goals by being presented with a menu of options which delin¬
eate the type of time persistent statistics normally associated with performance
metrics of a simulation model, but independent of any specific object in the sys¬

tem description. Next, the model boundaries of the system must be established.
There are several strategies which can be used to accomplish this task. The first
is to request that the customer use the sketch facility to identify the subset of the
objects in his system description which are the subject of attention in the anal¬
ysis. Alternately the user can fall back on a previous sketch and using a “lasso”
identify the perceived boundaries of the system in question. As another alterna¬
tive, the user could request that the KAMSS attempt to “discover” the bound¬
aries of the model by analysis of the connectivity relations between objects in the
system description representation in its knowledge base.

Once the analysis objectives, information goals, and initial boundaries of the
system have been established, the KAMSS model generator initiates a planning
and model design process. This process uses the constraints of the modeling
method to attempt to identify the required model structure and components as

well as to map the system description data into these elements. The reasoning
process required to support this activity is described in Section 6. A modeling
theory which can be used as the basis for the constraints in this reasoning method
is described in Section 7. It is expected that a large portion of the information
needed to support such a model will not actually exist a priori in the system



89

description data base. The user will have to be queried for such information using
the results of the attempt of the system to generate a consistent token model
from the system description knowledge base and the goals for analysis. This
portion of the model generation process is also initiated when the user identifies
to the KAMSS that certain requested information (e.g., “the average number of
parts which arrive at a work cell in an hour”) cannot be obtained. The KAMSS
model generator must use this unavailability of information as an additional
constraint to be satisfied by the model design process.

3.2.6 Scenario #6 Causal Reasoning/Qualitative Simulation

Pursuing the logical consequences of change is one of the major needs which is
lacking in current decision support systems which are mathematical model based.
The KAMSS must have a mode of operation in which it attempts to perform
the same reasoning processes described in Section 2.2.3. We characterize this
capability as qualitative reasoning support for “What If” queries. For example,
at the end of the sample dialog provided in Section 2.6 the customer describes
his planned modification. Presumably the human analyst would react to such a

situation with questions like:

1. Which of the machines are you going to replace?

2. Will the new machines fit in the area where the existing machines are? If
not, where are you going to put them?

3. What impact will such a modification have on your operation policies?

4. Will your “senior partner” be able to plan work over the new machines?

Reproducing such analyst reasoning requires that KAMSS have some built in
background knowledge of the “way the physical world is” (referred to as natural
constraints between situations in Section 5) and the “way typical manufacturing
systems work” (referred to as conventional constraints in Section 5). Such rea¬

soning also implies the capability of the reasoning mechanism within KAMSS to
be able to apply this knowledge in a specific setting. This level of support can
be provided by use of tailored proof theoretic methods given that the appropri¬
ate ontological basis is provided for the description knowledge base [Bobrow and
Winograd 1977; Hobbs 1985].



90

The application of the knowledge included within the system description to causal
reasoning and qualitative simulation requires the construction of what we refer
to as a token model. The basic approach proposed for the construction of the
token models involves the instantiation of model objects which conform to the
type descriptions in the system description. The model object world serves as the
medium for the enforcement of the nomic, physical, temporal and conventional
constraints. By using type descriptors as object generators, and the axioms
of change proposed in Section 5, successive states of the token world can be
generated. The qualitative simulation proceeds as a constraint propagation over

each object state set. The causal reasoning proceeds in parallel using pattern

matching over distinguished situations.

From the user point of view the result of all three types of reasoning noted
above is textual output requesting additional data, providing mechanism based
explanations or descriptions of expected behavior.

3.2.7 Scenario #7 Quantitative Simulation Execution

Given that a quantitative simulation is required, once the analysis plan, simula¬
tion model, and experiment design have been completed, the next step involves
the execution of the experiment using the simulation engine of KAMSS. With the
natural language discourse interface, this process will be considerably different
than the process of submitting simulation runs today. First of all, the KAMSS
will take the direction to execute a simulation task as an activity for which the
user probably does not want to sit and wait. Therefore if the KAMSS determines
that the simulation run will exceed some limit, say two minutes, of real time, then
it will automatically initiate the task as a batch process. The user can then con¬

tinue to perform other tasks within the KAMSS architecture. The user will be
able to pose questions and commands to the KAMSS as the simulation is execut¬

ing such as:

1. At what stage of the simulated time is the current execution?

2. Display the number of items produced to this point in the simulation.

3. Change the priority dispatch method to the following rule.



91

Similar kinds of interactive simulation execution interaction (but restricted to
formal command languages) have been described in [Nelson 1977; Deshler 1981].

3.2.8 Scenario #8 Interpretation of Simulation Results

As discussed in Section 2, the interpretation of the results of a simulation ex¬

tend beyond the statistical analysis of the output of the simulation model. The
KAMSS must support the customer or the simulation analyst in determining the
implications of the model results. This includes:

1. Evaluation of the reasonableness of the model data,

2. Plan failure analysis (i.e. if the model incorporated a plan for modification
of an existing operation and the results of the analysis did not show any

significant behavioral change then - why not),

3. Observation interpretation, including an explanation of the behavior of the
model itself.

In general, the KAMSS user would expect the system to be able to explain
the “behavior” of the model itself in terms relative to the system description
from which the model was generated. This behavioral explanation is critically
dependent upon the availability of the token models mentioned in the previous
Scenario #6.

3.2.9 Scenario #9 Decision Scenario Packaging

The customer often recognizes that a decision process which has just completed
is one which will repeat itself in the future. Alternatively, one might recognize
that many of his co-workers face similar decision processes. Finally, it is often the
case in organizations that a path for advancement of an individual is through the
systemization of a difficult problem solving activity so that it can be “delegated”
to less experienced personnel under his direction. All of these conditions indicate
a requirement for the KAMSS to support the “packaging” of:

1. A model implementation or series of implementations parameterized for re¬

use,



92

2. The necessary user interface to allow the specification of a new problem
instance,

3. The consulting support to assist a novice in the determination of whether the
scenario is applicable to the current situation,

4. The consulting support necessary to assist the novice in the formulation of
the current problem,

5. The interfaces to other company databases to allow automatic acquisition of
dynamic company data,

6. The consulting support to assist the novice in the interpretation of the
analysis results.

Previous attempts to provide such support without knowledge based tools were

limited to items #1 and #2 [Pritsker and Associates Inc. 1984]. In KAMSS, not
only would the utilities for the development of such a packaged environment exist,
but also the history. Using the session history management utilities, an analyst
would be able to edit the interactions which the customer had with KAMSS

during the process of coming up with the decision scenario. In a manner similar
to a film editor, the analyst will be able to strip out the key portions of that
usage scenario and use it to build a specific user interface.

3.3 User Types

The anticipated users of the KAMSS system fall into four major types. Each type
of user has different support requirements, different user interface requirements
and different training requirements. The four types of users are:

1. KAMSS Developers,

2. Maintenance Users,

3. Direct users,4.Indirect users.



93

These types have been derived from the analysis of actual system simulation,
system planning, and manufacturing engineering groups in both manufacturing
system development organizations and in factory management organizations.
These user types can be considered as “roles” in that a particular user can
participate in many roles. A “user” need not be a human it could be another
system or a subsystem within KAMSS. Each type has further subdivisions.

The first type covers the users who are defining and constructing the basic
KAMSS architecture. The KAMSS Developer type breaks out into the following
subtypes organized along functional orientation:

1. User Interface Developers,

2. System Architects,

3. Ontology Developers,

4. Reasoning Utility Developers,

5. Modeling Generation Developers,

6. Utility / Tool Developers,

7. Model Analysis Engine Developers,

The second type of user role covers users who are extending the built in represen¬

tation structures, utilities, or analysis applications of the KAMSS. The KAMSS
Maintenance User breaks out into the following subtypes:

1. Type editor users,

2. Interface Developers (to new factory or engineering information systems),

3. Packaging Developers (personnel packaging a specific decision support or
description acquisition application for use by direct users),

4. Knowledge Base Administrators (maintainers of the evolving system descrip¬
tion of a facility, and of the underlying type / class based ontology),



94

5. Data Base Administrators (maintaining the interfaces with the factory or

engineering information systems).

The third type of user role covers those who are building the actual system
descriptions and those using the system descriptions for decision making in a

factory environment. The KAMSS Direct users can be segmented into two major
subclasses:

1. Contributors,

2. Consumers.

Examples of contributors include facilities designers, plant engineering personnel,
plant industrial engineers, manufacturing systems analysts and plant managers.
Examples of consumers would include simulation modelers, production supervi¬
sors and line managers.

The fourth type of user role covers those persons who would not directly access

the KAMSS but would benefit from the capabilities provided to their assistants.
The primary support required for indirect users is education in the capabilities
and use of the KAMSS resources. They must be made aware of the capabilities
and limitations of the system.

3.4 KAMSS Architecture and Major Subsystems

The previous sections provided a general overview of the KAMSS, some typical
usage scenarios, and the general philosophy of the system operations. This sec¬

tion will describe an implementation view of the KAMSS architecture and the
major components within that architecture. The architecture presented in Figure
3.9 defines an environment which has conceptual roots in the information inte¬
grated environments of the three schema variety [International Standards Organi¬
zation 1981]. Similar architectures have been implemented for the integration of
manufacturing information systems [IISS 1983], engineering information systems
[IDS 1987], and management decision support systems [Pritsker and Associates
Inc. 1984], There are two major differences with the concept presented in Fig¬
ure 3.9. The first is that the conceptual schema component has been augmented



FIGURE 3.9: ARCHITECTURE VIEW OF THE

MAJOR COMPONENTS OF KAMSS.



96

with a system definition “knowledge base”. As indicated in the figure, this knowl¬
edge base contains both the definition of what information / knowledge resources

exists but also the underlying specialized domain terminology, an ontology for
interpretation of references and descriptions phrased in that terminology, and a

set theoretic basis for that ontology. The second is that many of the elements of
the environment which are integrated through this structure represent knowledge
sources (i.e. individual AI applications of natural language processing, knowledge
acquisition, reasoning, model generation, simulation, etc.).

The following sections will describe the functionality and structure of the seven

major subsystems of KAMSS:

1. Information/Knowledge Base Management,

2. User Interaction,

3. System Resource Manager,

4. System Description Capture Environment,

5. Model Development Support Environment,

6. Analysis Support Environment,

7. Packaging and Construction Utilities.

It should be noted that these subsystems are conceived to be tightly integrated.
Therefore, the individual descriptions by design will overlap to a certain extent.

3.4.1 Information/Knowledge Base Management

The information/knowledge base subsystem view of KAMSS is depicted in Fig¬
ure 3.10. In addition to the distinction between knowledge bases, and informa¬
tion bases, the KAMSS architecture makes the distinction between stable long
term, dynamic long term, private, shared, short term, and scratch memory re¬

quirements. These distinctions are made based on differences in the organization,
representation, access, and management requirements of the various categories.



97

FIGURE 3.10: INFORMATION/KNOWLEDGE BASE VIEW OF KAMSS.



98

Starting at the top central part of Figure 3.10 the “Permanent Frequently Up¬
dated Knowledge Bases” are those knowledge bases which exist as a permanent
part of the KAMSS system but which are updated frequently. The primary re¬

sponsibility for the updating of these knowledge bases would be the KAMSS sys¬

tem site administrator or side-effects of the “System Resource Manager” (e.g.,
on the introduction of a new user). This class includes most importantly the
KAMSS “System Definition Knowledge Base”. This knowledge base includes the
definition of:

1. What system utilities exist,

2. What users are known to the system,

3. What set up is required to initiate one of the environments,

4. What data transforms are necessary to transfer data between environments,
tools, or utilities.

Moving clockwise around Figure 3.10 the next class of memory is the “Dynamic
Environment Information and Knowledge Bases”. These structures are those cre¬

ated by the use of the “Modeling, System Description, or Analysis Environments”
represent short-term memory in the KAMSS. Typically, they include the record¬
ing of specific usage sessions (e.g., fragments of system descriptions, generated
models, etc.). These structures are maintained between sessions as private data
attached to a specific user as their owner. They only influence the future execu¬

tion of an environment session if they are “consulted”.

The next class of memory structures consists of those which are classified as

scratch memory. This class of memory structures is provided by the system re¬

source manager to an application or environment to support the current execu¬
tion. The most familiar form of this memory is the “cons” data structures which
are actually managed by the underlying Lisp environment (for the purposes of
presenting this design scenario, it is assumed that the KAMSS will be imple¬
mented on a Lisp machine). Beyond these structures, the most extensive user of
this scratch memory is the “User Interface” subsystem.



99

The “Dynamic System Databases” represent a class of storage structures which
contain specific time volatile data about the manufacturing system under study
such as:

1. Current product mix,

2. Order status,

3. Part fabrication routings if not fixed,

4. Current production rate,

5. Operations shift schedule,

6. Current equipment status,

7. Current management goals,

8. Planning factors such as:

8.1. Current earnings,

8.2. Unused capacity,

8.3. Earnings goals,

8.4. Investment Capital and Plans.

9. External Environment Factors such as:

9.1. Market demand,

9.2. Current cost of money,

9.3. Federal regulations,

9.4. International states of affairs.

Of course, depending on the implementation environment, much of this data
could be available via integration or interfacing with the corporate data bases.



100

The “Community System Environment Knowledge Base” is the system descrip¬
tion knowledge base as prepared over time by many different customers or an¬

alysts. The KAMSS must provide the capability to combine private system de¬
scription knowledge bases into a public combined knowledge structure. The idea
behind the community knowledge bases is that these would be shared by multi¬
ple people, possibly across multiple projects, each adding incremental updates.
This will allow the distribution of the cost of developing the system descriptions
over many different types of projects (e.g., simulation studies, factory moderniza¬
tion studies, etc.). The shared knowledge bases must allow for both tentative and
permanent updates. Tentative updates allow a user or project to merge private
knowledge bases with the core knowledge base in an isolated environment. Other
users of the knowledge base can gain access to this new extended knowledge base
for purposes of validation and testing or just to browse the modifications. Once
the decision to make a tentative knowledge base permanent is made, the informa¬
tion in the tentative knowledge base becomes the default information for all users.
Shared knowledge bases must also support the accessing of previous base layers in
order to allow an ease of evolution of all of the decision scenarios using the knowl¬
edge base.

“User Specific Knowledge Bases” contain information directly related to a human
(or possibly other system) user of the KAMSS. This information includes the
session histories, user profiles, and privileges associated with a particular user.
These knowledge bases are used by the “Session Manager” and “System Resource
Manager” to tailor the presentation and interaction with a particular user.

The “Permanent Long Term Knowledge Bases” store and provide access to
various knowledge sources in the KAMSS such as:

1. General knowledge about manufacturing systems,

2. Knowledge about commonly used concepts,

3. The grammar databases,

4. Knowledge about how to design models, experiments,

5. Knowledge about how to plan analysis tasks,



101

6. Knowledge about the specific target detailed simulation programming lan¬
guages.

This information is as much distinguished by the wide variety of form as by
its relative permanence, in that it may take the form of procedures, rules, data
structures etc., depending on usage by the KAMSS environments, or tools.

3.4.1.1 Types of Information/Knowledge

The design of the internal structures of the KAMSS knowledge bases is built on
a multilevel representation scheme as illustrated in Figure 3.11. The base level
contains the primitives of the epistemology (properties, bindings, and stakes).
This e-level is described in detail in Section 5. This level (along with ensemble
set theory [Bunt 1985]) serves as the basis for establishing a formal semantics for
the rest of the KAMSS representation mechanism. The o-level contains the con¬

cepts that seem to be basic to the description of systems. They provide a basic
ontology for carving up and describing that world. The method by which these
concepts were identified is described in Section 4. In Section 5 these concepts are

defined in terms of the e-level structures.

The d-level can be thought of as higher level macros for description construction
that are specific to the manufacturing domain. This level contains more domain
specific packages of o-level structures. It exists for the purpose of narrowing the
“semantic” gap between the user input and the computer storage of that input in
a form which can be reasoned with by the computer. Because of the complexity
of the manufacturing domain we found it necessary to provide additional struc¬
ture to the d-level as illustrated in Figure 3.12. This additional structure takes
the form of sublevels and views. The use of this additional structuring will be de¬
scribed in the section on the System Description Capture Environment (SDCE)
found later in this section and further elaborated in Section 8. As there must be

a language designed for talking about each of these levels the s-level contains the
symbols and structures for accomplishing that task.

Finally the m-level contains the concepts of the method for semantic model
development. This includes properties, bindings, stakes and the mappings of these
classes of objects to the primitives in the e-level. This level is used as a reference
for the processing of new referents which have not been (or cannot be) indexed



102

M-LEVEL

E-LEVEL 0-LEVEL S-LEVEL D-LEVEL

Properties Actions Prototype Machine

Bindings Objects Schema Material Handler
States - discrete Slot Part

- continuous Relation Product
- composite Constraint Process

Time Measures Data

Space Plan

Quantities Procedure
Situations
Events

Processes
Conditions

Causality
Sequence
Iteration

System
Subsystem
Component
Operation

FIGURE 3.11: LEVELS OF INFORMATION/KNOWLEDGE
REPRESENTATION IN KAMSS.



103

FIGURE 3.12: LEVELS AND VIEWS IN THE DOMAIN LEVEL.



104

into one of the other levels. It represents the minimal information that can be
known about the referent of the use of a symbol in the system.

3.4.2 User Interaction

The “User Interaction” subsystem includes the “Session Manager”, “User In¬
terface Manager (UIM)”, the “NL Utilities” and the “Hyper-Notes” utilities as

shown in Figure 3.9. This subsystem also contains the utilities for classification
support and online tutorial / help support. One of the issues which needs to be
addressed is the question of why the need for such a technologically complex user

interface. Why not just use a set of input forms and a command language in¬
put? The justification that we offer is based on experience in using and devel¬
oping such systems. Take for example the ISDOS [Teichroew and Hershey 1977]
or SREM [Alford et al. 1979] system requirements definition systems or the IDSS
2.0 [Pritsker and Associates, Inc. 1983]. Just remembering the forms or language
constructs which are available and which should be used to specify a certain type
of definition or relationship is a challenging task itself. For a system like KAMSS,
the number of different forms would be significant (estimated at over 500). To
plan to only provide these as a form of interface would be tantamount to retiring
the system before it is even designed. It is our belief that even a limited natural
language capability (as demonstrated in the SDCE and MODGEN prototypes)
can effectively be substituted for the form input without extreme resource penalty
and with substantial increase in system usability.

One criticism of this approach is that it may require excessive typing on the part
of the user. This criticism is one to take seriously. However, the use of spelling
correction, interactive processing with FIX and DWIM features [Teitelman and
Masinter 1981] can substantially reduce the negative impact. Also, there are

two other avenues which can be pursued to reduce the amount of specific input
which is required. One avenue is to build more knowledge into the KAMSS about
what one normally finds in manufacturing system. The second is to provide the
user with the capability to enter sketches and then refer (by pointing) to these
sketches. Both of these approaches have been incorporated into the KAMSS de¬
sign. The first is considered the domain of the specific “Environment” subsystems
and will be discussed in those respective sections. For example, in the SDCE do¬
main, it is expected that the major mode of text input will be in the editing of



105

existing text. Thus, for example, a user can describe a mechanism by choosing a

similar mechanism and editing the textual / graphics description of that mecha¬
nism. The existing text has not only been parsed but a semantic representation
has already been built. The text itself is composed of specialized objects which
“present” themselves as what appears to be text. These objects “know” how they
can be modified and how to parse and interpret a modification. The user can also
deal with these descriptions strictly at the “type” level/ That is, a user can de¬
clare the new mechanism as a subtype of an existing mechanism. He can also
specify the nature of the subtype relation (e.g., inheritance of physical charac¬
teristics, or behavioral characteristics). The latter is considered a part of the user

interaction subsystem.

The combination of these capabilities with the ability of the user to use text and
free hand sketches as input mechanisms means that, besides the processing of
the respective types of inputs, there is the added problem of attaching semantics
to the symbols used and the correlation of the text to the graphics. Figure
3.13 displays the major components of the “User Interaction” subsystem. The
“discourse manager” is the module responsible for monitoring the actual dialog
and performing the mode sensing and integration. The mode sensing can be
accomplished reasonably using the utilities of the Symbolics window and process

systems. The task which adds complexity to the discourse manager is that of
“strategic” response planning.

Generation of natural language text can be viewed as a two stage process; the
strategic planning phase determine “what” should be said, and the tactical
planning stage determines “how” to say it. In the architecture presented in
Figure 3.13, the application and the discourse manager determines “what” will
be said, and the discourse generator determines “how” it will be said. This
decomposition of functionality represents adherence to the principle that “there
is no such thing as generation in the abstract: one must study the generation
of specific, well-developed artificial speakers performing in specific discourse
contexts” [McDonald 1982]. The discourse manager and the discourse generator
encompass the situation and linguistic knowledge respectively, leaving the domain
knowledge to be a part of the particular application environment. Section 4
provides a discussion of the proposed text generation approach.



106

In the prototype SDCE, the use of type sensitive case structured input was
substituted for a full unrestricted natural language input. This decision was made
for two reasons. First of all, the requirements efforts indicated that the direct
users preferred such an interface since it minimizes the typed input required on

their part. By using the facilities provided by the presentation types, command
completion, and special handlers the system can take advantage of its knowledge
of the input situation to anticipate or allow user selection of input sentence
components from a menu. This significantly reduces the effort and chance for
error. It also supports a form of knowledge acquisition which has proven effective
in constructing large scale knowledge bases, that being the “Copy and Edit”
approach [Bobrow and Stefik 1983; Lenat et al. 1986]. The second reason was
to reduce the complexity and achieve reasonable performance in the prototype.

The “concept manager” indicated in Figure 3.13 provides a level of flexibility in
the user interface to allow for the use of a minimal lexicon processing strategy as

described in Section 4. As each sentence is processed by the parsing component
the syntactic indicators of types, entities, or constraints (as per the IDEF1/ES
analysis see Sections 4 and 8) are used to perform an extraction of these elements.
These extracted structures are passed to the concept manager which checks for
their existence in the current concept knowledge base. The concept manager
attempts to classify the new concept based on the current discourse, the syntactic
structures used and the existing concepts in the concept data base. If it can
successfully classify the concept, then it updates the concept base. If it cannot,
then if the invocation was the result of a successful parse the concept manager

delays the resolution of the problem until at least three additional utterance
inputs have been processed. If the invocation was the result of a parse failure,
then the concept manager will invoke the discourse generator with a planned
yes/no question centered around the constraint portion of the utterance (the
apparent verb phrase). On receipt of a successful answer to the question, the
concept manager will recommend an update to the case frame structures in the
grammar database. It is the responsibility of the discourse manager to then
update the grammar database structures. Section 5 provides a description of a
theory of semantics which can support this concept discovery approach. That
section also includes a more detailed example of its application to the minimal
lexicon problem.



107

CONCEPT

FAILURES,
PARSE

FAILURES,
PARSE FRAMES

FIGURE 3.13: USER INTERACTION SUBSYSTEM.



108

This cooperative use of the concept manager, classifier, discourse generator, and
discourse manager allows the KAMSS to operate initially with a minimal lexicon
and also a minimal set of case frame grammar structures. In a very real sense,
this capability amounts to an acquisition of knowledge at the “buzz-word” level
(see Section 5).

3.4.3 System Resource Manager

The system resource manager controls the invocation of major modes of process¬
ing as a traditional “monitor” component would. In addition, it has an expanded
role which includes the managing of access to the various information / knowl¬
edge bases. Management of access includes more than verification of user priv¬
ilege. As indicated above, the KAMSS includes a large number of data sources.

Some of these are information sources in a traditional database organization.
Others are “knowledge bases” of rules, schema structures, and procedures. Thus,
for example, the grammar structures may be encoded in Lisp structures organized
in a hashed table, the session histories may be stored as formatted annotated flat
text files, the model design knowledge bases may be ART™ rule sets, where the
system descriptions are stored on a VAX using the Knowledge Craft™ schema
base manager. In order to have the design flexibility to use the best physical
management software for each different type of data resource, one needs a layer
of management that knows “where everything is” and how to translate between
the different forms of representation. This is the primary function of the system
resource manager. As in the typical three-schema architecture approach to this
problem [International Standards Organization 1981], the system resource man¬

ager accesses the definitions of what exists (in what form and where) from the
system definition knowledge base.

3.4.4 System Description Capture Environment

Manufacturing and production system descriptions themselves are complex
knowledge bases which include information about:

1. Manufacturing facility layout, location, age, current product mix,

2. Equipment and tooling, with their associated characteristics,

3. Business rules and operating policies,



109

4. Manpower levels and skill classes,

5. Union and government regulations,

6. Information: its structure, flow, and use,

7. Plans, goals, schedules, and commitments of the organization,

8. Situations, events, and courses of events to which describe the dynamics of
the system,

9. Relations which can be established between the above types of information
and the constraints which those relations conform or impose.

The capture of such descriptions and subsequent use or display must take into
account a number of different “viewpoints” including:

1. The corporate strategic planning view,

2. The product strategic planning view,

3. The product definition view,

4. The manufacturing planning view,

5. Individual facility strategic planning views,

6. The organizational view,

7. The physical facility view,

8. The operating personnel view including:

8.1. The general manager view,

8.2. The area manager view,

8.3. The foreman view,8.4.The operator view,



110

8.5. The manufacturing engineering view,

8.6. The quality control view,

8.7. The industrial engineering view,

8.8. The union view.9.The process view,

10. The information view,

11. The modeling view.

The implication of these viewpoints on the representational scheme is that it
must be able to represent and accommodate partial knowledge about an entity
from multiple descriptors that describe the same entity from different viewpoints.
The complexity of viewpoints and the desire for a concept discovery capability
underscores the need to use a flexible underlying representation scheme which
does not over commit to the prior representation of specific areas of knowledge.

Previous attempts to capture such complex situations have failed both because
they required the users to learn and to use complex unnatural specification lan¬
guages, and because they attempted to utilize traditional rigid data base tech¬
niques for the storage of the descriptions. For these reasons, we are proposing to
use a combination of form, menu, natural language text, and picture sketch input
combined with a knowledge based management tool for management and manipu¬
lation of the descriptions. We are also proposing a basic semantics representation
and syntactic based reasoning strategy (see Sections 5 and 6) which can accom¬

modate the free objectification which humans use in their formulation of system
understandings as described in Section 2. Finally, the proposed design relies heav¬
ily on the reusability of existing descriptions as a primary means of information
acquisition. Thus the copy and modify philosophy is supported in each mode of
input.

Figure 3.14 displays the basic structure of the system description capture compo¬

nent of the KAMSS.



Ill

PRODUCT
DESCRIPTOR

FIGURE 3.14: SDCE ARCHITECTURE.



112

3.4.5 Model Development Support Environment

The model development support environment depicted in Figure 3.15 provides the
following functionality:

1. Analysis Planning, including:

1.1. Determining the questions that must be asked;to determine a particular
model usage goals and context,

1.2. Design of experiments,

1.3. Production of a costed and timed model plan,

2. Model Design, including:

2.1. Extraction of IDEF1 models from the system descriptions,

2.2. Qualitative simulation model design directly from the system descrip¬
tion,

2.3. Extraction of object flow models (where an object can be a part of a
specific type of information).

3. Quantitative Simulation Model Design, including:

3.1. Design of simulation model mechanisms.

3.2. Direct use of system description as constraints on simulation mechanism
design.

3.3. Generation of detailed model specification in a simulation language.

4. Implementation Model Design (using the KAMSS as an engineering program¬
mer’s workbench) which includes:

4.1. Use of the KAMSS framework as a platform for building specialized
applications,

4.2. Object definition code generation from a type description,



113

FIGURE 3.15: MDS ARCHITECTURE.



114

4.3. Lisp method code generation from a rule language specification of
processing behavior,

4.4. Relational schema generation for data acquisition prototypes from class
descriptions,

4.5. Procedural code generation from functional diagrams.

3.4.6 Analysis Support Environment (ASE)

The Analysis Support Environment (ASE) provides a framework to support
many different types of analysis methods. As illustrated in Figure 3.16, this
includes the capabilities to perform causal reasoning and qualitative analysis of
the system descriptions as well as mathematical simulation of the system models.
The ASE also provides the structures for housing additional analytic techniques
or packaged decision scenarios. As a minimum, the KAMSS ASE will provide:

1. Qualitative reasoning about system dynamics from system descriptions,

2. Prediction of the implication of questions,

3. Qualitative simulation,

4. Simulation experiment processing,

5. Simulation experiment results interpretation,

6. Explaining simulation predicted system behavior.

3.4.7 Packaging and Construction Utilities

The major utility subsystems for the KAMSS are illustrated in Figure 3.17.
These include the utilities for:

1. Decision scenario packaging,

2. Forms generation,

3. IGES/PDDI graphics interface construction,

4. Knowledge base maintenance,



115

FIGURE 3.16: ASE COMPONENTS.



116

FIGURE 3.17: KAMSS PACKAGING AND CONSTRUCTION UTILITIES.



117

5. Graphical model layout and connection routing utilities,

6. Model Data Base generation,

7. Data base administration,

8. Factory Information System interface construction.

The utilities are supported by a development environment modeled after the
Knowledge Craft™ Toolbox concept. Under this concept each utility is set

up to have a common set of access, help, and usage command structure. This
is possible because of the assumed level of sophistication of the user of this
environment.

3.5 Implementation Issues for KAMSS

The implementation of the KAMSS architecture presented in the previous sec¬

tions has several major theoretical and practical issues associated with its con¬

struction, which are the focus of the remaining sections of this dissertation.

1. The lack of precise cognitive models of all the reasoning activities involved,
or of their placement in a classification system of reasoning types,

2. The current lack of an adequate theoretical semantics basis,

3. The lack of an available reasoning method powerful enough to handle the
variety of reasoning processes required,

4. The complexity of the natural language processing requirements,

5. The size and complexity of the resulting knowledge bases,

6. The lack of an available simulation engine to process the simulation models
of the complexity and size of those which will be generated by the system.

3.5.1 Overview of Existing Tools and Their Applicability

The obvious preference for an implementation approach to KAMSS would be to
build from an existing commercial knowledge engineering environment. This has
advantages in terms of long term maintainability and possible commercialization



118

of the KAMSS concept, as well as avoiding the recreation of a product which
represents hundreds of man-years of development. The disadvantages include
the possible need to integrate several of these tools to construct a system of the
complexity outlined above.

Eight commercial knowledge engineering / object management environments have
been evaluated as platforms for the construction of the KAMSS. These include:

1. Knowledge Craft™ (Carnegie Group Inc.),

2. Language Craft™ (Carnegie Group Inc.),

3. ART™ (Inference Corp),

4. KEE™ (Intellicorp),

5. LOOPS™ (Xerox),

6. Vbase™ (Ontologies),

7. Joshua™ (Symbolics),

8. Statice™ (Symbolics).

A complete evaluation of the characteristics of these tools can be found in [Mayer
et al 1986; Mayer 1986]. The following paragraphs summarize the conclusions of
these evaluations relative to the KAMSS architecture.

First of all, one of the implicit requirements for a knowledge engineering tool is
the ability to have a data management capability for the storage of permanent
objects. This requirement all but eliminates the ART and KEE systems from
consideration as the dominant structure for the KAMSS architecture. Knowledge
Craft, LOOPS, and Vbase all provide a database capability for the storage of
permanent object definitions. Of these three, Vbase and Knowledge Craft stand
out as the most promising. LOOPS is not yet a supported product and it is
also limited to execution on the Xerox 1108/1186 workstations. Strobe (Sun
Microsystems) provides most of the same capabilities of LOOPS and it executes
on the Sun environments as well as the Xerox environments. Unfortunately, the



119

drawback of either the Strobe or the Sybase products is the limited knowledge
representation which is available in the underlying language.

The best choice of a base structure for the KAMSS architecture appears to be
to use the Knowledge Craft [Carnegie Group 1987] system as the basis for the
representation mechanism for the description capture environment and the model
generation environments. The power of the schema representation language and
the ability to describe the semantics of relations in Knowledge Craft is clearly
superior to the other available systems [Mayer et al 1986; Mayer 1986]. With
the availability of a schema database mechanism (available on the VAX and Sun
versions), the Knowledge Craft tool appears to satisfy the basic requirements
for the semantic structures and reasoning mechanisms as well as the practical
knowledge base management services required to support KAMSS. However, in
the prototype implementations of the components of KAMSS the non-uniform
treatment of attributes of frames by the Knowledge Craft tool complicated the
development of a knowledge base to support an evolving description to the point
where we chose to develop our own object management system. The results of
our preliminary evaluation of the Joshua and Statice environments are such that
we intend on evolving to these systems as they become available.

Hardware Implications of KAMSS:

During the course of this research and the development of the prototype imple¬
mentations, we have experimented with expert system development tools on Sym¬
bolics 3600 machines, Texas Instruments Explorers, Xerox 1108 machines, Digital
Equipment Corporation VAX 11/7XX machines, as well as IBM PC/AT and Ap¬
ple Macintosh micro computers. The purpose of this section is to examine the
hardware implications of the KAMSS architecture and assess the role of Lisp ma¬

chines, multi-user traditional machines, and micro-computers as well as network¬
ing requirements to support the development and use of the KAMSS.

In its final realization, the KAMSS will almost certainly exist on a heterogeneous
set of hardware. There will be need, for example, for information acquisition
support utilities which operate on portable devices which the analyst can take
to the field with him. There will be need for multi-user access to the system



120

description knowledge base by manager decision makers to pose questions to
the knowledge base. There will be need for special purpose hardware (parallel
architectures) for running the size of simulation models which will be generated
with the system. And there will be need for the sophisticated AI workstations for
support of the analysts, modellers and knowledge base / database maintenance
personnel. Figure 3.18 illustrates a possible hardware implementation of the
KAMSS.

3.5.2 Prototypes: Functionality and Rationale

The following prototypes were constructed during the course of this research as

proof of engineering prototypes for the KAMSS architecture and to establish
some of the critical methods and tools for a full scale implementation of the
KAMSS architecture:

1. An IDEF Based Methodology For Knowledge Acquisition (IDEF1/ES),

2. A Process Flow and Object State Modeling Method (IDEF3),

3. System Description Capture Environment Prototype (SDCE),

4. A Fact Collection Tool (FCT),

5. Model Development Support Environment Prototype (MDSE),

6. Qualitative Reasoner from System Descriptions (QUARS),

7. Model Generation from System Descriptions (MODGEN),

8. Situation Based System Description Knowledge Database (SDKD),

9. Model Design Support from System Description Sketches (OBMODLER),10.An extensible, object based, simulation engine (OBSIM).

These prototypes are discussed in detail in Section 8 of this dissertation. How¬
ever, it is useful in this section to review the portion of the above described de¬
sign concepts they were designed to illustrate.



APPLETALK

121

386
CLOE

VAX on Super
Mini

(SDKD)
(SE)

TCP/IP

MAC
IVORY

FIGURE 3.18: KAMSS IMPLEMENTATION ARCHITECTURE.



122

The IDEF1/ES methodology was designed, based on the method for semantic
theory development described in Section 5, as a tool to be used to construct the
ontologies needed for the design/evolution of the permanent long term knowledge
bases described above. Since the base from which this tool was evolved is the

IDEF-1 methodology [Ramey 1983], it has also been useful for the definition of
the requirements for the other information and knowledge structures in KAMSS.

The IDEF3 methodology was designed for the capture of scenario based process

flow descriptions and the relation of those flows to enterprise object states. A
high priority need was identified for a method which would support the descrip¬
tion of the timing, sequencing and causality relationships between states of affairs
and states of change. Expressing such relationships involves the identification of
triggers (causality relations), initiation conditions, and completion conditions on

the activities. The identification of these pieces of information requires specifica¬
tion of:

1. Timing constraints on individual activities and on groups of activities,

2. Sequencing constraints on groups of activities ,

3. Attribute values and attribute value constraints.

The resulting method integrates information from the IDEFO, IDEF1, and
IDEF1/ES methods.

The SDCE was designed to test the system description knowledge representation
scheme, intelligent user interface, form and sketch input, browsing, hyper-text
and CAD/FIS interfaces presented previously. This prototype features both a

concept sensitive structured diagram interface and concept description capability
and hence serves as a prototype of the dialog processing and management features
of KAMSS.

The FCT was designed to experiment with automated support for the collection
of facts which describe situations in a organization environment using a natural
language input mechanism. The limitations of the technology for direct process¬
ing of natural language (particularly in the micro processor environment where we



123

wanted to delivery this capability) led to an approach where the user guides the
semantic interpretation of the statements entered.

There are actually two MDSE prototypes. The first MDSE prototype is focused
on the provision of model development, integration, and validation support for
the construction of IDEFO and IDEF1 models. The other is being built on top
of the SDCE prototype using the block diagram editor and object editor to
support the design of simulation models based on the SIMAN simulation language
constructs.

QUARS was designed to demonstrate the feasibility of applying the syntactic
information chain reasoning concepts of the AR theory (see Section 6) to system
descriptions whose representation was consistent with the ontology presented in
Section 5. This prototype actually consists of two components. The first performs
causal reasoning based on a tokenization approach. This component includes
a form of temporal constraint propagation with an assumptive based truth
maintenance scheme to support evaluation of the feasibility of the control logic
of a manufacturing process directly from an SDCE description. The second is
built off of the “Q” system and provides for qualitative simulation of continuous
process models generated from the system descriptions.

MODGEN was designed to demonstrate the feasibility of directly generating
simulation models from system descriptions captured using the SDCE. The
prototype developed used description structures similar to those found in such
simulation languages as MAP-I™. The prototype was limited in its ability to
handle conditional constraint specifications and in its ability to handle a variety
of question types.

The SDKD was actually prototyped as a part of the SDCE, where the primary
issues were representation completeness and access efficiencies. The second
prototype will be a stand alone implementation (one in Statice and the other in
Vbase) concerned with the issues of efficiencies for large description databases
and distribution of such data bases.



124

The OBMODLER was initially constructed in the INTERLISP LOOPS environ¬
ment for the purpose of exploring the issues of free sketch input of system de¬
scription pictures and the use of these pictures as an aid to model design. How¬
ever, the concepts of this model development support environment were subsumed
by the SDCE.

Finally, the OBSIM was constructed to test the direct simulation of object speci¬
fication of model components, and the specification of business operation policies
in a rule form. This prototype was initially constructed using LOOPS on the Xe¬
rox 1108 AI workstation. The architecture of this system is described in detail
in Section 8 of this dissertation. It provides a simulation language development
environment as well as a basic simulation engine. Within the OBSIM environ¬
ment a modeller can mix simulation modeling paradigms or construct a unique
one for a particular problem. By capitalizing on the object oriented programming
paradigms the OBSIM is easily extendible / adaptable to the simulation analysts
needs. What this allows is the customization of the simulation engine without re¬

sorting to an external language (as is the case with current simulation systems),
while still maintaining a high level language interface.



125

4. NATURAL LANGUAGE PROCESSING ISSUES

The KAMSS architecture presented in Section 3 calls for extensive use of natural
language processing techniques. We can break the natural language processing
problems in KAMSS down into three basic areas:

1. Natural Language Understanding (NLU),

2. Natural Language Generation (NLG),

3. Discourse Management (DM).

Even though the applications of these techniques in KAMSS are restricted consid¬
erably by the modes of operation and the presumed domains, the KAMSS archi¬
tecture still admits to the most agressive use of this technology proposed to-date.
In this section the state of the NLU, NLG, and discourse processing technology is
reviewed and methodology innovations are proposed which will provide the basis
for achieving the requirements of the design presented.

Another issue to be made in this section is that the analysis required to build
the data necessary to construct a natural language interface is also required to
design the knowledge representation structures within KAMSS. That is, even if
we were not considering a natural language interface to KAMSS, we would need
to apply the methodology presented herein to identify the knowledge structures
needed to capture and reason about the system descriptions, designs, and models.
In retrospect, it may seem obvious that the way one identifies the concepts that
people use in their descriptions of a situation is to analyze the language construct

they use when they describe those situations. On the other hand, the discovery
that the methodology developed could (with minor additions) serve both roles,
came as quite a surprise.

4.1 Issues ofNLU, NLG, and Discourse Processing

Developing a natural language processing system (NLPS) is an extremely difficult
task, although it might at first glance seem deceptively easy because of the ease

with which humans, including small children, manipulate and understand lan¬
guage (see [Winograd 1983] or [Sager 1981] for a useful overview of natural lan¬
guage understanding). Natural language understanding (NLU) involves not only



126

understanding the meaning of individual words but also understanding the mean¬

ing and function of those words within a sentence or even a body of discourse.
However, many English words are ambiguous; that is, the same word can be used
either as different parts of speech or with different meanings. Further, in devel¬
oping an applications-oriented NLPS, we have the classic problems of linguistic
theory, including anaphora, elipsis, and coordinate conjunctions, that remain open

research questions, as well as the inherent ambiguity ofEnglish syntax. Humans
process ambiguity because they possess situation, background, or world knowl¬
edge that sets the context of the discourse and builds a script of what is expected.
It is the difficulty of building into a NLPS this background knowledge component
and a method for recognizing the functions of words in blocks of discourse that
makes the task of designing computer NLPS so difficult.

Generating natural language is also difficult since it requires not only knowledge
of the message to be communicated but also the conventions of the discourse
at hand and how to plan the presentation of the message. Natural language
generation in the KAMSS is of four basic types:

1. The generation of responses to queries,

2. The generation of summary descriptions,

3. The generation of questions to the user to acquire additional information,

4. The generation of explanations of behavior.

Each of these types of processing has its own associated problems. The gener¬

ation of responses to queries, for example, is not as simple as the formatting of
data base output to the terminal, since many types of queries include analysis re¬

quirements which may be beyond the capabilities of the system at any point in
time. This presumes the ability of the system to be able to explain its own limita¬
tions to the user. The generation of summary descriptions and descriptions of be¬
havior involves the problem of deciding what is meaningful to say, as opposed to

saying something about everything the system knows. The generation of queries
to the user to clarify information already acquired must incorporate the strategies



127

which an expert systems analyst employs for “leading” and “focusing” a discus¬
sion, as well as recognizing when a discussion has reached the limits of knowledge
of the individuals involved.

The mode of operation depicted in Section 3 of the user interface throughout the
functionality of KAMSS was one of an interactive discourse. This mode of oper¬
ation, and the fact that some of this discourse involves making reference to infor¬
mation in picture form, requires the characterization of each discourse situation.
By characterization of the discourse situation we mean at least a basic model of
both “partners” in the dialog. At least one model for each type of user during
each mode of use of KAMSS is required. The theory of semantics presented in
Section 5 provides the basis for such a characterization, and the reasoning method
outlined in Section 6 provides the means for using this representation to accom¬

plish the NLP tasks associated with the KAMSS. One of the tools developed as a

part of this reseach (IDEF-l/ES) has the capabilities of representing these types
of discourse models.

A NLPS conceptually consists of a parser, a semantic interpreter, and optionally
a text generator. The parser determines the syntactic structure of an utterance
while the interpreter assigns meanings to these structures. To assign words to
syntactic categories or parts of speech, the parser makes reference to a lexicon as

discussed below. Once assigned a part of speech, these lexical items are then as¬

signed to larger syntactic structures such as noun phrases, verb phrases, or prepo¬
sitional phrases according to a grammar component. The semantic interpreter is
responsible for the construction of a representation of the meaning of the utter¬
ances processed by the parser. The ability of this component to adequately per¬

form is dependent on the underlying semantic theory which will be discussed in
detail in Section 5. The text generator operates in essentially the reverse order. It
must be handed a strategy which encompasses the message to be communicated
and the raw data on which to operate. It will then formulate a discourse frame¬
work for communication of the message. This framework must then be converted
into natural language sentences. These sentences must then be refined into an ac¬

ceptable text structure and stylization performed to eliminate redundancy and
awkward wording. Finally, the resulting text must be displayed to the user.



128

In general, semantic interpreters work by combining word meaning (generally ex¬

tracted from the lexicon or an associated dictionary), sentence structure, and dis¬
course scripts to classify utterances and thereby produce a “meaningful” repre¬

sentation. The adequacy of the classification is evaluated either by examination
of the resulting actions which are taken upon input, or by the ability to answer

questions relative to a particular input. In the KAMSS as opposed to other natu¬
ral language processing domains, the text generator is a; major component of the
NLPS. One of the major skills that an analyst brings to the problem is the abilty
to provide summarizations, critiques, explanations, etc., on the system descrip¬
tions which have been provided to him. We view the text generation problem as

beginning after the reasoning or other data processing activities of the KAMSS.
Thus the function of the text generator is to take a coded form of a message and
produce an acceptable English language statement — essentially the reverse of
the parsing stage.

Central to each of the NLPS activities described above is the lexicon. In its

simplest form, the lexicon is a dictionary of possible lexical items and their
associated syntactic categories. However, such a simple lexicon has a serious
drawback: many English words are inherently ambiguous on several different
levels. Firstly, a word may be syntactically ambiguous, with several possible
category assignments. Thus the word run may be either a noun or verb; the
word that may be a pronoun, determiner, or subordinator. Secondly, a word
may be lexically ambiguous, with several different meanings associated with
the same syntactic category, as in the word run which can be used as either a
verb or a noun. As a verb, it has a range of meanings from “run a race” to “run
away” to “run a risk” to “run a fever”, while as a noun it can have such various
meanings as in “a 10K run” “a long run” “the usual run of men”, or “a run in my

stockings”. Humans easily process and understand these various senses because of
the semantic cues provided by the larger body of discourse. Unfortunately, a large
number of English words are ambiguous in one or both ways.

4.2 Processing of Utterances

Under the design presented in Section 3, each major mode of operation of the
KAMSS (description capture, model generation, description and model analysis)
allows for the input of three types of unstructured “utterances” (text, discourse,



129

and sketches). The text input serves to support the function of entering directly
company policy and procedure documents. Text input processing is also necessary

to support the use of past session discourse as context for a current discourse.
As described in Section 3, one mode of information storage which is required
is that of annotated text. The discourse input serves to provide the interactive
processing of statements, commands, declarations, and questions. Discourse
generation serves the function of supporting the formulation and presentation of
responses to these inputs. Thus the required KAMSS features of explanation,
commentary, data base interface, and report generation are supported by the
discourse generation capabilities.

4.3 Overview of Existing NLP Methods

The following subsections provide an overview of the state of the technology
and the issues associated with the understanding of natural language utterances

(NLU), and the generation of responses formulated in natural language (NLG).
These issues are presented for comparison and background to the approach
recommended in the following sections.

4.3.1 NLU Approaches

The best strategy for actually parsing and understanding sentence components
of text is an open research question. Of the many prevailing approaches to NLU,
most fall into two broad categories — linguistic or conceptual. ([Marcus 1980]
is an example of a strictly linguistic based approach while [Schank 1982] is an

example of the conceptual approach.) Linguistic systems maintain the parser and
interpreter as separate components, but conceptual systems use some elements
of the interpreter to constrain the parser. One such constraint mechanism is the
use of case frames [Fillmore 1968], that is, the assignment of syntactic categories
based on the semantic / syntactic relationship of constituents to the predicate
of the sentence. Another, is the use of a sublanguage system [Sager 1981], or a
lexicon constrained by a particular domain.

For instance, each lexical item in the sentence:

The shop has experienced MBA trained supervisors.



130

represents a single syntactic category except for the word experienced, which
has two syntactic categories. The interpreter of a linguistic parser would have
to decide between these two interpretations, one of which would take the word
experienced as the past participle of a verb synonymous with suffer. The second
would assign experience to the adjective category, with the meaning “made
capable by reasonable experience.” A domain specific conceptual parser might
eliminate the second reading altogether by assuming that in the manufacturing
domain experience will only modify human nouns when it is used as an adjective.
Such a semantic constraint would be imposed as part of the information given in
the lexicon, either about the syntactic category of experience or about the case

roles that it may fulfill. Conceptual parsing strategies differ in how lenient these
constraints are.

Linguistically based systems rely primarily on knowledge of grammar (the syntax
and morphology of a particular language) rather than on knowledge of a particu¬
lar domain. Because these systems are syntax-driven, they may actually generate
several meanings for the same sentence and may in fact generate interpretations
that make no sense in the r-eal world. Conceptual parsers, on the other hand, are
guided in their parsing by their knowledge of some domain and thus eliminate
interpretations which have no meaning for a particular domain. However, since
conceptual systems are domain-specific, they cannot easily be generalized without
the regeneration of the knowledge component. The grammar in a linguistic parser

usually consists of a set of phrase structure rules used to bundle syntactic cate¬

gories into syntactic constituents, but in a conceptual parser the grammar forms
a set of sentence patterns anticipated by the system. Conceptual parsers attempt
to incorporate some of the human’s ability to disambiguate by providing extensive
knowledge about a limited domain, thus imposing severe constraints on the use

and co-occurrence of certain lexical items. For instance, in a conceptual parser,
the verb .see would require an animate agent and an optional indicator of manner.
These constraints are imposed by syntactic category restrictions on words in the
lexicon and by case frames associated with verbs.

Regardless of the approach, parsers accept as input a subset of the text (we will
assume a sentence by sentence parse) and match each lexical item (or word)
with possible syntactic categories (or parts of speech). The string of syntactic
categories are bundled into larger and larger syntactic constituents by the parser



131

until the sentence can be processed, and the information content of the sentence

incorporated into some representation strategy.

4.3.2 NLG Approaches

There are four basic issues associated with the generation of natural language
responses. The first is deciding “what” to say. The second is deciding “how” to
say it. The third is the actual formulation of the textual response (i.e., the speech
act). And the fourth is deciding how to integrate the generation process with
the understanding process and the “flow” of the discourse. As with the NLP, the
syntactic portions of these issues (the second and the third issue) have been more

extensively studied than the others. This is presumably because of the fact that
the syntactic issues lend themselves to the application of more general methods.

One common class of language generators which are quite extensively used are

those which generate “canned” messages. For example, in a language compiler
certain “canned” messages are produced when a particular error is detected.
In some cases these “canned” message generators can be quite sophisticated,
allowing the specification of variables in the message that can be bound at text

generation time to produce reasonably tailored messages which are situationally
accurate. The use of these methods should not be discounted; in fact, there are

many places within the KAMSS where such techniques will be the approach
of choice. Nor, should one discount the convincing nature of such approaches
relative to the perception of the user that he is communicating effectively with
the machine (any time spent working with the ELIZA system [Weizenbaum 1966]
will probably convince the user otherwise!) The problem with such approaches is
the extensive customized programming which is required to implement them, and
the fact that they are relatively inflexible and suitable only for short statement
generation. On the other hand, they tend to be computationally inexpensive.

Early language generators merely produced random syntactically correct sen¬

tences based on the transformational models [Yngve 1962; Friedman 1966]. The
first attempt to map semantic structures into the syntactic forms was built upon
the use of augmented transition networks (ATN) [Simmons and Slocum 1972].
ATNs were originally designed by Woods as a computational technique for the
processing of text [Woods 1970]. Simmons essentially turned the process around
so that the arcs in the net were labeled with semantic “case like” components



132

rather than syntactic ones. The basic problem with the use of ATNs is that the
computational paradigm was too powerful. In other words, their use was roughly
equivalent to the production of a custom tailored program with the semantics
hard-coded in. Goldman’s BABEL was the first serious attempt to separate the
semantic functions from the final text generation [Schank 1975]. BABEL used a

discrimination net representation of a set of semantic interpretation rules to gen¬

erate a “case frame” like structure which was then translated into the output text
via an ATN based system. By variations in the semantic interpretation rule pref¬
erences, the verb and case frame decisions made by the semantic component could
produce paraphrases on equivalent input.

Two programs which established some significant capability in discourse gener¬

ation planning were PROTEUS [Davey 1978], and NLPS [Heidorn 1972]. Both
of these systems provided capabilities for analyzing structured domain represen¬

tations and determining what linguistic structures would be suitable for describ¬
ing (summarization in both cases) the information in those representations. Both
systems relied on a fair amount of domain specific knowledge (the NLPS domain
knowledge was described earlier in Section 1, PROTEUS’s domain knowledge was

centered on the domain of the “tic-tac-toe” game). The PROTEUS system ex¬

amined the move record and attempted to identify “contrasts” and “intentions”
as signified by the actions in that record. PROTEUS also attempted to eliminate
uninformative text by assumptions made relative to the fact that the person re¬

ceiving the explanation was the person who had just played the game. Thus it
demonstrated (in a hardwired form) the benefits of using the discourse situation
as a frame of reference for text planning. NLPS generated questions concerning
the incompleteness of a specification primarily by the examination of required
slots in a frame representation (e.g., moving objects have an arrival distribution,
etc.). Summary generation was driven by a set traversal of the records within the
frame.

The use of more general planning methods for text planning was first explored
in the Knowledge and Modalities Planner (KAMP) [Appelt 1980]. This system
used hierarchical planning methods [Sacerdoti 1977] to generate a gross plan to
achieve a goal in a robot planning domain. This gross plan (set of actions) was
then verified using the “possible worlds logic” of [Moore 1980]. Once the gross

plan was verified the system examined each action to see if it was primitive and



133

if not, recursively applied the planning procedure to that action. The resulting
task plan was then syntactically processed into a grammatically correct sentence.
In the strategic planning for the discourse KAMP addressed the problem of using
the systems knowledge of both the situation and the facts that the system could
assume the user to know about the situation. For example, if a component was
known to be attached to only one other component KAMP knows that it is
sufficient to merely request that the component be removed since it is “obvious”
what it is to be removed from. KAMP also knew that if it told the user to use

something then it must also tell the user where that thing is (e.g., use the wrench
in the tool box).

4.4 Methodology for Utterance Analysis

From an engineering point of view, the central issues of NLP and NLG reside
in the question of how to build usable implementations of these capabilities for
a particular application domain. All of the technical papers, reports, and texts

dealing with the issues of NLP and NLG focus exclusively to the general issues
of language phenomena (syntactic or semantic), language use, or computational
methods. Therefore, one of the technical engineering voids in these areas was the
general lack of a “usable” methodology for applying these results to a particular
problem domain. This phenomena itself is interesting since in most engineering
domains the practice or methodologies normally proceed the theory or method.
In this section we describe a four step methodology for performing the analysis
necessary to collect the data for, and to design usable NLP and NLG systems.

Methodology Assumptions

The primary assumptions which are evident in the methodological approach
which we have used is that:

1. Communication via language is an environmental phenomena,

2. Actual use of language is inherently constrained by the processing capabili¬
ties and limitations of the human being,

3. Cognitive activities heavily influence the generation and processing of lan¬
guage during a communicative act,



134

4. Relative to the formulation / discovery of the underlying concept structure:

4.1. Most reasoning processes are dominated by a matching process which is
largely syntactic in nature, resorting to semantic considerations in the
minority of cases [Bobrow and Winograd 1977],

4.2. Understanding can be effectively modeled as theorem-proving in a

constrained specific situation [Hobbs 1986],

4.3. Classification structures are useful in the reasoning process, where as the
underlying general principles are the key to understanding, thus both are

needed in a NLU / NLG system,

4.4. Deep knowledge comes, not from the selection of a single ontology, but
rather from a rich set of alternatives which have been cross-correlated.

Based on these assumptions the following methodology will be seen to be quite
“bottom up” or data driven. It can actually be characterized as a knowledge en¬

gineering type activity in that it is based on a belief that to understand language
produced in a particular domain, one must study samples of that language as pro¬

duced by participants in that domain.

The first step in the development of a natural language processing or generation
system is the assimilation of a corpus of examples from the domain of discourse
where the system would be expected to perform. From experience, it would
appear that the domain specific patterns which must be identified tend to become
evident from as few as five different discourses particularily if they were generated
by different speakers. In a study of patient medical history records over 100
samples were processed [Mayer et al. 1987]. However in this dissertation work
we limited our analysis to 15 samples. Such a limitation was partially justified by
the length of the examples analyzed (i.e., each manufacturing example was 3 to 5
times longer than the typical medical text.) Another problem encountered in this
research was that manufacturing system descriptions are not generally recorded.
Therefore, we had to rely on personal interviews with manufacturing experts to
augment our analysis.



135

The second step in the process is the analysis of the individual sentences in each
text using a systematic grammar classifying the following types of information:

1. The types of utterances (text, discourse, lists, sketches) and the function(s),
form, and structure of each type of utterance,

2. The types of sentences (indicative, declarative, demonstrative, interrogatory,
commands, interjections) the function(s), and form (simple, conjunctive,
conditional, etc.) of each type of sentence,

3. The types of clauses that make up sentences (relative, subordinate) and their
function(s), form, and fit within the utterance,

4. The types of phrases that make up clauses (subject, adjectival, adverbial,
etc.) and their function(s) and form,

5. The lexicon (the set of words) used in the text and what are their associated
function(s), form, and fit.

A useful set of structures for this analysis is depicted in Figure 4.1.

The third step in the analysis process is the production of semantic models of the
concepts commonly used in the particular domain of discourse. The lack of an
effective semantic modeling method for use in this analysis prompted the devel¬
opment of the IDEF1/ES described in detail in Section 8. An example represen¬

tation of semantic information represented in this methodology is presented in
Figure 4.2. The process for this step can be characterized by the following four
steps based on our experience and that reported in [Hobbs 1985, 1986]:

1. Concept identification and characterization. This step requires examination
of the individual words and phrases in the text and examination of uses
of synonyms, metaphors, and classification schemes. As concepts tend to
cluster [Hayes 1979], grouping related phenomena references together is
often a good starting point for the concept identification. Once the concept
set is established, it is useful to attempt to separate the set into primitive
versus composite concepts. A concept characterization should focus on

determination of as large a possible set of necessary and sufficient conditions
for a concept without being overly concerned with finding them all.



136

SUBJECT,
DIRECT OBJ.

INDIRECT OBJ.
COMPLEMENT VERB
PREPOSITIONAL OBJ

ADJECTIVAL
ADVERBIAL

PREPOSITIONAL
CONJUNCTIONAL

RELATIVE CLAUSE
X | CLAUSE

<>
MAIN CLAUSE

-ADVERB
ADJECTIVE
CONJUNCTION
DETERMINER
•GERUND
INFINITIVE
INTERJECTION
NOUN

PRONOUN
PREPOSITION

NOMINAL
ADJECTIVAL
ADVERBIAL

COMPARATIVE

SUBJECT,
INDIRECT OBJ'

OBJECT
SUBOR. CONJ
PREPOS. OBJ
APPOSITIVE

GERUND
INFINITIVE'

ADVERB,
NOUN,

VERBAL-
PREPOSITIONAL/

k NOMINAL

ADVERBIAL

ADJECTIVI
NOUN

PREPOSITIONAL- ADJECTIVAL

INDEPENDENT

UTTERANCE SENTENCE FORM J

■o

ADVERB

DJECTIVE
NOUN
PREDICATE
PREPOSITIONAL
VERBAL
BSOLUTE

INDICATIVE
DECLARATIVE
INTEROGATIVE
EMOTIVE

■ SIMPLE
•COMPOUND
■COMPLEX
'COMPOUND COMPLEX

STATEMENT

> -4-

INTERPRETATION
INFORMATION

V

ASBTTB'JCE
MEANING "SITUATION

FIGURE 4.1: CLASSES FOR UTTERANCE ANALYSIS



137

FIGURE 4.2: IDEF1/ES SEMANTIC MODEL.



138

2. From the text, construct as many axioms as possible introducing new con¬

cepts freely as required. The process of axiom construction from the system

description is one of the most powerful means of concept discovery.

3. Determine the minimal structure required for a concept to be usefull in
relation to the other concepts. This allows for a concept to be reused in
other contexts without major modifications.

4. In the analysis for redundancy in concepts rather than focus on selection
of a single concept where duplicates occur use that as a possible indicator
of overlapping ontologies. Attempt to formulate each and show how the
primitive set of one can be characterized in terms of the primitive set of the
others.

The fourth step in the analysis for construction of an NLP or NLG is the identi¬
fication of the basic tasks which the planning portion of the processor or the gen¬

erator must perform. These tasks can initially be identified by the construction
of IDEFO models of the domain [IDEFO 1980]. Past experience with the analysis
of IDEFO models constructed by domain experts with no experience in the tech¬
nology of artificial intelligence has shown that they accurately characterize the
thought processes of the experts, and can reliably be used as a basis for the de¬
sign of knowledge based planning systems [Mayer 1985; Friel and Mayer 1985].
An example of part of an IDEFO model constructed for a machine fault diagno¬
sis expert system is presented in Figure 4.3 as an illustration of the use of this
method.

Using the above four step analysis process will produce the raw data necessary

to build a NLP or an NLG. The actual manipulation required on this data for
production of the system depends upon the tools chosen. If the tool is a case

frame based system such as Language Craft [Carnegie Group 1986], then the
“relation labels” off of the IDEF1/ES model map directly into sentential case
frame concepts. The “entity classes” map directly into nominal case frames, and
the “types” map directly into schema structures.



139

USED AT: AUTHOR: Knowledge Based Systems DATE: 6/18/88 X WORKING READER DATE CONTEXT:

PROJECT: ODMTC-Alpha REV DRAFT

RECOMMENDED
NOTES: 12 3 4 5 6 7 8 9 10 PUBLICATION

Faculties

PLAN DIE
ACQUISTION

Pari Assignment
T

Engineering Design

-U- Change Request
DIE

ENGINEERING
Die Design

:

DIE Cast Dies

CONSTRUCTION

Modeling Equiptment

A 3

A ,

TnyoUT j Finished Dies p

A *

Tooling

NODE: TITLE: DIE ENGINEERING and CONSTRUCTION I NUMBER:

FIGURE 4.3: USE OF IDEFO IN DOMAIN ANALYSIS.



140

4.5 Approaches Recommended

The following sections describe the approaches to NLU, NLG, and DM which
have been developed to serve the requirements of the KAMSS architecture pre¬

sented in Section 3.

4.5.1 Natural Language Processing Approach

In the course of this research, we have experimented with several different strate¬
gies for understanding natural language. For command processing, we have
adapted the concept type driven template completion approach. For rule / axiom
capture, we used a combination of the case frame and type matching approaches.
Under this approach the user interactively constructs his statements within an

interactive editor. At each stage of the statement formulation process the interac¬
tive parser controls the choice of case frame templates which the user can apply.
The semantic interpreter does interactive checking of the semantic categories of
the input, signaling errors when there is an explicit type conflict, and perform¬
ing type coersion when an unclassified description is encountered. Thus, all of our
parsing and understanding is designed to be interactive where inconsistencies and
ambiguities are avoided by the structures provided or eliminated by interaction
with the user. We have also experimented with processing of large texts for spe¬

cific types of information content using a multiple pass parse / interpretation, as

described in the following paragraphs.1

1 My initial experience in this area was with analysis of the problem of auto¬
matic processing of clinical medical record texts in a research program with
Scott and White Medical Clinic. Dr. Guy Bailey served as a Co-Principle in¬
vestigator on the initial effort along with myself Paula S. D. Mayer and Dr.
John Dvorcek, and Dr. Argie Hillis. Our initial attempts to use a strict case
frame approach failed misserably for reasons described in detail in [Mayer
88]. Paula developed a multipass conceptual approach which proved success¬
ful not only for the medical application but also for limited tests in the busi¬
ness rule and manufacturing description processing area. However, as will be
discussed later in this section while this approach does appear to offer sub-
statial promice for KAMSS applications it cannot handle the complex condi¬
tional logic descriptions which were quite common in the manufacturing texts
examined.



141

A conceptual approach to NLU is suggested because of our belief that successful
and efficient interactive discourse processing and understanding depends upon

building a computer system that combines grammatical knowledge with the
expectations and constraints that an analyst brings to the processing of customer
input. Thus, we reject the notion (for the KAMSS application) that a parser can

operate autonomously on syntax, without regard to the domain of discourse.
The prototype parsers constructed by Paula Mayer [Mayer et al. 86 and 87]
during the course of this research used expectations of textual structure built into
patterns based on the information structure of the material, the concept ontology
itself, as well as grammatical expectations or case frames. For these reasons,

the systems would not understand texts which lie outside that domain, such
as newspaper articles or even articles in manufacturing journals. The following
paragraphs describe the basic workings of a conceptual approach to NLU for
KAMSS followed by a comment on the actual potential of such technology for
application in the architecture presented in Section 3.2

The patterns (required by such a system) for system description texts would
expect information relating to a facility or organization, either reported by
the customer, or observed by the analyst. The patterns also anticipate either
the verb and preposition or the verb and case frame cooccurrence structures
that help establish case frames. Since these structures are complex, the parser

must sometimes rely on a scale of probability for understanding the meanings
of lexical items which have a wide range of meanings. The parser, for instance,
would attempt to understand run as referring to a process (e.g., to run a job) or
perhaps a state (e.g., a run on a part); it would not, however, understand “run in
a stocking” or other meanings of run outside of the manufacturing domain. The
current strategy also makes use of domain specific constructs which border on
“sublanguage” phenomena. For example, in manufacturing one almost never uses
a phrase such as “The operation inspection” though that would be grammatically
correct. Rather one normally refers to “The inspection operation”. Taking

2 For a detailed description of the representation strategies and reasoning
strategies of this conceptual approach and its application to clinical medical
text processing see [Mayer 88].



142

advantage of these domain constraints assists in both the parsing (described in
the following section) and the semantic interpretation (described in Section 5).

One of the ways to constrain the complexity of the text processing problem is to
isolate different modes of access / use of the system. In the domain of manufac¬
turing description texts, for example, we structured our set of patterns to expect
text in the first or third person. For instance, we certainly do not expect impera¬
tive intermingled with indicative sentences. In fact, we use canned text generation
to deal with imperatives (e.g. “Sorry, you can’t do that to a computer”). More¬
over, most of our patterns anticipate that text in the third person refers to the
system. Further, these patterns are associated with processing sentence frames
which anticipate certain types of information once the verb phrase is isolated.
Since this information is often denoted by the co-occurrence of verbs and preposi¬
tions or verbs and syntactic functions (such as subject or direct object), our pro¬
cessor is tuned to search for the anticipated semantic casemarkers.

Because of their importance in system descriptions, an NLPS must deal with
time, place, movement, symptoms, system elements, attributes of system ele¬
ments, their relationships, and states. In the development of our prototype, we
have concentrated on formulating the basic concepts necessary for capturing and
making inferences about the objects, their relations, states, and activities. We
have tried to develop these concepts independently of any single parsing strategy.
However, our current parsing strategy is based on a control mechanism as follows.
First, a gross parse of the sentence is made in order to get the essence of its infor¬
mation content and to break complex sentences up into elementary components.
This is accomplished through the use of a heuristic of trying to isolate the verbs
of the sentence and also looking for special composition structures (e.g., if...then,
subordinate or relative clause markers, etc.). Each sentence fragment identified is
sent to be processed by an element of the grammar database and lexicon dealing
with the particular information content associated with that verb in a second pass

of the parser (performed by Language Craft). It should also be noted that this
strategy is heuristically based; that is, it is not immune to giving false results. It
may, in fact, misidentify a word that is ambigious. The robustness of the heuris¬
tics is based on the completeness of the co-occurrence sets and patterns defined.
These sets and patterns have been derived from linguistic analysis on actual man¬
ufacturing system description texts.



143

In the second parsing stage, the processor further parses and builds a data struc¬
ture of the information content into an appropriate case frame. This is accom¬

plished by further analyzing those sentences based on the type of verb or noun

phrase that occurs. For example, verbs which carry locative information can be
grouped into a small set of classes based on the case frames with which they are

used, thus providing the parser with a limited set of patterns. We have found four
groups of verbs that either contain or imply locative information in our corpus

of manufacturing texts. These verb classes are shown in Figure 4.4. These verbs
differ in the type of locative and temporal case frame markers that follow. The
casemarkers, generally prepositions, are grouped into classes based on two crite¬
ria. First, the locative and temporal casemarkers are in separate groupings. Sec¬
ondly, the casemarkers — whether locative or temporal — are also grouped into
classes based upon the syntactic patterns in which they occur. Figure 4.5 shows a

hierarchy of the casemarker’s groups.

In the prototype system, the processing of all utterances uses the notion of a
minimal lexicon. This approach was dictated by two considerations. First of
all, human analysts do not operate with a complete lexicon; rather they have
a fairly well developed capacity for inferring lexical semantic categories from
contextual cues or simply by asking. Second, it is not practical to try to preload
the lexicon since this would require a priori doing the work that the KAMSS
system description capture enviroment was conceived to do. For example, we
cannot incorporate every geographic place name (state, county, city, country,
area, etc.) in the world in the lexicon; further, some places may be indicated by
directional indicators (e.g., “west of here”) rather than by specific place names.

Additionally in the domain of system description capture, as pointed out in
Section 2, a considerable amount of the human effort which goes on in problem
analysis and solution design activities is the creation of names (lexical entries).

Thus, we propose the use of a minimal lexicon with usage patterns and restricted
case frame structures for accomplishing a flexible text processor. For example,
part of the system based on characteristic geographic patterns derived from our

linguistic analysis of the manufacturing texts. Locative information may be
present as either the object of prepositions in verb / preposition co-occurrence

sets or in the various syntactic functions associated with verbs, but both rely on

successfully isolating the verb. Once the verb is isolated, the system will detect



144

Verb Classes

//ve
reside
remain
occur

ship
age

see move

leave
return

transfer
arrive
come

lift

be

FIGURE 4.4: VERB CLASSES IN PROTOTYPE KAMSS.



145

Markers

Locative Markers Temporal Markers

(for) over
(for) as long as
(for) at least

for
(no marker)

since until after after
in when through as soon as

through since during
from for as long as in

before before

during

FIGURE 4.5: CASEMARKERS AND THEIR HIERARCHY IN KAMSS.



146

geographic locative information in one of two ways: by actually matching the
co-occurrence sets in the case of locative information marked by designators or

by eliminating all other possibilities. This elimination of all other possibilities is
used in identifying proper nouns of geographic locales. For instance, if a phrase is
determined to be locative but does not fit a pattern, it is assumed to be a proper

place name. As a result, we have only the smallest lexicon necessary for isolating
sentences with information about place and time. :

The conclusions which we can reach from our experimentation and interaction
with the potential end users of a KAMSS are as follows:

1. Interactive expectation parsing and understanding are sufficient for most of
the description acquisition, query processing, and command interface tasks.
This approach not only minimizes the input requirements of the user but also
provides interactive guidance to the user enabling a tutor like support in all
modes of system use.

2. The fact that our investigation uncovered few written textual descriptions of
manufacturing systems we feel indicates:

2.1. That creations of even skeleton system descriptions in a purely text
mode is difficult because of the complexity and quantity of the infor¬
mation which must be provided and because of the lack of time and au¬

thoring experience of those personnel with the knowledge to create such
descriptions.

2.2. The need for a powerful unrestricted natural language text understand¬
ing system is minimal.

3. There is evidence to the fact that the “copy and edit” form of description
acquisition (as well as knowledge acquisition) is highly efficient. We feel
that the most promising path to pursue in the future is the extension of the
expectation based parsing to cover entire textual passages. That is, we would
like to present to the user textual descriptions of various sizes which have
been preprocessed (i.e., the parsing and interpretation have already been
done) the user could use these descriptions as a starting point. The copying,
editing, and submission of such texts as system descriptions would then give



147

the impression of unrestricted language understanding at an acceptable speed
and with minimal typing input.

4.5.2 Natural Language Generation Approach

The extent of the requirements for natural language generation (NLG) in the
KAMSS dictates an approach which cleanly decouples the domain knowledge
from the generic “language competence” in the generation process. To this end,
we recognize that there are actually three levels of NLG planning. The first level
is strategic planning which is responsible for the definition of the information
content which will be conveyed. The second level is the situational level which
is responsible for determining how the context of the current discourse can be
manipulated to augment or reduce the information to be conveyed. The third
level is a syntax planning level which is responsible for the determination of what
syntax and lexical options exist for communication of the required information.
Underneath these planning levels is a “competence” level which is the actual
utterance generator.

By making these levels distinct, and by having an underlying “competence” level
which is responsible for the actual production of the utterances of as per the out¬
put of the planning levels we can achieve a structuring of the three types of do¬
main knowledge necessary for a flexible NLG capability. Thus, for example in
the MDS subsystem, the same strategic level planning rules for the generation of
the English description of a model could be used for the generation of the actual
code. The diffence between the English output and the simulation language out¬
put would be accommodated in the syntax planning level and the “competence”
level.

The different levels of planning draw on different knowledge sources for the
planning at that level. For example the competence level draws on syntactic
knowledge of the morphology type for word generation and on lexicology rules for
handling such issues as number and tense agreement. The syntax planning level
draws upon the case frame structures used in the understanding component to
determine suitable ways of structuring information presented to it by the strategic
and situational planning levels. The strategic level draws on general knowledge
about:



148

1. How to summarize a system description.

2. How to ask a question.

3. How to answer a question.

4. How to describe a situation.

This knowledge is deeper than it might appear. For example, summarizing a sys¬

tem description requires having a general strategy for deciding what is within
the context of the system. It also requires a strategy for describing what some¬
thing is (i.e., presentation of a physical objects attributes and its relationship to
other physical objects). Finally it requires knowing how to describe how some¬

thing works (i.e. describing the goals, the role or function that each component
plays to cause or effect the actions which achieve those goals). This includes com¬

mon sense strategies such as “when a device is operating the way it should it is
common to associate the purpose of an event or action with the results of that
action. The strategy generator must also be sensitive to the representation of
conditional constraints (explained in more detail in Section 5). As pointed out
in [Forbus 1984] constraints are inherently non-causal in nature. Just knowing
that F = ma, for example, does not allow us to explain an increase in mass as an

increase in force with a corresponding decrease in accelleration. Causal explana¬
tions between essentially independent variables in a constraint should be avoided
by the strategy generator.

Strategies for answering questions can vary from tabular or graphic display of
data directly from the description base to complex explanation of the cause /
effect relations. Relations, for example, that give rise to an observed failing in
a system (in attempting to answer a “why doesn’t it work” question), or the
generation of a description of a possible world situation in which a proposed
system would fail (in attempting to answer a “will it work?” question).

The situation level can be thought of as a filter between the strategic and syn¬

tax planning levels. This level takes into account the resource situation provided
by previous discourse to reduce the amount of redundant information presented
to the user. This level also includes rules which govern textual and stylistic con¬

straints (e.g. avoiding redundant use of words when alternatives exist, variations



149

in the order of the clauses produced, or over/redundant specification of entities).
Some of this kind of processing is also provided by the strategic level in that the
knowledge about how to generate text contains information on how to use cohe¬
sive structures such as pronouns or other forms of anaphoric reference to refer
back to previously presented information.

As a part of this research we have developed two text generation systems. The
first works off of a model (specifically an IDEF1 information model) and con¬

structs an English text description of the assertions which that model makes
about the world it purportedly represents. The second constructs a textual sum¬
marization of a system description based on an instance specification based on an

ontology in the description knowledge base. The conclusions we can make based
on the results of our research development regarding text generation are as fol¬
lows:

1. Generation of acceptable natural language output is highly context depen¬
dent.

2. The more clearly defined the context for text generation the easier the task
of producing acceptable text.

4.5.3 Discourse Management Approach

The discourse management approach is directly influenced by the underlying
KAMSS reasoning mechanism and the overall system structure. The kernel
structure within KAMSS is based around the concept of an analyst in a box.
That is, the user is expecting the system to react to his input the way an expert
systems analyst would interact with him. This leads to the following requirements
on the discourse manager:

1. The discourse manager must be aware of the passage of time:

1.1. Between the receipt of a piece of information and the response (if any)
to that information,

1.2. Between the issuance of a request or query of the user and a response,

1.3. Since the beginning of the session,



150

1.4. Since a request for a particular service.

2. The discourse manager must be able to focus and direct the interaction
during all modes (description acquisition, analysis and modeling),

3. The discourse manager must be able to support the issuance and manage¬

ment of multiple services during all modes.

Requirements 1, and 3 above are primarily monitoring in nature and can be
addressed with traditional operating system techniques. Therefore we will focus
our attention on Requirement 2. We propose addressing the focusing of an
interaction by providing the discourse manager with access to a model of a
typical usage scenario for the task at hand and the ability to determine when that
model is being tracked. In analysis of actual user interactions with analysts, it
is often difficult for the human analyst to determine when the user is wandering
in the discourse. There are many different kinds of focus shift. Some of these
are natural discourse mechanisms for human to human communications. For

example, often a user will elaborate in detail past situations or events (war
stories) in order to emphasize a relation which he believes is relevant. We believe
that such problems, which arise in interactive story telling, will.tend to be rare

if the proper description acquisition framework is provided for accepting the
“axioms” inherent in the experience communicated verbally by the “war story”.

There are indicators which can be triggered upon. For example, repeated refer¬
ence to “the problem” or phrases of the sort “what we need is” typically are used
to point blame or describe solutions. Use of phrases such as “requirements of”
and “requirements for” again generally indicate change of focus from the cur¬

rent system description to description of a proposed solution. Repeated reference
to specific persons or use of past or future tenses of verbs can also be indicators
of focus shift. We also propose providing a concept database which can be pro¬

grammed to contain “concepts” which typically indicate focus problems (refer¬
ences to “family,” etc.).

We also will be able to use the “manufacturing” knowledge of the system and the
user profile (title and functional responsibilities) to help identify change of focus.
As we are proposing a knowledge representation scheme which is indexible by
viewpoint (see Section 3) we can detect reference to objects which are “outside”



151

of that viewpoint. These references cannot be off hand discarded since they
may be essential components in the users understanding of the interface of his
domain to another. The KAMSS (at least in the description capture mode) will
be attempting to build a representation of the “system” being described. If a
large number of disjoint objects are described with no relation between them
established, then the system can assume that there is a focus problem with
the input it has received. What can be done about this is to periodically have
the system attempt to generate a “scenario” which delineates a “flow” through
the system description focusing on situation entailment. If we represent each
situation in that network as a node, then a crude (but reasonably effective)
strategy is to ask about the disconnected components of that network.

The conclusions we can make based on the results of our research development
regarding discourse management are as follows:

1. The strategy employed must be flexible, allowing extension by the mainte¬
nance user for a specific site situation.

2. The focusing problem is by far the most difficult in theory, however, in prac¬

tice the use of scripts of text sentences and hypertext annotation facilities
with a human analyst support facility can create an effective substitute.

4.6 Summary

In this section we reviewed the of natural language processing technology called
for in the KAMSS architecture presented in Section 3. We overviewed the natural
language processing problems for KAMSS in three basic areas:

1. Natural Language Understanding (NLU),

2. Natural Language Generation (NLG),

3. Discourse Management (DM).

Even though the applications of these techniques in KAMSS are restricted consid¬
erably by the modes of operation and the presumed domains, the KAMSS archi¬
tecture still admits to the most agressive use of this technology proposed to-date.



152

An important concept presented in this section was that the analysis required to
build the data necessary to construct a natural language interface is also required
to design the knowledge representation structures within KAMSS. That is, even if
we were not considering a natural language interface to KAMSS, we would need
to apply the methodology presented herein to identify the knowledge structures
needed to capture and reason about the system descriptions, designs, and models.
In retrospect, it may seem obvious that the way one identifies the concepts
that people use in their descriptions of a situation is to analyze the language
construct they use when they describe those situations. On the other hand, the
discovery that the methodology developed could (with minor additions) serve
both roles, came as quite a surprise. We presented a methodology for performing
this analysis. In Section 8 we will present two modeling methods which can be
used to augment the described analysis methodology.



153

5. ONTOLOGY AND REPRESENTATION

STRUCTURES FOR KAMSS

Section 2 described the overall cognitive processes involved in decision making
using models and simulation analysis. Section 3 described an architecture for a
knowledge based system to support this process based on the concept of mimick¬
ing the capabilities of the analyst. Section 4 described the techniques required
to support the processing (acquisition and generation) of the syntactic form of
inputs to (and outputs from) such a system. The first part of this section inves¬
tigates the important issue of how the system is to be aware of the “meaning” of
the symbols it is acquiring. The methodology for semantic theory development is
presented in the form of a small set of concepts and a collection of operators for
construction of well-formed conceptual structures which is intended to provide a

needed generative theory of the structure and limits of meaning acquisition and
use. The second part of this section describes a set of the key ontological issues
raised by the various knowledge representation and reasoning problems associated
with the KAMSS. We particularly focus on the problem of representing descrip¬
tions of both the products and the systems in an engineering or manufacturing
environment. We then show how these issues can be addressed with the concep¬

tual structures presented.

An important concept that is introduced is the nature of a description as a

collection of facts. Our experimentation with attempting to capture system

descriptions, object descriptions, design descriptions, and context descriptions
over the course of this research convinced us that the available representation
schemes were inadequate for any of these tasks. The schemes available to date
force descriptions to be constructed as instantiations of prototypical structures.
Besides forcing essentially an infinite categorical scheme onto the description
forming process the existing schemes must make arbitrary distinctions between
the description of a real world situation and the description of the terminology
used to make a discription. We propose a simpler notion of description as a

binding of facts and propose a language for constructing those descriptions.

In this section we discuss the importance of having a formal ontology as a basis
for the design of a representation system which can support the acquisition, stor¬
age, and reasoning capabilities of KAMSS. We discuss the relevant work in the



154

area of formal semantic theories and argue for the position that any system of
the scope and flexibility of KAMSS must embody a methodology for generation
(or at least selection) of a relevant semantic theory based on the task require¬
ments. However such a capability while conceivable, is years away from imple¬
mentation. We therefore present a theory of natural language semantics which
can form a solid basis as a default theory on which to build a representation for a

near term KAMSS. This theory is referred to as situation semantics. After a dis¬
cussion of the basics of this theory we identify a number of limitations with the
current state of this theory and suggest ways in which these limitations may be
overcome.

We will focus the discussion of the basic ontology issues of KAMSS around the
problem of understanding of utterances presented to KAMSS. The rationale be¬
hind this focus is that the capabilities required to understand and store the infor¬
mation in these utterances exceeds that of the other performance aspects of the
KAMSS system. The types of utterances implied by the usage scenarios described
in Section 3 are of an extent which far exceeds those normally accounted for in
the traditional theories of semantics. For the purpose of the majority of this dis¬
cussion, the term “utterance” will be used to refer to a set of symbols which com¬

municate a usable quantum of information. Thus a packet may be a sentence, an
embedded phrase, clause, or sentence within a sentence, a symbol on a sketch, or
an entire passage of text. Discounting a sketch input, the natural language struc¬
tures range over:

1. Indicative statements, including those with definite descriptions, and complex
forms particularly conditionals. We will focus on the use of indicative
statements as a mechanism to convey facts which describe a situation.

2. Questions, focusing on the types which query for a fact and those which
postulate a situation.

3. Commands, focusing on those whose use is to bring about a situation.

The goal of this section is to present a unified framework for describing the inter¬
pretation of such packets within a known structure of referents as well as a dis¬
covery mechanism for acquiring interpretations in situations where the acquisition
of the referents is the primary activity (actually the predominant phenomenon).



155

The underlying assumption of this section is that there is not one correct the¬
ory of meaning or interpretation. Rather such theories are to be considered as

systems. Such systems may be well formed or ad hoc. They may be useful or
academic. But for an intelligent agent to understand, communicate, and reason

about his environment, he must have the capability to formulate/learn/adopt (or
adapt) different theories at different times. We believe this capability to be pri¬
mary to language skill acquisition. However, discussion "of this last point is out¬
side the scope of the current section.

The first step in the process of modeling simulation and decision making outlined
in Section 2 is that of the customer understanding his (or her) manufacturing
situation. There are several aspects of this “understanding” or knowledge about
the manufacturing situation which are of interest. The first is the question of how
the customer acquires or updates understanding. Another is related to the first,
that being how a customer internalizes this understanding. The third aspect is
how this understanding is conveyed, using language, to the analyst.

We will focus in this section on the issues of semantics relevant to the conveyance

of knowledge about a manufacturing situation between a customer and an ana¬

lyst. We will refer to the totality of such information as the “System Description
(SD).” In this context, semantics refers to the delineation of what the customer
“knows in knowing what utterances of his language mean” [Barwise and Perry
1983]. Implicit in this discussion we assume a type of system description which
is radically different from the basic ideas behind formal system specifications in
that first of all the system description is not assumed to be complete (i.e., SD is
factual not actual) and that only a small portion of the sentences within these
description are not efficient.1

It should be recognized that a system description as a representation of the
customer’s understanding of his manufacturing situation is necessarily incomplete.
We have all experienced knowledge about a situation for which even natural
language forms too narrow a bandwidth to communicate. Even when we extend
our system descriptive language to include engineering drawings, renderings, and

1 That is, most of the “claims about the world” which are made in a system

description are dependent upon who made them and when they were made.



156

sketches, there are still important language mechanisms which the human to
human communication system uses which are unavailable to use (such as gestures,
inflection, tone, etc).

From the onset, we must recognize that the communication mechanisms upon

which we will rely are faulty. We must also recognize that the retrieval mecha¬
nism of the customer and his language competency (i.e,, the ability to translate
what he knows into written text) have both individual and inherent limitations.
Thus any representation which is directly constructed from a natural language
formulated system description must be assumed to be factual but not actual.
Any system which would attempt to capture such a description and use it as a

basis for the design of a model to answer questions about the system must be
capable of dealing with the inherent incompleteness of the description and must
have the capability to both request additional information as well as to design
around situations in which the missing data was unavailable (i.e., the customer
does not know and cannot cannot easily find out). It is for this reason that we
have attempted a more basic epistomology than is normally the case. We want
the KAMSS to be able to use utterances as a source of perceptions, the classifi¬
cation of which (into the ontology) may be held up until further information is
acquired. Any attempt to characterize the information content of a text requires
the establishment of a world view or structure of reality. The approach to be pre¬

sented takes a view which is strongly influenced by the works of [Ramey 1983]
and [Barwise and Perry 1983] and previous work by this author [Mayer 1983].

5.1 Relevance of Consideration of Semantics

An interesting property of theories of semantics is that they are themselves
systems (by the definition ascribed in Section 2). Semantics as a discipline is
an area of study which takes as its goal the construction of theories of meaning
and meaning related phenomena [Fodor 1977]. What will be the concern of this
section is both “a” semantics (i.e. Situation Semantics) and the hypothesis that
one must be concerned about a methodology for semantics development. The
importance of “a” theory of meaning (i.e. “a” semantic theory) is that it allows us

to be precise in our use of terms such as “a system description”. The importance
of a methodology for developing a semantics is that it provides insight into how
to construct a mechanism which mimics how an individual understands, models,



157

and communicates knowledge, observations, and experiences. In addressing
“semantics” it should be recognized that a very dangerous undertaking is at
hand. For, on the one hand, the intuitive (and widely used) notion of the term
“semantics” used in reference to the meaning of symbols in a symbol system is
that meaning which a large majority of people would ascribe to those symbols.
However, the formal definition of what it is to provide a theory of semantics
(often referred to as model semantics) is rooted in the construction of abstract
set-theoretic based models on which the primitives of the symbol system are

mapped in some consistent fashion. The basic mapping and the properties of the
underlying model are then used to ascribe specific interpretations of the rest of
the symbol set and of well formed combinations of those symbols.

By analogy, we may consider the user of the KAMSS to be the primary sensory

mechanism for the KAMSS organism. As such, it is imperative that we under¬
stand the processing which goes on between that mechanism’s perception and the
language with which he communicates. We must also recognize the viewpoint of
the KAMSS as an “intelligent” entity. The KAMSS unlike its human counter part
has only one access to information from the outside world. That access is through
the symbols input from its terminal device. When the KAMSS makes observa¬
tions, it is making observations on the symbol stream coming to it or which has
come to it over the terminal. Thus, the theory of semantics with which we are

concerned must be viewed from the back side of the screen. The key question
then is “What is KAMSS ‘seeing’ and what sense can KAMSS make of these ob¬
servations?”

The practical relevance of study of a methodology for constructing a semantic
theory comes from the need to represent the diversity of information commu¬

nicated to the KAMSS through the discourse (or series of discourses) between
the users of the system and the system itself. The utterances and renderings
(sketches) have as their primary purpose the communication of information about
the system, its problems, the desires of the user and so forth. If we are to capture
this information in some form then we must have a structure for expressing the
meaning of such expressions as:

1. The robo-carrier moves autobodies from the hot dip area to the paint area.



158

2. The robo-carrier is a type of induction motor conveyor with programmable
path control, collision sensors and a 12 foot bed.

3. EAMRs are created by engineering for long lead time items in order to allow
material sufficient acquisition time.

4. When the part is loaded the table is indexed and the machining is initiated.

5. What is the expected thru-put of this system?

6. Can this system be set-up to run at 80 jobs per hour?

7. Prepare a simulation model.

A large part of the analysis process of the human analyst is focused to disam¬
biguation of basic understanding of the spoken words of the customer with the
customer’s understanding of those words. Sentences like #1 above carry both se¬

mantic information (that being the information about the relation between two
objects in the real world) as well as pragmatic information (that there is an ob¬
ject in the real world referred to by the label “robo-carrier”). Sentences like #6
above can be interpreted as postulating or asking for the postulation of “possible
worlds” which have certain desirable properties. Sentence #2 above is an example
of a “description” of an object which can be interpreted as a collection of facts or
as an extension of the basic concept structure of the underlying semantics.

The point of all this is that it is unlikely that a single semantic theory (even sit¬
uation semantics) will account for all of the meaning and interpretation repre¬

sentation necessary to support a KAMSS. Therefore, we expect that the seman¬

tic theory must be flexible enough to be able to assign multiple interpretations
to a syntactically unambiguous utterance, or else the KAMSS must be designed
with the idea of having multiple semantic theories which it applies as required
by the situation at hand. This requirement unfortunately rules out much of the
formal work in model-theoretical and truth-conditional semantics which we had

hoped to build upon as all of these systems are designed under a monotheoretic
assumption. Even if a unifying theory was built its application within a practical
KAMSS would include a constant extension of its basic structure. Thus, just as



159

the KAMSS must incorporate the knowledge of an expert modeler to design mod¬
els to answer questions posed against a system description, so also must it contain
the knowledge of methods for formulating or at least extending its underlying ba¬
sic semantic theory (or theories as the case may be).

The final rationale for investigations into the methodology of semantic theory
development for the task at hand is to understand the influence on these theories
of the assumed reasoning mechanism associated with the theory. It is important
to know a priori what constraints such reasoning mechanisms might have on

the meaning representation schemes and vice versa if we are going to be able
to encode in KAMSS the intelligence to be able to select between competing
semantics for a particular utterance in a particular situation.

The issues delineated in this section identified several characteristics (needs)
which a theory of semantics must possess in order to be useful for the KAMSS.
One other issue has to do with the storage efficiency of the possible representa¬
tions required to denote instances of the SD semantics in a practical setting. An¬
other issue has to do with the ease of extension of the theory. Not only should
new meanings be easy to represent, but also new types of meanings. This im¬
plies that the chosen theory should support a discovery mechanism and hot just
a classification mechanism. A final important issue is the relation between the
methodology for semantic theory development and the reasoning, and informa¬
tion access activities which must go on in the various modes of operation of the
KAMSS. These turn out to be closely related but very different problems. The
design of a flexible and extensible representation for encoding characterizations,
definitions, and assertions is a separate issue from the use of these encodings in a

particular reasoning process. Both of these tasks are distinct from the issue of in¬
dexing of individual structures in memory (or on disk) and the definition of areas
for caching collections of these structures for task execution efficiency.

5.2 Orientation Relative to Existing Theories

Until only recently the issues of semantics were largely relegated to the study
of philosophy, mathematics, logic, and theology. This section will not attempt
to provide a complete overview of the evolution of theories of meaning nor even

a complete classification of such theories. Such a treatise would be a major



160

development in and of itself. Rather, the treatment of several of the major works
which have influenced the thinking reflected in this section will be reviewed.

Theories of meaning can be broken into major classes. Traditional semantic the¬
ories focus on the meaning of symbols in a formal symbol system. Traditional
semantics tended to focus on the problem of entailments between declarative sen¬

tences. The logical systems with which we are most familiar (e.g., propositional
and predicate logics) are based in the tradition of sentence entailment manipu¬
lation [Barwise 1985b; Fodor 1977]. The lineage of this approach to semantics
includes Frege, Russell, and Tarski. The methodology established in model the¬
oretic semantic development which resulted from this work has served as a foun¬
dation for work in understanding and formalization of the semantics for a wide
variety of formal languages including programming languages [Stoy 1985].

It is only recently that linguists joined the act. With the emergence of generative
grammars came a ground swell amongst linguists to carve out a rightful claim for
theories of meaning as a legitimate part of the study of language. The successes

in generative grammars laid the groundwork for the belief that the natural
languages did have underlying formalisms which would permit rigorous semantical
analysis despite the apparent vagueness, ambiguity, and inconsistency of the
surface forms. Their claim certainly has merit in that traditional theories of
meaning focused almost exclusively on declarative statements (e.g., Socrates
is a man. All men are mortal. Therefore, Socrates is mortal). Normally the
traditional theories do not consider the “meaning” of commands, questions, or
really even assertions (e.g. From - I assert that Socrates is a man. - and - I
assert that all men are mortal. - it does not follow that - I assert that Socrates

is mortal.) In fact the traditional logics focus exclusively on material implication.
Armed with the tools of generative grammars, linguists embarked on a series of
developments in the field of semantics with the work of such notables as Fodor,
Katz, Montague, Lakoff, and Chomsky following the generative grammar theme.
Another school Austin, Searle, (and later Katz) followed the speech acts theme.

The theory of meaning which has been most influential to our efforts is the “Sit¬
uation Semantics” [Barwise and Perry 1983]. We are attracted to this system
because the two basic underlying assumptions (that meaning is relational, and



161

that meaning is distinct from interpretation) concur with our own intuitions re¬

sulting from observations made on system descriptions as communicated verbally
and through written texts. Thus, we see this particular theory as applicable in a

wide range of KAMSS activities. Situation semantics represents an instance of a
semantic theory which is useful as a starting point for the development of a repre¬

sentation system for KAMSS. It is neither right nor wrong, only well formed and
useful in a particular task. We believe that for an effective KAMSS to be con¬

structed we must ultimately understand how to embody KAMSS with the capa¬

bility to formulate semantic theories of its own. What will be presented in the
following sections is a summarization of the major points of that theory, a reason¬

able notational representation of the basic principles of that system, some minor
extensions, and a discussion of the implications of such a theory for knowledge
representation and reasoning within the KAMSS.

5.3 Systematic Relative Meaning (SRM):
A Methodology for Semantic Theory Development

This section is concerned with the description of the process by which semantic
theories are developed. As such we are concerned with the process used by the
philosophers, mathematicians, linguists, or AI researchers to evolve a semantic
theory. It is our belief that, through the study of this methodology we will
acquire insight into:

1. How to embody KAMSS with at least a rudimentary capability to extend or

revise its underlying semantic theory.

2. How the person in a manufacturing domain comes to build an understanding
of that domain.

3. How the manufacturing systems analyst can formulate models for problem
solving in an unfamiliar domain.

Most often a semantic theory development process starts with the observation of
a shortcoming or failure in an existing theory. For example, the apparent failure
of Frege’s principle of “Compositionality” in the following example was one of the
issues that situation semantics was attempting to overcome. Given the following
two statements:



162

1. John made Mary bake a cake.

2. John made Hitler invade Poland.

and given that the first is true then we can determine (using the substitution of
equals and the principle of compositionality) that John should be held responsible
for the invasion of Poland.

Such problems can be as simple as a “class clash” in which an observation fails
to fit within an existing class structure, or as insidious as a determined inconsis¬
tency or incompleteness in the underlying axiomatic basis of an existing semantic
theory as indicated above. In general, what is developed is a set of “case” situa¬
tions which the current theory cannot accomodate. Initially an attempt is made
to adapt the existing semantic theory in some natural way (such as to bend the
rules of the existing method or to ignore the problem phenomena). However, if
the problem situation becomes one of the important focuses of the effort then a

new concept or construct must be introduced. This process normally proceeds
from an abstraction of the case situations compiled. However, it may be driven
from artifacts of the existing semantics formalism (i.e. insights provided by the
math or logic basis of the existing theory.

After compilation of sufficient case situations to form a motivational basis for a

new concept (Introspection) there are actually four steps to the introduction of
a new concept [Benzon 1987]. The first is the characterization of that concept
(Creativity). The second is the refinement of the characterization into a defini¬
tional form (Rationalization). The third is the introduction of the concept into
the existing structure in a consistent fashion (Formalization). The fourth is the
construction of proofs of consistency and completeness of the existing system aug¬

mented with the new concept (Discovery).

Relative to the Introspection step there is the inherent question of whether a
KAMSS can be endowed with the capability to notice the uniformities. The
essential confusion is not centered on the mechanistic ability (though algorithmic
considerations must ultimately be considered) rather the issue of the formulation
of the motivational triggers that would result in the initiation of the noticing of
(or search for) similarity is the central issue.



163

The Creativity step is of specific interest to our method because of the current
lack of understanding relative to the process by which phenomenologically naive
concepts get transformed into abstract concepts. In the human experience phe¬
nomenologically naive concepts of groups of similar objects existed long before the
abstract concept of a set. Even this example brings to light another issue, that
being the fact that phenomenologically naive concepts can be both concrete (e.g,
shiny hard metal) and abstract (e.g. groups of similar objects). Precisely bow
much of this background information is necessary to embody the KAMSS with an

effective methodology for semantic theory construction is not known at this time.

Rationalization can initially be considered as a process of Divide and Conquer.
Through this process axioms for membership are formulated. These axioms can

be viewed as establishing links between the concept to be defined (definiendum)
and the concepts used to define it (definiens). From a methodology point of
vie*w we note that the creation of these rationalizations has as its completion
criterion the adequacy required by the theory in which they are used. We note
that in most formal theories the property of functionality is considered to be
an acceptable completion criterion. It is probable that this criterion can be •

used as an initial criterion in KAMSS. "We also note that the rationalization

process is recursive, the definiens having their own rationalizations to a point
where a primitive of the theory is reached. From observation of this process we

can also note that there are situations in which the axioms for membership are

both necessary and sufficient. In these cases the definiendum and the definiens
cam be considered to be at the same level of abstraction. In other cases, the
axioms of membership are somewhat weaker only providing necessary or sufficient
conditions. In these cases the definiendum is generally considered to be at a

higher level of abstraction than the definiens. In the cases where the definiens are

at a higher level of abstraction than the definiendum an error' in method is noted.

The Formalization process can be viewed as one of establishing the axioms

of membership for a new concept. These axioms often go hand in. hand with
those for the Rationalization step. They are also driven by the theorem proving
activities of the Discovery step.

In the following subsections we present a structure for characterization of the
elements of a semantic theory which can be used as. the basis for application of



164

a reasoning process based around the methodology sketched above. In Section 6
we will illustrate the use of this classification scheme.

5.3.1 Basic Building Blocks

What we are proposing is a system of abstract objects which can be used in a

method for development/extension of a semantic theory. These objects can be
used to classify the component of a semantic theory. The basic building blocks of
the methodology axe properties, bindings, and stakes. The unique characteristic
of the method is that we do not postulate a priori a specific instantiation of
what constitutes a property or binding. In fact, the method presumes that the
discourse itself, or the thought process of the individual person, establishes the
grounding of these concepts. Thus, what may appear as a property in one frame
of reference could very well appear as a binding of a collection of properties in
another frame. Similarly, the label used to denote a binding in one frame may

well appear as a property denotation in another frame.

5.3.1.1 Properties

For purposes of the methodology properties characterize the atomic elements of
perception at a spatiotemporal location and discourse situation. The basic notion
of a property is something perceived by an organism. Properties axe the basis
for organism attunement to uniformities. These elements are not assumed to be
uniform across individuals nor even necessarily uniform within an individual.
The cognitive/physiological processes involved in the discernment of properties
is not an issue which we attempt to deal with. Nor are we necessarily concerned
with whether or not the objects in the real world “possess” properties. It is the
individuals’ perception of reality which is of importance (not reality itself) in the
understanding and common sense reasoning processes described in Section 2.

We leave it to the tool (instrument) builders to augment our perception capabili¬
ties. 2 We only note that whatever that process is, it apparently has the charac-

2 The related term “attribute” seems to carry with it the notion of acquisition
via a tool. For example, the term “age” when applied to an object is a charac¬
teristic which cannot be “observed” in the same sense as “color”. In fact with
out an associated “frame of reference” and a tool to manipulate/compare mea¬
surements in that frame the attribute cannot be perceived.



165

teristic of being able to operate in a recursive fashion. For example, I may refer
to a property of an apple of being red, or of having a color property whose value
is red. I may also refer to a property of red of reflecting light within a specified
range of the electromagnetic spectrum or of being the result of the combination of
certain physical substances.

Normally, properties enter the semantic theory as predicates of some sort. If the
predicate is functional then it is always advisable to use a function. Otherwise, or
if there is doubt a simple predicate will suffice.

5.3.1.2 Bindings

Bindings are considered to be “links between.” Examples are, a link between two
properties, between a property and itself, between any collection of linked prop¬

erties or between links themselves. A linkage between a collection of properties
which persists within the frame of reference of the discourse situation can be used
to supply the referent to a label which denotes an object in the domain of dis¬
course. Thus, a cluster of properties which remain more or less stable over time is
taken as our perception of an individual, object, system, etc. Rather than taking
the classical view that an object (individual, etc.) is anything to which properties
can be ascribed, we view as primary the recognition of the properties and view
the binding (the time persistent association) of a collection of those properties as

the recognition of the object. What are traditionally referred to as “relations” be¬
tween objects then become bindings between bindings of properties. This allows
us to refer to links between relations (links between links between property links).
It should be noted that we are not trying to say that objects are bindings, or that
relations are bindings. Objects, relations and many other things exist in the real
world. Thus, we do not ascribe to the metaphysical theory that reality is only in
the mind. However for a semantic theory, classes of things which can be defined
as types of properties and bindings provide the handles for representing such real
world objects. These abstract objects (not the real ones) are what ultimately do
the work for us in building representations and using those representations to per¬

form inference. What we are interested in is how information about reality can

be so structured that we can imitate the semantic theory discovery and extension
mechanisms which are minimally required for operation of the KAMSS.



166

From a construction point of view concepts of the binding type can enter the se¬

mantic theory as either multi-place predicates or some similar structural element
(for example as a type). From a methodological point of view it is important to
note that when a concept has internal structure or can occur in many different
forms this normally implies a binding. As will be seen in Section 6 we believe
that this is one of the pragmatic semantic clues that a human analyst uses to ex¬

tend his ontology.

5.3.1.3 Stakes: A basis for reference and ordering

Before talking about higher level constructs we must first address the issue of
how to treat uniformities. To be attuned to a uniformity implies the need for
referent and ordering concepts. We refer to instances of the first concept as
a stake. The notions of time and place (or location) provide examples of two
phenomenologically naive stakes. For example, it would appear that any notion
of binding (or higher level concepts such as sets, relations, events, etc) must
incorporate some element of time (an apple is not red when it is green or when
it is rotten). The notion of assignment is another instance of the stake concept,
especially from the point of view of the process of reasoning outlined above.
Another important stake is the “individual”. In Situations and Attitudes we see

the use of this stake as a primitive concept which results in the inability of that
semantic theory to individuate the parts of an individual. Stakes are nothing
more than ways of identifying, collecting and ordering properties and bindings.
Thus the notion of a set as a collection of objects which can be referred to as a

unit is a type of a stake.

We look to the work on formalization of set theory for insight into the methodol¬
ogy for stake formulation in a semantic theory. In these works we find the follow¬
ing general categories of axioms required to axiomatize sets:

1. Identification Axioms,

2. Construction Axioms,

3. Existence Axioms,4.Structured Axioms.



16

Identification axioms characterize the properties of the individuals which can

participate in a “stake” (e.g. set), if you will the primitives relative to a stake.
Construction axioms characterize the way the collections and orderings can

be built up. In ZF set theory this includes the axioms of “Pairing, Powerset,
Replacement, Separation, and Choice”. In KPU this would include Ao-Collection
and Separation and Pairing. Existence axioms normally describe the default
case of no elements and the infinite element cases. Finally, the structural axioms
cover the issue of what constitutes the extension of a stake and restrictions on

the membership in a stake. The methodology we are proposing would require
the formulation of each of these axiom classes during the formulation of a stake
concept. In practice this is normally accomplished via the definition of a new’

stake in terms of an existing one (the most popular choice being “sets”). As we

shall see in the context of continuous concepts this is potentially a dangerous
approach.

The intent of the above outlined structure is to serve as the basis of a method¬

ology for developing theories of semantics or more practically for the design of a
knowledge component of KAMSS wrhich could extend the built in semantics of the
description acquisition and reasoning components of that system. With such a ca¬

pability we do not need to restrict ourselves to speak to “a” theory of semantics.
Rather, we can refer to a system of semantic theories interacting (and possibly
evolving) during a discourse situation. This view' of meaning implies that the in¬
dividual deals not with a single theory of semantics, but rather is involved with a

constant process of semantic theory generation.

The implication of this being that if we hope to duplicate an individual’s under¬
standing process we must be able to construct a system which is not based on

a single semantic theory but rather one which has the capability to generate a

useful theory of semantics for a particular situation. What this leads to is the
conclusion that “reasoning” cannot be separated from semantics. Within this
framework, the notion of reasoning can be viewed as a discovery activity. Given
a perception (which may be of a sign or a symbol) the reasoning process must as¬

sume that that perception stands for something, or it discards it. It may “stand
for” itself, a property, a binding, or a complex assemblage of such things (e.g., a
situation). One feasible approach w'hich the discovery process might take is then
one of assigning to the perception initially as a “binding”. Once the perception is



168

assigned to a binding then the discovery process can pursue the investigation of
the implications of that binding. If the binding appears to be “inconsistent” with
other assignments which have been made or which are made as time proceeds,
then the assignment may be abandoned and an alternative assignment attempted.

Note that this process in the case of the human experience is continuous. As pre¬

viously noted, one of the difficulties in achieving convincing machine intelligence
is that the machine’s “life span” is generally measured in seconds or minutes.
(Actually our existing knowledge based systems compare reasonably well intel¬
lectually against other organisms of this average life span.) Note also that the
notion of consistency (or inconsistency) is predicated on the matching mechanism
employed by what we will refer to as the “logic” mechanism. That is, we distin¬
guish between reasoning as a discovery process and a “logic” which is a mech¬
anism which supports that process. Traditionally the term “logic” refers to a

“proof procedure” (e.g. the axioms and rules of inference). Where difficulty has
arisen is in the confusion of the proof procedure (or mechanism) with the reason¬

ing process it is intended to model. We believe that it is as crucial to separate
these two concepts as it is to separate the interpretation of a sentence from the
meaning of a sentence [Barwise 1984]. The need to distinguish “reasoning” from
“logic” has been recognized by other researchers most notably Harman [Harman
1986]. However, most other views on this subject attempt to eliminate one or the
other (e.g., Harman discredits logic, Kolwalski discounts reasoning.) Our view is
that both are essential for the operation of an “intelligent” mechanism.

5.4 Situation Based Semantics

At the top level, situation semantics as a theory of semantics attempts to account
for the following phenomena [Barwise and Perry 1985]:

1. Entailments between sentences:

That is, the ability of statements in the form of sentences or sentence frag¬
ments to provide material implication of new knowledge.

2. External significance of language:
Refering to the relation between language and the information carried by
expressions in that language. The important distinctions to recognize are

that:



169

2.1. Information is prior to language: This implies that a theory of meaning
must have a way to represent the “way the world is” in order to denote
the information that an utterance is intended to convey.

2.2. Information is carried by language: All kinds of utterances convey

information. The restraint that traditional logics place on the meaning
of a statement (its truth value) unreasonably limits the information that
can be conveyed by that statement. 3

2.3. Information is not meaning: Situational semantics proposes a relational
theory of meaning that sees meaning as systematic relations between
types of situations. It is the “meaning” of utterances which allows
them to carry information. The methodology of situational semantics
is to analyze the information conveyed to investigate the meaning
of sentences. The extensions in this section attempt to extend the
application of this methodology to utterances beyond simple indicative
sentences.

3. The productivity of language:
The ability to understand an essentially infinite number of expressions
formed from a finite set of words. The important aspect of productivity
which situation semantics accounts for is the apparent failure of Frege’s Prin¬
ciple of Compositionality. The solution is essentially the result of distinguish¬
ing between the meaning of an expression and its interpretation in a particu¬
lar utterance.

3 This point is particularly relevant to the KAMSS problem. Since we want
to be able to represent the information conveyed in an interactive discourse
which includes utterances other than simple indicative sentences. Also the
goal of the system description capture is the assimilation of a representation
of “how the system is” not what is the “truth” of the utterances produced.
We would also like to have a uniform representation of this kind of information
so that we can consistently handle both the implication of “the robo-carrier is
an induction motor conveyor” and “induction motor conveyors are inaccurate
positioning devices” as well as the conditional constraint [Barwise 1985a] “If
the buffer size of the hot dip tank is not increased, a production bottleneck
will occur at the loading station.”



170

4. Efficiency of language:
The ability of a particular utterance to be used at different times and places
by different people to carry different information. The central point of this
phenomena is that meaning underdetermines interpretation (the property of
having the same meaning but different interpretations). Barwise and Perry
[Barwise and Perry 1983] distinguish between linguistic meaning which is
the interpretation of an expression fixed by the language and the “context
of use” which is the interpretation of an expression fixed by its use. Factors
of the context (sources of efficiency) that are exploited to get from linguistic
meaning to use meaning include:

4.1. Exploitation of the discourse situation through indexicality, which is the
term for the dependence of the interpretation of an utterance on facts
about the discourse situation.

4.2. Speaker connections and reference which includes:

4.2.1. Uses of names,

4.2.2. Deictic use of pronouns-meaning of words like “that” to refer to
things the speaker is connected to.

4.3. Referential uses of tense,

4.4. Exploitation of resource situations by their being:

4.4.1. Perceived by the speaker,

4.4.2. The object of common knowledge,

4.4.3. The way the world is,

4.4.4. Built up by a previous discourse.

5. The perspectival relativity of language evident from the facts that:

5.1. Different speakers are in different discourse situtations.

5.2. Different people have different causal connections to the world.



171

5.3. Different people have different resource situations available to them.

6. The ambiguity of language:
By recognizing that expressions are uniformities across certain kinds of
situations it can be seen that ignoring contextual references, connectivities,
and resource situations causes apparent ambiguity.

7. The mental significance of language:
This phenomenon refers to the fact that utterances carry information about
the state of mind of the speaker. That is we can (and do) learn about the
speaker by both the utterances he uses and the information he communi¬
cates. The important contribution which situation semantics makes in this
regard is that external significance can be shown to have priority over mental
significance in that mental significance is adequately explained by external
significance.

Situation based semantics (a la Barwise and Perry) focuses on indicative state¬
ments formed by declarative sentences only, since utterances such as questions,
commands, requests, and promises do not describe situations. The situation se¬

mantics theory is built upon a set of primitives which include individuals, rela¬
tions, and spatiotemporal locations. These primitives are postulated to be the
uniformities across real situations that a human is attuned to. In this view, real¬
ity consists of situations which consist of individuals having properties and stand¬
ing in relations at various spatiotemporal locations. Utterances are assigned in¬
terpretations in virtue of the meaning of the sentence used, where the meaning
of a sentence is defined as a binary relation between the type of situation where
the sentence can be used, and the “type” of situation described by the use of the
sentence in such a context.

Of course saying such uniformities exist without a way of talking about them
would be rather useless. Thus, set-theoretic constructs are introduced to clas¬
sify real situations, abstract out the primitives, and provide the structures for
representing persistence. For reference, the following summary of the basic con¬

cepts and notation of situation based semantics is provided. This notation is

slightly different than that of [Barwise and Perry 1983] — hopefully it is some¬

what clearer.



172

Note that a theory of semantics proposes an abstact model which can be used to

classify reality. In what follows it should be noted that unless otherwise noted
when we refer to situations, courses of events, or other situation semantic objects
we are referring to the “abstract” situation semantic object. Thus for example
we will define the abstract course of events as a set. This abstract concept is
not perceived nor are we stating that real courses of events are sets. Situation
semantics views real situations as being prior to the uniformities that allow us

to perceive those situations. The uniformities are viewed as being prior to the
abstract situations that are provided by the theory to classify descriptions of the
real situations. The uniformities chosen by situation semantics (i.e. individuals,
relations, and spatio-temporal locations) are recognized as being a subset of the
uniformities perceived by a real person. They were chosen as a judicious selection
of the most important uniformities for explaining the characteristics of natural
language described above (in particular the flow of information.) The uniformities
provide the link between the real and the abstract situations or courses of events.
Therefore, in what follows, we will at times distinguish between real situations
and the abstract situations that classify them. However we will not distinguish
between real and abstract individuals, properties, and relations. The reason for
this is that the theory takes the point of view that the real situations are basic
and that these primitives arise as perceptable uniformities across real situations.

5.4.1 Set-Theoretic Notation Conventions

1. Calligraphic capitals A.. .2 are used to represent collections.

2. Italic capitals A...Z are used to represent sets.

3. (a, 6, c,...) is used to indicate a sequence.

4. {a, 6, c,...} is used to indicate a set.

5.4.2 Symbols Used as Variables to Represent Primitives

1. a, b, c, ... represent individuals.

2. A represents the collection of individuals.

3. r, r \ r”, ... represent relations.



173

4. r0 represent O-ary relations, or situational states.

5. r1 represent 1-ary relations, or properties.

6. T2 represents 2-ary, or binary relations.

7. rn represent n-ary relations.

8. 7£n represents the collection of n-ary relations.

9. % represents the collection of all relations (i.e. Un7£n).

10. I, V, l”, ... represent spatiotemporal locations (i.e. instances of parts of the
space-time continuum.

11. C represents the collection of all space-time locations.

5.4.3 Special Space-Time Relations

1. /-</'/ means wholly temporally precedes

2. I o V l temporally overlaps V.

3. Z@/' l spacially overlaps V.

4. I Ct V l is temporally included in V.

5. / Cs V l is spacially included in V.

6. I C V l is temporally and spacially included in V.

5.4.4 Situation Types

1. y = (r, x1,..., xn) is a constituent sequence where r is an n-ary relation, and
x\,..., xn are objects. 4

4 The term “object” is introduced as a meta-language construct to allow us to
refer to any primitive as well as any complex situation semantic construct (e.g.
a situation, a course of events etc.).



174

2. <t represents an extensional relation between constituent sequences and 0, 1
and “undefined” (i.e. a set of pairs (3^,0 | 1)). Such a relation is called a

situation-type. The relation a : {((r, a, 6), 1), {{r', a, c,), 0)} is indicated by:

a :=r, a, b; yes

r',a, c; no

The relation a : {((r, a, b), 1), ((r', a, c,), 0)} where neither ((r", a, d,), 0) nor
((r", a, d,), 1) is indicated by:

<r :=r, a, 6; yes

r\a,c; no

rH,a, d; undefined

3. The “in” notation is used to indicate that a set of pairs is a subset of a:

in o :r, a, 6; yes

r^a, c; no

4. A situation type <r is coherent if:

4.1. in <7 : r, a?!,..., aj„; yes then not in a : r, Xi,..., zn; no

4.2. in <r : same, a, 6; yes then a = b (i.e. cr does not represent two different
objects as being the same)

4.3. not in <7 : same, a, a; no (i.e. cr does not represent anything as being
different from itself)

5. Two situation types are compatible if their union is coherent, o't/jcr1 is the
notation for compatible(a, o') which is true iff coherent{cr U tr;).



175

5.4.5 States of Affairs

A state of affairs s is a pair {l, o'). States of affairs have two important properties
(i.e. factual and actual!) and can stand in two basic relations with other states
of affairs (i.e. part-of and contained-in). Informally, a state of affairs is factual if
all of the facts in it are correct as far as it goes. On the other hand for a state
of affairs to be actual it must be exhaustive. As can be seen by the following
definitions of factual and actual properties a situation type of a factual or actual
state of affairs is coherent.

1. factual(s) if:
if in s : r, a\,..., an; yes

then at l,aj,.. ., an stand in the relation r.

and

if in s .r, flj,..., cl^i , no

then at /,aj,..., an fail to stand in the relation r.

2. actual(s) if:
if at /, ai,..., an stand in the relation r.

then in s :r, a\,..., an; yes

and

if at /,di,..., an fail to stand in the relation r

then in s :r, ai,..., an; no.

3. part — of(s, s’) if ls = Vs and os C (r's.

4. contained — in(s, s’) if os C <j'.

5.4.6 Courses of Events

1. The set e = {(/i,3^i?^i)? • • •, where any ik can assume a value of
0, 1 or undefined, is called a course of events (coe).

2. £ denotes the collection of all coe’s.

3. e* is a function defined by l 6 domain (e*) iff {l,y,i} G e for some y,i. Thus
e* is a function from locations to situation types.



176

4. For l £ domain (e*) e*(l) = {(T,i) : (l,y,i) £ e}. Thus e* can be thought of
as a set of s’s (states of affairs).

5. e0 ia a part-of e2, e0 C e3 iff Vs £ ej, 5 £ ej.

6. Compatibility between courses of events is defined as follows:
eifie1 iff VZ £ domain e and e1 then if a is assigned to l by e* and if cr' is
assigned to l by e,m then a^a1. e and e' are said to be compatible.

7. A course of events is coherent if it only assigns coherent situation types to
the locations in its domain. Thus a coherent course of events is compatible
with itself.

5.4.7 Structures of Situations

It will become necessary in the presentation which follows to have a characteriza¬
tion of factual and actual which is independent of reference to real world sitations,
uniformities or courses of events. The concept of a structure of situations as fol¬
lows provides such a characterization. A structure of situations M consists of two
elements each being a collection of coe’s.5 M=(A4, Aio) where Aio is a subcollec¬
tion of A4 with the following properties:

1. Every e E Aio is coherent.

2. If e £ A4o and eo C e then eo £ Ai.

3. If A is a subset of M. then 3 a coe e in M.$ such that for every coe e0 in X
e0 C e.

4. If C is a constraint in M. then A4 respects C. 6

5 Actually it may be clearer to think of the structure as being a collection
of coe’s denoted by Ai which has a distinguished non-empty subcollection
Ai,. Either way the general idea is that we can construct a purely abstract
structure which mimics the way factual and actual properties work in the real
world.

6 The terminology of constraint and respect used in this definition will be
explained in Section 5.4.12 after we have developed some other required



177

Using a structure of situations as a context, the coe’s in Afo are said to be actual
and those in A4 are said to be factual

5.4.8 Classifiers and Worlds

Abstract courses of events can be used to classify real world events if the follow¬
ing classifies relationship holds:

Let So be a collection of real world events. If e£ So then e classifies e iff

if, in e,

then, in

if, in e,

then, in

at 1,7*, ,..., Uyi, yes

e, at 1,r, a*,..., an stand in relation r;
and

at /, r, u j,..., , no

e, at /, r, ai,..., an do not stand in relation r;

Using the classifies relation we can define two important characteristics of
abstract courses of events as follows:

1. e is factual if classifies(e,e) for some real world event e,

2. e is actual if classifies(e,e) and if Ve' | classifies^ then e1 C e. 7

A coe w in a structure of situations M is a world of M if Ve in M e C w,

5.4.9 Persistence of Information and Informational Relations

The concepts introduced to this point merely allow us to classify real world situ¬
ations and courses of events. In order to talk about information transfer between

two situated agents we will have to extend the notion of coe’s to develop a .more

powerful concept of an event type. The event type will allow us to describe how
a situation holds information. But before we introduce that concept we will first

concepts. They are used here to allow a complete specification of a structure
of situations,

7 The symbol w|” is used as shorthand for “such that”,



178

characterize the basic informational relationship between two coe’s. In order to
do that the notion of persistence is defined in the following manner.

Let V be a collection of coe’s; then V is (simply) persistent if Ve, e1 if e £ V and
e C e', then e' £ V. Persistent collections of coe’s form a topology (i.e. a family
closed under unions, finite intersections, containing the empty collection and the
collection of all coe’s) called the topology of partial information.8

Let m be a binary relation on a collection of coe’s T. Let M be a situation
structure with A4 as above. Since T is a collection m is a collection of ordered

pairs of coe’s. m is informational on M if Ve | factual(e) A e £ A4 D T then
3e* £ A4 |m(e,e'). For each e £ T let [e]m = {e'i m(e, e')}. If m is informational,
then if e is factual then there is at least one e' £ [e]m, such that e1 is factual.

Thus m is informational onMife£Adn^*=^ [ejm fl A4 ^ 0. If |ejm is persistent
then the informational relation is said to be persistent.

A short example from [Barwise and Perry 1983] is appropriate here to illustrate
how these concepts are intended to work. “Consider an event u, an utterance
in which Sarah says to Jonny, “A dog is biting Molly,” conveying information
about an actual event e', one where Jackie is biting Molly at a present location
l. Here take T to be the collection of assertive utterances and the relation m as

the relation between an accurate assertion x and the situations xf it describes.

Then [u]m consists of all those e" such that for some a:

in e" ’.biting, a,Molly; yes

dog, a] yes

8 Note that V can (and for most interesting Vs will) contain incompatible
courses of events. Note also that such collections can get larger and more
detailed in the sense of how many locations and detail at each location one
wishes to capture. If this seems “uncontrolled” at this point, it is. However, it
is all we need to get to the notion of informational relations between coe’s and
the ambiguity will be cleared up later with the notion of roles.



179

The actual event e' is one of these, and [u]m is simply persistent.9

5.4.10 Indeterminates, Event Types, and Roles

Indeterminates are introduced to allow us to construct abstract event types and
roles. The latter constructs are required in order for us to account for relations
between situations that hold at different spaciotemporal locations or that involve
different relations or individuals. There are three types of basic indeterminates.
Indeterminates provide us with a variable like concept that allows us to make
general statements about a “type-of” situation.

a, b,...indicates individual indeterminates.

f, s,...indicates relation indeterminates.

1, 1’,...indicates spatiotemporal indeterminates.

An Event Type is a coe where individual, relation, and spatiotemporal indetermi¬
nates may be present. An event type is denoted by E,E',.... If a,f,l are indeter¬
minates in E this is denoted as E(a, f, i).

An Event Type with exactly one individual indeterminate is called an object type
and is denoted by 0(a). An Event Type in exactly one individual indeterminate
and one location indeterminate E(k1 1) is called a complex property.

A function which assigns individuals, relations, or spatiotemporal locations to
indeterminates in an E is called an anchor for E. From an event type E and
an anchor / we can construct another event type where each indeterminate in
the domain of f is replaced in E by its value /(a). This event type is denoted by
E[f]. If / is defined on all the indeterminates in E, it is called a total anchor for
E. Note that if / is a total anchor of E then E[f] is a course of events. A coe e is
of-type E if 3/ | E[f] part-of e.

9 Since the definition of the “informational” property of a relation is dependent
on the choice of J- any change in J- may cause the relation to be either not
informational or not persistent. This might lead one to strengthen the notion
of persistence to include a domain for the e1 in the definition of persistence.



180

We would like to also classify relations between individuals (or locations or

relations) and event types. For example to conveniently represent the relation
between the buyer and seller in a purchasing event. One way to do this would
be to define equivalence classes on collections of event types. Another cleaner
approach is to extend the concept of indeterminate to define event types in terms
of indeterminates and to use event types in the definition of indeterminates.
Barwise and Perry chose the latter approach.

Every basic indeterminate is an indeterminate. If x is an indeterminate and
i£(x...) then the ordered pair (x,E) is an indeterminate called a role (it is often
also referred to as a complex indeterminate). There appears to be no consistent
denotation for a role, however x# is often used. I prefer to use p, when the event

type and indeterminate are obvious from the context of use.

Given the above extended definition of the notion of an event type and indetermi¬
nate we need to revamp slightly the definition of what it means for a partial func¬
tion to serve as an anchor for a role. We want to make sure that since an event

type may be defined in terms of roles that the anchoring of the indeterminates is
consistent. Therefore, a partial function / from either basic or complex indeter¬
minates to individuals, locations, and relations is an anchor provided that:

1. For every basic individual, location, or relation indeterminate x in the
domain of /, /(x) is an individual, location, or relation respectively.

2. For every role p = (x,^) in the domain of /, / is an anchor for each indeter¬
minate in E and f(p) = /(x).

Note that an anchor / for a role p = (x,E) is said to anchor p in e if E[f] is part
of e.

Given a role p = (x,i?), an object x has-role p in a coe e of type E iff

1. e is of-type E

2. for every total anchor / for E such that E[f] is part-of e then /(x)= ®.



181

This is denoted pe = x. Essentially it means that the only ways in which e is of
type E have x anchored to x.

Given an event type E{p\,... , pn, • • •) and a coe e of-type E and such that ev¬

ery role pi is uniquely defined in e,10 then e is a context-for E with respect to
Pi,.. . ,pn. Contexts are used to describe uniformities across roles (e.g. as in the
case of the type of event where the victim sues the hitter at some time later than
the time of the hitting.)

5.4.11 Indexed Event Types

Indexed Event Types allow the representation of perspectives. For example, the
difference between the perspective of Anna and Simon in virtue of the different
roles that they play in the event

in e : at Z, hitting, Anna, Simon; yes.

They also allow us to classify abilities of organisms, such as the ability of an in¬
dividual to tell what position he is in at any given time. Such a classification
scheme is provided by the systematic use of event types with distinguished in-
determinates. We specify certain roles as fixing the meaning of certain indeter-
minates. Once these are fixed, any other event types in these indeterminates are

called indexed event types. Thus, any indexed event type determines a family of
event types indexed by the contexts for that event type. An indexed event type is
a set of event types indexed by contexts {Ee: e is a context-for E} and defined on
a set of roles where all of the constituent roles are uniquely filled. Thus, for ex¬

ample, a condition like:

E: at h, sitting, i; yes.

By uniquely defined we mean that there is an anchor / for E in e such that
for any other anchor g for E in e, g(pi) = /(pi) for all i.

10



182

relative to a context (e.g. a coe e) which supplies an agent and a location charac¬
terizes the ability of that agent to tell what position he is in.

We denote an instance of an indexed event type by Em[pi,..., pn,...] where pi

are the indexing roles, and mis a context which supplies unique values for those
roles.

5.4.12 Schemata

A schema is a finite set of event types 5 = {E1,.. . ,En}. An anchor for a schema
S is an anchor for the event types in S such that if / is an anchor for S then S[f]
is the set of all event types E[f] for E E S. An anchor is a total anchor of 5 if it
is a total anchor for each E G S. A coe e is of type 5 if it is of type E[f] for some
E G S and for some /.

An indexed schema is a set of schemata defined on roles.

Schemata are introduced into the formal concepts of situation semantics for a va¬

riety of purposes, one of which is to handle the characterization of events that are
in conflict. In order to capture the notion of conflicting event types we first in¬
troduce the notion of negation of an event type and the definition of negation of
a schema. Given a simple event type E (i.e. one with no proper parts (no roles
please)) we use -iE to denote the result of replacing 1 by 0 and 0 by 1 in the con¬

stituents of that event type. If E is not simple, we define ~^E to be the schema:

{^E0\E0 is a simple part of E}.

Given a schema 5 we define -iS to be the event type which results from the union
of the negation of each of the event types in S.

5.4.13 Necessary, Nomic, Conventional, and Conditional Constraints

Constraints are introduced to allow the representation of the fact that one situ¬
ation may contain information about another situation. It is the attunement to
these constraints which allows an individual to acquire information from one situ¬
ation about another situation.



183

A distinguished relation involves is introduced in order to serve as the basis for
constraint specification between event types. Informally, a type of event E in¬
volves E' if every actual coe e of type E is part of an actual coe e' of type E'. In
general a simple constraint is a state of affairs of the form:

at l : involves, i£, S; yes

where E is an event type and 5 is a schema.

Thus a constraint is a course of events with only event types and schemata and
the relation of involves in its domain.

Let r be the involves relation. Given a simple constraint C = {(/, (r,E,S), 1)}:

1. A coe eo is meaningful wrt C if eo is of-type E.

2. If a coe eo is meaningful wrt C then ej is a meaningful option from eo with
respect to C if for every total anchor / of E, if e0 is of-type E[f] then ej is
of-type 5[/]. This is denoted by efjrmocei.

3. If a coe e0 is meaningful wrt C then e0 precludes an event e2 with respect to
C if:

3.1. ^eoV^i or

3.2. 3/ | e0 is of-type E[f] and for every extension of / to an anchor g for the
indeterminates in 5, ej is of-type -iSJ#].

Given a simple constraint C a structure of situations M respects C if for every
actual eo EM, if eo E Tc then 3ej | eormocej and ej is factual in M. This is
denoted Me-

Given an arbitrary constraint C, Me if M respects each simple part of C.

Necessary Constraints are those which arise from necessary relations among the
properties and relations that we are attuned to.



184

Nomic Constraints are those which arise from natural phenomena, (e.g. laws of
nature).

Conventional Constraints are those that arise from explicit or implicit conventions
that hold within a community of living organisms.

Conditional Constraints are necessary, nomic, or conventional constraints which
are known to hold under certain conditions.

5.4.14 Constraint Types and Indexed Constraint Types

The final major concept to be presented is the mechanism provided by situation
semantics for classification of uniformities across constraints. Constraint types
allow us to represent the type of constraint one gets by anchoring one of the inde-
terminates to some individual, relation, or spatiotemporal location. A contraint
in which the event type and schema are anchored to an indeterminate is called a

constraint type.

A constraint type is denoted by C/x where x is an indeterminate or set of inde¬
terminates. In specifying a constraint type C/x the following notation is used to
indicate that the indeterminate x must be anchored to some individual, location,
or relation before we get the event type E and the schema S such that E involves
5:

C/x : at / : involves/x; E, 5; yes.

If the indeterminate (or set of indeterminates) that participate in the constraint
type definition have been assigned a special role across the participating event
types then the constraint type is called an indexed constraint type C/p.

The following subsections of this section build the KAMSS ontology by applica¬
tion and extension of the above presented situation theory. We honor the under¬
lying metatheory assumptions of individuals, relations, and spatiotemporal loca¬
tives as uniformities across real situations. However, we recommend a revision of
the set of abstract primitives to support the process of acquisition and manipu¬
lation of those uniformities. Within this context we argue for the adaptation of



185

ensemble theory as the framework for providing set definition/manipulation ca¬

pabilities for finite collections of individual objects, and a compatible set of ca¬
pabilities for continuous concepts/substances. After that we present some of the
basic ontology which is required for KAMSS acquisition, reasoning and modeling
functions. Finally we provide an illustration of the type of acquisition capabilities
enabled by our approach.

5.5 Problems with Existing Theories

One of the basic problems with many of the traditional semantic theories of is
that they tend to follow the formal logic paradigm of making the interpretation
of the primitives irrelevant to the argument at hand. Sentences in first order logic
follow the Frege tradition [Frege 1960] in that the reference of a sentence is its
truth value. But we want sentences to denote other things besides truth values
(e.g., themselves, situations, relations between situations, bindings, properties,
or any higher level assemblage of these notions). This is bothersome for two
reasons. First, from the point of view of the fact that the use of argument in the
KAMSS is an attempt to increase the knowledge base of known facts. Secondly,
because the essential feature of the way humans use language is to refer to objects
and situations beyond themselves. Of course humans have a distinct advantage
over a computerized KAMSS. They have the ability and physical equipment to
directly experience many of the phenomena which they express through their
language. The KAMSS can only rely on what it has been told. Also the human
experience base extends over a wide range of space time intervals. Situational
Semantics as outlined above overcomes this problem by making the distinction
between the interpretation of a statement and the evaluation of its truth value. In
order to account for the characteristics of languages described in the last section
situational semantics takes as the interpretation of an utterance the collection of
situations referred to by that utterance. We will adhere to this principle in our

SRM described in the following sections.

The theory of situations and attitudes as described in [Barwise 1984] can be used
as the basis for our work. However, this theory is incomplete in many ways for
the needs of KAMSS. Extensions required to overcome these deficiencies include:



186

1. Decomposition of the individual primitive to allow the representation of
the process of attunement to uniformities of properties and property values
across spatiotemporal situations as the basis for the recognition of entities.

2. Allowing individualization of parts of individuals (i.e. John’s arm is a part
of John). This includes accounting for continuous and quasi-continuous
individuals. :

3. Extension of conditional constraints to account for both if-then and when-
then structures.

4. Accounting for generalizations and specializations.

5. Adding to the theory of attunement a consistent account of action.

6. Enhancement of the notion of attitudes to account for three levels of knowl¬

edge possession.

7. Provide a basis for reliable acquisition of knowledge as a precondition to
behavior enabling possession of knowledge.

8. Provide a more general handling of the concepts of uniformity referents,
(referred to as “stakes” in the following sections). Initially this includes the
splitting out of space and time into separately analyzed phenomena.

9. Handling of location referents.

10. Handling of plural pronouns.

11. Allowing for sentence negation.

12. Handling of counterfactuals.

13. The use of attitudes to describe what a customer believes or thinks about his

system.

14. How the process of utterance construction can be used to resolve ambiguity
or acquire meaning.



187

15. Differentiation of the information displayed in an utterance versus the
information conveyed by that utterance.

16. Adaptation of the discourse situation to characterize the man machine inter¬
face (i.e. where the theory of the listener and the speaker must account for
the fact that these roles are alternatively played by the inanimate computer).

In the following sections we provide an epistemology which can be used as the
basis for a meta-semantics (SRM). We then show the use of this structure in the
adaptation of situation semantics to cover several of the issues identified above.
Specifically we will focus on the accounting for actions through and extension
of the event concept to a form which is capable of handling the meaning of
utterances provided to or generated by the KAMSS environment described in
Section 3. The development of the set-theoretic models necessary to extend the
actual situation semantics will not be developed in detail. Rather we will point
out where relevant extensions need to be made and what form these extensions

are likely to take.

5.6 The Base Ontology

Given the above epistemology the following sections provide a reformulation /
extension of some of the more important basic ontological components required
for representing manufacturing system descriptions in KAMSS. We refer to this
portion of the ontology as basic to distinguish it from the more domain specific
concepts such as parts, machines, organizations, etc. It is useful to consider
the analogy that can be made between the notion of an ontology and that of a
theory. A theory is normally built upon a set of primitives with determinable
properties, operations on those primitives and a set of axioms. An ontology
on the other hand is built on a collection of characterized primitives (i.e.
abstractions with nondeterminable properties), relations which can hold between
such primitives, and implications which can be drawn from the relations. Thus
use of theories is quite often directed at the formulations of theorems which
can be derived from the axiom set. The use of ontologies is more often for the
classification of observations in the pursuit of a theory. Hence the focus of the
ontology (as pointed out in Section 4) is on the discovery of primitives and
relational implications than on the proof of theorems. In this section we will



188

characterize some of the basic intuitions important to an ontology to support the
KAMSS concept. In the final subsection of this section will discuss the language
issues associated with implementation of not only the following ontology fragment
but also of the domain specific ontology and those relevant to the application of
these ontologies in the KAMSS system.

5.6.1 Ensembles

Throughout the above description of the primitives no mention was made of
operations other than those of perception. To get from the presented basis to
traditional semantics based on set-theoretic concepts one needs an axiomatization
of set theory. This is normally included in the epistemology itself. We have
deferred its presentation to the ontology to allow for multiple definitions to
be used. The motivation behind this approach is not that we are particularly
interested in evaluation of alternative model theoretic semantics but that:

1. We want to allow for other definitions of a set, particularly we want to be
able to introduce ensemble theory [Bunt 1985] for dealing with continuous
concepts.

2. We want to explore ontologies built upon characterized structures rather
than definitional structures.

Relative to the second point we add to our ontology the notion of an ensemble
taken directly from [Bunt 1985] as a mechanism for handling continuous and
“quasi-continuous” concepts. Such concepts play an important role in our every

day life and certainly in understandings and descriptions of manufacturing sys¬

tems. We find references to “flow shops”, parts “flowing through” an area, spa-

tiotemporal references such as an operation being “up stream” or “down stream”
from a reference point. Also many of the processes which do occur are of a con¬

tinuous nature (e.g. parts heating in a furnace, tools wearing, grinding operations
and so forth.) Most importantly many of the cognitive activities in engineering
and manufacturing have a continuous nature (e.g. designing, problem solving,
modeling etc.). To have an ontology sufficiently robust to serve as the basis for
representing these sorts of phenomena in a natural way means that we must deal
directly with the continuous and quasi-continuous concepts.



189

Bunt in [Bunt 1985] reviews the various approaches put forth for dealing with
continuous concepts in the context of traditional set theory. The basic problem
with these approaches is that continuous concepts have a part-whole relation
(they do have internal structure) but they do not have any atomic parts. Ensem¬
ble theory introduces the notion of atomic ensembles. A unicle-whole relation is
introduced to describe the internal structure of atomic ensembles. Ensembles then

can be classified as:

1. Atomic (i.e. having no parts),

2. Discrete (i.e. built up of atomic parts and indistinguishable from sets),

3. Continuous (i.e. not empty and each of its nonempty parts has a genuine
part),

4. Mixed (i.e. having both a discrete and a continuous part).

Continuous ensembles have no atomic parts hence they have no members. Note
that there is a difference between atomic ensembles and continuous ensembles An

atomic ensemble has no proper parts whereas a continuous ensemble has proper
parts (both of course are non-empty).

The traditional subset relation is subsumed as a special case of the part-whole
relation applied to discrete ensembles. Similarly there is a merge relation which
reduces to union and an overlap relation which reduces to intersection. There is
only one empty ensemble -which stands in the part-of relation to every ensemble.
Finally, a notion of “completion” is introduced as the analog of set complement.

One of the advantages of the ensemble theory is that one can easily switch from
a continous to a discrete view. In fact, Bunt illustrates that with the appropriate
language design the switch consists of purely lexical substitutions. Thus ensem¬

bles provide us a way of representing such naturally continuous concepts as “the
anodizer in the hot dip tank”. It also allows the representation of “autobodies in
the paint area” in either a continous or a discrete view (an important capability
when addressing the task of model design).

Ensemble theory in the form proposed by Bunt does not solve all of the problems
associated with continuous concepts. The focus of his efforts (the emperical



190

observations behind his intuitions) is centered on concepts involving substances
(e.g. liquids, materials, gases). There are other continuous concepts which do not
behave appropriately according to the prescribed part-whole relation as defined
by Bunt. Such concepts include:

1. part forms,

2. part features,

3. concept types.

A part feature (such as a character line in a hood or the belt line on an automo¬

bile) has continuity to it which does not satisfy either of the conditions for mem¬
bership for atomic or continuous concepts. The reason for this is that three stakes
if you will are used in the characterization of the essence of the feature (both the
substance and the location and the relations of both to other parts of the sub¬
stance). One of the interesting characteristics of these types of continuities is that
they cannot be contained without containing parts of other features! Unlike the
proverbial “cup of coffee” or “lump of gold” the “wind-split line” blends with the
hood surface and may meet the “cowl edge” on one end and follow the closure
surface on the other. However the approach he establishes with respect to han¬
dling substances can be used as a guide to establishing extensions which handle
these issues.

5.6.2 Measures

Consider the information in: For each additional part in the drying area add to the
batch cycle extra time equal to its surface area multiplied by a factor of.5 plus the
standard allocation of 3 minutes. For an ontology to support the representation of
quantified information over both continuous (e.g. time, space, etc.) and discrete
(or mixed) concepts a notion of measuring must be introduced. There are a

number of useful ways to establish such a measure system [Allen and Wright
1983; Hobbs et al. 1985; Hobbs et al. 1987; Bunt 1985; Corynen 1975] however
we will follow Bunts’ lead as what we are interested in is a way of measuring
amounts of a continuum. The primary difference between measuring and counting
(as it is used to determine the cardinality of a set) is in the introduction of the
concept of a unit. Each unit concept has a category which would be a “stake” in



191

the above described methodology. Units of the same category define a “system
of measure” referred to as a dimension. Given a dimension, two of the units
in that dimension and the numerical relation between them we can define an

equivalence relation. A measure function is then easily constructed which respects
the equivalence classes defined by that relation. The result of application of that
measure function to an ensemble then is a value and a unit, an equivalence class
that the ensemble is mapped into. ;

In general the approach we propose is one which uses the ensemble approach
with a metric (as in Bunt) with one additional concept. The concept which is
added to the system of measure defined previously as a dimension is that of
a resolution. The combination of a dimension and a resolution constitutes a

system of measurement. Thus, rather than having arbitrary transitions from
discrete to continuous treatment of measurable quantities (such as space and
time) as originally proposed by Bunt we have a determinable way to treat the
transition from continuous to discrete representation. The resolution of a system
of measurement determines a limiting value below which the value of the measure

function is indeterminate. It is important to note that the value is not 0, it
simply cannot be established. We define a “measurement” function which takes
the value and units returned by a “measure” function and combines with that
value the “deviation” which is equal to plus or minus the resolution for values
greater than the resolution and only returns the resolution if the value is known
to be different from 0 but less than the resolution.

5.6.3 Individualization of Parts of Individuals

Given the above described primitives of properties, bindings, and stakes and the
capability to objectify over these concepts the notion of the individualization
of parts of the individual becomes a natural consequence of the theory. An
individual is in fact a binding of a set of properties which we can refer to with a

label. The individualization of the parts of the individual is merely a binding over

a subcollection of properties which is itself then bound to the original binding.
This implies the fact that:

in a :r, a, 6; yes

r',a, c; no



192

is not affected if b is itself a binding.

5.6.4 Space and Time

While it may seem strange to include in a discussion of the basic concepts behind
an ontology for system description a discussion of “space and time”, these two

concepts are at the heart of any such description and if we don’t get them correct

nothing else will work out. As will be seen later, we wish to talk about an action
being performed at (or in) a location and at (or in) a particular time as well as
involving a certain number of agents and/or objects. We also want to be able
to abstract over locations or times (e.g. to be able to talk about the landing
of a plane without being specific about which landing, when or where.) Most
importantly, from an information system point of view, we want to talk about
what information is acquired or used associated with an action. We also want
to talk about actions that occur “at the same location or time” or “at different

locations and times”. Finally we want to talk about orderings of actions relative
to space or time. Thus we need to get straight up front a basic notion of space
and time. For instance, we need to decide whether or not there are really things
like “points” of space or time. We need to know just what orderings are possible
and how those orderings behave. This will be the focus of this subsection.

One of the problems we face in dealing with descriptions (or specifications) 11 is
that their use of the concepts of space and time often combine “point” uses with
“interval” uses. For example, we speak of the foreman filling out an FDR in 5
min. (an interval reference) after the login to the system (a point reference). If
this were not bad enough we then talk about the point time reference in terms of
its interval perspective (e.g. the login to the system should require less than 15
sec.). Similar phenomena occur in references to space or location in space.

What we must conclude is that it is necessary to accommodate both models.
Just as physicists were forced to recognize dual models of energy (particles

13 We will use the term “description” to refer to a collection of facts about an
existing situation. Loosely speaking, this collection need not be “actual”, in
other words it need not be complete; only “factual” (i.e. it gets correct as
much as it gets). Specifications, on the other hand, are collections of facts
about a possible (hopefully) or “to-be” situation.



193

on the one hand and continuous waves on the other), we must be able to not
only recognize the duality of the space time models but also understand how to
translate between them. We must also know when particular models should be
used.

5.6.5 Time

All of the treatments of time we have reviewed seem to:fall into one of two cat¬

egories: the indexing approach, or the projection approach. Under the indexing
approach each predicate or function is assigned an additional argument of type
time. A primitive is introduced to represent the ordered set of all instances of
type time (normally referred to as the “time line”). Under the projection ap¬

proach a special function is introduced which when applied to an object and a

time, returns the instance of that object at that time. We take time to be a con¬

tinuous concept and model it as a combined ensemble with a set of measures and
corresponding resolutions. This treatment admits to both intervals of time (pieces
which are larger than our resolution) and points of time (pieces which are smaller
than our resolution but not 0).

5.6.6 Generalizations and Specializations

“Mass nouns”, plurals in general, and particularly plural pronouns have partic¬
ularly important semantics in the processing of system descriptions. One of the
most important roles they play is as labels for generalizations. Sentences like
“Robocarriers have togs” delineate a part-of relationship which extends over more

than just a particular robocarrier. The current situation semantics does not ad¬
dress the problem of generalizations, how they are formed or how they are used,
yet generalizations play an important role in the description of any system. There
are several subproblems associated with the concept of generalizations including:

1. Implicit and explicit quantification,

2. Types versus Classes (i.e. open or closed generalizations),

3. Definite versus descriptive reference (e.g. “robocarriers” versus “the robocar¬
riers”).



194

Indexing over the individuals or relations or spacial temporal locations or at¬
tributes as was done to accommodate the concepts of event types, roles and sit¬
uation types does not work with this particular problem. However the extensions
proposed to the concepts of properties and bindings we believe do provide a han¬
dle on the problem. From the SRM point of view a generalization is a binding
without a stake. The issue of open versus closed generalization is an issue of the
use (pragmatics) of such a binding in the recognition of a uniformity. If the use

dictates the recognition of all of the properties or subsumed bindings then we say

that the generalization represents a class. Classes can be conveniently modeled as

sets. The binding can be thought of as a characteristic function (or at least the
definition of the characteristic function) of that set.

If the use allows for a partial match of the properties or subsumed bindings then
we say that the generalization represents a type. A type unfortunately is not con¬
veniently modeled as a set (intentionally or extensionally). Barwise makes note
of this problem in [Barwise 1984] with the introduction of the concept of “col¬
lections”. He attempts to resolve this problem by definition of the concept of a
“structure removing function” in [Barwise 1985b]. For the purpose of the KAMSS
we do not need to resolve this issue. We suggest that it may be appropriate to
use ensemble theory [Bunt 1985] as a basis for modeling the type concept as a

quasi-continuous concept, however our work is not yet complete. Just knowing
that the problem exists allows us to at least avoid the problems attendant with
trying to apply set manipulation operations to something which is inherently not
a set (see IDEF1/ES discussion in Section 8). From a pragmatic point of view
a type is a very useful concept for initial classification of a plural reference in a

sentence. We can delay the determination of “class” status until we need it (gen¬
erally in resolving a conditional constraint or action reference).

Understanding “how” generalizations come about is also important for the
KAMSS design, not necessarily because we want the system to be able to derive
them unassisted but rather because looking closely at the process can provide in¬
sight into the representational requirements of such mechanisms. First of all we
distinguish between generalizations over uniformities recognized in:

1. Physical objects,



195

2. Situations (or events, actions, courses of events, processes),

3. Abstract objects.

In the process of generalization there is also a distinction which can be made
relative to whether the “uniformities” are based on properties which can be
directly sensed, or on properties which are abstractions (models if you will, that
are grounded through intermediate processes of inference). Color, size, and
location based descriptions such as the large, green parts in the west end of the
plant are examples of the first type of generalization applied to physical objects,
whereas, Long lead time items is an example of the second type of generalization
again applied to physical objects.

In all cases the formulation of the generalization requires:

1. Recognition of the relevant properties (note that this includes the attune-
ment to the individual uniformities and the formulation of a binding of those
uniformities into a unit),

2. Selection of a word to represent this binding,

3. Selection of words to name those properties,

4. Formulation of a procedural method for assessing whether or not the proper¬

ties hold,

5. Axiomatization of the relationship of the generalization to other generaliza¬
tions.

5.6.7 Types, Sorts, Kinds and Classes

In our ontology we distinguish between the notions of types, sorts, and classes.
These notions occur frequently in dealing with descriptions, computations and
knowledge representation. The tendency is to treat the terms as synonomous.

However, doing so results in a total breakdown in terms of an ontology as clearly
documented in [Brachman 1983; Brachman 1985; Israel 1983; Woods 1975]. Each
of the terms refers to an ordering of some nature. As such they refer to means

of partitioning collections of individuals. Each of the terms has differences in
whether they are concept forming terms or assertional terms. That is, does their



196

use imply extension to the ontology or to the statements about the real world
made with that ontology. We will use the term Kind to refer to orderings of
naturally occurring phenomena (i.e. the biological genus, species, phylum, b-
class, order .... partitioning scheme). We will reserve the term Type to refer to
partitioning which has spatiotemporal sensitivity. That is, it can and does change
with context. We will reserve the term Class to refer to a partitioning which is
fixed and non-overlapping. Finally we will reserve the term Sort to refer to a

partitioning which is fixed and possibly overlapping.

In general we note that the description of a characterization (e.g. class, sort,
kind, etc.) has the following components:

1. Some means of referencing the characterization either by name, or descrip¬
tion,

2. A collection of properties (definiens in the case of classes and sorts),

3. A collection of membership axioms which specify how something can be
determined to be “of that category”-(i.e. necessary conditions, sufficient
conditions, and in some cases both necessary and sufficient conditions),

4. A collection of axioms of membership which specify what information can be
drawn from the knowledge that something is “of that category”.

The above observation without consideration for the last item could be considered

to be rather pedestrian. Most of the existing knowledge engineering tools provide
for specification of such descriptions in one form or another (e.g. in Frames, or
Schemas, or Objects, or Structures). However, it is only relatively recently that
the recognition of the problems associated with the “interpretation” of specifi¬
cations made with those structures has been recognized. That is to say that the
presence or absence of a concept in a type network really says nothing about the
domain of interest. If we try to interpret the structures assertionally we have dif¬
ficulty in formulating expressions involving incomplete knowledge. If we adopt a
declarative reading we are left with little more than sophisticated data structur¬

ing mechanisms. One approach suggested by KL1 [Schmoltz and Brachman 1982]
and Krypton [Brachman et al. 1983] is to recognize the create a representation
scheme that provides for the distinction. In one way or another they provide a



197

“terminology component” for supporting the construction of taxonomies of struc¬
tured terms, and an “assertion component” for making statements about the reed
world. We feel that such an approach goes too far and hence sacrifices the effi¬
ciency of expression which natural communication depends upon. The problem
with separation of the “T-box” from the “A-box” is that the world around us in¬
cludes our terminology. Thus, the creation and description of a term makes as¬

sertions about the way the world is. The key to resolving the problem is not the
denial of this fact but the recognition of the distinction between meaning and in¬
terpretation. Hence the focus on situation based relative semantics.

5.6.8 Situations Revisited

In the most general terms a situation is a part of reality which can be compre¬

hended as a whole. Previously we introduced the notion of a situation type as a

set of constituent sequences (i.e. 3^ = (r, ,..., xn)) with associated polarities
(i.e. a : {({r, a, 6), 1), ({r', a, c,), 0}}). The introduction of the notions of proper¬
ties, bindings, and stakes as the basis for recognition of and reference to unifor¬
mities does not necessarily effect a change in the S and A definition of situations.
Rather they provide a finer grained interpretation of the components of that sit¬
uation. Thus the “a’s” (or individuals) in the above constituent sequences now

become objectifications over further sets (or collections) of properties. This finer
granularity provides better support for the classifications activities of utterance
understanding and reasoning required in the KAMSS. It also assists in handling
the notions of generalizations and actions which were absent in the original S and
A theory.

5.6.9 Extensions to Conditional Constraints

A constraint is a relation between situation types a and ai such that if a is re¬

alized then so is <T\. Thus a “real” situation (an actual state of affairs s 6 <r)
contains at least the information that there exists an si 6 crj. This notion,

though not explicitly stated, was the basis behind the concept of “specific relation
classes” in IDEF-1 [Ramey 1983]. From the above then the meaning of a sentence
is a constraint, that is, those absolute relations (which hold as long as the back¬
ground conditions remain constant) between the types of situations in which the
sentence is used to assert something, and the type of situation described by those



198

assertions. The interpretation of an utterance is then a binding between the ut¬
terance and the type of situation it describes. This is true regardless of the type
of the utterance. The propositional content of an utterance is that there is a situ¬
ation of the type it describes. The “meaning” of a sentence then is a relation be¬
tween the type of situation in which the sentence is used to assert something, and
the type of situation described by the utterance. A conditional constraint then is
a constraint type with an associated definition of the conditions under which that
constraint type is effective. The specification of a conditional constraint then in¬
volves the specification of the background conditions, the participating situation
types and the absolute relations which hold to convey a specific meaning between
those situations.

If-Then Structures:

If - Then structures in utterances provide a mechanism for stating the conditions
for a conditional constraint. The utterance in the antecedent portion of such a

construct describes a situation or set of situations which at least existentially
entails the situation included in the consequent portion of the construct. In our

analysis of the manufacturing texts (see Appendix A) the if-then structures
appeared to be used only when the author was attempting to describe universal
constraints, or a specific mechanism of which he had detailed knowledge.

When-Then Structures:

When - Then structures in utterance provide a mechanism for stating evidence of
conditions for a conditional constraint. Generally by use of reference to a staked
perception the “when” portion of the utterance describes a situation which was

observed to stand in a constraining role with the situation described in the “then”
portion of the utterance. The typical use of these structures is associated with
co-occurrence of information about two situations. The “when” conditional is

used as a manner of reporting this co-occurrence without establishing a strong

cause/effect relationship statement.

5.6.10 Accounting for Change

Accounting for actions first requires defining at some level:

1. What an action is (something perceived or something done with a percep¬

tion).



199

2. How actions relate to the elements previously defined.

3. What is the relationship of beliefs and intentions to actions.

4. How do actions individuate (e.g. Is moving the autobody a part of finishing
the car.)

5. What is the relationship between information/knowledge possession and
actions.

According to Hass one knows what an object is if one knows enough about it
to carry out one’s intended actions [Hass 1986]. In the robot world you need
knowledge to perform an action when you must find out which commands will
produce the desired actions. From the point of view of the KAMSS there are two
different kinds of actions:

1. Actions it is being told about (e.g. A machinist sets up the framing fixture).

2. Actions which it knows how to perform (e.g. print a message to the screen,

or design a simulation model).

The first variety is important since actions and their descriptions are central to
the description of the manufacturing system and to the reasoning about how
it works. The second variety is important because KAMSS must know how to

respond to specific commands or situations. For example it must know when it
has recognized an instance of the first variety and produce the appropriate data
structures and linkages for its storage.

The original situation theory does not provide a direct way of describing actions.
The basic concept of a situation is defined in terms of the objects and properties
which hold at some spatiotemporal location. To give an accurate account of
the notion of action we must take on directly the problem of describing change.
We believe that this requires some basic modifications to the situation theory.
Essentially what we propose is to recognize states of affairs as being different
from what we will call states of change. The basic motivation behind the notion
of a state of change is the ability to describe a situation in which some of the
objects, properties, or relations participating in that situation are recognized as

being in the process of changing. Rather than introduce another completely new



200

syntactic structure for denotation of states of change we propose the extension of
the situation type syntax; to extend the “0, 1, undefined” indicator set to include
the indicator “changing”. Thus, unlike most other AI ontology treatments of
change, we allow for the description of:

1. What is changing?

2. What is remaining the same?

Even with this addition there are three other important elements of a description
of change which we have to add to the situation theory. Since the descriptions
are formulated at the type level there is the problem of describing sequencing and
timing. There is also the problem of describing aspects of causality, enablement,
coupling. Finally there is the need to describe characteristics of the “realization”
of a type. To address these ontology issues we must extend our own treatment of
change description to include realization constraints to the situation description.
The situation theory presented above provides most of the tools we need to do
this. For example, if we want to represent things that change over all instances
of a state of change type we use indexicals to denote those things. If we want
to represent things that remain the same over all instances we use constants
to denote those things. Since we have at our disposal the ensemble theory we

can formulate constraints over the indexicals, their anchoring functions (which
gives us access to the instances) and (via the SRM primitive set) to the possible
interpretations of the abstract objects in the description (e.g. constraints on the
values of a measure associated with time interval of a state of change). Thus we

can describe constraints on the co-occurrence of two states of change which are

of the same type (e.g. cabs arrive every fifty seconds). The following sections
describe structures in our ontology which address the issues identified.

5.6.10.1 Processes

The situation theory notion of an event and courses of events described in Section
5.4 are preserved unchanged. However the addition of the distinguished chang¬
ing elements of a situation description allows us to build into our ontology the
notions of processes and actions. These notions are critical to the capture of de¬
scriptions of the way that a manufacturing system works. Processes become in¬
terpreted as ordered sequences of courses of events, states of affairs and states of



201

change. This corresponds nicely with the common sense notion of a process being
a set of related events spaced out in time with intervening steady states. Pro¬
cesses provide the framework for describing a class of relations that can hold be¬
tween instances of states of change types. Using the same mechanisms described
above for a single state of affairs or state of change we can for example specify
constraints such as:

1. Temporal constraints between states of affair types or changes (e.g- that an
event a of type A occurs some time before event b of type B).

2. The end of one state of affairs or state of change is synchronous with the
beginning of two or more states of affairs or change.

3. The end of two states of affairs or change are concurrent.

4. Inertial delay (i.e. the fact that a process can be in the state of occurring for
some finite time before we can detect that the properties which are supposed
to be changing are changing.

5. Cycles (repetition, iteration, or looping) of states of affairs or change.

5.6.10.2 Actions

Actions, on the other hand, are commonly thought of as states of change which
involve at least one causal-agent role type. That is, an action is an event which
is caused by the agent. This characterization ties the notion of causality into the
definition of a situation type which we believe to be basically incorrect, because
it masks the more subtle types of causality (e.g. enablement, inhibits, coupling).
We choose to interpret actions as indexed constraint types involving at least one
state of affairs and one state of change with the common indeterminate (or set of
indeterminates) standing in the agent role relative to the participating state of
change type. Thus actions become a special class of causality contraint types.
This characterization of actions is very useful in the modeling and reasoning
about how a system works (as discussed in the next two sections) because it
allows us to postulate from a state of affairs how a state of change comes into
being (or vice versa) by postulation of the existence of the missing component
in an action indexed constraint type. This gives us a built in version of a kind of



202

Newtonian law of momentum (states of affairs tend to stay states of affairs until
acted upon ...).

5.6.11 Model Ontology

Situation theory takes the individuals, relations, and spatiotemporal locations
as primitives for building complex objects which can be used to classify reality.
For descriptive purposes types are introduced, and for representational purposes
abstract versions of both the primitives and the types are introduced. Our in¬
tension is to use the typed abstract situations to construct descriptions of sys¬
tems. However, we also have the need to generate and manipulate interpretations
of these descriptions. That is, we need to construct models of our descriptions.
These models will be used to support such activities as qualitative (and quantita¬
tive) simulation as well as data acquisition planning. This model world (or Token
View) has similarities to both the real world and the abstractions of that world
captured in our descriptions. It can be thought of as an abstract world without
types. It consists of real symbols (in our case stored and manipulated within the
KAMSS) these symbols are the objects of this world. In Section 7 we will discuss
how we generate these token worlds in order to provide a basis for certain types
of reasoning based on constraint propagation and propositional logic.

5.7 Representation Structures in KAMSS

As mentioned previously in this section there are several interrelated but orthogo¬
nal factors driving the issue of a computerized representation for KAMSS. Those
issues are: retrieval, reasoning, and computation. In this section we will describe
a representation approach which attempts to accommodate the needs of all three
issues. As discussed in Section 3 during the course of this research we reviewed a

number of representation schemes including:

1. KLO, KL1, and KLONE,

2. KRL,

3. Units,4.LOOPS [Stefik et al. 1983],



203

5. First order predicate logic (e.g. Prolog and ESP),

6. SRL / CRL,

7. ART schemas and rules,

8. KEE [IntelliCorp 1985a],

9. Flavors,

10. NETL [Fahlman 1985],

11. Syntactic Theory (named expressions),

12. POP-11,

13. FOOPLog,

14. Portable Common Loops [Stefik and Bowbrow 1986].

We also implemented a type based system as a part of the SDC prototype. The
purpose for the review was to learn what others had attempted in the design
of a programming language for representing descriptions, models, and of course
programs. It should be noted that the design of a representation is the design
of a programming language. Experience dictates that such a task is not trivial.
Therefore, in the sections which follow we have attempted to circumscribe the
major features of the language we have in mind, leaving the details for future
work.

5.7.1 Language Requirements

The languages reviewed as a part of this research exhibited several basic flaws.
One of which is the lack of a formal semantics for interpretation. We believe that
the semantics should be developed prior to a commitment to syntax. The rea¬

son being that this generally results in a cleaner syntax and a simpler underlying
implementation. The existing languages also do not cleanly support the repre¬

sentation needs of the three usage paradigms noted above. Most of them exhibit
a primary focus (e.g. support of computation) and address the other paradigms
as an after thought. For example, consider the role of a schema in CRL or ART.



204

While the initial intent of the “frame” construct was to characterize a situation,
the schema construct in these languages serves primarily as a data structuring
mechanism [Fikes and Kehler 1985]. Similarly “objects” in LOOPS or Units or

KEE have a primary role as program modularization constructs. They serve as

excellent vehicles for storing state information about the computation, and for
defining a uniform protocol for computational behavior. However, they do not
provide a convenient mechanism for capturing descriptions representing the se¬

mantics presented earlier in this section12. Nor do they support the construction
of a system which has a capability to formulate different semantics as a natural
part of its processing of descriptive input. Finally the representation of knowl¬
edge in these structures is not in a form convenient for recognition based reason¬

ing which will be described in Section 6. It is not the case that these languages
are not useful, in fact we would argue that they serve as an excellent basis for im¬
plementation of the language we have in mind.

The logic based languages (such as Prolog [Clocksin and Mellish 1981] and its
object extension ESP) in their desire to be efficient computational devices have
sacrificed the representational flexibility of first order predicate logic. At the
same time they suffer from the inability to conveniently handle such programming
necessities as screen and file I/O and variable side effects (since logical variables
can be unbound by backtracking)[Kowalski 1979, 1981a, b].

The rule based languages fail to provide a convenient mechanism for represen¬
tation of axiomatic knowledge associated with a concept (a critical need for di¬
rect representation of an ontology). These languages also suffer from the problem
(which is shared by the logic based languages as well) of implementing a specific
reasoning method, without the programming power to be usable to implement
variants of that method.

What is needed is a programming language (with the associated implementation)
which:

12 It is interesting to note that Flavors, VBASE, Smalltalk and C++ make no
such knowledge representation claims. They are simply offered as object
oriented programming languages, promoted as tools for constructing modular,
reliable, and reusable code.



205

1. Offers the computation specification clarity of a functional language.

2. Offers the modularity of an object oriented language.

3. Supports the development and specification of an ontology.

4. Supports the application of that ontology to a particular domain.

5. Supports the construction of reasoning mechanisms which can both use the
provided ontology and/or extend it.

6. Provides for temporary and permanent storage of data generated and used.

7. Provides for the management of evolving systems descriptions.

Attempting to satisfy all of these needs turns out to be somewhat more complex
than would first appear. As Wirth has pointed out the elegance of a language
is more determined by what you leave out than by what you put in13. Follow¬
ing this theme we would want to strive for as lean a language as possible. There
are also conflicts to deal with in the design goals which have been proposed for
the various languages which have been designed to address the individual needs
stated above. For example, in programming languages for computation specifi¬
cation an oft declared goal is for “referential transparency” (i.e. contextual inde¬
pendence of interpretation). On the other hand the basic premise behind the SA
ontology presented in the first part of this section is that one of the central prop¬
erties of a useful language for communication is contextual dependency. These
goals are not necessarily mutually exclusive, but it is certainly the case that one
can easily design a language which satisfies the first goal and is incomprehensible
(and hence difficult or awkward to use). The point is that an attempt to patch
together existing language constructs into a new language without careful consid¬
eration of these various tradeoffs would probably result in a system lacking any

intellectual coherence.

13 This comment is generally made in reference to PL1 or Ada



206

5.8 Another Notational Anomaly (ANNA)

The following section describes the basic structure of a language for expressing an

ontology, and the application of that ontology based on the structures presented
above.

5.8.1 Symbols, Gramatical use, Interpretation use,

and Interpretations

The first issue to deal with in the design of the ANNA language is the represen¬

tational distinction of the symbol, from the symbol use, from the interpretation of
the symbol. In ANNA we distinguish the symbol by use of the LISP like quote
notation. Thus, ’ANNA denotes the symbol consisting of the letters “A”, followed
by “N” and so forth. We distinguish two types of symbol use: grammatical and
interpretable. The first is related to how a symbol can be combined with other
symbols to support the second kind of use. Thus, ’conveyor denotes a symbol
but ’(the conveyor) denotes a grammatical use. The distinction between gram¬

matical use and the symbol classifications is that a symbol does not necessarily
have an interpretation, whereas, a grammatical use will always have an interpre¬
tation. Now, of course, there are single symbols with intepretations (e.g. proper
names being a large class) and collections of symbols without an interpretation
(e.g. dangling participial phrases). The interpretable use of a symbol or set of
symbols is denoted by enclosing the symbol in square brackets. [ANNA] denotes
the use of the symbol ’ANNA and [the west end loader] denotes the use of the
set of symbols ’the, ’west ’end, ’loader. The interpretation of a use of a symbol
is denoted by the LISP like backquote notation. Thus, the interpretation of the
use of the sentence ’(Anna likes Celeste) is denoted ‘(,[Anna likes Celeste]). This
notation allows us to reverse the traditional notion of constants and variables14.

It also allows the embedding of referents since the evaluation of a grammatical
use is recursively applied to the grammatical use of each of its constituents. Thus
4(,[‘(,[Anna]) ’likes ‘(,[Celeste])]) is the first level of evaluation of the previous in¬
terpretation of the use of the sentence ’(Anna likes Celeste). Notice that the sym¬

bol ’likes does not receive an interpretation this is because it has no grammatical

14 That is variables, and not constants, are used to stand for arbitrary objects.



207

use as a stand alone symbol. It will be used in the construction of the interpreta¬
tion of the overall sentence. A more complex example might be as follows:

‘(,[The west end loader moves autobodies from the BIW area to the Uniprime

conveyor])

->

‘(,[ ‘(,[the west end loader]) ’moves ‘(,[autobodies]) ’from ‘(,[the BIW area])

’to ‘([the uniprime conveyor])])

Bindings

Since by our previously defined ontology we wish the interpretation of a gram¬

matical use of symbol(s) to be a characterization of the situation(s) of the type so
described by those symbols and since a situation is described by the facts it sup¬

ports we need a way of denoting facts. Facts can be thought of as asserted con¬

stituent sequences with an associated polarity. Thus a fact description is a bind¬
ing with at least a relation name and a polarity specification. Optionally (and as

is the more common situation) fact descriptions include a set of argument names
with associated values. We choose a schema like representation of a fact with the
following form:

(binding

:name <symbol> ; this is optional

:relation-name <a symbol> ; required

rpolarity <0 or 1 or undefined or changing> ; required

:<argument-name> <argument value> ; zero-one-or-many of these



208

Variables

In order to use facts to classify, type, and sort situations we must allow for any of
the constituents of a fact to have as its value a variable or unspecified value. This
is represented by the use of the keyword :var in the parameter value position of
the fact schema. The :var keyword can be optionally followed by a symbol which
denotes the name of the variable value. ;

(binding

:name <symbol> ; this is optional

:relation-name <a symbol> ; required

:polarity <0 or 1 or unknown> ; required

:<argument-name> :var X

•)

Note that this applies to all of the parameters including the relation-name as

follows:
(binding

:name <symbol> ; this is optional

rrelation-name :var X ; required

:polarity <0 or 1 or unknown> ; required

:<argument-name> :var Y

•)



209

Anchors

In the section on situation semantics we introduced the notion of functions

which assign values to indeterminates in constructing events from an event
type. More generally, we want to be able to represent restrictions on what can
be the value of a variablized parameter of a fact. The existence of an anchor is
denoted by a ‘—’ following the variable name or the :var designator in the case

of an un-named variable. The anchor itself is a function of two types - either
a constructor (e.g. a function which can create or find an appropriate filler for
the variable) or a restrictor (e.g. a function which can determine if a proposed
value of a variable is appropriate). The type of anchor is designated immediately
following the ‘—’ with a :con or a :res. A variable may have either or both types
of anchors. The relative expressiveness (or power) of the language provided by
the representation system will be determined partially by the set of built in
anchoring mechanisms provided for the various elements in the ontology. For
example, does the implementation provide:

1. basic set manipulation operators,

2. ensemble operators,

3. concept subsumption operators,

4. classifiers,

5. type manipulation operators,

6. sort enforcers (better known as data type enforcers).

In fact it is the definition of the language for anchor specifications which requires
addressing the other computation and data access/manipulation features of the
language requirements stated above.

Situations

A situation is described by a binding over facts and stakes. Internal to the system
the situation is actually defined or classified by use of the binding schema with
the following distinguished parameters:



210

1. :name optional,

2. dn-s to denote that the schema classifies a situation as far as it goes,

3. :—= to denote that the schema is meant to define a situation,

4. :stake-« to denote a stake constituent which may have a value or a variable
with associated :con or :res anchors,

5. :-> to denote that the situation described is informative on another situation

given either by name reference or explicitly spelled out.

6. Fact-* one-or-more facts either by name reference or explicitly spelled out.

Note that one of the interesting things we can do with such a representation is to

easily coerce a fact into a situation descriptor merely by the addition of a header
declaring it as such. Similarly the facts that by association describe a situation
axe easily extracted. This capability will be important in the later sections on

reasoning and modeling. Also note that the situation description can be extended
arbitrarily through the addition of more facts.

All of the ontology elements introduced previously can be described using only
the above defined language syntax. The following is an illustration of several of
the more interesting items.

Conditionals

The “When” and “If” type conditionals axe handled as relations between situa¬
tions. Thus, for example, the interpretation of the use of the sentence:

'(When the forks retract the cab carrier is released)

would be represented as

‘(,[When the forks retract the cab carrier is released])

— >

*(»[*(»[When the forks retract]) f(,[the cab carrier is
released])])

— >



211

1( , [*(,[’when f(,[the forks]) ’retract])
*(,[*( [the cab carrier]) ’is ’released]) ])

The interpretation would be described by a relation between the two referenced
situations, the one described by the forks retracting (i.e. S) and the one described
by the cab carrier being released (i.e. S’) as follows:

(binding
mama release-trigger
:relation-name involves

:polarity 1
:enablement S
:effect S’
)

This seems to nicely capture the natural semantics interpretation of ’When as a

reporting of a co-occurrence of sets of facts (i.e. just the facts describing the two
situations).

Whereas the interpretation of the use of the sentence:

’(If the forks retract the cab carrier is released)

would be represented as

*(,[If the forks retract the cab carrier is released])

— >

*(»[*(» [If the forks retract]) ‘(,[the cab carrier
is released])])

— >

*(i[t(,[,if *(,[the forks]) ’retract])
c(,[f([the cab carrier]) ’is ’released]) ])

The interpretation would be described as an informative parameter in the situ¬
ation described by the forks retracting (i.e. S) having as its value the situation
described by the cab carrier being released (i.e. 5*) as follows:

(binding
:name S
:in-s

:polarity 1
:stake :var L :res (spatiotemporal L 1)



212

:-$>$ S'
)

Which seems to capture the corresponding stronger notion of the “IF” condi¬
tional.

5.9 Summary

Using the above syntactic approach a description of a situation becomes merely
a collection of facts. There is no restriction on the type or number of these facts.
We will show in the next section how we can capitalize on this characteristic of a
description representation in order to provide a basis for the reasoning capabilities
required by KAMSS.

In summary, this section presented:

1. The need for a formal semantics for design of the representation systems in
KAMSS.

2. An introduction to situation semantics as a basis for the ontology behind
description and model representation in the SDCE and MDSE components
of KAMSS.

3. A method for semantic theory evolution.

4. The conceptual structure for extensions to the situation semantics basis to
account for continuous concepts.5.A language structure for representation of descriptions which can accommo¬

date both acquisition and reasoning processes using such descriptions.



213

6. REASONING IN KAMSS

The main purpose of this section is to present:

1. The criteria which a reasoning method must satisfy to be considered robust
enough for those tasks described in Section 5.

2. The types of reasoning which needs to be supported in a system such as

KAMSS.

3. A hypothesis that a rational approach to modeling human reasoning situa¬
tions in the context of the activities set out in Section 2 and the approach
to semantics proposed in Section 5 is to separate reasoning into a discovery
component and a method component. With this separation we argue for an
approach to reasoning which is based on “chains” of information flow.

6.1 Observations on Reasoning in KAMSS

The terms “reasoning, thought, argument, proof” all characterize intellectual
tasks. Theories for these tasks are attempts to establish methods for the appli¬
cation or structuring of these tasks so that the result of application has certain
properties. In its most basic characterization reasoning is an activity through
which an agent attempts to use known facts about the world in order to extract
additional information. This additional information is assumed to be implicit in
the facts already in the possession of the cognitive agent. Thus, the concepts pre¬

sented in Section 5 of meaning and information are central to the process of rea¬
soning. For the way that we come to know information, and the way we extract,
store, and manipulate information is central to the manner in which we can use

that information in a reasoning process.

Reflecting on the types of cognitive tasks described in Section 2 it would appear

incorrect to assume that a person employs a particular reasoning method. Rather
it is more reasonable to assume that the customer and the analyst have the
capability to generate a form of reasoning method that is appropriate to the task
at hand. It is reasonable to argue the fact that the human has the capability to

change reasoning methods based on the representation which is provided by the
theory of semantics that he is employing in a given situation. Or that the human



214

can alternatively change his representation to suit the method of reasoning which
he would like to employ. What this implies is a view of reasoning as containing
a discovery component and a method component. What we would propose is
that the discovery mechanisms of reasoning are more basic than the method
mechanisms. The method mechanisms we will refer to as the “logic” component

(see Figure 6.1).

We propose that for a theory of reasoning to be acceptable it should have the
following properties:

1. It must be shown to be the basis for a discovery mechanism for language
acquisition.

2. It must be shown to be a discovery mechanism for the models which have
heretofore been postulated as the basis for reasoning (i.e. categorical logic,
symbolic logic, propositional and predicate calculus, and non-monotonic
logic, as well as inductive reasoning systems.)

3. It must be shown to be simple enough to be acquired by an individual even
in the context of a relatively “dirty” (non-monotonic, irrational) environ¬
ment.

The remainder of this section outlines an approach to a theory of reasoning which
we feel could be developed to achieve the above defined goals. The following
sections will sketch the basic concepts of information flow as the basic mechanism
for support of the reasoning requirements in KAMSS, describe how this concept
is consistent with the ontology structures presented in the previous section, and
illustrate how this concept would work to support the basic knowledge acquisition
process. In the next section we will discuss how the concept supports the model
design and situation analysis process.

6.2 Types of Reasoning in KAMSS

Considering the cognitive tasks outlined in Section 2 and 5 the reasoning skills
required of the KAMSS would include but not be limited to:

1. Reasoning with defaults,



215

Type 1 -

Type 2: -

Type 3 -

Type 4 -

Type 5 -

Type 6 -

Type 7 -

Reasoning required to acquire system description

Reasoning required to communicate what KAMSS
knows.

Reasoning requied to determine missing
knowledge needed to answer a question.

Reasoning required to answer a question.

Reasoning required to design a model to answer
a question / explain a behavior.

Reasoning required to analyze a model

Reasoning required to design a solution to a
problem.

FIGURE 6.1: REASONING COMPONENTS.



216

2. Reasoning with time intervals and time points,

3. Reasoning with situations,

4. Reasoning with knowledge and beliefs,

5. Reasoning about cause and effect relations,

6. Simulation of the reasoning of another agent (i.e. the user),

7. Goal extraction from situation understanding,

8. Plan construction ,

9. Experiment / test design,

10. Plan failure analysis,

11. Test result interpretation.

An important point which can be made about the reasoning in KAMSS is that
it is reasoning about things that it has been told. It is not envisioned in the
current prototypes to have any means of acquiring perceptions of the outside
world beyond the “utterances” which come in to it via the terminal. This need
not be the case. For example the KAMSS could be fitted with an interface to a

factory information system, or a product / facility CAD data base. Under such
circumstances the system could collect something of its own observations. As
illustrated in Section 5 each utterance will have at least the following kinds of
information associated with it:

1. A classification (i.e. command, declaration, conditional, drawing, etc.),

2. A time stamp (generated by KAMSS),

3. A person ID, a unique identifier of the person at the terminal generating the
utterance.

There are two main classes of reasoning of issue in KAMSS. One class is referred
to as “data driven” (i.e. inference performed on data acquired). The other class
is referred to as “goal driven” (i.e. inference performed on demand). The former



217

is primarily triggered during the discourse acquisition process. The latter is
primarily triggered via queries or commands posed by the user. In the previous
section we identified two types of queries. Those that request data about facts or

of facts acquired, and those that query about possible situations. In the latter
sections of this section we will see that these two types of queries pose very

different problems for the reasoning system in KAMSS. But first we will address
the problem of data driven inference. :

6.3 Data Driven Inference

One issue that we must address is just what does KAMSS “know”1 on the receipt
of an utterance like “The Dodge City wheel and tire line delivers wheels/tires to
the main assembly line.” We suggest that there are at least two classes of infor¬
mation which can be acquired from the processing of such an utterance. The first
class is referred to as the semantic meaning, the second the “pragmatics” mean¬

ing. Given that the KAMSS can classify the components of the sentence into se¬

mantic case structures or some internal representation as was illustrated in Sec¬
tion 5, we claim it has access to the semantic information from that utterance.
However, the pragmatic information will turn out to be the more useful compo¬
nent in the general case. Pragmatic information content is that derivable from
the discouse situation and the assumptions of the semantic theory upon which
the KAMSS reasoning system is constructed. Presuming KAMSS could parse this
sentence and determine that it is an English sentence, since the utterance would
have been received from the current user of the system, one of the “things” that
KAMSS knows is that that person believes that a situation (of the type described
by that sentence) exists.

1 As our intent is to focus on the characterization of the representation of the
ontology and the principles of reasoning need to support a KAMSS we will
side step the issue of the problems attendant with the fact that axiomitization
of “to know” typically results in the need to introduce a truth predicate
which (using the results of the fixed-point theorum) gives rise to all of the
classic incompleteness results. In this section we will use the term “know”
in the sense of “believe” which does not carry with it the truth predicate
requirement.



218

KAMSS should also know that the information content of the statement made

with that sentence is dependent on the types of situations in which such a state¬
ment can be used and upon the conditions underwhich information is communi¬
cated in those discourse situtations. KAMSS also knows that those conditions can

be parametric or parameter free. That is KAMSS knows that some constraints
which carry meaning will have free variables which are normally fixed by the con¬

text of the discourse (parametric) whereas others contain no variables at all. We
propose in the following discussions that the reasoning process uses parametric
constaints picked up through the discourse process (or preprogrammed as a part
of the domain knowledge) as axioms to guide the discovery mechanisms for hy¬
pothesizing a situation reference which is needed to complete a reasoning link.
We propose that the parameter free type constraints (preprogrammed or ac¬

quired) provide the basis for generalization when the situations are known and
the constraints are being sought.

From a mechanistic point of view all that KAMSS “knows” is represented by
symbols in the KAMSS knowledge base (we will avoid the meta-physical argue-
ment of whether the same is true for humans). References to situations actual or
hypothesized are either explicitly labeled or unknown to KAMSS (we do not pro¬
pose that KAMSS knows what it can reason to, only what it has acquired or has '
reasoned to). Thus what we need from a mechanism point of view is a syntac¬
tic manipulation approach which can accommodate the types of discovery and
method components we have in mind. This leads us to the consideration of a
combination of the “syntactic theory of belief and action” of Hass [Hass 1986] and
the “description matching” framework of Bobrow [Bobrow and Winograd 1977]
can be used as a basis for a reasoning method for the KAMSS.

One of the sticky issues associated with the KAMSS reasoning system is that
of how to deal with various types of assumptions, particularly those associated
with assumptions about the beliefs of the user. For example, suppose the user

“knows” that KAMSS “knows” a particular fact. The KAMSS reasoning system
should be able to determine that an ambiguous reference (made by the user

because of his belief) can be satisfied with that “known” fact. One possible
basis for resolving such a problem is to insist that the some basic principles
of reasoning about knowledge be adhered to. The first would be the principle
that, if someone (including the KAMSS) knows some thing then he knows that



219

he knows it [Moore 1980]. This would allow the KAMSS to attempt to resolve
the ambiguity by inferring the missing information from its knowledge base to
resolve the ambiguity and then asserting the consequences as an assumption. An
example of this sort of reasoning applied to the construction of the meaning of an
utterance is provided in the following section.

6.3.1 Construction of the Meaning of an Utterance

One of the problems with theories of semantics is that in order to be general
enough to handle the problems of explaining the efficiency of language and the
capabilities of humans to freely objectify concepts they tend to be too finely
grained for actual implementation use. The reverse problem is that semantic
structures which have been established for particular applications tend to be too
course grained and brittle for reliable use. What we feel is needed is a hierarchy
of conceptual structures, and a flexible means of moving from level to level. The
following section illustrates the concept we have in mind by example.

An example of the strategy of use of the SRM in the context of utterance mean¬

ing construction in KAMSS is presented in the following. Suppose that KAMSS
receives an utterance of the following:

1. The robocarrier moves autobodies from receiving to paint.

Let us assume for the moment that the domain knowledge of KAMSS has no

information related to the symbol string “robocarrier”. KAMSS knows that the
interpretation of an utterance is the type of situtation it describes and that the
propositional content of declarative sentences is that there is a situation of that
type. KAMSS also “knows” something about the language of the user. That
is, we can assume that words like “the, a, to, from, after, before, when, if, ...”
are recognized as a part of the base language, and that the semantics of these
words have been worked out by the developers of KAMSS. We can also assume

(see Section 4) that the parser can recognize that the sentence is a well formed
English sentence, and that for example the string “moves” is the main verb
of that sentence. The issue here is what to do with the strings “robocarrier”,
“autobodies”, “receiving”, and “paint”. First of all KAMSS must characterize
the situation in which this utterance has been used. That is, KAMSS knows that
it is in the system description capture mode. It also knows that the input which



220

has been typed in was typed in by a user (lets call him Jon). Now the following
represents the knowledge base of KAMSS at this point.

1. (utterance#!!, says ’Jon “The robocarrier moves autobodies from receiving to
paint”) ;from the input event

2. (believe utterance# 1 is a sentence) ;from the output of the parser

3. (believe there exists a situation type Si described by utterance#l) ; from
situation theory.

4. (believe there exists a situation si of type Si); from the propositional content
of utterance #1.

5. (believe “robocarrier” binding); If you don’t know what something is assume

it is a binding.

6. (believe “autobodies” binding); If you don’t know what something is assume

it is a binding.

7. (believe “receiving” stake); From parser’s classification based on case marker
“from”.

8. (believe “paint” stake); From parser’s classification based on case marker
“to”.

Now suppose the next utterance which the KAMSS receives is:1.The robocarrier moves at 20 feet per minute.

This is a property observation statement. The knowledge base of KAMSS at this
point would be augmented to include:

1. (believe utterance#2 is a sentence) ;from the output of the parser

2. (believe there exists a situation type S2 described by utterance#2) ; from
situation theory.

3. (believe there exists a situation s2 of type S2); from the propositional content
of utterance #2.



221

4. (believe same si s2); From the co-occurence of the string “robocarrier” and
the use of the definite descriptor “the”.

5. (believe property ?x “20 feet per minute” in binding “robocarrier”);

KAMSS knows how the property is described and its value but it doesn’t know
what it is called.

Now suppose that the next utterance to be processed is:1.Autobodies are spaced 10 feet apart on the robocarrier.

The knowledge base of KAMSS at this point would be augmented to include:

1. (believe utterance#3 is a sentence) ;from the output of the parser

2. (believe there exists a situation type S3 described by utterance#3) ; from
situation theory.

3. (believe there exists a situation s3 of type S3); from the propositional content
of utterance #2.

4. (believe different si s3); From the plural reference and the lack of use of the
definite descriptor “the”.

In the manner illustrated above the KAMSS would be able to build up a descrip¬
tion of the objects in the system, the properties associated with those objects, the
situations in which those objects participate and the relations they participate in
as a part of those situations.

6.4 Adaptive Reasoning, A Frame of Reference Based Reasoning Method

The basic notion behind our adaptive reasoning AR concept is that human rea¬

soning is limited, largely pattern based, and primarily memory resident. One of
the reasons behind considering the AR approach to be a viable concept is the way

humans use symbol tools to extend their reasoning capabilities. It has been sug¬

gested by Harman and Hass that beliefs and knowledge are expressions of a repre¬

sentation language (i.e., “the medium is the message”). If we assume a fairly lim¬
ited reasoning mechanism which is constrained by the characteristics of the mech-



222

naism on which it is implemented, then one of the reasons behind the develop¬
ment of symbol tools (e.g., language, song, text, figures, etc.) could be that they
serve as mechanisms for extending our capabilities to reason about complex sit¬
uations. Thus the fact that almost every formal proof of a logic or mathematical
construct involves the setting out of a notational system is possibly evidence of
the need for the notational devices to formulate the constructs in the first place.
Stoy points out [Stoy 1985] the effect of the Arabic numbering systems for deno¬
tation of numerals at simplifying -the process of performing simple arithmetic op¬

erations from one of complex reasoning to one of simple syntax manipulation. We
contend that symbolic and syntactic structures represent a tool making capability
which humans are constantly using to extend rather limited reasoning capabilities
to impressive heights.

Considering the limited success of the techniques reviewed at modeling human
reasoning systems, and knowing that the operational requirements of the KAMSS
system all but preclude the “brittle” approaches of traditional reasoning systems,
it would seem reasonable to consider taking this alternative approach. After all,
humans presumably began reasoning eons before the first formalizations of Aris¬
totle’s categorical methods emerged. Similarly we can directly observe reason¬

ing, understanding and problem solving in lower forms of intelligence than man.

As Harman points out, “Clearly, argument or proof is not at all the same sort of
thing as reasoning in the sense of reasoned change of view. There is a clear dif¬
ference in category. Rules of argument are principles of implication, saying that
propositions (or statements) of such and such a sort imply propositions (or state¬
ments) of such and such other sort.” [Harman 1986].

What we are essentially proposing is reasoning as a discovery process. This dis¬
covery process is one of establishing chains, the links of which allow information
to be acquired from the environment, or from previous information acquired as

illustrated in Figure 6.2. The AR model of reasoning is a localized model. Each
chunk of information is assumed to have a logic of its own. This logic mechanism
is responsible for the following primitive activites:

1. Determination of when the chunk of knowledge can be used in a reasoning
chain.



223

FIGURE 6.2: REASONING MODELED AS CHAINS
OF INFORMATION FLOW.



224

2. Determination of what part of the information chunk will be passed on based
on the reasoning situation.

3. Determination of what effects inconsistencies in the reasoning situation and
the information use requirements will have.

The key questions to be addressed in order to characterize AR include:

1. What is in an information node?

2. What is in a link (i.e., what form are the constraints)?

3. What is the logic model which could operate at each node in an independent
fashion and produce information chains which stretch across many nodes.

6.4.1 Formalizing the AR Theory

One of the first requirements of the AR approach is that it must support the
SRM theory of semantics presented in Section 5. In fact the two are closely
intertwined in that we will show that AR derives its feasibility from the existence
of SRM. And that for the SRM to be a useful concept requires the availability of
some sort of AR mechanism. From the example at the end of Section 5 we are

already familiar with the following principles of information flow in a discourse
situation:

1. The “interpretation” of an utterance is the “type” of situation it describes.

2. The “propositional content” of an utterance is that there is a real situation of
that type.

3. The “meaning” of a sentence is the “relation” between the “type” of situ¬
ation in which the sentence is used to assert something, and the “type” of
situation described when the sentence is used.

4. “Meaning” consists in constraints between types of situations, and it is such
constraints that allow a situation to contain information.

5. Thus we distinguish between the “meaning” of a declarative sentence, and
the “interpretation of the utterance” of that sentence.



225

6. “Statements” are certain kinds of utterances made with declarative sen¬

tences.

Thus we do not suppose that sentences in isolation are either true or false.
Rather the propositional content of an utterance is the carrier of the traditional
truth value. A key ingredient in understanding the information content of a “sen¬
tence” is understanding the subject matter of statements made with it. Thus un¬

derstanding a sentence is understanding what situations it can describe and under
what conditions it can describe them. But not every thing about a situation is
necessarily stated. Barwise [Barwise 1985a] introduced the Principle of “exploita¬
tion of environmental constraints” (What stays fixed does not need to be made
explicit) to accommodate this problem.

The notion of constraints between situation types as the basis for information
content of a situation can be used to define the information nodes in our chains.

A node is simply a situation description which can be recalled (a uniformity
which the reasoning process has access to). A link is established between two
such nodes when one situation has been observed as having a binding to another
situation (possibly via an statement use in a processed utterance). The simplest
type of link is an existence link. That is the meaning of the first node is that
when an instance of that type exists so does an instance of the second type. A
more general type of link between two nodes is the “informative” link. Specifi¬
cally a node is informatively bound to another node if it is the case that the facts
which form the description of the first node are a subset of the facts which form
the description of the second node and if the descriptions of each node are actual.
Thus if KAMSS is aware of an informative link between two nodes and the de¬

scription represented by those nodes contain variables then the informative link
tells how those variables can be bound. Now as a description can also contain
stakes and variables in the facts which form the description of the situtation we

have a way to coerce groundings of constraints so represented.

Part of the “discovery” process of reasoning then is the “noticing” of the con¬

straints between the various types of situations which can be recalled. A side
effect of this view of the existence of a discovery process is that the mechanism
must then be aware of the fact that it can look for a particular situation to use to



226

form a needed node or to participate in a needed link. Noticing that a situation
constrains another situation can come about via several modes:

1. Pragmatically by language use,

2. By direct observation,

3. By syntactic manipulation of situations known to the reasoner,

4. By creation of situations required by the reasoning process.

Now recalling that situations are themselves bindings over bindings this means

that the matching process is one of examination of both property values and
internal structures of the situation. It is the case that existential constraints

between situations imply some sort of sharing of elements between the situations.
In the simplest case the constraint between the two situations would require
that every uniformity observable in the independent situation also be in the
dependent situation. This implies then that matching over parts of the situations
may be a mechanism for driving the reasoning process. This would make a nice
explanation for an inductive reasoning process. Deduction on the other hand can

be viewed as a powerful method for certain types of matching, particularly in its
first order logic form. Such a view is consistent with the fact that even resolution
refutation systems embody a technique (albeit systematic) for searching the
fact space (ancestory filtered, set of support etc.) This would also make for an
interesting explanation of why an individual does not believe everything that
can be proven by deductive methods from his beliefs. There is simply no need
to envoke the pattern matching process unless a particular situation type or link
is being sought.

Since in general one thinks of reasoning as a method of extending the beliefs
which one knows, a natural question is how does KAMSS “know” something.
Simply put KAMSS can retrieve symbol strings from its memory. Given that
those strings point to bindings or properties or stakes or higher level assemblages
(e.g. situations, events, types etc.) KAMSS knows about the meaning of those
strings as described in SRM. Thus in one sense the processing presented in sec¬

tion 5 for understanding of an utterance is one type of reasoning. When KAMSS
“knows” something it may or may not know “how” it knows that something.



227

That is it may “know” that it has processed an utterance (or series of utterances)
which resulted in the establishment of a binding with an associated set of proper¬
ties or sub-bindings (as we saw in Section 5). Or it may know that the “thing” it
has retrieved from memory is the result of a reasoned chain of information links
between situations. This “optional” foundationism aspect of KAMSS allows the
storage of justifications with a belief when there is some reason to doubt that be¬
lief.

In considering what triggers the reasoning process in KAMSS we assume that a

reasoning process in KAMSS will always be triggered by an external stimulus.
That is:

1. Trying to “understand” an utterance,

2. Trying to answer a question,

3. Trying to perform a task such as:

3.1. Describing a system,

3.2. Explaining a phenomena,

3.3. Designing a model,

3.4. Determining the consequences of a change.

Thus we are particularly interested in “goal-driven” reasoning. The “goal” itself
is something that KAMSS knows about in more than a simple way. For example,
KAMSS knows who was the source of that goal, and that it believes that it can
satisfy that goal. Notice that the goals presented above are slightly different than
one would normally encounter in a traditional reasoning system. In a traditional
system the issue for the search algorithm is to find a path through a search
space of beliefs to show that the current set of beliefs entail a goal sentence. In
our case the beliefs represented in the knowledge base are links to entailments
between real situations (among other things). That is, as was illustrated in
Section 5, one of the pieces of information which the KAMSS derives from an

utterance is that there exists a situation of the type described by the sentence
in the utterance. Thus while we rely on the syntactic structures in the belief



228

space for the method component (in particular the label strings) the discovery
and the method component have access to the situation referents, which they can

manipulate in useful ways. For example the method component can notice that
two different labels reference the same situation or situation type (e.g. the fact
that the “morning star” and the “evening star” both designate the planet Venus).
On the other hand the discovery component can create a hypothesis that two
identical labels which point to different situations or constraints actually point
to the same situation or constraint type. Thus allowing the pursuit of evidence of
the existence of that type in an inductive mode.

In considering the reasoning process for getting from what it knows to what it
can reason to we must first make an assumption that if KAMSS makes an access

to the information network described above then the result of that access is made

a part of the network. We can think of this as the ability of KAMSS to talk
to itself. That is, the access and the result of the access are made available for
future accesses. Such a property is often referred to as “introspection” [Hass
1986; Moore 1980]. It is central to the “reasoning by change of view” (revision
of belief) proposed by Harmon.

Having access to the interpretation as a situation of the type described by the
use of a sentence allows the extension of the power of traditional proof methods.
For example, Substitution of Equals can be applied at the situtation level rather
than just at the syntactic or sentence level. We can apply propositional logic
to the propositional statements associated with the interpretation independent
of the variables which may be present in the situation type of a conditionaUzed
interpretation.

In its simplest form reasoning by information flow then is a process of:

1. Knowing that one situation type S is informative on another S’,

2. Knowing that a real situation s described by an abstract situation s of type S
exists,

3. Concluding that a real situation s’ described by an abstract situation s’ of
type S’ exists.



229

Of course (as pointed out in the previous section) KAMSS has no way of getting
at the real situation. Rather, KAMSS must deal exclusively with the situation
descriptions. These descriptions are made up of sets of fact descriptions, each fact
description being of a real fact supported by the real situation. In the previous
section we noted that the abstract situations (the ones that KAMSS knows about
because it has possession of their descriptions) come in three varieties: actual,
factual and non-factual. By the definition of “actual” abstract situations if s and
s' are actual abstract situations then they are identical since each is exhaustive.
Thus, the interesting cases to consider are:

1. When s is actual and s' is factual,

2. When both s and s' are factual,

3. When s is factual and s' is actual.

In the first case the only additional information (derivable from knowing that s

is informative on .s') is that s' is (in fact) actual. In the last case knowing that
s and knowing that S is informative on S’ (with the background knowledge that
s’ is actual) corresponds most closely to what we normally think of as deductive
reasoning as we can conclude the missing facts from s which are in s'. Case 2
with parameterization is actually the most interesting case. The reason is that
in order for case 2 to support the sound deduction of additional information
from knowing “that s” and knowing S is informative on S’ we must establish
what we refer to as the grounding constraints which transform s' into an factual
abstract situation. It is the formulation of these grounding constraints which we

feel correspond to the inductive reasoning process. The grounding constraints are

just those constraints which make the relation (involves s, s’;l) hold. Note that
such a constraint does not force either s or s' to be actual. Rather it forms the

conditions under which if s is realized so is s’ and hence (since s' is factual) the
facts supported by s' (the descriptions of which form the description of s’) can
be inferred. Grounding constraints are just in fact relations over real situation
types. Thus, the description of a grounding constraint is just a collection of
facts. This means that in the information flow style of reasoning, the grounding
constraints can be manipulated directly. In other words, even the axioms and
the proof rules can be objectified and reasoned about. To use computer science



230

jargon, everything is a first class citizen. The importance of this feature has been
documented in [Hass 1986; Barwise 1985b]. Hass, in fact, proposes an instance of
this concept in his reflection schema proof method.

As discussed in previous sections generalized, quantifiers and conditional sen¬
tences are the kind of linguistic mechanisms used to establish grounding con¬

straints. As such, these language constructs form relations between situations
which account for the tranfer of information from one agent to another, or from
one stage of the reasoning process to the next. With the relations described in
the previous section the rules of inference for propositional logic can easily be for¬
mulated as constraints between situation type descriptions operating only on the
proposition component of the description. Universal specification, modus ponens

and other rules of inference can be added by adding the existential and universal
quantifier relations.

6.5 Summary

In this section we have argued for the use of information transfer between situa¬
tions as the basis for a method of reasoning. We have illustrated this mechanism
as a means to support the types of reasoning required in KAMSS. The major fea¬
tures of this approach is that it allows for use of both the semantic and pragmatic
interpretations of a statement to be used in the reasoning process as well as the
fact that it supports objectification over the axioms and proof rules.



231

7. THEORY OF MODELING

The purpose of this section is to investigate the relevance of the previous sections
covering situation theory and reasoning to the analysis of how intelligent beings
perform modeling. If we assume the correctness of the basic assumption of at-
tunement to uniformities across space and time as the basis for an organism to
move successfully through its extent, then one of the challenges of this section is
to distinguish the level of modeling which we are choosing to explain. In fact, the
ability to be attuned to such uniformities can individually be characterized as a

modeling task. It follows that the basic skill of language design and utterance for¬
mation can be conceived as a modeling task. Since we are interested in imitation
of the process by which humans learn to perform these tasks or acquire this com¬

municative competence, we will focus on this area first. We will then move on to
a discussion of the generation of models for the causal reasoning and deductive
simulation capabilities of KAMSS. Finally, we will summarize what these findings
can tell us about the more traditional forms of quantitative simulation modeling.

7.1 Modeling and Semantics

Model-theoretic semantics involves the construction of abstract mathematical

models of those things in the world making up the semantic values of expressions
in the object language. Model theory is a method for learning about the meaning
of expressions and the correlations between “expressions and meanings” by
investigating in detail how the meaning of complex expressions is related to the
meaning of the simpler expressions they are constructed from.

On the other hand, if we are interested in how models are used as generalized
tools to help in decision making, we would focus on examination of what the
previous sections have to say about how a person:

1. Formulates abstractions, associations, and model specifications,

2. Uses models for imitations, approximations, and indications of reality, and

3. Uses the imitations, approximations, and indications, in the reasoning pro¬

cess associated with his decision making.



232

It is this focus that the following section is intended to serve. However it should
be pointed out that the two focuses are closely interrelated. The basic premise of
this section is that humans use models in common sense reasoning about systems
as a natural extension of the human language and reasoning capabilities. In fact
the models provide a requisite tool for enabling common sense reasoning about
complex systems.

In Section 5, we reviewed some of the characteristics of natural language from the
perspective of Barwise and Perry [1983]. It is informative to note the similarities
between models and languages relative to these characteristics as follows:

1. Models as Situation Understanding Mechanisms: The contention here
is that models are used to key our perception mechanisms to be attuned to
certain uniformities. One of the painful experiences that motivated this re¬

search was that sophisticated modeling support tools were not generally us¬

able by domain experts because they did not have the requisite modeling ex¬

perience. While it was feasible to train them in the basic concept classes of a
modeling technique and in the structural aspects of a model, this training did
not provide them with the ability to observe an actual situation and deter¬
mine the design of a model having instances of those concepts so arranged as

to answer a particular question. This is why a modeler can do what a non-

modeler cannot. This captures the notion of “frames” as originally proposed
by Minsky [1972].

2. Parameterized Situation Descriptions as Model Templates: Our
attempts to derive information from a situation which has been perceived
forces us into the process of parameterization of situations and postulation of
grounding conditions which take the form of relations between parameterized
situations [Barwise 85a]. The parameterization process leads to the concept
classes within a modeling technique. The background condition formulation
gives rise to the structural elements of a modeling technique.

7.1.1 The Role of Context, Viewpoint, and Purpose

One of the first things taught to modelers (and possibly one of the last things
understood) is the importance of specification of the purpose, viewpoint, and con¬

text of a model. The purpose is usually described as an expression of the use for



233

the model. The viewpoint characterizes the audience of the model. The context is
the characterization of the boundaries of the model. In actuality the importance
of these concepts is generally only recognized in the construction of the model
where it is discovered that they are useful constraints for decision making. As a

first level approximation, the context for a model can be viewed as a collection
of states of affairs within which the facts represented in the model as assertions
about the real world can be ascertained to be true. The: concept of a context also
can be viewed as an attempt to characterize the conditional constraints which de¬
fine the background constraints under which the statements made in the model
will be true. In contrast the viewpoint of a model is a characterization of the at¬
titudes that the modeler attempts to reflect in a model. The “viewpoint” of a
model is an encapsulation of the beliefs, knowledge, and terminology of a particu¬
lar set of agents. Those agents are the representative set of individuals who could
“understand” the elements of the model with respect to their perception of the
“real world”. The viewpoint of a model characterizes the set of individuals who
would recognize the uniformities represented in a model as being consistent with
those uniformities that are relevant in a particular slice of the real world. The
“purpose” of a model is a characterization of the reasoning process which will be
supported by information which can be acquired through the construction of the
model.

7.2 Modeling for Causal Reasoning and Deductive Simulation

One of the basic tenents of this research was that the common sense notion

of “simulation” was that of causal reasoning and deduction from an understand¬
ing of the structure and behavior of a system. The basic idea behind qualitative
analysis, either using causal reasoning or qualitative simulation, is to be able to
support as much analysis as possible on the phenomenologically naive description
of the system. We do not propose that this qualitative analysis will completely
replace a model based analysis. However, we do believe that:

1. In many cases the qualitative analysis will be sufficient or,

2. The qualitative analysis will indicate that the expense of the quantitative
modeling is unnecessary or,



234

3. The results of the qualitative analysis will focus or guide the quantitative
modeling or,

4. The qualitative analysis will be used as a mechanism for validation of the
quantitative model based analysis.

We propose that this process can be imitated by the recognition that there are

actually three different views of the world with which we are dealing. The first
view is the “Description View” which is largely “type” and axiomatic in nature.
In this view we capture what we know about the way things are and how they
work. The SDC portion of the KAMSS is structured to acquire this view. The
extensions to situation theory presented in Section 5 were designed to provide
the basis for a representation system capable of storing such descriptions. The
second view is referred to as the “Token View”. This view captures models which
we instantiate from the description view. Finally, there is a third view called the
“Observation View”. This level is structured to store assertions made about the

structure or behavior of the system based on the results of tests or controlled
observations. The role of each of these views will be described in the remainder

of this section.

The “Description View” of the world (presented in Section 5) is adequate in
structure and form to serve as the basis for deductive reasoning in a theorem
proving fashion. However, many of the kinds of questions which the KAMSS
must address either require information which will not be in the current state of
the description base or they require possible world types of reasoning. To pro¬

vide the type of reasoning necessary to answer questions which require design the
KAMSS must support qualitative reasoning about either changes specified in the
question or changes implied by a design process attempting to answer the ques¬

tion. For this, we need the ability to tokenize the type descriptions. Tokeniza-
tion involves the instantiation of model objects for each type description and the
treatment of the properties and relations of those objects as constraints which
must be consistently applied across that tokenization. It is this token generation
and manipulation process which we will refer to as “qualitative simulation.”

Thus, for example, we would take a description of an event type such as:



235

truck cab arrival := at 1 during t

cab, d‘ yes

cab-carrier, b; yes

conveyor, body in white conveyor; yes

on, a, b; yes

on, b, body in white conveyor; yes

position, b; changing

as a schema from which we would generate an event occurrence (truck-cab-
arrival-1), an object token (truck-cab-1), an object token (cab-carrier-1), and
a constant (body-in-white-conveyor). The objects would be standing in the
relations (on truck-cab-1 cab-carrier-1), and (on cab-carrier-1 body-in-white-
conveyor). The event occurence would be assigned an interval, and because the
description does not contain a specification of the duration, a default value of
“unknown” would be assigned as the value of the duration.

The process concept introduced in Section 5 allows us to wrap what is tradition¬
ally referred to as pre-conditions and post-conditions around the state of change
by describing a process type. For example, the process truck cab arriving con¬

sisting of the ordered sequence of a state of change and a state of affairs ( truck
cab arrival, truck cab in position }, where the state of affairs would be de¬
scribed by:

truck cab arrival := at lelevator' during t

cab, a; yes

cab-carrier, b; yes

conveyor, body in white conveyor; yes

on, a, b; yes

on, b, body in white conveyor; yes



236

7.2.1 Generation of Qualitative Models from System Descriptions

Token based qualitative simulation requires the following elements:

1. A description of the completion criteria,

2. A description of the starting situation(s),

3. An algorithm for type instantiation,

4. An algorithm for constraint propagation,

5. An algorithm for the determination of whether the simulation process has
reached the completion criteria,

6. A method for interpretation of the results of the process.

The automatic generation of qualitative models from system descriptions has
many inherent problems. One of these problems is the characterization of the
completion criteria of the qualitative analysis process. The description of the
completion criteria is not necessarily straight forward. The completion criteria
may exist in any one of the following forms:

1. A possible situation description (e.g., can this system process 80 jobs per

hour),

2. An attribute value of a described situation (e.g., what is the throughput of
the west end loader),

3. The discovery of a conditional constraint (e.g., under what conditions will
the west end loader be a bottleneck),

4. The description of an operation of a system (e.g., what will happen if the
BIW conveyor breaks down for three hours).

In Section 2 we delineated several cognitive tasks supported by application of
internalized theories of system dynamics. We can see that the above completion
criteria map to these tasks directly. Item #1 above is an example of consistency
analysis, item #2 above is an example of plan projection, item #3 is an example
of situation anticipation and item #4 is an example of experiment planning.



237

The need to have an initial state is at first examination a difficult need to fulfill.

However, the initial state description can be satisfied by specification of the initial
state of affairs of the system. The type instantiation process can be used as an

effective mechanism for query of the user for this information.

Type instantiation is complicated by the global constraints which interrelate the
states of affairs and states of change of the system. Space and time constraints
being two obvious examples of such global constraints. The general process of
type instantiation can be described by the following method:

Until no more instances can be generated or until the completion criteria is met
do:

For each process type in the system description do:

For each state of affairs or state of change in the process type do:

For each object type in the state of affairs or change do:

Create an instance of the object type,

Validate the constraints associated with that object type,

Create an instance of the state of affairs or state of change,

Validate the constraints associated with that situation type,

Create an instance of the process type,

Validate the constraints associated with that process type,

Check the completion criteria,

Continue.

Of course in practice the simplicity of this method is complicated by the specifica¬
tion of the actions which must be taken on the discovery of a constraint violation.
The default action is to invalidate the associated instantiation process (lazy evalu¬
ation); alternatively the products of the instatiantion process can be set aside and
an attempt made later in the process to reuse these tokens.



238

7.2.2 Example of Qualitative Simulation Process

In this section we provide a walk through of the above described process for a

sample situation. Suppose we are faced with the following problem. We have
a transfer system which transfers truck cabs from the Body-in-White conveyor

to the Uniprime conveyor. We want to know if this mechanism will transfer the
cabs at a particular rate (say 60 cabs per hour). One obvious way to answer

this question is to look up the designed transfer rate of the system in question.
Unfortunately this will often fail to produce the information we want because
what we perceive as a “transfer system” may not have been specified, designed,
or certified as such. It is quite likely that the only information that is available
relative to capabilities is information at the individual machine or mechanism
level. In which case our next step is to walk to the shop floor and notice the
following actions occurring:

1. Cabs arrive at the transfer location on cab carriers on the BIW conveyor,

2. The forks of the transfer mechanism extend beneath the cab,

3. The cab is lifted off of the cab carrier by the forks,

4. The forks with the cab on them retract to a home position,

5. The elevator raises the cab to the transfer level above the Uniprime conveyor,

6. The forks extend out over the Uniprime conveyor,

7. The cab is lowered onto a carrier on the Uniprime conveyor,

8. Cabs depart from the transfer point on cab carriers on the Uniprime con¬

veyor.

It is important to note that the above action descriptors describe action types

(i.e., their descriptions would contain parameterized situations). One of the
first principles of qualitative modeling is to account for all objects. In the above
description of activities associated with the transfer process, the following actions
must be added to account for the carriers:

1. The empty cab carrier leaves the transfer location,



239

2.Empty cab carriers arrive at the loading location on the Uniprime conveyor.

If one begins to build descriptions of the transfer process, its associated actions,
and the objects in the system, one would end up with something like the follow¬
ing. We will assume that the general schema of a description follows that out¬
lined in Section 5. Thus a description of a concept will contain the following con¬

stituents: ;

1. A list of facts,

2. A set of axioms for membership,

3. A set of axioms of membership.

In the example, the axioms for membership will be used as “axioms for instan¬
tiation” (i.e., axioms which guide the determination of when a tokenization of a
concept type can occur). The “axioms of membership” will be used to determine
the viability of an instantiation once it has been made. Since we are to operate in
a “token” world we will find that some of the “axioms for membership” will spec¬
ify what the conditions are for destruction of an instance, and likewise, part of
the “axioms of membership” will describe what happens when the instance is de¬
stroyed. An alternative approach would be to place these axioms into the defini¬
tion of a new concept type associated with the original concept type which repre¬

sented the termination instances. However, we have chosen the use of termination
axioms in our experimentation. In the ensuing example we will introduce several
relations (e.g., same, common, etc.) which would have to be formally defined in
an actual KAMSS system.

First, one can list the actions within the process:

1. Cabs arrive at the transfer location on cab carriers on the BIW conveyor,

2. The forks of the transfer mechanism extend beneath the cab,

3. The cab is lifted off of the cab carrier by the forks,

4. The forks with the cab on them retract to a home position,

5. The elevator raises the cab to the transfer level above the Uniprime conveyor,



240

6. The empty cab carrier leaves the transfer location,

7. empty cab carriers arrive at the loading location on the Uniprime conveyor,

8. The forks extend out over the Uniprime conveyor,

9. The cab is lowered onto a carrier on the Uniprime conveyor,10.Cabs depart from the transfer point on cab carriers on the Uniprime con¬

veyor.

Thus, we will use actl as the name of the activity type of “cabs arrive at the
transfer location on cab carriers on the BIW conveyor”. We will use the synonym

”pTC” to refer to the “transfer cab” process type. We will use [] to denote a

variable representing “an” (actually “any” one) instantiation of a parameterized
description. We need a predicate to allow us to refer to something which is
constant over all instantiations. We also need a notation to allow us to refer to

“a” specific instantiation. We will prepend a # and append a number to refer to
a specific instantiation. Thus [# cab-1] refers to the cab (token of course) labeled
cab-1. Since descriptions are collections of things, it is useful to be able to refer
to components of a description. We will use a path notation for making such a

reference. Thus,

pTC.actl

refers to the cab arrival activity description within Transfer Cab description.
Similarly:

[# pTC-l][# actl-l].[# cab-1]

refers to the cab (labeled cab-1) in the cab arrival activity of the first instance of
the transfer cab process.



The description of the overall process would be:

(Process Transfer Cab
(constituent-sequence pTC, (act1,act2,act3,act4,act5,

act6,act7,act8,act9,actlO)
; l)

(common [cab], [pTC];l) — meaning the instance of the
cab type is the same instance
over all action instances in
the instance of the process
pTC.

(common [BIW-cab-carrier], [pTC];1)
(common [Uniprime-cab-carrier], [pTC];l)
(common [BIW conveyor], pTC;l) — meaning the instance

of the BIW conveyor
is the same over all
instantiations of pTC.

(common
(common
(common
(common
(before

(after

[Uniprime conveyor], pTC;l)
[forks], pTC;l)
[BIW transfer location], pTC;l)
[Uniprime transfer location], pTC;l)
[pTC].[act7] [pTC].[act8];1) — meaning an

instance of the
arrival of a

Uniprime cab
carrier need

only precede
the forks

extending over
the uniprime
conveyor

[pTC].[act6] [pTC].[act5];1) — meaning the
instance of the

departure of
the BIW cab
carrier need

only follow the
raising of the
cab, thus all
of the follow¬

ing actions
can take place
in parallel to
act 6.

)

Each of the activity descriptions would take the following form.

(Activity cab arrival



242

(at-location actl, [BIW transfer location];!)
(agent actl, [BIW conveyor];1) — the body in white

conveyor

(object-1 cab) — something of type cab
(object-2 BIW-cab-carrier) — something of type cab

carrier
(on [actl].[cab] , [act 1].[BIW-cab-carrier];1)

-- the instance of a cab involved
in the arrival activity
is on the BIW cab carrier
involved in that activity

(at-time arrival-time;1)
(duration arrival-time, Rsec;l)

— the duration of this activity
is below the resolution of a

seconds based measurement

system
)

(Activity forks extend
(at-loc act2, [BIW transfer location];!)
(at-time extend-time)
(object-1 cab)
(object-2 [forks])
(duration extend-time, [act2], 15 seconds;1)
)

Note that there axe several ways in which constraints between realizations of the
types in the above descriptions can be formulated. For example, given that one
process is ongoing, how is the generation of another transfer process instance con¬

strained. In the collection of system descriptions, it was noted that the techniques
used were either explicit or implicit. A statement such as: The empty BIW cab
carrier must clear the loader area before another transfer process can begin repre¬

sents an explicit constraint. Explicit constraints are the easiest for the reasoner

to handle since they can be directly used as input els additional top level process
instantiation constraints. Often background conditions, referred to as “domain
constraints,” were exploited in the implicit cases (e.g., the fact that only one ob¬
ject can occupy the BIW transfer location at a time). In the above example, an

instantiation of the transfer cab process must involve the instantiation of a cab
arrival event which occurs at a specific location.

The qualitative simulation proceeds by first making an instance of all of the
constant concepts in the pTC description. It then makes an instance of pTC.



243

It proceeds for each activity in the activity sequence to make an instance of
the activity, generating ail of the necessary object instances, and checking the
constraints as it does so. For example on generating [actl], it must generate [cab].
As it does, it checks the constraints associated with the process instance [pTC]
and finds no violations. However, in the attempt to generate an instance of [act2],
it would be required to generate another instance of [cab] which would violate the
“common” restriction of pTC and hence cause a failure. On the other hand, in
attempting to generate an instance of [act7], it would find no such violations and
would henceforth generate such an instance and the associated object instances.

7.3 Quantitative Simulation Model Design

A discussion of model design cannot be attempted without taking into account
such practical issues as model type, purpose, resource availability, and intended
use. For the purpose of this section, we will consider entity flow mathematical
simulation models or the type of model most often used in queueing network
studies. Our contention is that the model type provides a template or set of
scripts which form a classification scheme. The task of the model designer is
to fit the system description into the structures provided by that classification
structure. That is, he must map the situations observed or known about into
the abstract situation structures provided by the modeling scheme. The more

extensive the classification scheme provided by the model type, the more closely
the modeler can fit the real world structures into that scheme. From this point
of view we can see how the modeling structure both supports the abstraction
process and also drives the perception process of the analyst. To see how this
might work, consider the IDEF1/ES model of a subset of the SIMAN™ language
[Pegden 1982] displayed in Figure 7.1. Given that the simulation expert has
acquired the knowledge of the concepts and stuctures presented in that figure,
we can discuss how those constructs are used in the mapping process to result in
a mapping which gives rise to the “level of abstraction” property often ascribed
to a model. The following discussions characterize the selection of the “level of
abstraction” as a series of abstraction mechanisms which the modeler uses during
the model formulation process.

Structural abstractions: In Figure 7.1, we see that the central component
of the SIMAN model is an activity concept. If there were no stated purpose



FIGURE7.1:CONCEPTMODELOFSIMAN.

244



245

or usage constraints on a model designer, he might attempt to map the entire
system into the activity concept structure. Given that he made such a decision
the model structure imposes constraints on the additional information which
must be provided to satisfy the model completion criteria. Trying to satisfy these
information constraints would require him to make additional observations on

the system. These observations force the recording of bindings which are not
necessarily part of the normal system perception process. Given that the modeler
can make these observations and that there are resources available to make them,
there is no problem. The more likely case is that it is impossible or expensive to
make the observations directly (e.g., record the number of strikes over the next
20 years). In this case, the modeler must then decide how to approximate the
input required. This is where experience comes in. For example, an experienced
modeler knows that a good starting point for modeling a distribution is as a

triangular distribution. Such knowledge may never be taught in the classroom
because, as with most expertise, it is fraught with theoretical problems. However,
the experienced modeler knows that the problems occur so seldomly that making
the assumption, particularly as a part of an initial model, is reasonably justified.
This is also where the simulation model specification language comes to the
assistance of the modeler. The language provides guidance relative to the types
of structures that are required (e.g., an activity must receive an entity from some

other model component) and provides options for satisfaction of these constraints.

Attribute Selection: In the case where the desired information output is de¬
fined by the problem statement, the intended use, or the purpose of the model,
the task of the modeler is to choose a set of modeling components which will
produce that information. Thus, for example, if we are interested in the aver¬

age number of parts in a machine buffer, we know that the most direct way to
calculate this statistic is to represent the parts directly as model entities. How¬
ever once this representation is selected, there is the decision relative to what at¬
tributes of the part to carry over to the model entity. In the internal representa¬
tion of the description of a part, there are any number of properties associated
with a part (the average number of tracked attributes in a manufacturing infor¬
mation system is over 30). From the model structure, however, we know that for
this particular statistic only one attribute is actually needed-the unique identifier



246

of the entity. Most often the rules of the modeling language provide for the au¬

tomatic generation of a unique identifier for each entity created as illustrated in
Figure 7.1. Even this attribute is ignored from the system description.

Boundary setting: Another type of abstraction mechanism which the modeler
uses is related to the determination of the boundaries of the system. Wherever
the modeler draws the boundary from the modeling point of view, he must ac¬

count for the rest of the world by the interface specification across that bound¬
ary. The process of boundary setting is somewhat simpler in human discourse
situations. In the communication process the speaker need only communicate
(describe) those situation(s) which entail the situation being described back to
a point where the listener shares common knowledge with the speaker (i.e., back
to a common resource situation). We can characterize the boundary setting activ¬
ities of the modeler by analogy to this communication process. Given any model
situation, such as an assignment of the milling center to an activity in the concept
model displayed in Figure 7.1, the model structure dictates that the activity con¬

cept must receive entities from somewhere. The question which the modeler must
answer is whether or not the “situation(s)” relevant to the production of those en¬

tities provide any interesting constraints on the modeled situation or entailments
other than the furnishing of the entities. If they do, the modeler will generally
represent them explicitly and hence push the boundary of the model further out.
Interesting constraints include those where the modeler knows from the system

description that the two situations share common components which are often
described as a resource contention or where specific conditional constraints exist.

Granularity of ordering mechanisms: Another type of abstraction which
the modeler must deal with is the granularity of the “stakes” in the model.
Most obviously this includes the time and space stakes, but it also includes the
individualization of the parts which is chosen. That is, for example, how finely
the part is broken down into the subcomponents of that part. The modeler may
choose to represent the movement of engines through an assembly area as single
items without representing the components which come together at each assembly
point to create a more complete engine.

Substitution of constraints: “Substitution of constraints” is an abstraction

mechanism which the modeler can and generally must use. Substitution of



247

constraints occurs when the modeler substitutes a constraint provided in the
modeling language for constraints observed in the system description. A good
example of this type of abstraction mechanism is the use of bounded counts as

a mechanism for enforcement of physical spatial natural constraints (i.e., two
physical things cannot be in the same place at the same time). Thus, the physical
limit on the number of parts in a machine buffer is modeled as a counter with an

upper bound.

In all of the abstraction mechanisms described above, there is one underlying
mechanism which the modeler can and does employ. This is the mechanism of
deciding that enough is enough and proceeding on with the test of his model by
actually executing an analysis of the model (at whatever level of abstraction it
exists) and comparing the results of that model against actual observations.

7.3.1 Summary

In this section we have presented a case for models as mechanisms for situation
understanding and the use of parameterized situations as model templates.
We proceeded to show how these model forming mechanisms could be used as

the basis for qualitative reasoning. We outlined two approaches to qualitative
reasoning about discrete processes from parameterized situation descriptions.
Finally, we discussed the insight which this conceptualization of the modeling
process provides for the areas of viewpoint, purpose, and abstraction setting in
quantitative modeling.


