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ABSTRACT

Genesis of Soils and Carbonate Enriched Horizons
in a Climo-Sequence Developed Over Cretaceous Limestone
in Central and West Texas. (May 1983)
Martin Capell Rabenhorst, B.S., University of.Mary1and;
M.S., University of Maryland

Chairman of Advisory Committee: Dr. L. P. Wilding

The Edwards Plateau covers 10 million ha in Central and West
Texas (nearly 14% of the state) and is an important agricultural

rangeland. A strong climo-gradient extends across the area with annu-

al precipitation decreasing westward from 800 to 300 mm. There is a -

paucity of information on the shallow and stony soils derived from
Cretaceous limestone. Following reconnaissance investigations of 34
sites, 15 pedons were sémp]ed and analyzed for routine physical, chem-
ical, mineralogical and micromorphological data. Four pedons were
selected for detailed mineralogical, elemental, and SEM analyses.
These data serVe for developing pedogenic models.

Carbonate levels in surface horizons were significantly correla-
ted with Thornthwaite's P-E (moisture) index. Soils in the western
part of the area commonly had calcic or petrocalcic horizons. Argil-
lic horizons were common in the easternmost part of the study area
although illuvial argillans were difficult to verify except in protec-

ted areas such as pores within chert fragments.



Euhedral, prismatic quartz grains were identified by SEM to be a
prominént component of residués from hard crystaliine 1limestones.
These grains were used as marker minerals in identifying parent mater-
jal discontinuities. Quartz grain morphology, particle size distribu-
tion, elemental assay, and mineralogical data indicate a discontinuity
between the soil and subjacent limestone. The underlying rock should
not, therefore, be considered as the soil parent material. Airborne
dusts of uniform quantity and composition are deposited to the surface
at the approximate rate of 1 mm/100 yrs. Marker minerals indicate,
however, that these dusts are not accumulating on stable land surfaces
because erosion presumably exceeds accretion.

Differentiation of lithogenic (1imestone) from pedogenic forms of
carbonates in soils was accomplished by applying microfabric and sta-
ble carbon isotope methodologies. Both methods confirmed that massive
indurated carbonate zones and much of the disseminated carbonates were
pedogenically derived. Petrocalcic horizons occurring over limestone

have formed through in situ pedogenic alteration and reconstitution of

limestone. This is distinctly different from the 4-stage model of
Gile et al. (1966). A new 3-stage model is proposed to describe the

genesis of limestone derived petrocalcic horizons.
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PREFACE

Every man by nature desires to know, but of what avail is knowl-
edge without the fear of God? A humble farm laborer who serves God is
more acceptable to Him than an inquisitive philosopher who, consider-
ing the constellations of heaven, willfully forgeté himself. He who
knows himself well is mean and abject in his own sight, and takes no
delight in the vain praise of men. If I knew all things in this
world, but knew without charity, what would it avail me before God,
who judges every man according to his deeds? Let us, therefore, cease
from the desire 6f such vain knowledge, for often great distraction
and deceit of the enemy are found in it, and so the soul is much hin-

dered and blocked from the perfect and true love of God.

Thomas A. Kempis

The Imitation of Christ, 1427
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INTRODUCTION

Cretaceous rocks cover about 28 percent of the exposed land area
in Texas and approximately one-half of that (10 million hectares)
occurs in the Edwards Plateau region. Nearly all of this region is
rangeland and is an important area for the production of wool and
mohair. A strong climatic gradient exists across the region with the
annual precipitation decreasing from about 800 mm at the easternmost
edge to 300 mm at 1its western extreme. Such a pronounced moisture
gradient should be clearly reflected in both the genesis and morphol -
ogy of the soils of the area.

The land surface of the Edwards Plateau is comprised of soils
overlying lower to mid Cretaceous limestone, dolomite, and marl, and
some calcareous shale and sandstone. The soils of this region are
shallow and commonly skeletal, and are generally considered to be
residual in origin. The Edwards Plateau is in proximity to extensive
desert regions both to the south and west which provide a possible
source for airborne dusts carried into the area. While dust additions
as storm events have been documented and more gradual additions have
been postulated, the actual rates of additions or long-term impact on
pedogenesis in this region have not heretofore been established.

Many of the soils in the western part of the Edwards Plateau show

evidence of carbonate enrichment. While some of the carbonate

This dissertation conforms to the format and style guidelines of the
Soil Science Society of America Journal.




features are obviously of pedogenic origin, it is not clear whether
other carbonate forms have formed through pedogenic processes or if
they were inherited from the parent lithology (lithogenic). This
differentiation is clearly important from the standpoint of genesis
and classification of the soils but may ailso hold implications for
soil chemistry and fertility.

The objectives of this study were therefore to: 1) investigate
the development of pedogenic features as a function of climate in
soils formed over hard Cretaceous limestone on the Edwards Plateau; 2)
identify parent materials of soils occurring on the Edwards Plateau
and estimate the contributions of eolian material and evaluate the
magnitude of its effect on soil formation; and 3) investigate the
formation and 1dent1f1cation of carbonate enriched horizons including

the differentiation of pedogenic from lithogenic forms of carbonates.



REVIEW OF LITERATURE

Geology of the Edwards Plateau Region

Toward the close of the Jurassic about 135 million years ago,
nearly all of North America was exposed as dry land (Adkins, 1978).
As a result of eustatic changes in sea level, generally thought to be
glacially controiled (Jacka, 1977), the Cretaceous seas began advan-
cing northward across Texas as far as Colorado where they joined with
the southern part of the Artic Sea. The earliest Cretaceous sediments
to be deposited were of the Trinity group. The only really signifi-
cant member of this group on the Edwards Plateau is the Glen Rose
formation (Fisher, 1974, 198la). |

Glen Rose sediments are generally accepted to be Tlow-energy,
shallow water deposits of supratidal, intertidal and subtidal facies
(Loucks et al., 1978; Adkins, 1978). Nelson (1973) and Rose (1978)
have indicated that these formed on a protected shelf in a backreef
area. The reef was described as running in a NE to SW direction about
100 miles east of Austin and San Antonio, and being comprised mainly
of rudists [elongate, conical pelecypods (clams) of several families]
(Nelson, 1973). The Glen Rose is typically described as containing
thin to medium bedded hard crystalline limestone aiternating with
shale, marl, or marly limestone (Adkins, 1978; Loucks et al., 1978).
The terrigenous sediments are presumably derived from the Llano Uplift
(Central Basin) which was at that time exposed and subject to erosion,
but was later covered during mid-Fredericksburg deposition (Loucks et

al., 1978; Adkins, 1978). These alternating beds of hard and soft



material have been responsible for the characteristic benched or
stair-stepped topography of landscapes on this formation.

At the beginning of the Fredericksburg deposition, there was a
rapid transgression (shoreward advance) of the sea northward across
the Glen Rose sediments. Initial deposits were argillaceous sediments
containing a variety of mollusk shells. These clays were subsequently
covered by carbonate muds dominantly of miliolid foraminifera and
shell fragments. These sediments occurred conformably over the Glen
Rose (Rose, 1978). While the Walnut and Comanche Peak formations are
commonly exposed in Central Texas and toward the Grand Prairie, they
are of little importance in the Edwards Plateau. Only the Edwards
formation is of significant areal extent. Adkins (1978) has suggested
that the formations in the Fredericksburg group and the Washita (over-
1lying) group may not represent true stratigraphic formations but may
rather in fact only represent different facies. This should be kept
in mind, although the following discussion will refer to them as
formations. Rose (1978) has described the Edwards formation as a
shallow marine deposit of intertidal and supratidal facies forming
west of the Stuart City reef. Most commonly, the Edwards is consid-
ered to be a reef complex consisting of reef and inter-reef deposits
which themselves transgressed northward across the Glen Rose. Both
biohermal (mounds) and biostromal (shell beds) forms have been
observed, largely dominated by rudists, other mollusks, and miliolid
formaminifera (Nelson, 1973; Lozo et al., 1959; Adkins, 1978). South-
ward, the Edwards grades into the Devils River limestone which also

contains abundant rudists, shell fragments, and miliolid formaminifera



(Rodda et al., 1966). Rudistid reefs are, however, less common in the
Devils River Formation. Rose (1978) has reported that a rapid rise in
sea level was responsible for bringing the Fredericksburg deposition
to a close. Lozo et al. (1959), however, stated that a slight region-
al uplift was the cause. In either case, the Edwards is thought to
have undergone lithification and some alteration (boring, recrystal-
1ization, or dolomitization) prior to Washita deposition (Lozo et al.,
1959; Nelson, 1973).

During Washita sedimentation, reefs still provided protection for
deposition in shallow water environments (Rose, 1978). These early
Washita deposits also contained abundant rudists and formed the
Georgetown formation. The Georgetown is more distinct in the north-
eastern part of the'Edwards Plateau and in Central Texas but tends to
grade indistinguishably into the Edwards and Devils River formations
in the south (Rodda et al., 1966; Rose, 1978). A rise in sea level
later in the Washita gave rise to an influx of terriginous sediments
resulting in the Del Rio Clay (called the Grayson Clay in the northern
and eastern portion of the Edwards Plateau) (Rose, 1978; Adkins,
1978). Subsequent deposition of rudist and calcareous muds occurred
until the end of the Washita. This resulted in the formation of the
Buda limestone. A drop in sea level exposed the Washita to erosion
and to subaereal alteration and brought the Washita to a close (McFar-
lan, 1977).

The Washita is the uppermost unit in the Comanchean series (lower
Cretaceous). The Gulfian series marks the beginning of the upper

Cretaceous units. The Boquillas formation (part of the Eagle Ford



group) which is dominated by flaggy, marly and clayey beds, and the
Austin formation which is a white chalky limestone that becomes more
crystalline toward the west, are both present and exposed on the
Edwards Plateau, particularly in the southwest portion in Val Verde
and Terrell Counties. For reasons to be discussed later, these forma-
tions were not included in the main portion of this study and there-
fore will not be discussed further.

In general, the Edwards Plateau has been subject to erosion and
downcutting such that the surface geology in the eastern 20% (from
Austin and New Braunfels to Kerrville, Fredericksburg, and Bandera) is
dominated by the Glen Rose limestone. The primary exception to this
is along the Balcones escarpment where faulting has preserved substan-
tial areas of Fredéricksburg and younger rocks. Depending on the
stratigraphic model, most of the remainder of the Edwards Plateau is
either Fredericksburg (mainly Edwards formation) or Fredericksburg and
Washita. Fairly recently, the Edwards formation has been divided into
a lower member (Ft. Terrett) and an upper member (Segovia) (Rodda et
al., 1966; Jacka, 1977; Rose, 1978). In the central and western parts
of the Edwards Plateau, the dissected landscapes primarily expose the
Segovia member of the Edwards, except in more deeply cut valleys where
the Ft. Terrett is exposed. Rose (1978) has included the upper Sego-
via in the Washita group as apparently has the American Association of
Petroleum Geologists (1973). If the Segovia were kept in the Fred-
ericksburg group, then Washita exposures would be limited to high
broad divides where the Buda limestone is exposed in Crockett, Sutton,

Schleicher Counties and further north and west (Fisher, 1981b). As



mentioned earlier, the Edwards limestone grades southward into the

Devils River limestone in Val Verde and Edwards Counties.
Climate as a Soil Forming Factor

Climate has long been recognized as an important agent of pedo-
genesis and it was included by Jenny (1941b) as one of five factors
responsible for soil formation. The two most significant components
of climate are temperature and precipitation. Emphasis in this dis-
cussion will be given to precipitation and its effects on calcareous
soils in subhumid, semiarid, and arid regions. For a more comprehen-
sive discussion of the effects of climate in soil formation see Jenny
(1941b). Temperature is included only indirectly as it is related to
evaporation, which ‘mcdifies the effectiveness of precipitation in
certain pedogenic processes.

Simonson's (1959) model of pedogenesis includes four major pro-
cesses: additions; losses; translocations; transformations. While
precipitation does affect vegetative cover, organic matter additions,
and organic and mineral transformations, the main effects under the
previously described conditions are to cause translocations and losses
of labile materials such as carbonates. While the general
relationship between precipitation and carbonate leaching has been
established, relatively little work has been done to quantitatively or
statistically relate these conditions.

While attempting to hold other factors constant, Jenny and Leo-
nard (1934) measured various soil properties across an area having a

precipitation gradient. Strong relationships were observed between



rainfall and such properties as depth to carbonates, percent N, per-
cent clay, pH, and cation exchange capacity (Jenny, 1941b). In a
study in California, Arkley (1963) observed a positive correlation
(r=0.76) between annual precipitation and depth to the carbonate hori-
zon. A stronger relation (r=0.95) was observed between depth to the
carbonate horizon and the calculated depth of 1leaching (leaching
index). Arkley's leaching index included potential evapotranspiration
and water holding capacity as well as precipitation. Jenny (1941b)
and Arkley (1963) developed different mathematical functions relating
precipitation and depth to carbonates. This was due to differences in
seasonal patterns of rainfall; the predominantly winter rainfall of
California was more effective in the leaching of carbonates. Specific
details concerning the climate of the Edwards Plateau region including
precipitation and evapotranspiration are included in the results and

discussion section.
Pedogenesis of Carbonate-Enriched Horizons

Carbonates are commonly present in soils in arid and semi-arid
regions where precipitation is insufficient for leaching and removal
of carbonates. Horizons of carbonate enrichment are generally consid-
ered to be the result of the translocation of carbonates within a
pedon. While some have suggested the translocation to be upward
through capillary rise from a water table (Redmond and McClelland,
1959; Sobecki, 1980), the downward movement of water is generally held
to be the primary mode of translocation (Jenny, 194la). The zone of

carbonate accumulation is generally thought to occur at the depth of



frequent wetting (Flach et al., 1969) or near the lower depth of water
penetration (Harper, 1957). Stuart and Dixon (1973) have also repor-
ted the effect of abrupt textural discontinuities in restricting water
movement through soils, resulting in carbonate accumulations at the
textural interface.

There have been four main hypothesized and/or substantiated
sources for the calcium bicarbonate in the soil solution. The most
obvious source is the case where the soil parent material itself is
calcareous, such as calcareous glacial till, limestone residuum, cal-
careous loess, or calcareous lacustrine deposits. A second source is
carbonates carried as airborne dusts. Several workers have invoked
this hypothesis as a carbonate source (Reeves, 1970; Gardiner, 1972;
Brown, 1956). Giié and Grossman (1979) have collected particulate
carbonates in dust traps in New Mexico. A third source is dissolved
calcium in rainwater. Gardiner (1972) has estimated that one-fourth
of the carbonate in a Nevada caliche has its origin in rainfall. Gile
and Grossman (1979) estimate that 2 to 3 times as much calcium is
entering New Mexican desert soils dissolved in rainwater as is being
added as particulate dusts. Finally, calcium bicarbonate may also
occur in soil solutions through the weathering of Ca-rich minerals
(Flach et al., 1969).

Once calcium bicarbonate becomes dissolved in the soil solution
and is translocated, precipitation can be induced in three ways. In
dry areas, this is most commonly effected by dessication of the soil
such that the solubility of calcite is exceeded (Jenny, 194la; Gillam,

1937). A second mechanism for carbonate precipitation is the lowering



of the pCOp (Gillam, 1937; Hendy, 1971). Thirdly, it has been sug-
gested that a higher pH in the vicinity of previously existing carbon-
ates or in a sodium rich environment such as a natric horizon, may
cause precipitation of carbonates (Gillam, 1937; Hassett et al.,
1976).

Pedogenic carbonates have been observed in a great variety of
macroscopic forms. These include: pebble coatings (Flach et al.,
1969; Gile et al., 1966); pore linings and ped coatings (Flach et al.,
1969; White, 1971); filaments along rootliets and former root channels
(Gile, 1961; Sherman and lkawa, 1958; Hawker, 1927); nodules (Flach et
al., 1969; Gile, 1961; James, 1972; Sehgal and Stoops, 1972); concre-
tions and pisolites (Gile, 1961; Hawker, 1927; Dunham, 1962; Thomas,
1965); cylindroids (Gile, 1961); laminar zones (Flach et al., 1969;
Gile, 1961; James, 1972; Read, 1974); and massive zones (Gile, 1961;
Read, 1974). Pedogenic carbonates can also occur in finely divided
form in the soil matrix (Flach et al., 1969; Rostad and St. Arnaud,
1970).

Micromorphological examination of thin sections has also revealed
a number of characteristic micro-forms of pedogenic carbonates. These
jnclude: discrete or diffuse nodules (Sehgal and Stoops, 1972) or
micritic pelletoids (James, 1972); crystal chambers filled with coarse
granular calcite (crystallaria) (Sehgal and Stoops, 1972); pisolites
or laminated nodules (concretions) (Thomas, 1965; Dunham, 1962);
flower spar (bladed habit) (James, 1972); microcrystalline inflores-
cences (micrite recrystallized to micro-spar) (Sehgal and Stoops,

1972); calcans (Sehgal and Stoops, 1972); random calcite needles
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(James, 1972; Sehgal and Stoops, 1972); tangential calcite needles
(James, 1972); and finely divided micrite (James, 1972).

The calcic horizon is briefly defined as "a horizon of accumula-
tion of calcium carbonate or of calcium and magnesium carbonate." If
carbonate accumulation continues in the calcic horizon such that it
"becomes plugged with carbonates and cemented into a hard, massive,

cont%nuous layer," it is considered to be a petrocalcic horizon (Soil
Survey Staff, 1975). Caliche has been defined as "a prominent zone of
secondary carbonate accumulation in surficial materials of warm, sub-
humid to arid areas formed by both geologic and pedologic processes.
Cementation ranges from weak in non-indurated forms to very strong in
types that are indurated" (Hawley and Parsons, 1980). While soil
scientists have generally adopted the terms "calcic" and "petrocalcic"
in lieu of "caliche," the latter is still in common usage, particular-
ly in geologic circles. The terms are in fact nearly synonymous with
the exception that materials formed through "geologic processes" would
not be considered calcic or petrocalcic horizons. Hypothesized ori-
gins which would be considered to be geologic processes of caliche
formation dinclude sedimentary deposition (Price et al., 1946) and
capillary rise from a deep groundwater table (Nikiforoff, 1937) and
will not be discussed further. Hypotheses regarding petrocaicic or

caliche formation through pedological, near-surface processes can be

grouped into three main types: 1) downward translocation and accumula-

tion; 2) continual carbonate and ground surface aggradation; 3) in

situ alteration and carbonate enrichment of limestone.
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Most reports of soil-formed -caliche or petrocalcic material
explain its occurrence through the translocation of carbonates from
the upper to the Tlower horizons by water and consequent accumulation
(Bretz and Horberg, 1949; Buol, 1964; Flach et al., 1969; Harper,
1957). Over 50 years ago, Hawker (1927) described the genesis of
petrocalcic horizons in the Rio Grande Valley of Texas in a five-stage
model beginning with a uniform soil carbonate distribution and culmi-
nating with a carbonate-free solum underlain by thick caliche with a
hardened surface. Gile et al. (1966) have proposed a four-stage
sequence in the formation of petrocalcic horizons in both gravelly and
fine-textured soils. The basic scenario is similar to that of Hawker
(1927). The final stage, however, has a distinctly laminated crust
overlying a massive indurated petrocalcic zone, and may have a calcar-
eous rather than a carbonate-free solum. In his discussion of cal-
crete formation at Shark Bay, Australia, Read (1974) describes a pro-
cess similar to Gile et al. (1966) for a soil formed from an eolianite
- skeletal grainstone (unconsolidated sand-sized carbonate skeletal
deposit) containing very Tlittle non-carbonate silt or clay. The com-
plete profile has five distinct zones which, from the surface downward
are: 1) unconsolidated soil containing pisolites (concretions); 2)
laminar zone consisting of thinly laminated sheets; 3) massive, dense,
structureless calcrete; 4) zone of calcrete mottles (small areas of
pedogenic carbonates in a matrix of dominantly wunaltered carbonate
skeletal material); 5) unaltered eolian carbonate skeletal grain-

stone. Although the starting parent materials are somewhat different,
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the pétroca]cic zone in this profile is very similar to stage IV of
Gile et al. (1966).

The second mode of pedogenic caliche formation is the continually
aggrading ground surface through the gradual accumulation of‘eolian
clastics and carbonates (Brown, 1956). While downward translocation
of carbonates and cementation occur in this process (similar to the
previous mode of formation) the distinguishing feature is the gradual
accumulation of eolian dusts and desert loess (Reeves, 1970). Paréi-
cle size and mineralogical discontinuities, total carbonate levels and
horizonation have all been cited as evidence for this process (Gardi-
ner, 1972).

Blank and Tynes (1965) have proposed a third mode for caliche
formation in the near-surface soil environment. They describe the in
situ alteration of limestone to caliche. As soil water enters a lime-
stone and is detained or delayed in draining, the limestone undergoes
dissolution and precipitation in place. Petrographic evidence has
shown the transition from limestone to caliche as indicated by the
absence of fossils and the change from- a coarser crystalline to a
micritic fabric. James (1972) has also described a similar process
occurring in the formation of caliche in Barbados. He suggests that
percolating vadose water (above the water table) causes both Ige
alteration of micrite to microspar and the alteration of carbonate
skeletal fragments to micrite, forming micritic pelletoids and a clot-
ted micritic fabric. Read (1974) and Kahle (1977) have described
"calcretization" and “sparmicritisation" respectively as diagenetic or

dissolution-reprecipitation processes responsible for the alteration
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of primary limestones to a pedogenic caliche in the soil or vadose
zone. In addition to the in situ alteration of the limestone, James
(1972) also describes several forms of pedogenic carbonate which pre-
cipitate in the caliche, presumably added by downward moving water.
James (1972) is careful to cite such evidence as parallel occurrence
of caliche with the topographic surface as evidence for the caliche
being the product of near-surface pedogenic processes rather than
being a geologic stratum.

Calcic and petrocalcic horizons or caliche have been described
according to their degree of expression. Harper (1957) has categor-
ized them as minimal, medial or maximal corresponding to an increase
in plugging, density and hardness. The degree of expression is gener-
ally held to be re]éted to the genetic stage of development. Stuart
et al. (1961) observed caliche on older surfaces (presumably older
caliche) to occur nearer the soil surface and to be more firm and
strongly cemented. The four genetic stages of petrocalcic development
of Gile et al. (1966) also represent an increasing degree of expres-
sion of the carbonate enrichment. The strongest expression of these
horizons occurred on the oldest surfaces (Gile and Grossman, 1979).
Hawker's (1927) five genetic stages in caliche development also culmi-
nate with the maximum expression of the petrocalcic.

Once petrocalcic horizons or caliche form, climatic or other
changes may result in the alteration or degradation of these mater-
ials, or repeated changes in climate may cause the formation of mul-
tiple sequences of petrocalcic materials. Bretz and Horberg (1949)

describe solution features and degraded caliche profiles which they

14



ascribe to changes in paleoclimates. Gile and Grossman (1979)
describe a similar disintegration of stage IV horizons which they
explain to be the result of increased leaching of water due to trunca-
tion of the soils and to biotic activity and mixing. They also
describe instances of multiple sets of laminar horizons showing

evidence of fracturing and recementation.
Dust Contributions and Characterization

Thick eolian deposits, such as loess, are commonly recognized in
some parts of the world as the primary parent material for many
soils. More gradual eolian or airborne additions have also been wide-
ly observed in soils and sediments. Gradual, continuous deposition
has been observed bynsome workers at accumulation rates of between 0.1
and 1.0 mm per 1000 yrs (approximately 0.15 to 1.5 g per square meter
per yr) (Windom, 1969; Delany et al., 1967). Collection rates in the
desert of New Mexico, measured over an ll-year périod, ranged between
10 and 60 g per square meter per year (Gile and Grossman, 1979).
Episodic depositions such as that associated with dust storms have
also been well documented (Choun, 1936; Robinson, 1936; Martin, 1936;
Alexander, 1934; Warn and Cox, 1951; Winchell and Miller, 1918,
1924). As much as 9 g per square meter have been reported deposited
in a single event (Winchell and Miller, 1922).

Several workers have collected and analyzed dust, either directly
from outfall or as preserved in snowfields and glacial ice. While
most have found dust to be primarily in the fine (2-5um) and medium

(5-20pm) silt-size range (Winchell and Miller, 1918, 1922; Robinson,
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1936; Delany, 1967; Gile and Grossman, 1979), reports of‘ coarser
textured material have also been made (Winchell and Miller, 1924; Warn
and Cox, 1951; Gile and Grossman, 1979). It appears that episodic
depositions of dust tend to be coarser in texture than more gradual
depositions.

Although exceptions exist, the silt mineralogy of the dust is
reported by most to be dominated by quartz and feldspar (Winchell and
Miller, 1918, 1922, 1924; Robinson, 1936). In addition, Windom
(1969), Rex et al. (1969), and Robinson (1936) also report significant
quantities of mica. In a few instances feldspar was either absent or
present only in small amounts (Warn and Cox, 1951; Robinson, 1936;
Yaalon and Ganor, 1973). Some have reported calcite to be prominent
(Warn and Cox, 1951; Yaalon and Ganor, 1973) while Alexander (1934)
reported a dominance of volcanic glass. The mineralogy is no doubt
directly related to the source area.

The clay (<2um) mineralogy of the dust is usually dominated by
illite and‘ kaolinite with Tlesser amounts of smectite and quartz
(Delany, 1967; Yaalon and Ganor, 1973; Smith et al., 1970; Windbm,
1969). The carbonate content in clay-size airborne dust is usually
Tow.

Dust collected in North Central Texas between 1963 and 1965
showed mean monthly deposition rates of 21 to 24 kg per hectare (2.1
to 2.4 g per square meter), which is only one-half to one-quarter the
deposition rate in Kansas, Nebraska, Missouri, and Montana (Smith et

al., 1970). Texas dust samples had clay contents of 38 to 47 percent,
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which were somewhat higher than the other 1ocat16ns. The clay miner-
alogy of the Texas dust was dominated by kaolinite and illite, with
lesser amounts of smectite, quartz, feldspars, and chlorite, which was
not appreciably different from that of the other plains states.

In instances where direct measurement and analysis of dust were
not made, airborne materials have still been identified in soils and
ocean sediments. The presence of primary minerals in soils, which are
common in dust (such as quartz, feldspar, and mica) but absent from
the soil parent material, has been cited as evidence of eolian addi-
tions to soi]s'(dackson et al., 1971, 1972; Rabenhorst et al., 1982).
Comparisons of oxygen isotope ratios of quartz in soils, sediments,
and dust have also been used to document additions of airborne mater-
ials (Syers et al., 1969; Mokma et al., 1972; Jackson et al., 1971,

1972; Rex et al., 1969).
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METHODS AND MATERIALS

Site Selection

To establish a climo-sequence, attempts were made to span the
climate (moisture) gradient across the study area while minimizing
differences in other factors which affect soil development. Sites
were therefore selected to maximize landscape stability by choosing
such Tlocations as high broad hilltops, divides, plateaus, or inter-
fluves which would not be highly erosive nor subject to inwash from
other landscape positions.

Sites were also selected to minimize parent material differ-
ences. Attention was focused on the hard Cretaceous limestones of the
Washita and Fredericksburg groups while avoiding the upper portion of
the Trinity group known to be dominated by interbedded hard and soft
limestones of the Glen Rose formation (Adkins, 1978). Using maps and
publications of the Bureau of Economic Geology as guides (Bur. Econ.
Geol. 1979; Rose, 1978; Rodda et al., 1966), two preliminary trips
were taken across the study area in the spring and summer of 1980 to
collect limestone samples from potential sampling areas (Figure 1).

To evaluate the mineralogical composition of the limestones,
X-ray diffraction (XRD) analyses of randomly oriented powder specimens
were made. The percent CaC0O3 was determined gasometrically (Dreiman-
is, 1962) to estimate the amount of non-carbonate constituents in the
limestone. Thin sections were prepared and examined to evaluate the
fabric and texture of the rocks. Bulk density (Brasher et al., 1966)

of the rocks was measured to estimate the percent total porosity.
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From field observations and laboratory analyses, certain geologic
formations such as the Austin and Boquillas were deemed unacceptable
for this study. The non-carbonate residue levels of the Austin Forma-
tion were too high (12-15%) and the Boquillas formation had common
shaley and flaggy beds. Dolomitic rocks were much less prevalent than
first thought and were therefore generally not included in the study
(although two sites were inadvertently located over dolomitic lime-
stone).

With aid from the Soil Conservation Service to gain access and
approval from Tlandowners, 15 pedons at 14 locations were finally
selected for sampling and detailed analyses. As shown in Figure 2,
these sites span the east west extent of the Edwards Plateau, taking
full advantage of the moisture gradient across the area. Due to the
difficulty in locating stable landscape positions in some areas (which
was considered essential) less weight was given parent material homo-
geneity (hard limestone rock) during final site selection than origi-
nally proposed. See Table 1 for site numbers, county name and classi-

fication of soils (Soil Survey Staff, 1975).

Field Procedures

Pedon Sampling and Description

At each site, a pit of about 1 m2 and 0.5 to 1 m deep was exca-
vated for description and sampling. A 30-kg electric jackhammer
powered by a 5-hp electric generator proved extremely helpful in open-
ing the pit and collecting samples from carbonate indurated horizons

and underlying limestone bedrock,. Standard soil descriptions were
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made for each pedon sampled (Appendix A). Bulk samples were collected
from each horizon or sub-horizon, including the limestone bedrock, for
physical, chemical and mineralogical analyses in the following man-
ner. The horizons were sequentially removed (All then Al2, etc.) from
a 0.2-0.5 m2 area adjacent to the pit excavated for the pedon descrip-
tion until the petrocalcic horizon or limestone was encountered. The
upper surface of the Ccam or R horizon was brushed clean of extraneous
material before the jackhammer was used to dig through and break apart
the indurated carbonate. These horiions were also sampled sequen-
tially (Clcam then C2cam, etc.) over -the same 0.2-0.5 mZ area. Care
was taken to remove extraneous material from the upper surface of each
horizon prior to sample collection. Samples were collected to a depth
beyond which it was fmpractica] to dig using the jackhammer or digging
iron (usually 0.5-1 m). Oriented clods were also collected from each
horizon for impregnation and thin section preparation. As soil condi-
tions permitted, clods from A and B horizons were collected for bulk

density measurements.
Dust Collection

To estimate the contributions of eolian materials to soils in the
study area, dust collection traps were installed at seven Tlocations
and monitored at four month intervals. The locations were selected to
span the study area while also being in proximity to towns where local
SCS personnel would be available to assist in monitoring the traps.
The approximate locations are as follows: 1) Austin; 2) Kerrville; 3)

Del Rio; 4) Sanderson; 5) Ft. Stockton; 6) Ozona; 7) Junction. See
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Appendix B for details concerning site selection criteria and physical

arrangement of the dust traps.

Laboratory Procedures

Sample Preparation

Bulk samples were dried in a drying oven at 35°C, hand ground
with a wooden mallet and rolling pin to pass a 2 mm sieve and
weighed. The >2 mm fraction was weighed, washed to remove adhering
soil particles, dried and re-weighed; the difference between the

weighings was added to the weight of the <2 mm portion.
Limestone Dissolution

One-kg samples of limestone and petrocalcic horizons which were
ground to pass an 8 mm sieve were dissolved in pH 4.5 NaOAc buffer
solution. The dissolution took approximately two weeks. See Appendix
C for detailed methodology and justification. Three samples contain-
ing dolomite (R horizons from Gillespie Co. pedons 3 & 4) would not
dissolve in the NaOAc solution, and thus 1N HCl was used to dissolve
these samples which took approximately one day. One sample (R horizon
from Comal Co. pedon #1) which contained quartz-occluded dolomite,

resisted dissolution of gravel size material even in 1N HCI.

Analysis of Limestone and Petrocalcic Residues

Following dissolution, residues were transferred to 2-liter bot-
tles and were washed several times with 0.5N pH 5 NaOAc to reduce

levels of dissolved Ca prior to organic matter oxidation with Hp0p to
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prevent formation of Ca oxalates. Approximately 100 ml of 30% H0o
was added to each bottle containing approximately 500 ml of NaOAc sus-
pension. The suspension was permitted to remain at room temperature
for approximately one month. During this time the color of the resi-
dues became generally lighter indicating oxidation of organic matter.
Sands were removed from each sample by sieving and were weighed.
An aliquot of the <50 um material (the size of which depended on the
total quantity of residue in the sample) was washed free of salts,
placed into a 400 m1 shaker bottle, and taken to the TAES Soil Charac-
terization Laboratory for particle size analysis by the pipette
method. An aliquot was pipetted from the sample while being stirred
in order to calculate the total quantity of <50 um in the bottle, from
which was calculated (together with the weighed sand fraction) the

total quantity of residue in the sample.
"Whole Soil" Mineralogy

In order to obtain a quick screening of the minerals present,
samples of the A and B horizons (if present) and limestone residue
from each pedon, were analyzed for <20 um mineralogy. Suspended sedi-
ments representative of the <20 um material from a single decantation
were Mg or K saturated, washed free of salts, and washed once with a
20% glycerol solution. After draining as much of the glycerol solu-
tion as possible, the soil was stirred with a small spatula and the
glycerated sample smeared evenly and smoothly onto a glass slide for
XRD analysis. Samples were scanned from 2-36° 2 Sat 2°/min using a

Cu-target X-ray tube.
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Particle Size Fractionation

After consideration of field characteristics and examination of
the <20 ym mineralogy, four representative pedons were selected for
detailed examination [S81TX 271-1 Kinney Co. (pedon #7), S81TX 371-1
Pecos Co. (pedon #9), S81TX 385-1, Real Co. (pedon #11), S81TX 465-1
Val Verde Co. (pedon #15)]. For A and B horizons, 50-g samples were
treated with pH*5.0 NaOAc buffer to remove carbonates and residues
were subsequently treated with H202 for organic matter oxidation as
described by dJackson (1974). The <50 Um material was transferred to
2-liter bottles for sedimentation fractionation after removal of the
sands by sieving. Limestone or petrocalcic residues were also placed
into 2-liter bottles after particle size analysis had been completed.
Samples were fractionated into clay (<2 um) and fine (2-5um), medium
(5-20 um), and coarse (20-50 um) silt fractions by sedimentation and
siphoning. The clay fraction was further split into the fine (<0.2

um) and coarse (0.2-2 um) fractions by centrifugation.
Mineralogy

For the four pedons selected for detailed analyses, parallel
oriented specimens of the coarse and fine clay fractions were plated
onto ceramic tiles by suction and analyzed by XRD after Mg or K satu-
ration. They were scanned from 2 to 38° 20. The following treatments
were run for each sample: Mg saturation and ethylene glycol solvation;
Mg saturation, air dry (25°C); K saturation, air dry (25°C); K satura-
tion, heated to 350°C for 2 hours; K saturation, heated to 550°C for 2

hours. Randomly oriented specimens of medium (5-20 um) and coarse
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(20-50 um) silt fractions were prepared in box mounts and were scanned
from 4 to 50° 20. Randomly oriented box mounted specimens of ground
limestone and petrocalcic materials were scanned from 24 to 32° 20 to
identify the carbonate minerals present. All X-ray diffraction analy-
ses were performed using a scan speed of 2° 20/min on a Philips X-ray
diffractometer equipped with a curved crystal monochrometer and a
theta compensating slit. Copper Ka radiation was used. Permanent
grain mounts of the medium and coarse silts were prepared for optical

examination.
Elemental Analysis of Silts

Pellets were prepared for X-ray spectroscopic analysis from the
coarse and medium silt fractions of each horizon fractionated. Two
parts silt were mixed with one part (by weight) boric acid as a bind-
ing agent and ground for two minutes in a disc mill before being
pressed into metal cups at 3000 kg/cmz. Analyses were made for Ti,
Fe, Ca, K, and Zr with a Philips X-ray spectrograph and Cr radiation
using a fixed counting technique. For residue and soil samples of
insufficient size to prepare a pellet, the silts were placed into
polypropylene X-ray cells and covered with 1/4 mil mylar film. The
cells were inverted and analyzed in the spectrograph like the pel-
lets. Standards from the NBS were similarly prepared and analyzed.
The medium silt fractions of dust samples collected were also analyzed

using polypropylene X-ray cells.
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Analyses of Dusts

Dust collection buckets which were mailed to the university were
treated to remove organic materials and then filtered and fraction-
ated. Clay (<2 Hm) and medium silt (5-20 um) fractions were analyzed
by XRD techniques and selected silt fractions were examined using
scanning election microscopy (SEM). Cations in the filtrates were
analyzed by atomic absorption or flame emission spectroscopy. See

Appendix B for details concerning processing and analyses.
Scanning Electron Microscopy

Selected silt fractions of residues, soils and dusts were exam-
ined using scanning electron microscopy. Samples were generally
mounted on copper tape which had been attached to 10 mm aluminum stubs
and then coated with approximately 200 X of Au-Pd. Specimens were
then examined using a JEOL JSM-25 II scanning microscope. Selected
samples were mounted on carbon stubs and were carbon coated prior to
electron microprobe semi-quantitative chemical analysis of individual
grains. A JEOL JSM-35U scanning microscope equipped with both energy
dispersive and wavelength dispersive systems and interfaced with a

Tracor minicomputer was used for the analyses.
Micromorphology

Air-dried oriented clods were impregnated under vacuum using a
polyester resin:acetone 3:1 solution by volume. One and one-half

drops of accelerator (methyl ethyl ketone peroxide) per 100 ml of

28



solution were used which caused jelling of the liquid in about one
week. After the impregnating liquid had jelled, samples were placed
in a 45°C oven for several days after which the temperature was raised
to 65°C to complete the hardening process. Slabs were then cut,
polished and mounted on frosted glass slides with epoxy resin after

which thin sections were cut and ground to an appropriate thickness.
Stable Carbon Isotopes

Samples from selected pedons were analyzed for stable carbon
isotopes. Samples were run by the Chemical Oceanography Laboratory,
TAMU. Carbonate carbon was analyzed following acidification with con-
centrated phosphoric acid. Organic carbon was analyzed after oxida-
tion at 800°C fol]owing removal of carbonate carbon with acid. Analy-

ses were made on a Nuclide 60° sector isotope ratio mass spectrometer.
Light -Heavy Mineral Separations

Light and heavy minerals from selected silt fractions were sepa-
rated by centrifugation using tetrabromoethane (TBE) (SG 2.95) and a
mixture of TBE and ethanol (SG of mixture 2.31). The heavy fraction

was retained in the centrifuge tube by freezing with liquid nitrogen.
Characterization Analyses

Particle size distribution. Particle size analyses were run by

the pipette method after a modification of Kilmer and Alexander (1949)
and Steele and Bradfield (1934). Ten grams of soil were dispersed in

a 400 ml bottle which was placed in a constant temperature water
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bath. Five-ml aliquots collected at a 5 cm depth were removed for
weighing.

Bulk density. Bulk density measurements were made on saran

coated clods as described by Brasher et al. (1966).

Total carbon. Total carbon was determined by dry combustion and

gravimetric determination of adsorbed CO, as described in analysis 6A2
in USDA, SCS (1972).

Carbonate carbon. Percent calcite, dolomite and calcium carbon-

ate equivalent were determined gasometrically as described by Drei-
manis (1962).

Organic carbon. The percent organic carbon was calculated as

the difference between total C and carbonate C using the analyses
described above.

Soil reaction. Hydrogen ion activity was determined on a 1:1

soil:water mixture using a glass electrode.

Extractable bases. Ammonium acetate extractable Mg, Ca, Na, and

K were determined using a method similar to 5A6 (USDA, SCS, 1972) as
adapted for use with a mechanical extractor described by Holmgren et
al. (1977). Cations were measured using atomic absorption or flame
emission spectrometry.

Cation exchange capacity. Cation exchange capacity was deter-

mined by Na saturation and subsequent displacement by NHgq using a
method similar to 5A2 (USDA, SCS, 1972) as adapted for use with a
mechanical extractor.

Soluble salts. Electrical conductivity and soluble cations and

anions were determined on saturated paste extracts prepared as
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described by U. S. Salinity Laboratory Staff (1954). Cations were
measured by atomic absorption or flame emission spectrometry. Anions
were determined as described in USDA, SCS (1972).

Free iron oxides. Free iron oxides were extracted with a sodium

dithionite and sodium citrate solution as described in method 6C2
(USDA, SCS, 1972). Iron in solution was then measured using atomic

absorption spectrometry.
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RESULTS AND DISCUSSION
Effect of Climate on Soil Properties

Climate of the Study Area

The climate of the Edwards Plateau region includes dry subhumid
semi-arid, and arid areas, according to Thornthwaite's (1948) classi-
fication. The average annual rainfall decreases steadily from 800 mm
in the eastern portion to about 360 mm in the western part as shown in
Fig. 3. Fiqure 4 shows a marked steady increase in class A pan evapo-
ration (estimate of potential evapotranspiration) in an east to west
transect across the area. Together these provide for increasing dry-
ness or decreasing water available for weathering and soil forming
processes as one moves westward across the study area. Thornthwaite
(1948) has combined monthly precipitation and potential evapotraﬁspir-
ation (based on monthly temperatures adjusted for lattitude) in a
moisture index called the P-E index. As would be expected from pre-
cipitation and pan evaporation data, the P-E index decreases (becomes
dryer) in an east to west direction as illustrated in Fig. 5.

The present dry climatic conditions in the region may not reflect
the Tlong term conditions which have existed. There is substantial
evidence that one or more pluvial and/or cooler periods occurred in
the Southwest U.S. during the Pleistocene. Evidence includes geologic
features such as lakebed deposits (Snyder and Langbein, 1962), biolog-
jcal features such as fossil snail occurrences (Metcalf, 1967) and
pedologic features such as argillic horizons 1in soils which are

presently plugged with carbonates (Gile and Grossman, 1979). This
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suggests that during the Pliestocene, greater amounts of water were

effectively available for soil formation than at present.

Soil Properties

Free carbonates. Soils 1in the eastern part of the study area

were non-calcareous in the solum. Figure 6 shows the carbonate levels
in A horizons of the pedons sampled. Those soils west of Leaky (Real
Co.) contained varying amounts of free carbonates in the solum. The
dividing line roughly corresponds to a P-E index of about 38 or an
annual precipitation of 600 mm. A significant (99% level) negative
relationship exists between carbonate levels in the solum and the P-E
index based on the present climatic conditions. There is also a
statistically significant trend toward decreased solum thickness with
lower P-E indices. This relationship is statistically significant at
the 95% level (Fig. 7). Limestone weathering and soil formation are
fairly slow processes so that the depth to limestone or petrocalcic
material is generally a function of long-term climatic factors as well
as parent material characteristics. This may in part explain the lack
of significant correlation with the present P-E index.

Petrocalcic horizons. Most of the calcareous soils also showed

some evidence of pedogenic carbonate accumulation and many had indura-
ted carbonate-rich zones identified as petrocalcic horizons. Although
field evidence alone 1is often not sufficient for identification of
petrocalcic horizons (see section entitlied Differentiation of Pedo-
genic and Lithogenic Carbonates), Fig. 8 shows the distribution of

pedons containing petrocalcic horizons as identified in the field.
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Fig. 7. Graphs showing Thornthwaite's P-E index versus depth to
indurated carbonate and versus percent CaC0O3 in the A horizons of the
15 pedons sampled.
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These are restricted to the dryer western part of the Edwards Plateau
where moisture is sufficient only for movement and accumulation of
carbonates within the soil but not for leaching and removal of carbon-
ates.

A number of the petrocalcic horizons observed in the field showed
evidence of multiple layering and cracking in the upper portion of the
petrocalcic. Laminar coatings were observed both on upper surfaces
and along the walls of cracks in the upper part. Bretz and Horberg
(1949) have attributed similar degredational features to paleoclimatic
changes.

Argillic horizons. In the eastern part of the study area, where

carbonates had been leached from the solum, 4 of the pedons sampled
had argillic horizons as shown in Fig. 9. Field identification was
made on the basis of increased clay content and the presence of ori-
ented clay films on peds. The argillic horizons themselves were quite
high in clay (45-57% <2 um) and some showed evidence of shrink-swell
pressure faces which made identification of illuvial clay films dif-

ficult.
Moderating Factors on Soil Properties

The effect of the moisture gradient can be clearly seen through
general trends in the soil properties just discussed. It is also evi-
dent, however, that climatic factors alone are insufficient to explain
some of the geographical variations observed. For example, the deep-
est solum (80 cm) and most strongly expressed argillic horizon were

observed in Real County where the P-E index is 38. Due north in
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Kimble County, where the P-E index is also 38, a shallow (20 cm) cal-

careous soil was observed. Similarly, two pedons were sampled in
Gillespie County within 100 meters of each other. One was 41 cm to
rock and contained an argillic horizon while the other Tlacked an
argillic and had a solum thickness of only 20 cm.

It appears that factors other than climate may have strongly
ﬁoderating effects at any given location. Although attempts were made
to minimize differences in parent materials and landscape stability,
some variation no doubt did exist. Two of the four soils with argil-
1ic horizons also had large quantities of chert fragments in the solum
suggesting that cherty limestones may be more subject to weathering
and clay illuviation. More subtle parent material differences not
easily observed suéh as total porosity. interconnected porosity or
size and frequency of fractures, may also affect pedogenic develop-
ment. Since the genesis of a given volume of soil from limestone
residuum usually requires the weathering and dissolution of between 10
and 100 times that same volume of rock, there remains the possibility
that the rock from which the soil formed is different from the under-
lying rock. Soil variation may therefore be partially attributed to

variations that existed in stratigraphically overlying rock.
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Parent Material Identification and Uniformity

The soils occurring on stable upland positions in the Edwards
Plateau area have generally been considered to be formed from lime-
stone residuum. Researchers have also been aware, however, that air-
borne dust additions from desert regions to the South and west have
occurred. Work tangential to this study has been done to collect and
analyze dusts blown into this region (see Appendix B). There are
therefore several hypotheses for source or origin of the soil parent
materials. These include:

1. Weathering of limestone bedrock.

a. The Timestone from which the soil formed is similar to
the presently underlying bedrock.

b. The Tlimestone from which the soil formed is unlike the
presently underlying bedrock.

2. Accumulation of eolian dusts.

a. The dusts forming the parent materials are similar to
the present dust contributions.

b. The dusts forming the parent materials are unlike the
present dust contributions.

3. Some combination of the above hypotheses including both pro-

cesses of limestone weathering and dust accumulation.

Field observations indicate that soil formation in this region is
substantially linked to limestone weathering. The abundance of coarse
fragments (both limestone and chert) in most of these soils indicates

that airborne dusts are not the primary parent material. Therefore,

43



hypothesis #1 will first be addressed to determine whether or not the
residual portion of the soil has formed from rock Tike the underlying
rock. Secondly, the impact of airborne dusts on the soils will be
evaluated.

Four pedons were selected for detailed analysis including miner-
alogy, elemental analysis, and SEM examination. These were chosen to
1) represent the range in morphological characteristics observed, and
2) to reflect the range in mineralogical relationships between the
soil and the underlying rock. The pedons selected were S81TX 271-1
(Kinney Co., Pedon #7), S81TX 371-1 (Pecos Co., Pedon #9), S81TX 385-1
(Real Co., Pedon #11), and S81TX 465-1 (Vval Verde Co., Pedon #15).
These were classified as Petrocalcic Calciustoll, Typic Paleorthid,
Udic Haplustalf, ahd Lithic Calciustoll. respectively. Based on
preliminary "whole soil" XRD analysis of soils and limestone residues,
each of the Tlast three pedons showed increasing disparity between
mineralogy of the soil and that of the residue from the underlying
limestone. The Kinney Co. pedon had similar soil and carbonate resi-
due mineraltogy. This soil was suspected of having formed from softer
limestone material, and was chosen as representative of that type.
Each of these pedons were evaluated for parent material uniformity by

PSD, mineralogy, elemental analysis, and SEM.
Kinney Co. Pedon

Carbonate-free and clay-free particle size distribution (PSD),
the medium silt (5-20 um):coarse silt (20-50 um) ratio, and the coarse

sand (.25-2 mm):fine sand (.05-.25 mm) ratio for the Kinney Co. pedon
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are shown in Fig. 10. From a cursory examination of the particle size
data, the abundance of fine and coarse clay in the Cdcam horizon, and
the relative Tlack of fine clay in the Al horizon indicate variation in
parent materials.

The purpose of using clay-free and carbonate-free particle size
data is to remove the effects of mobile constituents which may change
the PSD of a given horizon over time. Use of particle size informa-
tion for parent material analysis in this pedon is complicated by the
accumulation of secondary silica in the petrocalcic zone. Optical
examination of silt and sand fractions in petrocalcic horizons showed
an abundance of secondary silica. Estimates indicated that the sand
fractions ranged between 40 and 85% secondary silica (Table 2), which
may explain the var{ations in sand percentages. The value for secon-
dary silica in the Clcam horizon is, however, insufficient alone to
explain the large increase in sand content in the Clcam relative to
the Al horizon.

Medium silts were generally higher in secondary silica than
coarse silts ranging between 10-60% and 5-40% respectively. The
greatest difference in the quantity of secondary silica between the
medium and coarse silts was in the C2cam horizon where they were 40%
and 15% respectively. This explains the medium:coarse silt ratio max-
imum in this horizon. It appears that substantial variations in the
PSD of this pedon are due to accumulations of secondary silica.
Parent material non-uniformity within the carbonate-cemented zone can-

not, therefore, be established on this basis.
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Table 2. Estimates of secondary silica content in selected fractions

and horizons of the Kinney Co. pedon (#7) based on optical
examination.

Sand C. Silt Med. Silt
Lab # Horizon .05-2 mm 20-50 um 5-20um
__________________ e ==
1214 Clcam 35-45 <5 <10
1215 C2cam 55-65 10-20 30-50
1216 C3cam 80-90 35-45 50-60
1217 C4cam 75-85 5-15 30-40

Elemental analyses of medium and coarse silt fractions from the
Kinney Co. pedon are illustrated in Fig. 11l. Within the carbonate
cemented zone (13-75 cm), variations in elemental content can be
largely explained on the basis of enrichment of the silt fractions
with secondary silica. Maximum silica enrichment in the C3cam hori-
zon, for example, corresponds to Zr, Ti, Fe, and K minima in that same
horizon. There do, however, appear to be differences in the Al hori-
zon that cannot be accounted for by silica enrichment. Higher K and
Ca values in the Al horizon are too large to be explained by the 5 to
10% enrichment 1in silica which has occurred. Values for Zr and Ti
actually show a decrease in the Al relative to the Cl. This trend is
opposite that expected by silica enrichment in the Cl, and suggests
that the Al horizon has been influenced by material richer in K and
Ca, and lower in Zr and Ti than the C horizons.

Interpretations of XRD analyses of clays and silts are presented

in Table 3. Mineralogical variations through the pedon are relatively
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Table 3. Semi-quantitativet interpretations of XRD analyses of the
Kinney Co. pedon.

Hori- |Frac- Fe
zon tion | Qtz |Kaol [Mica Sm K Spar |Plag | oxide| Anatase
(um)
Al <.2 -- XX XX | XXXX -- -- -
Clcam -- X XX XXXX -- - -
C2cam - X XX XXXX - -- --
C3cam - X XX XXXX -- -- --
C4cam -- X XX | XXXX -- -- -
Al .2-2 XX XX X XXX Tr -- -- X
Clcam XX XXX Tr - XXX X -- - X
C2cam XX XXX Tr XX X - -- X
C3cam XX XXX Tr XX X - -- X
C4cam XX XXX Tr XX X - -- X
Al 5-20 XXXX -- Ir - XX XX X
Clcam XXXX -- -- -- X X X
C2cam XXXX X -- -- X X X
C3cam XXXX |- X - -- X X X
C4cam XXXX X -- -- X X X
Al 20-50] XXXX -- - -- X X -
Clcam XXXX -- - -- X X Tr
C2cam XXXX -- .- -- X X Tr
C3cam XXXX -- -- -- X X Tr
C4cam XXXX - -- -- X X Tr
T Tr - trace Qtz - Quartz
X - Tow <10% Kaol - Kaolinite
XX - moderate 10-30% Sm - Smectite
XXX - high 30-70% Plag - Plagioclase

K Feldspar

XXXX - dominant>70% K Spar

minor. Slightly higher quantities of feldspars and mica in the medium
silt and slightly lower levels of kaolinite in the coarse clay and
medium silt of the Al horizon may substantiate previous inferences
that the Al horizon has been formed from a somewhat different parent
material. Mineralogical evidence alone, however, would be insuffi-

cient for such a conclusion.
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Pecos County Pedon

Particle size data for the Pecos Co. pedon are presented in Fig.

12. This pedon shows considerable similarity to the Kinney Co. soil
in that it shows 1) a lower amount of fine clay in the Al horizon and
2) a strong increase in the sand content in the petrocalcic zone.
Secondary silica also comprises a substantial portion of the sand and
silt fractions as presented in Table 4. The increase in sand content
with depth in the petrocalcic horizon can largely be accounted for by
the enrichment with secondary silica. Consideration of silica enrich-
ment, however, does not account for the low medium:coarse silt ratio
in the Al horizon. Neither does it account for the low amount of fine
clay; rather, it increases the disparity in fine clay content between
the Al horizons and the petrocalcic horizons. This suggests that the
Table 4, Approximate estimates of secondary silica content in selec-
ted fractions and horizons of the Pecos Co. pedon (#9).

Estimates based on optical examination and/or specific grav-
ity separations.

Sand C. Silt Med. Silt

Lab # Horizon .05-2 mm 20-50 um 5-20 um
__________________ e mcmmmmmm——m—<
1236 Al2 0 <10 5-15
1237 Clcam 10-20 <10 10-20
1238 C2cam upper 40-50 15-25 40-50
1239 C2cam lower 60-70 20-35 70-80

1240 R 15-25 5-20 5-15
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Al material in this pedon, 1ike the one in Kinney Co., has been formed
from, or admixed with, a different parent material.

Elemental analyses of silt fractions and mineralogy of clays and
silts are presented in Fig. 13 and Table 5, respectively. Elemental
concentrations in the Al horizon are similar to those in the upper
petrocalcic horizons. The general decrease in Zr, Ti, Fe, and K
toward minima in the lower C2cam horizon can be substantially
explained by the enrichment in secondary silica in the silt frac-
tions. Increasing Ca levels with depth are the result of the presence
of fluorite (CaFp) in the petrocalcic and R horizons. The continued
decrease in K and Zr into the R horizon, while secondary silica levels
have decreased, does, however, suggest that the limestone from which
the petrocalcic horizons formed was richer in Zr and K. Mineralogical
evidence also supports the inference that the R horizon is not identi-
cal to the Tlimestone precursor to the petrocalcic zone. Lower silt-
sized feldspar levels in the R horizon as well as higher kaolinite
levels illustrate this. The gradual change in mineralogy from the R
to the upper petrocalcic horizon, as well as the presence of fluorite
in both R and Ccam horizons, indicates, however, that the compo-
sitional differences between the R horizon and the limestone precursor
to the petrocalcic horizon may not in fact be great.

Examination of the silt fractions of the R horizon residue by SEM
revealed an abundance of euhedral, prismatic quartz as shown in Fig.
14. Since such structures would not easily survive transport and
deposition, these grains are most likely authigenic crystals formed in

voids in the limestone. The euhedral quartz prisms were also observed
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Table 5. Semi-quantitativeT interpretations of XRD analyses of the
Pecos Co. pedon.
Hori-|Frac- Fe Fluo-
zon tion |Qtz Kaol [Mica Sm K Spar| Plag [Oxide|rite [Comments
(Hm)

All {.2 -- X XX XXXX -- -- -- --

Al2 -- X XX | XXXX -- - -- --

Clcam -— X XX [ XXXX - -- Tr --

C2cam -- X XX [ XXXX -- - X --

C2cam - X XX | XXXX -- - Tr -

R - Tr XXX | XXX -- - XX -- |Goethite;
High
Charge
Sm

All .2-2 XX XX XX XX X - - -

Al12 XX XX XX XX X - -- -

Clcam XX XX XX XX X - Tr Tr

C2cam XXX XX XX XX X - X XX

C2cam XXX XX X XX - - Tr XXX

R XXX | XXX X X X - XX Tr

Al2 2-5 XXXX Tr Tr X XX X r --

Clcam XXXX Tr -- X XX X Tr X

C2cam XXXX Tr -- X X X Tr XX

C2cam XXXX Tr -- Tr - - -- XXX XBarite

R XXXX XX -- -- -— -- X X |TrBarite

All 5-20 | XXXX - Tr -- XX XX -- -—

Al2 XXXX X X -- XX XX - --

Clcam XXXX -- -- -- XX XX X X

C2cam XXXX - -- -- XX XX X XX

C2cam XXXX -- -- -- X X -- XXX XBarite

R XXXX Tr - -- Tr r -- XXX [TrBarite

All 20-50 XXXX -- X - XX X - --

Al2 XXXX - -- -- XX X -- --

Clcam XXXX -- - - XX X -- --

C2cam XXXX -- -- -- XX X - X

C2cam XXXX -- -- -~ XX X -- XX

R XXXX - -- -- X -- -- XXX

T Tr - trace Qtz - Quartz

X - Tow <10% Kaol - Kaolinite
XX - moderate 10-30% Sm - Smectite
XXX - high 30-70% Plag - Plagioclase
XXXX - dominant>70% K Spar -~ K Feldspar



Fig. 14, Euhedral prismatic quartz from the medium silt (5-20mm)
fraction of the non-carbonate residue of the limestone underlying the
Pecos Co. pedon (#9).






in the petrocalcic horizons. Figure 15 shows a prism from the upper
C2cam horizon, partially coated with secondary silica. While common
in the petrocalcic horizons, euhedral prisms were not the dominant
form of quartz, in contrast to the R horizon. Figure 16 shows
representative SEM fields of medium silt grains of the R and
petrocalcic horizons. The occurrence of prismatic quartz in both the
R and petrocaicic horizons suggests some degree of commonality,
although the abundance of non-prismatic quartz in the petrocalcic
hQrizons indicates a precursor different from the R horizon.
Examination of silts from the Al horizons revealed almost a com-
plete absence of euhedral quartz prisms. Typical grains showing
rounded edges and rqugh pitted surfaces are shown in Fig. 17. Dili-
gent searching did, however, yield a few rare prisms in the Al hori-
zons which are shown in Fig. 18. The relative lack of weathering
features such as rounding and pitting on these grains indicates that
the soil environment is not harsh with respect to quartz. The absence
of prisms in the Al horizons must therefore be attributed to soil
formation from a different parent material rather than to weathering

and alteration of the quartz in the soil.
Val Verde County Pedon

This pedon is a Lithic Calciustoll and lacks a petrocalcic hori-
zon. It does, however, have a laminar cap of pedogenic carbonate 2-4
cm thick directly overlying the limestone bedrock. Particle size data

for this pedon are presented in Fig. 19. Both carbonate-free and
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Fig. 15. Prismatic quartz from the carbonate-free residue of the
C2cam horizon of the Pecos Co. pedon (#9). Note the partial coating
of secondary silica on the lower portion of the grain (arrows)
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Fig. 17. Representative quartz grains from the silt fractions of the
A1l (C and D) and the A12 (A and B) horizons of the Pecos Co. pedon
(#9). Note the rounded edges and rough pitted surfaces.



ﬁ%\
U© [hiL




Fig. 18. Rare prismatic quartz grains from the A horizons of the
Pecos Co. pedon (#9).  Note the well preserved euhedral morphology.
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"clay-free data show a high degree of similarity between the Al hori-
zons and the laminar cap residue. The fine sand levels are, however,
greater in the laminar cap at the expense of coarse silt. A drastic
change in PSD is encountered in the R horizon residue. Fine and
medium silts dominate with very little coarse silt or sand. Elemental
analyses for silt fractions in this pedon (Fig. 20) also show similar-
ity among the Al horizons and the laminar cap but a striking differ-
ence with the subjacent R material, which has much lower Zr, Ti, K,
and Ca values than the overlying horizons. This indicates that the
parent material from which the Al horizons formed was much different
in composition than the R horizon.

This inference is further substantiated by mineralogical evi-
dence. Clay and sf]t mineralogy is presented in Table 6. Again, a
strong similarity exists amongst the Al horizons and the laminar cap
residue while differences with the R horizon residue are plain., Dif-
ferences are more striking in the coarser fractions where for example
the medium silt (5-20 um) contains moderate amounts of feldspar and
some mica but only small amounts of kaolinite. This fraction of the
limestone residue, in contrast, contains no mica or feldspar but has
high levels of kaolinite. Mineralogical differences between these
horizons are also evident in both the coarse and fine clay fractions.

Examination of silts by SEM confirms the previous assessment of
parent material differences. Figure 21 shows representative SEM
fields of medium silt grains from the AlZ horizon, laminar cap resi-
due, and limestone residue. The limestone residue is primarily euhe-

dral quartz prisms and euhedral kaolinite plates which are presumably
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Table 6. Semi-quantitativeT interpretations of XRD analyses of the
Val Verde Co. pedon.

Hori-|Frac- Fe [Ana-
zon |[tion |Qtz |[Kaol {Mica | Sm |K Spar| Plag [Oxide|tase |Comments
(um)

All |<.2 - X XX | XXXX -- - -- low
charge
Sm.

Al2 -- X XX | XXXX -- -- -- "

Laminar -- XX XX | XXXX - -- Tr "

R -- XX | XXX | XXX -- - XX X |Goethite;
Higher
charge
Sm

All }.2-2 XX | XXX X | XXX Tr - X

Al2 XX | XXX X | XXX X -- X

Laminar XX XXX X XX X -- X

R XX | XXXX -- -- -- -- X

All [5-20 [XXXX X X -- XX XX X

Al2 XXXX X X - XX XX X

Laminar XXXX X -- -- XX XX X

R XXX | XXX -- -- -- -- --

A1l ] 20-50] XXXX -- - -- XX XX Tr

Al2. XXXX -- - - XX XX Tr

Laminar XXXX -- - -~ XX XX Tr

R XXX | XXX -- -- -- -- --

U Tr - trace Qtz - Quartz

X - low <10% Kaol - Kaolinite

XX - moderate 10-30% Sm - Smectite
XXX - high 30-70% Plag - Plagioclase
XXXX - dominant>70% K Spar - K Feldspar

authfgenic. Keller (1976) has shown similar kaolinite crystals formed
authigenically 1in limestones and other rocks. Prismatic quartz
occurred in the laminar cap residue but most grains were rounded and
anhedral. Grains in the Al horizon were also dominantly rounded and
anhedral with only a very few quartz prisms observed, This very

shallow soil (25 cm to rock), therefore, appears to have substantially
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formed from a parent material of different particle size, mineralogy

and grain morphology than the subjacent limestone.
Real County Pedon

Carbonate-free and clay-free PSD data are shown in Fig. 22. Clay
distribution within the solum reflects processes of eluviation and
illuviation. Both fine and total clay contents of the Timestone resi-
due are. however, substantially lower than the mean clay content of
the soil. Minerals which could potentially be weathered to form clays
are virtually absent from the silt fractions of the residue, elimina-
ting this as a possible clay source. Pronounced changes with depth
in the coarse:fine sand ratio and the medium:coarse silt ratio in the
residue also indicafe parent material variation. The silt ratios
otherwise indicate a high degree of uniformity within the solum. The
bulge in the coarse:fine sand ratio in the B horizon is due to the
increase in coarse sand size chert fragments in this horizon which has
abundant chert coarse fragments.

Elemental analyses of silt fractions are generally wuniform
throughout the solum. As illustrated in Fig. 23, Zr, Ti, and Ca dis-
tributions show only minor fluctuations within the solum. The Fe
bulge in the B horizon corresponds to micromorphological observation
of silt and sand size Fe nodules in this zone which have presumably
formed by Fe movement and segregation. The gradual increase in K
toward the soil surface corresponds to observations of XRD patterns

indicating a definite, though subtle, increase in K-feldspar levels in
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the silt fractions. This is not considered to be a residual concen-
tration due to weathering since the elements of stable minerals (Zr
and Ti) show no corresponding increase toward the surface. Distinct
decreases of all elements measured were observed in the limestone
residue. This supports the postulated parent material difference for
the formation of the solum.

Mineralogical evidence supports the previous discussion. As
presented in Table 7, the mineralogy throughout the A and B horizons
is quite uniform. The absence, or only trace amounts, of feldspar in
the silts and the low levels of smectite in the coarse clay of the
limestone residue, is generally in accord with the.previous observa-
tions regarding parent material uniformity.

Medium silt fraétions of the limestone residue, the B3tca horizon
(0-15 cm above bedrock), and the B22t horizon (30-45 cm above bedrock)
were examined by SEM. Micrographs of representative fields are shown
in Fig. 24. Quartz in the limestone residue was primarily euhedral
prisms although some rounded anhedral grains were present. In the
B3tca horizon immediately overlying the bedrock, however, quartz
prisms were very rare. None were observed in the B22t horizon.

In summary, the A or A and B horizons of all four pedons appear
to have formed from parent materials that differ in PSD mineralogy
and/or silt grain morphology from the subjacent carbonate material
(either bedrock or petrocalcic horizon). In the two pedons without
petrocalcic horizons, there was very little incorporation of residues

from the presently underlying bedrock into the solum as evidenced by a
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Table 7. Semi-quantitative! interpretations of XRD analyses of the
Real Co. pedon.
Hori-|Frac- Fe
zon %io? Qtz |Kaol |Mica | Sm |K Spar| Plag {Oxide|Other|Comments
pm
All |<.2 -- XX XX P XXXX -- -- --
Al2 -- XX XX | XXXX -- -- --
B21t -- XX XX | XXXX -- - --
B22t -- XX X | XXXX -- - --
B22t -- XX X [ XXXX -- -- --
B3tca -- XX X | XXXX -- - --
R -- XX XX | XXXX -- -- XX Goethite
All j.2-2 | XXX XX XX XX X - --
Al2 XXX XX XX XX X -- X
B21t XXX XX XX | XXX X - X
B22t XX | XXX X | XXX Tr -- X
B22t XX | XXX X | XXX Tr -- X
B3tca XX | XXX X | XXX Tr -- Tr
R XXX | XXX X X Tr -- Tr
All }15-20 |XXXX -- -- -- X -- Tr Feldspar
Al12 XXXX -- -- -- X -- Tr content
B21t XXXX -- -- -- X -- Tr gener -
B22t XXXX -- -- -- X -- Tr ally in-
B22t XXXX -- -- -- X -- Tr creases
B3tca XXXX -- -- -- X -- Tr toward
R XXXX Tr -- -- Tr -- -- surface
All ]20-50|XXXX -- -- -- X - --
Al2 XXXX -- -- -- X -- -~
B21t XXXX -- -- -- X - --
B22t XXXX -- -- -- X -- --
B22t XXXX -- -- -- X - --
B3tca XXXX -- -- -- X - --
R XXXX -- - - -- -- --
' Tr - trace Qtz - Quartz
X - low <10% Kaol - Kaolinite
XX - moderate 10-30% Sm - Smectite
XXX - high 30-70% Plag - Plagioclase
XXXX - dominant>70% K Spar - K Feldspar
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lack of euhedral quartz prisms. It is postulated that the strati-
graphica]ly overlying rock contained more detrital quartz and was
perhaps less indurated than the presently underlying rock. A softer
limestone having a higher porosity and being more subject to changes
in pore fluid composition, would be less likely to provide the micro-
environment necessary for the crystallization of prismatic quartz.
Furthermore, the softer, higher porosity limestone would be more
subject to weathering, loss of carbonates, and the residual accumula-
tion of soil materials. The interface between the more indurated and
the softer limestones would provide a natural barrier or restraint to
further residuum accumulation.

In the cases where the soils did have petrocalcic horizons, the
limestone precursor to the petrocalcic was in one case similar to, and
in the other case different from, the underlying limestone. The low-
est horizon sampled in the Kinney Co. pedon was a Crca/Cé4cam horizon.
Micromorphological examination indicates that the material is a soft
limestone with substantial enrichment in pedogenic carbonates. This
material is similar in PSD and mineralogy to the precursor of the
petrocalcic horizon. In the Pecos Co. pedon where the petrocalcic
horizon overlies hard limestone, the petrocalcic precursor shared some
similarities with, but also differed from the underlying limestone

bedrock.
Impact of Dusts on Soil Parent Material

Having concluded that much of the A and B horizons in the

soils studied has formed from a limestone residuum different from
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immediately subjacent limestone, there still remains the need to esti-
mate the degree of accumulation of airborne dusts in the soils. In
order to make this evaluation, dusts were collected and characterized
regarding PSD, mineralogy, silt grain morphology and elemental analy-
sis. A complete description of the procedure and analyses is given in
Appendix B.  The dusts collected across the study area were quite
uniform in the parameters measured. The quantity of dust collected in
the dust traps may not reflect the Tong term rates of accumulation due
to 1) differences in efficiency of collection due to trap design, 2)
long term fluctuations in quantities of dust added due to climatic
changes, and 3) removal of soil material through processes of geologic
erosion. The qualitative nature of the dust could theoretically, how-
ever, be compared to‘the soil and the parent material and thereby used
to estimate the long term impact. The average particle size distribu-
tion for the 7 sites and 4 collection periods is given in Table 8.

Table 8. Average particle size distribution for dusts (Seven sites
and 4 collection periods).

Mineralogical interpretations of XRD analysis for the clay and
medium silt fractions (the two dominant fractions) over all locations
and collection periods have been summarized in Table 9. Summary data

for elemental analyses of the medium silt (5-20um) fraction of dusts
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collected from the 7 locations during 4 collection periods are pre-

sented in Table 10.

Table 9. Semi-quantitative! interpretations of XRD analyses of
dusts; Summary (Seven sites and 3 collection periods).

Fraction Sm Kaol Mica Qtz K Spar Na Spar
<2 um X X XXX XXX X -
5-20 um -- -- Tr XXXX XX X
T Tr - trace Qtz - Quartz
X - low <10% Kaol - Kaolinite
XX - moderate 10-30% Sm - Smectite
XXX - high 30-70% Na Spar - Na Feldspar
XXXX - dominant>70% K Spar - K Feldspar

Table 10. Average e]émenta1 analysis of the 5-20 um fraction of dusts
collected.

1.04 + .437 .42 £ .13 .28 + .05

T Mean value t std. dev. of 28 measurements (7 sites; 4 periods).

The PSD of the dust shows the clay (58%) and medium silt (26%)
fractions to be dominant. The surface horizons of the 15 pedons
sampled have clay contents which generally range between 15 and 40%,
while sands (>501um) range between 5 and 25%. This supports earlier
statements that the dusts are not the primary soil parent material.

The soils could, however, admix significant quantities of dust with



relatively small and undetectable changes in the PSD. Particle size
is therefore not a sensitive indicator of dust additions. The miner-
als contained in the dusts are also present throughout most of the
soils examined. Mineralogy cannot therefore be used to estimate dust
inputs.

No carbonate minerals were observed in the dusts. This may
reflect dissolution of carbonates during processing of the dust or
simply a lack of carbonates in the airborne material. Water soluble
ca levels in filtrates collected during dust processing were only
15-30% of calcite saturation. Any particulate carbonates would there-
fore be dissolved. Calcium values were, however, approximately equal
to infall expected from rainfall (Junge and Werby, 1958; Lodge et al.,
1968). The lack of é significant correlation between water soluble Ca
and total dust infall further suggests that much if not most of the Ca
is entering as dissolved Ca in rainfall and not as particulate carbon-
ate dusts (See Appendix B). Since most of the surface soils, espe-
cially in the western part of the study area are calcareous, this
further supports the idea that the dusts are not locally derived.

In order for the elemental analyses of dusts to be useful cri-
teria for estimating additions, the levels in the dust must be sub-
stantially greater than those of the soil parent material. If the mid
to lower part of the solum is considered to best reflect the elemental
concentrations of the parent material, the Ti levels in the dusts are
in all cases lower than the values for the same fraction in the soils

analyzed (see Figs. 11, 13, 20 and 23). Values for Ca and K in the
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dusts are also similar to or Tlower than carbonate-free values in the
soil, with the exception of Ca in the Real Co. pedon. Calcium levels
beneath the All horizon are approximately 0.1%, while it is 0.54% in
the All. It is unlikely that the higher Ca levels in the All are due
solely to dust additions in that the levels are actually higher than
those in the dust. Thus, even if the All horizon were comprised of
100% dust (which is not the case), the Ca level would only be approxi-
mately 60% of the measured level. It appears therefore that elemental
analyses are not useful in estimating dust accumulation in these
soils.

Examination of the 5-20 um dust fractions by SEM revealed grains
with two primary grain morphologies and a third less common form.
Less than half of thé grains had smooth surfaces, sharp edges and some
conchoidal fracture. The other major group had rough, weathered, and
sometimes pitted surfaces with rounded edges. The third less common
group showed distinct linear or right angle weathering traces, presum-
ably along cleavage planes or zones of weakness (see Appendix B for
micrographs illustrating the 3 morphological types). Chemical analy-
ses of individual grains using the electron microprobe showed the last
group to be entirely feldspars (primarily K-feldspars).  Prior to
microprobe analysis, the smooth, conchoidally fractured grains were
presumed to be quartz. During analysis, however, both quartz and
‘ feldspars were found with smooth, conchoidally fractured surfaces and
with rough, pitted surfaces. Most of the smooth surfaced grains

analyzed were in fact K-feldspars.
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Examination of the 5-20 m fractions of limestone residues and
lower soil horizons indicated that rough rounded Qrains were common
but that conchoidally fractured grains with smooth surfaces were very
rare. The smooth-surface dust grains could therefore be used to trace
dust accumulations in soils. Analyses of silt fractions from surface
horizons of the pedons studied revealed a stark absence of conchoid-
ally fractured smooth-surfaced grains. Representative soil grains
showing rounded edges and rough surfaces are shown in Fig. 17. There
are two possible explanations for the absence of the characteristic
conchoidally fractured grains from the soil. One possibility is that
the weathering environment in the soils 1is harsh enough to cause
rounding and pitting of the grains. The near neutral soil pH and
slight to moderate 1éaching in these soils is not a particularly harsh
environment as regards quartz or feldspars although during previous
more pluvial conditions, the grains may have been more subject to
alteration. During the previous discussion concerning the tracing of
euhedral quartz prisms from the limestone into the soil, a few well
preserved prisms were observed in the surface horizens (Fig. 18).
This confirms that gquartz is relatively stable in this environment.
We cannot state conclusively that the K-feldspar grains are not sub-
ject to alteration in these soils, but we can state that conchoidally
fractured quartz dust with smooth surfaces should maintain that grain
surface morphology within the soil environment.

We must, therefore, move to the other possible explanation for
the lack of these characteristic grains in the soil, which is that

dusts must not be substantially accumulating in the soils. The
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quantity of dust collected in the traps indicates that they are being
presently added at the rate of approximately 1 mm/100 yrs. Erosional
processes by water and/or wind must be equal to -or greater than these

rates to account for the lack of dust accumulation,
Differentiation of Pedogenic and Lithogenic Carbonates

Horizons in several pedons were identified by field criteria és petro-
calcic horizons. There was some doubt however whether these materials
were in fact petrocalcic horizons of pedogenic origin or whether they
were primarily limestone materials inherited from the parent lithology
(lithogenic carbonates). It was felt that laboratory analysis was
necessary to confirm or reject the field determinations. Differentia-
tion of pedogenic ffom lithogenic carbonate forms was pursued through

micromorphology and carbon isotope analysis.
Micromorphological Evidence for Pedogenic Carbonates

Observed fabrics. Examination of thin sections of questionable

petrocalcic materials revealed a great variety of microfabrics. There
was also often great heterogeneity within a given horizon or even
within a given thin section, such that a single horizon may show
several distinctly different fabrics. Fabrics were classified into
four major groupings, although gradations and mixtures occur with atl
of them.

One type was a highly porous form with a convoluted micritic net-
work. This is illustrated in Fig. 25 and will hereafter be referred

to as the "convoluted" fabric. Figure 25D is an example where the
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fabric is less porous and the convoluted network is Tless prominent,
but the fabric is still more similar to this group than to the others
and has therefore been grouped with the convoluted fabrics. Read
(1974) and James (1972) have both reported highly micritized zones in
petrocalcic (caliche) materials.

The second type of fabric is dominated by micritic nodules occa-
sionally containing nuclei of larger calcite crystals. This fabric is
illustrated in Fig. 26, and will be referred to as the "nodular"
fabric. These appear similar to what some have referred to as soil or
calcrete ooids (Read, 1974) or micritic pelletoids (James, 1972) which
have a characteristic clotted fabric. The final two petrocalcic
fabrics are shown in Fig. 27. One has been termed "pisolitic," in
reference to the preéence of larger (.25 mm to >1 mm) spherical bodies
showing in some cases a concentric layering. The outer layer (and
often other concentric layers) are yellowish in color, suggestive of
the presence of silicate clay. Although smaller in size than what is
usually termed “"pisolites," they show a strong morphologic similarity
(Dunham, 1962; Thomas, 1965). The remaining fabric type is dominated
by neomorphic microspar with crystals in the range of 5-30 um. This
material has apparently recrystallized leaving no evidence of primary
limestone features and thus has been called the "recrystallized"
fabric.  Sehgal and Stoops (1972) have reported similar zones of
coarse granular calcite which has formed through the recrystallization

of micrite and was interpreted to be a pedogenic product. James
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(1972) has also illustrated the recrystallization of micrite to micro-
spar in caliche which he explains as a result of the presence of
vadose pore fluids.

Identifiable pedogenic carbonate forms. Certain carbonate forms

can be identified on field evidence alone to be of pedogenic origin.
These include laminar caps, pendants, and concretions. It was thought
that micromorphological examination of known pedogenic forms may pro-
vide useful information in determining the origin of questionable
"petrocalcic" fabrics.

Examination of thin sections of numerous laminar caps revealed
several characteristic features. These can be seen in representative
micrographs in Fig. 2 of Appendix D. As would be expected, they show
a horizontal, though wavy, lineation parallel to the laminar surface.
Virtually all of the caps examined also showed sand and silt sized
quartz skeleton grains and Fe and Mn glaebules. The porosity of these
materials was generally low, with the exception of the upper few
tenths of a mm which in a few cases was more porous.

The pendants examined showed two distinctly different fabric
types. These are illustrated in Fig. 3 of Appendix D. In one case the
microfabric is highly reminiscent of the laminar cap material showing
laminar foliations, incorporation of quartz grains, and manganese
staining. The other type of pendants observed had a micritic fabric
which was more porous, lacked quartz skeleton grains, and showed no
manganese staining. The fabric itself is quite similar to the convo-
luted fabrics identified in some of the questionable massive petrocal-
cic materials and supports the designation of such materials as pedo-

genic in origin,
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Carbonate concretions were observed only at one location. While
the concretions have nucleated around various materials, the primary
fabric of the concretions was characteristic. Like the first type of
pendant, the concretions share characteristics with the laminar mater-
jal. Representative micrographs can be seen in Fig. 4 of Appendix D.
The concentric zoning in the concretions is similar to the horizontal
laminations in the caps. The concretions also show distinct Fe and Mn
stains and quartz skeleton grains. In addition to microfabric fea-
tures held in common by the laminar caps, pendants, and concretions,
stable carbon isotope data indicate a similar environment of formation
for these forms (Appendix D). The micromorphological similarities are
therefore perhaps indicative of the genetic similarities.

Evidence for fabric genesis. While the microfabrics observed in

the questionable petrocalcic materials did not show features typical
of lithogenic carbonates, this negative evidence was not considered
sufficient for confident designation as pedogenic carbonates. Careful
examination did, however, uncover evidence to support the pedogenic
origin of the convoluted and nodular fabrics. Figure 28 shows a
sequence of micrographs demonstrating the gradual alteration of a hard
crystalline lithogenic fabric into a highly porous, micritic convo-
luted fabric. Initial alteration of sparry crystalline calcite to
fine grained micrite through dissolution and reprecipitation at the
solution-mineral interface (micritization) occurs around pores and
fissures in the limestone. Continued micritization, presumably insti-

gated by pore water, causes eventual coalescing of the micritic
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network. Similar processes have been reported by James (1972) and
Read (1974).

Sehgal and Stoops (1972) have reported the presence of randomly
oriented calcite needles in pores of petrocalcic materials. Similar
observations were made in a number of petrocalcic horizons in this
study. A second mode for the formation of the convoluted fabric is
jllustrated in Fig. 29. Acicular calcite crystals growing in pores
begin to form masses with preferential rather than random orienta-
tion. As calcite needles continue to grow, a network is developed
demonstrating the characteristic convoluted fabric. James (1972) has
also observed calcite needles arranged tangentially to particles or
walls of microfractures occurring in bundles up to 50 um thick and in
some cases forming self supporting structures in voids. Aging and/or
crystal growth pressures cause alteration of the needles to micrite in
the more dense portions of the network.

Thin-section examination also revealed two possible modes of
formation of nodular fabrics. Figure 30A shows the transition of a
crystalline fossiliferous limestone. to a very fine nodular fabric
where the nodule size increases away from the limestone interface.
This is also further illustrated in Fig. 30B wherein the alteration of
limestone to a nodular material, a fragment of the lithogenic material
has become enguifed in the fine, nodular, micritized matrix. James
(1972) and Read (1974) have reported the pedogenic alteration of
carbonate skeletal grains to micritic nodules which they have termed
micritic pelletoids and calcrete ooids respectively. Figure 30C shows

the agglomeroplasmic related distribution in the Al horizon from the
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Fig. 30. Formation of nodular microfacbric. A and B show alteration
of crystalline limestone (1s) (R horizon of Medina Co. pedon #8) to a
nodular material (n). Note how in B a limestone remnant has been
engulfed by the encroaching nodular matrix. C shows the highly cal-
careous (44% CaCO3) Al horizon from the Terrell Co. pedon (#14). It
has a similar appearance to some nodular fabrics and might be consid-
ered a "proto-nodular" or "neo-nodular" fabric. Line scale is 1 mm.
Cross-polarized light.
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Terrell Co. pedon. This horizon contains 44% CaCO3 and has a crystic
plasmic fabric. While quartz skeleton grains are common (which may or
may not occur in nodular fabrics) the soil material appears to be
incompletely aggregated into roughly spherical bodies as a "neo-nodu-
lar" fabric (weakly expressed newly developing noduiar fabric). This
fabric was not observed in other soils lower in carbonates and it is
postulated that the high carbonate levels may affect the development
of the nodular or clotted fabric.

Although complete genetic mechanisms are not provided in the pre-
ceding discussion, the morphologic similarities and adjacent occur-
rence of features suggest that the convoluted and nodular fabrics have

formed- in near surface, pedogenic environments.
Carbon Isotope Evidence for Pedogenic Carbonates

In nature, both thermodynamic and kinetic factors have caused
fractionation of carbon isotopes. While marine (1ithogenic) carbon-
ates usually have 513¢ values near zero, the processes of pedogenic
carbonate formation result in considerably lower values which are
dependent primarily on the 813C of the soil COp gas. Therefore, a
simple proportionality may be employed to quantitatively estimate
pedogenic carbonates in the soil. See Appendix D for a complete dis-
cussion of the theory behind this method.

Several pedons -were selected for isotopic analysis and data for
the horizons having the questionable microfabrics are presented in
Table 11. The five samples with convoluted fabrics had pedogenic

carbonate values in the range of 58-100%. Samples with nodular and
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Table 11. Percent calculated pedogenic carbonates in questionable
petrocalcic materials based on carbon isotope analysis.

Range in Calculated

Fabric Type Pedon County Horizon Pedogenic Carbonate
%

Convoluted stop 9 Kimble  Ccam 58- 68
stop 307 Pecos Ccam 66- 75
S81TX 435-1 Sutton C2cam 84-100
C3cam 100
stop 32" Crockett  Ccam 91-100
Nodular S81TX 371-1  Pecos Clcam 77- 88
Stop 30T Pecos Ccam 66- 75
Recrystallized S81TX 371-1 Pecos C2cam 75~ 87
S81TX 435-1  Sutton  C3cam 100

U Samples collected at reconnaissance locations

recrystallized fabrics had values in the range of 66-88% and 75-100%,
respectively. Although according to calculations not all of these
materials are 100% pedogenic carbonate, within the range of error and
assumptions of the procedure we may confidently state that these sam-
ples are primarily pedogenic carbonates.

Concluding from micromorphic and isotopic evidence, it appears
that carbonate materials exhibiting the convoluted, nodular, or
recrystallized fabrics have most likely formed as a result of pedo-
genic processes and would be correctly designated as petrocalcic hori-

zons (Ccam) rather than as lithogenic materials (Cr or R).



Pedogenesis of Petrocalcic Horizons

Gile et al. (1966) and Read (1974) have proposed models for the
formation of carbonate enriched soil horizons. These models have as
their starting point, unconsolidated soil materials that may be
gravelly or non-gravelly, calcareous or carbonate-free. Downward
moving waters carry dissolved carbonate material to a zone of accumu-
lation where precipitation occurs. In this way, the pedogenic carbon-
ates fill and plug the soil pores and engqulf the surrounding soil
material as the petrocalcic horizon develops. For this reason, the
non-carbonate residues of the petrocalcic horizons are similar to the
overlying soil materials.

As discussed previously under "Parent Material Identification and
Uniformity," A horizons overlying petrocalcic materials in this study
often show parent material discontinuity. Furthermore, these petro-
calcic horizons often have non-carbonate residue percentages of 5% or
less. Grain displacement by growing calcite crystals would certainly
not be an adequate explanation for these low residue percentages.
Gile and Grossman (1979) report carbonate-free residue percentages for
plugged, indurated petrocalcic horizons ranging from 25 to 54 percent,
much greater than the values observed in this study. Therefore,
Gile's model depicting plugging of soil horizons as the mode of petro-
calcic formation is inadequate to describe the genesis of these hori-
zons over limestone bedrock on the Edwards Plateau.

An alternative explanation is proposed below. Meteoric waters

moving through the solum become charged with COp and some dissoived
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organic components. This solution proceeds into the pores in the
underlying limestone causing some enlargement of the pores through
carbonate dissolution. The crystalline calcite around the por;s
begins to be altered to micrite through a process analagous if not
similar to the "sparmicritisation" reported by Kahle (1977) and Tomp-
kins (1980). In marine environments this process is believed to be
related to the presence of dissolved organic compounds in pore waters
formed during the metabolism of fungi and bacteria. Water percolating
through the solum might similarly become charged with organic com-
pounds from the microbial decomposition of soil organic matter. Num-
erous limestones were examined, nearly all showing micritic linings
around pores or in exterior weathering rinds. As this process pro-
ceeds, the overall borosity of the limestone increases and micritic
linings begin to coalesce forming & convoluted type of fabric in a
dominantly micritic matrix.

During this process, dissolved carbonates may not be flushed
entirely from this system, but may be tocally redistributed forming
crystallaria within pores of the convoluted network. Many of the
samples examined showed calcite in a variety of crystal habits growing
as rim cements (pore linings) within the protected convoluted pores.
Needles, blades, prisms, and equant blocks have all been observed
growing within the pores.

Through continued Ca influx by atmospheric additions (primarily
dissolved in rainwater) with insufficient rainfall for leaching, rim
cements may continue to grow until the pores become largely plugged.

Alternatively, changes in the magnitude of precipitation during long
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term climatic changes may cause changes in carbonate movement within
this neo-petrocalcic zone such that crystal growth within pores causes
plugging of the zone. At this point, the horizon is similar to
Gile's Stage III. Its mode of formation is however, distinctly dif-
ferent from that proposed by Gile et al. (1966). ‘A similar explana-
tion for caliche formation has been discussed by Blank and Tynes
(1965) and James (1972).

If plugging has occurred to the extent that the percolation of
water is restricted, laminar caps may form as carbonate charged waters
stand or through gravity move laterally over the plugged horizon.
Laminar caps ranging from a few millimeters to a few centimeters in
thickness were commonly observed on the upper surfaces of these petro-
calcic horizons. |

In addition to the micromorphological observations and carbon
isotope data presented earlier in support of this model, the presence
of the mineral fluorite (CaFp) in pedon #9 (Pecos Co.) has proved
useful as an indicator of the processes occurring during petrocalcic
formation. Fluorite is a fairly labile mineral having roughly the
same solubility as calcite in distilled water (making it somewhat less
soluble than calcite in COp charged meteoric waters. This pedon has
already been discussed regarding parent material uniformity. Elemen-
tal analyses, PSD of residues, and the distribution of euhedral quartz
prisms have indicated a parent material discontinuity between the A
horizons and the petrocalcic zone. Although some differences exist,

there is considerable parent material similarity between the
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petrocalcic zone and the underlying rock. The petrocalcic horizons
themselves appear to be formed from the same parent material.

Fluorite quantities were estimated from a combination of XRD,
elemental analyses and PSD of carbonate-free residues. Figure 31
shows the total fluorite distribution and the PSD of the fluorite
within the pedon including the limestone bedrock. Of first notice is
the absence of fluorite from the A horizon. This may be due simply to
the parent material discontinuity at this point. If fluorite were
present in the parent limestone however, the small amount present
would certainly have been dissolved while dissolving carbonates during
the accumulation of the non-carbonate residuum. Conversely, the pres-
ence of fluorite in the petrocalcic horizon is further evidence that
this carbonate zone did not form through carbonate enrichment of a
previously leached, carbonate-free soil.

The steady decrease in total fluorite from the lower to the upper
portion of the petrocalcic zone suggests that there has been dissolu-
tion and removal of this mineral from the upper part. The fluorite
"bulge" in the lowermost petrocalcic horizon may indicate an actual
translocation and accumulation of reconstituted fluorite, although the
quantities of this mineral may not actually be significantly greater
than the underlying bedrock. The abundance of fluorite in the clay
(<2um) and fine silt (2-5um) of the petrocalcic zone while being
virtually absent from these factions in the underlying bedrock indi-
cates that there has been reduction in particle size during the forma-
tion of the petrocalcic horizons. The formation of clay size fluorite

has probably been the result of dissolution and reprecipitation.
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fluorite PSD for Pecos Co. pedon #9.



In summary, the evidence presented concerning fluorite distribu-

tions indicates the following:

1) The petrocalcic horizon has formed through the reconstitu-
tion of a limestone material without previous dissolution
and removal of carbonates, rather than from carbonate plug-
ging of a soil profile previously leached of carbonates.

2) Percolating waters have moved downward through the petrocal-
cic material.

3) The moisture regimes in the petrocalcic horizon have been

such that in situ dissolution and reprecipitation (of a

mineral of similar solubility to calcite) has occurred.
Further evidence that water has percolated through the petrocal-
cic zone during pedbgenesis ijs the translocation and accumulation of
secondary silica in the pedon. Data for approximate values of second-
ary silica were based on PSD, specific gravity separations, and/or
optical examination and are presented in Table 12. The secondary
Table 12. Approximate levels of secondary silica in major horizons of

the Pecos Co. pedon (#9) based on optical examination and/
or specific gravity separations.

Approximate Secondary Silica Values
Horizon Carbonate-free Residue Total Sample

Al 4
Clcam 7
C2cam upper 24
C2cam lower 46
R 9
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silica content increases steadily with depth through the petrocalcic
horizon to a maximum just above bedrock. This distribution is
strikingly similar to that of fluorite. In the A horizons, this
material is mainly in the form of plant opal. Within the petrocalcic
horizon it is mainly of a spongy isotropic form assumed to be opal.
Some grains show a partial alteration and recrystallization as
quartz. The initial source of Si may have been glassy volcanic ash
deposited on the soil surface and subsequently dissolved and
translocated to within the petrocalcic zone. Although the secondary
silica comprises substantial proportions of the carbonate-free
residues, they constitute only a very minor part of the petrocalcic
horizon as a whole.

As Jjust discuséed, opaline or secondary silica was observed in
many of the petrocalcic horizons. In some cases, it constituted a
large portion of the non-carbonate residue, although it may have only
been a minor component in the horizon overall (see Table 12). It was
identified in the residues by its isotropic character under cross-
polarized light and by its low specific gravity (<2.3). It is the
opinion of the author that this silica is of pegodenic origin rather
than being a lithogenic feature inherited from the limestone parent
material.

The evidnece for a pedogenic origin is two-fold.  First, SEM
examination shows the dominant form to be a highly porous spongy net-
work that could have developed by the plugging of interconnected pores
in a porous yet indurated carbonate material (Fig. 16, p. 59). Fur-

thermore, authigenic quartz prisms (formed in and inherited from the
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limestone parent material) have been observed with coatings of second-
ary silica (Fig. 15, p. 57). Since it is unlikely that two strongly
contrasting Si forms {quartz prisms and opaline coatings) would be
co-precipitated, this 1is strongly suggestive that there has been
silica movement within the petrocalcic horizon.  Secondly, optical
examination of silts and sands shows the silica in the petrocalcic
horizons to be mainly opaline (isotropic) although small zones within
the spongy grains show evidence of alteration to quartz (anistropy).
Only a small portion of the grains showed a more complete alteration
to quartz. In contrast, silica in the underlying bedrock having the
morphology of secondary silica was nearly all altered to quartz. The
zone of maximum silica concentration in the Pecos Co. pedon (#9)
(Tower C2cam) is also the zone of maximum isotropic silica with mini-
mum alteration to quartz. Assuming the alteration from opal to quartz
to be a time dependent process, this suggests that the silica has been
translocated and precipitated in a pedogenic (geologically recent)
environment. Since silica (especially quartz) solubilities are low in
the present soil environment, it is postulated that volcanic ash (in
small quantities) has been the Si source. Amorphous silica glass is
considerably more soluble than either quartz or opal and could there-

fore provide a better source for mobile silica (Wilding et al., 1977).
Identification and Genesis of Argillic Horizons

In the humid, eastern part of the Edwards Plateau where greater
rainfall has leached carbonates from the solum, agrillic horizons were

recognized in four pedons. Field evidence for argillic horizons
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included finer textures 1in the B horizons and the presence of clay
coatings or shiny surfaces on peds. The identification of clay films
was somewhat complicated by the presence of pressure faces in several
of the pedons, which can be difficult to distinguish from illuvial
clay on ped surfaces. Shrink-swell activity may also tend to obliter-
ate any evidence of illuvial clay by disruption or destruction of clay
films. Since there were some questions surrounding the identification
of clay films, and since clay increases in the B horizon do not in
themselves constitute argillic horizons, laboratory confirmation was

sought.
Particle Size Evidence

Clay distribut{ons for the four pedons are illustrated in Fig.
32. All pedons show marked increases in total clay content from 'the A
to the B horizons. The increase in total clay is primarily the effect
of large increases in fine clay resulting in much higher fine:coarse
clay ratios in the B horizons. The greater ease of downward translo-
cation of fine clay than coarse clay makes higher fine:coarse clay
ratios a characteristic of argillic horizons (Soil Survey Staff,
1975).

Since argillic horizons are formed through the enrichment and
accumulation of translocated clay from overlying horizons, they are
also generally expected to have a greater clay content than underlying
horizons. This criterion is useful in the identification of an argil-
lic horizon since coarser textures in surface horizons can occur

through processes other than eluviation. pedon 11 (Real Co.), which
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was the deepest soil encountered'(80 cm), does show a slight decrease
in both fine clay and total clay in the B3 horizon relative to the
B2. The other pedons, owing to their shallow nature (35-50 cm), all
have clay maxima in the horizon immediately above the bedrock. Com-
parisons with carbonate-free residue from the parent materials of
these soils should (if these lowest horizons are argillic) have clay
contents and fine: coarse clay ratios which are lower than in the
argillic horizons. Analyses have shown however, that in the Edwards
Plateau region, sola occurring over hard limestones often have formed
from limestone residuum of contrasting character to the rock immedi-
ately subjacent to the soil (see section on Parent Material Identifi-
cation and Uniformity). Therefore, comparisons of soils with residue
from the underlying fock should not be used to substantiate or invali-
date argillic horizon identification unless parent material continuity

can be established.
Micromorphological Evidence

Thin-sections were examined for the soils thought to have argil-
lic horizons. Micromorphic fabrics and major features are reported
with COLE values in Table 13. Argillans were common in the B horizons
of all four pedons. They were for the most part however, striated and
showed some evidence of stress orientation. It was, thus not immedi -
ately clear whether or not the argillans were jlluvial features.

Stress features caused by shrink-swell activity were common in
the soils as evidenced by masepic and skelsepic plasmic fabrics.

COLE values, which are a linear measure of shrink-swell potential,
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generally show good agreement with micromorphic stress features. The
strongest gxpression of stress orientation was observed in the B2t and
B3tca horizons of Pedon 11, which also had the greatest COLE values.
According to criteria established by Franzmeier and Ross (1968) Pedons
11, 9 and 8 all have COLE values in the very critical range indicating
very high shrink-swell potential. COLE values for Pedon 1 are some-
what lower but are still in the critical range. With the high shrink-
swell of these soils it would not be surprising for illuvial argillans
to be absent. The absence of good illuvial features could be attri-
buted either to a lack of stable ped surfaces for clay accumulation,
or to the disruption and destruction of illuvial argillans by stress
activity. Nettleton et al. (1969) have indicated that the shrink-
swell pressures in‘soi1s with COLE values as low as 0.04 could be
sufficient to preclude micromorphic identification of oriented illuv-
ial clay.

Most of the argillans observed were Tlocated around skeleton
grains although some did occur along voids. Due to the Tlack of
stable ped surfaces in clay-rich soils with high shrink-swell activ-
ity, skeleton grains and coarse fragments may provide a relatively
stable surface. If jilluviation argillans were to occur in such a
soil, skeleton grain surfaces would be a likely location. Skeleton
grain surfaces, however, are also prime locations for the development
of stress argillans. Although many of the argillans did appear to be
the result of primarily shrink-swell stresses, careful examination did
reveal features more characteristic of illuviation argillans. Many

of the argillans that showed strong striated orientation had abrupt
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boundaries with the matrix material and a lack of sub-cutanic stria-
tions. Stress argillans usually are thin (about one or two plasma
aggregates thick, 5-10um) and have more diffuse boundaries. When the
features are strongly oriented, they also commonly have accompanying
sub-cutanic stress orientation. A number of the observed argillans
occurred only on one side of a skeleton grain. Such features usually
form completely around a given grain, if it is in fact formed due to
stress forces, rather than from illuviation.

Although a few continuous, argillans with band extinction were
observed along voids and skeleton grains, the best expression of these
features in all four pedons was within the pores of chert fragments
(Fig. 33). Two of the four pedons had a dolomite component in the
limestone which had.coprecipitated with chert. The dissolution and
leaching of carbonates from these soils left rhombohedral-shaped pores
(dolomite pseudomorphs) within chert fragments. Since these microen-
vironments are protected from the shrink-swell activity in the soil by
the rigid chert framework, illuvial clay which has moved into and
accumulated within the pores is well preserved. These features show
good band extension characteristic of illuvial clay. They can some-
times be traced to oriented plasma of similar color and birefringence
in the host material.

In pedons 8 and 1, plasma separations have been somewhat masked
by organic matter and Fe oxides respectively. Organic C contents of
the Al2 and B2t horizons in pedon 8 are 3.5% and 2.7% respectively
(Appendix E). While plasma separations (skelsepic or masepic plasmic

fabric) can be seen at a magnification of 125X, examination at 30X
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reveals only argillasepic fabric (Al2) or weak expression of the
masepic fabric (B2t) even though COLE values are quite high (.14).

The plasmic fabric in pedon 1 similarly reveals plasma separa-
tions at higher magnification (125X) but argillasepic fabrics at lower
magnification (30X). These asepic fabrics actually tend toward undu-
lic, presumably due to the abundance of Fe-oxides. The Fe-oxide
levels in this pedon are much higher tharn any of the other soils with
argillic horizons, ranging from 2.3% Fe;03 in the All to 4.3% in the
B22t (see Appendix F). The percentages of total clay and fine clay in
this pedon are similar to those in pedon 4 which has strongly
expressed skelmasepic fabrics, easily observed even at low magnifica-
tion. It is postulated that the effect of abundant Fe-oxides in pedon
1 are twofold regafding the relative lack of observed stress fea-
tures. First, as just mentioned, the Fe-oxides simply obscure the
observation of the features. Secondly, the Fe-oxides may actually
cause stabilization of the clays, reducing their shrink-swell activ-
ity., The argillic horizon of this pedon was well aggregated into fine
and very fine subangular blocks and thin-sections reveal an abundant
macroporosity, suggestive of high aggregate stability.

An alternative explanation for the relative lack of stress fea-
tures in pedon 1 relative to pedon 4 might be the abundance of gravel-
size chert fragments (50-75% by weight in the argillic) in the
former. Magier and Ravina (1982) have correlated higher porosity,
Tower bulk density, and more friable structures in Terra Rosa soils
with abundant coarse fragments. They suggest that rock fragments may

provide a "skeleton" resistant to compaction.
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CONCLUSIONS

The climate gradient extending across the Edwards Plateau has
pronounced effects on the nature of the soils formed in this region.
In the dryer, western portion of the Edwards Plateau, the soils are
calcareous and calcic and petrocalcic horizons aré common. In the
humid eastern portion of the area non-calcareous sola are the general
'ru1e, and argillic horizons are common on stable landscapes. The
texture and mineralogy of these soils are such that they have high
shrink-swell activity which tends to obliterate or inhibit formation
of illuviation argillans. ITluvial clay films are, however, preserved
in pores of skeletal fragments where they are protected from shrink-
swell stresses.

Soils across the area appear to have sola which have formed from
limestone parent materials which were different from the subjacent
limestone. 'The explanation for this is illustrated in Fig. 34. It is
necessary to dissolve between 10 and 100 times a given volume of lime-
stone to form a unit volume of non-calcareous residuum. It is there-
fore likely that previously overlying limestone strata with contrast-
ing residue character have been weathered to form the parent material
of these soils. Hard crystalline limestone beds may serve as deter-
rents to further residue accumulation. Where these hard beds occur
immediately subjacent to the solum, they may be mistaken for the soil
parent material.

Measurement of current rates of additions of airborne dust to the

Edwards Plateau indicates that accumulations could be significant in
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Fig. 34. Schematic diagram illustrating the weathering of numerous
strata of limestone during the accumulation of a residual solum. One
or more of the overlying strata may have constrasting residues from
the 1imestone underlying the solum. Soils in the more humid eastern
portion of the area tend to have deeper sola while soils in the more
arid region tend to have shallower sola which may overlie petrocalcic
horizons.
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these shallow soils. The particle size, mineraiogy, and elemental
composition of the dusts do not contrast sufficiently with the resid-
ual soil material to be useful in estimating dust accumulations. The
smooth conchoidally fractured surfaces of quartz and feldspar grains
in the dusts, as revealed by SEM, are distinctively different from
residual soil materials. Their absence from the upper soil horizons,
however, indicates that particulate dusts are not noticeably accumula-
ting in the soils. Rates of geologic erosion by water and/or wind
must be sufficiently high to remove dusts added to the surface.

The petrocalcic horizons occurring in soils of the Edwards Pla-
teau appear to be forming through a process of limestone alteration by

in situ dissolution and reprecipitation of carbonates. This is in

distinct contrast to the model proposed by Gile et al. (1966) where
carbonates are translocated and accumulate within a solum which 1is
initially non-indurated.

Evidence for the in situ petrocalcic formation includes:

1. Petrocalcic horizons have very low (0.9-8%) non-carbonate
residue contents.

2. Contrasting particle size, mineralogy, and elemental con-
tents exist between the carbonate-free petrocalcic residues
and the overlying non-indurated sola.

3. Labile minerals (fluorite) which would not persist in a soil
leached of carbonates (and subsequently enriched with car-

bonates) are present in some petrocalcics.
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4, Total fluorite levels and fluorite PSD indicate that pro-
cesses of transiocation and in situ precipitation within the
petrocalcic horizon have occurred.

5. Secondary silica within petrocalcic horizons indicates
enrichment in soluble components.

The pedogenic nature of these petrocalcic horizons has been con-
firmed both through micromorphological investigation and stable carbon
isotope analysis. The proposed sequence for petrocalcic formation is
illustrated in Fig. 35. Stage O represents the unaitered limestone
precursor to the petrocalcic horizon. Stage 1 shows the development
of pores within the Timestone with concurrent micritization of the
adjacent limestone. In stage 2, the porosity has greatly increased
and has developed the characteristic convoluted pattern and the matrix
of the Timestone has been nearly completely pedogenically altered to a
micritic fabric. Zones of nodular or clotted micritic fabric are also
present. In stage 3, the petrocalcic zone has been completely altered
to a convoluted or nodular micritic fabric and the pores have been
partially or completely filled with pedogenic carbonates in the forms
of needles, blades, prisms or equant blocks. The primary petrocalcic
fabric may also include zones where micrite has been recrystallized to
a neomorphic microspar (not shown in Fig. 35). Once pores become
plugged, a lamninar cap may form at the upper surface of the petrocal-

cic horizon, similar to stage IV of Gile et al. (1966).
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APPENDIX A

PEDON DESCRIPTIONS



Pedon:
Soil name:
Classification:

Physiography:

Parent material:

Vegetation:
Elevation:

Location:

Described by:

Horizon Depth
(cm)
All 0-7
Al2 7-20
B21t 20-31
B22t 31-51

S81TX-091-1
Rumple
Udic Argiustoll; clayey skeletal, mixed, thermic

Broad level hilltop (200 meters across) in gently
undulating landscape; <1% slope

Hard dolomitic cherty limestone of the Edwards forma-
tion

Pasture

265 meters

Comal County, Texas; William Pfeuffer ranch; In pas-
ture 40 yds east of Rt. 308, 0.6 miles south of

entrance to ranch, 0.15 miles north of junction with
county road; about 5 miles north of New Braunfels,
approximately 98°6' W 29°48"' N

M. C. Rabenhorst, L. T. West,
Charles Batte. 20 August, 1981

Terry J. Moore, and

Colors for moist soil

Dark brown (7.5YR 3/2) silt loam; weak fine platy
parting to moderate medium granular structure; fri-
able; many fine roots; slightly acid; clear smooth
boundary

Dark brown (7.5YR 3/2) cherty silty clay loam; moder-
ate fine subangular blocky parting to moderate medium
and fine granular structure; friable; common fine
roots; approximately 15% chert fragments; slightly
acid; clear smooth boundary

Dark reddish brown (2.5YR 3/3) cherty silty clay;
moderate medium and fine subangular blocky structure;
friable; common fine roots; thin continuous clay
films on ped surfaces; approximately 40% chert frag-
ments; slightly acid; clear smooth boundary

Dark reddish brown (2.5YR 3/4) cherty clay; moderate
fine and very fine subangular blocky structure; fri-
able; common fine roots; thin discontinuous clay
films on ped surfaces; approximately 60% chert frag-
ments: neutral; abrupt smooth boundary
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581 TX-091-1 (Continued)

Remarks:

51%

Gray (2.5Y 6/1) hard dolomitic limestone, zones with
larger crystals have been solution pitted and have
soil material in cavities; zones which have very fine
crystals are very hard and massive and have no
cavities

A few limestone and chert fragments were present on
the soil surface. Most of the coarse fragments in
the soil were chert although a few large limestone
floaters were observed. The solum thickness of this
pedon 1is very close to the 50 cm depth cutoff for
lithic subgroups. It is the opinion of local soil
scientists that soils in this landscape position do
on the average have sola thicknesses greater than 50
cm.
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Pedon:
Soil Name:

Classification:

Physiography:

Elevation:

Parent Material:

Vegetation:

Location:

Described by:

Horizons Depth
(cm)

All 0-2

Al2 2-12

S81TX-105-1
Ector/Upton

Petrocalcic Calciustoll; fine-loamy, mixed, thermic,
shallow

Nearly Tevel Mesa Top, <1% slope with southern
aspect
730 meters

Soft limestone of the Buda formation

Rangeland; shrub species mainly sotol, redberry juni-
per, saccahuista, agarita and mesquite; Grass species
mainly three-awn, buffalograss, hairy tridens, red
grama and sideoats grama; also various forbes

Crockett County,
enter

between
portion

Texas; Austin Millspaugh Ranch;

through the Pie Pierce Ranch, on Mesa Top;
north and northwest shooting fingers of SW
of mesa between Howards Creek and Government

Canyon; About 4 miles NNE (as crow flies) of inter-

section of Rt. 2083 and the unpaved road at Howards

Creek; approximately 101°27' W, 30°32' N

and

M. C. C.

C. Wiedenfeld.

Rabenhorst, L. P. Wilding, C. Girdner,

23 July, 1981

Colors for dry soil unless otherwise stated

Grayish brown (10YR 5/2) silt loam, very dark grayish
brown (10YR 3/2) moist; weak thin platy parting to
moderate medium and fine granular structure; stightly
hard; many fine roots; about 10% coarse fragments;
violently effervescent; clear smooth boundary

Dark grayish brown (10YR 4/2) gravelly silty clay
loam, very dark grayish brown (10YR 3/2) moist;
moderate medium subangular blocky and granular struc-
ture; hard; many fine roots; approximately 20% unori-
ented coarse fragments; strongly effervescent; abrupt
wavy boundary
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581TX-105-1 (Continued)

Clcam 12-24 White (10YR 8/2) indurated carbonate material con-

& Al taining about 10% grayish brown (10YR 5/2) loam, dark
brown (10YR 3/3) moist, within fractures 1/2 to 2 cm
wide; abrupt wavy boundary

C2cam 24-45 White (10YR 8/1) indurated carbonate material (10 YR
8/2) moist

Rca or 45-55 Light yellowish brown (10YR 6/7) indurated carbonate
C3cam material

Remarks: No hard limestone was encountered with in 55 cm. The
Towest horizon could not be conclusively identified
on field evidence as being soft limestone with some
enrichment with secondary carbonates or as a petro-
calcic horizon. An intermittent seam of browner
material (10YR 5/3 dry, 4/3 moist) 2 to 3 cm thick
was observed between the Clcam and Al horizon and the
C2cam horizon.



Pedon:
€o9il Name:

Classification:

Physiography:

Elevation:

Parent material:

Vegetation:

Location:

Described by:

Horizon Depth
(cm)

All 0-8

Al2 8-20

R1 20-28

R2 23-43"

Remarks:

S81TX-171-1

Eckrant

Lithic Haplustoll; clayey-skeletal, montmorillonitic,
thermic

Level hilltop, high point in landscape
630 meters

Hard dolomitic limestone of the Ft.
the Edwards Limestone

Terret member of

Pasture; Live oak, post oak, elm, three-awn

Gillespie County, Texas. Roger Dittmar ranch;
approximately 13 miles west of Fredericksburg on Rt.
290; Turn south onto the Dittmar ranch and follow
road past Dittmar residence approximately 1 mile to
top of hill; pedon sampled 100 ft east of road (Sheet
41 Gillespie Co. Report).

M. -C. Rabenhorst, L. T. West, and Terry J. Moore. 19
August, 1981

Colors are for moist soil

Very dark brown (10YR 2/2) silty clay loam; weak fine
and very fine granular structure; very friable; many
fine and very fine roots; mildly alkaline; clear
smooth boundary

Very dark brown (10YR 2/2) stony silty clay; moderate
very fine granular structure; very friable; many fine
and very fine roots; approximately 80% coarse frag-
ments; mildly alkaline; clear wavy boundary

calcareous
(<5%);

Hard dolomitic limestone bedrock; some
browner material present in some fractures
clear smooth boundary

White (10YR 8/1) hard dolomitic limestone bedrock

This site contained a number of chert and limestone
fragments on the soil surface.
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Pedon:
Soil Name:
Classification:

Physiography:

Elevation:

Parent material:

Vegetation:

Location:

Described by:

Horizon Depth
(cm)
All 0-13
B21t 13-27
B22t 27-41

S81TX-171-2

Similar to Speck

Lithic Haplustalf; clayey, mixed, thermic

Near]y level bench, downslope from hillcrest; approx-
imately 3 to 6 meters lower in elevation than adja-
cent hilltop; <1% slope

625 meters

Hard dolomitic limestone of the Ft.
the Edwards Limestone

Terret member of

Pasture; Live oak, post oak and elm; three-awns and
buffalograss

Gillespie County, Texas. Rodger Dittmar ranch;
approximately 13 miles west of Fredericksburg on Rt.
290; Turn south onto the Dittmar ranch and follow
road past Dittmar residence approximately 1 mile just
before reaching the hilltop; pedon sampled on level
bench 100 feet west of the road (Sheet 41 Gillespie
Co. Report)

M. C. Rabenhorst, L. T. West, and Terry J. Moore. 19
August, 1981

Colors are for moist soil

Dark brown (7.5YR 3/2) silt loam; weak medium suban-
gular blocky parting to moderate medium granular
structure; friable; many roots; neutral; clear smooth
boundary

Dark reddish brown (2.5YR 3/4) clay; moderate medium
subangular blocky structure; firm; medium continuous
clay films on ped surfaces; slightly acid; clear
smooth boundary

Dark reddish brown (2.5YR 3/4) clay; moderate medium
prismatic parting to subangular blocky structure;
Very firm; medium continuous clay films present on
ped surfaces; some worm casts observed; slightly
acid; abrupt smooth boundary
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581Tx-171-2 (Continued)

R

Remarks:

41+

White (10YR 8/2) and light gray (5Y 7/1) partially
weathered hard dolomitic limestone bedrock

Many chert fragments were observed on the soil
surface but there were very few coarse fragments
within the solum. This soil is very similar to the
Speck soil (in fact mapped within a Speck unit) but
lacks a mollic epipedon.

142



143

Pedon: S81TX-265-1

Soil name: Eckrant variant

Classification: Lithic Haplustoll; clayey, montmorillonitic, thermic
Physiography: High broad nearly level divide; <1% slope

Elevation: 700 meters

Pparent material: Soft limestone of the Segovia member of the Edwards
formation

Vegetation: Pasture; shin oak, live oak, and prickly pear; curly
mesquite, three-awn, and Texas wintergrass are
dominant dgrasses

Location: Kerr County, Texas; Black Bull Ranch; Rt. 41, 10.0
miles west of junction with Rt. 27. After entering
Black Bull ranch take pasture road east 1.3 miles
from the entrance road. Site is 232 paces north of
Rt. 41.

Described by: M. C. Rabenhorst, L. T. West, and Terry J. Moore. 19
August, 1981

Horizon Depth Colors are for moist soil
(cm)

All 0-5 Very dark brown (10YR 2/2) silty clay; weak medium
subangular blocky parting to weak medium and fine
granuiar structure; friable; many fine roots;
neutral; clear smooth boundary

Al2 5-20 Very dark brown (10YR 2/2) silty clay; moderate
medium and fine subangular blocky parting to moderate
fine granular structure; friable; many fine roots;
neutral; abrupt smooth boundary

R&A13 20-33 Very dark brown (10YR 2/2) clay; moderate medium and
fine subangular blocky parting to moderate fine
granular structure; hard; many fine roots; slightly
effervescent; approximately 50% 1imestone fragments
having a horizontal orientation in the pedon; a few
veins of browner material like the underlying horizon
present; clear wavy boundary



$81TX-265-1 (Continued)

R & Bca

Remarks:

33-43

43-617

Dark yellowish brown (10YR 4/4) clay; weak fine sub-
angular blocky parting to moderate fine granular
struture; soft; few fine roots; violently efferves-
cent; approximately 70% limestone fragments showing
horizontal orientation; abrupt smooth boundary.

White (10YR 8/1) and light gray (2.5Y 7/2) soft Time-
stone

While this pedon contained a zone of browner material
within the zone of rock fragments, some soils in the
vicinity were observed to have calcareous cambic
horizons above the rock material. This soil is like
the Eckrant except that it lacks the abundance of
coarse fragments in the upper horizons; the browner
cambic like material at 33-43 cm is also atypical for
Eckrant soils.
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Pedon:

Soil name:

-

Classification:

Physiography:

Elevation:

Parent material:

Vegetation:

Location:

Described by:

Horizon Depth
(cm)
All 0-1
Al2 1-6
Ccamg&Al

6-20

S81TX-267-1
(Mereta)

Petrocalcic
shallow

Calciustoll; <clayey, mixed, thermic,

STightly undulating ridgetop
698 meters

Soft limestone of the Segovia member of the Edwards
formation

Wooded pasture; Three-awn,
oats grama, curly mesquite,
blueberry juniper

side-
live oak,

Texas wintergrass,
prickly pear,

Kimble County, Texas; 11 miles west of Junction on
110 and then south (across the Llano River) on the
Edward Dunbar Ranch; 99°55'53" W 30°26'24" N accord-
ing to the Bailey Creek 7.5' Quadrangle map
L.

M. .C. Rabenhorst, L. P. Girdner.

24 July, 1981.

Wilding, and C.
Colors for dry soil unless otherwise stated

Dark grayish brown (10YR 4/2) silt loam, very dark
grayish brown (10YR 3/2) moist; weak medium platy
parting to moderate fine and medium granular struc-
ture; soft; many fine roots; approximately 15% coarse
fragments; slightly effervescent; abrupt smooth boun-
dary

Very dark grayish brown (10YR 3/2) silty clay loam,
very dark brown (10YR 2.5/2) moist; moderate medium
subangular blocky parting to fine and medium granular
structure; hard; common fine roots; approximately 15%
coarse fragments; non-calcareous matrix with spots
slightly effervescent; abrupt wavy boundary

White (10YR 8/2) massive indurated carbonate material
with some vertical fractures; fractures contain very
dark grayish brown (10YR 3/2) silty clay, very dark
brown (10YR 2.5/2) moist; the fine material is also
found beneath the indurated carbonate and above the
underlying rock; the Al material has moderate fine
granular structure and fis non-calcareous; many fine
roots in the Al material; abrupt boundary
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$81TX-267-1 (Continued)

Rlca

R2ca

R3ca

Remarks:

20-28

28-39

39-56

White (10YR 8/2) case hardened soft limestone over-
lain by a thin (1-8 mm) tlaminar cap of pale brown
(10YR 6/3) secondary carbonates

White (10YR 8/1) soft limestone; somewhat softer than
the R1

White (2.5Y 8/2) soft limestone

The site has an undulating surface topography and
this pedon was sampled at a high spot. HNearby areas
in local low spots appear to be deeper cracking
soils. A few hard crystalline limestone boulders
occur on the surface in the vicinity but no such
material was encountered in this pedon. The parent
material of this pedon appears to be a soft lime-
stone. The R material sampled appears to have some
enrichment with secondary carbonate. Many of the
coarse fragments on the soil surface appear to be
case hardened, soft limestone material. Field iden-
tification of a petrocalcic horizon needs laboratory
verification, as the possibility exists that the
massive material is a soft limestone rather than a
petrocalcic horizon. If soil actually lacks a petro-
calcic horizon, then it would be classified as a
Lithic Haplustoll. It is also possible that the
material identified as soft limestone is in fact
petrocalcic material.
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Pedon:

Soil name:

Classification:

Physiography:

Elevation:

Parent material:

Vegetation:

Location:

Described by:

Horizon Depth
(cm)
Al 0-13
Clcam 13-26
C2cam 26-43

S81TX-271-1
Ector Variant (Olmos)

Petrocalcic Calciustoll; loamy-skeletal, mixed, ther-
mic, shallow

Stable upland; 1% slope to the east
380 meters

Limestone; may be soft limestone overlying the hard
limestone of the Salmon Peak formation

Range]anq; dominantly blackbrush and guajillo with
some ceniza, prickly pear; also red grama, three-awn,
and sideoats grama grasses

Kinney County Texas, 300 ft. N of Rt. 2523 approxi-
mately 2.2 miles east (along Rt. 2523) from the Val
Verde County 1line, 0.4 miles east of ranch gate
(Sheet 17 Kinney Co. Report)

M. C. Rabenhorst, L. P. Wilding, C. L. Girdner, and
Jack Stevens. 20 July, 1981

Colors for dry soil unless otherwise stated

Grayish brown (10YR 5/2) to dark grayish brown (10YR
4/2) stony silt loam, very dark brown (10YR 2.5/2)
moist uncrushed, (10YR 2/2) crushed; 60% coarse
fragments by volume mostly shattered flags of petro-
calcic material oriented mainly horizontally and have
pendants of secondary carbonate on the lower side;
weak fine and medium granular structure; soft; many
fine roots in upper 1 cm and at the Ccam contact,
otherwise many medium roots; strongly effervescent;
abrupt wavy boundary

Numerous small white (10YR 8/1) sequences of laminae
overlying more massive cemented carbonate; maximum
thickness of laminar material less than 1 cm; this
layer contained some interconnecting voids with a
dendritic pattern which are incompletely filled with
roots and Al material; clear wavy boundary

Several white (10YR 8/2) to pinkish white (7.5YR 8/2)
sequences of laminae overlying more massive cemented
carbonate; clear smooth boundary
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$81TX-271-1 (Continued)

C3cam

Cdcam

Remarks:

43-53

53-75%

White (10YR 8/1) cemented massive carbonate; somewhat
softer than above, can be cut with a spade with
difficulty; clear smooth boundary

White (10YR 8/1) cemented massive carbonate; softer
than above, can be easily cut with a spade

Topographic surface of underlying limestone is very
irregular; a large massive limestone boulder was
exposed at the surface 1 meter from the pit while no
hard limestone was encountered within 75 cm 1in the
pit. Most of the coarse fragments on the surface
were petrocalcic material although some hard lime-
stone boulders were also observed. This pedon was
associated with areas of deeper soils containing
1ittle or no coarse fragments at the surface suggest-
ing localized areas of inwash. The upper laminar
surface of the Clcam contained a number of fractures
in an exposed area of roughly 2 square feet. Upper
surface of the Clcam was very hard and may easily be
mistaken for limestone bedrock. Because of this, the
soils of this area have been mistakenly mapped as
Ector. This pedon is similar to the Kimbrough soil
mapped in the county except that this pedon is in a
skeletal particle size family. It is similar to the
Olmos series mapped in Val Verde County except that
the Olmos soil has a carbonatic mineralogy and is 1in
a hyperthermic temperature regime.
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Pedon:
Soil name:
Classification:

Physiography:

Elevation:

Parent material:

Vegetation:

Location:

Described by:

Horizon Depth

(cm)
All 0-5
Al12 5-19
B2t 19-35
R 35

S81TX-325-1

Speck

-

Lithic Argiustoll; clayey, montmorillonitic, thermic

Near top of a broad divide;
mately 1% slope

nearly level, approxi-

375 meters
Hard limestone of the Edwards Formation

Wooded pasture; Cedar and

silver bluestem

live oak; three-awn and

Medina County, Texas; Ralph Snaveley ranch; Take road
traveling NW out of Rio Medina 6.5 miles from the
junction with route 471 and then turn north 55 yards
to sampling location (sheet 20 Medina Co. Report).
M. C. Rabenhorst, L. T. West, and Terry J. Moore. 21
August 1981

Colors are for moist soil

Black (10YR 2/1) gravelly silty clay loam; moderate
medium subangular blocky structure; sltightly hard;
many fine roots; approximately 20% cocarse fragments,
slightly acid; clear smooth boundary

Black (10YR 2/1) gravelly silty clay; strong medium
subangular blocky structure; very hard; common fine
roots; approximately 20% coarse fragments; slightly
acid; clear wavy boundary

Dark reddish brown (10YR 3/3-ped interiors, 2/2-ped
surfaces) clay; moderate medium prismatic parting to
strong medium subangular blocky structure; very hard;
common fine roots; thin discontinuous clay films only
on prism faces; neutral; abrupt wavy boundary

Light gray (2.5Y 7/2)

and white (10YR 8/1) hard
limestone bedrock .

149



$81TX-325-1 (Continued)

Remarks:

The upper 1 cm of the All horizon was sampled sepa-
rately as a mulch. This material was lighter in
color (10YR 2/2, 3/2 dry), had weak fine platy
structure, was soft, and had a lower clay content
than the bulk of the All horizon. Pressure faces
were observed in both the Al2 and B2t horizons making
identification of illuviation clay films difficult in
the field. This soil may be a Lithic Vertic Argius-
toll, depending on COLE values determined.
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Pedon:

Soil name:

Classification:

Physiography:

Elevation:

Parent material:

Vegetation:

Location:

Described by:

Horizon Depth
(cm)
A1l 0-3
Al2 3-16
Clcam 16-31

S81TX-371-1
Upton

Typic Paleorthid; Tloamy-skeletal, mixed, thermic,
shallow

Mesa top, <1% slope
930 meters
Hard limestone; Washita group undifferentiated

Rangeland; shrub species including mesquite, lechu-
gilla and creosote bush; grasses dominantly three-awn
and burrograss with lesser amounts of black grama,
tobosa, rough tridens and fluffgrass

Pecos County Texas; mesa top on one of the south
extensions of Big Mesa 5.2 miles east of intersection
of I10 and route 67; approximately 14 miles east of
Ft. Stockton (Sheet 52 in Pecos Co. Report).

M. C. Rabenhorst, L. P. Wilding, B. L. Allen, and
C. L. Girdner. 22 July, 1981

Colors for dry soil unless otherwise stated

Light gray (10YR 7/2) gravelly silt loam, dark gray-
ish brown (1OYR 4/2) moist; weak thin platy breaking
to moderate fine granular structure; soft; many fine
roots; violently effervescent; clear smooth boundary

Pale brown (10YR 6/3) gravelly silt loam, brown (10YR
4/3) moist; moderate medium subangular blocky and
granular structure; slightly hard; common fine roots;
approximately 35% coarse fragments most of which are
fragments of fractured petrocalcic horizon which have
no preferred orientation; violently effervescent;
abrupt wavy boundary

Wnhite (10YR 8/2) carbonate cemented material com-
prised of several sequences of laminae; some fines
similar to Al horizon present within fractures and
between laminar zones; few roots within vertical
fractures and between successive laminar zones
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$81TX-371-1 (Continued)

C2cam 31-62

R 62-75%

Remarks:

White (10YR 8/2) and very pale brown (10YR 7/3) car-
bonate cemented material comprised of several
sequences of laminar zones; some fine material simi-
Tar to Al horizon found between laminae; lower part
contains some limestone fragments which have been
incorporated into the horizon.

White (10YR 8/1) hard limestone bedrock

Range in depth to the petrocalcic ranged between 10
and 20 cm. Within the petrocalcic horizon, at least
5 sets of laminae were observed, each ranging from
5-10 c¢cm in thickness with some fine material similar
to the Al horizons occurring between them. C2cam
horizon was divided into an upper and lower part for
sampling.
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Pedon:

Soil name:

Classification:

Physiography:

Elevation:

Parent material:

Vegetation:

Location:

Described by:

Horizon Depth
(cm)
All 0-3
A12 3-10
CcamgAl  10-22

S81TX-371-2
(Kimbrough) mapped as Lozier

Petrocalcic Calciustoll; coarse-loamy, mixed, ther-
mic, shallow

Nearly level summit of a gradually rising knob

1100 meters
Hard 1imestone of the Washita group, undifferentiated

Rangeland; Brush canopy is about 18% and is dominated
by white thorn acacia, creosote, lechugilla, mesquite
and agarita; grass species are primarily three-awn,
hairy grama, and red grama.

Pecos County, Texas; Asa Stone Ranch; Approximately
30 miles west of Ft. Stockton on Rt. 290 to Huvey Rd;
South on Huvey Road 10.6 miles to a fork, take east
fork 1.8 miles to gate on west side of road; sampling
location is on top of knob approximately 1/4 mile
west of Huvey Road.

M. C. Rabenhorst, L. P. Wilding, B. L. Allen, and C.
L. Girdner. 22 July, 1981

Colors for dry soil unless otherwise stated

Grayish brown (10YR 5/2) gravelly silt Tloam, very
dark grayish brown (10YR 3/2) moist; weak thin platy
parting to weak fine granular structure; soft; many
fine roots; approximately 20% coarse fragments;
violently effervescent; clear smooth boundary

Brown (10YR 5/3) gravelly silt loam, dark brown (10YR
3/3) moist; moderate fine subangular blocky breaking
to moderate medium and fine granular structure;
slightly hard; common fine roots; approximately 15%
coarse fragments; some thin carbonate films present
along ped surfaces and the surfaces of some small
stones; violently effervescent; abrupt wavy boundary

White (10YR 8/2) carbonate cemented material contain-
ing vertical fractures which are coated with §econd-
ary carbonates; the upper surface is smooth while the
lower surface has pendants of secondary carbonates;
within the fractures is some fine material, similar
in texture and color to the Al2 horizon; abrupt wavy

boundary
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$81TX-371-2 (Continued)

Clcam 22-25 Pinkish white (7.5YR 8/2) and very pale brown (10YR
8/3) laminar cap material; strongly indurated and
extremely hard; shows distinct horizontal laminae of
<1 mm in scale; abrupt smooth boundary

C2cam&  25-29 Pale brown (10YR 6/3) and white (10YR 8/2) indurated
carbonate material; contains some zones and fragments
of hard limestone; identification of the material as
petrocalcic as opposed to soft limestone is unsure

R1 29-34 White (2.5Y 8/2) hard limestone seam with a thin (2-3
mm) coating of secondary carbonate on the upper
surface

C3cam&  34-37 Very pale brown (10YR 8/3) indurated carbonate mater-
jal surrounding fragments of pale yellow (2.5Y 8/4)
hard 1imestone

R2 37-42" White (10YR 8/1) very hard and massive limestone bed-
rock
Remarks: Somé large limestone boulders occur in the upper 25

cm of the pedon and are coated with 1-3 mm of second-
ary carbonates on all sides; Many chert fragments
were noticed on the surface but not within the solum
indicating their origin to be a lag concentrate. A
few rhyolite pebbles were noticed on the surface.
Their origin is most likely the Barrilla Mountains to
the west of this site. This suggests that there may
be some igneous influence on this soil.



Pedon:

Soil name:

Classification:

Physiography:

Elevation:

Parent material:

Vegetation:

Location:

Described by:

Horizon Depth
(cm)
All 0-8
Al2 8-20
B21t 20-35
B22t 35-65

S81TX-385-1

Rumple variant

Udic Haplustalf; clayey-skeletal, montmorillonitic,
thermic

Stqble upland on top of a narrow divide between the
Frio and Nueces rivers; <1% slope

715 meters
Hard cherty limestone of the Devils River formation

Pasture; cedar, live oak, post oak, dropseed and
three-awn A

Real County, Texas; Sidney Wells ranch; on Route 337,
10.25 miles west of junction with route 83 at Leaky;
North of Rd. just inside the gate and 50 feet west
under some trees .

M. C. Rabenhorst, L. T. West, Terry J. Moore. 18
August, 1981

Colors are for moist soil

Very dark brown (10YR 2/2) cherty silty clay loam;
weak medium granular structure; friable; many fine
roots; neutral; clear smooth boundary

Dark brown (10YR 3/2) cherty silty clay loam; weak
medium subangular blocky parting to weak medium gran-
ular structure; friable; many fine roots; neutral;
clear smooth boundary

Dark reddish brown (5YR 3/4) cherty clay; moderate
fine subgranular blocky structure; firm; common fine
and medium roots; medium continuous clay films on ped
surfaces; approximately 40% chert fragments; neutral;
gradual smooth boundary

Dark reddish brown (2.5YR 3/4) cherty ciay; moderate
medium subangular blocky structure; firm; common fine
and medium roots; medium continuous clay films on ped
surfaces; approximately 30% chert fragments; neutral;
clear smooth boundary
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581TX-385-1 (Continued)

B3tca 65-80
R 80-84"
Remarks:

Reddish brown (5YR 4/4) cherty clay; moderate medium
subangular blocky structure; firm; few medium roots;
medium discontinuous c¢lay films; matrix material
non-calcareous and neutral; white nodules strongly
effervescent; approximately 35% chert fragments, some
with carbonate coatings; abrupt irregular boundary

Light gray (5Y 7/1 and 7/0) hard limestone bedrock

This soil is like the Rumple but lacks a mollic epi-
pedon. This soil should possibly be classified in
the implied subgroup of Mollic Haplustalfs but pres-
ently Soil Taxonomy makes no such accommodation, thus
requiring this pedon to be classified as an Udic
Haplustalf. This pedon contains many chert fragments
both within the soil and on the surface. These frag-
ments range between 1 cm and 25 cm along the long
axis.
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Pedon:
Soil name:

Classification:

Physiography:

Elevation:

Parent material:

Vegetation:

Location:

Described by:

Horizon Depth
(cm)

All 0-2

Al2 2-15

S81TX-435-1
(Boracho/Kimbrough)

Petrocalcic Calciustoll; loamy-skeletal, mixed, ther-
mic shallow

Nearly level upland, <1% slope
705 meters

Hard limestone of the Segovia member of the Edwards
Limestone

Rangeland; shrub species mainly mesquite and various
cactus species; grasses mainly perennial three-awn
and Texas wintergrass; also a number of forbes pres-
ent

Sutton County, Texas; Lea Allison Ranch; approxi-
mately 18 miles east of Sonora, 3/4 mile South of the
North Llano River; 100°20'56" W 30°31'18" N according

to the Buffalo Well SE 7.5' quadrangle map. On top
of a broad hill, 250 yds east of the windmill (Sheet
52 Sutton Co. Report)

M. C. Rabenhorst, L. P. Wilding, and C. L. Girdner.
24 July, 1981

Colors for dry soil unless otherwise stated

Dark brown (10YR 3/3) stony silt loam, very dark

brown (10YR 2/2) moist; moderate fine and very fine
granular structure; soft; many fine roots; approxi-
mately 30% coarse fragments; slightly effervescent;
clear smooth boundary

Very dark grayish brown (10YR 3/2) gravelly silty
clay loam, very dark brown (10YR 2.5/2) moist;
moderate fine subangular blocky and granular struc-
ture; hard; approximately 50% coarse fragments.
Fragments are mainly petrocalcic material and 1ime-
stone coated with secondary carbonates; some fine
films of secondary carbonates present in the Tower
part of the horizon; strongly effervescent; abrupt
wavy boundary
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$81TX-435-1
Clcam 15-30
C2cam 30-34
Rlca 34-39
R2 39%
Remarks:

White (10YR 8/1) and pinkish white (7.5YR 8/2) indu-
rated carbonate material; fractured in upper part
with vertical fractures approximately 15 cm apart;
Some (<10%) brownish "B bodies" present within the
carbonate material with some localized concentrations
of spherical carbonate nodules approximately 2 mm in
diameter; abrupt wavy boundary

Very pale brown (10YR 8/3) and pale brown (10YR 6/3)
continuous laminar cap of secondary carbonate; actual
range in thickness is 5-20 mm; abrupt boundary

Very pale brown (10YR 7/4) and yellow (10YR 7/6) soft
limestone which has some enrichment with white (10YR
8/2) secondary carbonate

Very pale brown (10YR 7/3) very hard limestone bed-
rock containing yellow (10YR 7/6) mottles

It is uncertain whether the limestone encountered at
39 cm was thick massive bedrock or a thinner seam of
hard material.
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Pedon:

Soil name:

Classification:

Physiography:

Elevation:

Parent material:

Vegetation:

Location:

Described by:

Horizon Depth

(cm)
All 0-4
Al2 4-14
Al3&Ccam 14-22
Clcam or 22-32
Crl

S81TX-435-2
(Mereta variant)

Petrocalcic Calciustoll; clayey-skeletal, montmoril-
lonitic, thermic, shallow

High broad interfluve, <1% slope
668 meters

Soft limestone of the Segovia member of the Edwards
formation

Rangeland; buffalograss and cedar

Extreme SW corner of Sutton County, Texas; Bobby
Martin ranch, 0.7 miles north of route 189 approxi-
mately 6 miles east of intersection with route 1989.
100°51'53" W 30°17'43" N according to the Flat Rock
Draw SE, Texas 7.5' quadrangle (Sheet 90 Sutton Co.
Report)

M. C. Rabenhorst, L. T. West, and Terry J. Moore. 18
August, 1981

Colors for dry soil unless otherwise stated

Very dark brown (10YR 2/2) moist, stony silty clay
loam; moderate medium granular structure; friable;
many fine and very fine roots; strongly effervescent;
abrupt smooth boundary

Very dark brown (10YR 2/2) moist, silty clay; weak
medium subangular blocky breaking to weak medium
granular structure; friable; many fine roots; strong-
ly effervescent, abrupt wavy boundary

Very dark brown (10YR 2/2) moist stony silty clay;
weak medium subangular blocky breaking to weak medium
granular structure; friable; many fine roots between
coarse fragments; approximately 60% coarse fragments;
violently effervescent; abrupt wavy boundary

White (10YR 8/1) carbonate cemented material; mas-
sive; upper part appears case hardened; lower part
also has zones which are very pale brown (10YR 7/3);
clear smooth boundary
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$81TX-435-2 (Continued)

C2cam or
Cr2

Remarks:

32-45% White (2.5Y 8/1) cemented carbonate material; mas-

sive

From field observations, it is uncertain whether the
material below 22 cm is petrocalcic or soft 1lime-
stone. Similar questions exist regarding the coarse
fragments in the Al3 horizon. Hard limestone was not
encountered within the pit. A nearby caliche pit had
no hard limestone within 10 ft of the soil surface.
Downslope from the sampled pedon, hard limestone was
exposed. Some areas in the sampling vicinity has
large quantities of large coarse fragments (up to 0.5
meters across) on the surface while other adjacent
areas had very little. If the carbonate material is
interpreted to be petrocalcic, then the correct
classification of the soil would be as a Petrocalcic
Calciustoll. If however the material was considered
lithic (barely digable with a spade) this soil would
more correctly be classified as Lithic Calciustoll.
If a lithic contact was not recognized, then the soil
would be a Typic Calciustoll.
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Pedon:
» Soil name:

Classification:

Physiography:

Elevation:

Parent material:

Vegetation:

Location:

Described by:

Horizon Depth
(cm)

All 0-10

Al2 10-18

S81TX-443-1
Upton variant

Ustollic (Typic) Paleorthid; loamy-skeletal, carbon-
atic, thermic, shallow

Stable upland divide, <1% slope

Approximately 900 meters

161

Hard fossiliferous limestone of the Santa Elena form-.

ation

Rangeland; brush species -mainly creosotebush, Dalea
sp., tasajillo, and 1lechuguilla; grasses include
three-awn, hairy tridens, fluffgrass, chino grama,
and sideoats grama

Terrell County, Texas; approximately 6.5 miles SW of
Sanderson; Approximate geographic grid coordinates
30°04' N, 102°29' W. On mesa top between Washboard
Canyon and Hagler Canyon (Sheet 50 Terrell Co.
Report)

L. L.

M. C. Rabenhorst, Girdner.,

21 July, 1981

P. Wilding, and C.
Colors for dry soil unless otherwise stated

Very pale brown (10YR 7/3) stony silt loam, brown
(10YR 5/3) moist; weak thin platy parting to moderate
medium granular structure; slightly hard; many fine
roots; a few biological casts present; about 20%
coarse fragments, half of which are limestone coated
with secondary carbonates and half of which are
petrocalcic fragments, showing no preferred orienta-
tion; some filaments of secondary carbonate present;
violently effervescent; clear irregular boundary

(10YR 7/3) stony silt Toam, brown
weak medium granular structure;
soft; common fine roots; approximately 60% coarse
fragments, mostly broken fragments of petrocalcic
material which is oriented horizontally; violently
effervescent; abrupt irregular boundary

Very pale brown
(10YR 5/3) moist;



$81TX-443-1 (Continued)

Clcam

C2cam

Remarks:

18-23

23-35

35-50%

Numerous sequences of hard laminar material 2-5 mm
thick over pale yellow (2.5Y 8/4) massive and softer
cemented carbonates 2-3 c¢cm in thickness; this horizon
contains fine earth material similar to the Al in
between the horizontal layers and flags, the total
volume being less than 5%; the fine earth is very
pale brown (10YR 7/3), brown (10YR 5/3) moist, with
weak fine granular structure and soft consistence;
few roots between flags or successive laminar sequen-
ces, mainly parallel to the laminar surfaces; abrupt
wavy boundary

Numerous sequences of laminar and light gray (10YR
7/2) massive cemented carbonate 2-4 cm in thickness;
this horizon contains <5% fine earth material similar
to the Al horizon in between layers; some primary
hard limestone is incorporated in this horizon and
increases in amount with depth to roughly 50%; few
roots between successive laminar zones; abrupt wavy
boundary

Light gray (2.5Y 7/2) and very pale brown (10YR 7/4)
hard fossiliferous limestone, overlain at surface by
a thin laminar cap of secondary carbonate

The thickness of the All horizon ranged from 2-10 cm
in the immediate sampling area. There is substantial
lateral variability in the sampling vicinity. Within
50 meters of the sampling site soils were observed
which had almost no coarse fragments on the surface
suggesting a position of Tocal inwash while other
areas had large areas of bedrock 2-7 meters wide
exposed at the surface. Although this pedon 1is
mapped in the Upton series, the 0C values as deter-
mined in the lab are too high to meet the require-
ments for a Typic Paleorthid. This is however mar-
ginal since the depth to the petrocalcic horizon is
18 cm which is the break between Typic and Ustollic
subgroups.
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Pedon: S81TX-465-1

Soil name: Langtry variant

Classification: Lithic Calciustoll; loamy-skeletal, mixed, thermic
Physiography: Nearly level narrow upland divide, <1% slope
Elevation: 500 meters

Parent material: Hard limestone of the Devils River formation

Vegetation: Range]@nd; shrub species are mainly catclaw acacia
and prickly pear; grasses include sideoats grama, red
grama, three-awn, Hall's panicum and hairy tridens.

Location: val Verde County, Texas; On the Rose Ranch, 13.7
miles N of Comstock on Rt. 163, 40 yds west of fence
and 50 yds S of gate.

Described by: M. C. Rabenhorst, L. P. Wilding, C. L. Girdner, and
Jack Stevens. 21 July, 1981

Horizon Depth Colors for dry soil unless otherwise stated

(cm)

All 0-5 Grayish brown (10YR 5/2) stony silt loam, very dark
brown (10YR 2/2) moist; moderate fine and medium
granular structure; soft; many fine roots; slightly
effervescent; 50 percent coarse fragments; clear
irregular boundary

Al2ca 5-18 Dark grayish brown (10YR 4/2) stony silt loam, very
dark brown (10YR 2.5/2) moist; weak fine granular
structure; soft; common fine roots between coarse
fragments; 80 percent coarse fragments by volume,
flaggy and horizontally oriented; fragments are
coated with secondary carbonates ranging from 1 mm to
1 cm in thickness and coating both upper and lower
surfaces; some have pendants on lower surfaces;
interstices are filled with fine earth; slightly
effervescent; abrupt wavy boundary

Ccam 18-25 Very pale brown (10YR 8/3 and 7/3) laminar cap over

over R hard rock; laminar cap is continuous and has a maxi -
mum thickness of about 1 cm; upper surface of lime-
stone is solution pitted
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S81TX-465-1 (Continued)

R 25-35% Light gray (2.5Y 7/2) hard limestone bedrock; what
few fractures are present contain infillings of
secondary carbonates.

Remarks: This pedon is too low in carbonates to be in a car-
bonatic family. For this reason, it does not fit the
Langtry series or Ector series.
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APPENDIX B
COLLECTION AND CHARACTERIZATION
OF AIRBORNE DUSTS IN TEXAS



Like many semi-arid and arid regions, Central and West Texas are
subject to airborne dust addi}ions to the soils. These additions
occur both during dust storm events and as more gradual, continuous
depositions. Warn and Cox (1951) have reported particle size and > 2
um mineralogy for samples collected during dust storms at Lubbock,
Texas. Smith et al., (1970) have reported monthly deposition rates
and limited characterization of dust collected at two Texas locations.

In the Edwards Plateau land resource area, shallow and often
skeletal soils are underlain by Cretaceous limestone, marl, and cal-
careous shale and sandstone. Because of the shallow nature of these
soils, the potential contribution of dust to the total soil material
was substantial. As part of an effort to estimate the impact of air-
borne dust on pedogénesis in this region, dust traps were installed

and monitored, and samples were characterized.
MATERIALS AND METHODS

Seven locations were selected so as to span the 500 km <tudy
while at the same time be in proximity to towns where local SCS per-
sonnel could assist in monitoring the traps (Fig. 1l). Specific sites
were chosen to minimize local dust inputs according to the following
criteria: 1) maximum distance from any local dust source such as
trails, paved and dirt roads, cultivated fields, industrial activity,
etc.; 2) upwind direction (with respect to prevailing winds) of any
local dust source; 3) vegetated soil surface; and 4) high landscape
positions. The traps were an open bucket design as illustrated in

Fig. 2. Three layers of 2.5-cm polystyrene balls were placed in the
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Fig.B2. Open bucket style dust trap used in this study. Top of
bucket is 1.5 meters above the ground surface.



bucket to further help trap dust particles and to prevent collected
dust from being carried out of the dry buckets by eddies. The tops of
the buckets were situated 1.5 meters above the ground surface. Small
barb-wire fences were built around the traps to protect against graz-
ing animals. Dusts were collected every four months on or about Janu-
ary 1, May 1, and September 1. Dates were chosen to approximate
seasonal changes in weather patterns and dust infall in Texas (Smith,
et al., 1970). The buckets were removed from the support stands and
liquid-tight 1ids were affixed while still in the field. They were
then mailed directly to the laboratory for processing and analysis.
Because buckets were open, both wet and dry infall was collec-
ted. Most of the buckets contained some water (0.5 - 4 liters) when
received at the 1ab6ratory. Algae and other microorganisms that had
grown were removed by adding a quantity of 30% Hp0p to the buckets
until the final solution was 6% Hp0,. To buckets which were dry or
only slightly moist, 2 liters of 6% Hy0p were added. Peroxide diges-
tion occurred for 3 to 5 weeks at room temperature. Plastic balls
were then removed and rinsed with distilled water. Larger organic
materials such as leaves and insects were removed by passing the
suspension through a 60 mesh sieve. Upon organic matter removal, the
suspension was passed through a nuclepore filter under vacuum. Solids
were then transferred to 100 ml centrifuge tubes for fractionation by
centrifugation and sedimentation. The silt fractions were dried- at
60°C and weighed. Clays were freeze-dried and weighed. Filtrates
were analyzed for Ca, Mg, Na and K by atomic adsorption or flame emis-

sion spectroscopy. Electrical conductivity measurements were also
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made on filtrates. Preliminary analyses for anions showed levels too
low to be meaningfully determined by wet chemical techniques, and were
thus not determined.

Twenty mg-samples of clay were Mg and K saturated for each sample
and plated onto glass slides for X-ray diffraction (XRD) analysis. Mg
saturated specimens were placed in a desiccator over ethylene glycol
before examination by XRD. K-saturated specimens were run at 25°C,
and after heating to 350°C and 500°C. Random oriented mounts were
used for XRD examination of silts., Selected medium silt (5 - 20 um)
samples were analyzed using scanning electron microscopy (SEM) and
X-ray microanalysis (electron microprobe). Specimens were mounted on
10 mm carbon stubs and were carbon coated. Samples were examined using
a JEOL JSM-35U scanning microscope equipped with energy dispersive and
wavelength dispersive chemical analysis systems and interfaced with a

TRACOR mini-computer.

RESULTS AND DISCUSSION

Total Dust Infall

Values for total dust infall for each location and collection
period are presented in Table 1. The total quantity of sample col-
lected during any period is quite small, making analysis somewhat
difficult. An analysis of variance and subsequent application of
Duncan's multiple range test showed there were no significant differ-
ences between locations. However, each of the three collection

periods had total infall values significantly different from the
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Table Bl. Total dust infall at seven Texas locations during three
collection periods in 1981.

Loca-~ Period 1 Period 2 Period 3 )X

tion g/bucket g/mé2 g/bucket g/m¢ g/bucket g/m2 g/bucket g/m?

1 .3148 4.93 .2743 4.30 .2189 3.43  .8079 12.7
2 .3979 6.24 .2150 3.37  .2606 4.08 .8736 13.7
3 .2973 4.66  .2510 3.39  .1405 2.20 ,6888 10.8
4 .3339 5.23  .2641 4.14  ,1697 2.66 .7677 12.0
5 .3319 5.20 .3200 5.02 .1385 2.17  .7904 12.4
6 .3105 4.87  .2475* 3.88* .1964 3.08 .7544 11.8
7 . 3255 5.10 .2910 4.56  .1807 2.83 .7972 12.5
X .3303 5.18 .2661 4.17  .1865 2.92  .7829 12.3

* Bucket collected after 3 months. Value reported is estimated for 4
months.

others. The greatest quantities were collected during the winter-
spring period (Jan.-April). Smith et al. (1970) also showed a maximum
collection during these months for their Texas location at Riesel.

The total yearly infall across the study area was about 12 g/m2.
This is only about half of the yearly infall reported by Smith et at.
(1970) at their two Texas locations. These differences may reflect
differences in collection efficiency due to trap design. More likely
however, the differences are due to our traps being placed at greater
height so there is less local influence (0.6 m for Smith et al., 1970;
1.5 m for this study). Gile and Grossman (1979) reported average
collection rates of between 10 and 60 g/me/yr for traps placed at 90
cm near Las Cruces, New Mexico. Quantities collected were 2 and 5

fold greater for two traps placed at 30 cm compared to those at 90 cm,
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Particle Size Distribution of Dust

Particle size distribution (PSD) data are presented in Table 2.
A cursory examination of this data suggests a high degree of uniform-
ity. A chi-square test for independence indicates that PSD of the
samples collected during each of the three periods were not dependent
on location (not significantly different) even with o levels of 0.10,
0.20, and 0.50, respectively.

The average clay content for all three collection periods was
consistently high (56-60%). Since clay-size particles are not highly
subject to detachment by wind, the clay is most 1likely entering the
traps as silt-size aggregates of clay rather than as individual par-
ticles. Due to aggregate destruction during processing, however, this
cannot be verified.

The clay content of the dust is also considerably greater than in
the surface horizons of surrounding soils further suggesting that the
dust is not of local origin. The percentage of < 2 um material are
somewhat greater than the 30-48% reported by Smith et al. (1970),
especially since their values include all dissolved material, result-
ing in even lower clay percentages. The lower heights of the sampling
apparatus used by Smith et al. (1970) are probably responsible for a
general skewness toward a coarser PSD, as well as the greater collec-

tion rate discussed earlier.
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Table B2. Particle size distribution of dust collected during three
collection periods in 1981.

Location <2 um 2-5 um 5-20 um > 20 um
1 48.7 6.8 23.4 21.1
2 55.5 6.0 24.4 14.1
3 64.3 5.3 25.9 4.5
4 62.7 6.0 22.5 8.8
5 65.2 5.9 24.4 4.5
6 62.2 3.8 24.9 9.1

I 61.0 5.4 _24.9 A7
X 60.0 5.7 24.3 10.0
1 65.6 7.6 17.5 9.3
2 54.8 5.9 33.3 6.0
3 57.6 9.3 28.9 4.2
4 55.9 5.8 28.0 10.4
5 57.1 8.8 25.7 8.5
6 57.5 7.0 23.8 11.9

i _59.1 8.8 26.2 _5.9
X 58.2 7.6 26.2 8.0
1 59.9 5.5 19.5 15.1
2 60.4 7.3 22.1 10.2
3 58.4 6.3 29.8 5.5
4 50.3 6.5 . 30.5 12.7
5 52.1 6.1 34.3 7.5
6 57.2 4.2 30.3 8.3

e _58.2 _4.4 _21.3 _10.1
X 56.6 5.8 27.7 9.9



Mineralogical Composition

Semi-quantitative interpretations of XRD analyses are presented
in Tables 3 and 4. The diffraction patterns for the clay samples were
somewhat difficult to interpret in that most of the clays showed poor
cyrstallinity and/or poor orientation. The clays from all seven loca-
tions were quite uniform in composition; they were primarily mica and
quartz with lesser amounts of smectite, kaolinite and feldspar.
Samples collected during the 3rd period had observably greater amounts
of both smectite and kaolinite.

The medium silt mineralogy was extremely uniform both among sam-
pling locations and collection periods. This fraction was dominantly
quartz with moderate amounts of alkali feldspars. Only slight differ-
ences in the presence or absence of mica and kaolinite were observed.
This high degree of mineralogical uniformity for the dust samples as

well as the particle size homogeneity strongly suggest that the dusts
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being deposited across the 500 km of this area have the same origin.

Optical examination of the silts showed some opalline phytoliths to be
present which would not be detected by XRD (Wilding et al., 1977;
Smith et al., 1970).

No carbonate minerals were observed in any of the clay or siit
fractions examined. This may be the result of either dissolution of
carbonates during peroxide digestion and filtration, or to simply a
lack of carbonates in the airborne material (see section on analysis

of filtrates for further discussion).
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Table B3. Semi-quantitative interpretations of XRD patterns for the
clay (< 2um) mineralogy of dusts collected during three
collection periods in 1981.

Location Mica Quartz Smectite Kaolinite Feldspar
1 XXX XXX tr tr tr
2 XXX XXX XX - -
3 XXX XXX XX X -
4 XXX XXX tr - tr

5 XXX XXX X X -
6 XXX XXX XX X tr
7 XXX XXX XX X tr
1 XXX XXX X tr tr
2 XXX XXX tr tr -
3 XXX XXX X X -
4 XXX XXX XX X X
5 XXX XXX XX X tr
6 XXX XXX X X tr
7 XXX XXX X - tr
1 XXX XXX X XX -
2 XXX XXX X tr -
3 XXX XXX XX XX tr
4 XXX XXX XX XX X
5 XXX XXX XX XX tr
6 XXX XXX XX XX
7 XXX XXX XX XX X

tr - trace

X - low <10%

XX - moderate 10-30%

XXX - high 30-70%

XXXX - dominant >70%



Table B4. Semi-quantitative interpretations of XRD patterns for
mineralogy of the medium silt (5-20 um) fraction of dust
collected during three collection periods.

Location Quartz Na Feldspar K Feldspar Mica Kaolinite
1 XXXX X XX X tr
2 XXXX X XX - tr
3 XXXX X XX - tr
4 XXXX X XX - tr
5 XXXX X XX - -
6 XXXX X XX - -
7 XXXX X XX - -
1 XXXX X XX tr -
2 XXXX X XX - -
3 XXXX X XX - -
4 XXXX X XX - -
5 XXXX X XX X -
6 XXXX X XX tr -
7 XXXX X XX X X
1 XXXX X XX X -
2 XXXX X XX - -
3 XXXX X XX - -
4 XXXX X XX - -
5 XXXX X XX - -
6 XXXX X XX X -
7 XXXX X XX tr -
tr - trace
X - low <10%
XX - moderate 10-30%
XXX - high 30-70%
XXXX - dominant >70%
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SEM and Microprobe Analysis

Medium silts from sites 2, 3 and 5 collected during each of the
three periods were examined using SEM and the electron microprobe for
semi-quantitative chemical analysis. Grains rich in Si, Al and K (and
containing 1little else) were considered K-feldspars, while quartz
grains contained only Si. Quartz, K-feldspars and Na-feldspars (iden-
tified by the presence of Si, Al and Na) were all detected in the
medium silts analyzed (although Na feldspars were less common). A
variety of grain surface morphologies was observed for each mineral.
Two main types of quartz were observed and representative grains are
shown 1in Fig. 3. One group is characterized by relatively smooth
surfaces and conchoidal fracture while the other is characterized by
rough, pitted weathered surfaces. However, these same two morpholo-
gies were also observed for K-feldspars (Fig. 4), making mineralogical
identification by morphology alone impossible. Most of the smooth
grains observed were in fact K-feldspars. Some of the feldspar grains
had weathered surfaces showing prominent cleavage traces which were
diagnostic. The variety of forms for both quartz and feldspars may

indicate multiple source areas for the dust.
Analysis of Filtrates

Values for water soluble cations from filtrates are presented in
Table 5. Data have been reported on a unit area basis. 0On the aver-
age, total quantities of Na and K are 3-fold and 7-fold higher respec-

tively, than estimates of elemental deposition from rainfall alone
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Fig. B3. Various morphologies of quartz grains identified using the
electron microprobe: A and B show smooth surfaces and conchoidal frac-
tures; C and D show rough pitted surfaces.






Fig. B4. Various morphologies for K-feldspar grains identified using
the electron microprobe: A and B show weathering traces along well
defined cleavage planes; C and D show smooth conchoidally fractured
surfaces and rough pitted surfaces respectively, which are also char-
acteristic of quartz grains observed.






Table B5. Total water soluble cations collected at seven Texas
locations during the year 1981.

Location Ca Mg K Na
------------------- MG/M2 =mmmmmmmmmmmmmmmme
1 1090 180 980 730
2 760 110 780 890
3 830 70 300 970
4 950 70 540 1860
5 980 50 260 930
6 910 60 430 1020
7 850 160 1060 _730
X 910 100 620 1020

(Junge and Werby, 1958; Lodge et al., 1968). Higher values for sam-
ples may be the result of leaves, insects, pollen or other organic
materials collected in the traps and partially decomposed by Ho0;
treatment. The Ca levels in the filtrates are only 15-30% of the
levels for calcite saturation, so any particulate carbonates would
quickly be dissolved. Measured calcium values, however, were roughly

equal to estimates expected from rainfall alone. It is possible,
therefore, that much if not most of the Ca collected in the dust traps
is entering as dissolved Ca and not as particulate carbonates. Fur-
thermore, if particulate carbonates were being added with the dust and
subsequently dissolving, a correlation might be expected between dis-
solved Ca values and total dust infall. No significant correlation
exists (r2 = 0.002). Therefore, if particulate carbonate is contribu-

ting to the total dissolved Ca, it must be of minor importance
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relative to other sources (i.e., rainwater). If even half of the Ca
were carbonate derived (which is unlikely), it would constitute only
5-13% of the total dust weight. In the desert project Gile and Gross-
man (1979) reported average particulate carbonate percentages ranging
from 0.4 to 5.7% in dust samples collected during the dry period in
New Mexico, but total Ca infall was comparable to values observed in

this study.
CONCLUSIONS

The high degree of uniformity in mineralogy, particle-size dis-
tribution and total quantity for dust blown onto the Edwards Plateau
region implies a common source for the dust. The present rate of
addition (12 g/m2/yr) translates to approximately 1 mm/100 yrs.
Although long term extrapolations should not be made from current
rates, there is reason to suspect that potential impact on soil forma-
tion is significant. Comparisons with soils and residues from under-
lying limestones are presently necessary to assess the actual long

term contribution and impact of dusts on soil development.
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APPENDIX C
pH EFFECTS ON CLAY RESIDUES

DURING CARBONATE DISSOLUTION



While studying the genesis of carbonate enriched soils over
Cretaceous limestone in Central and West Texas, attention was given to
poth carbonate and non-carbonate components in the system. In order
to document parent material origin and uniformity and mineralogical
transformations during pedogenesis, there was need to collect non-car-
bonate residues from limestone bedrock and petrocalcic horizons.

CarbonatesAare commonly removed from soil materials by some vari-
ation of Jackson's (1969) method employing pH 5 N sodium acetate
(NaOAc) buffer. Grossman and Millet (1961) have modified this method
for use with large sample sizes. Unfortunately, this procedure 1is
quite slow, taking up to two months or longer for large samples of
carbonate cemented materials. It is also estimated that roughly 40
liters of pH 5.0 E_NaOAc solution would be required to dissolve 1 kg
of limestone. A more rapid technique was therefore desired.

Early workers used strong acids to remove carbonates and were
unaware of or unconcerned with the probiem of mineral alterations of
sensitive clays such as smectite (Bray, 1937; Grim et al., 1937).
Attempts to overcome this problem have jnvolved the use of complexing
agents such as EDTA (Glover, 1961) and cation exchange resins (Ray et
al., 1957). Ostrom (1961) treated several different clays with various
concentrations of hydrochloric and acetic acids to determine "safe"
concentrations. She concluded that Hectorite, a sensitive 2:1 layer
mineral, was not altered by solutions of 0.3 M HOAc or 0.1 M HCI, so
long as some carbonates remained present (presumably serving as a pH
buffer). Incomplete dissolution, however, is risky due to microsite

variability in mineralogy and porosity of the limestone which might
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" result in collection of a non-representative residue. Furthermore,
the pH of the dissolving solution varies widely between the start and
completion of the dissolution. In contrast, use of a buffered solu-
tion eliminates wide fluctuations in pH during the course of dissolu-
tion.

A more rapid dissolution of indurated materials can be accom-
plished by (1) grinding the sample to increase surface area, or (2)
using solutions with a higher hydrogen ion activity. Increased grind-
ing can appreciably change the particle size distribution of residues.
Thus, the purpose of this study was to determine the optimum pH of a
buffered acid for dissolving limestone and petrocalcic materials that
would minimize reaction time without appreciable clay mineral altera-

tions.
MATERIALS AND METHODS

Two calcareous samples known to contain smectite were selected
for the study. The first (sample #1) was a Cretaceous limestone of
the Segovia formation of the Edwards group collected in western Kerr
County, Texas. The second sample (sample #2) was a C-horizon sampled
4 meters below the surface of Aquic Haplustoll in the Texas Coast
Prairie (See Table 1 for analyses). Sample #1 was selected due to its
similarity to samples to be examined during the soil genesis study
mentioned previously. Sample #2 was chosen for its high smectite
content. Samples were treated with NaOAc solutions of pH 5.0, 4.5,
4.0, 3.5, 3.0, and 2.5. Due to the buffering effect of NaOAc, the

concentrations of the solutions were reduced in order to attain
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Table Cl.Percent CaC03 equivalent and carbonate free particle size
distribution for the two samples studied.

Sample CaCO3 2.0-0.05 mm  0.05-0.002 mm <0.002 mm
% 00 memmmmmemmmmmeeeeae. A i

1 93.4 6.3 54.4 39.3

2 6.2 3.4 26.1 70.5

solutions of low pH. The NaOAc solutions were therefore 1, 1, 0.5,
0.5, 0.25, and 0.1 molar respectively. For sample #1, 200 g of
limestone (enough to provide sufficient residue for analysis) was
ground to pass a #18 sieve (1 mm) and placed in a 20 liter plastic
bucket to which was added 1850 ml of NaOAc buffer solution. Large
containers were used in order to contain the frothing which occurred.
For sample #2, 20 g of soil (< 2 mm) was placed in a 250 ml beaker to
which was added 150 m1 of NaOAc buffer solution. Suspension pHs were
monitored daily and maintained at the given pH by adding acetic acid.
Residues were kept in the solutions for two weeks after which pHs were
adjusted to 5.0 with NasCO3. High levels of Ca acetate formed during
the dissolution of the limestone causing an increased buffering effect
and a rise in pH. Hence, solutions for treatments at pH 3.0 and 2.5
were decanted one time after carbonates were dissolved (less than 1
day) and fresh NaOAc solution was added in order to keep the pH at the
desired level. Sample #2 was treated with pH 5.5 NaOAc, 0.3 Mand 3 M
HOAc, and 0.1 N and 1 N HCI 1in addition to the NaOAc solutions

discussed above. A method similar to Ostrom (1961) was used except

that the carbonates were completely dissolved.
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Samples were fractionated using conventional sedimentation tech-
niques. Clays (< 2 um) were plated onto ceramic tiles by suction and
analyzed by X-ray diffraction (XRD) under the following treatments: Mg
saturation, air dry (25°C); Mg saturation, ethylene glycol solvated; K
saturation; air dry (25°C); K saturation, 350°C; K saturation; 550°C.
Specimens were scanned from 2° to 30° 26 at a speed of 1° 26/min on a
Philips X-ray diffractometer equipped with a single crystal monochro-
meter and a theta compensating slit, using Cu Ka radiation. The
cation exchange capacity (CEC) of selected clays was determined by Ca
saturation and subsequent displacement with Mg as described by Jackson

(1969).

RESULTS AND DISCUSSION

X-Ray Diffraction (XRD)

Representative XRD patterns of both samples are shown in Figs. 1
and 2. Sample #1 shows substantial resistance both to expansion and
collapse of the expansible components, presumably due to the presence
of hydroxy-interlayers. In contrast, the smectite of sample #2 both
expands upon glycolation and collapses when heated indicating little
if any stable hydroxy interlayer material present. The sharpness and
1ntehsity of the 15K smectite peak when Mg saturated (air dry) and
resistance to collapse of the peak to 103 when K saturated were used
as criteria to evaluate acid alteration of the smectite component,

For NaOAc buffer treatments in the pH range of 5.5-2.5, no
observable differences were noted in XRD patterns. Examples of XRD

patterns (Mg and K air dry) for selected treatments of sample #2 are
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3.34
3.56 7.1
K 550°
K 350°
K 25°
Mg 25°
Mg Glycol

Fig. Cl.Diffraction patterns for the clay (<2um) fraction of the non-
carbonate residue remaining after dissolution of a Cretaceous lime-
stone (sample #1) in pH 5.0 1N NaOAc.
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Fig. C2. Diffraction patterns for the clay (<2um) fraction of a deep
calcareous C horizon from an Aquic Haplustoll (sample #2) following

removal of carbonates in pH 5.0 1IN NaOAc.



illustrated in Figs. 3 and 4. Only the 1N HCl treatment resulted in
distinct differences in XRD line profiles. The 001 smectite peak
(155) for the Mg air-dry specimen treated with 1N HCl was slightly
sharper and less intense than the other treatments. The K air dry
pattern for the untreated clay shows part of the smectite collapsing
from lSi to 102 indicating a higher charged component, and part of the
smectite only partially collapsing to a broad peak centered at approx-
imately 125 jndicating either a lower charged component or some therm-
ally unstable hydroxy interlayers present in part of the smectite.
patterns for all samples except the 1N HCI treatment are similar. The
- IN HC1 treatment resulted in a smaller portion of the smectite collap-
sing completely to 1OA and a more intense peak at 12A This is inter-
preted to be the result of the formation of low stability (thermally
unstable) Al-hydroxy polymers in the smectite interlayers. The strong
acid treatment probably caused Al to be released to solution from the
clay structure. It is postulated that subsequent adjustment of the pH
to 5.0 induced formation of Al-hydroxy polymers between the basal
layers of the smectite. Heating the specimens to 350° caused collapse
to 102 such that there were no observable differences between any of

the treatments.
Cation Exchange Capacity (CEC)

Cation exchange capacity data for clays of sample #2 indicate a
reduction in charge as a result of the acid treatments (Table 2).

Compared to the untreated clay sample, there is a 6% reduction in CEC
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15

10.0

Untreated

pH 5.0 NaOAc

pH 2.5 NaOAc

0.3 M HOAc

A 0.1 M HCL

1.0 M HC1

Figure C3. Diffraction line profiles for Mg-saturated air-dry clay
(<2um) specimens of sample #2 following various treatments for carbon-
ate removal.
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\ pH 2.5 NaOAc

0.3 M HOAc

\'f’\\““ 0.1 M HC1

y

1.0 M HCl1

Fig. C4. Diffraction line profiles for K-saturated air-dry clay (<2um)
specimens of sample #2 following various treatments for carbonate

removal.



Table C2.Cation exchange capacity values for clay fractions of
samples after various treatments for carbonate removal.

. Sample 1 Sample 2
Treatment Limestone Residue III Cca
--------------- meq/100 g----------cou--
Untreated - 62.8 + .1
pH 5.0 NaOAc 26.1 t ,1 59,0 £ .4
pH 2.5 NaOAc 28.0 £ .2 58.4 £ .5
1 M HCI - 55.8 £ .2

as a result of removing carbonates at pH 5.0 but there is no signifi-
cant change between 5.0 and 2.5. The IN HCl treatment further reduced
the CEC to 89% of the untreated sample. The initial dec;ease in CEC
at pH 5.0 may be due to the formation of some hydroxy interlayers,
although not detected by XRD. Further reduction in CEC by the IN HCI
treatment is positively correlated with formation of Al-hydroxy inter-
layers as discussed previously. The small increase 1in CEC between pH
5.0 and 2.5 of sample #1, if in fact real and not due to chance varia-
tion, may be attributed to partial removal of Al-hydroxy interlayers
from the smectite. Evidence for the latter was not confirmed by XRD.
In summary, any clay mineral structural changes that are a conse-
quence of carbonate removal by NaOAc buffered solutions appears to
occur even with the least drastic treatments at pH 5.0 or 5.5. Little
evidence is available that further structural alterations occur with
increasing hydrogen ion activity to pH 2.5. Any structural altera-
tions that may be occurring during these dissolution treatments were

too subtle to be detected by XRD analyses. In conclusion, for the
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purposes of XRD, NaOAc buffers in the pH range from 2.5 to 5.0 can be
safely utilized to dissolve free carbonates for clay mineral residue

analyses.
APPLICATION

Subsequent to this study 46 samples of limestone and petrocalcic
horizons have been dissolved using pH 4.5 NaOAc buffer. One kg sam-
ples were ground to gravel size (< 8 mm) in order to preserve the
indigenous particle size distribution of the residue. The samples
were placed in 20 liter plastic buckets to which were added 4.5 liters
of pH 4.5 NaOAc buffer. The pH was maintained by adding HOAc. Four
liters of distilled water was added to keep calcium acetate from pre-
cipitating. Approximately 2 liters of glacial HOAc is necessary to
dissolve 1 kg of limestone or petrocalcic material. Nearly all the
samples (with the exception of four dolomite samples and a few samples
rich in secondary silica) were completely dissolved within two weeks.
This procedure drastically reduces the length of time necessary to
dissolve carbonates from these materials from the 2 months or so
required with pH 5.0 NaOAc buffer. The time could presumably be short-

ened even further by lowering the pH of the buffer.
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APPENDIX D
IDENTIFICATION OF PEDOGENIC
CARBONATES USING STABLE CARBON ISOTOPES



While some pedogenic forms of carbonates such as concretions,
pendants, and laminar caps are readily identifiable, in some soils
formed from carbonate-rich parent materials it is often difficult to
distinguish between carbonates inheritéd from the parent material

(lithogenic) and those formed in situ (pedogenic). This is especially

a problem when the carbonates occur in a massive indurated form which
is easily confused with soft limestone materials or in a finely divi-
ded form distributed throughout the soil matrix.

Since the differentiation of these forms has been difficult, the
accurate quantification of pedogenic carbonates has been even more
elusive. This is a particular problem since this criterion is used in
Soil Taxonomy in thekdefinition of the calcic and petrocalcic horizon.
Soil scientists are therefore in need of an approach to the identifi-
cation of pedogenic . carbonates that will be both definitive and quan-
titative.

Several workers have applied stable carbon isotope methodology to
the study of carbonate materials (Salomons, 1975; Salomons and Mook,
1976; Salomons et al., 1978; Magaritz and Amiel, 1980; Magaritz et
al., 1981; Hendy et al., 1972; Leamy and Rafter, 1972). In their
study of soil carbonates, Salomons and Mook (1976) assumed a “closed
system" where equilibrium was not maintained between the soil solution
and the gaseous soil COp. As will be discussed later, this does not
well approximate most soil conditions. Magaritz and Amiel (1980) cor-
rected these deficiencies by assuming the soil to be an "open system"
where equilibrium is maintained between the soil solution and the soil
€0y gas, thus providing for theoretically sound application to pedo-

logical studies.
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The objectives of this'study were: 1) to apply stable carbon iso-
tope theory and methodology to the identification and quantification
of pedogenic carbonates in soils formed over limestone in the Edwards
Plateau region of Texas, and 2) to correlate isotopic determination
with micromorphological observations in order to better utilize micro-
morphology in the differentiation of pedogenic and lithogenic carbon-

ates.

THEORY

Chemical Equilibrium

The dissolution and precipitation of calcium carbonate in an

aqueous solution open to COp gas can be expressed in the following

equations:
COp(g)+Ha0 == HpCO3 (or COp(aq)) [1]
HoCO03 = H™ + HCO3 [2]
CaC0s + H'esy Cat + HCO3 [3]

These can be summarized by the single equation:

€0, + Hy0 + CaCO3 « Ca?* + 2HCO3 [4]

Thus, as the pCOp of a system increases, the solubility of CaC03 in
that system also increases (Garrels and Christ, 1965). Also according
to equation [4], half of the carbon in the dissolved HCO3 is derived
from the CaCO3, the remainder coming from the dissolved COp gas.

If the system is "closed," that is, the solution containing

dissolved COp does not remain in contact (for chemical equilibrium)
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with a reservoir of gaseous CO» during and after 1its reaction with
CaC03 yielding HCOS(aq), then the proportion of carbonate-derived
carbon in the dissolved bicarbonate will remain equal to the propor-
tion of COp-derived carbon. Such is the case when rainwater enters
the soil, or becomes charged with C0p, and then moves beneath the
solum and into the groundwater where it dissolves carbonate. If, how-
ever, the system is "open," that is, the solution dissolving the CaCO3
does remain in contact with a reservoir of gaseous CO,, the above
relation regarding the source of carbon in the aqueous HCO§ no longer
pertains.  Rather, an equilibrium will exist between the HCO3(aq)
and the COp(q) reservoir (Hendy, 1971). Such is the case where
rainwater enters the soil, dissolves carbonate and-then remains in the
moist but unsaturated solum. Since the proportion of C in the CO2(g)

reservoir is large relative to that in solution (equilibrium constant
K for equation [1] is 10‘1'47) (Garrels and Christ, 1965) with time,
virtually all of the carbon in the HCOE(aq) will have originated in
the COp gas. If for some reason the HCOF charged soil solution was
not permitted to reach equilibrium with the soil COp prior to precipi-
tation, such as might occur if a higher pH induced a more rapid pre-
cipitation or if the solution were somehow partially isolated from the
soil COp gas, a lower proportion of the carbonate C would have its
origin in the soil CO2. Generally, however, onceé the CaCO3 has become
dissolved and is in solution as HCO3, carbonate precipitation can be

induced by either a lowering of the pCO, or by evaporation.
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Isotopic Equilibria and Fractionation

Isotopic equilibria also exist between the various carbon con-

taining phases of the system. The isotopic fractionation factor a

between two phases A and B is defined as:

12

13
C C h
% g = (13 /12,) phase A (5]
("°C/"7C) phase B

If phase A is enriched in the heavy isotope, then o will be somewhat
greater than one.

_ According to normal physical chemical processes, an equilibrium
based isotopic fractionation occurs between phases in the COp-Hp0-
CaCO3 system. This is due to differences in the molecular weight of
the isotopes which affect their vibrational, rotational and transla-
tional energy components (Broecker and Oversby, 1971). Theoretical
values of fractionation factors have been formulated by calculating
the partition functions for the various phases (Bottinga, 1968).

Empirical values for the fractionation factors have also been
measured by several workers. These values have been summarized in
Table 1. Both bicarbonate and carbonate species in equilibrium with
COp gas are enriched in 13¢.  Actual isotope enrichment can be calcu-

lated from the relation:

8 13¢ py+ 1000
@ AB ~ §T3¢(g)+ 1000
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Table Di. Isotopic fractionation factors between phases in the system
COp - Ho0 - CaCOj.

PHASES A-B * B T°C  d o/dTe Source

C02(aq)~P2(q) 0.9989 25 Vogel et al. 1970

HC03 (34)-C02(4) 1.0077 20 tVogel 1961
1.0083 25 tAbelson & Hoering 1961
1.00838 20 -.000109 Emrich et al. 1970
1.0076 20 -.000083 tDeuser & Degens 1967
1.0089 14  -.00006 Wendt 1968

Cat03 5y-L02(q) 1.010 25 tBaertschi 1957
1.0093 22 tVogel 1959

1.0107 20 +.000148 #Bottinga 1968
1.01017 20 +.000063 Emrich et al. 1970

CaC03(5)-HC03(430)  1.00185 20  +.000035 Emrich et al. 1970
1.0009 25 Rubinson & Clayton 1969

t+ After Friedman and 0'Neil, 1977.

$# Calculated
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s13c - (13¢/12) sample - (13c/12c) std

where
(13c12¢) std

X 1000 [7]

Values are usually reported relative to those of the Pee Dee belemnite
(PDB standard) (Craig, 1957).

There 1is also a kinetic fractionation which occurs during
irreversib]e chemical reactions such as the photosynthetic process
(Craig, 1953). This is related to the dissociation energy barrier
(i.e., bond strength) which causes a discrimination against the heavy
jsotopes of carbon in the products (Broeker and Oversby, 1971). This
results in plants with different metabolic pathways having different
proportions of the carbon isotopes, and in organic carbon forms being
much depleted in the heavy isotope relative to carbonate carbon.

The carbon in C3 plants (most temperate region terrestrial
plants) has 813C values in the range of -24 to -34 per mill with a
mean of about -27 per mill. The carbon in C4q plants (many arid
plants, salt marsh species, and some tropical grasses) has §13¢ values
in the range of -9 to -16 per mill with a mean of about -12 per mill.
Plants with the CAM (Crassulacean Acid Metabolism) pathway are inter-
mediate with §13C values in the range -9 to -19 per mill with a mean
of -17 per mill (Hoefs, 1980). In contrast, most marine limestones
have much higher §13C values. Keith and Weber (1964) reported the
mean § 13C of 272 selected marine limestones and fossil samples to be
+0.56%owith a standard deviation of 1.55. Fresh-water limestones had
Tower values (mean = -4.93%) and were somewhat more variable (std.

dev. = 2.75).
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The Soil System

As a result of microbial respiration during the decomposition of
organic materials and the respiration of plant roots, the pCOz of the
soil air is much greater than atmospheric levels. This causes an
increase in calcite solubility. While 813 values for atmospheric COp
usually average around -7°/,, (Keeling, 1958), values for soil CO02
are much lower. During periods of microbial activity (adequate mois-
ture and temperatures) the isotopic ratios in the soil COp generally
reflect those of the soil organic matter, which in turn are dependent
on the native vegetation. Rightmire and Hanshaw (1973) report s13¢
values for soil COp closely resembling (slightly higher than) those
for soil organic matter.

Within soils, the pCOp generally increases with depth (Boynton
and Reuther, 1938; Lyda & Burnett, 1975; Baker & Cook, 1974). This
means that CaCO3 precipitation within the soil profile is generally
not a result of a lowering of the pCOp as carbonate-charged waters
move downward. Water loss through evapotranspiration is the primary
mechanism in the formation of pedogenic carbonates.

As water is removed from the soil by drainage and evapotranspira-
tion, the soil air replaces the vacated pore space. Depending on the
water holding capacity of the soil, the depth of wetting and the rate
of evapotranspiration, it may require a few days to several weeks for
the soil to become dry. During this time, equilibrium is established

and maintained between the gaseous CO? in the soil air and the
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dissolved HCO3 in the soil solution. This corresponds to the "open
system" described earlier.
As rainwater enters the soil and COp from the soil air is dis-

solved, there is an isotopic fractionation such that:

13 _ 13
""C(co = o, ) T EL 8]

2(aq) 2(g)
where €1 is the fractionation factor Dbetween COp(q) and C02(aq)
(Table 1). The HpCO3 in the soil solution reacts with CaCO3 from the
parent material (with a given s13¢ value) according to equation [4].
At this point, the §13C for the HCO3(aq) is about half way between
the §13C for the parent CaC0O3 and that of the HpCO3. However, since
the soil solution maintains contact with the soil air, an isotopic
equilibrium is established between the dissolved HCO3 and the COp
gas. The 813C for the HCO3 is thus independent of s13¢ of the parent

carbonate and can be described by:

s§13c st ) €2 [9]

(HCO3 co

aq) ! 2(aq)
where €5 is the fractionation factor between COp(aq) and HCO3(aq)-
Since the precipitation of CaCO3 proceeds relatively slowly com-
pared to the processes maintaining isotopic equilibrium (Hendy, 1971),
as precipitation of CaCO3 is induced by evaporation, the equilibrium

between the HCO3(aq) and C0p(q) is maintained. The isotope con-

tent of the pedogenic carbonate is described by:
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5 13¢ = §13¢ - €
(CaC03) (HCO3(ag)) © 3 [10]

130 13
8 C(Caco3) = sl C(co tE] tEH +E] [11]

where €5 is the fractionation factor between Hcog(aq_) and CaC03(s).
The isotope content of the pedogenic carbonate is therefore directly
dependent on the §13C of the soil CO, gas plus the sum of the frac-
tionation factors which is +10.2 °/,, (Magaritz & Amiel, 1980;
Emrich et al., 1970). Since the §13¢ of the most marine carbonates is
near zero, while that of pedogenic carbonates is considerably lower,
the proportions of these two phases 1in the soil can be determined
isotopically using an equation by Salomons and Mook (1976):
s13¢ (Soi])-513c(par. mat.)

% pedogenic = X 100 [123
13 .13
¢ C(ped.) S C(par. mat.) :

The §13C values for the soil carbonate and parent material carbonate
can be measured directly. The s§13c value for the pedogenic carbonate
can be calculated by measuring the 613C of the soil organic matter
from which one can estimate the 513¢ of the soil COp (gas) and subse-
quent application of the appropriate fractionation factor.

It should be pointed out that this "open system" is much simpler
than the "closed system" mentioned earlier. Instead of the pedogenic
carbonate having a fixed 5130 value, dependent only on the 613¢C of the
CO,(gas) reservoir, carbonates precipitated in a closed system exhibit
changing §13¢ values as precipitation proceeds, after the fashion of

the Rayleigh distillation process (Hendy, 1971).
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MATERIALS AND METHODS

The western part of the Edwards Plateau region of Texas is domi-
nated by shallow soils underlain by Cretaceous limestone. Pedons at
seven locations in this area were sampled as shown in Fig. 1. Samples
from major horizons and prominent carbonate features as well as the
underlying bedrock were collected and dried.at 35°C. Samples from A
horizons were crushed tospass a 2 mm sieve and the > 2 mm material was
removed. Percenf CaC03 was determined gasometrically using the Chit-
tick procedure (Dreimanis, A., 1962). Carbonate and organic s13¢
values were determined in the Department of Oceanography, Texas A&M
University, using a Nuclide 60° sector isotope mass spectrometer.
Oriented clods were impregnated and thin sections were prepared for

micromorphological examination.
RESULTS AND DISCUSSION

Data for the 7 pedons sampled are presented in Table 2. The s13c
values for the soil organic matter, soil carbonates, and parent mater-
jal carbonates were measured directly from samples collected. The
percent pedogenic carbonate of total soil carbonate was calculated
twice using equations 11 and 12. Values were first calculated on the
assumption that the §13C of the soil COp was equal to that of the soil
organic matter. Since published data suggest that values for COp
might be slightly higher than for organic matter (Rightmire and
Hanshaw, 1973) values were then calculated a second time assuming that

the s13C of the soil COp was 1°/.. higher than that of the soil
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Table D2.

Percent pedogenic carbonates of total soil carbonates in
seven pedons calculated using the stable carbon isotope

method.
Pedogenic Carbonates
in Total Soil Carbonate
s13¢T of 613¢T of 613¢ of €0, 813¢ of COp
Horizon Depth CaC03 Org. C. CaC0jy = org., C 1°/,,>0rg.C
(cm) R — L  ——
Site #1 (Kimble Co.)
All 0-8 25.7 -16.3 -3.9 68 80
Al2 8 -12 34.9 -3.7 64 76
Ccam 12-15 85.6 -3.2 58 68
R 15+ 95.5 +0.6
Site #2 (Sutton Co.)
Al 0 -15 10.2 -15.2 -3.1 56 73
Clcam lam-
inar cap 15-18 85.4 -2.8 49 64
Clcam con-
cretions 25-30 82.6 -2.1 33 42
C2cam tam-
inar cap 30-31 85.4 -2.1 33 42
C2cam 31-32 89.8 -4.2 81 106
C2cam 32-34  89.3 -4.3 84 109
C3cam 34-39  94.2 -5.5 112 145
R 39+ 98.5 -0.7
Site #3 (Sutton Co.)
All 0 -4 14.6 -17.1 -5.2 75 88
Al2 4 -10 20.0 -5.7 82 96
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Table D2. (Continued)

Pedogenic Carbonates
in Total Soil Carbonate

s 13T of 613" of &3¢ of €0, 613¢ of COp

Horizon Depth CaC03 Org. C. CaC0, =org. C 1°/,,>0rg.C
(Cm) % """ 0/oc:> """""""""" % “““““

Alca 10-12 28.6 -4.6 65 76

R 12+ 94.1 -0.4

Site #4 (Crockett Co.)

Al 0 -5 27.3 -16.6 -0.2 13 15
Secondary

pendants 89.9 -4.8 77 89
Ccam 5-9 90.4 -5.7 91 105
R 9+ 95.1 +0.8

Site #5 (Pecos Co.)

All 0 -3 18.9 -1.4 31 36
Al2 3 -16 23.0 -16.9 -1.7 35 40
Clcam lam-
inar cap 16-17 81.9 -1.3 30 34
Clcam be-
neath lam-
inar cap 17-31 86.3 -4.9 77 88
C2cam lam-
inar cap 31-32 82.0 -2.1 40 46
C2cam be-
neath Tam-
inar cap 32-50 92.3 -4.8 75 87

R . 62-75 94.0 +1.0



210

Table D2. (Continued)

Pedogenic Carbonates
in Total Soil Carbonate

s13¢T of 13T of s13¢ of CO, 513¢ of COy

Horizon Depth CaC0O3 Org. C. CaCo, =org. C 1°/5,>0rg.C

(Cm) % """" °/oc> “““““““““ % “““““
Site #6 (Pecos Co.)

Al 0 -7 30.9 -17.8 -3.4 53 60

Ccam lam-

inar cap 7 -8 84.7 -1.6 32 36

Ccam be- _

neath lam-

inar cap 8 -15 84.9 -4.6 66 75

R 15+ +1.3

Site #7 (Val Verde Co.)

All 0 -5 4,0 -3.5 56 66
Al12 5 -18 4.7 -16.8 -4.4 69 80
Secondary .

pendants 83.0 -2.1 37 43
Laminar

cap (upper) 18-19 85.8 -2.3 39 a6
Laminar

cap {lower) 19-20 85.6 -2.3 39 46
R 20-35+ 92.8 +0.5

t °/,o retative to PDB
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organic matter. A range in values is therefore established within "

which the true value probably lies.

Finely Divided Carbonates

Carbonates in A horizons are for the most part disseminated and
are not concentrated in nodules or concretions. The percent pedogenic
carbonates in these soil carbonates is generally quite high ranging
between approximately 40-90% for 5 of the pedons. These are somewhat
higher values than reported for A horizons of Calciorthids of the
Jordan Valley (Magaritz, 1980). Only one pedon (site #4) shows very
low values (<20%). The high levels of pedogenic carbonates in the A
horizons reflect repeated cycles of wetting and drying, and subsequent
dissolution and repfecipitation of the carbonate phases. The dis-
solved and reprecipitated phases lose the character of the parent
lithogenic carbonates and acquire the character of soil formed pedo-
genic carbonates (decreasing 513 yvalues). The values for percent
pedogenic carbonates in A horizons can be converted to percent by
volume using measured values for total CaC03 and assumed values of 1.1
and 20% for bulk density and percent by volume of coarse fragments,
respectively (average values for soils in this region). These values
are presented in Table 3. Three of the 7 pedons have in excess of 5%
by volume pedogenic carbonates in the A horizon. These carbonates, as
mentioned earlier, are not segregated into jdentifiable secondary
forms but occur in a finely divided form. They therefore do not in

themselves meet the conditions outlined in Soil Taxonomy for a calcic

horizon, occurring over limestone. It must have 5% by volume of



Table D3. Percent pedogenic carbonates by volume for A horizons based
on % pedogenic carbonates by voiume of disseminated carbon-

ates, an assumed bulk density of 1.1 and 20% coarse frag-
ments.

% Pedogenic carbonates

Site by volume
1 6 - 10
2 2
3 4 - 8
4 1
5 2 - 3
6 6 - 7
7 1

identifiable secondary carbonates such as pendants, concretions or

soft powdery forms (Soil Survey Staff, 1975).

Identifiable Secondary Carbonate Forms

Laminar caps

Laminar cappings on petrocalicic horizons have been described by
Gile et al., (1966) as the final stage (IV) in the formation of petro-
calcic horizons. After a zone has become impermeable to the downward
movement of carbonate enriched waters, lateral movement along this
surface causes sheet or laminar like precipitation of carbonates at
this interface. These easily recognizable forms range in thickness

from millimeters to centimeters. Six samples of laminar caps from
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four pedons (sites 2, 5, 6 and 7) were analyzed for carbon isotope
ratios. In all cases, the calculated percent pedogenic carbonates was
much lower than other pedogenic carbonate materials in the same pedon.
In some cases, plugged materials only a few millimeters beneath the
laminar cap had pedogenic carbonate percentages twice those in the
laminar zone. Examination of thin-sections for these laminar zones do
not reveal identifiable lithogenic carbonate forms (Fig. 2) which
might have caused a lower value. Theoretically, these laminar zones
should have pedogenic carbonate levels approaching 100%, rather than
values in the observed range 25-46%. The consistently low values over
several locations, and in several cases more than one occurrence with-
in a given pedon, indicates that this is not an artifact of a particu-
lar location but mus£ represent an authentic difference in the mode or
environment of formation relative to other pedogenic carbonates.

Back calculations indicate the COp gas in equilibrium with these
precipitating laminar caps would have 613C values approximately -11.8
to -13.0°/.,, Which are intermediate between soil organic matter
613c of about -17°/,,) and atmospheric COp (-7°/s0). MWater
moving through the soil upon arrival of the laminar surface may not
have had sufficient time for isotopic equilibration with soil CO,.
Furthermore, the impervious nature of this laminar material causes
precipitation of carbonate at the surface, rather than in protected
pores. The lack of capillary pores at the surface allows more rapid
drying at the surface and a subsequent rapid precipitation of carbon-
ate (relative to soil or limestone pores which hold water Dy capil-

larity). It is postulated that this process does not permit time for
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Fig. D2. Thin sections of laminar cap zones from 4 pedons. A is from
site #2; B is from the Clcam of site #5; C is from site #6; D is from
site #7. Note the lack of fossils and the presence of foliar lamina-
tions, quartz skeletal grains, and manganese stains. Line scale is 1

mm. Cross-polarized light.
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"adequate isotopic exchange and for equilibrium to be reached prior to

precipitation.
Secondary pendants

Carbonate charged waters adhering to the Tower surfaces of
gravels and cobbles within a soil often precipitate to form secondary
carbonate pendants on the lower side of these fragments. Pendants
from two locations (sites 4 and 7) were analyzed for carbon isotope
ratios. The pendants from these two pedons had distinctly different
micromorphologfca] fabrics and distinctly different calculated values
for percent pedogenic carbonates. Figure 3 shows the micro-fabrics of
the two samples.

The pendants at site 7 have rather low values for percent pedo-
genic carbonates which are in the range observed for the laminar
caps. The micro-fabric of this sample is also strongly reminiscent of
the fabrics observed in the laminar caps including laminar foliations,
incorporation of sand and silt size quartz and manganese stains. The
mode of formation for this pendant is therefore assumed to be similar
to that of the laminar caps. Pendants from site 4 have a character-
jstic micritic fabric which is more porous and lacks the quartz grains
and manganese stains found at site 7. Higher calculated pedogenic
carbonate values (77-89%) as well as the micro-fabric indicate that
these pendants have a different mode of formation than those at site
7. The higher porosity of this material (and perhaps other soil char-
acteristics) has likely permitted slower drying and precipitation of

pedogenic carbonate closer to isotopic equilibrium with the soil COz.
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Concretions

Carbonate nodules with distinctly concentric zoning are termed
concretions. Concretions were observed only atbsite 2 and were found
in a horizontal fissure between two successive layers of petrocalcic
material. The §13¢ value for these concretions (and therefore their
calculated pedogenic carbonates) is equal to that of the immediately
subjacent laminar cap material (25-30%). The microfabric is also
similar to the laminar caps examined. The concentric foliations are
morphologically and probably genetically akin to the horizontal lami-
nations of the laminar zone. They also show Fe and Mn staining and
have sand and silt size quartz incorporated into the matrix (Fig. 4).
The similarities in micro-fabric and carbon isotope ratios indicate
that these concretions have formed in a manner similar to that of the

laminar caps.
Massive Petrocalcic Materials

Five of the pedons sampled (sites 1, 2, 4, 5 and 6) contained
massive carbonate materials which were tentatively identified in the
field as pedogenic petrocalcic materials although definitive or diag-
nostic field evidence was not available. Many of these materials were
located beneath a laminar zone. Carbon isotope analysis verifies that
these carbonates were in fact dominantly pedogenic in origin ranging
from 58-68% in site 1 to 91-100% in site 4. Micro-fabrics in these
materials are distinctly unlike those of lithogenic limestones and

include 4 characteristic types which are illustrated in Fig. 5. These



Fig. D4. Concretions found in the Clcam horizon at site #2. Note con-
centric laminations, quartz skeletal grains, and Fe and Mn staining.
Line scale is 1 mm. Cross-polarized light.
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materials which are generally porous have provided an environment for
slow carbonate precipitation (relative to the laminar cap environment)

which permits more thorough isotopic exchange approaching equilibrium.
CONCLUSION

While the use of carbon isotope analysis appears to be a useful
tool for the confirmation and quantification of pedogenic carbonates
in soil environments, it is not without limitations. Certain pedo-
genic forms of carbonates such as laminar caps and some pendants and
concretions, appear to form in such a manner and environment that
jsotopic equilibrium is not maintained with the soil COp. This results
in significant underestimation of the pedogenic component. Uncemented
soil matrix and more porous petrocalcic materials, however, do appear
to provide an environment for carbonate precipitation where isotopic
‘equilibrium is more closely approximated.

Several distinctive micromorphological fabrics were observed in
petrocalcic materials which were confirmed by isotopic analysis to be
of pedogenic origin. These microfabrics may be considered to be diag-

nostic in the identification of massive pedogenic carbonate materials.



225

APPENDIX E
SOIL CHARACTERIZATION LABORATORY DATA
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