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ABSTRACT

Dynamic Analysis of Tension-Leg Platforms. (December 1982)

Dia Aref Malaeb, B.S., Texas Tech University;

M.S., Texas Tech University

Chairman of Advisory Committee: Dr. Lee L. Lowery Jr.

The dynamic response of tension-leg platforms subjected to wave

loading and ground motion was investigated using a deterministic dy¬

namic analysis. The model employed in this study is based on derived

coupled nonlinear stiffness coefficients and closed form inertia and

drag forcing functions derived using Mori son's equation. The forcing

functions include relative motion between the fluid particles and the

structure, and are integrated manually, thereby avoiding the need for

expensive numerical integration. The set of coupled nonlinear differ¬

ential equations was integrated sequentially in the time domain using

the Newmark Beta method. A computer program was developed to simulate

the time history response of the platform motion. With this program,

a parametric study to identify parameters affecting the dynamic response

of the platform was performed. Some of the parameters studied were

wave period, wave height, water depth, initial tension, and cable

stiffness. Horizontal and vertical ground motion components were used

to study the effect of earthquakes on tension-leg platforms.

Coupling between the six degrees of freedom (surge, sway, heave,

pitch, roll and yaw) was found to have a significant effect on the

structural response. The strongest coupling was that between heave and

surge or heave and sway. Nonlinear drag forces also were found to be



significant in that they represent the fluid damping and therefore

result in response reductions with time. Stiffness nonlinearities were

found to be important for large surge or sway. The displacement re¬

sponse to combined wave and earthquake loading was found to be domi¬

nated by waves; however, platform accelerations were significantly

affected by the earthquake.
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CHAPTER I

INTRODUCTION

Objective

Offshore production platforms have been manufactured predominantly

as fixed steel template jackets or concrete gravity structures for

operations in water depths up to 300 meters. Manufacturing, installa¬

tion, and maintenance costs of fixed platforms rise rapidly as water

depths increase. Recently, however, attention has been focused on the

design of tension-leg platforms. Relatively small increases in manu¬

facturing and installation costs with added water depth make the

tension-leg platform an attractive alternative for deep water production

The design of tension-leg production platforms requires an under¬

standing of the dynamic behavior of the structure during storm waves,

wind, ground motion conditions, etc. In order to design a reliable

structure, it is necessary for the engineer to take into account the

effect of platform motion on personnel, equipment, and operations. It

is also necessary to take into account the anchoring system and the

forces in the mooring legs produced by wave actions and platform motions

The primary objective of this research is to develop a complete

and accurate deterministic approach for the dynamic analysis of tension-

leg platforms (TLP's) subjected to wave forces and ground motion. A

mathematical model is developed based on a set of coupled nonlinear

The format of this dissertation follows the style of the Journal
of the Structural Division, ASCE.
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differential equations for sway, surge, heave, pitch, roll, and yaw

motions. The nonlinearity of the coupled differential equations of

motion makes a power spectral analysis in the frequency domain infeasi¬

ble. Thus, a time domain analysis was selected for investigating the

dynamic characteristics of the anchored structure. The advantage of

this approach is that nonlinear functional relationships, which require

approximations in the spectral models, can be handled exactly in the

time domain.

The time domain dynamic analysis model developed herein is capable

of obtaining the following:

1) Time histories of displacement response in the direction of all

degrees of freedom (surge, sway, heave, pitch, roll, and yaw)

when the platform is subjected to wave loading and/or ground

motion.

2) Response spectra (i.e., variation of response amplitudes with

respect to wave period) for all degrees of freedom.

3) Effects of variations in several different parameters.

4) Effects of coupling and nonlinearities.

Research Plan

In order to accomplish the objectives set forth in this project,
the following research plan was developed and undertaken:

1) Literature search and choice of the most appropriate dynamic

analysis of TLP1s.

2) The development of a deterministic dynamic analysis model.

3) Verification of mathematical model.
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4) Parametric studies to identify design criteria.

Many attempts have been made to simulate, or calculate, the dynami

response of tension-leg platforms. A review of previous work was under

taken with the objective of sorting out the important parameters influ¬

encing the structure's behavior. Previous attempts to model the re¬

sponse of tension-leg platforms have neglected either coupling or non-

linearities or both, and none have addressed the possible effects of

ground motion.

The development of a complete deterministic dynamic analysis model

involves the formulation of a nonlinear stiffness matrix, selection of

a suitable wave theory, derivation of complete forcing functions, selec

tion of an efficient numerical method capable of carrying out the solu¬

tion of nonlinear coupled differential equations in the time domain,

and development of an appropriate computer code to perform the dynamic

response calculations. Wave forces and ground motion are two of the

environmental loadings which could be applied to the offshore structure

Time histories of the complete response of the model to these environ¬

mental forces are generated. A parametric study is carried out in an

effort to determine the significant design parameters that need to be

considered in the design and analysis of tension-leg platforms.

Review of Previous Research

Various methods of dynamic analysis for offshore structures sub¬

jected to wave loading have been presented in recent technical litera¬

ture (2, 5, 6, 12, 14, 22-24, 31, 35, 38). Linear or piecewise linear

mathematical models to analyse response in the frequency domain have
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been employed by many researchers (2, 5, 14, 24, 31, 38); whereas non¬

linear time domain analyses were performed by others (6, 12, 23, 35).

Frequency domain or spectral analysis models are based on a linear

formulation of the dynamic problem. Nonlinear terms inherent in the

forcing function, and the relative displacement, velocity, and accel¬

eration between the structure and the fluid particles are neglected.

Wave forces are integrated up to the mean water level and at the origi¬

nal position of the platform. It is also assumed in frequency domain

analysis that coupling between degrees of freedom can be neglected or

taken into account by linear superposition. Moreover, spectral models

are capable only of finding maximum response amplitudes, and not time

histories of the response as is the case in time domain analyses.

Nonlinear and coupling effects are important and can have signifi¬

cant effects on the structure's dynamic behavior. Time domain (or

deterministic) models are capable of handling all kinds of nonlineari¬

ties. In time domain analysis force integration is carried out up to

the instantaneous wetted surface and at the displaced and rotated posi¬

tion of the platform. The benefits of time domain analysis include the

ability to incorporate any type of nonlinearity in force which can be

adequately described, and the availability of response time histories

to aid in assessment of the effects of coupling between degrees of free¬

dom. Such nonlinear and coupling effects cannot be easily included in

a frequency domain even with approximations such as equivalent lineari¬

zation or linear superposition.

Previous nonlinear deterministic models did not account for all

types of nonlinearity and coupling. Typically they included a numerical
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integration of wave force equations along each segment of the platform

at each iteration for every time step. Some also included a nonlinear

finite element formulation to describe the nonlinear stiffness of the

anchor lines. These analyses are generally very expensive. The cur¬

rent model attempts to eliminate or minimize the effects of the follow¬

ing assumptions which are common to most published analyses:

1) Equivalent linearization of nonlinear terms in the anchoring

stiffness and fluid drag forces.

2) Neglecting coupling effects between degrees of freedom.

3) Numerical integration of wave forces at every time step.

4) Omission of ground motion in the forcing functions.

Frequency domain analysis is inexpensive and may be adequate for

a preliminary look at the dynamics of the problem but it is not suffi¬

cient for a complete and accurate prediction of a coupled nonlinear

response of the structure. Hence, a deterministic approach is needed

to account for the nonlinear and coupled behavior involved in the prob¬

lem. The complete deterministic model presented in this research at¬

tempts to satisfy the requirements listed above and to include the

effects of ground motion as well as water waves.
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CHAPTER II

FORMULATION OF STIFFNESS

General

A review of previous work related to dynamic analysis of TLP's

indicates a need for a complete nonlinear deterministic dynamic analy¬

sis model. The development of such a model involves the formulation

of a nonlinear stiffness matrix which describes the behavior of the

anchoring cables and buoyant forces. The model developed in this re¬

search utilizes nonlinear stiffness coefficients based on derived

stiffness-displacement relationships which are functions of the instan¬

taneous position of the structure. These stiffness functions are

coupled as well as nonlinear.

The tension-leg platform considered in this model consists of four

corner columns which are linked to vertical tethers, four middle col¬

umns, two main hulls, and two cross bracings (see Figure 1). Specifi¬

cations of the structure dimensions, masses, mass moments of inertia,

added masses, center of gravity, depth of submergence (draft), cable

stiffness and initial cable tension are required to complete the de¬

scription of the TLP. This chapter presents details of the development
of a complete nonlinear stiffness formulation.

Derivation of Nonlinear Stiffness

Degrees of Freedom

Since the structure is considered as a rigid body, the motion will

consist of six degrees of freedom: three translational and three
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Corner Column

Middle Column

Hulls

Cross Braces

16 m

3.5 m

13 x 9.5 m

16 m

Figure 1. Typical Tension-Leg Platform
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rotational. The coordinate axes and the degrees of freedom used in the

analysis are presented in Fig. 2. Surge, sway, and heave are defined

as the horizontal motion along the x-axis, the horizontal motion along

the y-axis, and the vertical motion along the z-axis, respectively.

Pitch, roll, and yaw are defined as the rotational motion about the

y-axis, the rotational motion about the x-axis, and the rotational mo¬

tion about the z-axis, respectively. For the purpose of this report,

the surge, sway, heave, pitch, roll, and yaw are numbered 1 through 6,

respectively.

Derivation of Stiffness Coefficients

A nonlinear stiffness matrix [K] including all six degrees of free¬

dom is formulated, where k^. is the force in degree of freedom "i" due
to an arbitrary displacement in the direction of degree of freedom "j",

with all other degrees of freedom restrained. To derive the nonlinear

stiffness coefficients, each degree of freedom is given an arbitrary

displacement and the forces developed constitute the coefficients in

the corresponding column of the stiffness matrix. The coefficients of

the first column of the stiffness matrix are found by giving the struc¬

ture an arbitrary displacement x in the surge direction as shown in

Figure 3. The static equilibrium forces exerted on the structure at

its original position are shown in Figure 4. The static equilibrium
forces are the weight of the structure, W, the buoyancy force, B, and

the initial tension (or pretensioning force), 4Tq. Through summation
of forces in the vertical direction one obtains:
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2

Fig. 2 - Coordinate System and Structural Degrees of Freedom

Fig. 3 - Buoy with a Unit Displacement in the Surge Direction
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+fZF = 0

F - 4T - W = 0 .B o (1)

The forces acting on the structure with a displacement, x, in the di¬

rection of surge are shown in Figure 5. A sum of forces in the x-

directi on yields:

t£Fx = 0,

kn - 2[2(T0 + AT1)X] = 0, and

(2)kll = 4(To + AT1)s'in Yx>

where Tq is the value of the initial tension in each leg. AT^, is the
increase in tension in each leg from the x-displacement, and y is the

A

angle of inclination of the legs with respect to the vertical, and it

is given by:

The elongation in the chain length is

hence

AT1 kc A^l*
where kc is the stiffness of the chain for each leg.
Now, summing the forces in the vertical direction gives:

+tZFz = 0,

k31 + FB “ W “ 2[2(Tq + AT1)z] = 0, and

k31 + (pB - W) - 4(Tq + ATX) cos yx = 0,
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Fig. 4 - Static Equilibrium Forces

2(T ^T- 2( + ■' T.

Fig. 5 - Forces Resulting from a Surge Disolacement
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where

l

Recalling Equation (1), Fg - W = 4TqS

k31 = 4Tq(cos yx - 1) + 4 AT1 cos yx . (3)

In summing the moments about the y-axis vertical forces produce no

moment; therefore only horizontal components of the tension in the

chain are considered:

k41 + 4(To + AVx (h) = °>

k41 = -4(Tq + ATi) sin Yx (h) •

Combining this with Equation (2) yields:

(4)

The coefficients of the second column of the stiffness matrix are

found by giving the structure an arbitrary displacement in the sway

direction with all other degrees of freedom (d.o.f.'s) restrained. The

coefficients are identical to those of the first column with change in

notations as follows:

k22 = 4<To + A1V sin Yy * (5)

k32 = 4VC0S Yy - !) + AT2 cos Yy » and (5)

(7)
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where

sin Yy
y~ - -

i/fc2 + y2
3

COS Yy
1

it2 + y2
3

and At = kc ( \jl2 + y2 - £) .

The coefficients of the third column of the stiffness matrix are

found by giving the structure an arbitrary displacement in the heave

direction, keeping all other d.o.f.'s restrained. The corresponding

forces acting on the structure are shown in Figure 6. A sum of forces

in the z-direction yields:

33

Fig. 6 - Restoring Forces: a) at Equilibrium Position
b) axter Heave Displacement
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+^ZFz = 0 ,

k33 “ W " 4'To + AlV + <FB " AFB^ = 0 5 and

k33 + (FB - W - T0) - AFg - 4AT3 = 0 .

However, (FD - W - 4T ) = 0 from Equation (1); therefore,
D 0

= AFg + 4ATg , (S)

where AFg = pgAV, p is the mass density of water, g is the acceleration
of gravity, AV is the change in submerged volume, and ATg is the change
in tension in each leg arising from heave.

The coefficients of the fourth column of the stiffness matrix are

found by giving the structure an arbitrary rotation about the y-axis

with all other d.o.f.'s restrained. Figure 7 shows the corresponding

forces acting on the structure. Summing the moments about the y-axis

gives:

k44 PB e4 2<To + A^*4^ r + 2Hq ” ^*4) s 0

which can be written as:

k44 PB e4 + 2 A"^4 r + 2 ^4 + ^ T (r-s), (9)

where ed is the eccentricity of the buoyancy force calculated accordingH
I

to the formula e^ = , where 1^ is the moment of inertia of the cross
section of the structure intersecting the water surface, about the y-

axis, and V is the volume of the submerged portion of the structure.
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B

Fig. 7 - Restoring Forces Corresponding to a Pitch Rotation
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From geometry (see Figure 7) d, r, s, 4^, AL^, and AL^ are calculated
as follows:

dx = /h2 + a2 ,

r = d1 cos (4^ - ay) ,

s = d1 cos (4^ + ay) ,

i= tan"1 (h/a) ,

Al_4 - h - d^ sin (4^ - oty) , and

AL^ = d1 sin (ipj + ay) - h .

Summing the forces in the vertical direction gives:

+tlF = 0 5

k34 + FB " 2(T + AT4) " 2(T “ AT^) - W = 0 ,

k34 + (FB - 4T - W) - 2AT4 + 2AT4 = 0 ,

k34 = 2 AT4 - 2 AT^ , (10)

where AT. = k AL» and ATI = k ALi4 c 4 4 c 4

The coefficients of the fifth column of the stiffness matrix are

found by imposing an arbitrary rotation about the x-axis, keeping all
other d.o.f.'s restrained. The resulting coefficients are identical

to those of the fourth column with a change in notation as follows:
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k55 = FB e5 + 2 AT5 U + 2 AT5 V + 2T^U " V^5 and

k35 = 2 AT5 " 2 AT5 ’

where

d2 = /h2 + b2

u = d2 cos (i>2 + ax)

V = d2 cos 1

CM ax)

lp2 =
= tan

-1
(h/b) »

AL5 = h •- d
2 sin (^2 “

AL5 ii Cl
k> si n (ip2 X

a+

AT5 o
J

ii AL
5 5

-

LO
1—<]

o
-XII AL l

5 *

(ID

(12)

The coefficients of the sixth column of the stiffness matrix are

found by giving the structure an arbitrary rotation about the z-axis

with all other d.o.f.'s restrained. The forces acting on the structure

arising from yaw rotation are depicted in Figure 8.
A sum of the moments about the z-axis gives:

k66 ‘ 4(T + ^Tg)(j) /a2 + b2 = 0 , and
cj)(a2 + b2)

il2 + $2(a2 + b2)
k66 - 4(T + AT6) (13)
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Fi9* 8 - Horizontal Restoring Forces Corresoon^inn
to a Yaw Rotation '

$ a2+b 2

Fig. 9 - Leg Forces Resulting from a Yaw Rotation
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where

* + b'- — = sin y , and
j+ <j>2(a2 + b2)

ATg = kQ ( Z2 + (j)2 (a2 + b2) - £)

A summation of forces in the vertical direction gives:

t+EFz = 0 , and

1*36 + fb ’ W “ 4(T + ATg) cos <J) * = 0 ;

but F„ - W = 4T : therefore,
D 0

k^g = 4T (cos <j)‘ - 1) +4 ATg cos 4>' , (14)

where

p
cos <p' = —. ■ (see Figure 9) .Il2 + cf>2 (a2 + b2)

Two significant aspects can be noted concerning the derived stiff¬

ness coefficients: coupling and nonlinearity. Coupling terms are the

nondiagonal coefficients of the stiffness matrix. Heave is coupled to

surge, sway, pitch, roll, and yaw, respectively (Equations (3), (6),
(10), (12), and (14)). Further, pitch is coupled to surge, (Equation
(4)), and roll is coupled to sway (Equation (7)).

The stiffness matrix, including all of the coupling terms de¬

tailed above, is:
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Surge kn 0 0 0 0 0

Sway 0 k22 0 0 0 0

Heave k31 . k32 k33 k34 k35 k36
Pitch k41 0 0 k44 0 0

Roll 0 k52 0 0. k55 0

Yaw 0 0 0 0 0 k66

As will be shown later in this report, coupling has a significant

effect on the calculated response of the structure. Coupled equations

of motion are intractable in frequency domain models, and nonlinear

time domain analysis published in the literature generally neglected

coupling effects.

As shown above, the stiffness matrix is asymmetric. This implies
that some degrees of freedom are coupled to other degrees of freedom,

but not vice versa. For example, this is apparent in the heave degree
of freedom (third row and third column of the stiffness matrix). The

heave row contains only nonzero terms; i.e., heave is coupled to surge,

sway, pitch, roll, and yaw. However, the heave column contains only
one nonzero term (kgg); i.e., as the structure moves in the vertical
direction (heaves), there is no resulting motion in the other direc¬

tions. By the same argument, pitch is coupled to surge, and roll is

coupled to sway, but not vice versa. Moreover, other types of coupling
occur between degrees of freedom as can be seen later in the derivation

of the forcing functions.

Another significant aspect of the stiffness matrix is the non¬

linearity of its coefficients. For example, sine and cosine terms and



square and square root terms contribute to the nonlinearities of the

stiffness coefficients (see Equations (1) through (14)). Since each
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coefficient k.. is equal to the stiffness force at degree of freedom
• J

"i" due to an arbitrary (and not a unit) displacement in the direction

of degree of freedom "j", the sum of coefficients in each row of the

stiffness matrix will give the total stiffness force "K.11 of that par¬

ticular degree of freedom. Hence,

6
58 2 k.. (15)1

j=l

Here, {K} represents a force vector equivalent to the product of the

stiffness matrix and the displacement vector in a linear system.
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CHAPTER III

ENVIRONMENTAL FORCES

General

Tension-leg platforms can be subjected to various environmental

loads including waves, currents, earthquakes, wind, ice, etc. In this

model, only wave and earthquake forces are considered. The effect of

current on the dynamic effect of the TLP is small (Kirk & Etok, 1979),

and hence it is not considered in this analysis. Dynamic effects of

wind forces, however, are of significant importance in the analysis of

TLP's (Kareem, 1980) but are out of the scope of this research.

The forces acting on the platform are classified as hydrostatic

(arising from buoyancy), restoring stiffness (arising from the pre¬

tensioned cables), hydrodynamic, and inertial (arising from ground

motion). The hydrodynamic forces consist of inertia and drag caused

by wave particle acceleration and velocity, and of slowly varying drift

(in irregular waves) caused by cross-modulation effects between wave

frequency components in the sea spectrum. Earthquake excitations con¬

sist of horizontal and vertical base accelerations arising from earth¬

quake ground motions.

Regular Waves

The formulation of wave forces involves the selection of a wave

theory that yields a reasonable representation of the water waves in

terms of particle kinematics. It also involves the selection of a

force calculation method which utilizes the fluid particle velocities
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and accelerations obtained from the wave theory to yield wave forces

that agree well with experimental results and best represent the actual

forces produced by the waves.

Selection of Wave Theory

Theoretical simulation of water waves, and of sea motion in gen-

eral, involves rigorous mathematical analysis. The basic hydrodynamic

equations that govern the wave kinematics are the equation of continuity

(Laplace's equation) and the equation of momentum (Bernoulli's equa¬

tion) (47). The form and solution of these equations vary, depending

on the intended application of wave kinematics. However, in general,

all solutions assume incompressible, inviscid, and irrotational fluid

particles. The simplest solution of the hydrodynamic equations in¬

volves a further assumption, that the waves are of small amplitude

(H/2) compared to the water depth (d) and the wavelength (L). This

solution was introduced by Airy (Reference 1), and became known as the

linear wave theory.

Higher order wave theories are not based on the assumption of

small amplitude to solve the hydrodynamic equations. Instead, they
include higher order terms (terms higher than first order) in the solu¬

tion. Stokes (Ref. 49) developed equations for waves of finite ampli¬
tude by accounting for higher order terms. The Stokes wave theories

have been developed for terms up to fi'fth order. The success!vely

higher order theories give wave surface profiles that are steeper in
the crests and flatter in the trough than those given by the linear
wave theory. Dean (Ref. 11) developed the stream function wave theory.
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This theory, which is a numerical one, has demonstrated good agreement
2with experimental wave channel test results for a wide range of H/T

ratios (Ref. 27). Many other analytical and numerical wave theories

have been developed and can be found in the literature (see for example

Refs. 9, 10, 25, 34).

The linear wave theory has been found to give wave forces close

to those obtained using higher order wave theories, provided a proper

method of calculating wave forces is used with a suitable choice of

the fluid added mass and drag coefficients (Refs. 23, 24, 35). In ad¬

dition, it has been shown to provide good solutions in deep water;

i.e., for water depth to wave-length ratio greater or equal to 0.5

(Ref. 27). For the range of water depths, wave periods and wave heights
used in this analysis the linear wave theory is applicable (Ref. 26).

Therefore, the linear wave theory is used in this model because it is

practical, easy to apply, reliable over a large segment of the whole

wave regime, and sufficient to obtain the kinematics of waves to be

used in the dynamic analysis of TLP's in deep water.

A schematic diagram of an elementary, sinusoidal progressive wave

is presented in Fig. 10. In deep water, the velocity and acceleration

of the fluid particle at depth z below the mean water level are re¬

spectively given by the linear wave theory as:

u = ^ e kz cos [k(X - ct)] (16)

and

u
2tt2H
~Tr~

-kz
sin [k(X - ct)] (17)



Fig.10-SchematicDianramofElementary,SinusoidalProgressiveWaves
ro
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where H, T, and c are the wave height, period, and celerity, respec¬

tively, and k = 2 ir/wavelength.

Justifications for Using Mori son1s Equation

Experimental studies by Morison, et al. (Ref. 33), led to the

formulation of a wave force equation that became known as Morison's

equation. This equation has been widely used in the last three decades

in the calculation of wave forces on offshore structures. The equation

consists of a drag term, as in the case of flow of constant velocity,

and an inertia term due to the acceleration of the fluid particle.

The original form of Morison's equation is:

F = 0.5 pCdD |U|U + Cm pir D2/4 (18)

where F is the force per unit length experienced by a cylinder; U and

dU/dt represent the undisturbed velocity and acceleration of the fluid,

respectively; and Cm are the drag and inertia coefficients, and p
is the fluid mass density.

Mori son's equation has been widely accepted for force computations

because of good correlation with experimental results in a large number

of practical cases. However, the use of Morison's equation gave rise

to a great deal of discussion on what values of the two coefficients

should be used (47). Experimental results by different researchers

were scattered and divergent. However, the force transfer coefficients

C(j anc* Stis ^or one“dimensional flow over a circular cylinder, have been
well studied by Sarpkaya (Ref. 45) and Garrison (Ref. 15), and their

experimental results have produced a very promising approach for the



27

systematic analysis of test data. Sarpkaya and Isaacson (47) presented

the results of extensive experimental studies related to the variation

of Cm and with Reynold's number and the so-called Keulegan-Carpenter
number. They also presented the variation of Cm and with respect
to a "frequency parameter" 3, where

8 = Reynold's number = V/v = D2, ,p Keulegan Carpenter number UmT/D
The value of 6 remains constant for a wave of constant period, T, and

constant temperature (and hence constant kinematic viscosity, v). They

presented Cm and versus Keulegan-Carpenter number, K, for different
values of the frequency parameter, 6, ranging from 500 to 5000. For

high values of 3, the variation of Cm with respect to K was found to
remain constant and have a value ranging between 1.5 and 2.0.

The platform used in this study consists of members having diame¬

ters ranging between 3.5 and 16.0 meters. Table 1 shows the variation

of 3 with respect to wave periods and cylinder diameters used in this

study.

It can be seen that the minimum value of 3 within the range of

periods and diameters used is 4083. Therefore, according to experi¬

mental data (47), the variation of Cm with respect to the frequency
parameter, 3, can be neglected. Since 3 is a function of the wave

period, T, the variation of Cm with respect to T also is negligible.
Hence, the use of a constant value of the added mass is reasonable.

A similar argument also applies to the coefficient of drag C^.
Mori son's equation provided a hypothesis that expresses the force

both as a function of time and other independent parameters, for the
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TABLE 1
Variation "of Frequency Parameter" with Respect

to Wave Period and Cylinder Diameter

T O) 6 = D2/vT
(sec) (rad/sec) D = 3.5 m D = 16.0 m

5 1.25 24,500 512,000

6 1.05 20,416 426,000

8 .78 15,312 320,000

10 .63 12,250 256,000

15 .42 8,166 170,000

20 .31 6,125 128,000

25 .25 4,900 102,000

30 .21 4,083 85,000

case where the wave slope and associated pressure gradient are roughly

constant across the diameter of the cylinder and the wave scattering

is negligible. Mori son also assumed that in the region near the cyl¬

inder the kinematics of the undisturbed flow do not change in the

incident wave direction. However, since the kinematics of the flow do

vary with distance, the above assumptions restrict the D/L ratio to a

small value. Sarpkaya (Ref. 46) and Leonard, et al. (Ref. 27)* sug¬

gested that the application of Mori son's equation be limited to D/L

values of less than 0.2. They also suggested that in cases where D/L

is larger than 0.2, wave diffraction oqcurs. In the diffraction dom¬

inated region the total inertial force results from the sum of two

components (Ref. 46): the force from the pressure field of the un¬

disturbed fluid (the incident wave), and that from the disturbances
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caused by the presence of the body (scattered wave).

Diffraction forces arise from the scattering of incident waves by

the structure. These forces become significant when the structural

member dimensions reach a substantial fraction of the wave length.

Models for describing the force arising from diffraction have been de¬

veloped by McCamy and Fuchs (Ref. 29) and others, generally by the use

of potential theory with finite elements or finite difference methods.

Significant contributions to the computation of hydrodynamic forces

and moments on large gravity-type platforms have been made by Hogben

and Standing (Ref. 19), Garrison and Stacy (Ref. 16), Mei (Ref. 32),
Isaacson (20), and others, using diffraction theory.

In conclusion, the use of Mori son's equation in wave force calcu¬

lations is justified if the following conditions are met:

1) For D/L to be less than 0.2, with the largest diameter of 16

meters used in the analysis, the wave length should be larger
than 5D, i.e., 80 meters.

2) For a maximum diameter of 16 meters, the wave height should be

greater than 5 meters to avoid the diffraction dominated re¬

gion (see Ref. 46).

3) The original form of the equation should be modified in order

to account for the relative velocity and acceleration between

the oscillating structure and the fluid particles.

4) Reasonable values of the force transfer coefficients and

Cm may be obtained from the literature (e.g., recommendations
of Garrison (Ref. 15) and Sarpkaya (Ref. 46)).
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Random Waves

A random sea is comprised of a group of waves, of various sizes,

lengths, and directions, jumbled together as a result of wind-generated

disturbances of different intensities, locations, and directions. A

wind-wave surface is characterized by the presence of a great number

of individual, sinusoidal waves with different frequencies, lengths,

heights, and phase angles. Figure 11 shows an irregular wave pattern

formed by linearly superimposing four regular waves having different

characteristics.

Fig. 11 - Formation of Irregular Sea Waves
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One way to define an irregular, or random, sea is that its total

energy must include the sum of the energies of all the individual regu¬

lar waves that make up the sea. Mathematically, a wave system may be

described by what is known as a wave spectrum which provides informa¬

tion about the energy distribution in the regular wave system as a

function of frequency.

The surface elevation spectrum, Sn (w), is an important tool for

a wide range of design and analysis situations in the offshore environ¬

ment. Many well known one-dimensional surface elevation spectra have

been employed to describe ocean waves. The most commonly used spectra

are the Pierson-Moskowitz (39), the Bretschneider (4), and, more re¬

cently, the J.O.N.S.W.A.P. spectrum (17).

The Pierson-Moskowitz spectrum may be written as

Sn (u>) = Sfl exp {- } (19)

where

a = 0.0081 ,

B = 0.74 , and

wo = g/u ,

U is the characteriStic windspeed at 19.5 m above still-water level,
and g is the acceleration of gravity (Ref. 40). The Bretschneider

spectrum is similar to that of Pierson-Moskowitz except that it is

given in terms of the significant wave height, H , and peak frequency,
Wo, rather than the characteristic wind speed, U.

The J.O.N.S.W.A.P. spectrum accounts for the effect of fetch-



limited conditions and is much more sharply peaked than the Pierson-

Moskowitz spectrum. It may be written as

32

Sn (w) = exp {-1.25 (^)n y3 (20)

where a = exp {-(cjo-(jo0)2/2a2a)o} ,

r
a = 0.07 for aj < aj0

a

a = <

= 0.09 for u) > uj0

a = 0.066 (gF/U2)'0'22 ,

ujo = 2.84 (2tt) (gF/U2)"0"33

Y = 3.3 ,

U = characteristic windspeed , and

F = fetch

In this study, only spectra of Pierson-Moskowitz and J.O.N.S.W.A.P.

(Figures 12 and 13 are employed to study the dynamic response of

tension-leg platforms of irregular waves.

The linear wave theory allows linear superposition of a finite

number of waves with amplitudes derived from the spectrum Sn (oa). The

surface elevation may thus be written as (Refs. 3, 50):

N

(21)

l/2 Sn (00.) Au) ,
J

where
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Fin. 12 - Pierson-Moskowitz Sea Spectrum

Fig. 13 - JONSWAP Sea Spectrum
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0. = phase angle ,3

and k- is the wave number given by the linear wave theory as3

(joij = g k. tanh k.d ,

where d is the water depth.

Both Pierson-Moskowitz and JONSWAP spectra show that oj is only

significant in the range of 0.1 to 1.2 radian/second. In this study,

12 frequencies are considered in the above range with Aoj of 0.1 radian/

second.

Further application of the linear wave theory yields the kine¬

matics of the random wave. Thus the horizontal fluid velocity u can

be written as

N cosh k. (z + d)
u = “j aj — cos {kjx - V + 9j> <22>

vJ i \J

The horizontal fluid acceleration is the time derivative of the hori¬

zontal velocity, hence

. N cosh k. (z + d)
dt = 2 “j aj sinh "k-d sin V ' V + ej> (23)

J ^ J

Similarly, the vertical component of the fluid velocity and accelera¬

tion can be written, respectively, as

N cosh k. (z + d)
v = I to - a • . /- ■,—

•=1 3 3 sinh k.d
sin (k-x - w.t + 0.)

0 J J
(24)

and

dv
dt

N cosh k. (z + d)

jfj ‘“j aj sinh (kjd)' cos <kjx - ^ + ej> (25)
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Wave forces and moments are then calculated in the same method as

for regular waves using Mori son's equation.

Wave Drift Forces

Wave drift forces on surface piercing cylinders are second order

quantities. They arise as a result of second order terms in Bernoulli's

equation. These forces are small in magnitude but can be important in

the horizontal oscillations of moored objects such as tension-leg

platforms.

Wave drift forces consist of two components: a steady component

and an oscillating component. The steady component arises from the

incident, diffracted and radiated waves and is present in regular or

in random seas (7 ). The oscillating component is present only in ir¬

regular waves or random seas. It is a slowly-varying force with a

period much higher than those of the wave; i.e., on the order of 100

seconds. The period of the oscillating component is caused by cross¬

modulation effects between wave components in the wave spectrum and is

dependent on the frequency difference in the wave components. When

this period approaches that of the moored structure, the response of

the structure can be significantly amplified; however, wave damping
can considerably reduce the effect of slowly-varying drift forces (52).

Experimental as well as theoretical studies have been conducted

to determine drift forces and their effect on ships (7, 8, 13, 18, 30,

36, 40-44, 52). A well documented review of the various approaches is

presented by Chakrabarti (Ref. 8 ). The theoretical studies are based

on either conservation of momentum and energy principles or on the
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pressure field on the surface of the object.

Havelock (18), Maruo (30) and Newman (36) have shown that the

drift force is proportional to the square of the wave height. The mean

drift force (steady component) on a surface piercing cylinder of radius

r in regular wave groups of height H is given by

Fd = pg § H2 R2 M (26)

where R2 (oo) is a reflection coefficient that can be calculated experi¬

mentally as:

R (oi)
(27)

The reflection coefficient is given by Kirk & Etok (24)^ as a function

of wave frequency as:

r

R (go) = <
1.3 rw2/g

1.3

; for rw2/g <_ 1

; for rw2/g > 1

In random waves the mean drift force is obtained from the

expression

F = pg r / (go) R2(go) dco (28)

where Sn (go) is the wave amplitude spectrum of the random sea (Ref. 42).

The spectrum of the slowly-varying component of the drift force

in regular or irregular waves is given by Pinkster (41) and Rye (43) as

Sp ((d) = 2 p2g2r2hd
Sn (go1) Sn (go1 + go) R2 (go1 + |r) dGo'

0

(29)
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Maruo (Ref. 30) derived drift force equations based cn the con¬

servation of wave momentum and energy. Newman (Ref. 36) extended the

momentum relations derived by Maruo to obtain drift forces on arbitrary

shaped bodies in terms of the Kochin function. More recently, Salvesen

(44) used the formulations based on Maruo and Newman to calculate the

drift forces on tension-leg platforms using a finite element approach,

but only considered regular wave conditions. In this study, Equation

(29) is used, because of its simplicity and practicality, with the

J.O.N.S-.W.A.P. sea spectrum Sn(oo) to obtain the spectrum of the slowly

varying drift force on each of the surface piercing cylinders. More

complex drift formulation procedures are not utilized herein since

drift forces are out of the scope of this research.

Using Forier transforms, the drift force spectrum is transformed

into a function of time, (t), thus,

cos (uit + e) (30)

Equation (30) is integrated numerically with the limits of integration

from 0.02 to 1.2 rad./sec, thus,

COS (a) , t + 6.j ) (31)

Since the drift force acts only on surface piercing cylinders, there¬

fore only the four corner columns and four middle columns are considered

in evaluating the total drift force on the platform.

Procedure for Wave Force Calculation

Wave forces are calculated from a modified version of Mori son's

equation and include the relative velocity and acceleration between

the structure and the fluid particle. Equation (18) is modified to
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account for the relative motion between the structure and the fluid

particle, and separated into drag and inertia terms. The drag and

inertia forces on an element dz along the length of the cylinder

become:

6F . = # Cn D U ,III ,1dzd 2 D rel 1 rel (32)

and 6F, = P1^- [Cm U - (C - 1) x] dzI 4 m m (33)

where p is the mass density of the fluid, D is the diameter of the

cylinder, U -j is the relative velocity given by

rel
= u - [x - (z - z) a + j x.i*] (34)

12and x = x-(z-z)a + 2- x.a (35)

Equations (34) and (35) are derived based on Figure 14 where x, x, a,

a are the velocity, acceleration, angular velocity, and angular accel¬

eration of the center of gravity (in this case the center of rotation)

of the structure, respectively.

Substituting Equations (34) and (35) into Equations (32) and (33),

respectively, yields:

<5Fd = f- Cd D I u“Cx-(z-z)a + j x^a2] | {u-[x-(z-z)a + j x^a^Ddz, (36 )
1

.. *2-

and <SFj = [Cm u - (Cm-1) (x-(z-z) a + j xi-a2}]dz4 (37)
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Fig. 14 - Velocity of Element dz Along ith Column
Arising from Pitch or Roll
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These two equations are integrated along the length of each column

and hull to obtain the total instantaneous force on the structure.

The contribution of the wave forces on the cables to the total wave

force on the platform is very small. Jeffreys and Patel (Ref. 21)

showed that the modification of the overall platform response to waves

due to the inertia and drag forces on the tethers is negligible.

Therefore, in this study, the wave forces on the cables are neglected

in the dynamic analysis.

The moments of these forces about the axes of rotation are found

by multiplying the force equations by the appropriate moment arms and

then integrating over the length of each cylinder to obtain the total

moments. It should be noted that despite the nonlinearity of the drag

force and moment equations and the coupling of pitch and surge or roll

and sway in both the inertia and drag equations, a closed form integra¬

tion can be carried out by hand, thereby avoiding the need for time

consuming numerical integration. This method of force calculation is

the major contributor to the efficiency of the mathematical model and

computer program developed in this study.

A force calculation method similar to that of Kirk and Etok (Ref.

24) is used with the following major changes:

1 - Inclusion of drag forces

2 - Incorporation of relative motion between structure and fluid

particles

3 - Accounting for instantaneous position of structure

4 - Inclusion of coupling terms in wave force derivation
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Summary of Wave Forces

The following outline contains a complete description of the wave

force equations which must be derived:

1) Horizontal forces

a) Inertia forces on columns

b) Drag forces on columns

c) Inertia forces on hulls and cross braces

d) Drag forces on hulls and cross braces

e) Slowly varying drift forces on surface piercing columns

2) Vertical forces

a) Vertical inertia forces on hulls

b) Vertical drag forces on hulls

c) Dynamic pressure on corner column bases

3) Moments of forces about x, y, and z axes

a) Moments due to inertia forces on columns

b) Moments due to drag forces on columns

c) Moments due to horizontal inertia forces on hulls

d) Moments due to horizontal drag forces on hulls

e) Moments due to vertical inertia forces on hulls

f) Moments due to vertical drag forces on hulls

g) Moments due to dynamic pressure on corner column bases

Details of the complete derivation of wave forces and moments are

presented in Appendix A. A summary of the resulting forces is given

be!ow:
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Horizontal forces

12
Surge (x-axis): F = 2 (FT + Fn ) cos a + Fv + Fv (38)XT i =5 xi ui xx

12
Sway (y-axis): F = 2 (F- + FQ ) sin a + F + Fyl i=5 i i y y (39)

Vertical forces

Heave (z-axis): F = F + F + Fv '

Zj v v cv
(40)

Moments

Pitch (about y-axis):

12
Mw = 2 (Mt + Mn ) cos a + M + Mu + MD
Jj LJ-j Vy My My

(41)

Roll (about x-axis):

12
Mv = 2 - (Mt + Mn ) sin a + M + Mu +

XT i=5 *i Di vx Hx
M, (42)

12
Yaw (about z-axis): M = 2 (FT + Fn ) y.

ZT i=5 Ai ui 1
(43)

12
where 2 is the summation over the corner columns (5-8) and the mid-

i=5
die columns (9-12), a is the orientation angle or angle of wave inci¬

dence, F and F are the x-components of the total horizontal inertia
A X
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and drag forces on the hulls, and are the y-components of the

total horizontal inertia and drag forces on the hulls, Fv and Fv are
the total vertical inertia and draq forces on the hulls, F is the

cv

total vertical dynamic pressure force on the bases of the corner col¬

umns, Mj and Mp are the moments of the horizontal forces on the col¬
umns about an axis perpendicular to the wave direction, M and Mu

y Hy
are the moments of the vertical and horizontal hull forces about the

y-axis, Mp is the moment of the dynamic pressure on the bases of the
y

corner columns about the y-axis, M and Mu are the moments of the
vx Hx

vertical and horizontal hull forces about the x-axis, Mp is the moment
of the dynamic pressure on the bases of the corner columns about the

x-axis, and y. is the moment arm, of column i, for moments about the

z-axis.

Earthquake Forces

Horizontal Ground Motion

Platform motion would result from the horizontal and/or vertical

acceleration(s) of the anchors caused by earthquake ground motion.

The platform and the anchoring system can be modeled as a spring-mass

system (Figure 15). Neglecting structural damping in the cables, the

forces acting on the platform may be represented as shown in Figure 16.

The equation of dynamic equilibrium thus can be written as:

Ft + Fr. = Ffl uid (44)

where Fj is the inertia force on the mass, F^ is the stiffness force
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Fig. 15 - Modeling of TLP for Horizontal Ground Motion

FS fi

=fi+fd

Fig. 16 - Forces on the Platform Caused by
Horizontal Ground Motion
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provided by the horizontal component of the cables, and ^ is the
force arising from the fluid-structure interaction caused by the rela¬

tive acceleration and velocity between the platform and the water.

Equation 44 can be rewritten as:

m x + = F
fluid (45)

where x is the total platform acceleration, xr is the relative dis¬
placement (total displacement minus ground displacement), m is the plat¬

form mass and k is the horizontal cable stiffness. Substituting

x = xr + Xg> where x- is the ground acceleration, yields:

m x, + m xg +
= Ffluid (46)

which can be rewritten as:

m x. + kx=-mx_ + Ffluid (47)

where m x is an effective load resulting from ground motion.9

Two different loading conditions are studied, one where both waves

and the earthquake occur simultaneously, and one when the earthquake

occurs in a calm sea. For the first case, the fluid inertia and drag

forces derived earlier can be used for F*,. . in Equation 47. In afluid

calm sea, a simpler formulation is developed for the inertia and drag

forces arising from the interaction between the structure and the fluid

particle (see Appendix B).

An additional effect of the horizontal ground motion is the pitch

and heave arising from their coupling to surge as mentioned earlier in

this report (see Chapter II). The resulting equations of motion for
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pitch and heave are similar to Equation 47.

Vertical Ground Motion

In order to formulate the equation of motion of the TLP subjected

to vertical ground motion, the platform and the cable are modeled as

a spring-mass-dashpot system similar to that for the horizontal compo¬

nent of ground motion. It is assumed that the cables may be repre¬

sented by a massless spring. To verify this assumption, a wave propa¬

gation analysis is performed on the system to study the effect of cable

inertia on the pattern of wave propagation. A computer program de¬

veloped by Lowery (28) based on a wave propagation approach suggested

by Smith (48) is utilized. The program, developed for pile driving

analysis, is modified to adapt for the TLP cable analysis. The TLP

system is discretized as a set of elements consisting of lumped masses,

massless springs and dashpots. The mass of each cable element is cal¬

culated as:

mi - pc Li A *

where pc is the mass density of the cable, L.. is the length of each
element, and A is the cross-sectional area of the cable. The total

structural mass of the platform is lumped in one element.

The spring stiffness of each cable element is calculated as

k -M1 Li

where E is the modulus of elasticity of the cable. The material damp¬

ing of the cable is modeled as dashpots representing viscous damping
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and producing forces proportional to the magnitude of the velocity and

opposite to the direction of motion. The coefficient of viscous damp¬

ing of each cable element is given by

c = 2 E, ]/k. mi ,

where £ is the damping ratio ranging between 0.1 to 1% for material

damping and between 1 and 5% for structural damping.

A sinusoidal forcing function of period ranging between 0.05 sec¬

ond and 0.1 second is input at the base of the system. The results

of the wave propagation analysis are summarized in Table 2 and Table

3 for forcing function periods of 0.05 and 0.1 seconds, respectively.

The variations of the amplification factor of the amplitude of the

output force in each element for the different values of damping ra¬

tios, are shown in Figures 17 and 18, for input function periods of

0.05 and 0.1 second, respectively.

The amplification of the amplitude of the input wave is caused

by the effect of boundary conditions. The platform acts as a stiff

and heavy element and hence it is considered to act as a boundary that

is between a fixed and a free condition. Hence, for an undamped system,

the amplification factor changes between 1.0 (corresponding to a free

boundary) and 2.0 (corresponding to a fixed boundary). It is noted,

however, that the period of the wave as it reaches the top of the plat¬

form is the same as that input at the base of the cables.

From the results of the above analysis, it is noticed that as the

damping ratio increases, the amplification factor decreases and for



TABLE2.AmplificationFactorsofaSinusoidalForcingFunction F=1000sin(40ttt)InputattheBaseoftheCable
Element No.

DampingRatio£,%

0

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.1%

\%o

1

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

2

1.088

1.078

1.071

1.061

1.053

1.047

1.041

1.036

1.032

1.028

1.025

1.019

1.021

3

1.169

1.153

1.141

1.121

1.105

1.092

1.081

1.071

1.064

1.056

1.050

1.039

1.044

4

1.251

1.226

1.208

1.178

1.153

1.134

1.118

1.104

1.094

1.083

1.075

1.059

1.067

5

1.329

1.298

1.272

1.232

1.199

1.174

1.152

1.135

1.121

1.108

1.098

1.079

1.088

6

1.398

1.363

1.333

1.282

1.242

1.210

1.183

1.163

1.145

1.131

1.118

1.097

1.107

7

1.473

1.425

1.390

1.329

1.280

1.241

1.211

1.187

1.167

1.151

1.136

1.112

1.124

8

1.545

1.489

1.444

1.370

1.313

1.268

1.234

1.207

1.185

1.167

1.151

1.126

1.138

9

1.612

1.546

1.492

1.406

1.340

1.290

1.252

1.222

1.199

1.179

1.163

1.135

1.148

10

1.661

1.592

1.531

1.433

1.360

1.305

1.264

1.232

1.208

1.188

1.170

1.142

1.156

11

1.695

1.619

1.553

1.448

1.370

1.313

1.270

1.238

1.215

1.192

1.174

1.146

1.159

45* CO
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0%

0.1

0.2

0.4

0.6

0.8

1.0

2.0

3.0

5.0

7.0%

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.037

1.015

1.007

1.004

1.004

1.005

1.006

1.005

1.003

1.000

1.000

1.074

1.033

1.017

1.008

1.009

1.010

1.011

1.013

1.015

1.002

1.001

1.096

1.050

1.027

1.013

1.013

1.014

1.016

1.017

1.019

1.003

1.001

1.123

1.064

1.037

1.017

1.016

1.018

1.020

1.020

1.014

1.004

1.002

1.148

1.079

1.046

1.021

1.019

1.021

1.023

1.025

1.017

1.006

1.003

1.169

1.093

1.054

1.025

1.022

1.024

1.026

1.027

1.020

1.008

1.005

1.197

1.105

1.061

1.028

1.024

1.026

1.029

1.029

1.022

1.010

1.005

1.214

1.116

1.066

1.031

1.026

1.028

1.030

1.031

1.024

1.011

1.006

1.230

1.123

1.070

1.032

1.027

1.029

1.032

1.032

1.025

1.013

1.006

1.240

1.127

1.072

1.033

1.028

1.030

1.032

1.034

1.026

1.015

1.007
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Fig. 17 - Amplitudes of Propagated Wave in the Cable for
Different Damping Ratios; F = 1000 sin (40 rr t)



ELEMENTNUMBER

51

Fig. 18 - Amplitudes of Propagated Waves in the Cable for
Different Damning Ratios; F = 100 sin (20 tt t)
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5 > 1% the amplification factor approaches 1.0. The author believes

that the damping ratio of the cable (material and structural) is not

less than 1%; therefore, it can be concluded that the effect of con¬

sidering the cable mass in the analysis is negligible. Therefore,

the assumption of a single massless spring, and an equation of motion

similar to Equation 47 is justified.
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CHAPTER IV

MATHEMATICAL MODEL

The structure used in the analysis is represented schematically

in Figure 3. The center of gravity of the platform is assumed to be

located a distance z from the mean water level and a coordinate system

is attached at its origin to the equilibrium position of the center of

gravity. The center of rotation (pitch, roll, yaw) is assumed to be

located at the center of gravity. The platform is modeled as a rigid

body free to translate in three directions (surge, sway, heave) and

rotate about the three axes (pitch, roll, yaw), with restoring forces

that represent the legs (cables or chains) and buoyant forces.

The structure is represented by a mathematical model which can be

reduced to a system of coupled nonlinear differential equations that

are solved by direct numerical integration on a digital computer. The

equations of motion are integrated in a stepwise manner using the

Newmark 3-method (Ref. 37). This chapter presents the development of

a mathematical model, a solution procedure, and a computer code to per¬

form the numerical calculations of the dynamic analysis of tension-leg

platforms.

Equations of Motion

Once the nonlinear stiffness equations have been derived and the

wave and earthquake forces are formulated, a set of coupled nonlinear

differential equations can be assembled to form the basis for a deter¬

ministic dynamic analysis of tension-leg platforms. The equations of
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motion are represented by Equation 48 in matrix form as

[M]{x> + [Kl{x} = (F(x,x,x,t)} (48)

where [M]

[K]

{F}

{x}

{x}

{x}

t

is the mass matrix for all six degrees of freedom,

is a 6 x 6 nonlinear stiffness matrix,

is the vector of forcing functions,

is the structural displacement vector,

is the structural velocity vector,

is the structural acceleration vector, and

is the time.

Equation 48 can be rewritten in vector form as

{m/x^} + {K.j } = {F_. (x,x,x,t) } (49)

where {m.x.} is the inertial force vector in which m^ is the mass of
degree of freedom "i", and x. is the acceleration of the structure in

the direction of degree of freedom "i", (K.} is the coupled nonlinear

stiffness force vector (see Equation 15), and {F.(x,x,x,t)} is the

vector of nonlinear external forces (waves or earthquakes). The equa¬

tions of motion generally describe the dynamic equilibrium between the

inertia, the restoring, and the exciting forces.

Solution Procedure

The equations of motion are both coupled and nonlinear. Hence a

time domain analysis method is required, as mentioned earlier in the

report, to calculate the response of the structure to various types

of loading. The general approach to solving nonlinear equations of
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curves in the time domain.
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Two well known methods of integration have been widely used for

time domain dynamic analysis of fixed, or floating, offshore structures.

The first one is the Newmark-Beta method, and the second one is the

Newton-Raphson technique. The latter does not work well for heave,

roll, or pitch (see Ref. 35). The Newmark-Beta method is more general

and has been used in time domain models for dynamic analysis of fixed

offshore structures, with good results (Ref. 6).

The Newmark-Beta method is used to integrate, in a stepwise man¬

ner, the equations of motion and to obtain time histories of the

structure's response in an iterative manner. The iterative method can

be used to determine the accelerations, velocities, and displacements

of the structure at time tn+^ based on corresponding values at time tp
and the accelerations at t +^. The equations have the following form:

MW* = MV + (1_Y)At MV + yAt MW * (so)

and

xi (tn+l) = MV + At MV + ~ 6) (At)2 j<-j(tn) + e(At)2 x.(tn+1)

(51)

The value of y is usually set to 1/2 by damping considerations and the

value of 3 is chosen in the range of 1/8 to 1/4 for reasons of conver¬

gence. Values of y and 3 of 1/2 and 1/6, respectively, are used in

this model. The vector of accelerations at time tn+^ are found by
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substituting the vectors of velocities and displacements into the equa¬

tions of motion as follows:

<V = C{F<xi(tn+i)’ MW’ W}

- «i(MW)>] (52)

Equations (50), (51), and (52) are solved in an iterative manner. An

assumed value of x. at t is usually chosen equal to the value at

the previous time step. New values of x. and x. at tn+^ are then cal¬
culated from Equations (50) and (51), and a new value of x. is computed

from Equation (52). This process is repeated until the assumed and the

calculated values of acceleration converge within a predetermined

tolerance. The value of the tolerance is established through compro¬

mise between accuracy and computing cost. The 3-method readily accepts

both continuous forcing functions (as in case of waves) and discrete

forcing functions (as in case of earthquakes), and is extended for the

purpose of this study to three dimensions and six degrees of freedom.

Computer Code

A compact and inexpensive computer program has been developed to

perform the numerical calculations of the motion of anchored as well

as floating structures subjected to the action of waves, currents, and

earthquakes. A flow chart of the computer program is depicted in

Figure 19.

The structural geometry, material properties, wave properties and

ground acceleration are input to the program. The displacement,



57

Figure 19. Flow Chart of Computer Program
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velocity and acceleration vectors are initialized and an assumption

for the acceleration vector is made for the next time step. New dis¬

placement and velocity vectors are then calculated based on the assumed

acceleration. The forces and stiffnesses corresponding to these values

of displacements, velocities, and accelerations are then calculated.

Finally, using the equations of motion a new value of the acceleration

is calculated and compared with the assumed value. The process is re¬

peated until the difference between the calculated value and the as¬

sumed value of the acceleration is less than a predetermined conver¬

gence factor. Once the equations of motion are satisfied, the final

acceleration value for this time step becomes the assumed value of

the acceleration for the next time step, and the whole process is

repeated.

At each time step the program calculates:

- The six components of motion (surge, sway, heave, pitch,

roll, and yaw) together with velocities and accelerations.

- The total forces and moments due to waves or earthquake.

- The stiffness vector (restoring forces).
- The tension and tension variation of each leg.

At the end of the analysis the program calculates the maximum values

of the displacements, velocities, and accelerations of the structure,

and the maximum tension and tension variation of each of the four legs.

If plots are desired, the variables of interest can be scaled with

respect to their maximum values and plotted versus time.
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Summary of Dynamic Analysis Model

A complete nonlinear deterministic dynamic analysis model has been

developed in this chapter. The model is based on a set of coupled

nonlinear differential equations integrated in the time domain using

Newmark's Beta Method. Wave kinematics are calculated from the linear

wave theory, and wave forces are calculated from a modified form of

Mori son's equation. Earthquake forces are calculated based on accel¬

erations obtained from ground motion records. The coupling and non-

linearities of the equations of motion are contributed by both the

stiffness and the forcing functions.

A computer program is written to perform the numerical solution

and obtain time histories of the response in all degrees of freedom.

The tension forces in the anchoring legs can be calculated from dis¬

placement time histories of the different degrees of freedom, and time

histories of these forces can be generated. Data used in the computer

program are taken from Kirk and Etok (Ref. 24) with slight changes in

some cases for the sake of a complete and meaningful testing of the

model (see Appendix C).
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CHAPTER V

RESPONSE OF THE MODEL

General

The major objective of the dynamic analysis model presented herein

is to simulate the response of tension-leg platforms to ocean-environ¬

ment loading. In this chapter, the model is tested by the application

of wave loading and earthquake forces. Time histories of surge, sway,

heave, pitch, roll, and yaw are calculated by the model. The relative

importance of design variables for tension-leg platforms is found

through a parametric analysis. These parameters studied include:

wave period, wave height, water depth, cable stiffness, initial tension,
and direction of wave propagation. The importance of coupling and

nonlinearity is demonstrated through comparison of the response of
the coupled system to that of the uncoupled, and the response includ¬

ing nonlinear terms to that by existing linear models.

Response to Regular Waves

The platform data listed in Appendix C were used to test the

mathematical model developed herein. A coefficient of inertia (Cm)
of 1.5 and a coefficient of drag (C^) of 1.0 were used in the wave
force calculations of Chapter II, and assumed to be constant through¬

out the analysis. A wave height of 15.0 meters and a wave period of
17 seconds were chosen to describe a "significant wave" to be used in

the regular wave analysis. Simulation of various regular sea states

of interest was done by varying the wave height and the wave period.
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Time Hi stories

Time histories of response in the direction of each of the six

degrees of freedom were obtained. Time histories of surge, sway,

heave, pitch, roll, and yaw, respectively, for the significant wave

described above and for a wave propagation angle of 35 degrees from

the x-axis are depicted in Figures 20-25. Responses for all six de¬

grees of freedom, with inertia and without drag, are presented in

Figures 26-31 for the same sea state. A comparison between the re¬

sponses including drag forces and those that exclude drag reveals
that the nonlinear drag forces (sometimes called interaction forces)
contribute a significant amount of damping to the displacement re¬

sponse. The periods of forced vibration for all six degrees of free¬
dom of the structure for the sea state described above are shown in

Table 4. Also included in Table 4 are the response amplitudes (or

maximum values) of the structure's six degrees of freedom for both

cases (including drag and excluding drag). Table 5 includes the maxi¬
mum values of the platform velocities and accelerations for all six

degrees of freedom. The time histories of the motion (displacements,
velocities, and accelerations) are important input for analysis of the

tension in the anchor legs, as well as in analyzing the stresses in

the various members of the structure caused by hydrodynamic and earth¬

quake forces.

Response Spectra

Plots of maximum amplitude of vibration versus wave period (or
wave frequency) will be referred to herein as response spectra. Two



TABLE 4

Periods of Vibration and Response Amplitudes

Degree of
Freedom

Peri od
(sec)

Response Amplitude
Undamped Damped

Surge 70 16.45 m 14.17 m

Sway 70 14.00 m 10.41 m

Heave 5 .97 m .70 m

Pi tch 6 .220 .210

Roll 6 .150 .146°

Yaw 50 .13° .16°

TABLE 5

Maximum Values of Velocities and Accelerations

Degree of
Freedom

Maximum

Velocity
Maxi mum

Acceleration

Surge 2.51 m/s .722 m/s2

Sway 1.95 m/s .520 m/s2

Heave .173 m/s .076 m/s2

Pitch .1 39°/s . 119°/s2

Roll .095°/s .082°/s2
Yaw .0320/s .011°/s2
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Fig. 20 - Time History Plot of Surge Displacement
(including Inertia and Drag Forces)

o
o

Fin. 21 - Time History Plot of Sway Disolacement
(including Inertia and Drag Forces)
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O

Fig. 22 - Time History Plot of Heave Displacement
(including Inertia and Drag Forces)

40
o

Fig. 23 - Time History Plot of Pitch Displacement
(including Inertia and Drag Forces)
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Fig. 24 - Time History Plot of Roll Disolace.:.e.',t r

(including Inertia and Dran Forces)

co
o

Fig. 25 - Time History Plot of Yaw Displacement
(including Inertia and Drag Forces)
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Fig. 26 - Time History Plot of Surge Displacement
(including only Inertia Forces)

Fig. 27 - Time History Plot of Sway Disolacement
(including only Inertia Forces)
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<\l

Fig. 28 - Time History Plot of Heave Displacement
(including only Inertia Forces)

Fig. 29 - Time History Plot of Pitch Disolacement
(including only Inertia Forces)
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Fig. 30 - Time History Plot of Roll Disolacement
(including only Inertia Forces)

Fig. 31 - Time History Plot of Yaw Displacement
(including only Inertia Forces)
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cases were studied in order to develop response spectra for the six

degrees of freedom of the platform: case 1 including only fluid iner¬

tia forces (i.e., excluding drag forces), and case 2 including both

inertial and drag forces.

The response spectra for surge (a = 0°) and sway (a = 90°) are

shown in Figures 32 and 33, respectively. It can be seen that both

surge and sway amplitudes reach a peak at a wave period of approxi¬

mately 5 seconds and another peak at a period near 7 seconds. Zero

response amplitudes, corresponding to zero resultant wave forces,

occur at wave periods of 5.5 and 9.5 seconds at which the wave lengths

are 47 and 140 meters, respectively. This arises from a “force cancel¬

lation11 caused by spacing of middle and corner columns. For wave

periods greater than 9.5 seconds the response amplitudes increase con¬

sistently (but not necessarily linearly) as seen in the figures. The

dashed lines in Figures 32 and 33 indicate the response of surge and

sway for case 1 (inertia forces only), whereas the solid lines depict

the response spectra for case 2 (inertial and drag forces). It is

clear that drag forces result in a decreased response amplitude

throughout the range of wave periods. For example, for T = 16 seconds

the surge response amplitude is approximately 11 meters for case 1 and

10 meters for case 2; i.e., drag accounts for a response reduction of

about 10 percent. For a wave period of 8 seconds, however, the re¬

sponse amplitude is 8.6 meters for case 1 and 5.5 meters for case 2;

i.e., drag accounts for a reduction in response of more than 35 percent.

Therefore, a significant overestimation of the response amplitude can

result from neglecting drag.
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Fig. 32 - Response Spectrum for Surge Displacement

Fig. 33 - Response Spectrum for Sway Displacement
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The response spectra of heave for a = 0° and a = 90°, respec¬

tively, are illustrated in Figures 34 and 35* It can be seen that

heave response spectra show similar trends to those of surge and sway.

This arises from a strong coupling of heave to surge (a = 0°) and heave

to sway (a = 90°) in the stiffness equations as presented in Chapter

II. The calculations of the cable tensions caused by the platform

displacements in six degrees of freedom can give misleading results

if coupling of heave to sway and surge is ignored. The time histories

for coupled and uncoupled heave response for T = 17 seconds and H = 15

meters are shown in Figures 36 and 37, respectively. Based on a com¬

parison of these dramatically different curves, the author concludes

that coupling effects should not be neglected.

The results of response amplitude calculations for pitch and roll

(Figures 38 and 39) indicate that at low wave periods the response for

pitch and roll reaches its maximum value. Pitch and roll also exhibit

the '‘force cancellation" phenomenon described for sway and surge. The

effect of drag on pitch and roll also can be seen in the figures, but

the percentage of reduction in response amplitudes is small.

The response spectrum for yaw at a - 35° is given in Figure 40 .

A sharp peak in yaw response amplitude occurs at a wave period of 6

seconds. The response amplitude decreases rapidly for periods larger

than 6 seconds and is negligible for periods larger than 10 seconds.

The peak yaw response may occur at different wave periods for different

angles of wave propagation.
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Fig. 34 - Response Spectrum for Heave Displacement for a = 0°

Fig. 35 - Response Spectrum for Heave Displacement for a = 90
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o

Fig. 36 - Time History of Coupled Heave Response

o

Fig. 37 - Time History of Uncoupled Heave Response
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Fig. 38 - Response Soectrum of Pitch Rotation

Fig. 39 - Response Spectrum of Roll Rotation
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Fig. 40 - Response Spectrum of Yaw Rotation

Fig. 41 - Variation of Surge Resoonse Amolitude with Wave Height
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Parametric Study

Wave Height

Wave heights were varied in the range 0-30 meters for a constant

wave period of 17 seconds. Response amplitude versus wave height plots

for surge, heave, and pitch are given in Figures 41-43. The plots

indicate a relationship that is essentially linear for small wave

heights (i.e., for wave heights smaller than about 15 meters). For

large wave heights, however, this linearity does not hold true. For

example, in Figure 41 there is a significant shift in slope for wave

heights greater than about 19 meters. Attempts to normalize response

spectra with respect to wave height, therefore, must consider only the

range of wave heights where linear relationships are applicable.

Water Depth

Water depths were varied in the range 100-1000 meters for the

significant sea state used in the rest of the analysis. Figures 44-46

illustrate the variation of response amplitudes of sway, heave, and

roll, respectively, with water depth. As can be seen in the above

plots, the roll response amplitude increases linearly with water depth.

The sway response amplitude, however, does not vary linearly with water

depth. While sway and roll amplitudes increase (linearly or otherwise)

with water depth, that of heave decreases sharply in the range 100-400

meters and then it starts to increase slowly for depths greater than

400 meters (see Figure 45). Decrease in heave for deeper water arises

from the decrease in cable stiffness (k = AE/L) corresponding to an
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ig. 42 - Variation of Heave Response Amplitude with Wave Height

Fig. 43 - Variation of Pitch Response AmDlitude with Wave Height
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Fig. 44 - Variation of Sway Response Amplitude v/ith Water Depth

Fig. 45 - Variation of Heave Response Amplitude with Water Depth
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Fig. 46 - Variation of Roll Response Amolitude with Water Depth

Fig. 47 - Variation of Surge Response Amolitude
with Cable Stiffness

500
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increase in cable length. The less stiff the cables, the smaller is

the effect of coupling between heave and surge or between heave and

sway. Therefore, as the platform surges or sways in increasing water

depths, the heave is less dependent on sway or surge; hence heave re¬

sponse amplitudes are smaller. Surge and pitch response amplitude

variations with water depth are similar to those of sway and roll,

respectively. Yaw response amplitude variation with water depth was

found to be small and hence can be neglected.

Cable Stiffness

The stiffness of the tension legs may be varied by increasing the

number of chains per leg, the cross-sectional area, or the elastic

modulus of the chains. The variation of response amplitudes of surge,

heave, and pitch, respectively, with respect to cable stiffness, at a

constant water depth of 125 meters are shown in Figures 47-49. The

plots show that the response of the structure drops sharply with an

increase in cable stiffness up to about 20,000 kN/m for pitch and

12,000 kN/m for surge and heave. The effect of additional stiffness

decreases rapidly as seen in the figures.

Initial Tension

Changing the initial tension involves changes in other variables

such as buoyancy, added mass, draft (depth of submerged portion of

platform), and cable length. Since for a constant water depth the

cable length plus the draft should be equal to the water depth, the

buoyancy, added mass, and cable tension are calculated for different
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Fig. 49 - Variation of Pitch Response Amplitude
with Cable Stiffness
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cable length-draft combinations. The variables involved were changed

in a manner such that the variation in cable tension ranged from zero

to 100,000 kN per leg. Cable stiffness was kept constant at 73,888

kN/m, and water depth was 160 meters.

Response amplitudes for sway, heave, and roll, respectively, ver¬

sus initial cable tension are depicted in Figures 50-52 for a 90° wave

incidence angle. A significant decrease in response can be seen for

initial tensions of up to 45,000 kN/leg in the case of sway and heave,

and 35,000 kN/leg in the case of roll. As the initial tension is in¬

creased further, the response amplitudes start to increase until they

reach a peak and then decrease again. While one would expect a con¬

tinuous decrease in response from an increase in initial tension, the

results obtained here show that this is not always the case. For the

range of initial tensions where the response amplitudes increase, the

structure's stiffness changes and the natural periods of vibration

reach a range where the forcing function can cause resonance (see

Figure 52).

Direction of Wave Propagation

In order to gain a better understanding of the effects of change

in direction of wave propagation on the response of the structure, the

platform properties and member dimensions were modified slightly such

that the structure becomes symmetric. The angle of wave propagation

(a) was varied in the range between zero and 90°. The response of

surge and sway to direction of wave propagation is presented in Figure

53. Surge has a maximum amplitude at a = 0° and a zero amplitude at
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a = 90°. On the other hand, sway has a zero amplitude at a = 0° and

a maximum amplitude at a = 90°. Surge and sway have the same value at

a = 45°, and the combined response of surge and sway reaches its maxi¬

mum at a - 45°.

The variation of heave response amplitude with respect to angle

of wave propagation is illustrated in Figure 54. The heave response

is minimum at both a = 0° and a = 90°, maximum at a = 45° and symmetric

about a = 45°. This plot is similar to a combined surge-sway plot be¬

cause of the coupling of heave to both surge and sway. The variation

of pitch and roll response amplitudes is presented in Figure 55. As

shown in the plots, pitch varies nearly parabolically for a < 45° and

linearly for a > 45°, and roll varies linearly for a < 45° and para¬

bol ically for a > 45°. Pitch and roll curves also are symmetric about

a = 45°.

The yaw response variation with respect to a is shown in Figure
56. Zero yaw occurs at a = 0°, a = 90°, and a = 45° (since the struc¬

ture is symmetric). Maximum yaw occurs at a = 20° and a = 70° and the

yaw curve is symmetric about a = 45°.

Illustration of Nonlinearity and Coupling

Drag terms have been shown to reduce maximum displacement response

amplitudes by as much as 35 percent. Nonlinearities in the stiffness

relationships also are significant. The variation of leg stiffnesses

with respect to surge displacement is shown in Figure 57. It can be
seen that the force-displacement relationship may be considered linear

for surge displacements of up to 5 meters without appreciable error.
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Fig. 54 - Variation of Heave v:ith the Direction
of Wave Prooaaatior.
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Fig. 56 - Variation of Yaw with the Direction
of Wave Propagation
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Fig. 57 - Plot of Cable Restoring Force for Surge Displacement
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However, for larger displacements the computed forces differ signifi¬

cantly from those projected by an assumed linear stiffness.

The effect of coupling is apparent from a comparison of the re¬

sponses computed assuming coupled and uncoupled degrees of freedom,

respectively. A force-pitch displacement curve is presented in Figure

58. Whereas the curve obtained with coupled pitch and surge exhibits

a hysteretic characteristic, the straight line represents the results

if it is assumed that no coupling exists. A similar comparison for

heave displacement response is presented in Figure 59. In both cases

there is substantial difference between the uncoupled and coupled

responses.

Summary of Response to Regular Waves

The dynamic analysis model developed as part of this research was

thoroughly tested for response to regular waves. A parametric analysis

study was performed in an effort to emphasize the relative importance

of each individual parameter to the behavior of tension-leg platforms.

The dynamic response in all of the structures six degrees of freedom

were plotted versus each parameter. Important concepts can be obtained
from these plots in order to facilitate the design of TLP's. The gen¬

eral trends of the response amplitudes are found to be in agreement

with those presented in Ref. 24.
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Response to Random Waves

Time Histories

The platform response to simulated random sea states is investi¬

gated. Time histories of platform motion are obtained for two uni¬

directional wave spectra: those of Pierson-Moskowitz and JONSWAP.

Plots of wave profile versus time for the Pierson-Moskowitz and the

JONSWAP spectra are given in Figures 60 and 61, respectively. The

apparent randomness of the wave profiles depends on the phase angle

of each of the wave components.

The behavior of the platform to simulated random waves is studied

for a 400 second duration of the wave at a wave incidence angle of

zero degrees. Surge, heave, and pitch time histories for the Pierson-

Moskowitz sea spectrum are shown in Figures 62, 63, and 64, respec¬

tively for a characteristic windspeed of 20 meter/second, and in Fig¬

ures 65, 66, and 67 for a 30 meter/second characteristic windspeed.

The surge, heave, and pitch responses corresponding to the JONSWAP sea

spectrum are also presented (Figures 68, 69, and 70). The response

amplitudes of each of the three degrees of freedom for all three sea

states described above are given in Table 6.

It is observed from the above results that the general behavior

of the platform subjected to simulated random waves is not much dif¬
ferent from the response of the platform to regular waves of various

periods and amplitudes. It is also found that random waves do not

cause resonance of platform motions. Based on these observations, and

the costly numerical integrations required to formulate random wave
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Fig. 60 - Wave Profile Corresponding to
Pierson-Moskowitz Spectrum
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TIME (SECONDS)

Fig. 61 - Wave Profile Corresponding to JONSWAP Spectrum
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Fig. 62 - Time History Plot of Surge Response to Pierson-
Moskowitz Soectrum (U = 20 m/sec)

Fig. 63 - Time History Plot of Heave Response to Pierson-
Moskowitz Spectrum (U = 20 m/sec)
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Fig. 64 - Time History Plot of Pitch Response to Pierson-
Moskowitz Spectrum (U = 20 m/sec)

Fig. 65 - Time History Plot of Surge Response to Pierson-
Moskowitz Soectrum (U = 30 m/sec)
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Fig. 66 - Time History Plot of Heave Resoonse to Pierson-
Moskowitz Spectrum (U - 30 m/sec)
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Fig, 67 - Time History Plot of Pitch Response to Pierson-
Moskowitz Spectrum (U = 30 m/sec)
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Fig 68 - Time History Plot of Surge Response9
to JONSWAP Soectrum

Fig. 69 - Time History Plot of Heave Response
to JONSWAP Spectrum
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Fig. 70 - Time History Plot of Pitch Response
to JONSWAP Spectrum

Fig. 71 - Time History Plot of Surge Drift Force
Using JONSWAP Sea Spectrum
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forces, it is suggested that regular wave trains be used to provide

the necessary information about the behavior of tension-leg platforms.

TABLE 6

Platform Response Amplitudes for Random Sea Loading

Sea
Spectrum

Surge
Amplitude

(m)

Heave
Amplitude

(m)

Pitch
Amplitude
(degrees)

Pierson-
Moskowitz
(U = 20 m/s)

8.0 0.35 0.570

Pierson-
Moskowitz
(U = 30 m/s)

20.0 1.30 1.089

JONSWAP 14.0 0.61 0.917

Effect of Drift Forces

Slowly-varying wave drift forces can be significant in the dynamic

analysis of floating and articulated structures with high natural

periods. In Chapter III, a drift force spectrum was used to obtain

slowly varying wave drift forces as a function of wave frequency and

energy density. A fourier transform was used to obtain a time history

of the drift force. The variation of the surge drift force with re¬

spect to time using the JONSWAP sea spectrum is shown in Figure 71.
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The effect of drift forces on the tension-leg platform was studied

by including the surge drift force in the random force calculations.

The response of the TLP to combined random waves and slowly varying

drift forces was studied for a 400 second duration. Time histories

of the resulting surge, heave and pitch are presented in Figures 72,

73, and 74. A comparison of the platform response for the case of

random waves without drift forces to that for the case of combined

random waves and slowly varying drift forces reveals no significant

difference between the two cases. The reason for this may be attrib¬

uted to two factors: 1) the use of a drift force spectrum instead of

a more involved velocity potential approach based on the conservation

of momentum and energy, and 2) the time duration of 400 seconds may

not be sufficient for the full effects of drift forces to develop.

Consequently, the above observations do not necessarily suggest that

drift forces are insignificant. However, no attempt is made in this

research to study a more detailed analysis of the effect of drift

forces on the response of the platform since they are outside the main

scope of the present study.

Response to Earthquake Forces

The response of the dynamic analysis model presented in this re¬

port to wave forces was tested and a parametric analysis was performed.
The results obtained show that the model successfully simulates the

dynamic behavior of tension-leg platforms subjected to ocean waves.

In this section, the response behavior of the platform subjected to

ground motion is studied using the above model. Earthquake excitation
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Fig. 73 - Time History Plot of Heave Response to Combined Drift
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consists of horizontal and vertical base accelerations based on ground

motion records. The primary earthquake record used in the analysis

was that of El Centro (Imperial Valley Earthquake, 1940). Figure 75

shows the time history of the East-West component of the El Centro

earthquake. Other ground motion records used include Pacoima Dam (San

Fernando Earthquake, 1971) and Taft Lincoln School Tunnel (Kern County

Earthquake, 1952).

Horizontal Component

In order to study the effect of the horizontal component of the

earthquake on the response of the TLP, two cases were studied: case 1

for earthquakes occurring in a calm sea, and case 2 for earthquakes

and waves occurring simultaneously. The derivation of earthquake

forces and corresponding fluid drag and inertial forces arising from

relative motion between structure and fluid particles for a calm sea

(case 1) is given in Apoendix B. The forces corresponding to case 2

are easily obtained by superimposing the inertial forces arising from

ground motion with forces developed for waves only. The forces de¬

rived in case 1 were checked by comparing the response obtained from

case 1 with that obtained from case 2 (setting wave height equal to

zero to simulate a calm sea).

Time Histories

Response time histories of surge, heave, and pitch for El Centro

earthquake occurring in a calm sea are shown in Figures 76-78. Surge

response during the 30-second duration of the earthquake reaches a



o o

ELCENTROEARTHQUAKEACCELERATION EAST-NESTCOMPONENT
0.00

2.00

M-00

a.oo

ife.ooitTooik.oo TI(IE(SECONDS)

20.00

2^.00j&ToO2L00

Fig.75-Acceleratio”,TimeHistoryfortheEast-West ComponentofElCertro,1940

105



106

Fig. 76 - Time History of Surge Response for
El Centro Earthquake

Fiq. 77 - Time History of Heave Response fo
El Centro Earthquake
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Fig. 78 - Time History of Pitch Response for
El Centro Earthquake
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Fig. 79 - Time History of Surge Response to the S16E Comoonent of
Pacoima Dam Record of San Fernando Earthquake, 1971
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maximum of 2 meters. At the end of the 30 seconds the structure at¬

tains some velocity and displacement that act as initial values for

the free vibration of the platform. The surge response reaches a maxi¬

mum of about 3.5 meters in the free vibration region. Heave and pitch

arise from the effects of coupling with surge, but their magnitudes are

found to be small. Also, a time history of surge response to Pacoima

Dam earthquake is shown in Figure 79. The maximum surge in this case

was about 0.6 meters.

Earthquakes may also occur simultaneously with waves. Figure 80

illustrates the time history response of surge to a combined loading

of El Centro (EW) earthquake and a 17-second wave. It can be seen that

the displacement response is dominated by the wave forces rather than

by the earthquake. While the effect of earthquakes on the displacement

response time history of surge is small for combined waves and earth¬

quakes, there is a significant effect on the acceleration time history.
2

The maximum acceleration caused by the wave only is 0.7 m/sec and that
2

from the earthquake and wave combined is 2.0 m/sec . In this case

the increase of surge acceleration caused by the earthquake is found

to be as much as 300%. This high platform acceleration can have sig¬

nificant effect on personnel, equipment and operations.

Initial Conditions

Initial conditions for the combined earthquake and wave loading

are of two types: (1) initial displacement and velocity of the earth¬

quake time history, and (2) initial displacement, velocity, and accel¬

eration of the structure. The initial displacement and velocity for



109

O
o

Fig. 80 - Time History of Surge Response to Combined
El Centro Earthquake and 17 Second Wave

Fig. 81 - Time History of Surge ResDonse to Combined 17 Second
Wave and El Centro Earthquake Loading with Earthquake
Introduced at Different Times
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the ground motion record are on the order of few centimeters and centi¬

meters per second, respectively. The structure's initial displacement

and velocity arising from wave action just before the earthquake

occurs, however, are on the order of meters and meters per second,

respectively. Therefore any initial conditions of the ground for the

earthquake time history are negligible compared to those of the struc¬

ture just before the earthquake occurs. Therefore, for simplicity's

sake, zero initial conditions were assumed for the ground.

To emphasize the effect of initial conditions on the time history

of surge, first the wave was started and then the earthquake was intro¬

duced some time after the wave loading had started. The surge time

history responses for a 17-second wave with El Centro (EW) earthquake

introduced at t = 7 seconds and at t = 16 seconds, after the onset of

the wave, are shown in Figure 81. It can be seen that the time histo¬

ries are affected by the initial conditions of the structure at the

time of the earthquake. However, because of the dominance of wave

induced displacements, this does not seem to have a significant effect

on the displacement time histories.

Water Depth

The effect of variations in water depth for both earthquake and

combined wave and earthquake loading was studied. A time history of

surge response to only earthquake motion for a water depth of 1000

meters is presented in Figure 82. The maximum surge attained is 8.5

meters at the period of 170 seconds, while that for a 200-meter water

depth (see Figure 76) was 3.5 meters at a period of 75 seconds. Hence,
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Fig. 82 - Time History of Surge Response to
El Centro in 1000 m Water Deoth
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both amplitude and period of surge response increase with water depth.

Surge response amplitudes are plotted versus water depth for three

cases (Figure 83): earthquake only, wave only, and wave and earth¬

quake combined. It can be seen that the response amplitude varies

nonlinearly with water depth for all three cases. A similar plot is

presented in Figure 84 for heave response amplitude versus water depth.

Comparison with Response to Waves

A comparison of the time histories and response amplitudes for the

above three cases is presented in order to evaluate the effect of earth¬

quakes on the motion of the platform. Time histories of surge response

to waves and combined wave and earthquake forces in a water depth of

1000 meters are shown in Figure 85. The increase in response amplitude

caused by the inclusion of the earthquake is as much as 10 percent for

this case. The same percentage of increase as above can be seen in

Figure 86 for a 200-meter water depth with the earthquake introduced

at t = 200 seconds (i.e., in the steady state region of the vibration).

Referring to Figures 83 and 84, it can be seen that to predict

the response amplitude for combined wave and earthquake loading, one

cannot simply superpose the maximum response amplitude arising from

only earthquake forces to that arising from only wave forces. For

example, at a water depth of 1000 meters the maximum surge response

amplitude caused by earthquake motion alone is 8.5 meters; that from

wave action alone is 26.5 meters; and that associated with the combined

loading is 29.0 meters. Therefore, it would be too conservative to

design for 35.0 meters (26.5 + 8.5) instead of for 29.0 meters. The
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Fig. 86 - Tine History of Surge Response to 17 Second Wave
and Combined Loadings with El Centro Earthquake
Introduced at t = 200 Seconds
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Fia. 87 - Time History of Heave Response to El Centro
(Vertical) Earthquake
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reason that superposition does not apply in this case is that the peak

responses from earthquake forces are out of phase with those caused by

wave forces. Similarly, the maximum heave response cannot be obtained

from a superposition of the separate loadings; however, in some cases

the sum of maximum heave response to individual loadings is less than

the value obtained for the combined loading (see 800-meter water depth).

This result is another illustration of the importance of coupling be¬

tween heave and surge responses.

Vertical Component

Vertical components of three different earthquakes (El Centro,

1949; Pacoima Dam, 1971; and Taft Lincoln School, 1952) were used to

study the effect of vertical ground motion on tension-leg platforms.

Figures 87, 88, and 89 show the time histories of heave, heave velocity,

and heave acceleration, respectively, for El Centro earthquake. Re¬

sponse time histories for Pacoima Dam earthquake are shown in Figures

90, 91, and 92 and those for Taft Lincoln School earthquake are shown

in Figures 93, 94, and 95. The above response time histories showing

maximum values of heave displacement, velocity and acceleration for

each of the three earthquakes are summarized in Table 7.

It is observed from Table 7 that heave displacement amplitudes are

significant compared to those resulting from waves. Platform vertical
2

accelerations also are significant and can be as high as 5.0 meter/sec

which is more than g/2, where g is the acceleration of gravity. There¬

fore the cables which make up the legs of the platform should be

designed to withstand such high platform vertical displacements and

accelerations.
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Fig. 88 - Time History of Heave Velocity Response to
El Centro (Vertical) Earthquake

CD

Fig. 89 - Time History of Heave Acceleration Resnonse
to El Centro (Vertical) Earthquake
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Fig. 90 - Time History of Heave Response to Pacoima Dam
(Vertical) Earthquake
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Fig. 91 - Time History of Heave Velocity Response to
Pacoima Dam (Vertical) Earthquake
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Fig. 92 - Time History of Heave Acceleration Response
to Pacoima Dam (Vertical) Earthquake

Fig. 93 - Time History of Heave Response to Taft
Lincoln School (Vertical) Earthquake
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Fig. 94 - Time History of Heave Velocity Response to
Taft Lincoln School (Vertical) Earthquake
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Fig. 95 - Time History of Heave Acceleration Resoonse
to Taft Lincoln School (Vertical) Earthquake
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TABLE 7

Response to Vertical Ground Motion

Earthquake
Max. Heave

Displacement
(m)

Max. Heave
Velocity

(m/s)

Max. Heave
Accel.
(m/s2)

El Centro 0.22 0.31 2.20

Pacoima Dam 0.32 0.52 5.00

Taft 0.08 0.16 0.70

Summary of Response to Earthquakes

Time histories of response to earthquake loading and to combined

wave and earthquake forces were obtained. For the horizontal earth¬

quake, the displacement response from combined loading was found to be

dominated by the wave. However, the accelerations were significantly

affected by the earthquake. The maximum acceleration was found to be

up to three times that caused by waves alone. The earthquake was

introduced at different time spacings measured from the starting time

of the wave in order to cover as many different initial conditions as

possible. Water depth was varied and its effect on the response

amplitudes was studied. An increase of about 10% in displacement

response amplitudes due to earthquake forces was noticed throughout the

range of water depths used in the analysis.

Large platform accelerations and vertical displacements also were

observed for the case of vertical ground motion. The maximum heave

from the vertical ground motions studied was about 50% of that caused
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by the waves. The effects of compression waves in the water column

could increase further, these heave displacements and accelerations.

The inclusion of compression wafe effects would make the vertical

component of the earthquake more important but is dependent on water

compressibility which is beyond the scope of this investigation.
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CHAPTER VI

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Summary

In this study, a complete nonlinear deterministic dynamic analysis

model for tension-leg platforms has been developed and response of the

platforms to wave and earthquake loadings have been studied. The

accomplishments in the development of the dynamic analysis model

include:

1) The formulation of closed form nonlinear stiffness coefficients

and the formation of a stiffness force vector.

2) Derivation of closed form nonlinear forcing functions for

waves and earthquakes using Mori son's equation (modified to

include relative motion between structure and fluid particles).

Both inertial and drag components of the forcing functions

were included, and wave kinematics were obtained from the

linear wave theory. Integration of the force equations along

the length of each submerged member of the platform was car¬

ried out manually, thereby reducing the total cost of dynamic

analysis significantly.

3) Development of a mathematical model based on a set of coupled

nonlinear differential equations whose solution yields the

dynamic response of the platform.

4) Development of a compact and inexpensive computer code to per¬

form the numerical calculations of the motion of tension-leg

platforms. The computer program employs Newmark's Beta method
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to integrate the equations of motion sequentially in time and

obtain time histories of the response.

Cone!usions

Response time histories for each of the six degrees of freedom of

the platform were obtained. A parametric analysis was carried out in

order to identify the important parameters involved in the behavior of

tension-leg platforms. The following conclusions can be made with re¬

gard to the platform behavior and response to dynamic loading:

1) Coupling can significantly affect the behavior of the struc¬

ture. The strongest coupling exists between heave and sway

and between heave and surge. The coupled heave response ampli¬

tude is several times larger than the uncoupled amplitude.

Coupling between pitch and surge or roll and sway also has

been shown to have a significant effect on computed responses.

The extent of this coupling is dependent on the location of

the center of rotation, which can be expected to migrate with

the level of response. Further research is needed to estab¬

lish an appropriate location for the center of rotation or to

determine the expected variations of its location.

2) Two types of nonlinearities are inherent in the analysis:

a) Nonlinearity of the stiffness force vector arising from

large displacements is found to be significant if surge

and sway are more than approximately 5 meters in a water

depth of 200 meters.
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of the velocity terms in the drag force calculations.

Nonlinear drag forces are found to be significant in that

they represent the fluid damping arising from the relative

motion between the structure and fluid particles and

therefore lead to response reduction with time.

3) From the parametric study performed on the platform for regu¬

lar waves the following conclusions are made:

a) Variation of wave period shows that surge, sway, and heave

are most significant for high wave periods (i.e., periods

greater than 15 seconds) and pitch, roll and yaw are most

significant for periods around 5 seconds.

b) Variation of wave height shows linear relationships for

wave heights less than about 15 meters and becomes non¬

linear for larger wave heights.

c) Increasing the leg stiffness tends to decrease response;

however, for leg stiffness larger than 20,000 kN/m, little

additional effect on response was noticed.

d) Increasing water depth results in an increase in surge,

sway, pitch, and roll response and a decrease in heave

response.

e) Higher initial tensions tend to make the structure stiffer,

hence it reduces the response. However, as the stiffness

increases, the period of vibration decreases; and as it

approaches that of the wave, higher response amplitudes

are observed.
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4) The general behavior of the platform subjected to random waves

is similar to that for regular waves. It also is found that

resonance of platform motions does not occur for random waves.

It is suggested that regular wave trains be used to provide

the necessary information about the behavior of tension-leg

piatforms.

The behavior of the platform was not significantly

affected by the forces resulting from the simplified wave

drift formulation utilized in this study. A more complex

formulation of wave drift forces may provide additional

insight into wave drift effects.

5) The displacement response to combined wave and earthquake

loading was dominated by the wave. A uniform increase in

response of approximately 10% arising from the inclusion of

horizontal ground motions was observed. The platform

horizontal accelerations, however, were significantly affected

by the earthquake. The maximum horizontal acceleration was

found to be three times that caused by waves alone.

Vertical ground motion also was found to have significant

effects on the platform vertical displacements and accel¬

erations. The maximum heave resulting from vertical ground

motion was found to be about 50% of that caused by waves alone,

and the maximum heave acceleration was as high as 5.0 meters/

sec.^ High platform heave displacements and accelerations can

affect the cables as well as personnel, equipment, and oper¬

ations.
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Recommendations

The model developed herein is adapted to the response of tension-

leg platforms; however, the wave force section could be easily applied

to various types of offshore structures. Several enhancements would

allow the model to be adapted to a wider range of problems (i.e.,
shallower water, larger members, larger wave heights, etc.). These

enhancements include:

1) Application of higher order wave theories,

2) Employing the diffraction theory for computing wave forces on

large members at low wave periods,

3) Varying coefficients of added mass and damping with respect

to time,

4) Variations in location of the center of rotation,

5) Application of other wave drift formulations, and

6) Investigation of the heave of the platform caused by

compression waves in the water column which result from

vertical ground motion.
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APPENDIX A: DERIVATION OF WAVE FORCES

The following is a detailed derivation of the wave forces on the

tension-leg platform based on Mori son's equation. It is assumed that

the total wave force on the structure is equal to the sum of forces

on each individual member. Since Mori son's equation is applicable

only to cylindrical members, the hulls of the TLP (that have rectangu¬

lar cross-sections) are treated as cylinders with equivalent hydro-

dynamic character!* sti cs.

Horizontal Forces

Inertia Force on Columns

The integration of the inertia force acting on element dz of

column i (Equation 37) yields:

PttD . .h. x.a2
— J 1 [Cmui - (Cm-1) (x - (z - z)a + —}]dz . (A— 1)

Substituting from Equation (17) and rearranging terms gives:

PttD
4— {[Cm sin [k(X -ct)] e"kz dz]

Ji.: x.a2
- C(Cm-i) f [x-(z-z)a + —2—] dz]} , ....(A-2)

which can be simplified by integrating and lumping coefficients as

fol1ows:
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(A—3)

where

al ” ~2iTF and x = x + x.

Where x is the instantaneous position of the center of gravity of the

structure taken in the direction of the wave, and x.. is the x-coordinate

of each of the eight columns in the direction of the wave and calcu¬

lated as follows:

Xg = b sin a - a cos a,
Xc = a cos a + b sin a,

Xg = b sin a,

X10 = -X95
X11 = “a C0S a’ anc*
X12 = "Xll

with a and b equal to one-half the distance between the corner columns

in the x and y directions, respectively, and a is the angle of wave

direction measured from the x-axis (see Figure Al).
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Y

Fig, A1 - Plan View-of Hull Locations

Drag Force on Columns

Equation (32) can be rewritten as

pC ,D
6Fd = (+) (urel)2 dz (A-4)

where the (+) sign depends on the sign of the relative fluid velocity,

urel *

Substituting urel (Equation 34) into Equation (A-4), and inte¬
grating over the length of each cylinder gives:

Fd = (+) fhl e'kz cos [k(X - ct)]i oJ
X. a2

- [x - (z - z) a + -4—]}2 dz2
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Resolving the square and separating the z-terms gives:

pCdDi rrTT2H2
Fd. = (?) —P- C°S2 [k(X ' Ct)] / 1 e_2kZ dZ^ *

2 / 1 cos [k(x - ct)] [(x + z a + —| za] [e-kz] dz
X- a

*

2

-kz-

o

Ji*

/ 1 [(X + z a +

X.a2
. X.a2

—i—)2 - 2(x + z a + —J—)za + z2a2]dz},

which gives,

rd. = w —r1 cos2 [k(x -ct)] h (1 - e'2khi'>i

- 2[^S cos [k(X - ct)] (x + za + —i—) (1 - e-Kni) (-4)
X.a*2

-kh.\ ,1
T Kd

airH ,1 e kN X.a2
* \ 2

-

rr (t ■ ■^x_L) cos [k(x -ct)]] + + z a + —)2 hn-

X.a2
. a2h.3

(x + z a + —2—) h^. 2a + —^*

By lumping parameters and rearranging terms one obtains:

Fd. = {bl Di cos2Ck(* - <=*)] (l-e‘2khi) - b2 b3 D. (l-e'khi)
• 1 -kh

cos [k(X - ct)] + D.b^a (1-e i) cos [k(x - ct)] - b^a h.D.

, , . b aD•h •3
e"khi cos [k(X - ct)] + b^2 b^h^. - b2 bQa h^2 + 3-1-- } ,

- kh
and a collection of terms that contains: cos [k(X - ct) (1-e )D^]
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yields:

-2kh
F^ = (+) (cos [k(X - ct)] (l-e_<1K,li) [b^ cos [k(X - ct)] (1 +

^3°^ ♦ -kh -
- b2 b3+ —] - b^ah^D^ e” ni cos [k(X - ct)] + b^ bQD^h^

b2. bo“ hi2 + I bo“ Dihi3} (A—5)

where

bQ = 1/2 p Cd ,

h - ^2H2 hD1 IFF Do 5

. x.a2
^2. = + z a + —^—) , and

h = 2ttH hb3 kT bo

Inertia Forces on Hul1s and Cross Bracings

For hull No. 1 in Figure A1 the normal component of the fluid

acceleration at point p, distance S from 0^, for the section is:

un = u sin a = e~^ sin [k(x - ct.)] sin a

and a substitution for x in terms of S yields:

x = 6'S + y' 9

where 3‘ = cos a, and y* = b sin ct .
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Since S is a positive quantity, the value of X for 0^0^ becomes

x = -61S + y1

For hull No. 1, the inertia force in the y-direction is:

2

ra1 pttD o 2u i i
F, = j —4— C (■''j'i e~ sin [k(x - ct)]) sin a d xiy -a 4 m i

9. * 9 *
= a / sin [k(-3'S + y1 - ct)] d S + a £

sin [k(31S + y' - ct)]d S ,

where P7t3|VH -kh
a^ = —2j?— e Cm sin a , thus

F1 = kfb" ay {cos t_ke's + k (y‘ - ct)] |* -cos [kB'S + k (y‘ - ct)] |a
a

= -j^rCCcos [-k31 a' + k(y' - ct)] - cos [k (y' - ct)] ]

+ [-cos [k3'a' + k (y1 - ct)] + cos [k (y1 - ct)] ] } .

Using the trigonometric identity: cos(a-b)-cos(a+b) = 2 sin(a) cos(b),

one obtains:

2a.

F1 = sin (k3‘ a') sin [k(y‘ - ct)] . (A—6)

Similarly, for hull No. 2

-2a

2y k6
X- sin (kg'a1) sin [k(y' + ct)] (A—7)
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Combining and F« , the total horizontal inertia force on the hulls
y y

becomes:

-4a
F = sin (kB'a1) cos (ky1) sin (kct) . (A-8)

Similarly, for the cross bracings (hulls No. 3 and No. 4), one can

write:

un = u cos a , X = y" - 3“s , y“ = a cos a , and 3" = sin a.

Integrating in the x-directi on yields:

-4a

Fx = sin (kS"b') cos (ky“) sin (kct) , (A-9)

where ax =
,-kh

.r.2 G COS 06

Drag Forces on Hul1s and Cross Bracings

The derivation of the drag forces on hulls and cross bracings is

similar to that of inertia forces. For hull No. 1, the drag force in

the y-directi on gives:

pCd^i .9
F, = (+) —K-i- / [u sin a]

Ay -a'
dS

= (+) —e'k^ cos [k(x - ct)] sin a]2 dS
^

-a'

_ /t\ pCdDl tt2H2 _-2kh __._2
- ( + ) —«— T2— e sin a f cos2 [k(x - ct)] dS

-a'
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Using the trigonometric identity: cos2a - (cos2a+l), one obtains

,a*
R = c. J (cos [2k(x - ct)] + 1) dS1

-a

a1
=

c^ / (cos [2k(31S + y' - ct)] + 1) dS

+ J (cos [2k(-31S + y1 - ct)] + 1) dS }
-a'

2k8
- [sin [2k8'S + 2k(y' - ct)] + S

- sin [-2kB1S + 2k(y' - ct)] + S]

2k6
- [{sin[2k8'a' + 2k(y' - ct)] - sin [2k(y' - ct)]}

- {sin [-2k6'a‘ + 2k(y' - ct)] - sin [2k(y' - ct)]} + 2a']

2k6
- [sin[2kj3'a' + 2k(y' - ct)]

- sin [-2kS1 a' + 2k(y' - ct)] + 2a'], therefore

ly kS

where

- sin (2k3'a*) cos [2k(y' - ct)] + 2c a' ,

,tn pCdDl tt2H2 _-2kh _,_2

C1 = —4 V~ e sin a

(A

Similarly, for hull No. 2, one can write:

ci
F2 = -j— sin (2k8'a') cos [2k(y' + ct)] + Zc^a1 .

-10)

(A-ll)
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Combining F- and F« gives the total horizontal drag force on the
y y

hulls in the y-direction as:

2c
F = W1- sin (2k3‘a‘) cos (2ky‘) cos (2kct) + 4c^a' . (A-12)

Similarly, for the cross bracings (hulls No. 3 and No. 4), one can

write:

un = u cos a, x = 3" - 3,lS, y" = a cos a, and 3“ = sin a,

Through integration in the x-direction one obtains:

2c.

Fx = -j^grr sin (2k3l,b') cos (2ky“) cos (2kct) + 4c2b' , (A—13)

pir2H2CdD3 2kj^where c2 + 4T‘
cos^ a

In summary, the total horizontal forces on the structure are:

For surge (x-direction):

12
F = E (Ft + Fn ) cos cl + (F + F ) . (A-14)xT i=5 l. u. x x

For sway (y-direction):

12

Fv = s (ft + fd ) sin a + (Fv + Fv> 3 (A-15)yT i =5 xi ui y y

where the corner columns are numbered 5-8, and the middle columns are

numbered 9-12. The instantaneous heights of the water on each column

are:
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for i = 5-8:

= hQ + cos [k(X - ct)] + (l - 1112- - x2) (A-16)

and for i = 9-12

H
h- = hQ + cos [k(X - ct)] + (£ - ]/tz - x2) - Dj (A—17)

Heave Forces

Vertical Inertia Force on Hulls

The vertical fluid acceleration at point p of Figure A1 is

v = cos [k(x - ct)] (A-18)

For hull No. 1: X = 8'S + y‘ for and X = -8'S + y' for O^Og.
The vertical inertia force on hull No. 1 due to fluid acceleration is

F„_ = /3 Cm {=^r^ e"k^ cos [k(* * ct)]} dS1 -a1

■^3DlCmH -kh ra'
2T e

“a

-a..

J cos [k(x - ct)] dS

= -

^ * { J" cos [-kB1S + k (y1 - ct)] dS

+ y cos [kB'S + k (y* - ct)] dS}
o

-a.

2kg

a1
{[-sin [-kB'S + k(y' - ct)]] + [sin [kg'S + k(y‘

o

a'
ct)]] }
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V*.
F = 2kgv" {[-sin[-k3'a' + k(y' - ct)] + sin [k(y‘ - ct)]]

+ [sin [kB'a1 + k(y‘ - ct)] - sin [k(y‘ - ct)]]}

'S
=

2kg, (sin [kB'a' + k(y‘ - ct)] - sin [-kB'a1 + k(y'

therefore

-a

kB
- sin (kB'a1) cos [k(y

Similarly, for hull No. 2,

-v
sin (kB'a') cos [k(y‘

v2 kB

and for hulls No. 3 and 4:

-a..

v3 ke
-a

rr sin (kB"b') cos [k(y"

it sin (kB"b') cos [k(y"
v4 kB

Ptt3D,2C H .7
where a = e"

vi ^

and ‘"W-kh
v2

- ct)] .

+ Ct)] ,

+ ct)], and

- ct)] ,

- Ct)]} ,

(A—19)

(A-20)

(A-21)

(A-22)

Adding Equations (A-19) and (A-20) yields:
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1
F„ = o r sin (kB'a1) [cos [ky1 - kct] + cos [ky1 + kct] ]
V1,2 k6

-2a
V1

= S’*11 (kB'a1) cos (ky *) cos (kct) . (A-23)

Adding Equations (A-21) and (A-22) gives:

-2a

F = ■ Q-,i sin (kB1^1) cos (ky") cos (kct) . (A-24)
v3,4 Kfcs

The total vertical inertia forces on the hulls is obtained by adding

Equations (A-23) and (A-24):

F = F + F
v vl,2 v3,4

= ^2_cosJkct) [_1 sin (kS'a-) cos (kY.)

%
+

—gir sin (kB"b') cos (ky")] . ...(A-25)

Vertical Drag Force on Hul1s

The vertical fluid velocity at point p of Figure A1 is

v = ^ e"*^ sin [k(x - ct)] . (A-26)

The vertical drag force on hull No. 1 due to fluid velocity is

K. = <t> /
-a

{wH e-kh sin [k(- _ ct)-]}2 ds

pCdD1ir2H2 - ,a'
= ( + ) -4rl e Zkh4T f {1 - cos [2k(x - ct)]} dS

-a'
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pC.D1tt2H2 9,h a
Fw = (+) —7yyk e“ J sin2 [k(x - ct)] dS2T

-a

,a'
= c3 { / {1-cos [2kB'S + 2k(y1 - ct)]} dS

a'

/ {1-cos [-2k8‘S + k(y1 - ct)]} dS

=

c3 " 2ibfr Sln ^2ke'S + 2k^Y‘ ' ct)]]0

+ [S + 2kgr- sin [-2kg'S + 2k(y' - ct)]]Q }

= 2 Cg a' + ■, {sin [-2k3'a‘ + 2k(y‘ - ct)]

- sin [2k3'S + 2k(y‘ - ct)]}

Fv1 ■ 2 c3a' ■ k6'
sin (2k3'a') cos [2k(y' - ct)].

Similarly, for hull No. 2:

FV2 2 c3a‘ " kg
sin (2k3'a*) cos [2k(y' + ct)] ,

and for hulls No. 3 and 4:

Fv = 2c^b' - y&t S1*n (2k3"b1) cos [2k(yn + ct)] , and3

Fv4 2 c4b’ ' kg"

(A-27)

(A-28)

(A-29)

sin (2k6"b') cos [2k(y" - ct)] (A-30)
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where C, = (?) sin2a

and Cy, = (*) cos^a

Adding Equations (A-27), (A-28), (A-29), and (A-30) results in the

total vertical drag force on the hulls:

F=F + F + F + F
v V]> v2 v3 v4

? Co
= 4 (c^a' + c^b') - cos (2kct) [ -gr sin (2k31 a') cos (2ky')

+
grir sin (2k3"b') cos (2kY,!)] .

. — (A-31)

Dynamic Pressure on Corner Column Bases

The dynamic pressure in the fluid is given by

-

cos [k(X - ct)] . (A-32)

The total dynamic pressure on all corner columns is

8
F- = .2 Picv i=5

ttD_. 2
T; = lean l d,2 -'khe i cos [k(X - ct)]

i =5
(A-33)

The total vertical force on the structure becomes

F = F + F + F
Zj V V cv

(A-34)
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Forces Producing Pitch and Roll

Moments Due to Inertia Force on Columns

In this analysis, it is assumed that pitch and roll take place

about horizontal axes passing through the center of gravity of the

structure. The moment about G of the inertia force on column i is

(see Fig. 14):

M
-pirD,2 h-j

:

—4— ^ (z - z) [Cm ui - (Cm - 1) [x - (z - z)a + X.a2] ]dz

= z F
PttD . 2 2c tt2H

— {—^— sin [k(X - ct)]
i - k z

z e KZ dz

x _.aw
- (Cn, - / z[(x + za + —) - za] dz} , which yields:

Mj . = z Fj. - a^.2 - e’^i - h^ e~^i) sin [k(X - ct)]

x.a2 h.2 h. 3a
+ ^D^ [ (x + za + —^—) —2 ^— ] • (A-35)

Moments Due to Drag Force on Columns

The moment about G of the drag force on column i is (see Fig. 14)

-pc .D. hi X.a2
MD = 2— / (z * z) {'J-j - [x - (z - z)a + —X—]}2dzi <s

-pC.D, -h.d i {[
o

/t\ u i rr r"1 -r -2kz= ( + ) 5 {[ J z{ -yr~ e cos2 [k(X - ct)]} dz]

/»n i
C / -2z [(x

* o

x. a

x + za + —) - za](-y e cos [k(X - ct)]) dz2
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.h. x- a2
Mq = + [ / 1 z[(x + za + —1 ) - za]2 dz]} + z FQ .i o ui

Due to its complication, the above equation is divided into three parts

as:

MD = (T) " pCdDi {[1] + [2] + [3]} + z Fn •
i i

Evaluating [1], [2], and [3] separately gives:

[1] = / 1 cos2 WX - ct)]ze'2kz dz
0

_ tt2H2 2 ri./v j_\~i / _1 Q i_ l. **2kh.\-

2 L k C X - ctjj ( 2^ " 2k “ h^ e t ) >

.h,- x .a2
1[2] = J -2z {[(x + za + —|—) - za] ( e~kz cos [k(X - ct)])}dz

-2ttH x .a:,2 h
— cos [k(X - ct)] {(x + za + —^—)

1 -kz .

z e dz

- a r z2 e”kz dz}

_ kh
= =^f-cos [k(X - ct)] {b (i) (i - . h. e-khi)

+ h.2e-khi e-khi)}

2ttH r, ,Z .iii r/2a u ,,1 e"khi -kh
kT

cos [k(X - ct)] {(-jp - b2 )(~ - ■ hi e’Kni) -ah^2 e_khi},

and
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.h. x .a2 h.
*

o

x.cr .

[3] = / 1 [(x + za + —^—)2 z dz - ^ 2(x + za + —^—)az2 dz

+ 1 a2 z3 dz

= (b9 )
h,3 h.h.2

2 t o u i
2 / 2 2 D2 a ^ ^ •

Therefore, the moment of the drag force on column i about G becomes:

-2kh •

MD. = * Di {bl cos2 ' ct)l Cik ■ 6 2k 1 ‘ hi e_2khl)
•

_ |^|-| .

+ b3 cos [k(X - ct)] [(f2- - b2 )({ - 5-j-I . h, e'khi) - ih, e'khi]
h-2

. h.3 ih.4
+ ^2.^2 ~2 ^ ^2. a ~3~ + ~3—^ + * ^d. ' (A-36)

A positive rotational moment about the Y-axis produces a positive

y-component (pitch), and a negative x-component (roll), see Figure A2.

Fig. A2 - Pitch and Roll Components of Rotation
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Hence, from Equations (A-35) and (A-36), one can write:

12
M = Z (Mn + MT ) cos a , and (A-37)y i=5 ui ii

12
M = - Z (Mp + My ) sin a

i=5 ui xi
(A-38)

Pitch Moment from Horizontal Inertia and Drag Forces on Hulls

As shown in Figure A3, only hulls No. 3 and 4 have pitching ef¬

fects, thus the pitch moment arising from horizontal inertia and drag

forces on these hulls is:

M
3,4

= - (F, + Fx> <h (A-39)

where F and F are given in Equations (A-9) and (A-13), respectively.
X X

Rol1 Moment from Horizontal Inertia and Drag Forces on Hul1s

As shown in Figure A3, only hulls No. 1 and 2 have rolling effects:

D
1

mi,2x = (Fy + Fy>xh
(A-40)

where F^ and F^ are given in Equations (A-8) and (A-12), respectively,
Pitch Moment from Vertical Inertia Forces on Hulls

The pitching moment caused by forces on hulls No. 3 and 4 has a

constant moment arm, a: (See Figure A4)

M3 4 = [(Fv + Fv > - (Fv + Fv )]a ’3,4y V3 V3 V4 V4
(A-41)
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z

Fig. A3 - Horizontal Forces on Hulls

z

Fig. A4 - Vertical Forces on Hulls
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where F , F , F , F are as given in Equations (A-21), (A-29),
v3 v3 v4 v4

(A-22), and (A-30), respectively.

The pitching moments arising from vertical forces on hulls No. 1
and 2 have a variable moment arm S. Therefore, for hull No. 1, the

moment about the y-axis of the vertical inertia force is

„ ,-2tt2H -khC v x Cm T
cos [k(x - ct)]) S d S

o‘

o

S cos [k$'S + k(y' - ct)] d S }

2j^r {[S sin [kB'S + k(y' - ct)] + cos [kB'S + k(y' - ct)]]Q

- [-S sin [-kB'S + k(y1 - ct)] + cos [-kB'S + k(y' - ct)]]Q }

cos [k(y' - ct)] ] - [ -a1 sin [-kB'a' + k(y' - ct)]

+ -j^T cos [-kB'a' + k(y' - ct)] - -~r cos [k(y1 - ct)] ] }

- icB '-sin (k6'a') sin " ct^ J
therefore
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H1 = sin '•k^Y' " ct^ t S'"'\e^B a ^ ■ a' cos (ke'a1)] .

Similarly, for hull No. 2:

a

M2 = -j^r sin [k(y1 + ct)] [ —^r6 a ^ - a' cos (kg'a1)] .

Now, the moment about the y-axis of the vertical drag force for

No. 1 is

M1 = (?) / 9 e‘k^ sin [k(x - ct)] ]2 S d S
y -a' £ '

= (?) e'2k^ /a S sin2 [k(x - ct)] dSc ' -a'

a'
= c~ { - S (1 - cos [2kg'S + 2k(y' - ct)]) d S

J
o

a1
+ S (1 - cos [-2k$'S + 2k(y' - ct)]) d S }

o

= c3 Sin [2kS'S + 2k(Y' - ct)]

i a"
+

(2kB‘j cos t2k^'s' + 2k(V " ct)]Q

- sin [-2kg'S + 2k(y' - ct)]

i a'
+

(2kg1) C0S C-2k0'S + 2k(y1 - ct)]]Q }

(A-42)

(A-43)

hull
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M
2kg'

+ _1_
2kg'

- [-a1

1
2kB1

C3
2k31

1
ke*

{[a1 sin [2k3'a' + 2k(y' - ct)]

cos [2k3'a1 + 2k(y' - ct)] - -g-j^rr cos [2k(y‘ - ct)] ]

sin [-2k31 a‘ + 2k(y' - ct)] + cos [-2k3*a1 + 2k(y‘ - ct)]

cos [2k(y1 - ct)] ] }

{2a‘ cos (2k3'a') sin [2k(y1 - ct)]

sin (2k3'a1) sin [2k(y1 - ct) ] } ,

therefore

- *“ <5 ,

M1 = k^T" sin " ct^ Ea' cos (2k3'a') - 2kgT sin (2kB'a') ]
(A-44)

Similarly, for hull No. 2:

— — c

M2 =sin [2k(y 1 + ct)] [a1 cos (2k8'a') - sin (2k6'a1) ]
(A-45)

In summary, the total pitching moment due to vertical drag and

inertia forces on all hulls is

M = A + M- + NL + NL + NL , (A-46)
y J’y Ly y xy y
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where M, A , M- , M9 , M- , M9 are as given in Equations (A-41),
’

y Ly xy
(A-42), (A-43), (A-44), and (A-45), respectively.

Rol1 Moment from Vertical Inertia and Drag Forces on Hul1s

As seen in Figure A4, the rolling moments due to hulls No. 1 and

2 have a constant moment arm, b, therefore

M
1,2, ) + (F, ) ] b s (A-47)

where Fy , Fv , Fy , Fv are as given in Equations (A-19), (A-20),
(A-27), (A-28), respectively.

The rolling moments due to vertical inertia forces on hulls No. 3 and

4 are derived by integration, in a way similar to the pitching moment,

yielding:

- a
v

M3 = sin [k(y" + ct)] [ S1’nkg^ b ^ - b‘ cos (kB"b')], and (A-48)
a

M4 = sin [k(y" - ct)] [ b ^ - b1 cos (kB"b')]. (A-49)

Similarly, for drag:

Q

M3 =1^- sin [2k(yn + ct)] [b1 cos (2k6"b') - sin (2kB"b')], and
X

(A-50)

M4 = sin ^2k(y" “ ct^ ^b' cos (2kB"b1) - 2j^r sin (2kB"b')]
(A—51)

Finally, the total rolling moment due to vertical drag and inertia

forces on all hulls is
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M = M,
2 + M3 + M. + M3 + M. (A-52)

x 5 X Jx \ x \

where M,
2 » ^3 » M4 * M3 , and M. are as given in Equations (A-47),5

x \ 4x “x 4x
(A-48), (A-49), (A-50), and (A-51), respectively.

Pitching Moment from Dynamic Pressure on Corner Column Bases

The moment about the y-axis due to the dynamic pressure on the

base of the corner columns (5,6,7,8) is:

g
M = a z (-i)i d.2 e‘khi cos [k(x - ct)] . (A-53)

py 8 1-5 1

Rol1ing Moment from Dynamic Pressure on Corner Column Bases

Similarly, the rolling moment (about x-axis) is:

0
M = b { [ E D.2 e'^i cos [k(x - ct)]

px 8 1=5 1

8 m
- E D.2 e"Kni cos [k(x - ct)]} .

i=7 1
(A-54)

Yaw Moments

The forces causing rotation about the vertical axis are those from

horizontal drag and inertia acting on the columns. The moment produced

by these forces is:

12
(A-55)



where: - a sin a+ b cos a ,

= b cos a - a sin a ,

Y

Y

Y

Y

Y

Y

Y

Y

5

6

7

8

9

10

11

12

= -Y6 •

"Y5 ’

- b cos a ,

= “Y9 ’

= a sin a , and

*Yn •

Limits for a = 0° and a = 90°

The derived hull forces and moments contain the terms 3 and S' in

the numerators and denominators, and y and y' in their numerators.

These terms are related to the wave direction (a) as follows:

3' = cos a ,

3" = sin a ,

(A-56)
y1 = b sin a , and

y" = a cos a .

As the wave direction (a) approaches 0° or | , a limiting case exists
where L'Hospital's rule must be applied to find the forces and moments

associated with these extreme values of a.

Limits of Hul1 Forces for a = 0°

As a -* 0, Equation (A-56) becomes: 3' = 1, 3“ = 0, y* = 0, and

y" - a. Recalling Equations (A-8), (A-9), (A-12), (A-13), (A-25), and

(A-31) and rewriting them gives:
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”4av
Fy = —sin (k31 a1) cos (ky1) sin (kct)

-4a

Fx = ~sin (k3"b1) cos (ky") sin (kct)

2c-

Fy = -j^g-r sin (2k31 a') cos (2ky') cos (2kct) + 4c^a'

2c«

Fx = -j^rr sin (2k3''b') cos (2ky") cos (2kct) + 4c2b‘

Fv =
= z2_cos_(kcti [•_! sin (kg'a*) cos (ky1)

+-grr sin (kB'V) cos (ky")]

? Co
Fv = 4 (c^a1 + c^b1) - -j=- cos (2kct) [-gr sin (2kB'a!) cos (2ky1)

+ -S7T sin (2k3"b') cos (2ky")]
p

(A—8)

(A—9)

(A-12)

(A-13)

(A—25)

(A-31)

For a = 0, the coefficients a and c^ which are functions of sin a be¬
come equal to zero. Also for y' = 0, cos (ky1) becomes equal to 1; and

for 8" = 0, S1l\g^ = b‘ (by L'Hospital's rule). Thus, the above
equations become:

F = -4a b' cos (ka) sin (kct) ,
X X

F = 4c?b' [cos (2ka) cos (2kct) + 1] 3X Cm
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Fv = -2 cos(kct) [—£— sin (ka1) + ay b' cos (ka)], and

_ c~

Fv = 4(c2a' + c^b') - 2 cos(2kct) [-^ sin(2ka') + 2c^b' cos (2ka)].

Recalling Equations (A-41), (A-42), (A-43), (A-44), and (A-45),

and performing similar operations with the above equations yields:

Mo a = 2ab' [a sin(ka)sin(kct) + 2c/1sin(2ka)sin(2kct)] ,
V2 ^

M1
vi
k sin (kct) c Unjka!i. a, cos (kaI)] ,

y

a

M2
_ vi

k sin(kct) [ sin(ka’) - a' cos (ka')] ,

y

-C3
k

sin (2kct) [a1 cos(2ka') - sin(2ka')]
y

M
2

= "i
y y

Limits of Hull Forces for a = 90°

As a 90°, Equation (A-56) becomes: 3' = 0, 6" = 1, y' = b, and

y" = 0. Similar manipulations as those for a = 0, convert Equations

(A-8), (A—9), (A-12), (A-13), (A-25), and (A-31) to:

F^ = -4a a1 cos (kb) sin (kct) ,

Fy = 4cl a' [cos(2kt>) cos (2kct) + 1] ,
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F = 0 ,x 5

F = 0 ,
x

Vo

Fv = -2 cos (kct) [a1 av cos (kb) + —sin (kb1)] » and

Fv = Mc^a' + c^b') -2 cos(2kct) sin(2kb1) + 2Cga' cos(2kb)]

Similarly, the roll moments become:

M-, o = -2 a'b [a sin(kb) sin(kct) + 2c~ sin(2kb) sin(2kct)]
L,ix V1 d

-a

=

y~~ sin (kct) [Alulisk-). . b' cos (kb1)] ,

M = M
4. ^ 9\ Jx

^4. 1

3 = Y~ sin (2kct) [b1 cos(2kb‘) -sin(2kb')] , and

M, = M, .
Jx



159

APPENDIX B: DERIVATION OF EARTHQUAKE FORCES

Fluid Inertia and Drag Forces Due to Interaction

Inertia Forces on Columns

Assuming calm water (no waves), the inertia force from structural

motion can be calculated with Mori son's equation as:

pirD
Fj =—f 1 {0 - (Cm - 1) [x - (z - z)a]} dz

-pirD.2 ah.2
4 (Cm - 1} [Xhi + 2 Shi - "T-3 • (B-l)

and the moment caused by this force is:

M
-puD.2 hi

j = —4 J (z - z) (0 - (Cm - 1) [x - (z - z)a]} dzi o

pirDi xh.2 zh.2a ah.3

(Cm ‘ ^ t~T~ + —2 + z FIi‘ (B-2)

The total fluid inertia force on columns is:

12

Ft = I (FT ) , (B-3)1
i=5 M

and the total fluid inertia moment on columns is:

12
M. = Z (M. ) (B—4)1

i=5 xi
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Drag Forces on Columns

An application of Mori son's equation for drag forces on the col¬

umns yields:

pC.D. h,-
Fq = (sgn) —2“^- J (0 - [x - (z - z)a]}2 dz

= (sgn) pCdD. ,hj 1 [(x + z a)2 - 2(x + z)a z + z2a2] dz

pCdDi a2 h.3
= (sgn) —2~~“ [(x + z a)2 - (x + z ajah^2 + —j—] . (B-5)

The moment caused by the drag force is:

-pc.D. h-
MD = (sgn) ( L) J (z - z) [(x + za) - za]2 dz

i

-pcdDi h.
= (sgn) ( 4 J 1 [z(x + z a)2 - 2z2(x + za)

+ z3a2] dz + z F,

= (sgn) ( [(x + z a)-±- - -| (x + z a)h..3 + ~ a2h..4] + z FQ>,

r

+1 if (x + za) < 0 and (x + za - h^.a) < 0
where (sgn) = -<

-1 if (x + z) >0 and (x + zd - h^.a) > 0

(B-6)

(case 1)

(case 2)

If neither case 1 nor case 2 applies (see Figure Bl), then
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Fig. B1 - Illustration of Relative Motion
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a.

h.
x + za - h.a

i

x + z a

1+
x + za - h^a

x + z a

>

and the drag force equation becomes:

'

_ - pcdD /-hrai
^D.j + 2 [(x + I a) - z a]2 dz

hi

hrai
[(x + za) - z a]2 dz }

pc ,D
= + -jS. { 2[(x + z a)2 (h. - 31) - (x + za) (h. - a^2 a

+ ^ (hi - ai)3i

- [(x + z a)h.. - (x + z a)h.2 a + |- h^3] } . (B-7)

If case 1 or case 2 does not apply, Mg becomes:

Md< = + ( ) 2[(x + z a)2 (—^—g—-)2 - (x + z a)a (h. - a.)3
"pCdD

h.
+
j (h.. - a..)4 a2] - [ (x + za) -| (x + z a)a h.3 + -| h.. 4 a2]

+ z FD. 5 ....(B-8)
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+1 if (x + z a) < 0

where (+) =

-1 if (x + z a) > 0

Inertia Forces on Hulls

For Hulls No. 1 and 2, the inertia forces are:

-pTrDT2
FYl = ~r1- (cm - ^ C2a‘y]

-P'^D12
=

—2 (cm “ 1) a‘ x sin a , and

F = F
y2 yx

(B-9)

Similarly, for Hulls No. 3 and 4, the inertia forces are:

“PttD 2

Fx3 = 2 (Cm - 1} a' x cos “

x4 x3

(B—10)

Moments Due to Inertia Forces on Hul 1s

The moments of the above inertia forces on hulls about the center

of rotation are:

M
1,2.

= % + F.yo) ' 1T>y2
and

+ F )

(B-U)

(B-12)
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Drag Forces on Hulls

For Hulls No. 1 and 2, the drag forces are:

pC .D1

Fy^ = (sgn) —2“^ sin a]2 (2a‘)
= (sgn) pC^D^a' x2 sin2 a , and

F = F
y2 yl

(B—13)

(B—14)

Similarly, for Hulls No. 3 and 4, the drag forces are:

Fx = (sgn) b1 x2 cos2 a , and
3

F = F
x x 9x4 3

(B-15)

(B-16)

+1 if x. < 0
ho

where (sgn) = , <

-1 if Xl > 0
. hQ

Moments Due to Drag Forces on Hulls:

The moments of the above drag forces on hulls about the center of

rotation are:

. D

(Fv + F ) (h - / ), andyl y2 d

M + F„ )

(B-17)

(B-18)
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Yaw Moments

The moment of the drag and inertia forces on columns about the

z-axis is:

12
M = Z (Ft + F ) Y. , (B-19)z

i=5 M ui 1

where Y.. is the distance of column "i" from the z-axis.
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APPENDIX C: PLATFORM DATA

Data Used for Evaluation of Platform Motion

The following tension-leg platform data are taken from Kirk & Etok

(1979) and used in the analysis:
- Buoyancy = weight of displaced fluid = 436,810kN
- Water depth = 160 meters

- Draft = depth of submerged portion of the structure = 35 m

- Mass of deck equipment = 18,000 tons

- Mass of one main hull + ballast = 2,000 tons

- Total mass of TPP in air = 31,200 tons

- Structural and fluid added mass in heave = 56,000 tons

- Structural and fluid added mass in sway = 82,700 tons

- Structural and fluid added mass moment of inertia in roll =

o p1.49 x 10 ton-meter square (tm )
- Structural and fluid added mass moment of inertia in pitch =

9.68 x 107 tm2
- Diameter of corner columns = 16 m

- Diameter of middle columns = 3.5 m

- Diameter of cross braces = 6 m

- Depth and width of main hulls = 13 x 9.5 m

- Spacing of corner columns = 70 m

- Height of platform center of gravity = 41.7 m

- Number of cables per leg = 3

- Number of wires per cable = 400

- Diameter of each wire = 7 mm
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o
- Area of wire per leg = 46,180 mm

- Cable length = 125 m, 200 m

- Initial tension per leg = 25,000 kN

Some of the above data are modified to meet the objectives of this

research. Such modifications include water depth, hull sizes, and

masses.


