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ABSTRACT

Singularity Avoidance Algorithms for Spacecraft
Attitude Control using Single Gimbal Control Moment Gyroscopes

Benny Susanto Budiman

l!niversity Undergraduate Fellow, 1990-1991
Texas A&M University

-

Department of Aerospace Engineering

Fellows Advisor: Dr. Srinivas R. Vadali

Single gimbal control moment gyroscopes are attractive actuators for spacecraft

attitude control systems. However, intrinsic kinematic singularities preclude torque

generation along certain directions and lead to loss of three-axis control of the space

craft. Kinematic singularities also exist in robotic manipulator systems which are me-

chanical analogs of the single gimbal control moment gyroscope, systems. In robotic

manipulator systems, kinematic singularities preclude end-effector motions in singular-

directions. An algorithm is proposed to avoid singularities in control moment g�ro-

scope systems. The proposed algorithm is based on the extended Jacobian, used .to

solve singularity avoidance problem in the robotic manipulator system, and the null

motion avoidance algorithms. The current algorithm has been shown to avoid inter-

rial kinematic singularities when applied to spacecraft maneuver problems. Feedback

torque requests are gener-ated using control laws based on the Liapunov's stability

theory, .
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1. INTRODUCTION

- ,

Single gimbal control moment gyroscopes (SCMGs) are angular momentum trans-

fer devices used as actuators in spacecraft attitude control systems. The SCMGs

have significant advantages over other actuators: thrusters, reaction wheels and dou-

ble gimbal control moment gyroscopes (DCMGs). Unlike the thrusters, the SCMGs

do not have expendable propellant which may contaminate the sensitive space en-

vironment and can be used in rapid and precision maneuvers. The SCMGs have

constant motor speed, unlike the reaction wheels, which is very unlikely to excite

vibrational modes of the spacecraft structure. The SCMGs have simpler mechanical

configurations than the DCMGs; and can provide torque amplification.

Despite the advantages, the SCMG systems have analytical difficulties: the ex

istence of singular gimbal configurations (kinematic singularities) which occur when

the output torque of each gimbal is perpendicular to the singular direction in space,

and hence' preclude torque gerieration in certain (singular) directions. In the nei-gh-

borhood of singular states, high gimbal rates are necessary to generate the requested

torque to perform the maneuver. However, hardware limits �:m gimbal rates further

preclude torque generation in the neighborhood of singularities. Thus singularities

lead to loss of three'-axis control of the spacecraft and further, keep the S OMG system

from being fully utilized by the attitude control systems. Therefore, development of !

,

\
,

,

a control algorithm is necessary to avoid, kinematic singularities.

A mechanical analogy exists between the SCMG and the robotic manipulator

(RM) systems1,2. Singular configurations (kinematic singularities) exist in both sys

terns. The,RM systems are slightly more complicated than the SCMG, as they also

encounter repeatability and obstacle avoidance problems. Pertinent works in the RM

\
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systems include the augmented Jacobian technique by Baillieu13 and the optimal path

planning problem by Mayorga and Wong4. Nenchev5 summarizes similar works in

the RM .systems.

Previous works on singularity avoidance issues include the fundamental work

on identification and classification of different types of singularities by Margulies

and Aubrun 1, null motion avoidance algorithms by Cornick'', singularity robust (SR)

inverse by Nakamura and Hanafusa7 (used for solving the robotic manipulator steering

problem and shown to be applicable to the SCMG steering problem by Bedrossian/'],
and preferred initial gimbal angles byVadali et a18. Most of the algorithms have not

been able to avoid internal kinematic singularities completely.

This thesis. addresses the issue of avoiding kinematic singularities in the SCMG

systems and the application of the avoidance algorithm in spacecraft attitude control

systems. The thesis also reviews recent advances in singularity avoidance problem for

the RM systems and applies some of the methods, indirectly, to avoiding kinematic

singularities in the SCMG systems. This thesis is divided into four major parts: (a)
Fundamental concepts of the SCMG and RM systems, (b) Singularity analysis a?d
existing avoidance algorithms in the SCMG and RM systems, (c) Development of the

proposed singularity avoidance algorithm, (d) Application of the proposed algorithm

for spacecraft attitude control using SCMGs.

\
.

\
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II. FUNDAMENTAL CONCEPTS

1. Single Gimbal Control Moment Gyroscope System

A SCMG system consists 'Of a number 'Of flywheels arranged in a certain canfigu-

ration. Each flywheel spins at a constant rate about an axis (momentum axis) which

is gimballed to allow its angular momentum to rotate an the plane 'Of rotation. Each

gimbal is free to rotate about the gimbal axis which is normal to the plane 'Of rotation.

The positive angular displacement is 'defined by the gimbal axis rotation.
}J3
�

VI
Figure i The ith SCMG reference frame and its orientation with respect

to the spacecraft frame.

Each gimbal reference frame, (h, is defined by an orthonormal basis {-ri hi G-i}
where G-i denotes a unit vector along its gimbal axis, hi denotes a unit vector along!

.

.

\ ,

-

./

its momentum axis, and ri is defined by the formula ri = G-i X hi (Fig.L). The relative

orientation 'Of each gimbal reference frame with respect to the spacecraft frame V can

be represented as

(
c'+'·cB·cO'· - edusa'f/'L 'L Z . 'f/'L Z

CVgi =, SCPicBiCO'i + CCPiSCTi
-SBiCO'i

-c'+"cB·sO'· - sduca'f/'L '/, 'L 'f/'/,' z

-s'+' 'cB 'SO" + cd: ·CO'·'f/'L z 'L 'f/z z (2.1 )

\
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6
where cPi, fJi, and a; are the 3-2-3 set of Euler angles depicted in Fig.I; and CO"i

6 .

cos O"i, SO"i = sin O"i, etc.

The angular momentum vector ofeach gimbal is fixed in the corresponding gimbal

frame and is given by /lgi = {O hi O}T . The angular momentum can be expressed in

the spacecraft frame' as

(2.2)

Each gimbal frame rotates about its gimbal axis with an angular velocity of �i =

{O 0 a-i}T in the gimbal frame. Thus the output torque of each gimbal can be repre-

sented as

(2.3)

where

(
0

'7' 6 .

(Ti = �i
o

o

represents the skew symmetric cross product matrix of zs. In deriving Eq.(2.3), _the
� .

terms containing the inertia matrix of the flywheels have been dropped because their

effects are negligible compared to thoseof the terms in Eq.(2.3) as justified in Ref.I0.

A SCMG system generally consists of n flywheels, thus the total momentum of

the system is given by
ri

llcMG,v = L Cvg)l.gi
,

i=l

and the total output torque of the system can he expressed as

(2.4J
.
'\,

n

TCMG V
= '" Cv(;;.Zrih�.-

, � � _...,�.

i=l
(2.5)

\
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This thesis focuses on a system which consists of four gimbals arranged in a pyramid

configuration characterized with ¢i = (i -1).90°, Bi = B = 54.74°, and hi = h as

shown in Fig.2. Thus Eq.(2.5) can be explicitly expressed as

�CMG,V = JQ_ (2.5b)

where

-s0"4

)CBC0"4
sBcO"4

is usually referred to as the Jacobian of llcMG,v expressed as

'8 .

J = 8q_ll( 0" )CMG,V

1:. = {Oo 900 1800 �700}T
"

Figure 2 Pyramid type SCMG configuration, !I_ = Q. \
,

As actuators, the SCMGs have to generate some prescribed torques to maneuver

the spacecraft. This task is accomplished by rotating the angular momentum vector

of each gimbal at certain rates of gimbal rotation. The gimbal rates are obtained by

\



6

solving Eq.(2.5b), an underdetermined system of equations, using the pseudoinverse

of J given byl,9

(2.6)

2. Robotic Manipulator System, A Mechanical Analog

A robotic manipulator consists of numerous linkages connected by joints. The

outer-most linkage moves objects in prescribed trajectories and is referred to as the

end-effector. As described in [4] and [7], end-effector trajectories are analogous to

totalangular momentum of the SCMG system. For simplicity, this section discusses

only the planar two degrees of freedom RM systems with one degree of redundancy.

Figure 3 The ith linkage reference frame in a robotic manipulator system.

Each linkage reference frame, Li, is defined by an orthonormal basis {�i Vi Bi}
where li denotes a unit vector along the linkage, Vi denotes a- unit vector perpendicular

to Vi, and Bi is defined by Bi = li X Vi (Fig.3). In a planar 2-DOF manipulator, Li
-..,

is �onstrained to rotate about its origin in the li-Vi plane with resp-ect -to th� 'fixed '

frame X. The relative orientation of Li with respect to X can be represented as

(2.7)
o

\
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Each linkage has a fixed length L; and is represented as a position vector ;J;._C,i =

{z., 0 O}T, which can be expressed in X as

(2.8)

Each linkage frame rotates about ei with an angular velocity of �.ci = {O 0 Bi}T. 'Thus

the end velocity of each linkage with respect to X can be written as

(2.9)

where

(
0

�
6.' .

Bi = �i
represents the skew symmetric cross product matrix of fti.

A "RM system usually has n linkages, thus the position of the end-effector in X'is

given by
n

�x = L CX.ci�Ci
i=l

and the velocity of the end-effector can be expressed as

(2.10)

n _

1!.x = LCX.ci B i�.ci
i=l

/'

(2.11)

For planar two degrees of freedom RM systems with one degree of redundancy (n = 3)
and L; = L, Eq.(2.11) can be explicitly rewritten as

.

\
,

where

( -S8lJ=L
.

c8l
is theJacobian of �x given by
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The joint rates are obtained by solving Eq.(2.11b) using the pseudoinverse of the

Jacobian, given in Eq.(2.6).

\
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III. SINGULARITY ANALYSIS

1. Introduction

In general, Eqs.(2.4) and (2.10) are nonlinear and pointwise vector-valued map

pings f : �n -+ �m, from the physical (gimbal or linkage) space to the opera

tional (momentum or trajectory) space, respectively. Note that (q_,�) E �n and

(llcMG,v,.f.x) E �m. Closed-form analytical inverses (solutions) of the mappings

cannot be obtained, hence differential relationships are used to solve for the gim-

bal/linkage motion from a given momentum or trajectory of the end-effector, such as

Eqs.(2.5) and (2.11). This type of solution is often referred to as the resolved motion

rate control II .

(b)
-,

Figure 4 Internal gimbal (a) and linkage (b) singular configurations. in
a SCMG system, torque cannot be produced along the VI axis,

.

whereas in a RM system, motion of the end-effector is not pos
sible in the singular direction.

'

,Singular gimbal/linkage configurations are defined mathematically as the config

urations of gimbal angles (linkage positions) which result in a rank-deficient Jacobian

\
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matrix of the systems (rank(J) is less than the number of degrees of freedom (m) of

the systems). Physically, singular configurations in a SOMG system occur when the

output torque of each flywheel (gimbal) is perpendicular to the singular direction,

or when the angular momentum of each gimbal is maximally/minimally projected

onto the singular direction.. Thus no torque can be generated in this direction. In

a RM system, singular configurations occur when the end velocity of each linkage
.

.
.

is perpendicular to the singular direction, or the position vector of each linkage is

maximally /minimally projected onto the singular direction. Thus motions of the

end-effector are not possible along the singular direction. Fig.4 shows examples of

internal singular' configurations for (a) the SOMG and (b) the RM systems.

2. Identification of Singularities

This section discusses the singular gimbal con�,gurations fo: any given direction
�

in Rm.The purpose is to illustrate that for any given direction in space, a system of ti

SOMGs has as many as 2n singular gimbal config�rations. The statement also holds

true for a RM system with n linkages.

Any direction in space can be represented as (Fig.5) ,

(3.1 )

and the projection of any vector Q onto. i£ is defined as

By definition, singular gimbal (Q'.S) or linkage (fS) configurations occur when the

angular momentum of each gimbal or the position vector of each linkage is max

imally /minimally projected onto the singular direction. Hence the necessary and

,(

\
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sufficient conditions are:

(OP) = 0 and
O!Li CMG (02P)--2 < 0,

0!l.i CMG

i=1,2, ... ,n (3.3a)

for a SOMG system (P = llcMG,vi . 1£), or

(��L = 0 and (��t < 0,

for a RM system (P = �Xi • i!:_).

i=1,2, ... ,n (3.3b)

Figure 5 Any direction in �3 can be represented by two parameters or

generalized coordinates.

Also, by definition, singular gimbal (!LS), or linkage (�S), configurations occur

when the output torque of each gimbal (z,) , or the end velocity of each linkage (.�Li),

is perpendicular to the singular direction, or mathematically

(3.4a)

for a SOMG system, or .

\
,

(3.4b)

for a RM system.

\
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Because TJi\) must be orthogonal to (ri (Bi), a necessary and sufficient condition

for Eqs.(3.4a,b) is

for a SCMG system, or

for a RM system.

(3.5a)

(3.5b)

-1

-2

-3

-4+-----r---.---r-----.--�_..._-_.______.
-4 -3 -2 -1 0

HI
·3 4

Figure 6 The projection of singular momentum envelope onto the hl-h3
plane.

Since hi = Ti X (ri (Xi = vi X Bi), the singularity condition lor hVi (xxJ can be

written as

for a SCMG system, or

for a RM system.

\

"s" (rxi!
hv· (Y:_) = ±

I
"

"I
X (t

�

CTXY:_
\ (i6a) ,

i� . (it) = ± � x i!
x B

�
-

Ie x 111
(3.6b)
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The signs (±1) in Eqs.(3.5-6) result in 2n sign patterns; each pattern corresponds

to one singular configuration. Hence, for any given direction in Rm, there are 2n

singular gimbal (linkage) configurations. For a system of four SCMGs, the patterns

can be tabulated as follows:

+ - + + + - - - + + + - - - +

+ + - + + - + + - - + -

-:- + -

+ + + - + + - + - + - - + - -

+ + + + - + + - + - - + -'- - -

0 1 2 3 4 5 ":6 7 8 9 10 11 12 13 14 15

The projection of singular momentum envelope onto the h1-h3 plane is depicted in

Fig.6. Similar sign patterns and singular trajectory envelope can also be generated

for a RM system in the same fashion.

3. Classification of Singularities

Kinematic singularities are classified according to their loci in the total SCMG an-

gular momentum envelope (RM trajectory envelope )1,2. Kinematic singularities can

be classified as: (a) Surface or saturation singularities and (b) Internal singularities"

r

(elliptic and hyperbolic).

Saturation singularities correspond to gimbal (linkage) configurations which result

in maximum projection of gimbal momentum capacity (end-effector trajectory) along

certain (singular) directions. This type of singularities corresponds to the maximum

physical momentum (trajectory) capability of the SCMG (RM) systems.i In spacecraft,

application, the saturation singular configurations cannot be avoided using steering

algorithm alone. A momentum management procedure (Vadali and Oh 12) must be
used to keep the" SCMG momentum within the momentum envelope of the system.

\
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Internal singularities may be escapable using null motion. Bedrossian2
presents

an approach to examine the behavior of a SCMG (RM) system using null motion

near a singular configuration. The null motion test is determined by2

(3.7)

where l is the weighting factor of the null space basis, N is the null space basis of

the Jacobian matrix, and P is the projection matrix representing the projections of

the singular angular momentum vectors onto the singular direction.

When P is definite (its eigenvalue� are either positive or negative), no null m;tion

is possible at this singular configuration/ and the quadratic form in Eq.(3.7) has the

form of an ellipsoid. Hence this kind of internal singularity is referred to as elliptic

singularity+v'.
On the other hand, when P is indefinite (its eigenvalues are both positive and

negative) or semi-definite (at least one of its eigenvalues is zero), null motion can be

used to steer the system away from singular configurations/ and the quadratic form

in Eq.(3.7) has the form of a hyperboloid. Hence this type of internal singularity is

referred to as hyperbolic singularity+v.

j

\
,

\
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IV. INVERSE KINEMATICS AND AVOIDANCE ALGORITHMS

1. Pseudoinverse Solution

The kinematics, of a SCMG (RM) system is a nonlinear and pointwise mapping

f : �n -7 �m such that closed-form inverse cannot be obtained. Hence the solution

(inverse) is generally obtained using the resolved motion rate controlll. The problem

is formulated as

(4.1)

and the inverse kinematics can be expressed as

(4.2a)

for redundant systems (m < n), or

. J-1q_= r_ (4.2b)

for non-redundant systems (m = n). In Eq.(4.2a) J+ denotes the Moore-Penrose

pseudoinverse'' of J and y_( t) denotes an arbitrary time-varying vector to provide
singularity avoidance.

The numerical values ofy_(t) depend on how close the system is to being singular.

The closer the system is to being singular, the higher the numerical values of 'Y...( t)

are to provide singularity avoidance. The closeness of the system to being singular'
.

.

\
, .

-

./

is often, referred to as the singularity measure, or sometimes as the manipulatability

indexll, which is expressed as

( 4.3)

\
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The system reaches singular configuration when M vanishes; (JJT) -1, and hence

J+, is not defined due to J being rank deficient. Thus Q.( t) is usually chosen such

that M is locally maximized.

The disadvantages of Eq.(4.2a) are: (,a) Existence of rank preservation of the

Jacobian matrix is not guaranteed, (b) Extensive and costly computational effort is

required to obtain a .solution, (c) Singularity problems cannot be avoided success-

fully as demonstrated in Ref.2, and (d) Feasible solutions cannot be obtained in the

neighborhoods of singular configurations because gimbal (linkage) rates are limited

by some hardware constraints.

2. Singularity Robust Inverse

Nakamura and,,�anafusa7 presents a singularity robust (SR) inverse to solve the

inverse kinematics problem in RM systems. This method was shown to work as well

in the SCMG systems/. The singularity robustness is defined as a property of inverse-

kinematics that can provide continuous and feasible solutions for all gimbal (linkage)

configurations (including the singular configurations).

The SR inverse i� the solution of the unconstrained minimization problem:

. . T .

( J
. )T ( J

.

)mm!t_ fl_ fl_ + T_ - fl_ T: - fl_ (4.4)

The solution of Eq.(4.4) can be written as

.

J*fl_= T_

where -r ,

(4.5b)

\
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is the SR inverse of the Jacobian matrix which is shown in Ref.ll to belong to the

orthogonal complement of the redundant space. Alternatively the SR inverse, J*, can

be computed using the singular value decomposition2,7,1l of the Jacobian matrix

(4.6)

where

U E �mxm and V E �nxn are orthonormal matrices

E* = C��2 �) E �nxm

�J2 � diag ( 2
CTi ) E �lxl

CT· + k
z

If the system is singular, the SR inverse results in the gimbal (linkage) lock phe

nomenon: the gimbals (linkages) are "locked" in the singular configuration2,10 and

extra effort is required to escape from the singular configurations.

3. Extended Jacobian Technique

The extended Jacobian technique is proposed by Baillieul3 as a kinematic_pro-

gramming alternative to solve the inverse kinematics in RM systems. This technique

takes advantage of the redundancy in the system by imposing conditions that the

gimbal (linkage) configurations optimize (at least locally) some objective function

g(CT) which could be the singularity measure or manipulatability index.

\ The kinematics of a SCMG (RM) system can be represented as

\ ,

� = F(CT) (4.7)

where � denotes angular momentum (trajectory) of SCMG (RM) systems and CT

denotes gimbal (linkage) configurations. Let the Jacobian matrix be defined as

D. 8F
J=-

8q_ (4.8)

\
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and N denote the null space basis of the Jacobian matrix which can be calculated

using generalized cross product 1,2 or QR decomposition9 of J.

The condition for optimizing the objective function g( (7) is given by7

(4.9)

where

If some gimbal (linkage) configurations satisfy Eq.(4.7) while, at the same time, op

timizing g( <7 ), then

{ F(<7(t))} = {�(t)}G(<7(t)) 0

Thus the differential relationships for Eq.(4.10) can be written as

(4.10)

(� ) Q:( t) = { ;t�t) }
where � is the gradient of G( (7) with respect to z. Thus

(�)
is a square matrix and is referred to as the extended Jacobian, Je. Therefore, provided

(4.11)

(4:12)

that J e is not singular; �he solution to the inverse kinematics problem is given by
.. .

(4.13)

The extended Jacobian, Je, defined in Eq.(4.12) has some drawback: there exist

some gimbal (linkage) configurations, !Ls, such that Je(!Ls) is singular but J(�) has ,

full rank. Thus the system now has more than 2n singular configurations for a given

singular direction in �m which should be avoided by this technique.
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V·. PROPOSED SINGULARITY AVOIDANCE ALGORITHM

The inverse kinematics and singularity avoidance methods presented in Chapter

IV have several drawbacks that leave room for improvement. The pseudoinverse so-

lution cannot avoid �lliptic singularities successfully and require extensive arid costly

computational task. The singularity robust inverse can provide solution in the neigh-

borhoods of singularities albeit approximate. However, the solution might result in

the gimbal (linkage) lock phenomenon. The extended Jacobian technique can elimi-

nate the avoidable singularities, but it introduces additional singular configurations

other than those due to kinematics, i.e. the solution cannot be obtained even if the

gimbal (linkage) configurations are not kinematically singular. This chapter presents

a proposed algorithm which is expected to provide some improvements for the inverse

kinematics and singularity avoidance algorithms. The proposed algorithm is similar

to the extended Jacobian technique and pseudoinverse solution.

The kinematics problem is generally formulated as in Eq.(4.7) and the differential

relationships can be expressed as

(5.1 )

where J is the Jacobian matrix defi�ed as

6. of
J =-==

oq_ (5.2)

The inverse kinematics problem will be solved using the following algorithm' which-

./ .

will also provide singularity avoidance.

\
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PROPOSITION

Assume that at ti E [to, t f) Rank[J( ti)] = m and let N be the null space basis of

J (E Rn). Augmenting (s.t) with JVTq_ = 'lj; yields

( S.3a)

where Je E Rnx,n is the extended Jacobian defined as

(S.3b)

and !fe is the extended operational task defined as

(S.,3b)

Hence the solution of the inverse kinematics problem is given by

. J-1!Z. = e !fe (S.4)

which is equivalent to (4.2a) and similar to Eq.(4.13).

PROOF

A pseudoinverse of a nonsingular square matrix is equal to the regular inverse. If

rank(J) = m, then Je is a nonsingular square matrix. Hence

J-1 - J+e
-

e

-

N) [ (� ) (JT Nr= (JT

= (JT N ((JJTfl 0))
o. 1

= (J+ N)
Hence Eq.(S.4) can be rewritten as

which is equivalent to Eq.(4.2a) and similar to Eq.(4.13) •

\
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COROLLARY

The manipulatability index or singularity measure is defined as

Me = det(Je)

which is equivalent .to Eq.(4.3).

In Eqs.(.5.3-4), 'lj; is a parameter playing a similar role as 1!_(t) in Eq.(4.7). The

proposed algorithm has a geometrical interpretation: "scaled" projection of the solu-

tion, il.., onto the null space direction (basis) of the Jacobian matrix. In general, 'lj; is

a function of time and is problem-dependent, and its form is given by:

(5.5)

where Q:MP denotes the particular solution of the Moore-Penrose pseudoinverse and

C and p are problem-dependent constants.

The proposed algorithm is applied to solve two SCMG singularity avoidance prob

lems. In the first simulation, the constant unit torque ( T = {1 0 O}T) along the VI

axis is requested. This torque forces the system to go towards both internal and

saturation singular configurations. In the second simulation, the torque reques� is

defined as

T = { {0.7071
-

{-0.7071

0.7071 O}T t < 0.83-(s)
0.7071 O}T ,0.83:::; t < 4.0 (s)

Each gimbal in both simulations has an angular momentum, h, of 1.0 kg-m2/s.

_
The CMG dynamics are integrated using the seventh-eighth order. Runge-Ku--tta-

'

.

\
,

-

/

Fehlberg integrator on MATLAB with a tolerance value of 10-6. The magnitude of

the gimbal rate vector is limited such that 1il..12 :::; 4. The parameters in Eq.(5.5) used

for the first simulation are C = 1.25, p = 1.5, and those for the second simulation are

C=p=1.

\
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The results of the simulations show that the proposed algorithm has successfully

avoided the elliptic singular configurations (Figs.7 and Figs.8); the algorithm gener-

ates singularity-free gimbal configurations until saturation singular configurations are

reached. This algorithm shows its superiority over the pseudoinverse and singularity

robust inverse solutions presented in Ref.2.
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VI. FEEDBACK CONTROL IN SPACECRAFT DYNAMICS

1. Introduction

Attitude stabilization and control systems are very important parts of spacecraft

design. Many spacecraft must maintain their attitude within a fine tolerance and

point in the right direction. For example, the Hubble Space Telescope must point

its sensors towards certain stars very accurately and the Phase-I space station must

maintain its attitude within ±5° of local vertical local horizontal (LVLH)12.
Some spacecraft are designed to perform rapid large angle maneuvering and target

tracking. Such spacecraft require nonlinear control laws and high authority actuators

.to generate required torques to perform the tasks. Single gimbal control moment

gyroscopes are suitable for use in such application as they can provide torque am

plification and generate continuous torque to perform rapid slew maneuvering and

precision pointing/target tracking.

This chapter shows two examples of application of SOMGs III spacecraft rna

neuvers. The proposed algorithm is applied to generate the required torque and

provide singularity avoidance (obtain singularity-free gimbal configurations}, In the

first simulation, a rest-to-rest spacecraft reorientation maneuver is performed, while

a motion-to-rest spacecraft maneuver is performed in the second.

2. Spacecraft Attitude Dynamics

The spacecraft attitude is represented by a set of Euler parameters which describe

the relative rotation of the vehicle frame with respect to the inertial frame of reference.

\
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When orbital motion is ignored, the time derivative of the Euler parameters is related

to the vehicle angular velocity by10

(6.1 )

vehicle angular velocity, respectively, and G,6 is given by
-i31 -i32 -i33

6. i30 -i33 i32
G,6=

i33 i30 -i31
-i32 i31 i30

The spacecraft total angular momentum can be written as

H = Iw + llcMG (6.2)

where I is the inertia of the spacecraft. The time derivative of the angular momentum

is derived using the Newton-Euler principle10 as

dH .

b =

dt
= Iw + w x Iw + llcMG (6.3a)_

or, in the absence of external torques, b =.Q, Eq.(6.3a) can be rewritten as

(6.3-b)

The effect of gimbal and transverse inertias is small compared to that ofthe spacecraft,

thus the SCMG inertia terms are neglected in the analysis+".

3. Feedback Control of Spacecraft Maneuvers
\

,

/

A feedback control law is a relationship between the required torque and the

instantaneous and target states. The control design is based on Liapunov's second

method 10-. which guarantees global asymptotic stability of the control system as long

"
as no singularities are encountered in the SCMG system.

\
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Without loss of generality, the desired final attitude is assumed as fif = {I 0 0 O}T.

The spacecraft initial angular velocity is Wo while its final angular velocity is zero.The

Liapunov function is defined as

(6.4)

which is the deviation squared of the instantaneous states from the target states. It

is necessary, for stability of the feedback control system, that V be a monotonically

decreasing function; therefore, its time derivative must be negative throughout the

maneuver. It is sufficient, for V < 0, that10

llCMG = J_Q: = kj3 + Kw (6.5)
" t::,. Twhere 13 = {f31.f32 f33} ,k is a positive constant, and K is a positive definite gain

matrix.

4. Simulations

The proposed algorithm is applied to solve singularity avoidance problems in

spacecraft attitude control systems using SCMG. The spacecraft data in the simu

lation are' taken from Ref. 10. Torque demands are generated using feedback control

law based on the Liapunov's stability t.heorernv'.

The first simulation is a rest-to-rest spacecraft reorientation maneuver. The initial

attitude of the spacecraft is defined as 13 = {0.7071 0.7071 0 O}T while its initial
, _0

angular velocity is zero. Each gimbal in the SCMG system has an angular momentum,
-

./

h, of 1.15 kg-m2 / s. The second simulation is a motion-to-rest spacecraft maneuver.

The initialattitude of the spacecraft is defined as §._O = {0.7071 0.7071 0 O}T while

its initial angular velocity is defined as Wo = {-01 - 05 001}T. Each gimbal in the

SCMG system has an angular momentum, h, of 2.1 kg-m2/s.

\
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The system equations: Eqs.(6.1),(6.3b),(6.5) are integrated using a seventh-eighth

order Runge-Kutta-Fehlberg integrator on MATLAB with a tolerance value of 10-6.

The magnitude of the gimbal rate vector is limited such that Id2 ::; 4. The parame

ters in Eq.(5.5) used for the first simulation are' C = p = 1, and those for the second

simulation are C = 1, p = 2. The results of the simulations show the present algo

rithm generates singularity-free gimbal configurations during the maneuvers in these

particular examples (Figs.9 and Figs.10).

\
,

\
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Results of the motion-to-rest spacecraft maneuver: (a) Euler

parameters, (b) Spacecraft angular velocity (rad/s), (c) Gimbal
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VII. CONCLUSIONS AND RECOMMENDATIONS

The proposed algorithm can avoid singularities by steering the system away from

singular configurations. Choice of a proper value of 'ljJ generates a singularity free

path (avoids internal singularities). Further study needs to be conducted to obtain

a systematic way of choosing the proper value of'ljJ. Alternatively, optimal control

theory may be applied to generate singularity free path in both SCMG and RM

systems. This is recommended as a topic of future research.

\
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