
THE EFFECT OF MEASUREMENT ERROR
ON REGRESSION DIAGNOSTICS

Marian K. Snyder
University Undergraduate Fellow, 1986-1987

Texas A&M University
Department of Statistics

APPROVED:

Honors Dire



THE EFFECT OF MEASUREMENT ERROR ON REGRESSION DIAGNOSTICS

Abstract

Introduction

Regression Diagnostics and Outliers
Measurement Error
The Hat Diagonals

Procedure

The Literature Review
The Analysis

The Models
The Cases

The Simulation

Results and Discussion

The Limiting Probability Distribution of the (n-1) h ..
11

The Simulation Results.

Conclusion

References

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E



2

ABSTRACT

Regression diagnostics detect outliers. The purpose of this

study is to analyze the effect of measurement error on the

detection process of the regression diagnostic, the hat

diagonals. The hat diagonals are analyzed according to four

cases: the error-free and contamination-free case (Model 1), the

measurement error case (Model 2), the outlier case (Model 3), and

the combined measurement error and outlier case (Model 4). The

analysis leads to the limiting probability distribution of

(n-1)h .. under Model 4. This distribution is simulated for sample
11

sizes, N, equal to 20, 40, and 60.
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Introduction

Regression is a widely used statistical tool used to

represent an assumed linear relationship between a response

variable, Y, and an explanatory variable, x. Least squares

methodology is employed to estimate the linear relationship

between Y and x based upon a sample (Y., x.), i=1, ... , n.
� �

The simplicity and ease of using regression packages allows

insidious error to creep into the analysis. Many researchers are

unfamiliar with the assumptions and limitations of regression.

Therefore, we propose to study one tool that allows for detection

of the invalidity of least squares: the regression diagnostic.

Regression diagnostics and outliers

According to Hocking(1983), regression diagnostics are

numerical functions of the data that may be used to detect inputs,

x., that are "far from the bulk of the data" (Hocking, p. 222).
�

The points are collectively termed outliers. A single outlier has

the capability of invalidating the line of best fit. Therefore,

outliers are sometimes referred to as high leverage points because

of this capability. Diagnostics can be used to detect any

invalidation of least squares due to outliers.

Diagnostics for the single X case are trivial. Diagnostics

are extremely useful for the p-dimensional case when plots become

cumbersome in detecting outliers. Therefore, the study of

regression diagnostics is important for the more involved case

where the X matrix contains p columns.
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Measurement error

Measurement error can also invalidate the least squares fit

of the line. On average, data with measurement error will

underestimate the slope of the straight-line relationship between

Y and x if least squares methodology is used. Human measurement

error such as misrecording data, using subjective measurements, or

using inaccurate machinery are common occurrences. For these

reasons measurement error must be considered in the regression

analysis.

Specifically, we wish to analyze the effect of measurement

error on regression diagnostics. We expect to see that

measurement error masks the detection of outliers. As a result of

the spreading out of the data due to measurement error, the

outlier would become more a part of the bulk of the data. Thus,

its distance from the line of best fit would no longer be

significant.

The hat diagonals

We will focus our attention upon one diagnostic, the hat

d· 1 h
.th

d' 1 f h h
. .

d d b1agona s. T e 1 1agona 0 teat matr1x, H, �s enote y

h ... The matrix H is an nxn projection matrix where
�1

H = X(X'X)-1X,. According to Dunn (1982), the "hat matrix

provides a direct measure of extreme observations" (Dunn, p. 17).

He explains that when an observation, x., is extreme, the
1

consequent h .. is large in response to the exaggerated distance of
11

of the x. from the bulk of the data. Observations, x., that result
1 �
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in large h .. values are detected as high leverage points (Dunn,
11

p. 17). Our interest in the hat diagonals is in its performance

under the stress of outlier contamination and measurement error.

The Literature Review

Draper and Smith (1966) offer an introductory and complete

explanation of regression. Hocking (1983) provides an overview of

the developments in linear regression over the past twenty years.

In particular, Hocking discusses regression diagnostics. He

points out that the hat diagonal is a widely used diagnostic for

detecting outliers in the explanatory variables. Dunn (1982)

gives detailed discussions of several diagnostics. However, there

appears to be no reference to the affect of measurement error on

the regression diagnostics. Fuller (1981) provides a

comprehensive treatment of measurement error models.

The Analysis

The purpose of this section is to examine the limiting

distribution of the hat diagonals under the influence of outliers

and measurement error. To accomplish this, we analyze the hat

diagonals for the following four models: the error-free and

contamination-free case (Model 1); the measurement error case

(Model 2); the outlier case (Model 3); and, finally, the combined

measurement error and outlier case (Model 4).

In order to begin the analysis, we must define the concept of

convergence in probability. Serfling (1980) defines convergence

in probability as follows.
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Definition The random variable Y
n

converges in probability

to the random variable Y if and only if, for every £ > 0, the

lim p (IY n- YI < £) = 1. The techniques used for demonstrating
n-+oo

convergence in probability are derived in Chapter 1 of Serfling

(1980).

The Models

In order to analyze the hat diagonals for each case in the

analysis, we must define four models to coincide with each case.

Model 1: for the error-free and contamination free case.

Let

Y. = y. + e.
� � �

i = 1, 2, ... , n

This is the simple regression model where x. is the true,
1.

observed variable.

Model 2: for the measurement error case

Let

Y. = y. + e.
� � �

x. = x. + u.
� � �

(Xi' ei, ui) iid NI«�x' 0, 0)', diag (oxx' 0ee' 0uu»
where x. is the observed independent variable and u. is the

� 1.

is the measurement error.
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Model 3: for the outlier case

Let

y. = f30 + f31xi1.

Y. = y. + e.
1. 1. 1.

where e. iid N(O, °ee)1.

i = 1, 2, ... ,n

and

x. � (1 - 6 ) N (� , ° ) + 6 N (� , K2 ° )1. X X xx x x x xx

o > 6 > 1, ° > 0, K2 » 1
x

-

xx x

The model allows that with probability 6 , the ith
x

realization of x. will be drawn from the contaminating
1.

Model 4: for the combined measurement error and outlier

case.

Let

y. :::

f30 + f31xi1.

Y. ::: y. + e.1. 1. 1.

X. :::: X. + u. i = 1 , 2, ... , n1. 1. 1.

where

x. ... ( 1 - 6x) N (�x' °xx) + 6 N (� , K2 °xx)1.
x x X

o i 6 < 1 , K2 » 1 , °xx > 0,
x

-

x

e. iid N (0, °ee) > 0,1.
, °ee
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and

, 0uu 2. 0,

where x. is chosen from the N(�x' K2 a ) with probability
� x xx

� and x. is the observed value. Then, u. remains as the
x � �

measurement error variable.

The Cases

The Error-Free and Contamination-Free Case.

This first case studies the hat diagonals using Model 1.

Given that the ith diagonal element of the hat matrix H, h
ii

can be expressed as

(n-1) hii =

(x. - X)2
�

-1 n
(n-1) r .

1 (X. - X)2
J= J

for the single X case, it is instructive to look at the

separate limiting distributions of the numerator and

denominator. We must, then, examine the expected values of

each. We obtain that

a
xx

since X is iid N (II , 0 ) and E[ E.n1(X. - X)2] = (n-1)0�x xx J= J xx

From this we conclude that (X. - X)2 converges in probability
�

to the square of a N(O, 0xx) random variable. In addition,

-1
-

2
(n-1) E.n1(X. - X) converges in probability to a Thus,

J= J xx

(n-1) h .. converges in probability to a chi-square random
��
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variable with one degree of freedom. If the X matrix has

column dimension, p, (n-1) h .. can be shown to converge in
11

probability to a chi-square random variable with p degrees of

freedom. These results are derived in Appendix A.

The Measurement Error Case

The analysis of the hat diagonals in the presence of

measurement error, as specified in Model 2, is essentially

the same as that of Case 1. The only change occurs in the

model as found in X = x + u where x is the true observed

value and u is the measurement error. The variance -

covariance matrix of the observed independent variable X is

[XX where

However, the arguments leading to the result in Case 1 are

the same, with [XX replacing [xx· Hence, (n-1) h .. converges
11

in probability to a chi-square random variable with p degrees

of freedom as in Case 1. See Appendix B for details.

The Outlier Case

This case involves a more indepth analysis than the preceding

two cases. We must now draw upon Model 3 where

The model allows that with probability 6x' the ith
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observation will be drawn from the contaminating N(��' K� 0xx)
distribution. For the single X case the numerator of

(n-1)h.. converges in probability to a mixture of a
�l

N(O, a ) random variable and a N(O, K2 a ) random variable
xx x xx

The denominator of (n-1)h .. converges to a constant, as shown
l.�

in Appendix C.

The Combined Case

We must now consider the combined case of measurement

error along with outliers as in Model 4. The notation

changes from Case 3 include

X. = x. + U.
1. 1. 1.

where

u. � iid N(O, a ) random variable
1 uu

The conclusions of this analysis concur with the outlier case

with slight alteration. That is, X. - X converges in
1

probability to a mixture of the N(O, a + a ) and
xx uu

N(O,
2

+ a ) random variables as shown in Appendix D.K a
xx uu

The simulation

The purpose of the simulation is to examine the small sample

behavior of (n-1)h ... We generate the observed variable, x., and
1.1. 1.

the measurement error variable, u., according to Model 4. The
1.

X. = x. + u. are used to compute the h. .. We then arbitrarily
1. � 1. 1.1.

select h11 to be stored. After storing five thousand independent
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observations of (n-1) h11 we computed the empirical .01, .05, .10,

.90, .95, and .99 percentiles of the (n-1) h .. ·s.
11

Results and Discussion

The limiting distribution of the (n-1) hii

From the analysis in Appendix E we are able to determine the

limiting probability distribution of (n-1) h ... Recall that
11

(X. - X)2
(n-1) h ..

1
=

11 n
-1 _X)2(n-1) [ (X.

j=1 J

We have that the denominator converges in probability to a

constant, q, where

q = a (1 - (K2 - 1)6 ) + a .

xx x x uu

The numerator converges to the square of a mixture of normal

random variables that the limiting distribution function of

(n-1) h .. can be expressed as
11

F(�) = lim P[(n-1)h .. < �] = P(-/q� < X. - � < Iq�)
n��

11 ].

- P(X. -

� < - Iqn)
1

Table 2 is a table of F (�) for the case where
n

a =1,
xx

a = 1, 6
uu X

= .05, �x
= 0, and K2 =

x
10 .
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The .01, .05, and .10 values of F(n) occur at n = 0.00022,

0.00538, and 0.02160, respectively. The n values for F(n) = .90,

.95, and .99 are 3.92300, 5.83500, and 13.16000, respectively.

When 6 = 0, the limiting distribution of (n-1)h .. is chi-
x ��

square with one degree of freedom. This follows from the fact

that Model 4 reduces to Model 2 when 6 = O. Table 1, serves two
x

purposes. First, it demonstrates that as n gets larger, the

empirical percentiles generally tend toward the percentiles of the

limiting distribution. Second, because the empirical percentiles

are based on finite samples, sampling variability may cause the

empirical percentiles to deviate slightly from the expected trend.

For example, the empirical .95 percentiles for N=20, 40, 60 are,

respectively, 3.56, 3.80, 3.69. Apparently sampling variability

causes the N=60 empirical .95 percentile to be farther from the

limiting .95 percentile (3.84) than the N=40 empirical .95

percentile.

We know that for models 1 and 2 that (n-1) h .. tends toward
��

a chi-square random variable with one degree of freedom. We

expect the combined case of outliers and measurement error to

deviate from the chi-square. Table 2 lists the results of the

analysis and the simulation of the limiting distribution of (n-1)

h .. when 6 = 0 for Model 4. The first
�� x

column of the table shows the true values of the limiting

distribution while the other three columns show empirical

percentiles computed by simulation.
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TABLE 1. The limiting distribution of (n-1)h .. with 6 = 0
11 x

Limiting
Distribution Simulation Percentage point

_a_ a Percentile N=20 N=40 N=60

0.01 0.000157 0.0001961 0.0002394 0.0001278

0.05 0.003934 0.0038784 0.0040793 0.0042236

0.10 0.015790 0.0151803 0.0161976 0.0042236

0.90 2.705600 2.542054 2.636511 2.6817961

0.95 3.841500 3.5596993 3.8057005 3.6894607

0.99 6.635000 5.5898714 5.8526012 5.9616838

Note: Parameter values are: 6 = 0
x

0=1
xx

a =

uu

IJ = 0
x

2
K = 10
x
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Table 2. The limmiting Distribution Results of (n-1 )hii

Limiting
Distribution Simulated Distributions

_a_ a Percentile N=20 N=40 N=60

0.01 0.00022 0.00014 0.00012 0.00013

0.05 0.00538 0.00299 0.00270 0.00298

0.10 0.02160 0.01102 0.01153 0.01196

0.90 3.92300 2.227256 2.50410 2.32620

0.95 5.83500 3.20180 4.41760 3.71620

0.99 13.16000 5.08360 15.23107 17.96290

Note: Parameter values are 6 = 0.05,
x

a =

xx

0=1
uu

iJ = 0
x

2
K = 10
x
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The Simulation Results.

Table 2 lists results of the analysis and the simulation of

the limiting distribution of (n-1)h .. when 6 = .05. Columns in
�� x

Table 2 are defined the same as those in Table 1. The limiting

percentiles in Table 2 differ substantially from those of Table

1. The effect of 5% (6 = .05) contamination by a N(0,10)
x

population of true x values causes the limiting distribution to

become skewed to the right. Comparison of the limiting

percentiles to the empirical percentiles within Table 2 also

reveals that empirical quantiles do not converge (as sample size

increases) nearly as fast when contamination occurs. For example,

even when N=60 in Table 2, empirical .90, .95, and .99 quantiles

are 2.33, 3.71, and 17.96, respectively. The corresponding

limiting quantiles are 3.92, 5.84, and 13.16, respectively.

Another aspect of our study is the effect of measurement

errors on regression diagnostics. Unfortunately, time constraints

have not allowed us to analyze adequately this aspect and results

are not presented here.

Conclusion

We have proposed to study the effect of measurement error on

regression diagnostics. We have partially fulfilled that

commitment. We have defined the probability distribution of the

hat diagonals in the presence of random measurement error and on

the limiting distribution of the h .. under the same conditions.
��

Due to a time constraint, however, we were unable to complete the



analysis of the hat diagonals with measurement error variation.

Thus, the effect of the measurement error on the hat diagonals is

incomplete.

16
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APPENDIX A

In this appendix we derive an expression for, and properties

of, (n-1)h .. , where h .. is the ith diagonal of the centered hat
�� ��

matrix H. First we consider the single explanatory variable case
c

in detail. Then we sketch the derivations for multiple

explanatory variables.

The simple linear regression model (Model 1) is

i=1,2, ... ,n,

where we assume the x. IS are iid N(� , a ) random variables.
� x xx

Written in deviation form the model becomes

or, in obvious matrix notation,

The centered hat matrix for the single explanatory variable model

is defined to be

-1
H = x (x IX) X

I

ccc c c

with ith diagonal element

hoo
��

- 2 n - 2
= (xi-x) n::j=1 (xi-x) .

Therefore
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(n-1 )h ..
l.l.

( 1 )

Next, we consider large sample properties of (n-1)h .. for the
l.l.

single-x case. The denominator of (1) converges in probability

to 0xx' The numerator of (1) converges in probability to

2
(xi-�x) , i.e., the square of a N(O,oxx) random variable.

Therefore (n-1)h .. converges in probability to the square of a
l.l.

N(O,1) random variable. Thus, the limiting distribution of

(n-1) h .. is chi-square with one degree of freedom.
l.l.

If K explanatory variables appear in the regression model,

the model in derivation form is

In matrix notation, the model in deviation form, is

Y = x � + € •

ccc

The centered hat matrix for the K-variable case is

-1
H =x (x x) Xl. Although it is infeasible to derive an explicit
ccc c c

expression for (n-1)h .. , the ith diagonal element of H , the
l.l. c

limiting distribution of (n-1)h .. can still be derived. First
l.l.

consider

= sample covariance matrix of the vectors

(x '1' ... .x , )1
l. l.K
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Clearly, S converges in probability to [ , the covariance
xx xx

matrix of (x.1, ... ,x. )'. Also
1 1K

p

[(x·1-i1),···,(x. -i )]' � [(X'1-�1)' ... '(x. -� )]',
1 1K K 1 1K K

where �j is the mean of Xij, j=1,2, ... ,K. Therefore,

(n-1)h .. � k[(x'1-�1)' ... ,(x. -� )] [-1[(x·1-�1),··.,(X1-� )]'
11 1 1K K xx 1 K k

= Z�z.
1 1

where Zi is a vector of NK(O,I) random variables. Thus,

p 2
(n-1)h .. � X .

11 K
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APPENDIX B

If Model 2 is the true underlying model for the data, the

arguments of Appendix A carryover trivially to this case as

well. Let [XX = [xx + [uu' where [uu is the covariance matrix of

the vector of measurement errors. Then [XX is the covariance

matrix of observed explanatory variables, because X = x + u, where

x and u are independent normal vectors. Therefore, for the

centered hat matrix Hc = X (XIX )XI of the observed (X = x + u)
ccc c

explanatory variables,

converges in probability to [XX. Also, the ith row of Xc
converges in probability to a N(O,[XX) random vector. Thus,

(n-1)h .. converges in probability to a x2 random variable
11 K
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APPENDIX C

Assume Model 3 holds. This is the outlier model. To

consider properties of (n-1) h .. for this case define the
1.1.

following notation.

Let W � N (�x' 0 ) and Z � N(� I K2 0 ), Wand Z
xx x x xx

independent. Define V, independent of W, Z to be

1 with probability 1-6
x

V =

o with probability 6x

where 0 < 6x < 1

Then

X = VW + (1-V)Z

for our model and

E(X) = EvE(XIV = v)

= (1-6x)E(XIV=1) + 6xE(XJV=0)
= (1-6 )IJ + 6

x IJ

= �

Also,

E(X2) = EvE(X2IV = v)

= (1-6x)E(X2IV = 1) + 6xE(X2IV = 0)

= (1-6 )E(W2) +6 E(Z2)
x x

= (1-6 )(0 + �2) + 6 (K20 + 1J2)
X xx X x x xx x

= a (1 + (K2 - 1) 6 ) + �2
xx x X X
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Therefore, because

- P
X2 ... [ E(X) ]2

and

1
n p

(n-1)- [X.2 ... E(X2) ,

j=1 J

we have

P
... E(X2) - [ E(X) ]2

p
... 0 (1 - (k2 - 1)6 ).

xx x x

Also,

- p
X. - X'" X. - E(X.) = X - �.
111

Now,

P(X - � < c) = P(V = 1) . P(X -

�x < CIV = 1)

+ P(V = 0) . P(X -

�x <IV = 0)

= (1 - 6 ) P (W -

� < c) +
x

+ 6 . P(Z - � < c)
x x

= ( 1 - 6 ) P [(W - � )/0 < c/o ]
x x x x

+ 6 . P [(z - � )/0 < c/o ]
x x x x

= ( 1 - 6 )� (c/o ) + 6 � (c/K 0 )
X X X X X



That is, X.- X converges in probability to a mixture of a
1

N (0, 0xx) random variable and a N (0, K20 ) random variable.
x xx

24
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APPENDIX D

Assume Model 4 holds. Then write

X. = x. + u.
111

and

x. = V.W. + (1 - V.)Z.
11111

where V. 's are iid random variables with p.d.f.
1

V. =

1

1 with probability 1 - 6
x

o with probability 6x '

W. 's are iid random variables from N (�x, a ) population,
1 xx

Z. 's are iid random variables from N (�x, K2a ) population,
1 x xx

and

u. 's are iid random variables from a N(O, a ) population.
1 uu

Then,

E (X. ) = E(x. + u.)
1 1 1

= EV. E(xilV = v) + E (u , )
1

1

=

�x + 0

=

�x

from Appendix C. Further,

E (X?) = Ev E(X?IV = v)
1 . 1

1

2
= EV E[(X.+ u.) IV=v].11

1
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= EV E(x?lv=v) + 2EV E(u.)E(x.)
i

1
t

1 1

+ EV E(U?IV=V). 1

Since E(u.) - 0
1

1
-

,

E(X.2) = a (1 + (k2 - 1)5 + � 2 + a
1 XX X X X uu

Therefore, because

X2 fl [E(X)]2

and

(n-1)-1 n X.2
p
E(X2)[.1 ...

J= J

we have that

(n-1)-1 n X.2 - nX2]
p
E(X2) - [E(X)]2,[.1 ...

J= J

as before.

Comparing these results with those of Appendix C, we see that

the only change is the greater variance due to the measurement

error. That is, X. - X converges in probability to a mixture of a
1

N(O, a + a ) random variable and a N(O, K2a + a ) random
xx uu X xx uu

variable.
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APPENDIX E

According to model 4, the distribution of (n-1)hii can be

derived.

P[(n-1)hii i rl]

Then, ,

P[ (n-1 )hii i 11]

= P[-/cl1 i (X-�x ) i Iql1]

The separate probabilities then are calculated by

P[(x-� ) < L] = (1-6 )�[L/K2 a + a )1/2]
x x xx xx uu

+ 6 �[-TJK2a + a )1/2
x �\ x xx uu

where L is Iql1.


