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Abstract

A classical two-dimensional, bending-torsion
flutter analysis of a reference airfoil in a cas

cade of infinite blades is performed. The un

steady airloads on the reference airfoil are pre-.
dicted using a numerical lifting surface theory.
Several cascade and flow parameters such as inter
blade spacing, stagger angle, phase angle between

blades, Hach number, and freauency are investi

gated. The bending-torsion flutter speed of the
cascaded reference airfoil is studied as a func
tion of the cascade and flow parameters and the
results are compared with that of an isolated
airfoil.

Introduction

Axial flow compressors usually have several

stages consisting of a stator and a rotor. In
this study, a classical flutter analysis is per
formed on a reference blade of a typical set of
compressor rotor blades. The set of rotor blades
is treated on a two-dimensional basis in a cas

cade. The reference airfoil is treated as a two

degree-of-freedom system undergoing flapping and

pitching oscillation. The usual procedure is to

derive Lagrange's equation of motion taking into
�ccount the structural geometry �nd properties
with the unsteady airloads actL.g as external

forcing functions. Since the prediction of un

steady airloads playa major role in the flutter

analysis, in this study a brief literature survey
and the formulation of an unsteady airloads pre
diction method are given.

Several investigators have developed methods
for prediction of unsteady �;rloads on a blade
of a cascade. Steady flow < �sumptions were not

valid for a cascade of blades since each blade
row operates in the unsteady wake of the preced
ing row. Kemp and Searsl in one early investiga
tion studied the problem of the unsteady lift
generated by a reference airfoil using incompres
sible flow assumptions. They included the steady
interaction between blades in the cascade, but

neglected the unsteady interaction, and therefore,
the effects of cascade spacing. This method ex

pressed the unsteady lift as a function of the

design parameters, for this lift is proportional
to the ratio of the airfoil chord and the distur
bance wavelength. This enabled the designer to

optimize the performance of the turbomachine de

sign instead of analyzing one particular blade

setup. This method was extended by Harlock2 to
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include the normal and parallel velocities to the

airfoil, thereby considering the stagger angle
and blade camber in the design analYSis.

For the incompressible airloads prediction on

airfoils with oscillating flaps, Jones and Moore3
devel�ped a unique numerical lifting surface tech

nique which differs from previous methods in that

it used the velocity potential instead of the ac

celeration potential doublet distributions. One

advantage of this method is the resulting simpler
set of linear simultaneous equation to be solved.
Rao and Jones4 applied this method to the oscil

latory incompressible flow in a cascade and were

in good agreement with results submitted by Schorr
and ReddyS using approximate integral equation
solutions.

Compressibility effects were added by Kaji
and Olazaki6 to the cascade solution. They em

ployed the acceleration potential doublets using
linearized flow and reduced the solution to a

set of six singular implicit integral equations
for each set of cascade parameters. This method

is able to account for staging as well as cas

cading effects on the unsteady airloads.

Jones and Moore7,8 extended the velocity po-
ten t LaI formula t Ion to o sc tLl.a t ing two+d Irne ns Jona 1

airfoils in comp re s s i.b l,e f Low , 1':.-:.e1' were able to

replace the slowly converging Hankel function se

ries with a fast converging expon�ntial series in

the compressible flow equation. Rao and Jones9
applied the numerical lifting suridce method for
the prediction of airloads on a reference blade

of a cascade. This lifting surface theory is the
one used to compute the airloads for the single
airfoil and cascade flutcer predictions and will
be formulated in the next section.

TI1e unsteady airloads predicted by the lift

ing surface method are combined with the given
blade structural properties, and a two-dimensional

bending-torsion flutter analysis using the La

grange's equation of motion will provide the flut
ter speed and frequency.IO The unsteady air loads

predicted by the numerical lifting surface method
can be added as forcing functions to the two La

grangean equations of motion representing the

bending and torsional degrees-of-freedom of a two

dimensional airfoil. By making use of an itera
tive procedure which permits frequency variation,
the flutter frequency and speed of the reference
airfoil can be obtained. Comparison of the flut
ter speed for the single airfoil and the reference
airfoil of a cascade provides the information

necessary for predicting the effects of cascade

parameters; the interblade spacing, phase lag,
and stagger angle, on the flutter speed.
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Any dynamic system is assumed to flutter at

a speed at which the unsteady aerodynamic forces
ruske the system neutrally stable. In other words,
flutter occurs at the speed where no net damping
forces are acting on the system. Also, there

exists a frequency corresponding to the flutter

speed and it is called the flutter frequency. In

this papert a unit span of a reference airfoil
in a cascade is assumed to have two-degrees-of
fteedomt bending and torsion, and the unsteady
airloads are predicted using a two-dimensional

lifting surface theory. The cascade parameters
associated with a staggered row of thin oscillat

ing blades are presented in Figure 1. In a free
stream velocity of U and Mach number of M, the

blades have an oscillation frequency of p rad/sec.
the airfoils are of a chord length 2£ and are in

clined to the vertical axis at a stagger angle of

A. The airfoil is assumed to be undergoing flap
ping and pitching periodic motion, £z(=£z'eipt)
and a(=a'eipt), respectively. This motion is rep
resented in Figure 2 for the reference airfoil,
and the expression for the kinetic energy per unit

span for a mass element dm undergoing this motion,
that is at a distance r from the rotation point is

where z and a are nondimensional coordinates. The
kinetic energy per unit span of the entire airfoil

is given by
--.I',

2 .2
t == �f (t� + t�)2 dm = � £ �2 + S£za + �Ia (2)

£
w

where Mw - Mass per unit span of blade

S - fr dtn - Static moment ab ou t elastic
aitfoil axis.

I == fr2 dm - Moment of inertia about elas-
a!tfoil tic aX18.

I m = -3

m = -2

tnitial posi tion

r
t.z

<, I E1o,"< ,,1,
-

--,
- - - - Flapped and p Lt ched

position

Figure 2 Flutter Coodinates

The.potential energy expression for the blade
is expresse-l as

(3)

(1)

where k and k are the stiffness in bending and

torsion: respe�tive1y. These are related to the

bending and torsional natural frequencies, wand
w as kz = Mww� and ka = Iw�. Flutter is a �elf
e�citing aeroelastic phenomenon involving the in

teraction between the inertial, elastic, and aero

dynamic forces. The structural damping of the
blade can be neglected compared to the aerodynamic
damping terms associated with the forcing func
tion. Neglecting the structural damping, La

grange's equations of motionlO can be expressed
as

d

dt
(4)

where Fk and qk are generalized fo r ce s and coor

dinates. The aerodynamic forcing functions are

obtained from a two-dimensional unsteady airloads

predictiJn method derived later in this section

and are given in the form

(5)

where C£ , C9, , Cm ' Cm are the aerodynamic de
rivative� refgrredZto tge elastic axis. Equa
tions (2), (3), and (5) are comb ined with (4) to

obtain

m = -1 l\v£z + Sa + kzh
%--� - _ x (6)

Figure 1 Cascade of Airfoils

The solutions of equations (6) are assumed to

have periodic motions

z = z 'eipt , iwT
z e

(7)
, 'ipt

a = a e
, iwT

a e

vhere w = pt/Uoo is the reduced frequency and T

Uoot/£' is a nondimensional time. Equations (6)
and (7) are combined to yield
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(� pU�t2 + St p2)z' + (k - pU�£2C
.

- Ip2)a' = 0
z � �

Equations (8) are a set of two simultaneous, lin
ear, homogenous algebraic equations in z' and a'.
For this system to have a nontrivial solution, the

coefficient determinant of z' and a' must be equal
to zero. This determinant is referred to as the
flutter determinant and the solution gives the
flutter frequency. However, a direct solution
cannot be obtained since the aerodynamic deriva
tives are functions of w(=p£/Uoo)' Also, aerody
namic derivatives are complex quantities and
hence the flutter determinant equation can be ex

pressed in two parts, the real and the imaginary.
Noting that the subscripts, R and I, correspond
to the real and the imaginary parts of the aero

dynamic derivatives, and defining p' = 1/p2, the
determinant expansion can be expressed as

Real part

(C£ RCm - C£zICm�I + Cn Cm - Cn Cm )]
z aR u. "'a I zI "'aR zR

(9)
Imaginary part

For an assumed value of w, if one of the solu

tions, PI or P2' of the real part is equal to the
solution P3 of the imaginary part, then this w

corresponds to the flutter frequency. If this

condition does not exist, then the procedure is

repeated for several values of w until the flut
ter frequency is obtained.

Prediction of the aerodynamic coefficients
for the cascaded reference airfoil is necessary
to determine the forcing functions for Lagrange's
equations of motion. This is accomplished using
a numerical lifting surface method for unsteady
airloads prediction developed by Rao and Jones.9
The cascade parameters as outlined in Figure 1
are stagger angle A, interblade phase lag 0, a�d
interblade spacing s. Vertical and horizontal

separation between blades, hand d, is such that
tanA = d/h. To provide for a more general solu
tion the system is nondimensionalized in the fol

lowing fashion

x x/£, Z 6z/ z , T

D d/£, H 6h/ z , S

!-". ' ,C C.1 ..

where 6 = (1 - M2)�. If the velocity potential
� is replaced by � according to

where
� = U£�ei(EX + wT)

c =
M2w Mw

82' K =

B2

(10)

Then � will satisfy the wave equation
a2� a2
-+---r+K4>=Oax2 az

h d h ( ,iwTT e ownwas w =w e ) can be expressed in terms
of 4> by using equation (10)

w i! � 6Uei(Ex + wT) a�
(12)az az

(11)

Downwash cai: now be nondimensionalized

W = �= w'e-iEX
az 6U

For oscillating blades with flapping and pitch
ing motion about midchord

w' = U[iwz' + (1 + iwX)a'J
i

(13)

where z' and «' are amplitudes in flapping and

pitching, respectively. Utilizing Euler's equa
tion of motion, the chordwise lift distribution
can be given by

£(X) = pU�(iKV + ��)ei(EX + wT) (14)

where K = 4> - 4>£ and V = w/62. One boundary
condition chln be obtained from equation (14);
since no l:'f� is gcrie ra ted by the wak e t.hen

iKv +
elK

= 0
ax

for x > 1 (15)

The rela�ion between the downwash at any point
(X, Z) on the thin reference blade in subsonic,
compressible flow and doublet distribution K(X)
is given by

27fW(X )
p

r a2 So (Xp -X, Z , D, H, o)dX

)K(X)-2
p

az (16)
-1 p

where

S =
7fi � eim�(2){K[(X -x + mD)2 + (mHo 2m=_oo 0 p

The blades of the cascade are numbered m, with
m=O the reference airfoil. Equation (16) may be
rewritten as

27fW(X )
p

(17)

where
as

o

ax-
=

imo
E e

m=-oo

7fiK
2

(X - x + mD) HF)'{K[(X - x + mD)2 + m2H2]�}

[(X - x + mD)2 + m2H2J�
p

It has been shown the convergence of this Hankel
series is slow and has been transformed into ex

ponential series to improve the convergence. TI,e

transformed relations are
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�""""'�-"'--�'-"-"----�"--------"----

-2na(m) Ix - xi/se (18a)

and

s = ± 2!. 1:
1 S m:a-a>

() -2na(m) Ix - Xl/sa m e p for X -I X
p2 2 �[(0 - m) -).l ]
(18b)

a(m) [( 0 - m)
2

- /i2 !! + i (cS - m)
D
for X -I X

SSp

o "* .(0 + cl)/2n, \.1 = KS/2n.

Once the doublet distribution K(X) is known, the
local lift at a point can be given by £(X). The
local lift can ��en be integrated to determine
the two-dimensional lift coefficient as well as

the momen t coefficient. There coefficients are

comp Lex and <;lre given in the form CQ_ = CleipT
and_Cm � C�elPT which can be established �n terms

of K whLch has been substituted for K(X)e1EX.

C· == K + iw / if dX = C z' + C a'
t t -1 tz ta

II _

II
-

C' - - K + K dX - iw XK dX = Cm z' + C a'
Ii1 t -1 -1 z ma

where- K is the doublet distribution at the trail

ing' edg� and is determined from equation (15).

Numerical Procedure

C1C1s-sical flutter is an iterative procedure
siHce it involves several variables: flutter fre

quency, p; flutter speed, U; and reduced fre

quency, W(�pt/0oo). 7h2 pri@&ry 0tjc�tiv2 is to

lind the f Lu t.te t speed; however, tl12 ae rodyrierni,c
derivaCives are functions of Mach number, M, and
reduced frequency. The flutter problem can only
te solved after the ae ro dynarm c s derivatives are

evaluat-ed, so it is necessary to assume a Mach
number and a reduced frequency and test whether
flutter occurs at these values according to equa
tion (9). If the test results are negative,
then iterate on reduced fre-;'lency until a flut

ter speed is ob tained for r..« assumed Mach num

oer. If the two speeds do not match, then iter

ate on Mach number until the flutter Mach number
is equal to the assumed Mach number.

Several FORTRAN computer programs have been
written in which an iterative procedure is set up
to predict the flutter speed for incompressible
and compressible isolated airfoil cases as well
as cascaded airfoil cases. In these programs,
the flutter program is combined with unsteady
airload prediction programs that have been de

veloped at Texas A&M University. In these un

steady airload programs, a unique numerical lift

ing surface method is used. This lifting surface

technique has been applied to a variety of lift

ing surface problems such as helicopter rotor
. blades and delta wings. In this numerical tech

nique, the reference airfoil is replaced by an

appropriate number of boxes in which the doublet

distribution, K(X), is assumed to be constant.

With this assumption, it was possible to reduce

the complex governing flow equation into a set

of linear, simultaneous, homogenous eqllations
�hich contain the K(X) values at various boxes

along the chord of the airfoil as unknowns.

'r -") !,n

For flapping and pitching motions, the ap
propriate boundary conditions are given in equa
tion (13). For the known boundary conditions at

various boxes, the K(X) distribution can be
solved. Once the K(X) distribution is known, the

aerodynamic derivatives are evaluated from equa
tion (19) for any chosen value of M and w. The
airload prediction method evaluates the aerody
namic derivatives with the reference axis at the
midchord position. For the flutter program, the

aerodynamic derivatives are obtained with respect
to the elastic axis by a coordinate transforma
tion.

The computational procedure is illustrated in

the Appendix by applying it to a two-dimensional
airfoil with cascade parameters of: S = 6t,
A = 450, and a = 900• The iteration results are

given in the Appendix as well as the geometric
and elastic properties.

Results and Discussion

(19)
A two-dimensional flutter analysis is per

formed for the numerical example described in the

Appendix. The flutter Mach numbers for the iso
lated airfoil case are determined to be 0.593 and
0.571 for incompressible and compressible flows,
respectively. 1be flutter Mach numbers for the
reference airfoil of a cascade are tabulated in

Table 1.

TABLE 1 nUTTER MACH NUMBER

I 0 I A
Flutter l1ach Number

S : 2 S = 6 S = 10

i 0° 0° 0.779 0.604 0.599 I
0° 30° * 0.621 0.610

0" 45° * 0.623 0.612

0° 50° * 0.620 0.611

0° 55° * 0.61S 0.609

0° 60° * 0.608 0.606

45
° 0° 0.782 0.615 0.602

45° 30° * 0.700 0.618

45° 45° * 0.741 0.616

45° 5:)° * 0.737 0.615

45° 55° * 0.707 0.639

45° 60° * 0.674 0.674

90° 0° - 0.685 0.615

90° 30° - - 0.705

90° 45° - 0.649 -

90° 50° - 0.659 -

90° 55° - 0.673 -

90° 60° - 0.690 0.597

135° 45° - -
-

1800 4:;° - 0.592 -

225
° 45° - 0.620 -

270° 45° - 0.613 -

3) SO 4S0 - 0.611 -

360° 4So - 0.623 -

No Flue t er Hach

Number Exists.

No Data At This

Case.
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Sf.nee the objective of the study is to predict the
effect:s of- various cas-cade parameters on the flut
ter spe�, several cases have been studied. In

alt these cases, the compressible uns teady air
l� pr�gram developed by B. M. Rao at Texas A&M

Uriiversi-ty was used. It has been Gated that at

small values of inter-blade spacing the aerody
namic- der'Lva t.Lve s vary rapidly wi th frequency,
while the aerodynamic damping terms, i. e , , the

jmaginary par-ts of the aerodynamic derivatives

i-e-main po-s LtIve . When the flutter program was

run for small values of inter-blade spacing
(s = 2) tio subsonic Mach number convergence
was achieved for most cases. These cases where
it was concluded flutter was not possible are

mar-ked '<1it·h '7<' in the t-able; however, this par
tLcu l.ar conclusion was based upon the assump
t-ion that the unsteady airloads program does

yie-l-d valid aerodynamic derivatives. Additional

study is being performed on the effect of trun

cation of equation (18) for small values of s .

In &-1-1- the c-ases s cud Led , the flutter Mach
number for the r-eference airfoil is always greater
t1'iari tlie- comp re s s ib Le single aLrf c i I case. Also,
Figure 3 i-llustrates that flutter Mach number in
�reases as s decreases; for constant values of

i-ri-t-er--n1-ade phase lag, 0, and stagger angle, A.

�his can be correlated by observing that the sin

gle airfoil can be treated as the limiting case

o f a cascaded airfoil with an infinite inter

blade spading. Hence, as s increases in a cas

cade, the flu tte r Mach number decreases to the

i-imit-ing value of the single airfoil.

Variation of fluEter speed with stagger angle
�iffers from the variation with inter-blade spac

ing beCause �he single airfoil is �ct a l�iti�g
va Iue for the cascade in terms of stagger ang l.e .

An optiriium value is observed for A in Figure 3
when a constant iriter�blade spacing curve peaks
at the highest flutter spe( 1 possible. For phase
iag angles of 00 and 450, a stagger angle of 450
seefus t6 be the optimum stagger angle value, re

gardless of the spacing value. Variation b e tween

flutter Mach numbers for different inter�blade

spacing appears to be the greatest at the optimum
stagger angle value and the differences between
Mach numbers seems to be the least at the extreme

stagger angles. In fact, for a phase lag angle
sf 450, at a stagger angle of 600, there is no

difference between the flutter Mach numbers for

s = 6 and s = 10.

Variation of flutter Mach number for various

inter�blade phase lag angles is illustrated in

Figure 4 for a constant stagger angle of A = 450
and inter-'-blade spacing of 6£. There is extreme

variation of flutter Mach values for 0 = 00 to

1800 that is indicative of a possible critical

phase lag value. This value could probably be
determined by using smaller phase lag angle in-

c remant s , In addition, the flutter Hach number

values are cyclic with phase lag, since identical

. values are obtained for 0 = 00 as well as for
o = 3600•

Iteration for the flutter Mach humber requires
careful selection of initial values as well as

the use of iterated values. 1�e iteration of the

flutter frequency for an assumed Mach number

Yield� three frequencies, PI, P2� and P3, which
are the solution for the real and imaginary parts

; \ .:-. �,t.- "r:'
f ,.

of equation (9). These three frequen�ies occa

sionally undergo rapid variations with reduced

frequency requiring a long iterative procedure
to obtain a solution.

MACH NUMBER VE;RSUS STAGGER ANGLE
0.7

LEGEND

o - 0 = 00
EI - 0 - 450
o - isolated airfoil

0.7

0.6

Flutter

Mach

Number, M

0.6

Stagger Angle, ).

Figure 3

.

Conclusions and Recommendations

A numerical computational procedure for the

prediction of two-dimensional flutter in a cas

caded airfoil has been developed. In addition,
the effect of cascade parameters on flutter speed
has been investigated. The success and reliabil

ity of this computational procedure was observed

to depend upon the reliability of the unsteady
airload prediction method. This study has been

only a first attempt to obtain the solution for
a complex problem and a more thorough investiga
tion and several other numerical examples need
to be studied before one can completely under
stand the effect of various cascade parmneters
on flutter Mach number and frequency .
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0.15

0.10

0.65

Flutter

Mach

Number. H

0.60

0.55

MACH NUMEER VERSUS INTERRLADE PHASE LAG ANGLE

). .. 45°. s - 61

Inter'.:lade Phase L3g. (j

Figure 4

Appendix

A numerical test case for cascaded airfoil
flutter was computed using a classical flutter

analysis FORTRAN program interfaced with an un

steady airload prediction program evaluating the

aerodynamic derivatives. The geometrical and
structural properties of the reference airfoil
used in this analysis are listed below.

= S = 0.456 ft-lb

I 3.375 ft2-lb

Mw 0.6516 lb

Wz 62.2 rad/sec

Wet 100.6 rad/sec

Static moment about the

elastic axis

Moment of inertia about
elas tic axis

Mass per unit span of blade

Bending natural frequency

Torsional natural

frequency

The cascade parameters used in this test case are

S 6£Interblade Spacing

stagger Angle

Interblade'Phase Angle a = 900

�o obtain the flutter speed and frequency,
the �rogram was executed for the given airfoil.

As initial values, the program assumes a Mach
number of 0.6 and a reduced frequency, w, of 0.4.
After obtaining the roots of the stability deter

minant, Pl' P2' and P3. it assumes a W = 0.5.
With the roots obtained from this run, it inter

polates another w so that either PI or P2 is equal
to p. Eh�erience has shown that for many cases

if t�is value is used, divergence may result since

the determinant roots are not well behaved.

Therefore, a limit of 0.04 has been set for the
maximum change in w that is allowed. Table 1
shows the history of the iteration in which con

vergence is achieved, but at a flutter Mach num

ber of 0.6587. The new assumed Mach number is

0.7 for the next run and according to Table 2, it
converges to a flutter Mach number of 0.6235.

Using these values for flutter Mach number, an

extrapolated Mach number is obtained so that the
assumed Mach number is equal to the flutter Mach

number. This value is 0.643 and according to

Table 3 converges to a f�utter Mach number of

0.649, which is within accuracy tolerances. The

associated reduced flutter frequency for this
flutter Mach number is 0.3612.

TABLE 1 FIRST ASSUMED MACH NUMBER

Assumed Flutter
Mach w PI P2 P3 Mach

Numbe r Number

0.6 0.4 65.26 84.31 80.2

0.5 63.90 92.00 79.88

0.36 67.80 78.83 79.36

0.365 67.32 79.67 79.49

0.363 67.48 79.38 79.45

0.3634 67.44 79.46 79.46 .6587

TABLE 2 SECOND ASSUMED MACH NUMBER

Assumed Flutter
Hach w PI P2 P3 Mach
Number Number

0.7 0.4 69.47 86.69 74.02

0.5 64.48 106.13 68.68

0.36 72 .58 76.87 75.07

0.37 71. 63 78.76 75.02

0.367 72.14 77 .90 75.04

0.3633 73.70 75.81 75.07

0.363 74.03 75.42 75.07

0.3627t. 74.27 75.03 75.07

0.36269 74.40 75.03 75.07

0.36271 74.36 75.07 75.07 .6235
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TABLE 3 THIRD ASSUMED MACH NUMBER

Assumed Flutter
Mach w PI P2 P3 Mach

Number Number

0.643 0.4 66.40 83.83 78.33

0.5 65.90 95.92 75.20

0.364 68.88 78.49 77 .90

0.360 69.45 77 .53 77 .81

0.3613 69.24 77 .86 77 .84

0.36122 69.25 77.84 77.84 .649
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