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Mathematical Analysis of a Vibrating Wirel
Marc Watts

Abstract. The purpose of this paper is to study the
vibration of a wire by incorporating resistance to bending
into the mode] leading to the string equation. Included
here is a derivation of a fourth order, partial differential
equation of motion for the wire, the analytical solution of
the equation, a record of my attempts to experimentally ver

ify the solution, and conclusions as to its value.

1. Introduction. Mathematical modeling is used in most

aspects of engineering. One approximates a physical process,

assuming that some factors are negligible. The validity of

these assumptions determines the accuracy of the model (i.e,

whether or not it closely predicts the physical situation).

Traditionally, when one models a vibrating string, one assumes

that the resistance to bending is negligible. This phenomenon

can be seen physically--when one holds a string by one end in

the hand, it hangs vertically. At the other extreme, when one

holds a beam, such as a pencil, it remains at the angle at

which it is first held. As a result, one assumes here that

the internal shear is paramount. The tension, which in a

string is the main factor in determining motion, is in the

beam negligible.

My project has been to study vibration in which both

lAs the model for my format. I used the following:
Ablowitz. M8rk J., "Nonlinear Evaluation Equations--Continuous
and Discrete," Siam Review, Vol. 19, No.4 (Oct., 1977).
�P. 663-684.



factors, tension and resistance to bending are present. To

facilitate diFcussion of this study, please keep my distinc

tion between the following terms in mind: a vibrating string

is an ideal case where there is no resistance to bending;

a vibrating beam is influenced only by shear so that axial

tension is negligible; a vibrating wire is affected by both

tension and resistance to bending. For the purposes of this

discussion, a wire will include all vibrating cords which are

influenced by tension and shear, even those larger than are

ordinarily termed wires.

At the outset of the project, the two questions which

guided my research were (1) how far �ust a string or beam vary

from the ideal for the equations describing t�eir motion to

result in significant error? and (2) how can one determine

the frequency of vibration in the interim region? I found no

record in the A&M library of previous work done on this par

ticular problem. My approach then was to study the der

ivatinns of the string and beam equations and to try to de

velop my own model in a similar way. In order to learn

sufficient mathematics to accomplish this goal, I attended

two mathematics lectures during the year: Numerical

Analysis 417 and Topics in Applied Mathematics 312. I also

consulted books on the subjects of mathematical physics, vi

bration, and partial differential equations. [2, 3. 4, 5J
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2. The Wire Equation. The first step was to develop an

aprropriate model to which I could apply Newton's second law

in order to derive an equation describing the wire's motion.

Two options were available--I could i�corporate axial tension

into the ideal beam model or incJude internal shear in the

ide�l string model. In most diagrams of ideal beams, as in

Fig. 1, one end is allowed to move along the horizontal so

that the tension resultinE from the motion nepd not be in-

eluded.

Fig. 1 �odel for an ideal beam

My inclination as an engineerinr student was to draw a

frep body diaFram of the vibrating wire. This is shown in

T

x )(

Fig. 2. Free-body diagram of forces acting on the wire
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I m8de the following a.ssumptions in this diagram:

1. Tension, T, and shear, F /' > CJ�.o)(
2. �,p are small (small vertical motion compared to

length)

3. T = constant

4
d.x

-

0• Jt--

5. Densi ty, ,P' is constant along length

From Z; F� := Mo...
�

( I • ) F - (r: dF AX) t- Tsiflj3- Ts;" 0<. :::: (Yl ad+- dJ(

For small f3 , sin J3 = tanf3 = d_.%; 11\ Likewise, for small

0(, sino<: tan ex. = �g:_$:Jxr.6x. As a result,

( 2 .) - :,� A}( t- T [ �f; I �
- �-t. I xu xl -,0

r>') Q �
.

d2.
Also, )"'("\ GL'd -=. jD A X '-t?
Substituting and dividjng through by �x ,

+

( 3 • )

For small 6 J( , ( �-) _ � I )/(.) )\. x �':) x )( r � )( A x

the definition of the derivative.

approximates by

Now it remains to relate the shear force to the dis-

placement. We can get an approximate expression relating the

shear and the internal moment by considering Fig. 3.
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M(ll..____°1 J )MT�;A�
I F+.�f6X
I CJ(

I

Fig 3
Free-body diagram for relatinE shear and moments in the wire

Setting , we have

(4. )

( 5 • )

F aM A;<
L\x +- �

F - -
c)M

-

��><.

:: 0 or

d2.
From mechanics of materials, M:: - E I �

_ a3� Jr/ c)4'J __

F:: E I h3 and -�) )(
� - E L � "I

From equation 3,
.)4u

(6.) -EI �
Finally,

(7.) -O_L{_
1-XXx

where 0...= ET/�
Equation 6 is a fourth order, linear, partial differen-

so that

+ bu.xx -

LLtt = 0

b::- T/�and

tial equation. It can be solved by the separation of var-

iables technique which assumes a solution of the form

o: (x c) = X (;() T(t )
I

into equation 6,

Substituting this assumed solution

( 8)
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D'i v id i ns- both s i d as by X and T,
IIII /1

,I

_ o, X t- b X T
- ---

Tx

The left side of this expression is solely a function of X

the rieht side is solely a function of t. For the equation

to hold for all x and t: , bo t.r. sides must te a c or.s tarrt , For

instance, if one fixes t so that -T"I-, is constant, then

- CL X'
I"

t b X,. / X must be equal to that constant for all

va Lu e s of x •

Before proceed}nf further with the so}ution, it is first

necess8ry to srecify boundary and initial conditions for the

problem. For the ideal case,

in Fig. 4, so that the dis-

the ends would be secured as

placement is zero and the

moment at each end is also

zero. In terms of equation 6,

( 10) u. (0 J
C ) -= 0

Fig. 4
Ideal Boundary Conditions

(12) ««, to, c ) =0
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To uniquely specify the motion of the wire, one must give it

either an initial displacement or an initial velocity. I

chose to five t�e wire the initial displacement seen in Fig.5.

h

I'" L

Fig. 5- Initial displacement of the wire

It is important to note that this initial condition is in-

consistent with ordinary beam theory which allows no dis

continui ties in derivatives as at L/Z (plane sections remain

planar). Although I considered no other initial displacement,

one could replace this initial condition by a polynomial--for

examp l e , x (L - x ) - - or even better, smooth out the dis-

continuity by replacing a small length around it by a poly-

nomial while leaving the rest of the wire straight. To find

this polynomial, one has only to match the slope and position

at each end of the small length with the slope and position of

the lines.

With these constraints in mind, we now return to

equation 8. Although both sides of this expression are

7



constant, one must determine if the constant is positive,

neg2tive, or zero. By use of the boundary conditions, it can

be shown that to avoid a trivial solution, this ccnstant, r/- ,

�ust be negative. Consequently,

( ] 4 .) ·T
' I

r;'
2 T z: 0

'" ,

( ] 5 .) CL X - b X
II

- .))
l. X ;: 0

The solution to equation 14 is weI] known,

(16.) T::: As;n))t r Bc.(..,s)lt:

One begins to solve equation 15 by as�uming a solution of the

C
r c

form e , finding all poss5ble values of r which satisfy

the equation, and then forming the general solution by super

position. Substituting Ccrr: into equation 15, one gets,

( ) � b '- .,:\2-1 7 • 0... 'r - Y - /1 -::0

By letting LL-= y2, CL L{_
z

- b u_ _ /)
2.

z: 0 or

L.c ::
As a result,

.1-
Y -=

-

Sjnce > b , there are two complex

solutions and two real solutions for Y

Let ¢
- b

so tha t y = ¢ - szS ; r 0.. rv d -;;r ..

) ) )
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Thus X A
¢)( A

- ¢x/); f", A
- i r,

::
,
e ·f 2. e 1- "3 e + "I

e

Transforming these exponentials ir.to trigonometric functions,

By consideration of the boundary conditions, o�e concludes

th 8 t B, • BI.. , and B.3 ar e z er0, (3 n d that B4 s; n f L '::' O. To

avoid a trivial solution, which would result if 84 were zero

Y
_ ,rln

oJ -

L

Hence, Solv i ng for A , one

gets

( 18. ) [ (' nTf)2.z., 'z t

4a.

Consequently, there is not simply a single solution, but an

infini ty of solutions corresponding to values of y) = " 2, "3 �� ...

Stretching the principle of superposition to include this

infinity of solutions, the solution to the fourth order

equation can be determined.

DO

u..(xt)�L)
n='

S5nce the initial velocity is zero, then

This condition is satisfied only when A

a: (x. 0)= 0
t /

is zero, so that the

final solution becomes

9



,) I' X
c..c.'S )) (l C

From the initial condition,

n.:1

Since [s i" n�Ex � forms an or th ogcr.a I and complete set

for the fourth order differential equa tion CL X
..

'� b'x "_)\., X :: 0 ,

the theory of Fourier analysis allows one to conclude that

u_(x,O) can be represented by the Fourier series in (21.)

where the values of en are the Fourier coefficients of f"()() •

Although this infi.nite series furnishes an analytical solution

to the problem, to calculate values of u(xJ c) for specific

vAlues of � and C , one must use approximations obtained by

partial sums of the series. This type of computation is

easily accomplished by means of a computer. Fig. 6 gives

the computer program for this calculation, for use on a

Hewlett Packard 9830A with a plotter.

In equation 20, the values of An give the different

frequencies of vibration of the wire. For Yl:.:: I 1\1') gives

the fundamental frequency, and for larger values of nJ the

frequencies of harmonics result. From the solution to the

_ r=:' Lrrl
equation for the ideal beam, one finds that Il" = VeL '1�2. ;

_ r::" () rT

f'or- the ideal string, /\
()

= V b L As the constants

CL and b approach zero in equation (18.), for I\() derived from

the w3re equation, the value of An approaches respectively

II
n (b earn) and An(string). Considering the limit as \�

10



T:: t;me

Fig. 6. Computer program for the solution to u(x,t)
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approaches zero,

z

"2 <.
n rr

L'

To find the limit as �approaches zero for An , one makes

use of l'Hopital's rule.

4

Hence,

The experimental testing of the analytical solution

p12yed a vital role in this project since it would verify the

correctness of the assumptions made in deriving the model. As

a result, I spent the better part of the spring semester on

experimentation.

3. Experimentation: The first experiment, a crude one,

was made simply to practice experimental procedure, and to

determine which parameters were difficult to control. I was

not attempting to directly prove the hypothesis and thus had

no rigorous procedure in mind. To start with, wires of dif-

ferent composition and diameter were stretched between two

c12mps on a table, and the tension was varied by turning a

screw on one of the clamps. Next, the frequency of vibration

was measured by matching the tone of the vibrating wire with

12



the tone produced by a function generator attached to a

small amplifier. The table served well as a sounding board

since it was necessary for the tone generated by the wire to

be amplified. Although this experiment does not on the sur

face appear significant, and indeed it produced no signifi

cant results, I did learn an important lesson from its To

prove my hypothesis, an experiment would require greater

accuracy than I had anticipated, and much greater accuracy

than th8t achieved from matching tones by ear.

By now, I was able to discern what would be required of

the final experiment� In the first place, it was necessary to

find both the tension and frequency simultaneously to see if

they agreed with the model. In addition, the reason that the

experiment needed to be so accurate was that I lacked the

equipment to perform tests on large wire, such as cables. It

would require very sturdy supports and too much tension. As

a result, I was limited to using smaller wire (.050" diameter)

in which the frequency variation from that predicted by the

string equation was not as great.

Although the tension in the wire was easy to measure-

one end was fixed while the other end, with a mass attached,

was hung over a support--the frequency was more difficult to

determine. In my first attempt to verify the hypothesis, I

wanted to measure the variation in tension in the wire about

some mean tension. This tension would vary at a rate equal

to the frequency. To this end, I attached a force

13



transducer in series with the wire. The output of the force

transducer was recorded by a strip-chart recorder. This set-

up is seen in Fig. 7.
tro..nsdvce.r-

)
I--��-l

c7
Fig. 7. Set-up for measuring tension variation in the wire

Of course, this method presupposed that the tension variation

was significant, which conflicted with my initial assumption.

At the beginning, it did look promising, but less promising,

however, with each successive try. The frequency seemed in-

dependent of tension. I concluded that when plucking the

wire, a vibration ensued in the supports for the wire. It

was this vibration that caused the tension variation in the

wire and which was measured by the transducer. The actual

tension variation was too small to be detected.

My next experiment involved the use of a strobe light,

which emits light intermittently at a known frequency. Thus,

if the li�ht flashes at the frequency of vibration of the wire,

the wire will be illuminated at the same position in each

cycle and will appear stopped. Since the amplitude of vibrat-

ion was small, I planned to use a microscope to observe the

14



wire. After repeated attempts, I still had not succeeded in

in exactly storring the wire, but instead found a range over

which it was almost motionless, the wire stopping at a

slightly different position each time. Hence, this method was

not accurate enough to justify any conclusions about the

model for the vibrating wire.

Finally, I looked toward electrical theory for a con

clusive experiment. I considered letting the wire vibrate in

a magnetic field and monitoring the change in current run

n�n� through t�e wire. However, I would need an amplifier

to measure the current variation, and I had little hope of

getting an amplifier. Although an amplifier could be built

from circuit components, a simpler method was suggested to me8

It was to focus a beam of light upon the wire, and to detect

the interruption of this beam by a photo-voltaic cell. This

photo-voltaic cell emits, at most, 0.5 volts, and by ob

serving its output, one could find the frequency of vibration

of the wire. Fig. 8 gives a schematic of the experiment.

A laser provided the beam of light and no lens was needed

for focusing. The response of the photo-voltaic cell was sent

to one oscilloscope for monitoring and to a second scope, with

a sin�le trigger, to stop the signal so that the period and

thus the frequency could be measured. In a completely dark

room, the maximum voltage from the photo-cell, resulting from

the laser, was 20 mv. Consequently. it was necessary to use

the oscilloscopes instead of the more accurate frequency

15



/

phot<., - v o I to.. 1(.

cell

os£.....; Ilosc.c-pe
('S;n�le_ Tr;j5er)

Fig. 8. Set-up for measuring frequency with a photo-voltaic
cell

counter, since the counter requires at least 50 mv in order

to trigger.

Although this effort was my final experiment of the

semester, it also was not accurate enough to justify any

unqualified conclusions as to the model for the vibrating

wire. Table 1 shows the results of the above experiment for

snrjng brass, 0.051 in. diameter, and compares the exper-

imentally measured frequency with the frequency calculated

from the wire �nodel. I performed the same experiment on

music wire and aluminum wire of the same diameter, and these

16



results were si�ilRr although not as close to the calculated

values. I expected the spring brass experiment to be more

decisive however, since it had the greatest resistance to

bending.

Table 1: Comparison of measured frequency with frequency
calculated from wire and string equations

M (kg) f (measured) f(wire equatiori f(string eq�

4 51.95 50.34 50.06
4.5 53.33 53.36 53.09
5 57.19 56.22 55.96
5.5 59.70 58.94 58.70
6 62.50 61.54 61.31
6.5 64.52 64.03 63.81
7 66.67 66.43 66.22
8 70.18 70.99 70.79
9 75.76 75.27 75.08

10 79.37 79.33 79.14
11 83.33 83.18 83.01
12 86.96 86.87 86.70
13 91.91 90.40 90.24

4. Conclusion: In spite of the fact that the measured

frequency does not correspond with the value which the wire

equation predicted, I still feel it is a valid predictor of

frequency for a vibrating wire. For such a small deviation

from the string equation which would be expected for spring

brass of .051" diameter, the final experiment was not ac-

curate enough. The definitive test of the model would be to

use wire with much larger diameter in which the resistance to

17



bending is more influential.

The value of the wire eauation is that it can predict

frequencies over the entire spectrum, ranging from the ideal

strlng to the ideal beam. As the resistance to bending be-

comes negligible, the frequencies from the wire and string

equations correspond. Furthermore, as the characteristics of

the wire approach those of a beam, the frequencies given by

the wire and beam equations are the same. However, more work

needs to be done to take into account the fact that when a

large wire is fixed at the end, the assumption that the

moment at each end is zero could perhaps result in error.
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