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ABSTRACT

Three-dimensional binary represenations of continuous objects are analyzed for shape
properties. The'oretical results are descibed that suggest a method for developing three
dimensional shape measures. New shape measures are introduced, and a method for

approximating them over the boundary of a low resolution binary object is presented.
Statistical results are shown that yield high differentiation between binary shapes. A

method for displaying the shaded planar image of a three-dimensional binary image is

described.
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1. INTRODUCTION

All around us, shapes are repeated at a relatively rapid rate. Rectangular solids, for
instance, can be found disguised as books, sponges and buildings; spheres can be see

in door knobs, gems, and bubbles. What do we mean when we say that two objects
"have the same shape"?

From a theoretical view, we would like to define rigorously the intuitive concept
of shape. From a practical view, we would like to teach a computer to recognize the

shape of an arbitrary object held in its memory. There has been much work done on the

two-dimensional problem [1,2,3,4,5], but much less work done in three-dimensions [6,7].
Our work is hard to compare with earlier work because the shapes we are dealing with
have their only existence as three-dimensional binary objects. Reynolds et al. [8] use
such data, obtained from computed tomography (CT) or nuclear magnetic resonance

(MRI) measurements, to produce shaded displays on a flat screen. Levoy [9] uses 8-bit
3-D discrete CT data to make displays (using ray tracing and a model for reflectance

transmission) very similar to ours, but again there is no mention of recognition of shape
from the discrete 3-D "image." Many authors (literally in the thousands) have dealt

with various aspects of shape perception and modelling starting with parametric rep

resentations, contours in 2-D or on the surface itself, from surface approximation using
Beier-Bernstein splines, from edges or webs, from range data, stereo views, shading,
polygons, etc. Azriel Rosenfeld's bibliographic review and classification "Image Anal

ysis and Computer Vision" which appears yearly in Computer Vision, Graphics, and

Image Processing would be an excellent place to start searching for references in other

directions. The contribution covering 1988 contains over 1,600 references.

One problem with attempting to analyze three-dimensional binary shapes is that

they are hard to visualize intuitively. For instance, if the computer reported that

two binary objects were the same, how could the result be verified? This question
led us to develop a display procedure. The program uses elementary regression tech

niques to display a shaded representation of a three-dimensional binary object on a

two-dimensional computer screen. This development was based on recent research by
psychologists [10,11,12,13] that has revealed that shading and occlusion of objects in

two-dimensional pictures produce a compelling perception of three-dimensional shape.
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II. THEORETICAL BACKGROUND

A. Shapes

We will define the intuitive concept of "shape" by saying that two objects have the same

shape if one of them can be obtained from the other by a finite number of translations,
rotations, and magnifications. Therefore, our concern is with the identification of ob

jects in space independently of their spatial position, orientation, and size. We wish to

do this without decomposing the objects into more primitive, understood objects. In

fact, no supposition that these random objects are composed of parts is made; we are

therefore making no attempt to understand the objects, only to classify them as one of

a number of previously identified objects, or to indicate that no such classification is

probable. To this end, we seek to define a "distance" between two objects: one which

will be small when the objects seem like one another and large when they are clearly
different. The distance should be independent of the orientation, position, and size of

the objects being compared.
A clear analogy can be drawn between this situation and the Euclidean distance

between points in space. If we can associate each object with a list of real numbers,
and regard this list as the coordinates of a point in space, then classical statistical tech

niques can be used to deal with the objects as points (in a probably high dimensional

space). Thus, the difficulty transfers to that of discovering enough different measures

to distinguish between a set of objects. If we are to approach our goal, then the associ

ations of objects to numbers should have the same invariance properties we are seeking
in object recognition.

B. Measures

Definition. An object measure is a mapping from the set of objects to the set of real

numbers.

Diameter 8(0), surface area a(0), and volume p(0) are examples of natural object
measures. Yet these measures are clearly fundamentally different. To illustrate this,
imagine that an object-say a cube-under study has random changes in size (magni
fications) which we wish to model. Then the variations in the three measurements will

be different, and this cannot be corrected by scaling. For example, if each measurement
is normalized by dividing by the sample mean, then the three variations will be in the
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ratio 1:2:3 although the expected measurements are all 1. One way to minimize this

tendency is to insist the measurements be dimensionally the same.

Definition. Anobject measure Jl is said to be homogeneous (or dimensionally linear) if
Jl(aO) = aJl(0) for each positive magnification a. If 0 is an object and a is a positive
real number, let

aO = {ax: x E O}

be the magnification of 0 by a.

For example, 8(0), a(0)1/2, and p(0)1/3 are natural homogeneous object measures.
Each is also a congruence measure.

Definition. A measure is said to be a congruence measure if it is rotation, translation,
and reflection-invariant.

Definition. A shape measure is a magnification invariant congruence measure.

Shape measures are dimensionless. In particular, the ratio of two homogeneous
congruence measures is a shape measure. Because homogeneous congruence measures

are relatively easy for a computer to calculate, these ratios will be the only shape
measures of interest to us. A natural denominator measure is one of the three just
mentioned above, for they are never zero for a real object and are easily estimated. In

discrete applications, the normalized volume estimate is the most stable because of its

low ('i). exponent.
Let 8 b� the surface of an object with area 181, centroid ro, normal to the surface

n, and element of surface area do . The measures

( 1 )
l/(p+q)

jSf is Ilr - roWI(r - ro) . n]" de>

are .homogeneous congruence measures if p + q > 0 (see Appendix A); we have tested

them on.discrete shapes and found the methods by which the continuous integrals were

approximated to be very reliable. However, some confusion remained between objects
we felt were sufficiently different. One way to generate more measures (calculable by
the same general method) is to relax the rigid demand for strict homogeneity.

Definition. A congruence measure is said to be near homogeneous if it is homoge
neous when restricted to spheres. A congruence measure which is constant on spheres
is called a near shape measure.

One way to get near shape measures is to take the ratio of a near homogeneous
congruence measure to one of the three natural homogeneous congruence measures
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above.

The measures

log C�lls expCllr - roll) d17)
exp C�lls log+Cllr - roll) d17)

are very different near congruence measures. They have the form

and

q,-l C�lls <foClir - roll) d17)
where ¢ is one to one and increasing on R+.

It is easy to see how to fit Ilr - roll and I(r - ro) . n] into similar expressions. In

analogy with the homogeneous case,

1

[log (1�lls expCllr - roJIPICr - ro) . nlq)d17) ]
p+q

,

P: q exp C�lls log+Cpllr - roll HICr - ro) . nJ) d(7) ,

and
1

[log (- m ! exp C-II r - ro JIP I C t: - ro) . n I q) d(7) ]
p+q

are at least candidates for trial. These formulae exploit the functional equations of the

logarithm and exponential functions in addition to the inverse relationship.
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Fig. 1. Two Rotations of a Two-Dimensional Binary Square

III. DATA

Three-dimensional binary data are not too plentiful. Unlike two-dimensional data,
which can be obtained with only a simple robotic vision system [5], three-dimensional
physical data must be obtained through sophisticated techniques such as x-ray crys

tallography and nuclear magnetic resonance. To study discrete shape measures, we

needed a great deal of permutable data; we decided to generate it by computer.
We wanted the data to be, if possible, easy to rotate. Raw binary data, in general, is

very hard to rotate accurately because the number of "on" binary cells depends on the

orientation of the object relative to the cells [5] (see Fig. 1). To eliminate the problem
of rotating binary data, we decided to use a less primitive data form, one that can be

easily rotated, and develop a method of generating binary data from this high-level
form.

Perhaps the easiest shape to rotate is the sphere. For instance, a sphere centered at

(1,0,0) can be rotated counterclockwise about the z-axis by deleting it and constructing
a new one with the same radius centered at (0,1,0). Compare this to the problem of

rotating a square, which is not symmetric about its center. To take advantage of the

sphere's simple rotational property, we chose to represent almost all of our test data as

sets of intersecting spheres. That is, in a high-level form, most of our data was a finite

set of center coordinates and sphere radii. This is evident in the objects of plates 1

and 2, which are pictures of a few data sets. Notice how shapes in the first three rows

and in the first two columns of the fourth row are constructed of atom-like spheres (the
shapes in the third and fourth columns of the fourth row are constructed of ellipsoids,
which are also very easy to rotate). The figures exhibit the rotational properties of the
data: Each object in Plate 2 is a rotation (and/or magnification) of the corresponding
ob ject in Plate 1.

Generating binary data from the sphere files was a straightforward but slow process.
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Plate 1

Plate 2
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Each object was imbedded in a 128 x 128 x 128 binary array, and so there were 221 binary
cells that had to be set for each object. The larger data sets-i.e., the ones constructed

of many spheres-e-took more than two hours of VAX 8800 CPU time to generate.

Fortunately, this project was a part of the 1988-1989 Cornell National Supercomputer
Facility Research Experience for Undergraduates program, and we had access to the

two IBM 3090-600E's in Ithaca, New York. Generating one particular shape that took
two hours· and 28 minutes of VAX 8800 CPU time took only four minutes and fifteen

seconds of IBM 3090-600E CPU time. Another shape, which took a little less than

twelve minutes to generate on the supercomputer would not have been created on the

VAX.

We used several methods to generate the high-level sphere data files. One means

involved laying spheres along a three-dimensional parametric curve. The program we

wrote to do this, DISPF.FOR, is included in Appendix C. The program that rotated the

sphere files, ROTCALL5.FOR, and the program that generated the binary data from these

files, DISPIT2.FOR, are also in this Appendix.
Note that neither the recognition nor the display procedure took advantage of the

fact that the binary data was generated from spheres, but worked directly with the bi

nary data. This makes them very flexible and applicable to data that was not computer

generated.
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IV. BINARY OBJECT RECOGNITION

In the discrete case, part of the problem in calculating shape measures is the need to

calculate integrals of the form

is F(n, r) da,
where F is a function of rand n on the surface S, r is a boundary element, n is the

outward unit normal, and dais the element of surface area. The estimation of such

an integral is difficult because the object is not continuous even though the underlying
shape being represented may be Coo. Two related questions must be answered before

the integral can be estimated numerically:

• How can one estimate the unit normal or, equivalently, the tangent plane?

• Even a continuous closed surface is often difficult to parameterize so as to compute

da; what can one do to get the discrete element of surface area?

In the plane, the perimeter of the shape plays a crucial role in the shape recognition
problem. Improvements on the methods given by Bryant and Bryant [5] have led to

real-time recognition of shapes in 128 X 512 binary images using quickly computed
functionals of the chain-coded boundary. The methods are fast because the boundary
is linearly ordered and very small compared to the object; furthermore, the boundary
can (and should) be sampled to produce both an accurate estimate of the length and

partial magnification invariance. None of these advantages is present in space. The

boundary is large, not linearly ordered in a natural way, and is difficult (or impossible)
to sample consistently.

A. Discrete Boundaries in Space

The boundary of a discrete 3-D object is the set of points in the object with one of their

six nearest neighbors not in the object. The shape is imbedded in a three dimensional

array; down one of the axes the binary pattern is assumed packed in computer words.

The boundary is found using logical operations on the bit pattern representing the

shape (rather than looking at neighbors) [14]; it is present as a 3-D array and as a

list of coordinates. For each point in the boundary list, one needs an estimate of the

unit normal and of the differential of surface area. The general idea is to find an

approximate tangent plane at each boundary point, to estimate the element of surface
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area by looking at the direction cosines of the unit normal, and to establish a consistent

outward direction (if require1).
Before we begin, let us review briefly how surface integrals are computed by hand.

One is given a surface, say z = f(x, y), with parameters x and y lying in a plane. The

integral of a scalar function 9 over the surface might be computed as the plane integral
of

dxdyg(x,y,f(x,y»dO" = g(x,y,f(x,y» I I'cos,

with, being the angle from the unit normal to the z-axis. That is, da = dx dy/I cos-y].
It is intuitively clear that a discrete realization of this technique will be best when

I cos ,I is large--close to 1. That requires we allow the parameterization to depend on

the surface point. We select for the parameterization direction the one with. largest
direction cosine. Levoy [9] uses a similar technique, but instead estimates the gradient
of the density not available in this binary setting. Under the assumption that a tangent
plane approximation of the form ax + by + cz = d exists near the point (xo, Yo, zo), our
first idea was to solve the constrained least squares problem

minimize L [axi + bYi + CZi - d]2 subject to a2 + b2 + c2 = 1,

where the sum is extended over the "training" points collected. The normal equations
of the resulting Lagrange multipliers 'problem are only mildly nonlinear, but we have

not found a computationally efficient solution to the problem taking this approach

, (considering the hundreds of thousands of times the procedure must be invoked). The
use of modified steepest descent methods is satisfactory except for the computer time

taken; in fact, if one uses as a starting point the solution at a neighboring point, then
standard iterative methods converge rapidly. However, another approach, described

now, produces better approximations immediately. In the discrete case, and with a

surface which is the boundary of an entire solid and thus not routinely parameterized
by a single plane, our idea is to allow the parameters to be dependent on the point:
we select as parameters the best of the three coordinate planes, which will vary from

point to point.

B. Method

A preliminary step has found the boundary of the discrete shape. The array which

contains the boundary points is now searched. We show how to approximate the tangent
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plane to the surface and the discrete version flo of do at each point ro = (xo, Yo, zo) in
the boundary. The idea is to solve three unconstrained linear least squares problems

looking down each of the three coordinate directions and determine which direction

gives the best fitting plane. One can predict which solution is best without carrying
out all the calculations. An example of one of the problems (the x-axis look problem)
IS:

Let (Xi, Yi, Zi), i = 1, ... , k be the k neighbors of this point. We are looking for a

plane of the form (x - xo) = C2(Y - Yo) + C3(Z - zo), and we wish to

minimize

which represents the sum of the square differences from the set of neighbor points to

any potential tangent plane. If we take the partial derivatives of f with respect to C2

and C3, we obtain
8f =2�x'z.-2b�Y'z.-2c�z�8 LJ tt LJtt LJ,
C2

8f =2�x.y.-2b�y�-2c�y.z'8 LJtt LJt LJ''"
C3

We can set these to zero and apply Kramer's rule to obtain a quick solution.

The element of area is estimated by taking the parametric representation of the

surface to be the coordinate plane which best fits the points collected as viewed normal

to that plane. As will be seen, few computations are required.

c. Details

• Step 1. Search the 26 points in the 3 X 3 discrete cube centered at ro for boundary
points; let the coordinates be {(Xi, Yi, Zi) : i = 1, ... , k}. (If k < 6 it is unlikely
that a tangent plane exists, possibly because the sampling density is too low, but

proceed anyway. Such points are bound to be rare if the shape is adequately
sampled, and they are not missed in the application to surface integral approxi
mation or display. After all, we are sampling the surface at the 27 points in the

cube centered at the point (it counts too), and one would expect 9 points. In the

tests presented later the case k < 8 was never observed.)
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• Step 2. Form the following six sums (all over 1 to k).

a = E(Xi - XO)2
b = E(Yi - YO)2
C = E(Zi - ZO)2

d = E(Xi - XO)(Yi - Yo)
e = E(Xi - XO)(Zi - Zo)
f = E(Yi - YO)(Zi - zo)

• Step 3. Evaluate the three 2 x 2 determinants

A=
b f
f c

a e
c=

a d

d b
B=

e c

• Step 4. Select the largest of these three integers. By Schwartz's inequality each

is non-negative. If all three are zero no tangent plane or normal line exists, and
the differential of surface area J-l is taken to be zero. (This event has never been

observed.)

• 4.a A is largest. In this case the best fitting (least squares) tangent plane will be
obtained by looking down the x-axis. (The proof of this assertion is found in the

Appendix B.) Let

d f
C2 = /A

e c

b d
/A.

f e

Then' the direction cosines (Q', (3, I) of the unit normal are

Let J-l = 1/Q' .

• 4.b B is largest. Then the best fitting tangent plane will be obtained by looking
down the y-axis. Let

d e

Cl =

f C
/B

a d
/B.

e f

The direction cosines (Q', (3, I) of the unit normal are

(-cdfl+ c� + c�, IIJI + c� + c�,-c3IJI + c� + c�).
Let J-l = 1/ {3.
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• 4.c C is largest. The best fitting tangent plane will be obtained by looking down

the z-axis. Let
e d

/C
f b

a e

/C.
d f

The direction cosines (a, f3, ,) of the unit normal are

(-cdJI + c� + c�, -c2IJI + c� + c�, IIJI + c� + c�).
Let f.-L = 1/,.

D. Ezaniples

Surface A rea

One rather sharp test of the method is the estimate of surface area given by L: f.-Lm. If
the discrete shape is derived from a COC) continuous shape, then the analytic surface

area should be approximated by this sum, and the approximation should improve as

the mesh becomes finer (or, equivalently, the relative error should decrease as the size

of the sphere increases). We generated four spheres of radii 16 through 62 as described

in Table 1. We estimate the surface area (labelled "Area" in Table 1) using the formula

(3V)2/3S = 47r -

,
47r

where V is the estimate of the volume obtained by counting the number of points in the

shape and subtracting half the number of boundary points. This is an extremely stable
estimate of the volume which is still quickly computed. In the table one finds the nom

inal radius, the surface area as estimated, the count of I-boundary points, the estimate

L: f.-Lm' and the number 47rr2 using the nominal radius. Percentage deviations from the

calculated volume are indicated. The discrete spheres, imbedded in a 128x 128x 128

array, are given by

{(i,j, k): (i - 64)2 + (j - 64? + (k - 64)2 < r2}.
The count of internal I-boundary points is, as expected, low. However, even if the
number of points in the external I-boundary were used, this estimate would remain

low. The 2-boundary (not shown in the table) is a gross overestimate of the surface

area.

12



TABLE I. ESTIMATES OF SURFACE AREA FOR FOUR SPHERES.

Estimate from: Percent errors:

Radius Area count EJ.Lm radius count EJ.Lm radius

16 3044 2546 2998 3217 -16.4 -1.5 5.6

31 11726 9774 11642 12076 -16.6 -0.7 2.9

47 27246 22730 27051 27759 -16.5 -0.7 1.8

62 47641 39702 47320 48305 -16.6 -0.6 1.3

Shape Measures

In Appendix A we have shown that

1 (1 )
l/(p+q)

Vl/3 WI is Ilr - roWICr - ro) 0 nlq da

is a continuous shape measure. In the discrete case, we merely approximate the various

parts of the formula. The integrals are approximated by the sums

where all the estimates of the quantities involved are described above. We have tested

the measures for the spheres of nominal radius 64: remarkable agreement with the

theoretical value (�7r )1/3) is obtained. For values of p and q with 1 < p + q < 4, p > 0,
and q > -4, the agreement is within 1% (and often 0.1%).

Similarly, we approximated the continuous near shape measures introduced in Sec

tion II of this paper, and genereated 36 different measures of our discrete data. In

Fig. 2, there is a plot of measure 1,

vt'
vs. measure 21,

I�I jllr-roWClr-rolonf3dao
s

Each character in the graph represents a different binary object; objects representing
the same shape are denoted with the same letter. In Fig. 3, there is a similar plot of
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measure 2,

1 � 1 J (I r - ro 1 • n) da,
. s

vs. measure 31,

� {exp [m! log (21 (r - ro) . n 1 ) dU] } .

This plot seems to suggest some form of correlation in the measures, and brings up

the question of statistical independence. We have used some of the recently studied

dimensionality reduction (feature selection) techniques investigated and developed by
Siedlecki ei al. [15,16] and by Bryant and Guseman [17] to estimate the dimensionality
of a particular set of shapes. Results using the principal components approach show

that the dimensionality of the set of measures of the shapes we have tested is about

three. Figure 4 is a plot of the dimensionally reduced data for band 1 vs. band 2, and

Fig. 5 displays band 1 vs. band 3. Fig. 6 is a spatial plot of all three significant bands.
These plots show excellent separation among our test shapes; the only objects that

seem confused are those denoted by the letters I and J. Referring to plates 1 and 2,
I denotes the shape in row 3 and column 3, and J denotes the shape in row 2 and

column 4. These two shapes are intuitively very similar. In fact, the two shapes differ

in only one direction; in that direction, I is stretched relative to J by a factor of �.
Finally, one might at first consider our work in connection with using time as the

third dimension to view a moving 2-D shape as a 3-D object. However, it is clear that

a rotated view of such a 3-D shape, even if a reasonable scaling of the time dimension

could be found, would not be like the unrotated 3-D patterns in a real sense. For

example, a stationary disc over a finite time period would be a cylinder. When rotated

normal to its (time) axis, it becomes void (in time), then a line which grows to a

rectangle and back to vanish. Magnifications would not be impossible, but it is hard to
see a slowly moving small object as similar to a rapidly moving large (similar) object.
Only translations are valid, and translation-invariant measures are easily obtained. Yet
the idea is interesting.
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Figure 6. Reduced Dimensionality Data
Bands 1, 2 and 3 for 61 Shapes
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v. THREE-DIMENSIONAL BINARY OBJECT DISPLAY

A. Preliminaries

While analyzing shape properties of three-dimensinal binary objects, we found that

it was necessary to gain an intuitive feeling for our data; we needed to see what we

were working with. However, the display of 3-D discrete objects is difficult because the

objects are not continuous. "Wire cage" displays of even moderately complex shapes
are hard to visualize and the solution of the hidden line problem is time consuming.
The wire cage outline of a complex low resolution discrete shape fails to convey an

adequate feeling of the presumed underlying real world shape being modelled.

Ray-tracing produces interesting displays in which one often sees the reflection of

one part of the image in another. However, the technique is computationally intensive

and current techniques require parametric descriptions of the objects: It is not at all

clear how it could be applied to a random three-dimensional binary scene. Levoy [9]
has developed a method which uses 3-D volume data in which each volume element is a

number (such as might be obtained using computed tomography), producing a shaded

image. He uses a combination of ray-tracing and interpolation and thereby succeeds in

displaying weak or fuzzy surfaces. Our interest is in producing comparable products
but from low resolution binary data.

Recent research [10,11,12,13] by psychologists has revealed that shading and occlu

sion of objects in a two-dimensional picture can produce a compelling perception of

three-dimensional shape. While this has been understood in a qualitative way since

the middle ages, these studies seek to isolate the source of the perception. Illumination
from the sun, although scattered by the atmosphere and reflected by nearby objects, is

generally overhead. An animal in such an environment able to use subtle variations in

shading to enhance perception must have an evolutionary advantage. For this reason,

to convey an impression of three-dimensionality by a shaded planar image, the best

direction of illumination is from the top of the object. We are dealing with the problem
of presenting the shape to natural vision, a system which has evolved to deal with

natural scenes. The trick is therefore to give the vision system a picture it would see

were the shape illuminated from overhead relative to the viewer.

In producing the display it is not necessary to trace rays of light; in particular, if

part of the shape would cast a shadow in another, then the absense of this shadow

18



does not significantly hinder visualization of the shape in three dimensions, and often

assists visualization if the object would have large shadows. 'The psychologists also

learned that perspective plays a much less important role than might be imagined, so
that viewing can be modeled along parallel rays-that is, down a fixed direction which

can be one of the three coordinate lines. These considerations can reduce computation
time.

The experimental work carried out by psychologists used simple piecewise Coo

shapes such as spheres on various backgrounds. The shapes we are investigating are bi

nary and are not described parametrically. However, we thought it might be possible to
use elementary approximation theoretic techniques to estimate parameters sufficient to

determine the reflectance a discrete surface might have if it were continuous. Coupled
with a simple reflectance model, we were able to display essentially arbitrary binary
objects. The results exceeded our expectations.

B. Method

The shape is imbedded in a three-dimensional binary array; a cell is "in" the shape
if its array value is 1. Down one of the axes the binary pattern is assumed packed in

computer words. Think of this as the x-axis in a rectangular coordinate system; it is this
axis which is taken to be the viewing direction. That is, the observer is at (00,0, 7r/2)
in spherical coordinates looking parallel to the x-axis. The illumination direction is

user-selectable, from (00, (), cP) in spherical coordinates; it is directly overhead (i.e.,
() = 0, cP = 0) in the examples shown here. The general idea is to find the boundary
(see [14]), find an approximate tangent plane at each boundary point which is visible

from the view direction, and, using a reflectance model, calculate the shading observed.

The boundary of a discrete 3-D object is the set of points in the object with one

of their six nearest neighbors not in the object. Call a boundary point visible if it is
the first one encountered along the viewing line. Proceeding from a visible boundary
point, collect points in the boundary near the point being observed. Near means one of

the 36 nearest neighbors of the point which are not on the viewing line but which are

boundary points. More precisely, suppose the point has (integer) coordinates (i,j, k),
with the first being the viewing direction coordinate. The points are the 24 nearest

neighbors not on the viewing line with coordinates differing by at most one, plus the

10 points (i,j ± 2, k), (i,j, k ± 2), and (i ± 1,j ± 2, k), (i ± 1,j, k ± 2). In the shapes
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studied here, eight to fourteen nearby boundary points were found for each boundary
point.

We seek the. best approximation of the form x = ay + bz + d near the point (x, y, z)
(with the viewing direction being the x-axis). That is, find the best (least squares)
values of a and b which fit the "training" points collected. Let the points nearby be

{(Xi, Yi, Zi) : i = 1, ... , n}. The error in the approximation at a point is given by
e, = Xi - (aYi + bz, + d). We seek to minimize the 2-norm

which is a function of the three parameters a, b, and d. It is, of course, necessary that
the gradient \1E vanish when E has a local minimum (see [18]). These equations are

called the normal equations for geometrical reasons; they are linear. The solution of the

normal equations amounts the following linear algebra problem: let (all sums extend

from 1 to n)

(
E Y; E Yi z, E u.

)A = E YiZi E z; E z; ,

E Yi E Zi n

v = ( �:;�; ) .

EXi
All arithmetic in accumulating the sums is exact.

We solve the equation Au = v using Gaussian elimination (u = (a, b,dl). As is

typical of naively posed least squares problems, thematrix A tends to be ill-conditioned,
but a highly accurate solution is not required. If the linear algebra portion of the least

squares process indicates that no tangent plane of the requested form exists, mark the

point for later processing during the filtering procedure (in ·the examples presented here

this was never observed).
From the tangent plane the unit normal (cos a, cos,8, cos ,) is easily determined; it

is the vector (1, -a, _b)T /(1 + a2 + b2)1/2. Refer to Fig. 7: the x-axis in this figure
is the look direction, The relevant angles are the angle from the observer and from

the illumination to the unit normal to the surface: The cosine of the angle A from the

normal to the illumination is now easily determined:

cos ,\ = cos a sin cp cos () + cos ,8 sin cp sin () + cos, cos () .
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Two reflectance models are illustrated here: one, which we call diffuse, is (l+cos A) cos a;
another (glossy) is [(1 + cos A) cos ape While these models are arbitrary, the (1 + cos A)
factor might be, thought of as diffuse illumination from the source to the tangent plane
(A is then the zenith angle), and cos a represents the energy intercepted by the observer.

Raising these quantities to a power greater than 1 effectively simulates glossy surfaces,
for large values are then relatively larger than small values. After further processing,
the reflectences.are scaled to fill the range 0-255 before being sent to the display device.

In addition to the two-dimensional map of reflectances, we keep a map of the x

values on the surface. This will be used in the following two steps.
An optional step allows the low resolution grey scale image to be filtered. While the

least squares approximation is fast and never fails, and the neighborhood searched is

large, the low resolution is bound to induce problems of inadequate sampling for highly
irregular objects. While it seems strange at first, extremely smooth objects 'also lead

to misleading displays. Filtering helps (as will be seen in the examples). A 5 x 5 filter

is used; the weights are given by the following matrix, derived from the function

cos G [(y - yo? + (z - ZO)2]1/2)
which has its first zeros at (Yo ± 3, zo), (Yo, Zo ± 3). The matrix used is

0.090 0.389 0.500 0.389 0.090

0.389 0.738 0.866 0.738 0.389

0.500 0.866 1.000 0.866 0.500

0.389 0.738, 0.866 0.738 0.389

0.090 0.389 0.500 0.389 0.090

.The user selects the number of times this filter is applied to the array of reflectances.
In the examples given here, the array is filtered zero, one, two, and three times in the

illustrations (proceeding left to right). The filter is only applied to points which are

visible boundary points in planes close to the point at which it is being applied. (In
effect all boundary points in the 5 x 5 x 5 cube centered at the point are allowed.) While

the filter smoothes the image, it can remove fine detail which may be of importance.
In any case it is optional.

As a final step, we slightly filter and scale the array of reflectances. A simple 3x3
filter is used, with weights 1.0 ( the center), 0.50 (the four nearest neighbors), and 0.20

for the next nearest four. This filter is relatively insensitive to ringing in spite of its
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small size. Only those illuminations belonging to the same part of the surface (as
determined by the saved x-values) are used. Use the value 0 for missing neighbors; this
causes slight (and desirable) edge darkening, helping to reinforce the illusion that one

part of the shape is occluding another (or the background). One purpose of the filter is
to induce this edge darkening; in addition, the least squares procedure is least reliable

on the edges where the actual tangent plane of the continuous shape is nearly parallel
to the x-axis. Edge darkening is not induced by the 5 x 5 filter.

C. Examples and Technical Details

The example shapes are 128 x 128x 128 binary arrays. Recall that the shapes are con

structed of spheres so that they can be easily rotated and magnified by rotating and

magnifying the parameters (i.e., the centers and radii) exactly and regenerating the

shapes.
One needs to be aware that this method does not produce the same effect as actually

rotating the discrete shape and somehow resampling. For instance, one distracting
feature of the images are the strange "circles" that appear along the viewing angle on

the spheres. It is important to realize that these circles are actually present in the

discrete data; that is, they are not a side effect of the display program. All discrete

points in any given ring (and the central disk) lie in a plane parallel to the y-z plane;
they are a consequence of the discretization process. Rotating a ball and regenerating it
would not rotate these ringed flat spots, for they would remain fixed along the viewing
line. Contrast-involved side effects are even more distracting: the disk appears to be

concave even though the shape is convex. While the illumination in the disk is really
constant, the illuminated sphere gets darker as one looks down past the bright spot.
In fact, if the flat spot is large enough to be easily resolved, then the vision system will

interpret it to be a concave dimple. Smoothing does not correct this; smoothing often

enhances the perception of concavity.
As an example, consider a discrete sphere of radius 50 centered at the origin (the

set of lattice points {(i,j, k) : i2 + P + P < 2500}), and examine the point (49,0,0).
It is a boundary point because it is in the object and the neighboring point (50,0,0)
is not in the object. The plane circular area {(49,j, k) : P + P < 99} containing this

point is in the boundary of this sphere; it is a relatively large flat spot consisting of 305

points with diameter about 19. Surrounding .it is a circular annulus of 316 boundary
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points {(48,j, k) : 97 < p + k2 < 196}, which appears to be a band of width slightly
over 4. Two more bands are just barely visible, of 324 points with width about 4 and

316 points with width about 3. In the circle, and down the center of the first ring, the

tangent plane found by our procedure will have parameters a and b equal to zero, so

that cos a = 1, cos A = 0 (assuming directly overhead illumination). A filter designed
to remove the bands will necessarily be at least 5x5. Not much can be done about the

center disk, but the first band can be removed by filtering. On the other hand, smaller
balls suffer much less from this visual artifact.

This is an instance of a problem one encounters in the process of taking a continuous

object, sampling to produce a discrete object, and then viewing a reconstruction as a

continuous object: Viewing resolution can be too fine, given a fixed sampling resolution.
There are conflicting views on how to handle this problem. The concave spots and

rings perceived on the larger spheres are diverting. However, the underlying data which

produce the artifact are present in the discrete shape, and it should be remembered that
discretization is not a one-to-one process; many continuous shapes may be represented
by the same discrete model. One view would have the shading reflect only the data

that is present without adding any assumptions on the smoothness of the "real world"

shape. Alternatively, the crinkly, hammered, appearances of the unfiltered shapes may
or may not distract from the interpretation of the artificial image, depending entirely
on the point of view of the user: one interested in global structure might prefer the
filtered image.

D. Plates

The shaded versions of the shapes are shown in plates 3 and 4; a 512x512 grey scale

image was made from the shaded versions using eight bit (0-255) grey levels. Since the

underlying binary objects are 128 x 128 x 128, sixteen 128 x 128 shaded "images" of
the binary shape fit in the plate. The plates were photographed directly from the video

monitor.

All computations were performed on a low-end VAXstation 2000 without floating
point hardware; a little over a minute was required to make the grey scale image
of one 128 x 128 x 128 binary image. The grey scale images, produced by mosaicing
sixteen 128 x 128 displays, were displayed on a Silicon Graphics, Inc. IRIS graphics
workstation. In addition to the high quality display, a quick look at the shaded shape
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Plate 3

Plate 4

25



IS displayed on the workstation console using a width of 132 characters and length
of 64. A useful VIew of the shape IS obtained by printing every-other-line with the
sixteen characters (including blank) "Mle8%GC]\I! j.:." the first characters corresponding
to the lower reflectance values. The background is represented by the texture made
of alternating lines of "{" and "}". A screen photograph of that display is included as

plate 5.
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SUMMARY

Theoretical results have been presented that quantify the intuitive concept of shape
and provide a method for developing new shape measures. These measures can be

used by a' computer to compare the shapes of objects in its memory. An arbitrary
method for representing objects as binary arrays has been used, and a method for the

approximation of surface integrals over the boundary of a low-resolution binary object
has been presented. These integrals, an approximation to the unit normal, and an

approximation to the the differential of surface area make it possible to compute several

shape measures and near shape measures of binary objects. These measures were tested
and analyzed for independence and significance. A method for producing a shaded two

dimensional representation of a three-dimensional binary object was discussed.
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A RATIONALIZATION OF A HOMOGENEOUS CONGRUENCE MEASURE

We show here that

is a homogeneous congruence measure.

Consider the top illustration in Fig. 8. Here, S is a piece of a continuous shape, and

ro is its centroid. Let P be some point on the surface of S, and r be the vector from

ro to P. Let n be the unit normal of S at P. Now, consider the bottom illustration

in Fig. 8. S has not changed shape, but has rotated clockwise 60 degrees. Notice that

II r II and r· n do not change as S rotates. Since this holds for arbitrary P on the surface

of S,

J II rill r . n I da
s

is a congruence measure (we take I r- n I for computational convenience only. The result
holds if the absolute value marks are removed). Notice that, if f and 9 are arbitrary
functions defined on the positive real numbers,

J f(II r II) . 9 (I r . n I ) da
s

is a congruence measure. Thus

J (II r II)P (I r . n I ) q da
s

is a congruence measure; simple unit analysis shows that

[ 1 ]
l/{p+q)

WI is(11 r II)P(I r· n I)q do

has linear dimension and is, therefore, a homogeneous congruence measure (of course,
using different notation, II r II == II r - ro II)·
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Figure 1. Two Rotations of a Shape
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B BEST FITTING TANGENT PLANE

We prove here that the best fitting tangent plane is found looking in the direction with

maximum 2 x 2 determinant. It is enough to suppose the point (xo, Yo, zo) is the origin.
We accordingly consider the problem of approximating {(Xi, Yi, Zi) : i == 1, ... , n} with
one ofthe planes of the form x == by+cz, y == ax+cz or z == ax+by. Let x == (x}, ... , xn),
y == (yt, ... , Yn), and z == (ZI, ... , zn) ERn. The three determinants described above in

"
.

Step 3 become (where IIxW == EXT, x-y == EXiYi)

A==IIIYWy-z y-z IIlzW
B == IllxW x-z Ix-z IlzW C==lllxWx·y x-y IIlyW·

Consider, for example, the approximation X == by + cz. The least squares problem is

easily seen to be

[IIYWy·z y.z] [b] [x.Y]IlzW c

-

x·z
.

After solving for b and c and evaluating the error we obtain

Error2 ==
IlxWllyWllzW + 2x·yx·zy·z - IIxWy·z2 - IIyWx·z2 - IIzWx.y2.

A

Notice that the numerator is symmetric in x, y, and z; accordingly, the minimal error
is obtained when the non-negative determinant in the denominator is largest.

Remark:

The result is easily generalized to approximation in n-dimensions. Let {Xi Z

1, ... , m} be a set of vectors in H": For each j < m let Aj be the j x j matrix

Consider the approximation problem (for 2 < j :::; m)
j-I

minimize Ilxj - Laixill:
i=1

A tedious but straightforward calculation leads to the error equation (provided det Aj-I >

0)
Error2 == det Aj / det Aj-I
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The matrix Aj is clearly positive definite, for if U E H" then

j
uTAju == :L (U'Xi)2 > O.

i=l

Therefore, det Aj � O. It is enough to assume det Aj > 0, for if det Aj == 0 then the

set {Xi: i == 1, ... ,j} is linearly dependent and we could omit some of the Xi without

changing the error in linear approximations.
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C PROGRAMS

These are the programs we developed for this project. The first, DISPF.FOR, makes

a sphere file th�t maps out a parametric three-dimensional curve. The second, ROT

CALL5.FOR, rotates an existant sphere file through user-supplied angles. The third,
DISPIT2.FOR, generates binary data from sphere files. The last, EXTR.FOR, produces a

displayable image from the binary data.
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PROGRAM DISPF

C This program is supposed to write a data file containing
C enough data to allow a dispit version of any given
C three dimensional parametric function.

IMPLICIT IDlE
REAL Overlap
IITEGER PointCount
REAL OldX. OldY. OldZ
REAL Radius
REAL T. Inc
REAL TMax
CHARACTER.20 OutputFile

REAL X. Y. Z
REAL Dist

Dist(X.Y.Z) = SQRT(X••2+Y••2+Z••2)
IICLUDE 'THEFUICTIOIS.DISPF'

WRITE ( ••• ) 'Put the parametric functions in THEFUICTIOIS.DISPF'
WRITE (.,.) 'and compile DISPF.FOR; then'
WRITE (.,.) 'input TO, TMax, incO, the radius,'
WRITE (.,.) 'and the Overlap Factor (0=lone.1=AII),
READ (*,*) T, TMax, Inc, Radius, Overlap
WRITE (*,*) 'And where do you want these points written?'
READ (*,1) OutputFile

1 FORMAT (A20)
OPEl (UlIT = 12, FILE = OutputFile, STATUS = 'lEV')

PointCount = 0
OldX X(T)
OldY = yet)
OldZ :: Z(T)

10 COITIIUE
IF (T .LT. TMax) THEI

PointCount = PointCount + 1
WRITE (12,.) OldI, OldY, OldZ, Radius

20 COITIIUE
IF (Dist «OldI-X(T»,(OldY-Y(T»,(OldZ-Z(T»)

I: .LT. (1.-0verlap)*Radius) THEI
T = T + Inc
GO TO 20

EIDIF
OldX = X(T)
OldY = yet)
OldZ = Z(T)
GO TO 10

EIDIF

WRITE (*,*) 'I wrote' PointCount,' points.'
STOP
EID
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PROGRAM RotCall5

C This puppy tries to read the data from a disk.
C And tries to implement psi.
C And immediately calls orientate and scaleit.
C And allovs tvo sets of rotations and a specified final ball radius.

IMPLICIT IOIE
real I,Y,Z,Il,Yl,Zl,I2,Y2,Z2,Radius
real Thetal, Phil, Psil, Theta2, Phi2, Psi2
REAL SpecRad
CHARACTER.50 DataFile

REAL DegToRad
DegToRad (Thetal) 2 0.017453293.Thetal

vrite (.,.) 'Yo. Enter the name of the data file nov.'
read (.,1) DataFile

1 FOlUlAT (A20)
OPEl (UIIT = 11, FILE = DataFile, STATUS = 'OLD')
OPEl (UIIT = 12, FILE = 'ROTATE.OUT', STATUS = 'lEW')

vrite (.,.) 'Joko, and vhat are the first Theta, Phi, and Psi?'
READ ,-C. ,.) Thetal, Phil, Psil
WRITE (.,.) 'Uh huh. And the second Theta, Phi, and Psi?'
READ (.,.) Theta2, Phi2, Psi2
WRITE (.,.) 'Hmmm. Specified Radius (zero if apathetic)?'
READ (.,.) SpecRad

Thetal = DegToRad (Thetal)
Phil = DegToRad (Phil)
Psil = DegToRad (Psil)

Theta2 = DegToRad (Theta2)
Phi2 = DegToRad (Phi2)
Psi2 = DegToRad (Psi2)

5000 COITIIUE
READ (11, ., EID = 10000) I, Y, Z, Radius

CALL Rotate (I, Y, Z, Thetal, Phil, Psil, Xl, Yl, Zl)
CALL Rotate (11, Yl, Zl, Theta2, Phi2, Psi2, 12, Y2, Z2)

vrite (12 ,.) 12, Y2, Z2, Radius

GO TO 5000
10000 COITIIUE

CLOSE (11)
CLOSE (12)

CALL ORIEITATE
CALL SCACALL4(SpecRad)

STOP
EID

SUBROUTIIE Rotate (IO,YO,ZO,Theta,Phi,Psi,Xl,Yl,Zl)

C Another attempt at Theta, Phi, Psi rotation.

IMPLICIT IOIE
REAL IO,YO,ZO,Il,Yl,Zl
REAL Theta, Phi, Psi

REAL Pi
PARAMETER (Pi = 3.141592654)

REAL Rho,Rl,Phil,Thetal
REAL ThetaO,PhiO,PsiO

ThetaO = 0
PhiO 0
PsiO = 0

IF (10 .IE. 0 .OR. YO .IE. 0)
1 ThetaO = ATAI2 (YO,IO) + Theta
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Rho = SQRT (10••2 + YO••2)
11 - Rho • COS (ThetaO)
Yl = Rho • 511 (ThetaO)

IF (11 .IE. 0 .OR. ZO .IE. 0)
l PhiO a ATAI2 (ZO,Il) + Phi
Rho = SQRT (11 ••2 + ZO**2)
11 = Rho • COS (PhiO)
Zl • Rho • SII (PhiO)

IF (Yl .IE. 0 .OR. Zl .IE. 0)
l PsiO = ATAI2 (Zl,Yl) + Psi
Rho = SQRT (Yl**2 + Zl*.2)
Yl = Rho • COS (PsiO)
Zl = Rho • 511 (PsiO)

RETURJ
EID

SUBROUTIIE Standardize (Theta, Phi)

IMPLICIT 10lE
REAL Theta, Phi

REAL Pi
PARAMETER (Pi = 3.141592654)

1000 COITIIUE
IF (Phi .GT. Pi) THEI

Phi = Phi - 2 * Pi
GOTO 1000

ELSE IF (Phi .LT. -Pi) THEI
Phi = Phi + 2 • Pi
GOTO 1000

EIDIF

IF (Phi .GT. Pi/2) THEI
Phi = Pi - Phi
Theta - Theta - Pi

ELSE IF (Phi .LT. -Pi/2) THEI
Phi - -Pi - Phi
Theta ::0: Theta - Pi

EIDIF

RETURI
EID
SUBROUTIIE ScaCalI4(SpecRad)

C This one implements a speciried radius

IMPLICIT 10lE
IITEGER MaxSpheres
PARAMETER (MaxSpheres = 1000)

REAL Centers (KaxSpheres ,3) , Radii(KaxSpheres)
REAL levC(KaxSpheres,3),levR(MaxSpheres)
IITEGER i, j. lumSpheres
REAL SpecRad

OPEl (unit=13,rile='Orient.out',status='old')
OPEl (unit=14.rile='Scaleit.out',status='nev')

I = 1
5 COITIIUE

READ (13 ••• EID = 10000) (Centers(I.J).J=1.3). Radii(I)
I = I + 1
GO TO 5

10000 COITIIUE

lumSpheres = I - 1

WRITE (* •• ) 'SCALEIT: Read'. lumSpheres. ' spheres.'
call Scalelt2 (Centers. Radii. lumSpheres. SpecRad)

55 COITIIUE
call Centerlt (Centers, Radii. lumSpheres, levC. levR)
DO 20 i = 1. lumSpheres

WRITE (14,*) (levC(i.j),j=1.3),le�R(i)
20 COITIIUE

38



vrite (14,.) 0,0,0,0

CLOSE (13)
CLOSE (14)

STOP
EID
SUBROUTIIE Scalelt2 (Centers,Radii,lumSpheres,SpecRad)

IMPLICIT IDlE
IITEGER MaxSpheres
PAIUMETER (MaxSpheres = 1000)
IITEGER lumSpheres
REAL Centers(MaxSpheres,3), Radii(MaxSpheres)
REAL SpecRad

I1UGER I, J
REAL MinRatio
IITEGER IRovs,ICols,IPlas
PARAMETER (IRovs = 128)
PARAMETER (ICols • 128)
PAIUMETER (IPlas = 128)

REAL Maxs(3),Mins(3)

IF (lumSpheres .GT. 0) THEI
IF (SpecRad .EQ. 0) THEI

DO 10 I = 1,3
Mins(i) = Centers(l,I) - Radii(l)
Maxs(i) = Centers(l,I) + Radii(l)
DO 15 J = 2, lumSpheres

Mins(I) = MIl (Mins(I), Centers(J,I) - Radii(J»
Maxs(I) = MAl (Maxs(I), Centers(J,I) + Radii(J»

15 COITIIUE
10 COITIIUE

MinRatio • MIl (REAL(IRovs-4)/(Maxs(1)-Mins(1»,
t REAL(ICols-4)/(Maxs(2)-Mins(2»,
t REAL(IPlas-4)/(Maxs(3)-Mins(3»)

ELSE
MinRatio = SpecRad/Radii(l)

EIDIF

DO 20 J = 1,lumSpheres
Radii(J) = Radii(J).MinRatio
DO 20 I = 1,3

Centers(J,I) = (Centers(J,I)-Mins(I».MinRatio+2.0
20 COITIIUE

EIDIF

RETURI
EID
SUBROUTIIE Orientate

IMPLICIT IDlE
IITEGER MaxSpheres
PARAMETER (MaxSpheres = 1000)

CHARACTER.20 DataFile
IITEGER lumSpheres
REAL Centers(KaxSpheres,3), Radii(MaxSpheres)
I1TEGER I,J

OPEl (UIIT = 11, FILE = 'Rotate.out', STATUS = 'Old')
OPEl (UIIT = 12, FILE = 'Orient.out', STATUS = 'lev')

1=1
10 COlTIIUE

READ (11,., EID 10000) (Centers(I,J),J=1,3), Radii(I)
I = I + 1
GO TO 10

10000 COITIIUE

lumSpheres = I - 1
vrite (.,.) 'ORIEITATE: Read ',lumSpheres,' spheres.'
DO 20 I = 1,lumSpheres
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Centers(I,l) = -Centers(I,l)
Centers(I,3) = -Centers(I,3)
vrite (12,.) (Centers (I ,J) ,J=l,3), Radii(!)

20 COlTIIUE

CLOSE (11)
CLOSE (12)

RETURI
EID
SUBROUTIIE Centerlt(Centers, Radii, lumSpheres, levC, levR)

C This routine doesn't vork properly; it must be £ixed.

IlIPLICIT IOIE
IITEGER MaxSpheres
PARAMETER (MaxSpheres = 1000)
IITEGER lumSpheres
REAL Centers(MaxSpheres,3), Radii(MaxSpheres)
REAL levC(MaxSpheres,3), levR(MaxSpheres)

IITEGER IRovs,lCols,lPlas
PARAKETER (IRovs = 128)
PARAKETER (ICols = 128)
PARAMETER (IPlas = 128)

I1TEGER I,J
REAL Mins(3),�axs(3),FreeSpace(3)
IF (lumSpheres .GT. 0) THEI

DO 30 I ,.. 1,3
Mins(i) = Centers(l,I) - Radii(l)
Maxs(i) ,.. Centers(l,I) + Radii(l)
DO 25 J = 2, lumSpheres

Mins(I) = MIl (Kins(I), Centers(J,I) - Radii(J»
Maxs(I) = KAI (Kaxs(I), Centers(J,I) + Radii(J»

25 COITIIUE
30 COITllUE

FreeSpace(l) = REAL(IRovs) - (Kaxs(l) - Kins(l»
FreeSpace(2) = REAL(ICols) - (Kaxs(2) - Kins(2»
FreeSpace(3) = REAL(IPlas) - (Kaxs(3) - Kins(3»

DO 40 I ,.. l,lumSpheres
levR(I) = Radii(I)
DO 40 J = 1, 3

levC(I,J)·= .5*FreeSpace(J) - Kins(J)
t + Centers(I,J)

40 COITllUE
EIDIF

RETURI
EID.
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PROGRAM DISPIT2

IMPLICIT IOIE

C Program to display a shape on a gray-scale display
C SCALE is the number o£ levels o£ gray available

I1TEGER SCALE
PARAMETER (SCALE=255)

C PI is pi
REAL PI
PARAMETER (PI=3.14159)

C THETA is the polar coordinate o££set

REAL THETA

C PHI IS 'THE ,UGLE FROM AZIMUTH OF ILLUM

REAL PHI

c U1,U2,U3 is a unit vector in the direction o£ the ilIum angle

REAL U1,U2,U3

C .BITS
C IROV
C IROVB
C ICOL
C IPLA
C EDGES
C IMAGE

number o£ bits in an integer = number o£ data bus bits
number o£ rovs

IROV/IBITS
number o£'columns
number o£ planes
a binary 3-D image of the boundary
the binary set o£ objects

IITEGER IBITS,IROV,IROVB,ICOL,IPLA,EDGES,IMAGE,BIGBIT
PARAMETER (IBITS=32,IROV=128,IROVB=IROV/IBITS)

.

PARAMETER (ICOL=128.IPLA=128)

C BIGBIT - an integer vith the £irst bit on and the rest o££

PARAMETER (BIGBIT=-2 •• (IBITS-2)-2•• (IBITS-2»

C D.FLAG,SHFLAG are used to extract the boundary using £ast logical operations
C I.J,I.L are DO indexes

IITEGER D.FLAG.SHFLAG.I.J.I�L

C DISP is the grey scale image to make; it is real until scale £actors
C and £iltering are complete.

REAL DISP

C PLAIE -- this array contains the plane a point is in; used to avoid £i1tering
C using re£lectances £rom actually di£ferent objects vith close
C projections.

C FILTER·-- the number ,0£ times to 5x5 filter the reflectances

IITEGER FILTER·
COKMOI/GSCALE/ DISP(ICOL,IPLA),PLAIE(ICOL,IPLA)

COMMOI/ARRAY/ EDGES(O:IROVB-1,ICOL,IPLA),
+ IMAGE(O:IROVB-l,ICOL,IPLA)

C 'DTAFLG -- determines vhether one reads the image from a file or

C derives it internally from parameters vhich are input at run time.

LOGICAL DTAFLG
CHARACTER.40 IIIAME

C SHIIFL is the reflectance parameter

IITEGER SHIIFL
PRIIT.,' THETA, PHI (II DEGREES)'
READ.,THETA,PHI
THETA = THETA*PI/180
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PHI • PHI.PI/180
PRIIT.,' GEIERATE (T) OR READ (F) DATA'
READ. , DTAFLG
PRIIT.,' IIPUT FILE lAME'

READ15,IIIAME
OPEl (10,FILE=IIIAME,DEFAULTFILE='FOR010.DIS',

l FORM='UIFORMATTED',STATUS='IEV')
15 FORMAT (A)

PRIIT.,' TYPE OF REFLECTAICE: (1) EGG SHELL TO (4) GLOSSY'

READ.,SHIIFL
PRIIT.,' HOV MAIY TIMES TO FILTER THE 3-D IMAGE?'

READ.,FILTER

C This is the unit vector in the direction o£ the illumination angle

Ul = SII(PHI).COS(THETA)
U2 = SII(PHI).SII(THETA)
U3 = COS(PHl)

C Get the image

CALL MAKEIT(DTAFLG,IIIAME)

C Process it--that is, £ind the edges

C First the image shi£ted up one plane
DO 30 K = 2,IPLA

DO 30 J = 1,ICOL
DO 30 I = O,IROVB-l

30 EDGES(I,J,K) = IAID(IMAGE(I,J,K-l),IMAGE(I,J,K»

C lext

60

C lext

90

C lext

120

C low

AID with the image shifted down one plane
DO 60 K = 1,IPLA-l

DO 60 J = 1,ICOL
DO 60 I = O,IROVB-l

EDGES(I,J,K) = IAID(IMAGE(I,J,K+l),EDGES(I,J,K»

the image shi£ted up one column
DO 90 K = 1,IPLA

DO 90 J = 2,ICOL
DO 90 I = O,IROVB-l

EDGES(I,J,K) = IAID(EDGES(I,J,K),IMAGE(I,J-l,K»

AID with the image shifted down one column
DO 120 K = 1,IPLA

DO 120 J = 1,ICOL-l
DO 120 I = O,IROVB-l

EDGES(I,J,K) = IAID(IMAGE(I,J+l,K),EDGES(I,J,K»

AID with the image shifted right one in the row direction.
DO 150 K = 1,IPLA

DO 150 J = 1,ICOL
FLAG = 0
DO 150 I = O,IROVB-l

D = IMAGE(I,J,K)
SHFLAG = IAID(D,l)
D = ISHFT(D,-l)
IF (FLAG.GT.O) D = IOR(D,BIGBIT)
FLAG = SHFLAG

150 EDGES(I,J,K) = IAID(D,EDGES(I,J,K»

C Finally AID with the image shifted left one.

DO 180 K = 1,IPLA
DO 180 J = 1,ICOL

FLAG = 0
DO 180 I = IROVB-l,O,-l

D = IMAGE(I,J,X)
SHFLAG = ISHFT(D,-IBITS+l)

D ISHFT(D,l)+FLAG
FLAG = SHFLAG

180 EDGES(I,J,K) = IAID(D,EDGES(I,J,X»

C low EOR with the original, leaving an internal 2-connected boundary
DO 210 X = 1,IPLA

DO 210 J = 1,ICOL
DO 210 I = O,IROVB-1

210 EDGES(I,J,K) = IEOR(IMAGE(I,J,X),EDGES(I,J,l»
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C The boundary is marked, and it is time to go to vork. process
C the image of boundaries; vhen a pixel is found, find the reflectance
C implied by the model. (These are determined in subroutines.)

PRIIT.,' BOUIDARY FORMED, LETS GO'
DO 310 J • l,lCOL

DO 310 I = l,lPLA
DO 306 I = O,IROVB-l

IF (EDGES(I,J,I).IE.O) THEI
CALL PAIIT(I,J,I,Ul,U2,U3,SHIIFL)
GO TO 310

EID IF
306 COITIIUE

DISP(J,I) -2.0
310 COlTIIUE

C Filter it to smooth only

DO 1000 I = l,FILTER
PRIIT.,' FILTERIIG',I,FILTER
CALL FLTR

1000 COlTIIUE

C Scale and filter it to enhance edges

PRIIT•• ' SCALIIG'
CALL SFLTR(SCALE)

C Display and store it

CALL SHOllME
EID

SUBROUTIIE PAIIT(I.J,I,Ul.U2.U3.SHIIFL)
IMPLICIT IOIE
IITEGER SHIIFL

C Direction numbers of unit normal and illumination amount

REAL Ul.U2.U3
REAL CALPHA.CBETA.CGA.K.KA.VIEV

C Search pattern: (This is moderately tricky)"

C up is the y-direction. right in a plane the x-dir. plane the z-dir

C Lover Plane Ground Plane Upper Plane
C 30 28 34 25 31
C 17 5 18 13 1 14 21 8 22
C 35 11 4 12 •• • G • •• 10 3 9 36
C 19 6 20 16 2 15 24 7 23
C 29 27 33 26 32

C Offsets for search: • and •• have been eliminated, leaving only 36

IITEGER OFFSI(36)
DATA OFFSI/O.O.O.O,O,O.O.O.

+ 1.-1.-1,1,-1.1.1.-1.
+ -1.1,-1.1.-1,1,1,-1,
+ 2,2,-2,-2, 2,2,-2,-2, 0,0,0,0/

IITEGER OFFSY(36)
DATA OFFSY/l,-l,O.O,l,-l,-l,l,

+ 0,0,0.0,1,1,-1,-1,
+ 1,1,-1,-1,1,1,-1,-1,
+ 1,-1,-1,1, -1,1.1,-1, -2,2.0.0/

IITEGER OFFSZ(36)
DATA OFFSZ/O,O,l,-l,-1.-1.1.1,

+ 1,1,-1.-1.0,0,0.0.
+ -1,-1,-1,-1.1,1,1,1,
+ 0,0,0,0, -1,-1,1,1, 0,0,-2.2/

C IUKBBR is the number of points found that are near the target point
C and in the same plane.
C I.J.I.II.JJ.II,IT.JT.ITare all indexes into the boundary pattern
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C IBR is the pointer to offsets which generate new neighbors.

IITEGER IUKBBR,I,J,I,II,JJ,ll,IT,JT,IT,IBR

C Arrays I,Y,Z collect the coordinates of the point. The remaining
C variables are adequately described in the main program.

IITEGER I(32),Y(32),Z(32)
IITEGER IBITS,IROV,IROVB,ICOL,IPLA,EDGES,IMAGE
PARAMETER (IBITS=32,IROV=128,IROVB=IROV/IBITS)
PARAMETER (ICOL"'128,IPLA"'128)
REAL DISP
I1TEGER.2 PUlE
COMMOI/GSCALE/ DISP(ICOL,IPLA),PLAIE(ICOL,IPLA)

C FLAG is set by LSFIT if the linear algebra problem is not solvable.
LOGICAL FLAG

C This is for the VAl: will have to test where to grab least signif 8
C bits on IBM and FPS if this is to be transported. It is a

C non-problem, but annoying anyway.
I1TEGER I1TEQ
LOGICAL.1 STUFF

EQUIVALEICE (IITEQ,STUFF)

COMMOI/ARRAY/ EDGES(0:IROVB-1,ICOL,IPLA),
+ IMAGE(0:IROVB-1,ICOL,IPLA)

IITEGER:II,IY,IZ.

C POIIT is a statement function that works like the corresponding
C function in BASIC, except in 3-D

LOGICAL POIlT

POIIT(II,IY,IZ) = BTEST(EDGES(II/IBITS,IY,IZ),
+ IBITS-1-MOD(II,IBITS»

C Find out where the bit is in the word. Also make local copies of the
C subroutine parameters.

II ::II: I.IBITS
JJ = J
II -= I

10 IF (POIIT(II,JJ,II» GO TO 20
II ::II: 11+1
GO TO 10

C low we're started, having found the bit causing the problem.

20 IUKBBR'" 1
I(IUKBBR) = II
Y(IUKBBR) JJ
Z(IUKBBR) U

C Look around, trying to collect enough. the first 24 neighbors are

C guaranteed to not be off the array because of the border of zeroes.

DO 25 IBR = 1,24
IT '" II+OFFSI(IBR)
JT '" JJ+OFFSY(IBR)
IT '" II+OFFSZ(IBR)
IF (POIIT(IT,JT,IT» THEI

IUKBBR '" IUKBBR+1
I(IUKBBR) '" IT
Y(IUKBBR) JT
Z(IUKBBR) IT

EID IF
25 COITIIUE

C If we have accumulated 9 or more then ve have an adequate sample.

IF (IUKBBR.GT.8) GO TO 31
IBR '" 25

C From nov on ve have to vatch vhether off the array since ve are looking
C 2 avay. 10 big deal--only 12 critters involved.

30 IF (IBR.LE.36) THEI
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IT = II+OFFSI(IBR)
IF (IT.GT.IROW-2.0R.IT.LT.1) THEI

IBR '" IBR+l
GO TO 30

EID IF
JT '" JJ+OFFSY(JBR)
IF (JT .GT . JCOL-1. OR. JT.LT. 2) THEI

JBR = JBR+l
GO TO 30

EID IF
IT = II+OFFSZ(IBR)
IF (IT .GT .IPU-1.0R.IT.LT .2) THEI

IBR = IBR+l
GO TO 30

EID IF-
IF (POIlT(IT ,JT ,IT» THEI

IUMBBR '" IUKBBR+l
I(IUKBBR) '" IT
Y(IUMBBR) '" JT
Z(IUMBBR) '" IT
IBR = IBR+l
GO TO 30

EID IF
EID IF

C Watch out for tiny shapes and other veird stuff.

U .. (IUKBBR.LT.5) THEI

DISP(J,I) '" -2.0
PLAlE(J ,I) '" II
RETURI

EID IF

C Find the direction cosines of the normal to the best fitting (least
C squares) tangent plane. Logical variable FLAG is set vhen the
C linear algebra proble. is deemed impossible.

31 CALL LSFIT(I,Y,Z,IUKBBR,CALPHA,CBETA,CGAKKA,FLAG)
IF (FLAG) THEI

DISP(J,I) '" -12.0
PUIE(J ,I) '" II
RETURI

EID IF

C lov calculate the radiation vieved: this is for diffuse lighting and
C a matte finish surface.

VIEW '" CALPHA*(1.0+Ul*CALPHA+U2*CBETA+U3*CGAKKA)

C This is for a glossy finish.

IF (SHIIFL.GT.l) VIEW = VIEW**SHIIFL

DISP(J,I) = VIEW

C Remember the plane for filtering to follov.

PLAlE(J ,I) ,. II
RETURI
EID

SUBROUTIIE LSFIT(I,Y,Z,IUKBBR,Cl,C2,C3,FLAG)

C Find the best fitting tangent plane to the binary data under the
C assumption that the I-Y-Z coordinates collected are good representatives
C of the boundary surface. The mathematics of the problem is trivial;
C the program simply computes parameters needed to solve the normal
C equations and calls an appropriate program. One minor change: veight
C the "center" point tvice that of any other.

IMPLICIT 10lE
LOGICAL FLAG
REAL Cl,C2,C3,A,B
IITEGER I(*),Y(*),Z(*),IUKBBR,I
REAL MATRIX(4,3)
IITEGER SSY,SSZ,SYI,SYZ,SZI,SI,SY,SZ
SSY = Y(1)"2
SSZ = Z(1) ..2
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SYI :z Y(1)*I(1)
SYZ = Y(1)*Z(1)
SZI • Z(1).I(1)
SY :: y(1)
SZ = Z(1)
SI :: 1(1)
DO 10 I :: 1,IUMBBR

SSY - SSY+Y(I)**2
SSZ :: SSZ+Z(I) ••2
SYI • SYI+Y(I)*I(I)
SYZ :: SYZ+Y(I).Z(I)
SZI :: SZI+Z(I)*I(I)
SY :: SY+Y(!)
SZ = SZ+Z(I)
SI = SI+I(I)

10 COITIIUE

C low float the sums and do the linear alrebra.

MATRII(1,1) = SSY
KATRII(2,1) = SYZ

KATRII(3,1) = SY
MATRII(1,2) = SYZ
KATRII(2,2) :: SSZ

KATRII(3,2) = sz

KATRII(1,3) = SY
KATRII(2,3) = sz

KATRII(3,3) :: JUMBBR+1

KATRII(4,1) = SYI

KATRII(4,2) :: SZI
KATRII(4,3) :z SI
CALL SOLVE(KATRII,A,B,FLAG)

C FLAG is set if SOLVE had trouble.

IF (FLAG) RETURI

C This solves the least squares problem giving I AY+BZ+<Don't care>
C1 = SQRT(1./(1.+A**2+B**2»
C2 :: -hC1
C3 = -B*Cl
RETURI
EID

SUBROUTIIE SOLVE(K,IA,IB,FLAG)

C Simple Gaussian elimination ... I doubt if you can beat it for a 313
C problem, but I'd be glad to talk about it if you think differently.
C for example. one could write out the entire loop 70 and write K as

C a 1-D array. but I won't do that for the 1 or 2 seconds a run it will save.

IKPLICIT IDlE
LOGICAL FLAG
REAL K(4,3),IA,IB,IC
IITEGER I. J ,I
DO 70 I = 1,2

DO 70 I = 1+1,3
IA :: K(ljI)/K(I,I)
K(I,!) = IA
DO 70 J = 1+1,4

K(J,I) = K(J.I)-IA*K(J,K)
70 COITIIUE

FLAG = ABS(K(3,3».LT.1.E-7.0R.ABS(K(2,2».LT.1.E-6
IF (FLAG) RETURI
IC = K(4,3)/K(3,3)
IB = (K(4,2)-K(3,2)*IC)/M(2,2)
IA = (M(4,l)-M(2,l)*XB-K(3,1)*XC)/M(l,l)
RETURI
EID

SUBROUTIIE FLTR
IKPLICIT IDlE

C This preliminary filter applies a 5x5 filter inside the raw reflectances
C without trying to induce edge effects. This is an attempt to filter the
C shape. but clearly isn't wanted all the time.
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IITEGER IBITS,IROV,IROVB,ICOL,IPLA,EDGES,IMAGE
PARAMETER (IBITS=32,IROV=128,IROVB=IROV/IBITS)
PARAMETER (ICOL=128,IPLA=128)
REAL DISP,THREER(ICOL,S)
LOGICAL*l LIIE(ICOL)
IITEGER*2 CPLAIE,PLAIE(ICOL,S),IP
COMMOI/SAVMEM/PLAIE,THREER
COMMOI/GSCALE/ DISP(ICOL,IPLA),CPLAIE(ICOL,IPLA)
COMMOI/ARRiY/ EDGES(O:IROVB-l,ICOL,IPLA),

+ IMAGE(O:IROVB-l,ICOL,IPLA)
IITEGER Il,I2,I3,I4,IS,IT.I,J,L
REAL Vl,V2.V3,V4,VS,SUM,VEIGHT
PARAMETER (Vl=0.866,V2=0.S,V3=.738,V4=.389,VS=.09)

C PATTERI:
C VS V4 V2 V4 VS
C V4 V3 Vl V3 V4
C V2 Vl GG Vl V2
C VS V4 V2 V4 VS
C V4 V3 Vl V3 V4

IITEGER*2 P, Q
LOGICAL TEST

TEST(P.Q) = IABS(P-Q).LE.2

C Circular bu:ffer pointers
11 = 1
12 = 2
13 = 3
14 = 4
IS = S

C Read fi�e lines of the image
DO 10 I = 1,5

DO 10 J = l,lCOL
THREER(J,I) = DISP(J,I)
PLAIE(J,I) = CPLAIE(J,I)

10 COlTIIUE

C This is the big loop
DO 30 L • 6,IPLA

C Filter the current line. Be sure to test:
C If the point is in the boundary of the shape
C If the point is in the same part of the shape

DO 40 J = 3,ICOL-2
IF (THREER(J .13) .EQ .-2 .0) THEI

GO TO 35
ELSE IF (THREER(J ,13) .LT .-10.0) THEI

C These points vere too hard on the equation solver, but are valid,
C so try to fix them up.

SUM = O.
VEIGHT = O.

ELSE

C Here ve have a solid citizan point, so count it.

SUM = THREER(J,I3)
VEIGHT = 1.

EID IF
IP = PLAIE(J,I3)

IF (THREER(J-2,Il).GT.0.AID.TEST(PLAIE(J-2,Il),IP»THEI
SUM = SUM+THREER(J-2,Il)*V5
VEIGHT = VEIGHT+V5

EID IF
IF (THREER(J-2,I5).GT.0.AID.TESTCPLAIECJ-2,I5),IP»THEI

SUM = SUM+THREER(J-2,I5)*V5
VEIGHT = VEIGHT+V5

EID IF
IF (THREER(J+2,Il).GT.0.AID.TEST(PLAIE(J+2.Il),IP»THEI

SUM = SUM+THREER(J+2,Il)*V5
VEIGHT = VEIGHT+V5

EID IF
IF (THREER(J+2,I5).GT.0.AID.TEST(PLAIE(J+2,I5),IP»THEI
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SUM = SUM+THREER(J+2,IS).VS
VEIGHT = VEIGHT+VS

EID IF
IF (THREER(J+l,Il).GT.O.AID.TEST(PLAIE(J+l,Il),IP»THEI

SUM = SUM+THREER(J+l,Il).V4
VEIGHT = VEIGHT+V4

EID IF
IF (THREER(J+l,IS).GT.O.AID.TEST(PLAIE(J+l,IS),IP»THEI

SUM = SUM+THREER(J+l,IS).V4
VEIGHT = VEIGHT+V4

EID IF
IF (THREER(J-l,Il).GT.O.AID.TEST(PLAIE(J-l,Il),IP»THEI

SUM = SUM+THREER(J-l,Il).V4
VEIGHT • VEIGHT+V4

EID IF
IF (THREER(J-2,I2).GT.O.AID.TEST(PLAIE(J-2,I2),IP»THEI

SUM = SUM+THREER(J-2,I2).V4
VEIGHT = VEIGHT+V4

EID IF
IF (THREER(J-2,I4).GT.O.AID.TEST(PLAIE(J-2,I4),IP»THEI

SUM = SUM+THREER(J-2,I4).V4
VEIGHT = VEIGHT+V4

EID IF
IF (THREER(J+2,I2).GT.O.AID.TEST(PLAIE(J+2,I2),IP»THEI

SUM = SUM+THREER(J+2,I2).V4
VEIGHT = VEIGHT+V4

EID IF
IF. (THREER(J+2,I4).GT.O.AID.TEST(PLAIE(J+2,I4),IP»THEI

. .

SUM = SUM+THREER(J+2,I4).V4
VEIGHT = VEIGHT+V4

EID IF
IF (THREER(J-l,Il).GT.O.AID.TEST(PLAIE(J-l,Il),IP»THEI

SUM = SUM+THREER(J-l,Il).V4
VEIGHT = VEIGHT+V4

EID IF
IF (THREER(J+l,Il).GT.O.AID.TEST(PLAIE(J+l,Il),IP»THEI

SUM = SUM+THREER(J+l,Il).V4
VEIGHT = VEIGHT+V4

EID IF
IF (THREER(J-l,IS).GT.O.AID.TEST(PLAIE(J-l,IS),IP»THEI

SUM = SUM+THREER(J-l,IS).V4
VEIGHT = VEIGHT+V4

EID IF
IF (THREER(J-2,I3).GT.O.AID.TEST(PLAIE(J-2,I3),IP»THEI
SUM = SUM+THREER(J-2,I3).V2
VEIGHT = VEIGHT+V2

EID IF
IF (THREER(J,Il).GT.O.AID.TEST(PLAIE(J,Il),IP»THEI
SUM = SUM+THREER(J,Il).V2
VEIGHT = VEIGHT+V2

EID IF
IF (THREERCJ,IS).GT.O.AID.TESTCPLAIE(J,IS),IP»THEI
SUM = SUM+THREER(J,IS).V2
VEIGHT = VEIGHT+V2

EID IF
IF (THREER(J+2,I3).GT.O.AID.TESTCPLAIE(J+2,I3),IP»THEI
SUM = SUM+THREER(J+2,I3).V2

VEIGHT = VEIGHT+V2
EID IF

IF (THREER(J-l,I2).GT.O.AID.TEST(PLAIE(J-1,I2),IP»THEI
SUM = SUM+THREER(J-l,I2).V3
VEIGHT = VEIGHT+V3

EID IF
IF (THREER(J+l,I2).GT.O.AID.TEST(PLAIE(J+1,I2),IP»THEI
SUM = SUM+THREER(J+l,I2).V3
VEIGHT = VEIGHT+V3

EID IF
IF (THREER(J+l,I4).GT.O.AID.TEST(PLAIE(J+1,I4),IP»THEI
SUM = SUM+THREER(J+l,I4).V3
VEIGHT = VEIGHT+V3

EID IF
IF (THREER(J-l,I4).GT.O.AID.TEST(PLAIE(J-1,I4),IP»THEI
SUM = SUM+THREER(J-l,I4).V3
VEIGHT = VEIGHT+V3

EID IF
IF (THREER(J-l,I3).GT.O.AID.TEST(PLAIE(J-1,I3),IP»THEI
SUM = SUM+THREER(J-l,I3).Vl
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VEIGHT � VEIGHT+Vl
EID IF

IF (THREER(J+l.I3).GT.0.AID.TEST(PLAIE(J+1.13).IP»THEI
SUM = SUK+THREER(J+l.I3)*Vl
VEIGHT = VEIGHT+Vl

EID IF
IF (THREER(J.I2).GT.0.AID.TEST(PLAIE(J.I2).IP»THEI
SUM = SUK+THREER(J.I2)*Vl
VEIGHT � VEIGHT+Vl

EID IF
IF (THREER(J.I4).GT.0.AID.TEST(PLAIE(J.I4).IP»THEI
SUM = SUK+THREER(J.I4)*Vl
VEIGHT = VEIGHT+Vl

EID IF
DISP(J.L;"'3) ::::It SUK/VEIGHT

35 COITllUE
40 COlTIIUE

C Read another line
DO 50 J = 1.ICOL
THREER(J.Il) = DISP(J.L)

PLAIE(J.Il) = CPLAIE(J.L)
50 COITIIUE

C Rotate circular bu:ffer
IT ::I 11
11 = 12
12 =.13·
13 = 14·-
14 = IS
IS = IT

30 COlTIJUE

RETURI
EID
SUBROUTIIE SFLTR(SCALE)
IMPLICIT 10lE

IITEGER IBITS.IROV.IROVB.ICOL.IPLA.EDGES.IMAGE
PARAMETER (IBITS=32.IROV=128.IROVB=IROV/IBITS)
PARAMETER (ICOL=128.IPLA=128)

C DISP is the grey scale image to make. DISP and CPLAIE could be disk
C files with no loss in speed. Everything in the filtering part is arranged
C that way (for sequential files).

.

REAL DISP.MAX.MII.THREER(ICOL.3)
LOGICAL*l LIIE(ICOL)
IITEGER*2 CPLAIE.PLAIE(ICOL.3).IP
COKKOI/SAVMEM/PLAIE.THREER
COKKOI/GSCALE/ DISP(ICOL.IPLA).CPLAIE(ICOL.IPLA)

C This is for the VAX: will have to test where to grab least signif 8
C bits on IBM and FPS·if this is to be transported.

IITEGER IITEQ.I.J.L.SCALE
LOGICAL*l STUFF
EQUIVALEICE (IITEQ.STUFF)

COKKOI/ARRAY/ EDGES(O:IROVB-l.ICOL.IPLA).
+ IMAGE(O:IROVB-l.ICOL.IPLA)

IITEGER Il.12.13.IT
REAL M.B
REAL Vl.V2.SUK.VEIGHT
PARAMETER (Vl=0.SO.V2=0.20)
PARAMETER (VEIGHT=1.0+4*(Vl+V2»
I1TEGER*2 p.Q
LOGICAL TEST

TEST(P.Q) = IABS(P-Q).LE.l

C First find the MAX and MIl observed after initial filtering.

MAX = -2.0
MIl = 2.0
DO 1 I = 1.IPLA.2

DO 1 J = I.ICOL.2
M = DISP(I.J)
IF (M.GT.-2.) THEI
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IF (KAI.LT.X) THEI
XAI :. X
GO TO 1

ELSE IF (XII.GT.X) THEI
XII "" X

EID IF
EID IF

1 COITllUE

C Linear conversion �actors
X = REAL(SCALE)/(KAI-XII)
B = -XII*X

C Circular bu:f�er pointers
11 = 1
12 = 2
13 = 3

C Read three lines o� the image
DO 10 I = 1,3

DO 10 J = 1,ICOL
IF (DISP(J,I).IE.-2.0) THEI

IF (DISP(J,I) .GT .-10.0) THEI

THREER(J,I) = X.DISP(J,I)+B
ELSE

.

THREER(J,I) = -12.0
EID IF

ELSE
THREER(J,I) = -2.0

EID IF

PLAIE(J,I) = CPLAIE(J,I)
10 COITIIUE

C Copy the �irst line vithout �iltering (should be all -2.0)
DO 20 J = l,lCOL

IITEQ = THREER(J,I1)
IF (IITEQ.LE.O) THEI

I1TEQ "" 0
EID IF
LIIE(J) • STUFF
20 COITIIUE

C Vrite the eldest line
VRITE(10) LIIE

C This is the big loop
DO 30 L = 4,IPLA

C Filter the current line. Be sure to test:
C I� the point is in the boundary o� the shape
C I� the point is in the same part of the shape

DO 40 J = 1,ICOL
IF (THREER(J,I2).EQ.-2.0) THEI

I1TEQ = 0
.GO TO 35

ELSE IF (THREER(J,I2).LT.-l0.0) THEI

C These points vere too hard on the equation solver, but are valid,
C so try to �ix them up.

SUR = o.
ELSE

C Here ve have a solid citizan point, so count it.

SUR = THREER(J,I2)
EID IF

IP = PLAIE(J,I2)
IF (THREER(J,Il).GT.0.AID.TEST(PLAIE(J,I1),IP»THEI
SUR = SUR+THREER(J,I1).Vl

EID IF
IF (THREER(J,I3).GT.0.AID.TEST(PLAIE(J,I3),IP»THEI
SUR = SUR+THREER(J,I3).V1

EID IF
IF (THREER(J-1,I2).GT.0.AID.TEST(PLAIE(J-l,I2),IP»THEI
SUR = SUR+THREER(J-l,I2).Vl
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EID IF
IF (TBREER(J+1,I2).GT.0.AID.TEST(PLAIE(J+1,I2),IP»TBEI
SUM ,. SUM+TBREER(J+1,I2).V1

EID IF
IF (TBREER(J-1,I1).GT.0.AID.TEST(PLAIE(J-1,I1),IP»TBEI
SUM ,. SUM+TBREER(J-l,Il).V2

.

EID IF
IF (TBREER(J-1,I3).GT.0.AID.TEST(PLAIE(J-1,I3),IP»TBEI
SUM ,. SUM+TBREER(J-l,I3).V2

EID IF
IF (TBREER(J+1,Il).GT.0.AID.TEST(PLAIE(J+1,Il),IP»TBEI
SUM ,. SUM+TBREER(J+l,I1).V2

EID IF
IF (TBREER(J+1,I3).GT.0.AID.TEST(PLAIE(J+1,I3),IP»THEI
SUM = SUM+THREER(J+l,I3).V2

EID IF
SUM ,. SUM/VEIGHT
I1TEQ ,. SUM
IF (IITEQ.LT.l) IITEQ = 1
IF (IITEQ.GT.SCALE) IITEQ = SCALE

35 LIIE(J) = STUFF
40 COlTIIUE
VRITE(10) LIIE

C Read another line
DO 50 J = 1,ICOL

IF (DISP(J,L).IE.-2.0) THEI

THREER(J,Il) = M.DISP(J,L)+B
ELSE

THREER(J,Il) = -2.0
EID IF

PLAIE(J,Il) ,. CPLAIE(J,L)
50 COlTIIUE

C Rotate circular bu:fer
IT ,. It
It ,. 12
12 = 13
13 ,. IT

30 COITIIUE

C Finally, write the last critter (un:filtered)
DO 60 J ,. 1,ICOL

IITEQ ,. THREER(J,I3)
IF (IITEQ.LE.O) THEI

I1TEQ = 0
ELSE IF (IITEQ.GT.SCALE) THEI

I1TEQ = SCALE
EID IF
LIIE(J) ,. STUFF
60 COlTIIUE

RETURI
EID

SUBROUTIIE MAIEIT(DTAFLG,IIIAME)
IMPLICIT 10lE
IITEGER IS,I,J,I,IBSET,II,IY,IZ,L,IC,LL

IITEGER IBITS,IROV,IROVB,ICOL,IPLA,EDGES,IMAGE
PARAMETER (IBITS=32,IROV=128,IROVB=IROV/IBITS)
PARAMETER (ICOL=128,IPLA=128)

REAL C(300,3),R(300),II,JJ,11
IITEGER MIDI,MIDY,MIDZ,IPSET

CHARACTER.40 IIIAME
LOGICAL DTAFLG
COMMOI/ARRAY/ EDGES(0:IROVB-1,ICOL,IPLA),

+ IMAGE(O:IROVB-l,ICOL,IPLA)
IPSET(II,IY,IZ) = IBSET(IMAGE(II/IBITS,IY,IZ),

+ IBITS-l-MOD(II,IBITS»
IF (DTAFLG) THEI

CALL GETPAR(C,R,IC)
PRIIT.,' READ',IC,' BALLS'
DO 3 I ,. 1,IC

3 R(I) = R(I) ••2
DO 10 J = 2,ICOL-l

DO 10 I = 2,IPLA-1
DO 10 I = 1,IROV-2

51



DO 5 L = 1,IC
JJ = (REAL(J)-C(L,2» •• 2

IF (JJ.GE.R(L» GO TO 5
II = (REAL(I)-C(L,3» ••2
IF (JJ+II.GE.R(L» GO TO 5

II = (REAL(I)-C(L,1»u2
IF (JJ+!I+II.GE.R(L» GO TO 5
IMAGE(I/IBITS,J,I) = IPSET(I.J,I)
GO TO 10

5 COITIIUE
10 COUllUE
PRIIT.,' MADE IT'

OPEI(ll,FILE=IIIAME,STATUS='IEV',FORK='UIFORMATTED')
CALL_VRITEDATA (ll,IMAGE)

PRIIT.,' STASHED IT 01 DIS!, UIIT 11'
ELSE
OPEI(ll,FILE=IIIAME,STATUS='OLD',FORK='UIFORMATTED')

CALL READDATA (ll,IMAGE)
PRIIT.,' READ IT FROM DIS!, UIIT 11'

EID IF
RETURI

EID

SUBROUTIIE GETPAR(C,R,IC)
IMPLICIT IDlE
IITEGER IC,I,J
REAL C(300,3),R(300)
IC z; 1
DO 10 I 1:1 1,300

PRIIT.,' CEITER, RADIUS

READ.,(C(I,J),J=1,3),R(I)
IF (C(I,l).EQ.O) RETURI
IC = 1C+l

10 COITIIUE
RETURI
EID

SUBROUTIIE SHOVME
C For a VT200-lenl terminal--quick and dirty look program.
CHARACTER.32 TC/'\MIGH8�GC]I\!>;.:. 'I
CHARACTER.l P(0:31),POP
IITEGER I.J,IPOP,MAI
EQUIVALEICE (POP,IPOP)
CHARACTER.l LIIE(128) ,DISP(128)
LOGICAL IFODD
IFODD 1:1 .TRUE.
MAX iii 0
REVIID(10)
DO 10 I = 1.32

P(I-l) 1:1 TC(I:I)
10 COlTIIUE
1 READ(10,EID=9) LIIE

DO 2_ J = 1,128
POP = LIIE (J)
MAl = MAIO(MAI,IPOP)

2. COITIIUE
GO TO 1

9 REVIID(10)
IF (MAI.EQ.O) STOP' 10 DATA II FILE'

20 READ(10,EID=99) LIIE
READ(10 ,EID=99) LIIE

DO 30 J = 1,128
POP = LIIE(J)

IF (IPOP.EQ.O) THEI
IF (IFODD) THEI
DISP(J) 1:1 '{'

ELSE
DISP(J) = 'p

EID IF
ELSE

DISP(J) = P(MOD(IPOP.17/MAI,32)+1)
EID IF

30 COITIIUE

PRIIT40,(DISP(J),J=1,128)
40 FORMAT(3I,128Al)

IFODD 1:1 .IOT.IFODD
GO TO 20
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99 RETORI
EID

SUBROUTIIE READDATA (UlITIO,IMAGE)

C Reads data in· its compressed form

IMPLICIT 10lE

IITEGER IROVB,ICOL,IBITS
PARAMETER (IROVB = 4)
PARAMETER (ICOL = 128)
PARAMETER (IBITS = 32)

IITEGER. UlITIO .

IITEGER IMAGE(IROVB,ICOL,ICOL)
IITEGER. I,J,I,L
IITEGER COUIT1
IITEGER MAP(IROVB*ICOL*ICOL/IBITS)
IITEGER 10IZERO(IROVB*ICOL*ICOL)
IITEGER 10lZEROCOUIT
CHARACTER*20 FILEIAME

READ (UIlTlO) COUIT1

VRITE (*,*) 'READIIG ZERO MAP ... '

READ (UlITIO) (MAP(I),I=l,ICOL.ICOL*BROVB/IBITS)

VRITE (*,*) 'READIIG IOIZERO EITRIES ... '

READ (UIITIO) (IOIZERO(I),I=l,COUIT1)

VRITE (*,*) 'REBULDIIG THE DATA ... '

10lZEROCOUIT = 0
DO 70 L = 1, ICOL*ICOL*IROVB

IF (BTEST(MAP«L-1)/IBITS+1),MOD«L-1),IBITS»)THEI
I = (L-1)/(ICOL*ICOL)
J = (L-I*ICOL*ICOL-1)/ICOL
I = L-I*ICOL*ICOL-J*ICOL
I = I + 1
J = J + 1
10lZEROCOUIT = 10lZEROCOUIT + 1

IMAGE(I,J,I) = 10IZERO(10IZEROCOUIT)
EIDIF

70 COITIIUE

VRITE (*,*) 'DECOMPRESSIOI COMPLETE.'

RETURI
EID

SUBROUTIIE VRITEDATA (UIITIO,IMAGE)

C Vrites data in its compressed form

IMPLICIT 10lE

IITEGER IROVB,ICOL,IBITS
PARAMETER (IROVB = 4)
PARAMETER (ICOL = 128)
PARAMETER. (IBITS =·32)

IITEGER UlITIO
IITEGER IMAGE(0:IROVB-1,ICOL,ICOL)
IITEGER I,J,I
IITEGER COUIT1
IITEGER MAP(IROVB*'COL*ICOL/IBITS)
IITEGER 10IZERO(IROWB*ICOL*'COL)
CHARACTER*20 FILEIAME

COUIT1 = 0

VRITE (*,*) 'COMPUTIIG ZERO KAP ... '

_DO 50 I = O,IROVB-1
DO 50 J = 1,ICOL

DO 50 I = 1,ICOL
IF (IMAGE(I,J,I) .IE. 0) THEI

C A non-zero entry
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C Count it
COUITl = COUITl + 1

C Set map entry
KAP(I.ICOL.ICOL/IBITS+(J-l).ICOL/IBITS

l +IIT«I-l)/32)+1)
l . = IBSET(KAP(I*ICOL*ICOL/IBITS+(J-l)*ICOL/IBITS
l +IIT«I-l)/IBITS)+l),KOD(ICOL*(J-l)+I-l,IBITS»

IOIZERO(COUIT1) = lKAGE(I,J,I)
EIDIF

50 COITllUE

WRITE (.,.) 'VRITIIG ZERO KAP ... '

VRITE (UIITIO) COUITl
WRITE (UIITIO)(KAP(I),I=l,ICOL*ICOL*IROVB/IBITS)

60 COITllUE

VRITE (.,.) 'VRITIIG IOIZERO DATA ... '

VRITE (UIITIO) (IOIZERO(I),I=l,COUIT1)

VRITE (*,.) 'COKPRESSIOI COKPLETE.'

RETURI
EID
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PROGRAM EITR

IMPLICIT 10lE

IITEGER IBITS,IROV,IROVB,ICOL,IPLA,EDGES,IMAGE,BIGBIT,MOREE
PARAMETER <IBITS=32,IROV=128,IROVB=IROV/IBITS)
PARAMETER (ICOL=128,IPLA=128)
PARAMETER (BIGBIT=-2•• (IBITS-2)-2•• (IBITS-2»

IITEGER D,FLAG,SHFLAG,I,J,I,ITIME,IDUKKY,L,LIB$IIIT_TIMER
COMMOI/ARRAY/ EDGES(0:IROVB-1,ICOL,IPLA),

+ IMAGE(0:IROVB-1,ICOL,IPLA),MOREE(0:IROVB-1,ICOL,IPLA)
IITEGER MIDI,MIDY,MIDZ,II,IY,IZ,IPOIIT,LIB$SHOV_TIMER,IT
LOGICAL FLAGE,IPOIIT

IPOIIT(II,IY,IZ) = BTEST(IMAGE(II/IBITS�IY,IZ),
+ IBITS-1-MOD(II,IBITS»

ITIKE ... 0
IDUKKY - LIB$IIIT_TIMER(ITIME)
OPEI(20,�ile='[SHAPES.DAT]STATS',STATUS='OLD',ERR=99)

5 READ(20,.,EID=10)
GO TO 5

99 OPEI(20,FILE='[SHAPES.DAT]STATS',STATUS='IEV')
10 COITIIUE

IDUKKY = LIB$SHOV_TIMER(ITIME)
ITIME = 0

IDUKKY = LIB$IIIT_TIMER(ITIME)
PRIIT.,' MAlE (T) OR READ (F) DATA'

READ.,FLAGE
CALL MAIEIT(FLAGE)
PRIIT.,' MADE AI IMAGE'
IDUKKY = LIB$SHOV_TIMER(ITIME)
ITIME = 0
IDUMMY = LIB$IIIT_TIMER(ITIME)
C IBITS lumber o� bits in an integer
C IROV lumber o� rovs in the discrete image
C IROVB lumber o� integers per rov
C ICOL lumber o� columns
C IPLA lumber o� planes
C IMAGE The discrete image
C EDGES The boundary points in IMAGE
C
C Find the edges using logical operations.
C

CALL ZEROIT(EDGES,IROVB.ICOL)

C First the image shi�ted up one plane. IPOIIT is the number of points
C in the shape.
IPOIlT ... 0

DO 30 I = 2,IPLA-1
DO 30 J = 2,ICOL-l

DO 30 I = O,IROVB-l
IT = IMAGE(I,J,I)
IF (IT.IE.O) THEI

IF (IT.EQ.-1) THEI
IPOIIT = IPOIIT+IBITS

ELSE
DO 25 L = O,IBITS-1

IF (BTEST(IT,L» IPOIIT = IPOIIT+1
25 COITIIUE

EID IF

EDGES(I,J,I) = IAID(IMAGECI,J,I-l),IT)
ELSE

EDGES(I,J,I) = 0
EID IF

30 COITIIUE
C lext AID vith the image shifted dovn one plane

DO 60 I = 2,IPLA-1
DO 60 J = l,lCOL

DO 60 I = O,IROVB-1
60 EDGES(I,J,I) = IAID(IMAGE(I,J,I+l),EDGES(I,J,K»

C lext the image shifted up one

DO 90 I = 2,IPLA-l
DO 90 J = 2,ICOL-l

DO 90 I = 0,IROVB-1
90 EDGES(I,J,I) = IAID(EDGES(I,J,I),IMAGE(I,J-1,1»

C lext AID vith the image shifted dovn one plane
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DO 120 I = 2,IPLA-l
DO 120 J = 2,ICOL-l

DO 120 I ... O,IROWB-l
120 EDGES(I,J,I) = IAID(IMAGE(I,J+l,I),EDGES(I,J,I»

C lov AID vith th& image shifted right one.

DO 150 I = 2,IPLA-1
DO 150 J = 2,ICOL-l

FLAG = 0
DO ,150 I ... O,IROVB-l

D = IMAGE(I,J,I)
SHFLAG ... IAID(D,1)
D ... ISHFT(D,-l)
IF (FLAG.GT.O) D ... IOR(D,BIGBIT)
FLAG = SHFLAG

EDGES(I,J,I) ... IAID(D,EDGES(I,J,I»
150 COlTIJUE

C Finally AID vith the image shifted left one.

DO 180 I = 2,IPLA-1
DO 180 J = 2,ICOL-l

FLAG = 0
DO 180 I = IROVB-l,O,-1

D = lMAGE(I,J,I)
SHFLAG = ISHFT(D,-IBITS+l)

D ISHFT(D,l)+FLAG
FLAG = SHFLAG

EDGES(I,J,I) = IAID(D,EDGES(I,J,I»
180 COITImE

C lov EOR vith the origina1, leaving an interna1 2-connected boundary
DO 210 I = 2,IPLA-l

DO 210 J = 2,ICOL-1
DO 210 I = O,IROVB-1

IT = IEOR(IMAGE(I,J,I),EDGES(I,J,I»
MOREE(I,J,I) = IT

210 EDGES(I,J,I) = IT
C
C
C
C
PRIIT.,' BOUIDARIES MARIED AID POIITS COUITED'
IDUKKY = LIB$SHOV_TIKER(ITIKE)

DO 240 I ... l,lPLA
DO 240 J ... l,lCOL

DO 240 I ... O,IROVB-1
IF (EDGES(I,J ,I) .IE.O) THEI

ITIKE ... 0
IDUKKY = LIB$IIIT_TIMER(ITIME)
CALL EITRACT3(I,J,I,IPOIIT)
PRIIT.,' GOT DIE'
IDUKKY = LIB$SHOV_TIMER(ITlME)
GO TO 7

EID IF
240 COlTIJUE

CLOS.E(20 ,DISP= 'IEEP')
EID

lov a11 the boundaries have been found. Proceed to find,
collect, and ana1yze the boundaries collected.

7

SUBROUTIIE EITRACT3(I,J,I,IPOIIT)

C Purpose: To search a three dimensiona1 2-neighbor connected set for
C a list of a11 members. Of course, the list is in no particular
C order. If you like, you can think of the set as being the boundary
C of a l-neighbor connected discrete object. The list is not kept
C as an array, but as three separate arrays I(.), Y(.), Z(.).
C Revision: they are packed in one integer nov.

C Method: Tvo pointers are maintained: CURREIT and LAST. CURRERT points
C to the point vhose neighbors are being examined. LAST points to

C the last one stored. As long as LAST.GE.CURREIT, more points remain
C vhich require their 18 neighbors to be checked. On termination,
C LAST points to the last one collected.

C Arguments:
C first bit.

I The coordinate of the vord containing the packed

C J,I Coordinates of column and plane in the array containing
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C the vord.

C IITR calls: POIIT A LOGICAL function vhich is .TRUE. iff the point
C (I,J,I) is a point in the set (on).

C PRESET Resets (turns off) the point at' (I,J,I).

C Special considerations: The actual array is packed by bits into a 3
C dimensional IITEGER array. To find the absolute
C starting point, LOGICAL operations are performed.
C The necessary information is passed to PRESET and
C POIIT in COMMOI BLOCI /ARRAYS/. It is assumed that
C any necessary bounds checking is performed by the
C external aodu1es. Alternatively, the image can

C be strictly inside the, 3-d rectangle.

IMPLICIT IOIE'

C Search pattern:

C Lover plane Ground plane Upper plane

C, 19 14 20 6
C 15 16 17 1
C 22 18 21 3

7 8
* 2
4 5

23 13 24
10 11 12 <--) Storage order

26 9 25

C Offsets for search of the 2-boundary (vith 18 neighbors differing by
C at most 1 in at most tvo coordinates). II,YY,ZZ are the offsets to boundary
C points for the least squares part. The first 18 are neighbors; the next
C 8 are also used in the least squares tangent fitting problem.

IITEGER OFFSET_I(26),II(26)
DATA OFFSET_I/-1, 1,-1, 0, 1,-1, 0, 1,

+ 0,-1, 0, 1, 0,
+ 0,-1, 0, 1, 0,
+ -1, 1, 1, -1, -1, 1, 1, -1/

IITEGER OFFSET_Y(26),YY(26)
DATA OFFSET_Y/ 0, 0, 1, 1, 1,-1,-1,-1,

+ 1, 0, 0, 0,-1,
+ -1, 0, 0, 0, 1,
+ 1, 1,-1,-1, 1, 1,-1,-1/

IITEGER OFFSET_Z(26),ZZ(26)
DATA OFFSET_Z/ 0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 1,
+ -1,-1,-1,-1,-1,
+ -1,-1,-1,-1, 1, 1, 1, 1/

LOGICAL POIIT,MOIIT
IITEGER CURREIT,LAST,I,J,I,II,JJ,KI,IT,JT,KT,IBR
IITEGER MAISIZE,STASH(18),1PTR,PTR,M1DI,M1DY,M1DZ
PARAKETER (KAIS1ZE = 80000)
1ITEGER I(MAISIZE)
REAL Ul,U2,U3,KKU,DOT,DIST,AREA,VKT,S11,T1,SU,S111,T1I
1ITEGER IFACT
PARAKETER (IFACT=35)

REAL OLAST,IORMS(O:IFACT),S1II1
REAL SUM,13,T,KAI,FUDGE(0:IFACT),PPQ(IFACT)

DATA FUDGE/4650.0,16120.0,16120.0,16120.0,16120.0,
+ 16120.0,16120.0,16120.0,16120.0,16120.0,16120.0,
+ 16120.0,16120.0,16120.0,16120.0,16120.0,16120.0,
+ 16120.0,16120.0,16120.0,16120.0,15*16120.0/

DATA PPQ/1. ,2. ,3. ,4. ,2. ,3. ,4. ,3. ,4. ,4.,1. ,2. ,3. ,4.,1.,1.,
+ 2.,3.,2.,1./

REAL ALPHA,BETA,GAMMA,MU
COMKOI/TAIGIT/ALPHA(KAIS1ZE),BETA(MAIS1ZE),GAMMA(KAIS1ZE),

+ MU(KAISIZE)
IITEGER IB1TS,IROV,IROVB,ICOL,IPLA,EDGES,1MAGE,MOREE
PARAKETER (IB1TS=32,IROV=128,IROVB=IROV/IB1TS)
PARAKETER (ICOL=128,IPLA=128)

COMMOI/ARRAY/ EDGES(0:IROVB-1,ICOL,IPLA),
+ IMAGE(0:IROVB-1,ICOL,IPLA),KOREECO:IROVB-1,ICOL,IPLA)

IITEGER 1I,IY,IZ,PRESET,PACI,UIPI,UIPY,UIPZ,KRESET
IITEGER B1TS13,B1TS03,MASI0,IP01IT,IAST,L
PARAMETER(B1TS03=IB1TS/3,B1TS13=BITS03*2)

PARAMETER (KASIO=2**B1TS03-1)
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IITEGER IBAR.YBAR.ZBAR.IACTOR.IUK.ISQUA
REAL FACTOR.RI.SQUA.SI.SUKK.SUKKS.S128.R128
C Statement £unctions:

POIIT(II.IY.IZ) = BTEST(EDGES(II/IBITS,IY,IZ).
+ IBITS-l-KOD(II,IBITS»
KOIIT(II.IY,IZ) = BTEST(KOREE(II/IBITS,IY.IZ).
+ IBITS-l-KOD(II,IBITS»

PRESET(II.IY.IZ) • IBCLR(EDGES(II/IBITS,IY.IZ),
+ IBITS-l-KOD(II,IBITS»

PACI(II,IY,IZ) • IOR(ISHFT(IY,BITS03),ISHFT(IZ,BITS13»+II
UlPI(II) = IAID(II,KASIO)
UIPY(II) "" UlPI(ISHFT(II.-BITS03»
UIPZ(II) = ISHFT(II,-BITS13)
DIST(II.IY,IZ) = SQRT(REAL(II••2+IY••2+IZ••2»
C Pointer to the point currently being examined:
CURREIT = 1
C Pointer to the last new point £ound and stored:
LAST = 1
C Find out where the bit is in the word. Also make local copies o£ the
C subroutine parameters.
II = I.IBITS
JJ "" J
II = I

10 IF (POIIT(II,JJ,II» GO TO 20
II = II+l
GO TO 10
20 EDGES(II/IBITS,JJ,II) "" PRESET(II,JJ,II)

I(LAST) "" PACI(II,JJ,II)
IBAR = II
YBAR "" JJ
ZBAR = II

30 IF (LAST.GE.CURREIT) THEI
lAST = 0

C Look £or a neighbor that is 'on'. When it is, store it and turn it o££.
DO 40 IBR = 1,18

IT • II+OFFSET_I(IBR)
JT = JJ+OFFSET_Y(IBR)
IT "" II+OFFSET_Z(IBR)
IF (POIIT(IT,JT,IT» THEI

LAST "" L'&'ST+l
IF (LlST.GT.KAISIZE) STOP' TOO BIG'
I(LAST) • PACI(IT,JT,IT)
EDGES(IT/IBITS,JT,IT) "" PRESET(IT,JT,IT)

IBlR :01 IBlR+IT
YBAR "" YBlR+JT
ZBAR "" ZBlR+IT

EID IF
40 COITIIUE
DO 45 IBR"" 1,26

IT "" II+OFFSET_I(IBR)
JT = JJ+OFFSET_Y(IBR)
IT = II+OFFSET_Z(IBR)
IF (KOIIT(IT,JT.IT» THEI

lAST"" IAST+l
II (lAST) OFFSET_I(IBR)
YY(IAST) "" OFFSET_Y(IBR)
·ZZ(llST) "" OFFSET_Z(IBR)

EID IF
45 COITIIUE
CALL LSFIT(II,YY,ZZ,IAST.CURREIT)
CURREIT = CURREIT+l
II = UIPI(I(CURREIT»
JJ "" UIPY(I(CURREIT»
II = UIPZ(I(CURREIT»
GO TO 30

EID IF
IBAR = IBAR/LAST
YBAR "" YBAR/LAST
ZBlR = ZBlR/LAST
C The estimate o£ the volume should be modi£ied to account £or boundary not
C . all there
IPOIIT "" IPOIIT-LAST/2
VKT = FLOAT(IPOIIT) •• (-1./3.)
C Compute the area. This should be done in £loating point £or giant shapes.

AREA = O.
C low three Bur£ace integrals.
FACTOR = O.
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SUM = O.
SQUA = O.
KAI = O.
DO 5210 L = 1,IFACT

IORMS(L) = 0.0
5210 COlTllUE

DO 520 L ,. 1,LAST
II = UIPI(I(L»-IBAR
IY '"" UIPY(I(L»-YBAR
IZ '"" UlPZ(I(L»-ZBAR

SUKM '"" DIST(II,IY,IZ)
S128 '"" SUKM/128
AREA '"" AREA+XU(L)
RI '"" ABS(II *.lLPHA(L)+
+ IY*BETA(L)+
+ IZ*G.lKK.l(L»

R128 = RI/128
SI = RhXU(L)
IORMS(1) ,.. IORKS(1)+SI
IORMS(21) = IORKS(21)+EIP(S128)*Mij(L)
IORMS(22) '"" IORKS(22)+EIP(R128)*Mij(L)
IORMS(23) = IORMS(23)+EXP(S128**2*R128**2)*XU(L)
IORMS(24) = IORKS(24)+EXP(S128**2)*XU(L)
IORKS(25) = IORKS(25)+EIP(R128**2)*MU(L)
IORMS(31) = IORMS(31)+EXP(-S128)*KU(L)
IORMS(32) ::I IORMS(32)+EIP(-R128)*KU(L)
IORMS(33) = IORMS(33)+EXP(-S128**2*R128**2)*XU(L)
IORMS(34) = IORKS(34)+EIP(-S128**2)*MU(L)
IORMS(35) ,.. IORMS(35)+EIP(-R128**2)*MU(L)
SIl = ShRI
IORMS(2) '"" IORMS(2)+SII
SIll" SIhRI
IORKS(3) '"" IORKS(3)+SIII
SIlIl = SIIhRI
IORKS(4) '"" IORKS(4)+SIIII
IF (SUKM.IE.O.) THEI

IORKS(26) '"" IORKS(26)+LOG(SUKM)*MU(L)
IORKS(28) '"" IORKS(28)+LOG(2*(RI+SUKM»*MU(L)
IORKS(29) '"" IORKS(29)+LOG(2*SUKM)*MU(L)

IF (RI.GT.1.) THEI
IORKS(27) ,. IORKS(27)+LOG(RI)*XU(L)
IORKS(30) ,. IORMS(30)+LOG(2*RI)*XU(L)

EID IF
SUKMS '"" SUKM**2

TI '"' SI*SUKM
IORKS(5) = IORKS(5)+TI
TIl ::I TI*SUKM
IORKS(6) = IORKS(6)+TII
IORKS(7) = IORKS(7)+TII*SUKM
IORKS(8) = IORKS(8)+SUKM*SII
IORKS(9) = IORKS(9)+SUKM*SIII
IORKS(10) ::I IORKS(10)+SII*SUKMS
SU = SUKM*MU(L)
IORKS(11) = IORKS(11)+SU
SU = SU*SUKM
IORKS(12) = IORKS(12)+SU
SU z: SU*SUKM
IORKS(13) = IORKS(13)+SU
IORMS(14) z: IORKS(14)+SU*SUKM

IORKS(15) '"" IORKS(15)+SII/SUKM
IORKS(16) = IORKS(16)+SIII/SUKMS

IORMS(17) = IORMS(17)+SIII/SUKK
IORKS(18) ::I IORKS(18)+SIIII/SUKK
IORKS(19) = IORMS(19)+SIIII/SUKKS
IORKS(20) = IORKS(20)+SIIII/SUKKS/SUKM

EID IF
520 COITIIUE

IORKS(31) = -LOG(IORKS(31)/AREA)*128.
IORKS(32) ,.. -LOG(IORKS(32)/AREA)*128.
IORKS(33) ,. (-LOG(IORKS(33)/AREA».*(1/4.)*128.
IORKS(34) ::I (-LOG(IORKS(34)/AREA».*.5*128.
IORKS(35) ,.. (-LOG(IORKS(35)/AREA»**.5*128.
DO 5220 L ,. 1,IFACT-15

IORKS(L) = FUDGE(L)*(IORKS(L)/AREA)**(1./PPQ(L»*VKT
5220 COITIIUE

IORKS(21) = LOG(IORKS(21)/AREA)*128
IORKS(22) = LOG(IORKS(22)/AREA)*128
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IORKS(23) = (LOG(IORKS(23)/AREA» •• (1/4.).128
IORKS(24) = (LOG(IORKS(24)/AREA» ••. 6.128
IORKS(26) = (LOG(IORKS(26)/AREA» ••. 6.128

IORKS(26) = IORKS(26)/AREA
IORKS(27) = IORKS(27)/AREA
IORKS(28) • IORKS(28)/AREA
IORKS(29) • IORKS(29)/AREA
IORKS(30) = IORKS(30)/AREA
DO 6222 L = IFACT-9,IFACT-5

IORKS(L) • EIP(IORKS(L»
6222 EID DO

IORKS(28) = IORKS(28)/4
IORKS(29) = IORKS(29)/2
IORKS(30) = IORKS(30)/2
DO 6221 L = IFACT-14,IFACT

IORKS(L) = FUDGE(L).IORKS(L).VMT
6221 EID DO

SU = FUDGE(O).SQRT(AREA).VKT
IORKS(O) = SU

PRIIT.,IORKS
VRITE(20,.),(IFII(IORKS(L»,L=O,IFACT)

PRIIT.,' COUlT' ,LAST,' SUM IW_M' ,AREA
RETURI
EID

SUBROUTIIE COPY(A,B,I)
IITEGER 1(1),B(I),I,I
DO 10· I • 1,1

10 B(I) = A(1)
RETURI
EID

SUBROUTIIE ZEROIT(A,I)
IMPLICIT IOIE

IITEGER 1,1(1),1
DO 10 I = 1,1

A(I) • 0
10 COlTIIUE

RETURI
EID

SUBROUTIIE MAIEIT(FLAG)
IMPLICIT IOIE
LOGICAL FL1G
IITEGER IS,I,J,I
CHARACTER.40 FILEIAME

..

IITEGER IBITS,IROV,IROVB,ICOL,IPLA,EDGES,IMAGE,MOREE
PARAMETER (IBITS=32,IROV=128,IROVB=IROV/IBITS)
PARAMETER (ICOL=128,IPLA=128)

CO.M.MOI/ARRAY/ EDGES(O:IROVB-l,ICOL,IPLA),
+ IMAGE(O:IROWB-l,ICOL"IPLA) ,MOREE(O:IROWB-l,ICOL,IPLA)

C IITEGER IIS(IROWB)
IF (FLAG) THEI
C DATA IIS/'7FFFFFFF'I,'FFFFFFFE'I/
DO 10 I • l,lROVB

DO 10 J • 2,ICOL-l
DO 10 I = 2,IPLA-l
IF (IABS(J-ICOL/2).LE.l.AID.I.LE.IPLA/2)GOTO 10
IF (I1BS(I-IPLA/3) .LE.l) GOTO 10

IF «J-ICOL/2) ••2+(I-IPLA/2) ••2.GE.ICOL••2/4)GOTO 10
10 COITIIUE

ELSE

PRIIT.,' FILEIAME COITAIIIIG DATA'
READ1,FILElAME
WRITE(20�11) FILEIAME

.

WRITE (6 , 11) FILEIAME
1 FORK!! (A)

11 FORKAT(SI,A)
OPEI(ll,FILE=FILEIAME,STATUS='OLD',FORK='UIFORKATTED')

CALL READDATA(11,IMAGE)
EID IF
PRIIT.,' DATA SET UP'
RETURI
EID
SUBROUTIIE LSFIT(II,YY,ZZ,I,LAST)
IMPLICIT IOIE
IITEGER II(.),YY(.),ZZ(.),I,LAST

60



I1TEGER IUISIZE
PARAMETER (MAISIZE = 80000)
IITEGER I(MAISIZE)
REAL ALPHA,BETA,GAMMA,MU
COMMOI/TAIGIT/ALPHA(MAISIZE),BETA(MAISIZE),GAMIU(MAISIZE),

+ MU(MAISIZE) .

IITEGER A,B,C,D,E,F,I,CA,CB,CC,IFF
REAL Cl,C2,C3,AALPHA,BBETA,GGAMMA,RMMU
SAVE IFF
A = 0
B = 0
C = 0
D ,. 0
E ... 0
F = 0
DO 10 I ,. 1,1

A ,. HII(I)"2
B ... B+YY(I)"2
C ,. C+ZZ(I)"2
D ,. D+II(I)*YY(I)
E • E+II(I)*ZZ(I)
F ,. F+YY(I)*ZZ(I)
10 COITIIUE

CA ,.. B*C-F**2
CB ,. A*C-E**2
CC ,. A*B-D**2

IF (CA.GT.CB) THEI
IF (CA.GT.CC) GO TO 20

ELSK
IF (CB.GT.CC) GO TO 40

EID IF

C Here CC is the largest ... case 4.C of the paper---checkfor 0 first
IF (CC.EQ.O) GO TO 100
C3 ,. 1./FLOAT(CC)
Cl ,. C3*(E*B-F*D)
C2 ,. C3*(A*F-D*E)
RMMU ,. SQRT(1.+Cl ..2+C2"2)
GGAMMA ,. -1. /RMMU
AALPHA - -C1*GGAMMA
BBETA ,. -C2*GGAMMA
GO TO 60
C Here CA is biggest ... case 4.a of the paper (it can't be 0)

20 COITIIUE
Cl • 1 :/FLOAT(CA)

C2 = Cl*(D*C-F*E)
C3 = Cl*(B*E-D*F)
RMKU ,. SQRT(1.+C2••2+C3.*2)
AALPHA ,. -1./RMMU·
BBETA = -C2.AALPHA
GGAMMA = -C3*AALPHA
GO TO 60
C Here CB is biggest ... case 4.b (it can't be 0)

40 COlTIIUE
C2 ,. 1./FLOAT(CB)
C1 = C2*(D*C-E*F) .

C3 = C2*(A*F-E*D)
RMKU .·SQRT(1.+Cl ••2+C3**2)
BBETA = -1./RMMU
AALPHA • -Cl.BBETA
GGAMMA = -C3.BBETA·

50 COITIJUE
IF (RMMU.GT.2.) THEI

IFF = IFF+l

PRIIT.,' FUllY OIE',RMMU,IFF
RMMU·= 2.

EID IF
ALPHA(LAST) ,. AALPHA
BETA(LAST) = BBETA
GAMMA(LAST) ,. GGAKMA
MU(UST) ... RMMU
GO TO 200
C This is the impossible case of course!

100 MDCLAST) = O.

PRIIT.,' ZERO',I,LAST,CA,CB,CC
200 RETURI

EID
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SUBROUTIIE READDATA (UIITIO.lKAGE)

C Reads the data in its nev compressed form

IMPLICIT IOIE.

IITEGER IROVS.ICOL.IBITS
PARAMETER (IROWB = 4)
PARAMETER (ICOL = 128)
PARAMETER (IBITS = 32)

I1TEGER OIITIO
IITEGER lMAGE(IROVS.ICOL.ICOL)
IITEGER I.J.I:.L
I1TEGER COUIU
IITEGER MAP(IROVS*ICOL*ICOL/IBITS)
IITEGER 10IZERO(IROVS*ICOL*ICOL)
IITEGER 10lZEROCOUIT
CHARACTER*20 FILEIAME

READ (OIITIO) COUIT1

WRITE (* •• ) 'READIIG ZERO MAP ... '

READ (UIITIO) (KAP(I).I=l.ICOL*ICOL*IROWB/IBITS)

WRITE ( ••• ) 'READIIG IOIZERO EITRIES ... '

READ (UIITIO) (10IZERO(I).I=1.COUIT1)

WRITE (*.*) 'REBULDIIG THE DATA ... '

10lZEROCOUIT = 0
DO 70 L a 1. ICOL*ICOL*IROWB

IF (BTEST(MAP«L-l)/IBITS+l).MOD«L-l).IBITS»)THEI
I • (L-l)/(ICOL*ICOL)
J a (L-I*ICOL*ICOL-l)/ICOL
I: a L-I*ICOL.ICOL-J*ICOL
I • I + 1
J • J + 1
10lZEROCOUIT = 10lZEROCOUIT + 1

IMAGE(I,J.I) = 10IZERO(10IZEROCOUIT)
EIDIF

70 COITIIUE

WRITE (*.*) 'DECOMPRESSIOI COMPLETE.'

RETORI
EID

SUBROUTIIE WRITEDATA (UlITIO.IMAGE)

C Writes the data in its nev compressed form

IMPLICIT 10lE

I1TEGER IROWB.ICOL.IBITS
PARAMETER (IROWB • 4)
PARAMETER (ICOL = 128)
PARAMETER (IBITS = 32)

I1TEGER UIlTIO
IITEGER IMAGE(O:IROWB-l.ICOL.ICOL)
IITEGER I.J.I
I1TEGER COUlTl
IITEGER MAP(IROVS*ICOL*ICOL/IBITS)
IITEGER IOIZERO(IROWB*'COL*ICOL)
CHARACTER*20 FILE lAME

COUIU = 0

WRITE (*.*) 'COMPUTIIG ZERO MAP ... '

DO 50 I = O.IROWB-l
DO 50 J = 1.ICOL

DO 50 I = 1.ICOL
IF (IMAGE(I.J.I) .IE. 0) THEt

C A non-zero entry
C Count it

COUITl = COUITl + 1
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C Set map entry
MAP(I*ICOL*ICOL/IBITS+(J-1)*ICOL/IBITS

a +IIT«1-1)/32)+1)
a = IBSET(MAP(I*ICOL••COL/IBITS+(J-1).ICOL/IBITS
a +IIT«1-1)/IBITS)+1).MOD(ICOL*(J-1)+1-1.IBITS»

IOIZERO(COUIT1) = IMAGE(I.J.I)
EIDIF

50 COITIlUE

WRITE ( ••• ) 'WRITIIG ZERO MAP ... '

WRITE (UIITIO) COUlT1
WRITE (UlITIO)(KAP(I).I=l.ICOL.ICOL.IROWB/IBITS)

60 COITIIUE

VRITE.(••• ) 'VRITIIG IOIZERO DATA ... '
WRITE (UlITIO) (IOIZERO(I).I=1.COUIT1)

VRITE ( ••• ) 'COMPRESSIOI COMPLETE.'

RETURI
EID
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PROGRAM MAlES

IITEGER IBDR ! lumber of header records if not lIS files
IITEGER IS ! lumber of samples
IITEGER IL ! lumber of lines
IITEGER IB ! lumber· of bands
IITEGER I ! DO loop index
CBARACTER.40 IMAGIAKE(48) ! Allow 48 bands if type 1
CHARACTER.40 OUTIAME Output VMS file name for cluster map
CHARACTER.16 IISIAKE ! lIS name of cluster map
CHARACTER.40 OUT3BID ! Output VKS file name for 3 band output
CHARACTER.16 IIS3BID ! lIS name of 3 band image
IITEGER SWITCH ! Used to tell whether to reduce
IITEGER IV,IR ! Band index of VIS a IR data
LOGICAL IUSI ! if T, data in band 1 =0 means mask of image
IITEGER CLASKETB ! classification method
IITEGER WSRCDC ! Error type I weight
IITEGER VDRCSC ! Error type II weight
IITEGER lITER ! lumber of iterations
IITEGER IUICLUS ! Maximum number of clusters
IITEGER IALIIE ! Bow many must match if AKOEBA classification
IITEGER PCTIFLD ! Percent estimated to be in fields
BYTE BLIIE(512),BUFFER(128)
IITEGER.2 LLIIE(512)
PRIIT.,' OUTPUT FILE lAME?'

READ1,OUTIAKE
1 FORMAT(A)

DO I = 1,16
4 PRIIT.,' IIPUT FILE IAKE',I
READ1,IKAGIAKE(I)
.OPEI(I+l0,FILE=IKAGIAME(I),ERR=2,STATUS='OLD')

CLOSE(I+10)
GO TO 3
2 PRIIT.,' SOKETHIIG WROIG!'

GO TO 4
3 EID DO

IS = 512
IL = 612
DO 10 1 • 1,612
10 LLIIE(I) :00 0
LLIIE(l) IS
LLIIE(2) IL
LLIIE(3) = 1
LLIIE(4) • 1
LLIIE(5) 1
LLIIE(6) = IS
LLIIE(7) IL
LLIIE(33) = IS
LLIIE(34) = IL
LLIIE(35) = 1
LLIIE(8) = 1 SIIC
LLIIE(9) = 1 LIIC
LLIIE(16) = 1 Band list length
LLIIE(17) = 1 Band list
LLIIE(80) • 612. Block size
LLIIE(74) = 1 Data type
LLIIE(77) 1 Open flag (=OPEI)
LLIIE(78) 1 I/O Flag (=IIPUT)
LLIIE(84) = IL.«IS-1)/512+1) ! Total number of records
LLIIE(83) = (IS-l)/612+1 ! lumber of records per line
LLIIE(81) = 611/IS+l ! lumber of header records
LLIIE(85) = IS
IF (IS.GT.612) LLIIE(85) = 512 ! Samples per record
LLIIE(86) = IS
IF (IS.GT.612) LLIIE(86) = MOD(IS,512)
IF (LLIIE(86).EQ.0) LLIIE(86) = 512
BLIIE(175) = '0'
BLIIE(176) = 'I'
ISIZE = KII0(IS,512)
OPEI(UIIT=99,FILE=OUTIAME,STATUS='IEW',BLOCKSIZE=512,

+ RECL=ISIZE,RECORDTYPE='FIIED',FORM='FORMATTED')
DO I = 1,16
BLIIE(112+I) = ICBAR(OUTIAME(I:I»
ElD DO
IH = 0
DO I = 1,612,ISIZE
JJ = MII0(612,I+ISIZE-l)

lumber samples request
lumber lines request
lumber of bands request
SS
SL
IS
IL
Total IS

IL
IB
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IH = IH+l
VRITE(99,199)(BLIIE(J),J=I,JJ)

199 FORMAT(S12Al)
EID DO
IF (IH.GT.l) THEI

TYPE*.IH,' header records written.'
ELSE

TYPE*,' One header record written. '

EID IF
C
C------- low take care of all the others --------

C
DO I = 10+1,10+16

OPEI(I,STATUS='OLD'.FORK='UlFORMATTED'.
+ FILE=IMAGIAKE(I-10).READOILY)

EID DO
DO I = 0,3

DO J = 1.127
DO L = 0,3
READ(11+4*I+L.EID=6) BUFFER

DO JJ = L*128+1.L*128+128
BLIIE(JJ) = BUFFER(JJ-128*L)

EID DO
EID DO

VRITE(99.199)(BLIIE(JJ).JJ=1.S12)

EID DO
6 DO M = J.128
VRITE(99.199)(BLIIE(JJ).JJ=1.512)

EID DO
EID DO
STOP ,--- lormal Termination ---,
EID
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