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Abstract

There are basically two methods of determining the dynamic response of

structures. Analytical methods take advantage of theoretical equations to pre-

diet a system's response, while experimental methods use testing of prototypes

or scale models of a structure to determine actual response.

In order to design structures efficiently, an engineer should be able to use

theoretical tools to analyze and predict a system's response. This research

project was designed to predict the accuracy of modeling structures subjected

to dynamic loading using the finite element method. A finite element computer

program was written and used to analyze two structures-a simple cantilevered

beam and a cantilevered beam with another beam welded to it at a 900 angle.

The structures that were modeled by the program were then constructed and

tested using modal analysis techniques. The finite element model and, experi

mental results were then compared to see how accurately the model predicted

actual system response.

The results of this research showed that the finite element model was able

to predict actual system behavior with a high degree of accuracy. The analytical

model was able to predict natural frequencies and mode shapes within 19.1%

of the experimentally-determined values for the cantilevered beam, and within
,\ ,

6.1% of the experimentally-determined values for the welded beams.
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Introduction

Dynamic structural analysis is a term used to describe the prediction of a

structure's behavior when it experiences motion. The analytical tools that are

employed in this type of analysis range from cumbersome classical equations to

modern finite element techniques. The theory behind all the available methods

is supposedly well-proven, but unfortunately most of the proof exists only on

paper.

In contrast to analytical methods of dynamic structural analysis are experi

mental methods. While the analyst can predict system behavior and argue that

it is "theoretically correct", if experimental results contradict analytical ones,

all the mathematic proofs in the world cannot dispute real-world occurences.

Many times, the result of such incongruities is the analyst saying, "The lab guys

don't know what they're doing," and the experimentalist saying "The analysts

don't know what they're doing."

To eliminate the confusion that exists in the field of system modeling,

more communication and feedback needs to take place between the analyst and

the experimentalist. In particular, since finite element methods have become

the major analytical tool in the dynamic structural anlysis field, there should

be experimental verification of results obtained using finite element modeling

techniques. This would lead to improved analytical models, which iIL turn would

resu It in mo�e accurate design of structures that will be subjected to dynamic

loading.

With the justification outlined above, the objective ()f the research per

formed was to develop a finite element model that could be used to predict

"The Journal of Sound and Vibration" was used for its style and format
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dynamic system behavior with a degree of accuracy to be determined through

experimentation.

Background

For Euler beams, theequat ions for calculating natural frequencies of simply

supported, cantilevered, and pinned beams are well documented and thoroughly

proven experimentally. However, when a structure becomes more complicated,

such as two Euler beams welded together , there are no simple equations that

can be used to calculate natural frequencies or mode shapes. Thus, classical

analytical tools become extremely time-consuming and complex. For this rea-

son, finite element techniques are usually employed for modeling any structure

consisting of more than a simple beam.

The use of finite element theory to analyze dynamic response of structures

IS well documented. Unfortunately, most of the literature relates only how to

model structures for input to programs [1, 2, 3, 4]. Other published works- in -

the field of structural analysis tell how to obtain results through experimental

testing of actual or scale models, but do not present any analyt-ical predictions of

system behavior before the model is tested [5,6]. There are very few examples

where a physical model was constructed and tested to see how accurately an

analytical model performed. In fact, one paper suggested a method ofmodeling
<,

_

\
,

an offshore oil platform using finite elements, but went on to say that there was

no way to evaluate how well the model predicted actual response, due to the

lack of exp-erimental data [7].

There were two papers, both by the same authors, that actually compared

the results of a finite element model of a structure to the results of experimental

testing of the actual model. In one of-the papers, the authors stress thai accurate

2
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natural frequency prediction is an important part of finite element analysis, but

admit that the definition of "accurate" is difficult to pin down. They said:

"The frequency measurement is the most basic data that all modal

tests measure. The test measured data and the analytically predicted

values can be compared directly. Frequency correlation is considered

very essential such that a valid model must be able to predict accurate

natural frequencies ...Left unanswered is the question of to what degree

of agreement must these comparisons achieve in order to validate the

analytical model." [8]

The resu Its of the search for background literature on the topic of experi-

mental verification of finite element models is the conclusion that there is very

little published information in this area. The two pieces that were found to be

relevant [8,9] were results of analysis and testing of a Viking spacecraft, which

is a very complex structure. The objective of this research was to obtain sim-

ilar data for simpler structures that would correlate well with the previously .

published data for the more complex structure.

Finite Element Model Formulation
-

The first task in the research performed was to develop a computer pro-

gram that used finite element theory to calculate natural frequencies and mode",
-

.

\
,

shapes of engineering structures. Although commercially available finite ele-

ment programs already exist, many users do not understand what the program

is doing. By studying the theory and formulating the program, the finite ele-

ment method became more than just a "black box" which "magically' obtained

results when the correct, data was entered.

?
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The basic equation for any dynamic system IS (assuming no damping):

Where [M] = System Mass Matrix

[K] System Stiffness Matrix

F System Forcing Function

If F is set to zero, the natural frequencies and mode shapes of the system can

be found. For harmonic motion in a principal mode, all parts of the system will

move in one mode with the same frequency. Therefore the x term in the above

equation can be assumed to be of the form

x = X sin wt

Substituting this form of x into the differential equation with F o yields

\
,

Multiplying each side of the matrix by the inverse mass matrix [M=- 1 J /yields

Now if the matrix [A] is defined as the product of multiplying the Inverse of

the mass matrix [M - 1] by the stiffness matrix [K J '

4
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[M-1] H [A]
[A] X = w2X

This equation corresponds to the classic eigenvalue or characteristic prob

lem, whose solutions correspond to natural frequencies and mode shapes of the

system being analyzed.

Finite element theory was used to assem ble the system mass and stiffness

matrices. A complete description of the par t icu lar
t

theory used can be found

in the book Structural Dynamics [10]. After the matrices were assembled, an

eigenvalue-eigenvector solving routine was employed to solve for the system

natural frequencies and mode shapes [11]. This routine had nothing to do with

finite elements, but simply used linear algebra to solve a matrix equation.

Once the program was written and debugged, the accuracy of its output was

compared to classical equations by using it to model a cantilevered Euler beam.

Appendix A contains the theoretical calculation for the natural frequencies of a

2" x �" x 14" cantilevered. beam. The first three frequencies were calculated to

be 20.1 Hz, 126.0 Hz, and 352.6 Hz. The finite element program predicted the

first through third natural frequencies to be 19.9 Hz, 125. i Hz, an? 352.1 I4�,
--,

respectively. This led to the conclusion that the finite element program could

be used to accurately predict natural frequencies for a cantilevered Euler beam.

A table showing the number of elements required to obtain accurate results can

be found in Appendix B. From this sensitivity analysis, it was concluded that

as many elements were needed in the model as the number of desired natural

frequencies to be calculated. In simpler terms, if one desired an accurate value

5
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for the third natural frequency of a cantilevered beam, at least three elements

must be used in the model.

Figures la, 1 b, and Ic are the theoretical mode shapes for the 1st, 2nd, and

3rd natural frequencies, respectively [12]. To see if the finite element program

correctly predicted these mode shapes, plots were made of the modal data ob-

tained from the program. Figures 2, 3, and 4 are the mode shapes predicted by

the model, and they match the classically determined mode shapes presented

in Figure 1.

Experimental Validation Of Finite Element

Model For Cantilevered Beam

Once the finite element model was established as acceptable for use on

cantilevered beams, a testing method was established to experimentally verify

what appeared to be correct on paper. The main objective behind testing what

was already known to be correct was not to beat the simple case into the 'ground, _

but to establish correct experimental techniques so they could be used for more /'

complex structures with confidence in the results.

A simplified diagram of the experimental set-up is shown III Appendix C.

The set-up consisted of the test piece, a PCB impulse-force (modal) hammer

(model 086B), a PCB model 307A accelerometer, two PCB transducer amp li- ...,

-

\ '

.fiers (models 480B and 482A), and a Hew lett-Packard model 3582 Spectrum

Analyzer. To simulate a true cantilever, the 2'� 7� �"x 14" steel test piece was

sandwiched- between a table and another steel beam, and the three were clamped

together. The accelerometer was mounted at the free end of the test piece, and

the distance between the, cantilevered and free ends of the beam were divided

up into I" increments called "stations".

6
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Figure la- 1st Mode Shape of Cantilevered Beam

Figure Ib- 2nd Mode Shape of Cantilevered Beam

.

\
,

Figure lc- 3rd Mode Shape of Cantilevered Beam

7
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The modal hammer was used to input force into the beam by tapping

at each of the stations along the test piece. The modal hammer's internal

accelerometer provided the input signal to the spectrum analyzer, and the ac

celerometer moun ted at the end of the beam provided the output signal for the

system. After these signals were amplified by the charge amps, they were fed

into the spectrum analyzer. The analyzer takes the input and output signals,

derives the transfer function internally, and outputs a response contour. The

peaks of the response contour correspond to the natural frequencies of the sys

tem being tested. At the contour peaks, the frequency, amplitude, phase, and

coherence of the transfer function are calculated by the spectrum analyzer for

the station bein q tapped. Thus, by plotting the peak amplitudes in their proper

phase relations for each station against its position on the beam, an experi

mentally determined mode shape can be obtained. The coherence value is an

indication of how free the transfer function was from extraneous signals, such

as 60-cycle noise from power lines. The value of coherence is always from 0 to

1, and the closer to 1 the value, the clearer the transfer function is.

Results Of First Test

Appendix D is a table of the raw data obtained by testing the 2" x �" x 14"
steel cantilevered beam. Also included in this appendix is a table showing the

percent difference between the natural frequencies predicted by the finite. el��
<,

ment model and those found experimentally. The differences ranged from 14.1 %

to 19.6%. Although these Were large differences, a great deal of the error was

thought to have been introduced by not including the mass of the accelerometer

in the' finite element model. Also, in the paper by Chen, errors between analyt

ically predicted and experimentally determined values were reported to be as

high as 24.71%, so the results were not out of line with those from previously

11
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conducted tests [8].

Figures 5, 6, and 7 are plots of the experimentally determined mode shapes

for the 1st, 2nd, and 3rd natural frequencies, respectively. These matched up

quite well with those predicted by the finite element model. Based upon these

observations, it was decided that the model's performance was adequately con-

firmed by the experimentai testing, and the model was next extended so as to

be able to be used on welded beams.

Finite Element Model Formulation for

Welded Beams

The first version of the finite element program was only able to be used to

model beams whose elements were either all horizontal or all vertical. In order

to model a beam consisting of a horizontal piece with another piece welded to

it, in the same plane at any angle, a modification to the program was made.

A transformation matrix, also called a cosine matrix, was formulated and used

to convert all the local matrices into global ones, so that the elements of the

matrices could be combined correctly. A transformation matr.ix simply modifies

a local stiffness and mass matrix by multiplying it by the proper sine or cosine

of the angle between the local coordinates and the global coordinates {IO]. The

basic ,equation, described previously, remains the same.

.

\
,

Once the program was modified and debugged, it was used to model a

1 !_-" x 1" x 12" cantilevered steel beam with a 1,12'" X �">� 7" steel beam welded
2 '8 0

to it at a 900 angle. Figure 8 shows a picture of this structure. The finite

element program predicted the first three natural frequencies to be 12.8 Hz

48.9 Hz, and 166.0 Hz. Appendix E contains the sensitivity analysis for the

welded structure. Once again , it was- shown that at a minimum, three elements

12
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Figure 8a- Accelerometer Placement at Weld

.

\ ,

Figure 8b- Accelerometer Placement at End of Welded Beam
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were needed in the model to accurately calculate the first three natural frequen

cies , Increasing the number of elements increased the program's CPU usage,

but didn't increase the accuracy of the calculated values significantly.

Figures 9, 10, and 11 are plots of the predicted mode shapes for the welded

beams. Since there were no classically determined "correct" examples for mode

shapes of the type of structure modeled, it was left to experimentation to de

termine the validity of the model.

Experimental Validation Of Finite Element

Model For Welded Beams

The same test set-up was used to test the welded beams as the one de

scribed earlier that was used to test the simple cantilevered beam. Of course,

a different test piece was used. The test piece was a 1�" X �" X 12" steel beam,

cantilevered as described before, with a 1�" X �"x7" steel beam welded to it at

a 90° angle. Two configurations of accelerometer placement were tested, one at

the weld and one at the end of the welded piece (see Figures 8a and 8b). Ap

pendix F contains the raw data for both configurations. The data obtained for

accelerometer placement at the weld agreed better with the .finit e element model

with regards to natural frequencies and mode shapes, so the data reported in

this paper was obtained with this configuration.

Results of Second Test
.

\
,

Included in Appendix F is a table showing the percent difference between

the natural frequencies predicted by the finite element model and those found

experimentally. The differences ranged from 1.8% to 6.3%. The correlation

between analytical and experimental results was much better for the case of the

welded beams compared to the simple cantilevered beam.

] 7
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Discussion of Results

Figures 12, 13, and 14 are plots of the experimentally determined mode

shapes for the 1st, 2nd, and 3rd natural frequencies, respectively. Some obvious

differences can be seen between the mode shapes predicted by the finite element

model and those determined experimentally. On the whole, however, the general

trends of the experimentally determined mode shapes were essentially correct.

The results obtained for the simple santilevered beam showed a noticeable

difference in analytically- and experimentally- determined natural frequencies.

However, the- analytical and experimental mode shapes exhibited remarkable

similarity in their trends. Since the classical equations confirmed the finite

element program results, there must have been some irregularities in the tested

system. For example, the clamping method used to simulate a true cantilever

may not have been completely adequate. Also, since the simple c-antilever beam

was 2" wide, the one-dimensional finite element theory used in the analysis may

have been insufficient. Finally, the mass of the accelerometer was not modeled -

in the analytical system. Although the accelerometer's weight was admittedly

small, its effect has been shown by a graduate student's work, to change results

by up to 4%.

On the other hand, the analytically- and experimentally- determined nat-

ural frequencies for the welded beams agreed closely, but the mode shapes did
-

\ ,

not correspond as well as those for the simple cantilevered beam. The test piece

for the welded beam experiment was only 1�" wide, so modeling it with one

dimensional elements didn't introduce the error of modeling the 2" wide simple

beam, in the same manner. Also, the mass of the welded system was greater

than that of the simple beam, so the effect on the system of not including the

accelerometer's mass should have been smaller.

21
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The experimentally determined mode shapes for the welded beam system

exhibited some irregularities near the cantilever. This led to the conclusion

that the method of achieving the cantilever was not entirely sufficient. Further

experimentation needs to be done to determine what exactly would constitute

an acceptable cantilever.

Conclusions

On the whole, considering actual data and data trends between the ana-

lytical model and the experimental test results, correct finite element modeling

of structures can be used to accurately predict their natural frequencies and

. mode shapes. Experimental verification of analytical models of complicated

structures may be difficult to obtain, but it is not impossible.

As far as remaining work that can be done in this area, the- final version of

the finite element program written for this project could be used to model more

complex systems, up to and including planar trusses. The same experimental _

equipment needed to test the models in this research project could be used for /'

a truss, but the testing technique may need to be modified.

While it is not economically feasible to construct and test every designed

structure's dynamic response, as more analytical models are verified experimen-

tally, engineers will get a better "feel" for constructing finite element models
\ '

of their intended designs. More efficient analysis will ultimately lead t:o better

and safer designs the first time around.
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THEORETICAL CALCULATION FOR NATURAL

FREQUENCIES OF CANTILEVERED BEAM

W = 2"

E = 27.6 X lOG lb/in2

"t = .28 lb/in 3

I = 1/12bh3 = 3.2552 X 10-4 in"

L = 14"

H = 1/8"

Where (f3n L)2 for a Cantilevered .Beam

= 3.516

= 22.04

= 61.7

(1st Nat'l Freq)

(2nd Nat'l Freq)

(3rd Nat'l Freq)

w � (,8" L) 2
I (27 .6E6)(3 .2252E - 4)( 386)

n V (14)(2)(.125)(.28)(14)3

w
.

_

71. 35.91 2 2
It - 2; = --(f3n L) = 5.7153(f3n L)

27r
.

h ::::::: 20.1 Hz
.

h ::::::: 126.0 Hz

[z ::::::: 352.6 Hz

28
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SENSITIVITY ANALYSIS FOR

CANTILEVERED BEAM

No. of Elements 1st Freq 2nd Freq 3rd Freq

1 20.2 198.6 3834.8

2 20.0 126.8 428.9

') 20.1 126.2 356.4oJ

4 19.9 125.9 354.8

7 20.1 125.9 352.5

14 19.9 125.7 352.1

.

\
,
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Raw Data for Cantilevered Beam

STATION HZ AMP PHASE COH

1 16 8.8 118 .88

108 74.1 -86 1.0

288 37.5 106 .98

2 16 15.7 114 .87

108 151 -94 1.0

312 65.4 84 .97

3 16 28.5 123 .79

108 253 -95 1.0

296 96.8 114 .97

4 16 39.2 118 .88

108 340 -93 1.0

292 141 101 .90

5 16 63.5 123 .94

108 336 -89 1.0

296 93.7 126 .99

6 16 90.7 127 .94

108 458 -86 1:0

296 45.4 132 1.0

7 16 102 122 .87

108 513 -83 1.0

296 5.9 178 .78

8 16 136 121 1.0,

108 488 -79 1.0

296 29.0 -86 .. 99
.

\
,

9 16 157 121 �99

108 403 -78 1.0

296 50.4 -74 .97

10 16 181 124 1.0

108 253 -74 1.0

296 66.7 -59 1.0

34
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Raw Data for Cantilevered Beam, Cont.

STATION HZ AMP PHASE COH
11 16 206 125 1.0

108 105 -58 1.0

296 56.2 -59 .98

12 16 234 125 1.0

108 87.9 88 .99

296 40.6 -30 .99

13 16 248 125 1.0

108 272 113 1.0

296 30.3 24 1.0

35
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Comparison of Natural Frequencies
For Cantilevered Beam

As Predicted By

FEM Theory EXP % DIFF

Cantilevered 19.9 20.1 16 19.6 %

( PI == .46497) 125.7 126.0 108 14.1 %

352.1 3152.6 296 15.9 %

Note: PI stands for performance index. Since it is less than 1.0, the

performance of the eigenvector-eigenvalue routine is excellent.

.
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SENSITIVITY ANALYSIS FOR

WELDED BEAMS

No. of Elements' 1st Freq 2nd Freq 3rd Freq

1 / 1 13.6 49.2 270.6

2 / 1 13.7 49.0 167.8

2/2 13.5 49.1 167.8

4/7 12.9 48.9 166.5

The notation for number of elements is N, / Nw where N, is the number of

elements the cantilevered part of the structure was modeled as having and N w is the

number of elements the welded part of the structure was modeled as having ;

.

\
,
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Raw Data for Welded Beams

STATION HZ AMP PHASE COH

1 12 17.6 -73 .83

48 32.9 -92 .83

156 30.4 148 .85

2 12 21.3 -70 .95

48 52.2 -79 .98

156 45.8 115 .93

') 12 98.5 -64 .93
v

48 223 -58 .91

156 152 -152 .85

4 12 125 -66 .98

48 243 -65 .99

156 74.1 -160 .96

5 12 239 -69 .95

48 427 -64 .96

154 68.1 -135 .95

6 12 318 -69 .91

48 496 -62 .93

154 75.1 -139 .99

7 12 347 -68 .99

48 492 -66- .99

154 74.3 -141 .98

8 12 443 -74 .97-

48 562 -62 .97

154 99 -126 .96
.

\
,

9 12 280 -79 .85

48 306 -91 .82

154 77.2 -129 .76

10 12 195 -81 1.0

48 155 -102 1.0

154 12�5 -197 .99

40
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Raw Data for Welded Beams Cont.

STATION HZ AMP PHASE COH
12 12 330 -82 .97

48 175 -111 .92
156 32.8 -121 .95

13 12 81.6 -71 .96

48 131 105 .94

156 12.3 -53 .94

14 12 137 -70 .96

48 413 113 .95

154 13 -7 .91

15 12 104 -70 .98

48 496 108 .89

154 8.41 -71 .87

16 12 124 -75 .99

48 431 119 .96

152 8.67 115 .97

17 12 139 -77 1.0

48 421 109 .98

152 24.0 121 .98

18 12 130 -82 .99

48 555 81
-

.97

152 41.6 101 1.0

" ,
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Comparison of Natural Frequencies
For Welded Beams

As Predicted By

FEM Theory EXP % DIFF

Welded 12.8 12 6.3 %

(PI == .8202772) 48.9 , 48 1.8 %

166.0 156 6.0 %

Note: PI stands for performance index. Since it is less- than 1.0, the

performance of the eigenvector-eigenvalue routine is excellent.

,
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C ...

C. ..DYNAMIC FINITE ELEMENT ANALYSIS PROGRAM
c. ..
C. ..WRITTEN BY: ROBERT A. JUDGE
C. ..COURSE : MEEN 48SH
c. ..
C. ..DIMENSION ARRAYS AND DECLARE VARIABLES
c. ..

DIMENSION -ES(12,12,SO),EM(12,12,SO)
DIMENSION GSTIFF(SO,SO),GMASS(SO,SO)
COMMON E,G,IX,IY,POL,P
REAL IX,IY,IZ,POL,L,AREA,M,ES,EM,GSTIFF,GMASS,X(2S),Y(2S)

c. ..
C. ..THIS SECTION ALLOWS THE USER TO INPUT THE NUMBER OF ELEMENTS
c. ..

WRITE (6,100)
100 FORMAT ('$','PLEASE INPUT THE NUMBER OF ELEMENTS IN YOUR

$ STRUCTURE====>')
READ (S,*)NEL

c. ..
C. ..THIS SECTION PROMPTS THE USER FOR THE MATERIAL PROPERTIES
c. ..

WRITE (6,110)
110 FORMAT ('$','INPUT YOUNG"S MODULUS, E=')

READ (S,*)E
WRITE (6,120)

120 FORMAT ('$','INPUT MOMENT OF INERTIA, Iz=')
READ (S,*)IZ
WRITE (6,140)

140 FORMAT ('$','INPUT MATERIAL DENSITY, p=')
READ (S,*)P

c. ..
C. ..THIS DO· LOOP CALLS SUBROUTINE 'ELEMENT' TO GENERATE THE ELEMENTAL /'

C. ..STIFFNESS AND MASS MATRICES FOR ELEMENT ''NEL''
c. ..

ISO

DO 10 I=l,NEL
WRITE (6,IS0)(I)
FORMAT('$','FOR ELEMENT ',12,' INPUT NODAL COORDINATES X

$& y,)

IS5
WRITE (6,ISS)1
FORMAT(' ','1ST NODE OF ELEMENT ',12)
READ(S,*)X(1),y(I)
WRITE (6,lS6)1
FORMAT(' ','2ND NODE OF ELEMENT ',12)
READ (S,*)X(l+ l),y(I+1)
WRITE (6,160XI)
FORMATC' ','INPUT AREA OF ELEMENT ',12)
READ (S,*)AREA
DX = X(I+l) - xrn
DY = Y(I+1) - y(I)
L = sQRTCDX*DX+DY*DY)
CALL ELEMENTCIZ,L,M,AREA,I,ES,EM)
CALL TRANSF(ES,EM,DX,DY,L,I)

CONTINUE

.

\
,
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c. ..
C. ..THIS S�CTION 'CALLS SUBROUTINE GLOBAL, WHICH USES A LOCATOR VECTOR
C. ..TO ASSEMBLE THE GLOBAL (SYSTEM) MASS AND STIFFNESS MATRICES.
c. ..

CALL GLOBAL (NEL,GSTIFF,GMASS,ES,EM)
c. ..
C ...

C. ..THIS SECTION CALLS SUBROUTINE EIGEN, WHICH WILL CALCULATE THE NATURAL
C. ..FREQUENCIES AND MODE SHAPES FOR THE GIVEN BEAM
C...

'

CALL EIGEN (GSTIFF,GMASS)
STOP
END

c. ..
C. ..THIS IS SUBROUTINE 'TRANSF', WHICH WILL CALCULATE THE ANGLE BETWEEN
C. ..THE LOCAL ELEMENT COORDINATES AND THE GLOBAL COORDINATES, PLACE THE
C. ..VALUES IN A MATRIX, TRANSPOSE THE MATRIX, PREMULTIPLY THE ELEMENTAL
C. ..MATRICES BY THE TRANSPOSE OF THE COSINE MATRIX AND THEN POSTMULTIPLY
C. ..BY THE COSINE MATRIX.
c. ..

SUBROUTINE TRANSF (ES,EM,DX,DY,L,I)
c. ..
C. ..DECLARATION OF VARIABLES
c. ..

INTEGER A,B,C,D
REAL ES(12,12,SO),EM(12,12,SO),ESTIFF(6,6),EMASS(6,6),

$ TRANSC6,6),TRANSP(6,6),PRES(6,6),PREM(6,6)
$ ,DX,DY,L,COSTH,SINTH

c. ..
C. ..THIS DO LOOP WILL ZERO OUT THE COSINE MATRIX
c. ..

DO 10 A=1,6
00 20 B=1,6
TRANS(A,B)=O.
PRES(A,B)=O.
PREM(A,B)=O.
ESTIFF(A,B)=O.
EMASS(A,B)=O.
CONTINUE

CONTINUE
20
10

c. ..
C THIS SECTION FILLS IN THE COSINE MATRIX WITH THE APPROPRIATE
C VALUES
C .

,

\ ,

COSTH=DX/L
SINTH=DY/L
TRANS( 1,1 )=COSTH
TRANS(1,2)=SINTH
TRANS(2,1 )=-SINTH
TRANS(2,2)=COSTH
TRANS(3,3)=1.
TRANS(4,4)=COSTH
TRANS(4,S)=SINTH
TRANS(S,4)=-SmrH
TRANS(S,S)=COSTH

\



TRANS(6,6)=] .

c. ..
C ...THIS SECTION CREATES THE TRANSPOSE OF THE COSINE MATRIX 'TRANSP'
c. ..

DO 30 C=],6
DO 40 D=1,6
TRANSP(C,D)=TRANS(D,C)
CONTINUE

CONTINUE
40
30
c. ..
C. ..THIS SECTION PREMULTIPLIES THE ELEMENT MATRICES BY THE TRANSPOSE
C. ..OF THE COSINE MATRIX
c. ..

DO 60 A=1,6
DO 70 B=1,6

DO 80 C=1,6
PRES(A,B)=PRES(A,B)+TRANSP(A,C)*ES(C,B,I)
PREM(A,B)=PREM(A,B)+TRANSP(A,C)*EM(C,B,I)

80 CONTINUE
70 CONTINUE
60 CONTINUE

'

WRITE (10,1000)1
WRITE (10,] 100)((PRESCA,B),B=1,6),A=1,6)

] 000 FORMAT (1///////' ',T3S,'PREMULTIPLIED STIFFNESS MATRIX FOR
SELEMENT ',12)

]00] FORMAT CA)
]]00 FORMAT C' ',TlO,7X,6ElO.2)

c. ..
C. ..THIS SECTION POSTMULTIPLIES THE 'PRE' MATRIX PRODUcrS BY THE COSINE
C. ..MATRIX
c. ..

DO 90 A=1,6
DO 100 B=1,6

DO 110 C=1,6
ESTIFFCA,B)=ESTIFF(A,B)+PRESCA,C)*TRANSCC,B)
EMASSCA,B)=EMASSCA,B)+PREMCA,C)*TRANS(C,B)

] 10 CONTINUE
]00 CONTINUE
90 CONTINUE

WRITE (10,1200)1
WRITE (10,1300)((ESTIFF(A,B),B=1,6),A=1,6)

1300 FORMAT (' ',TlO,7X,6ElO.2)
1200 FORMAT (11///1/1' ',T37,'POSTMULTIPLIED STIFFNESS MATRIX

SPOR ELEMENT ',12)
C... ./

\ ,

C. ..THIS SECTION RENAMES ESTIFF AND EMASS BACK TO ES AND EM SO THEY CAN
C. ..BE PASSED BACK TO THE MAIN PROGRAM
C ...

DO. 120 A=1,6
DO 130 B=1,6
ESCA,B,I)=ESTIFF(A,B)
EM(A,B,I)=EMASS(A,B)

130 CONTINUE
120 CONTINUE

RETURN

\



END
c. ..
C. ..THIS SUBROUTINE WILL GENERATE THE ELEMENTAL STIFFNESS AND MASS
C. ..MATRICES FOR THE STRUCTURE BEING MODELED.
c. ..

SUBROUTINE ELEMENT (MOMIZ,L,M,AREA,I,ES,EM)
c. ..
C. ..COMMON BLOCK AND DECLARATION OF VARIABLES
c. ..

DIMENSION ES(12,12,50),EM(12,12,50)
COMMON E,G,IX,IY,POL,P
CHARACTER FLAG*3
INTEGER· A,B,C
REAL MOMIZ,L,E,G,POL,ES,EM

c. ..
C. ..THIS SECTION FILLS IN THE STIFFNESS MATRIX WITH THE APPROPRIATE
C. ..CALCULATED VALUES.
c. ..

ES( 1, l,1)=E*AREA/L
ES(2,2,I)=12*E*MOMIZ/(L**3)
ES(3,3,1)=4*E*MOMIZ/L
ES(4,4,1)=ES( 1,1,1)
ES(5,5,1)=ES(2,2,1)
ES(6,6,1)=ES(3,3,1)
ES(1,2,1)=0.
ES(1,3,1)=0.
ES( 1 ,4,1)=-ES( 1,1,1)
ES( 1 ,5,1)=0.
ES(l,6,1)=0.
ES(2,3,I)=6*E*MOMIZ/(L**2)
ES(2,4,I)=0.
ES(2,5,1)=-ES(2,2,1)
ES(2,6,1)=ES(2,3,1)
ES( 3,4,1)=0.
ES(3,5,1)=-ES(2,3,1)
ES(3,6,I)=2*E*MOMIZ/L
ES(4,5,1)=0.
ES(4,6,1)=0.
ES(5,6,1)=-ES(2,3,1)

c. ..
C. ..THIS SECTION FILLS IN THE MASS MATRIX WITH THE APPROPRIATE
C. ..CALCULATED VALUES.
c. ..

EM(l,l,I)=P*AREA*Ll3.
EM(2,2,1)=13.*P*AREA*Ll35.
EM(3,3,1)=P*AREA*(L**3)/105.
EM(4,4,1)=EM( 1,1,1)
EM(S,5,I)=EM(2,2,1)
EM(6,6,1)=EM(3,3,1)
EM( 1,2,1)=0.
EM(1,3,1)=0.
EM( l,4,1)=P*AREA*Ll6.
EM( 1 ,5,1)=0.
EM(1,6,1)=0.
EM(2,3,I)=22.*P*AREA*(L**2)1420.

\
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EM(2,4,I)=0.
EM(2,5,I)=54.*P*AREA*Ll420.

" EM(2,6,I)=-13.*P*AREA*(L**2)/420.
EM(3,4,I)=0.
EM(3,5,I)=-EM(2,6,I)
EM(3,6,I)=-P*AREA*(L**3)/140.
EM(4,5,I)=0.
EM(4,6,I)=0.
EM(5,6,I)=-EM(2,3,I)

C ..

C .. THIS SECTION FILLS IN THE LOWER TRIANGULAR PORTION OF BOTH THE MASS
C ..AND STIFFNESS MATRICES.
C ..

DO 20 A=1,6
DO 30 B=1,6

ES(A,B,I)=ES(B,A,I)
EM(A,B,I)=EM(B,A,I)
IF (B.EQ.A) GOTO 20

CONTINUE
CONTINUE

30
20
C ..

C ..THIS SECTION ALLOWS THE USER TO PRINT OUT THE ELEMENTAL STIFFNESS AND
C ..MASS MATRICES FOR ELEMENT NUMBER "I"
C ..

WRITE (6,*)'DO YOU WANT TO PRINT OUT THE STIFFNESS AND MASS
$ MATRICES FOR ELEMENT ',I

READ (5,1001)FLAG
IF (FLAG.EQ.'YES'.OR.FLAG.EQ.'yes') THEN

WRITE (10,1000)1
WRITE (10,1100)(CESCA,B,I),B=1,6),A=1,6)
WRITE (10,1200)1
WRITE (10,1300)(CEMCA,B,I),B=1,6),A=1,6)
RETURN

ENDIF
1000 FORMAT (I///////' ',T35,'ELEMENTAL STIFFNESS MATRIX FOR

SELEMENT ',12)
1001 FORMAT CA)
1100 FORMAT (, ',TlO,7X,6ElO.2)
1300 FORMAT (, ',TlO,7X,6ElO.2)
1200 FORMAT (1///////' ',T37,'ELEMENTAL MASS MATRIX FOR ELEMENT "

$12)
-

RETURN
END

C... -

\ '

C ..THIS IS SUBROUTINE GLOBAL, WHICH USES A LOCATOR VECTOR TO- ASSEMBLE'
C ..THE GLOBAL (SYSTEM) MASS AND STIFFNESS MATRICES FROM THE ELEMENTAL
C ..MATRICES. IT USES THE DIRECT ASSEMBLY METHOD.
C...

'

SUBROUTINE GLOBAL (NEL,GSTIFF,GMASS;ES,EM)
C ..

C ..DIMENSION ARRAYS AND DECLARE VARIABLE TYPES
C ... ,

COMMON E,G,IX,IY,POL,P
DIMENSION ES(12;12,50), EMC12,12,50), GSTIFF(50,50),

$ GMASSC50,50)

\



CHARACTER FLAG2*3
REAL GSTIFF,GMASS,ES,EM,E,G
INTEGER*4 N(6),AC6),GF,FF
DO GF=I,30

DO FF=I,30
GSTIFFCFF,GF)=O.
GMASSCFF,GF)=O.

ENDDO
ENDDO

c. ..
C. ..THIS LOOP WILL GET DIRECTON NO.'S FROM USER, DETERMINE ACrrVE
C. ..DEGREES OF FREEDOM,ESTABLISH THE LOCATOR VECTOR FOR EACH
C. .. ELEMENT, AND' ASSEMBLE THE GLOBAL CSYSTEM) MATRICES
c. ..

1002

DO 10 I=I,NEL
WRITE C6,*)'INPUT DIRECTION NUMBERS FOR EACH NODE,

$ MAKING SURE YOU GIVE A DISPLACEMENT DIRECfION FIRST, FOLLOWED
$ BY A ROTATION, ETC'

WRITE C6,*)'IST DIRECTION NO. FOR 1ST NODE OF ELEMENT',I
READ C5,*)NCl)
WRITE C6,*)'2ND DIRECTION NO. FOR 1ST NODE OF ELEMENT',I
READ C5,*)NC2)
WRITE C6,*)'ROTATION NO. FOR 1ST NODE OF ELEMENT',I
READ C5,*)NC3)
WRITE C6,*)'IST DIRECTION NO. FOR 2ND NODE OF ELEMENT',I
READ C5,*)NC4)
WRITE C6,*)'2ND DIRECTION NO. FOR 2ND NODE OF ELEME1\TT',I
READ C5,*)N(5)
WRITE (6,*)'ROTATION NO. FOR 2ND NODE OF ELEMENT',I
READ C5,*)NC6)
DO 20 Q=I,6

WRITE (6,*)'IS DIRECTION NUMBER',N(Q),'ACfIVE?,
READ (5,1002)FLAG2
FORMAT(A)
IF CFLAG2.EQ.'NO'.OR.FLAG2.EQ.'no')THEN

ACQ)=O
ELSE

A (Q)=N(Q)
ENDIF

CONTINUE
DO 30 ]=1,6

DO 40 K=I,6
NO=O
DO 50 L=1,6

IFCN(J).EQ.A(L))NO=NO+1

IF(N(K).EQ.A(L))NO=NO+ 1

IF(NO.EQ.2)THEN
GSTIFF(N(J ),NCK))=GSTIFF(N(J),NCK))+

GMASS(N(J),N(K))=GMASS(N(J),N(K))+

20

$ES(J,K,I)

$EM(J,K,I)

50
40

NO=O
ENDIF

CONTINUE
CONTINUE

\
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30 CONTINUE
10 ,CONTINUE

KOUNT=NEL*3+3
DO 60 l=l,KOUNT
DO 70 J=1,KOUNT
WRITE(20,120) I,J,GSTIFF(I,J),I,J,GMASS(I,J)

120 FORMAT(' ',SX,'STIFF(',12,',',I2,')= ',G1S.7,
1 SX,'MASSC' ,12,',',12,')= ',G1S.7)

70 CONTINUE
60 CONTINUE

RETURN
END

c. ..
C .

C .

C
C
C
C
C
C
C

c. ..
c. ..
c. ..

40

50

98
99

************************************************

* *

*

*

*

THIS PROGRAM PROVIDES CALCULATION OF

FREQUENCIES AND MODE SHAPES. *

*

*

************************************************

SUBROUTINE EIGEN (GSTlFF,GMASS)
COMPLEX EIGVAL,EIGVEC,ALPHA,sCALE
CHARACTER*20 ANS
DIMENSION GMASS(SO,SO),GSTIFF(SO,SO),EIGVALCSO),EIGVECCSO,SO),

ALPHA(SO),BETA(SO),WK(SOOO)
REAL GMASS,GSTIFF

Begin data input phase.

! DEFAULT OUTPUT TO TERMINALLUNIT=6
CONTINUE
WRITE(6,50)
FORMAT ('$','PLEASE INPUT THE NUMBER OF DEGREES OF FREEDOM, N= ,)
READCS,*)N

.

IF(N .LE. 50) GO TO 80

WRITE(6,98)
WRITE(6,99)
FORMATC'O',' ERROR!!! THE NUMBER OF DEGREES OF FREEOOM MUST BE')
FORMAT(' ','50 OR LESS, TRY AGAIN ,)
GOTO 40 ! REENTER OOF
CONTINUE80

c. ..
C .. .INTERACTIVE PROMPTS
C ...

.

\
,

WRITE (6,lS0)
ISO FORMAT ('1 ','SELECf OPTION:')

WRITE (6,170)
1 70 FORMAT (' ',' l)SET OUTPUT')

WRITE (6,17S)
. 17S' FORMAT (, ',' 2)RUN')

WRITE (6,180)
180 FORMAT ('$','TYPE' OPTION #:')

READ (S,*)OPT

\



IF (OPT.EQ.2)GOTO 600

IF(OPT.EQ.1) THEN

WRITE(6,181)
181 FORMAT ('$','WRITE TO TERMINAL OR FILE?:')

READ (S,186) ANS

IF(ICHAR(ANS).EQ.70) THEN

LUNIT=lO

WRITE(6,186) , ,

WRITE(6,186) , *** OUTPUT SET TO MODS.DAl' ***,

WRITE(6,186) , ,

ELSE
LUNIT=6
END IF

GOTO SOO
END IF
GOTO 900 ! ABORT

C ...

18S FORMAT('$','WRITE TO TERMINAL OR FILE?:')
186 FORMAT(A)

C ...

499 WRITE(6,999)
999 FORMAT(' INVALID INPUT, TRY AGAIN')
SOO WRITE (6,186) , HIT RETURN FOR MENU'

READ (S,186,ERR=499 )ANS
GOTO 80

600 CONTINUE ! RUN
C ..

C... Determine the eigenvalues and vectors of:
C... [GSTIFF] [X] = E [GMASS]
c ..

C.. IJOB = 2 will cause routine to find eigenvalues,
C... eigenvectors, and performance index.

C ...

IJOB=2
CALL EIGZF(GSTIFF,SO,GMASS,SO,N,IJOB,ALPHA,BETA,EIGVEC,SO,WK,IER)

C ...

C ..

C ..

C ..

C .

C .

If there is an error, EIGZF will print an error

message.

Compute the eigenvalues.

DO 3 I=1,N
IFCBETAO).EQ.O.O)GOTO 3
EIGVAL(I)=ALPHA(I)/BETA(I)

C.. The natural frequencies are the square root

C... of the eigenvalues.
EIGYAL(I)=CSQRT(EIGVAL(I))*3.122

3' CONTINUE
C ...

C... Normalize the eigenvectors (where possible) so

C... that elements in row 1 of the modal

C.. t, column matrix are all 1.

C ...

00 4 I=l,N
SCALE=EIGVEC( 1,1)

\
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IF(SCALE.EQ.O.)GO TO 4

DO S J=l,N
, EIGVECO,I)=EIGVEC(J,I)/SCALE
CONTINUE
CONTINUE

S
4

c. ..
c. ..
c. ..
c. ..
c. ..

Print au t the results.
The standard output form for complex numbers is:

( Real_part , Imaginary_part )

IF(LUNIT.EQ.I0) THEN
OPEN( 1O,FILE='MODS.DAT',STATUS='NEW')

END IF
c. ..
c. ..
C. ..PRINT THE PERFORMANCE INDEX
c. ..

WRITE(LUNIT,200)WK(1)
200 FORMATC'O',!,' THE PERFORMANCE INDEX IS ',GlS.7,!)
C...

_,

C. ..PRINT THE FREQUENCIES AND MODE SHAPES
c. ..

DO 6 I=l,N
WRITE(LUNIT,1 02)I,EIGVAL(I),EIGVEC(l,I)

102 FORMAT('0',!,16X,'FREQUENCY ',I2,24X,'MODE SHAPE',!,
1 SX,'(',G 1S.7,',',G1S.7,')',5X,'(',GlS.7,',',G15.7,')')

DO 6 J=2,N
WRITE(LUNIT,103)EIGVEC(J ,I)

J 03 FORMAT(43X,'(',GlS.7,',',G1S:7,')')
6 CONTINUE
C

CLOSE(10)
900 RETURN

END

-
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