IMPROVEMENTS OF USER CONTROL IN
QUAS/

A COMPUTER PROGRAM

by
KENNIE E. CRRLINGTON, JR.

DEFARTMENT OF COMPUTER SCIENCE

Submitted in Partial Fulfillment of the Requirements of
the University Undergraduate Fellows Program

1983-1984

Approved by:

/

/ // -
o VAV AN
l/’// /(v\// >

(&

Dr. Bart Childs

Rpril 1984

ABSTRACT

Improvements of User Control in
QUAS!
A Computer Program (April 1984)
Kennie E. Garlington, Jr.

Faculty Advisor: Dr. Bart Childs

In early April of 1984, a project to add computer graphics to the
QUASI computer simulation system was completed and implemented at
Texas A & M University. QUASI is a system that can be used in
several engineering fields to compute various aspects of a
mathematical model of a real-werld process, then compare the model
with data taken from observaticn of the process. This program

rovides quick access to a comprehensive analysis of a design, and
can be used to great advantage early in the design process. It was
decided to add graphics to the system to provide a better format for
the representation of large groups of data. The system was
implemented using the Data General Dasher G300 terminal as a display
unit. The advantages of the system are its ability to alert the
user to errors in the mcdel, provide fast, flexible methods for
comparing medels, and in general make the system more "user-
friendly." The major conclusion of this project is that the
enhancements greatly increase the user's productivity and interest

in the system, and it is recommended that QUASI, with the graphics

ii

iii

enhancements, be considered by industry to be a standard tool for

design and testing work.

ACKNOWLEDGEMENTS

I would like to thank Dr. Childs, for all the time (which he
could ill-afford) that he spent patiently explaining the mechanics
and the theory of QUASI. I would also like to acknolwledge the help

provided by the workers at the Eagle lab at Texas A & M University,

who suffered through constant guesticns and reguests for manuals.

1y

TABLE OF CONTENTS

RBESTRACT 59 0 o o9 60 0000005000000 000 a0 coas ek
ACKNOWLEDGEMENTS s T B s e B S S S T T B e
TABLESOE R CONTENTS e e ey
LIST CFE LIST OF TABLES . o ¢ ¢ o & & @ o & o o s & o 5 o = o = « Vi
LISTROESLISTE OF RETGURESEE S e o e s yd
INTRODUCTION S O 1
THE GRAPHICS SUBSYSTEM o o s el e e e s e e el e w el el el e s e e e 3
The QUASI System: How it works . . . & & ¢ v v ¢ ¢« « « « « « 3
Alternatives to Printed Output . . . « ¢ ¢« v ¢ v ¢ v ¢ ¢ o« . 4
The Line Printer 5 0 o0 6 Co0O0O0DO G080 O0O0D0S o B

The Versatec Plotter 5 6 6 06 8 009 000800000 C 5

The Data General G300 Terminal ¢ ¢ ¢« « + « . 6
Programming Methodology .« ¢ v v v v v ¢ 6 v 4 e e e o 0 e e . 7
fodifications to module QUASI+« ¢« « . . 8
Mcdifications to module ININT . . . ¢« .« . ¢« ¢« &+ ¢« ¢« « « . 8
Modifications to module BUILD . . . « ¢ v ¢« ¢ o o« + o« « « 9
Modifications to medule PLOT . . & ¢ v v ¢« ¢ o o ¢« ¢« « « 9
Mcdule G360 Description . . ¢ .« ¢ v v ¢ v ¢ & v v 4 o« « . 9
Flotting Subsystem Characteristics B S 0]
CONCLUSICN o T T e L c
REFERENCES 53 0 o o400 000000 ods o0 o0 so o0 ao0 o0 G
EPPENDIX A CODENLISTINGS Rl s el s e e s e 16

T o e T e e e I S 1

LIST OF TABLES

TABLE

1 Comparison of Characteristics of Primary Plotting Media

Page

|

vi

vii

LIST O

1

FIGURES

FIGURE Page

1 Input Esample For Plotting Subsystem 11

2 Sample Plot from QUASI o o e om @ s e & % & @ & § 5 8 $ & = 42

Introduction

The QUASI computer mcdelling system was developed by Dr. Bart
Childs and others at the University of Houston in the late 1960's.
The system has excellent computing Power and flexibility, and can be
used to solve problems in several areas of product design. The
system has undergone several revisicns, and currently a organized
review and update of the entire system is in effect. One of the
initial by-products of this review was a goal to make graphics
available to improve user access to the system and control of its
operation.

As a result, I was asked to implement a graphics subsystem as a
part of the QUASI program. This was done as a one-year project
under the auspices cf the University Undergraduate Fellows Program.

This project was dividad into two parts:

9% Determine the feasibility of using various devices as part of

the system.
2. Implement the best cf these alternatives.

Final testing for the new graphics modules was completed on April
10, 1684, and the documentaticn was finished at approximately the
same time. This documant dJdescribes the QUASI system, the design

criteria used for the enhancements, the process of building the

ocument follows the style of Communications of the ACM

+3
=3
[N
1))
[oh)

system, and methods of use of the graphics subsystem.

The Graphics Subsystem

The QUASI System: How it works

QUASI is a computer simulation system that performs a
mathematical analysis of <collected field data to estimate a
requested parameter value. To put it simply, the user constructs a
mathematical "model" (set cf equations) that describes some process
in which he is interested. He will supply these equations to QUASI,
along with a set of data collected during field tests on the
process. At this point, QUASI does two things.

First, QUASI will take the set of equations from the user, and an
initial estimate of the final value, and perform a numerical
integration using the Runge-Kutta or stepwise techniques. The
result will, hopefully, be &a better approximation of the model
solution. Taking the results of the first integration and feeding
them back into the integration routine will continue to increase the
accuracy of the sclution to scme user-specified bound.

Next, the system compares the solution with the field data to
determine if the model was a succesful predictor of some acspects of
the process's performance. If there was not a reascnably good fit,
QUASI will alert the user to a possible error in his model. The
user then can refine his model to increase its power.

QUASI provides the engineer with an invaluable tool for quick
estimation of critical design parameters as well. This can be used
to its full potential early in the design stage to single out the

most promising approach to a design problem from among several

alternatives.

Alternatives to Printed Output

One disadvantage of the original QUASI package was the method in
which it presented its results. First, the production of large
amounts c¢f computer printouts, invelving complex, dense l1lists of
numbers and statistical summaries that often proved to be difficult
to use by the inexperienced user, made engineers avoid the use of
QUASI unless they could not solve their problem any other way.
Also, the printed output a&approach made guick comparisons of
differing models difficult. The wusers found it impossible to
compare two lists of numbers and come up with a general description
cf the models' differences.

To overcome this problem, the decision was made to add graphics
to the system, facilitating easier comparisons of models and
allowing quick subjective decisions concerning the accuracy and
overall "lcok" of the process's behavicr. Three types of plotting
devices were considered in implementing this new system (see also

Table 1 for a summary of each unit's attributes):

1. The use of the traditional paper line printer to produce a rough

graph of the results.

2. The use of a Versatec hardcopy plotter to produce paper line

drawings.

3. The Data General G300 graphics terminal to produce single-screen

graphs.

The Line Printer

The line printer was already being used to some extent in the old
system to produce simple graphs. Although this device would be the
most available of any of the devices considered, it was decided that
the printer was just too limited to prcduce the complex graph types
necessary under the proposed subsystem. Problems with this device

include:

1. 1Its inability to be used as part of an interactive system. All
plots using the line printer would be produced at the end of
the job, and the user could not stop the system before its

conclusion since he could not see the graphics data.

2. The resoluticn of the printer. At only 55 X 100 elements per
page, little in the way of detailed information could be

presented.

3. The low speed available. Especially with multiple users on the
same printer, fifteen minute wait times for output are not

uncommon.

The Versatec Plotter

The Versatec line plotter has several advantages over the other
two systems. It can produce graphs of much higher resolution than
the line printer, and could provide a permanent record of the data,

unlike the graphics terminal. Unfortunately, the Versatec is not a

high-speed plotter. This, along with the remote location of the

device and the fact that there is only one such plotter attached to

the Texas A & M ccmputer, ruled out use of this device as a primary

medium. However, there is a chance that a Versatec connection will

be added in the near future to give the user a choice of systems.

The Data General G300 Terminal

The Data General Dasher G300 graphics terminal was the device of

choice for the implementation of the plotting subsystem, for five

reasons:

There were three of these units attached to the main computer,
easily accessable by the user. This meant that testing of the
system could be readily carried out, and that the use of the
graphing routine would not be hampered by unavailable

ejuipment.

The resolution of the terminal was good, with a screen of 240 X

640 pixels.

The unit was easily programmed, since a graphics command
interpreter was downloaded into the device, making English-

like drawing commands pcssible.

The G300 has a respconse time well within any user's
requirements. In fact, when the system is lightly loaded, an

entire graph can be drawn in less than a second.

Since the system can request guidance from the user at the same

terminal where the plots ars being drawn, interaction with the

user is highly supported.

Therefore, the graphics subsystem was implemented with the Dasher

unit as the medium for the graphs.

Table 1. Comparison of Characteristics of Primary Plotting Media
The following table provides a summary of the major points
considered in selecting the Data General Dasher G300 terminal over
use of the line printer or Versatec line plotter.

High High Many
Interactive? Resolution? Speed? Available?
Printer No No No Yes
Versatec No Yes No No
Terminal Yes Yes Yes Yes

Programming Methodology

The QUASI system 1is designed as a set of related program
segments, written in the Data General FORTRAN 77 lanuuguage. For
this project, it was necessary to make mcdifications to four
routines as well as write a new routine, G300, which does the actual

plotting. See Appendix A for a listing of the code segments.

Modifications to module QUASI

QUASI is the main-line routine which coordinates the execution of
all other routines. The largest of all the system modules, this
program actually required the least amount of modification.
Primarily, a new variable array (IPLOT2) was added to contain the
user's choices of state variables to be plotted, and two temporary
files were created £from this routine which were used to hold
previous values of the plotting routines for the iterative plots
(UNIT20 ancd UNIT21). The reason why the changes were so small is
due to the original design of the system, which had the necessary
code segments to support the addition of a graphics unit. However,
in the conversion from the IBM architecture on which it was
originally developed to the Data General MV/8000, the plot segments
were not converted. Thus, the major part of the time spent on this
routine was on the conversion process. 0f course, the parameter

lists for the other routines modified were changed as well.

Modifications to module ININT

The INIKT routine reads in the integer parameters. Two of those
parameters (see Figure 1) are used to select plotting. The IPLOT2
variable described above needed to be set in this routine, and so

code was added to read in those values.

Modifications to module BUILD

The BUILD routine was set up for use with a line printer routine.
The modifications to be made here were the inclusion of a title to
be sent +tc the <c¢raphics routine, and the necessary file
synchronization to store each plot matrix for later use. Elso,
since this routins is the one which produces the iterative plots,
the maximum iterative value (XMAX) was passed to BUILD to define the
size of the graph. Also, a segment of code to number the points by

iteration cycle was added.

Modifications to module PLOT

The modifications to PLOT (which produces the final plot) were
almost identical. The titles were, of course, different. B&lso, the
XMAX variable was not needed, so it was not included in this

routine.

Module G300 Description

G300 is a new module that does the conversion of a matrix of X
versus Y values to positions on a Data General Dasher G300 terminal,
and outputs them to the terminal (see Zppendix A) with supporting

titles, labels, etc. Briefly, the module algorithm is as follows:

= Compute maximum and minimum X and Y wvalues in the input

matrix.

- Cempute units/pixel for conversion to pixel number on screen.

= Print a message to the user to allow him time to see printed
output before the plot begins. An undocumented option at this

{)

point is to respond with the number 'l' tc the message "Enter
(New Line) when ready to see plot..." This will create a dump

of important program parameters, useful when debugging the

module after modifications.

= Set the terminal to graph mode, set up the eight line styles
(so that different state variable lines can be distinguished),
and print the top headings. Part cof the set-up procedure is
to place the terminal in ‘"mnemcnic mode," which allows

English-like commands to be sent to the terminal [2].

= Draw lines for each state variable in sequence.

= Print X label and legend for lines.

= Put terminal back into text mode and print a similar message
to the opening print above to give the user time to see the

graph.

Plotting Subsystem Characteristics

The user, before executing QUASI, must first provide two lines of
input data describing what action the system should take regarding
graphics output (see Figure 1). The intecer parzmeter "19" selects
plotting to occur after every iteration. The user can select a

plotting device (currently the old 1line printer package or the

10

Dasher unit) and which elements cf the system (1-5) he wants to see.
The line labelled "21" provides similar information about plots to
be generated at th end of the computations.

An example of how the graph might 1look on the Data General
terminal is shown in Figure 2. £Each variable plotted is identified
by a unique line type (dotted line, dashed 1line, etc.) which is
listed on the "Legend" line. For iterative plots, the subsystem will
continually re-draw previous values tc give the user a point of
reference for determining model errors. L1l X-axis and Y-axis
scaling is autcmatic, and all values are plotted (no variable can
exceed the limits of the graph scale). The user is given the option
at the end of each plot of pressing "Enter" to continue processing,

or he can interrupt the program from the console if an error 1is

indicated.
19 2 ITER PLOT FROM TERM 1 2 3
21 2 FINL PLCT FROM TERM 1 2 3

These lines would be entered to select plots from QUASI.
In this example, the Data General graphics terminal (device "2")
was chosen to plot variables 1, 2, and 3.

Figure 1. Input Example For Plotting Subsystem

11

S 25.0
T

A

T

E

\Y b e
A

R

S

*

1

* 0.0

150 10.0
LOT OF ITERATIVE VALUES

Line Legend: Y1 = ...

Enter (New Line) to continue...

This plot might be drawn on the first iteration of a
ten-iteration cycle, plotting only 1 variable
during the cycle.

Figure 2. Sample Plot from QUASI

Conclusion

QUASI is a computer package designed to aid engineers in developing
and testing mathematical models of processes of interest. TiE
provides quick, reliable, and comprehensive answers to the major
items of interest concerning the model. However, it suffered in the
past from a tendency to print too much information in tabular form,
decreasing the ability of the wuser to make value judgements
concerning the results. Graphics were added to the system to
overcome this disadvatage.

The graphics subsystem, implemented for use with a Data General
Dasher G300 graphics termirnal, provides timely, accurate summaries
of the important information resident within QUASI. It allows
better interacticn with the engineer, giving him a better look at
the data and allowing him to spot more errors in his model earlier
in the process.

With the addition of the graphics package, the user has a great
deal cf flexibility in choosing how much information he wants to see
plotted. He can select plotting to occur at the end of each
iteration step, at the end of all iterations (the final solution),
both times, <r neither time (no plotting). Up to eight different
system parameters can be selected for display. The user can, upon
detecting a solution that is not reasonable, stop the system at any
point and start over. He can also obtain a takle of the data to be
pletted immediately before the plot 1is performed in case more

accurate values are reguired.

Overall, the system in practice has demonstrated the following

characteristics:

a5 Total response time o©f slightly less than one second under
optimal conditions. Included in this time 1is the interval
needed to format the data, clear the screen, and produce the

new graph.

208 A greater emphasis on involving the user in the computational
process, by giving him more informaticn faster. Thus, the

user feels more confidence in the final results.

3. As mentioned before, more flexibility in operation than under
’ Z

the cld package.

This enhancement of QUASI, providing powerful, easy-to-use
graphics to the program user, has resulted in a system that is more
"user-friendly," more accurate, less costly when errors do occur,
and better able to express gualitative points about a mocdel. The
costs involved are practically non-existant, and the additional
system load is so negligikle, that no reasonable complaints can be
made about the new system as compared to the old one. Therefore,
the use of this svstem, along with the overall QUASI package, is
highly recommended to engineers involved with design or testing of

new processes and products.

14

REFERENCES

1. Childs, Bart and H. R. Perter. QUASI - A System
Identification Code. Lecture Notes in Computer Science: Codes for
Boundary-Value Problems in Ordinary Differential Equations 76 (May
14-17, 1978) 18€6-195

2. Data Generzl Corporaticn. asher G300 Display Terminal Users
Manual. Rev. 0, April 1981

13

APPENDIX A

CODE LISTINGS

16

&

Ci % % %k %k %k %k %k K %k %k 3k %K % %k K %k 3K K % 3K K X X X % XK X XK 3K % Xk %K 3% XK X X 3 % % Xk Xk % % % % X X X X X X X X X% % % % X K X K XK X XX X XX XX

C***************************** 3% XK 3K % K X XK XK K XK XK %k XK X XK K XK XK XKXKXKXXXXXXXX
C***************************** Q_]AS] % %K K %K K K K K K K XK K K K K XK KK XKXKKXXXXXXXX
C***************************** % XK K % % XK XK X K XK XK %K K X XK XK KK X XXX XXXkXXXX
C*********************)k***
&
€ THE STYLE OF PROGRAMFWRITING INCORPORATED INTO THIS SOURCE CODE
e 1S BASED ON THE ARTICLE *FORTRAN POISONING AND ANTIDOTES’ BY
@ BRIAN T. SMITH, FRQM PP. 178-256 OF VOLUME 57 OF LECTURE NOTES
€ IN COMPUTER SCIENCE, 1977.
C
ECEssss FORM CONTAINS THE ARRAY FRMI', WHICH IS USED FOR RUN-TIME
(@ FORMATTING.
CHARACTER FRMT*80, IAF*4(2)
COWDN/FORM/ FRMI', IAF
(@
Ce=m=s IBLK CONTAINS THE INTEGER INPUT VARIABLES
INTEGER 10OUT, LIN, NDDE, LITER,NORVRD, NBC, NEQ, NCN,
X NWRITE, IVSAVE, ITRACE, IEXTRA, IXTPL, IDIF, NCQBC,
X IPLT, ISETNL, IXXX, NGRAD, MOUT, 1COP, ISTAT,
X IDOIT, NEXT6, NEXT7
CaQvWIN/ IBLK/ 1OUT, LIN, NDDE, LITER, NORMRD,
X NBC, NEQ, NCN, NWRITE, IVSAVE,
X ITRACE, TEXTRA, IXTPL, 1DIES, NCOQBC,
X IPLT, ISETNL, IXXX, NGRAD, MOUT,
X 1COP, ISTAT, IDOIT, NEXT6 , NEXT7
C
C—— JBLK CONTAINS INTEGER IDENTIFIERS TO BE PASSED TO CERTAIN
C SUBROUTINES .
INTEGER NVECT, IXTRA, JXTRA, KXTRA, NOUT, NL, NSPACE,
X NCSD, NRSD, NRYD, I, II, ICOUNT, IN1, IN2, INTKEY,
X IPUNT, 1Q, IS, ISUB, ITEMP, ITER, J, JJ, JQ, JSUB,
X K, KK, KOUNT, KOUT, KQ, KTEM, IDONE, NB(M, NCOL, NRANKC,
X NROWS, 1SHTT
COVWON/JBLK/ NVECT, IXTRA, JXTRA, KXTRA, NOUT, NL,
X NSPACE, NCSD, NRSD, NRYD, [, II, ICOUNT, INT1,
X IN2, INTKEY, IPUNT, 1Q, IS, ISUB, ITBEMP, ITER,
X I, 1), JQ, JSUB, K, KK, KOUNT, KOUT, KQ, KTBEM,
X IDONE, NBOM, NCOL, NRANKC, NROWS, ISHTT
C
C KBLK CONTAINS INTEGER ARRAYS RELATED TO INITIAL CONDITIONS
C AND BOUNDARY CONDITIONS
INTEGER XACTIV(20), IPTR(20), QBC(201), XACTBC(201)
COWDN/KBLK/ XACTIV, IPTR, QBC, XACTBC
(e
(C——— FBLK CONTAINS FLOATING POINT IDENTIFIERS TO BE PASSED TO
& CERTAIN SUBROUTINES
REAL ZERO, DZERO, SMALL, DPTRB, DETT, RN1, RN2, RN3, H, T,
X TAVG, TL, TN, DN1, TBMI, TBM, TBVP, TTBEM, SUVBV,
X DTBVIP, TRACE
CaQVWDN/FBLK/ ZERO, DZERO, SMALL, DPTRB, DETT, RN1, RN2, RN3, H,
X T, TAVG, TL, TN, DN1, TBMI, TBEM, TBVP, TTBM, SUMBV,
X DTBVIP, TRACE
C
C———+ RBLK CONTAINS THE REAL INPUT VARIABLES
REAL DELT, SPTRB, PNORM, TSTART, TSTOP, DET, CONV, WEIGHT,
X ALPHA, TOUT, AUX(2000)
CaOVWWION/RBLK/ DELT, SPTRB, PNORM, TSTART, TSTOP,
X DET, CONV, WEIGHT, ALPHA, TOUT,
X AUX
C
(e —=x==" REG CONTAINS VARIABLES USED IN SUBROUTINE STANAL

REAL PB(20), YCALC(20), SAVE(202,22)
CAVMON/REG/ PB, YCALC, SAVE
e —————————————eee P

C—— RK4P CONTAINS INFORMATION USED IN NUMERICAL INTEGRATION
REAL STO(20,3), JACOB(20,20,3), SDY(20), YYK(20), YYP(20)
CaQWDN/RK4P/ STO, JACOB, SDY, YYK, YYP

E———c—c SBLK CONTAINS THE SA = D MATRIX, S, AND BOUNDARY VALUE
C AND BOUNDARY CONDITION INFORMATION
REAL S(202,22), BV(201), TBC(202), CQBC(20)
COWDN/SBLK/ S, BV, TBC, CQBC

Cce YBLK CONTAINS INFORMATION ABOUT Y
REAL 11V(20), 1V(20), Y(20,21), YRK4(80), PIV(20), PTRB(20),
X UPPER(20), LOWER(20), YPTRB(20), DY(20)
COWDN/YBLK/ 11V, IV, Y, YRK4, PIV, PTRB, UPPER, LOWER,
X YPTRB, DY

INTEGER 1AP2, ICONV, IENDFL, INDX, IP, IPEXCT, IPLSTQ,
X ISWITC, 1SWIT2, NAUX, NCSH, NEQOUT, NMEXCT, NMLSTQ,
X NR, NRW
REAL ANORM, SNORM, SVNEXT, TBCK, TNORM, TOUTIM
INTEGER IBIG(25), IPLOT(50,8), IPLOT2(8)

REAL DIV(50), GRID(50), RBIG(10)

CHARACTER RTITLE(10,20)*8

THE ARRAY IBIG(25) 1S EQUIVALENCED TO THE VARIABLES IN THE
CAOWDN BLOCK, IBLK, TO MAKE THE INPUT OF THESE VALUES EASIER.
SIMILARLY, THE FIRST 10 VARIABLES IN THE COWDN BLOCK, RBLK,
ARE EQUIVALENCED TO RBIG(10) FOR EASE OF INPUT.

EQUIVALENCE (1OUT,IBIG(1)),(DELT,RBIG(1))

REAL ABS

AVONG THE 1DENTIFIERS INITIALIZED BELOW IS 1SWITC, WHICH

IS USUALLY SET TO ZERO; IF TIMESHARING IS DESIRED, SET IT TO 1.
CHARACTER*4 JAST/ **x*x*>/

ISWITC = 0

IAP2 = 25

IENDFL = 0O

C File 20 is used to hold succesive iterations

© File 21 holds the variable values at the end of a cycle

OPEN (20,FILE="QUASI.UNIT20.LS’ , FORM="UNFORMATTED’ , STATUS="FRESH’)
OPEN (21,FILE="QUASI.UNIT21.LS’, FORM="UNFORMATTED’ , STATUS="FRESH’)

AN O oo o a O O

AFTER ALL INTEGRATION IS DONE FOR THE CURRENT SET OF DATA,
AND IDONE = 1, RETURN HERE FOR THE NEXT SET. PRINT OUT THE
PROGRAM’ S NAME .
10 CONTINUE
WRITE(12,20)
20 FORMAT(’1 PARTICULAR SOLUTION PERTURBATION METHOD SYSTBEM’ ,
X > VERSION 3.1 INCLUDES STAT ANALYSIS 4/1/82")

Qa0

INPUT THE TITLE.
CALL INTITL(IAST,IAP2,1SWITC,RTITLE, INDX, IENDFL)

IENDFL = 1 MEANS THERE IS NO MORE DATA TO READ, SO END THE
PROGRAM’ S EXECUTION.
IF(IENDFL .NE. 1) THEN

€
€
C
C
©
(€
@

IF(IENDFL .NE. 1) THEN

INPUT THE REAL PARAMETERS.
CALL INREAL(1OUT,NAUX,RBIG,AUX)

INPUT THE BOUNDARY CONDITION INFORMATION.
CALL INBOUN(IOUT,NEQ,TBC,BV,QBC,XACTBC)

INPUT INITIAL VALUE INFORMATION.
CALL INIV(10OUT,ZERO,PIV,I11V,PTRB,XACTIV,UPPER,LOMVER, SPTRB)

IF THERE ARE NO BOUNDARY CONDITIONS, THERE ARE NOT ANY
TO SORT OR TEST, SO ADVANCE TO STATBEMENT 30.
IF(NBC .GT. 0) THEN

SORT THE BOUNDARY CONDITION INFORVATION IN ORDER OF INCREASING
TBC VALUES.
CALL SORTBC(NBC, TBC,BV,QBC,XACTBC,TSTOP, TSTART)

IF THE PROBLEM BEING SOLVED IS NONLINEAR AND NUMERICAL
DIFFERENTIATION IS NOT DESIRED, CHECK TO BE SURE THE USER
HAS RBVIBMBERED TO PROGRAM THE LINEARIZED VERSION OF THE NON-
LINEAR PROBLEM. IF THE USER HAS NOT DONE THIS, NUMERICAL
DIFFERENTIATION IS FORCED.
IF(LIN .EQ. O .AND. NDDE .NE. 0)

X CALL CKPROG(NEQ,TBC, IAST ,NDDE)

a0 aoaa aoaoa aa aoa aa a

THE FOLLOWING VARIABLES ARE INITIALIZED IN THIS SECTION OF CODE:

NVECT: = NEQ + NCN, WHERE NEQ IS THE NUMBER OF EQUATIONS
IN THE SYSTEM WITH NONTRIVIAL RIGHT HAND SIDES AND
NCN IS THE NUMBER OF EQUATIONS WITH TRIVIAL RIGHT
HAND SIDES. BOTH WERE INTEGER INPUTS.

1v: INITIAL VALUES VECTOR:; INITIALIZED TO 11V.

XACTIV: INITIALIZED IN SUBROUTINE INIV--DOUBLE
CHECKED HERE

TNORM: INITIALIZED TO 1 HERE; TNORM IS THE NORM FOR THE MDST
RECENT CHANGES IN 1V.

SNORM: INITIALIZED TO PNORM, A REAL INPUT GIVING THE MAXIMM
LENGTH OF CHANGE IN IV ALLOMED; IF ZERO, UNRESTRICTED
CHANGE 1S ALLOWED; SNORM IS USED IN SUBROUTINE MODIFY.

ITER: ITERATION STEP COUNTER; INITIALIZED TO ZERO

IDONE: INITIALIZED TO ZERO; A FLAG WHICH, IF SET TO 1,
INDICATES THAT THE LAST ITERATION IS BEING PERFORMED.

IF TIME-SHARING IS BEING USED, IOUT, ISWITC AND IAP2 ARE
ASSIGNED NEW VALUES AND ISWIT2 IS SET TO ZERO.

END IF

IF LITER = 0 OR 1, THIS IMPLIES THAT THE PROBLEM IS A SIMPLE
INITIAL VALUES ONE; FOR PROGRAWING EFFICIENCY, DON’T ALLOW
NEEDLESS NUMERICAL DIFFERENTIATION.

IF(LITER .LE. 1) NDDE = 1

NVECT = NEQ + NCN

QOO oo na

C
DO 40 I = 1,NVECT
IV(I) = 11V(1)
& CHECK FOR INPUT ERRORS FOR XACTIV.
IF(NBC .LE. 0 .AND. XACTIV(I) .GE. 0) XACTIV(I1) = -1
C THIS IS TO NEGATE THE 4 POSSIBLY SUBTRACTED IN THE MAIN LOOP.

IF(XACTIV(I) .LT. -1) XACTIV(I) = XACTIV(I1) + 4
4 a8 Na RN i i — i —]

TNORM = 1.
SNORM = PNORM
ITER = 0
IDONE = 0
C
C IF TIME-SHARING IS USED SET, RE-SET, OR CHECK THE FOLLOWING
C VARIABLES.
IF(IOUT .GE. 10) THEN
IOUT = IOUT - 10
ISWITC = 1
IAP2 = 10
C ISWIT2 IS A FLAG WHICH LIMITS OUTPUT ON THE TERMINAL IN
C SUBROUTINE TIMESH.
ISWIT2 = 0
END IF
C ___
(i
C ECHO THE INPUT DATA, PERFORM AN ERROR CHECK, CALCULATE NVLSTQ,
C THE NUMBER OF INEXACT BOUNDARY CONDITIONS, AND NVEXCT, THE
C NUMBER OF EXACT BOUNDARY CONDITIONS PLUS 1, AND INITIALIZE
C YCALC AND PB, ARRAYS USED IN SUBROUTINE STANAL .
CALL ECHO(1SWITC,NVEEXCT,NVLSTQ,NVECT,NAUX)
¢
C ___
C **x% THIS 1S THE START OF THE 'MIDDLE’ LOOP ****
C ___
DO 315 ITER = 1,LITER
C IF ISWITC = 1, INDICATING TIMESHARING 1S DESIRED, CALL
C SUBROUTINE TIMESH.
IF(ISWITC .EQ. 1)
X CALL TIMESH(IENDFL, I1SWIT2,NVECT, IV, PTRB,DELT,TSTOP,LITER, I0UT)
C
> IENDFL = 1 MEANS THE USER HAS INDICATED IN SUBROUTINE TIMESH
C THAT EXECUTION SHOULD BE ENDED.
IF(IENDFL .NE. 1) THEN
C
C BUMP THE ITERATION COUNTER
C NROWS, NRW, SUMBV, AND NEQOUT ARE INITIALIZED:
C NROWS: NUMBER OF ROWS IN THE S MATRIX
C NRW: VARIABLE USED IN OTHER SUBROUTINES--COUNTS THE
C NUMBER OF ROWS OF INEXACT BOUNDARY CONDITIONS THAT
C HAVE BEEN PLACED IN MATRIX S.
C SUVMBV: SUM OF THE BOUNDARY VALUE DISSATISFACTIONS
C (SUM OF THE DIFFERENCES BETWEEN THE CALCULATED
C BOUNDARY VALUES AND THE REAL ONES)
C NEQOUT: VARIABLE USED IN CONJUNCTION WITH MOUT TO DETERMINE
C WHICH STATE VECTOR ELBVENTS ARE TO BE PRINTED OUT
C AT CERTAIN TIMES
NROWVS = NBC + 1
NRW = 0
SUMBV =
NEQOUT = NEQ
IF(MOUT .GT. 0) NEQOUT = MOUT
C
C PDOIT IS A SUBROUTINE DESIGNED FOR THE PROFICIENT USER OF
C THIS PROGRAM (SEE USER’S MANUAL). IDOIT IS AN INTEGER INPUT
€ WHICH, WHEN NONZERO, INDICATES PDOIT IS TO BE CALLED.
IF(IDOIT .NE. 0) CALL PDOIT(SNORM)
C
C IF PDOIT WAS JUST CALLED OR THIS IS THE FIRST ITERATION,
C CALL SUBROUTINE INIT WHICH DOES THE FOLLOWING :
C IF THERE ARE ANY BOUNDARY CONDITIONS THAT SPECIFY INITIAL
C VALUES, INIT TRANSFERS THE BOUNDARY CONDITION INFORMVATION
C

TO v AND XACTIV, CHANGES XACFBC TO INDICATE THE CHANGES,

aan

aan

aOnnnaan

anaaaaaaanannnnn @)

ana

C
C

70

§0

90

100

KOUNT, DIV, PTRB, IPTR, NRANKC, AND NCOL ARE INITIALIZED,
AND TWO ERROR CHECKS ARE PERFORMED ON THE SYSTEM.
IF(IDOIT .NE. 0 .OR. ITER .EQ. 1)

CALL INIT(DIV,NVEXCT,NVLSTQ, ISWIT2)

WRITE A LINE OF ASTERICKS.
WRITE(12,70) (IAST,I=1,I1AP2)
FORMAT(/ , 5X,25A4,/)

FILL MATRIX Y AND ARRAYS YPTRB, YCALC, AND PB.
CALL FILLY

KOUT IS A FLAG THAT, IF SET TO 1, INDICATES THAT A LOT OF
INTEGRATION INFORMATION IS TO BE OUTPUT. IT IS SET TO ZERO
UNLESS TOUT (AN INTEGER INPUT CONTROLLING OUTPUT) IS EQUAL

TO 3 OR 4 OR UNLESS THIS IS THE LAST ITERATION.

IF 1IOUT = 4, WRITE OUT A MESSAGE.

KOUT = 0

IF(IOUT .GT. 2 .OR. IDONE .EQ. 1) KOUT = 1

IF(IOUT .GE. 4) WRITE(12,80)

FORVAT(1X/10X, "REPEATED TIMES ARE PARTICULAR SOLUTIONS’/)

TWO POINTERS USED IN BUILDING THE S MATRIX AND THE FIRST ROW
OF THE S MATRIX ARE INITIALIZED. IPEXCT POINTS TO THE ROW
IMMEDIATELY BEFORE THE NEXT ROW IN MATRIX S TO BE FILLED IN
WITH AN EXACT BOUNDARY CONDITION, AND IPLSTQ POINTS TO THE ROW
IMMEDIATELY BEFORE THE NEXT ROW IN S TO BE FILLED IN WITH AN
INEXACT BOUNDARY CONDITION. THE FIRST ROW OF S IS SET TO 1°S.
IPEXCT = 1

IPLSTQ = NMEXCT

DO 90 I = 1,NCOL
S(1,1) = 1.0
CONTINUE

TL 1S INITIALIZED TO TSTART; TL IS THE LAST VALUE OF THE
INDEPENDENT VARIABLE THAT WAS INTEGRATED TO.
TOUT IS THE INTERVAL OF THE INDEPENDENT VARIABLE THAT
SEPARATES INTEGRATION INFORMATION OUTPUT.
TOUTIM 1S THE NEXT VALUE OF THE INDEPENDENT VARIABLE
AT WHICH INTEGRATION INFORMVATION OUTPUT IS DESIRED.
IF THE FIRST BOUNDARY CONDITION DOES NOT OCCUR AT
TSTART (1.E. TSTART < TBC(1)), SET TOUTIM TO TSTART
SO THAT INTEGRATION OUTPUT WILL OCCUR AT THE START
OF THE 'NORMAL INTEGRATION ROUTE’. IF THE FIRST
BOUNDARY CONDITION DOES OCCUR AT TSTART (I1.E. TSTART =
TBC(1)), SET TOUTIM TO TSTART + TOUT SO THAT, AFTER ONE
FLOW THROUGH THE ’'NORMAL INTEGRATION ROUTE’, THE
>BOUNDARY CONDITION ROUTE’, BEFORE WHICH INTEGRATION
OUTPUT WILL OCCUR, WILL BE TAKEN.
TL = TSTART
TOUTIM = TSTART
IF(IDONE .EQ. 1) WRITE(12,100)
FORMAT (1H1)

IF THIS IS THE FINAL ITERATION, A TITLE EXISTS, AND

ISWITC = 0, WRITE THE TITLE.

IF(IDONE .EQ. 1 .AND. INDX .GT. O .AND. ISWITC .EQ. 0)
CALL TITLE(RTITLE, INDX, IAST, IAP2)

WRITE OUT THE ITERATION NUMBER.
WRITE(12,110) ITER,LITER

EEE VI N-Ta " VN TN ERE L o= MR VM IS -THE W RWAR Y. Gk u |V <L DL QR Yo R 12 S Ta LB

INTKEY IS A FLAG WHICH INDICATES WHETHER A BOUNDARY CONDITION
HAS BEEN REACHED OR NOT.
IN1 IS USED IN SUBROUTINE RKFOUR.
IF THIS IS THE LAST ITERATION, SET IN1 = 1; OTHERWISE
SET IN1 = NRANKC.
K POINTS TO THE NEXT BOUNDARY CONDITION TO BE REACHED.
TBC(K) POINTS TO THE VALUE OF THE INDEPENDENT VARIABLE AT
THE NEXT BOUNDARY CONDITION TO BE REACHED.
INTKEY = 0
IN1 = NRANKC
IF(IDONE .EQ. 1) INI = 1

anaaaaaa

¥¥*x THIS IS THE START OF THE ’INNER’ LOOP ****

/177 BRANCHES TO THIS POINT CAN BE MADE FR(M THE END OF EITHER
THE *NORMAL INTEGRATION ROUTE’ OR THE ’BOUNDARY CONDITION
ROUTE”’ .

120 CONT INUE

CHECK FOR THE END OF INTEGRATION FOR THIS LOOP.
IF(TL .LE. TSTOP) THEN

TEST FOR THE 'NORMAL INTEGRATION ROUTE’ OR THE ’BOUNDARY
CONDITION ROUTE’ BY TESTING WHETHER INTKEY = O OR 1,
RESPECTIVELY.

IF(INTKEY .NE. 1) THEN

¥Fx%k NORMAL INTEGRATION ROUTE ¥ ***

IF TL >= TOUTIM AND EITHER KOUT = 1 OR WE'RE AT AN
INITIAL CONDITION, THEN CALL SUBROUTINE INTOUT, FOR
INTEGRATION INFORMATION OUTPUT, AND UPDATE TOUTIM.
THE INITIAL CONDITION CONDITION IS INCLUDED IN CASE
TSTART <« TBC(1), INWHICH CASE THE PRINTING OF THIS
INFORMATION IS DESIRED ON THE FIRST RUN THROUGH THIS CODE.
IFC TL .GE. TOUTIM .AND. (KOUT .NE. 0 .OR.
X ABS(TL-TSTART) .LE. ZERO)) THEN

CALL INTOUT(NEQOUT,ZERO,TSTART,TL)

TOUTIM = TL + TOUT

END IF

a0 a0 OO aaoaoaaan

TL IS THE LAST VALUE OF THE INDEPENDENT VARIABLE TO
WHICH INTEGRATION HAS TAKEN PLACE. LET H BE EQUAL TO
DELT, A REAL INPUT, UNLESS THE NEXT BOUNDARY CONDITION,
AT TBCK, IS WITHIN THE NEXT INTERVAL OF LENGTH DELT,
IN WHICH CASE SET H TO BE TBCK - TL. IN THIS LATTER
CASE, ALSO SET INTKEY = 1 TO FLAG THE BOUNDARY CONDITION
AND SET SVNEXT TO TL + DELT, SO THAT, AT A LATER
INTEGRATION STEP, THE ORIGINAL INDEPENDENT VARIABLE
GRID MAY BE RECOVERED.
IF((TBCK .GT. TL+DELT) .OR. (NBC .EQ. O)) THEN

H = DELT

ELSE

H = TBCK - TL

INTKEY = 1

SVNEXT = TL + DELT

END IF

aaoaaoaoaaoaaan

SET T TO BE TL + H. PERFORM RUNGA-KUTTA INTEGRATION
ON Y FOR THE INTERVAL TL TO T. UPDATE TL.

T T RIIIIITIIIN ==~

anaQ

CALL RKFOUR

TL = TL + H
C
GO TO 120
C
C ___
C **x%%* BOUNDARY CONDITION ROUTE ****
C __
C
C IF KOUT = 1 OUTPUT INTEGRATION INFORVATION AND BUMP
C TOUTIM IF NECESSARY.
END IF
IF(KOUT .NE. 0) THEN
CALL INTOUT(NEQOUT,ZERO,TSTART,TL)
IF(TL .GE. TOUTIM) TOUTIM = TL + TOUT
END IF
C ASSIGN 1Q THE QBC VALUE FOR THE KTH BOUNDARY CONDITION FOR
C USE BY SUBROUTINE ROWOFS IN COMPUTING THE NEXT ROW OF S
C TO BE FILLED.
C IF THE BOUNDARY CONDITION 1S AN EXACT ONE, BUMP IPEXCT
C & ASSIGN THIS BUMPED VALUE TO NR, THE POINTER TO THE
C NEXT RONW OF S TO BE FILLED. IF THE BOUNDARY CONDITION
C 1S INEXACT, BUMP 1PLSTQ AND ASSIGN THIS VALUE TO NR,
C REVBVBERING TO BUMP NRW, A COUNTER OF THE NUMBER OF
C INEXACT BOUNDARY CONDITIONS FOR USE IN OTHER SUBROUTINES.
170 1Q = QBC(K)
C

IF(XACTBC(K) .NE. 0) THEN
IPLSTQ = IPLSTQ + 1

NRW = NRW + 1
NR = IPLSTQ
ELSE

IPEXCT = IPEXCT + 1
NR = IPEXCT
END IF

FILL IN THE NR’TH ROW OF S WITH THE K’'TH BOUNDARY
CONDITION INFORMATION.
CALL ROMOFS(NR,TBCK)

OO 00

BUMP K. CALCULATE SUMBV AND PRINT IT IF IT IS COMPLETED.
K=K+ 1
IF(K-1 .LE. NBC) | |
X SUMBV = SUMBV + ABS(S(NR,1) - S(NR,NCOL))
IF(K .GT. NBC) WRITE(12,200) SUMBV
200 FORVAT(///,” SUM OF BV DISSATISFACTIONS 1S°.,G15.7,///)

IF ALL THE BOUNDARY CONDITIONS HAVE BEEN CALCULATED AND THIS
IS NOT THE FINAL ITERATION, DON’T INTEGRATE OUT TO

TSTOP > TBC(NBC), BUT GO PREPARE FOR THE NEXT ITERATION.

IF(K .LE. NBC .OR. IDONE .NE. 0) THEN

IF K > NBC AND THIS IS THE FINAL ITERATION, SET TBCK
TO A FAKE VALUE OF TSTOP + 2 * DELT SO THAT INTEGRATION
WILL CONTINUE UNTIL TSTOP IS REACHED. OTHERWISE, SET
TBCK TO BE TBC(K) .

TBCK = TSTOP + 2 * DELT

IF(K .LE. NBC) TBCK = TBC(K)

aaaaa aaaa

IF WE’'RE AT A MULTIPLE BOUNDARY CONDITION, GO TO 170 TO
BUILD ANOTHER ROW OF S.
IF(ABS(TBCK-TBC(K-1)) .LE. ZERO) GO TO 170

IF TBCK, THE VALUE OF THE INDEPENDENT VARIABLE AT THE
NEXT BOUNDARY CONDITION, IS ALSO IN THE SAME INTERVAL

e B AR

aaa aaa

TO BE THE DIFFERENCE BETWEEN TBCK AND TL, AND LET INTKEY
RBVAIN AS 1, INDICATING WE'RE STILL AT A BOUNDARY CONDITION.
IF TBCK IS NOT <= SVNEXT, LET H EQUAL SVNEXT - TL, SO AS
TO GET THE INDEPENDENT VARIABLE BACK ON THE ORIGINAL
GRID, AND SET INTKEY TO ZERO, INDICATING WE’RE NOT
AT A BOUNDARY CONDITION.
IF(TBCK .GT. SVNEXT) THEN

H = SVNEXT - TL

INTKEY = O

ELSE

H = TBCK - TL

END IF

aaaaaan

aan

INCRBVEENT T, INTEGRATE FROM TL TO T AND UPDATE TL.
T=TL + H
CALL RKFOUR
TL = TL + H

GO TO 120

¥*¥*%% THIS IS THE END OF THE ’INNER’ LOOP **x*

FLOW COMES HERE AT THE END OF AN ITERATION, IF TL > TSTOP
OR IF K > NBC AND IDONE = 0.

END IF

END IF

a0

oX@!

BUILD DATA FOR A CONVERGENCE PLOT IF DESIRED.
IFC ICOP .GT. 0 .AND. IDONE .EQ. 0)
X CALL BUILD(ICOP,NEQ, IPLOT2,IPLT)

an

CHECK FOR THE FINAL ITERATION.
IF(IDONE .NE. 1) THEN
C IF TOUT IS NONZERO, PRINT S AT THIS TIME.
IFC TOUT .NE. O) THEN
WRITE(12,240)
240 FORMAT(1X// 2X,’'SAVE MATRIX"/
X 5X, "BOUNDARY VALUE,UNPTRBD SOLN, PTRBD SOLNS.....)

DO 260 I = 1,NROWS
WRITE(12,250) 1,SC(I,NCOL),(S(1,J),J=1,NRANKC)
250 FORMAT(2X,13,1P7G14.6/(5X,1P7G14.6))
260 CONT INUE

SAVE S IN SAVE AND PASS DET TO GJRWLS IN DETT. GJRWLS
SOLVES THE LINEAR SYSTEM REPRESENTED IN S; THE ANSWER
COEFFICIENTS ARE RETURNED IN THE LAST COLUWN OF S AND
THEN PRINTED.

END IF

DETT = DET

OEONOXQXQ!

@)

DO 280 J = 1,NCOL

DO 280 1 = 1,NROWS
SAVE(I1,J) = S(I1,J)
280 CONT INUE

CALL GJRWLS(S,NRSD,NCSD,NROWS ,NRANKC ,NVIEXCT,Y ,NCSD,
X NCSD,DETT,ZERO, IOUT, IPUNT, 0, PB,YCALC)

WRITE(12,290) (S(I,NOOL),I=1,NRANKC)
290 FORMAT (1X/3X, *CONSTANTS ’,1P7G15.7/(14X,1P7G15.7))
€ KQ IS USED IN OTHER SUBROUTINES.

e e o et S S s s i e S

anaan a0 a0

ananaan

CALCULATE THE NEW IV VALUES
CALL NEWIV(ANORM, TNORM, SNORM,DIV)

CHECK FOR CONVERGENCE. ICONV = 1 INDICATES CONVERGENCE.

ICONV = 1
DO 300 1 = 2 ,NRANKC
IFC ABS(S(I,NCOL)) .GE. CONV) ICONV = 0
300 CONT INUE

IF(C IOONV .NE. 0) THEN
IF CONVERGENCE HAS OCCURRED, CALL STANAL IF ISTAT > O,
SET IDONE TO ONE TO FLAG THE FINAL ITERATION AND RETURN
TO 60 FOR THE FINAL ITERATION.
NCSH 1S NEEDED BY SUBROUTINE STANAL
NCSH = NCSD /7 2 + 1
IF(ISTAT .GT. 0)
X CALL STANAL(SAVE ,NRSD,NCSD,NROWS ,NRANKC,NMEXCT, YCALC,
X NRYD, PB,DETT, ZERO, 10UT,S(1,1),S(1,NCSH) ,ALPHA)
IDONE = 1
IF CONVERGENCE HAS NOT OCCURRED, CHECK FOR WHETHER THE
LITER’TH SOLUTION HAS BEEN REACHED. [IF IT HAS NOT,
RETURN TO 60 FOR THE NEXT ITERATION. 1F 1T HAS BEEN
REACHED, CALL STANAL IF ISTAT < O, SET IDONE TO 1 TO
FLAG THE FINAL ITERATION AND RETURN TO 60 FOR THE
FINAL ITERATION.
ELSE IF (ITER .GT. LITER) THEN
NCSH = NCSD 7/ 2 + 1
IF(ISTAT .LT. O)
X CALL STANAL(SAVE,NRSD,NCSD,NROWS ,NRANKC ,NMEXCT, YCALC,
X NRYD, PB,DETT, ZERO, IOUT, S(1,1),S(1 ,NCSH) ,ALPHA)
IDONE = 1
END IF
ELSE
GO TO 325
END IF
EIESE
GO TO 335
END IF
315 CONT INUE

*#xx THIS IS THE END OF THE °MIDDLE’ LOOP ****

IF THE LAST ITERATION WAS JUST DONE, CALL SUBROUTINE PLOT
IF IPLOT > O, PRINT THE TITLE IF IT EXISTS, AND LOOP BACK
TO STATBMENT 10 TO PROCESS THE NEXT SET OF DATA OR END
EXECUTION.

325 IF(IPLT .GT. O .AND. IDONE .GT. 0)

X CALL PLOT(NEQOUT, IPLOT,IP,IPLT,GRID)

IF(INDX .GT. 0) CALL TITLE(RTITLE, INDX, IAST, 1AP2)
GO TO 10

x% THIS IS THE END OF THE 'OUTER’® LOOP **

335 END IF
END IF
STOP

olololololololoivioioioioioieeokololiolololololololololololololololo oo lolo kol o lololo ko Xo kOS]

C

10

20

SUBROUTINE ININT(IOUT,1BIG, 1P, IPLOT, IPLOT2,GRID,CQBC, IENDFL)

INTEGER I1ENDFL, IOUT, IP, IP2
INTEGER 1BIG(25), IPLOT(50,8), I1PLOT2(8)
REAL (QQBC(20), GRID(50)

THIS SUBROUTINE INPUTS THE INTEGER PARAMETERS NEEDED FOR
THIS PROGRAM.

INPUTS ARE: THERE ARE NONE.

OUTPUTS ARE:
IBIG: THE COVWDN BLOCK IBLK CONTAINS 25 INTEGER VARIABLES
WHICH ARE EQUIVALENCED TO THE 25 ELBVIENT ARRAY IBIG.
THE DESCRIPTIONS FOR THESE VARIABLES ARE INCLUDED
IN THE USER’S MANUAL.

I0UT: THE FIRST ELBVENT OF IBIG, WHICH CONTROLS OUTPUT
IN THE PROGRAM.

IP: THE NUMBER OF ROWS IN IPLOT AND THE NUMBER OF ELBVENTS
IN GRID.

IPLOT: A MATRIX INDICATING WHICH ELBMENTS OF THE STATE
VECTOR ARE TO BE PLOTTED.

IPLOT2: A matrix incidating which elements of the state
vector are to be plotted in a convergence plot

GRID: AN ARRAY OF INTERVALS USED FOR EXPANDING/ CONTRACT-
ING PLOTS.
QOBC: AN ARRAY THE ELBMENTS OF WHICH ARE USED IN REPRE-

SENTING A LINEAR COMBINATION OF THE STATE VECTOR
ELBVIENTS AS A BOUNDARY CONDITION.

IENDFL: A FLAG WHICH, WHEN SET TO 1, INDICATES THE PROGRAM’S
EXECUTION SHOULD CEASE.

IN GENERAL, IN1 INDEXES THE ELBMVENT OF IBIG THAT IS BEING
INITIALIZED TO THE VALUE IN2. THOLER IS A CHARACTER STRING
OF CQVWMENTS.

IN1 = 0 INDICATES A BLANK CARD HAS BEEN READ, WHICH SIGNALS
THE END OF INTEGER INPUTS.

THE °(IPLOT(IP,1Q),1Q=1,8),GRID(1P)’ PART OF THE READ STATBVENT
ONLY HAS MEANING IF IN1 = 16, IN WHICH CASE THE IPTH ROW OF
THE IPLOT MATRIX AND THE IPTH ELBVENT OF THE GRID ARRAY ARE
READ IN.

If IN1 = 21, then IPLOT2(IP,IQ) is used in place of IPLOT
to select convergence plot state vectors.

IF IN1 = 15, IN2 ELBVENTS OF ARRAY CQBC ARE READ FRQM THE
IMMEDIATELY FOLLOWING DATA RECORDS, 10 VALUES TO A RECORD.

IBLK IS INITIALIZED TO ’DEFAULT’ VALUES IN THE BLOCK DATA.

LOCAL VARIABLES:
INTEGER 1, IN1, IN2, IP9, 1Q, J
INTEGER IHOLER(S)

IP = 1

CONT INUE

READ(9,20,END=70) IN1,IN2, IHOLER, (IPLOT(IP,1Q),1Q=1,8),GRID(IP)
FORMAT(215,5A4,815,G10.3)

BUMP IP IF PARTS OF IPLOT AND GRID WERE JUST INITIALIZED.

IF(C IN1 .EQ. 16) IP = IP + 1

anan

a0 A0

O a0

30

40

50
60

70

IF (IN1 .EQ. 21) THEN
DO 25 1Q = 1,8
IPLOT2(1Q) = IPLOT(IP,IQ)
ENDIF

IF IN1 = 0 A BLANK CARD HAS JUST BEEN READ, SIGNALLING THE
END OF INTEGER INPUT. IF IOUT < 10 THEN PRINT IHOLER.

IFC IN1 .EQ. 0 .AND. IOUT .LT. 10) WRITE(12,30) IHOLER
FORMAT (15X, *BLANK CARD’,5X,5A4,//)

IF(C IN1 .GT. 0) THEN

IN1 > 0. IF IOUT < 10, ECHO THE INTEGER INPUTS JUST READ.
INITIALIZE THE IN1TH ELBMENT OF IBIG.

IF(C TOUT .LT. 10) WRITE(12,40) IN1,IN2,HOLER

FORMAT(* INPUT DATA’,215,5X,5A4)

IBIG(IN1) = IN2

IF IN1 = 15 AND IN2 > O, READ THE VALUES INTO CQQBC THAT ARE
TO REPRESENT A LINEAR COMBINATION OF Y ELBVIENTS AS A
BOUNDARY CONDITION.

IFC IN1 .NE. 15 .OR. IN2 .LE. 0) GO TO 10

DO 60 1 = 1,IN2,10
IP9 = 1 + 9
READ(9,50) (QQBC(J)),J=1,1P9)
FORMAT(10G8.0)

CONT INUE

GO TO 10
IENDFL = 1
END IF
RETURN
END

SUBROUTINE BUILD(IPT,NEQ, IPLOT2)

C THIS IS THE ROUTINE WHICH BUILDS THE MATRIX OF INITIAL VALUES
C VWHICH ARE PLOTTED BY THE CONVERGENCE PLOT REQUEST
C (INTEGER PARAMETER 21)

C ___
DIMENSION TL(300,9),A(50),1PLOT2(8)
CHARACTER*40 TITLE
COQVWIN/ JBLK/ID1(23),ITER, ID2(10) ,MITER
CAVMON/ 1BLK/ 10UT, LIN,NDDE, LITER
DATA TITLE/’ ITERATION CYCLES WITHIN ITERATION LOOP °/
I =1
K=1
XMAX = LITER
REWIND 20

€ Set matrix size
DO 3 1Q=1,8

3 IF (IPLOT2(IQ) .NE. 0) I = I+1

€ Read input values and set in array

5 READ(20,END=200)ID,T, (A(J),J=1,NEQ)
TL(K,1)=T
DO 6 1Q=1,8

IND = IPLOT2(I1Q)

6 IF (IND .GT. 0) TL(K,IQ+1) = A(IND)
K=K+1
IF(K.LE.300.AND.K.LE.KK) GO TO 5

200 KK=K-1
C Set file for later appends by INTOUT

BACKSPACE 20
WRITE(12,310)IPT
310 FORMAT(//,10X, CONVERGENCE PLOT OF Y(',12,7)")

IF (IPT .LE. 1) THEN

CALL Y8VSX(TL,KK,1,0.0)
ELSEIF (IPT. EQ. 2) THEN

CALL G300(TL,KK,1,XMAX,TITLE)
ELSEIF (IPT. EQ. 3) THEN

CALL VPLT(TL,KK,1,XMAX,TITLE)
ENDIF
RETURN
END

SUBROUTINE PLOT(NEQ, IPLOT, IP, IPLT,GRID)

C __
C THIS ROUTINE DOES ALL THE SET UP WORK FOR PLOTTING
C CALLED AT END OF INTEGRATION
C ___
DIMENSION IDIM(300),TL(300,9),A(50),1PLOT(50,8),GRID(50)
CHARACTER*40 TITLE
DATA TITLE/’ INDEPENDENT VARIABLE-END OF INTEGRATION °/
C SET XMAX TO 0 FOR AUTO SCALING
XMAX = 0.0
IP1=1P-1
REWIND 21

DO 190 1=1,IP1
DO 100 J = 1,300
READ(21,END=140) IDUM(J) , T, (A(K) ,K=1,NEQ)
TL(J,1)=T
DO 110 1J=1,8
IND=1PLOT(1,1J)
IF(IND.GT.0) THEN
TL(J,1J+1) = ACIND)
ELSE
GOTO 100
END IF

110 CONTINUE

100 CONTINUE
CALL ERRORS(-6)

140 NDPS=J-1

C Set file for later appends by INTOUT
BACKSPACE 21
N=1]J
NN=N-1
NGRID=0

IF(IPLT.LE.1) THEN
WRITE(6,150) (IPLOT(1,1K),IK=1,NN)

150 FORMAT(///,258X, ++++++ T 1 M E (DOMN) VS Y (,8(12,7,7))
WRITE(6,160)
160 FORMAT(1H+, 85X, ") ++++++7)

CALL Y8VSX(TL,NDPS,N,GRID(1))
ELSEIF(IPLT.EQ.2) THEN

CALL G300(TL,NDPS,N,XMAX,TITLE)
ELSEIF(IPLT.EQ.3) THEN

CALL VPLT(TL,NDPS,N,XMAX,TITLE)
END IF

190 CONTINUE

RETURN
END

aaoaoaaoaaonanaanan

a0 anan

an

V)]

an oK@

an

SUBROUTINE G300(TL,NDPS,N,XMAX,TITLE)
This routine is used to send plotted output to the
DASHER G300 graphics terminal.

Input parameters are:

TL — A matrix of the following:
Column one is the independent variable values.
Columns 2-9 contain up to 300 dependent values.
NDPS - The number of rows (values) in TL
N - The number of columns (dependent vars+1) in TL
XMAX - If not zero, defines max indep. range (for iterations)
TITLE - Title to print on bottom

REAL TL(300,9),XPDS,YPDS,XMIN, YIN, XMAX , YMAX

INTEGER XPST,YPST,XPEN, YPEN, XPNT, YPNT ,DEBUG, CHT ,CLEN
CHARACTER*40 TITLE

Set up device—dependent parameters

XPST,XPEN - Start & end points for x points
YPST,YPEN - Start & end points for y points

CHT - Height of a text char in pixels

CLEN - Length of a text character in pixels

XOFF — offset from X axis in pixels

YOFF - offset from Y axis in pixels

PARAMETER (XPST=100, XPEN=635, YPST=50, YPEN=438)
PARAMETER (CHT=16 ,CLEN=16,XOFF=2,YOFF=4)

If XMAX not supplied (0) set XMAX to largest point. Compute XMIN.
IF (XMAX .EQ. 0) THEN

XMIN=TL(1,1)

XMAX=TL (NDPS, 1)

ELSE

ENDIF

Compute maximum and minimum Y values
YMIN = 1.0E+75
YMAX = —-1.0E+75
DO 10 1 = 1,NDPS
DO 10 J = 2,N
IF (TL(1,J) .GT. YMAX) YMAX = TL(I1,J)
IF (TL(I,J) .LT. YMIN) YMIN = TL(I,J)

Avoid scale duplication if YMAX = YMIN
IF (YMAX .EQ. YMIN) THEN
YMAX = YMIN + 1
ENDIF
IF (XMAX .EQ. XMIN) THEN
XMAX = XMIN + 1
ENDIF

Compute units/pixel for X & Y axes.
XPDS = (XMAX-XMIN) /(XPEN-XPST)
YPDS = (YMAX-YMIN) /(YPEN-YPST)
IF (XPDS .EQ. 0) XPDS = 1
IF (YPDS .EQ. 0) YPDS = 1
Allow user time to read screen before plot
PRINT *,’Enter (New Line) when ready to see plot:’
READ(10,2,END=20) DEBUG
If DEBUG requested, print TL matrix
IF (DEBUG .GT. 0) THEN
PRINT *,’***Debug requested***’

X 0 PR

aQ a O ()8(3()O

PRINT *,’ = ——————— :

PRINT *,’Indep. State variable(s)’
PRINT *,’ var.’

PRINT *,’———=== —mmmmmmee e ’
PRINT *

DO 15 1 = 1,NDPS
PRINT * (TL(1,J),J=1,N)

PRINT *, ’XMIN,XMAX,YMIN, YMAX = * XMIN, XMAX, YMIN, YMAX
PRINT *,'XPDS,YPDS = ’ ,XPDS,YPDS
ERING === === ’

’

PRINT *,’Press (New Line) to continue...
READ(10,2,END=20) 1
ENDIF

Perform set—ups for putting to G300.
Enter mnemonic mode

PRINT *,’<36>G<42>1"

Erase screen

PRINT *, ERASE’

Set drawing color to green

PRINT *,’COLOR 1’

Reset text attributes

PRINT *,’TEXT RESET’

Put y-title

PRINT *, TEXT EXTENT -90 CELL 90’
PRINT *,’TEXT ’,0,’ ’,YPEN-CHT,’ STATE VARIABLES | *’ N-1,’%*’
Put top and bottom points
PRINT *, TEXT RESET’

PRINT *,°TEXT °,CLEN+2,’ ’ YPEN-CHT, ’,6YMAX
PRINT *,’TEXT ’,CLEN+2,’ ’,YPST,’ ’,YMIN
Define the line styles for the eight line types
PRINT *,’LSTYLE DEFINE 10000000100000001°
10001000100010001°

11111000111110001°
10101010101010101°

PRINT *,’LSTYLE DEFINE
PRINT *, LSTYLE DEFINE
PRINT *,’LSTYLE DEFINE 11110000111100001°
PRINT *, LSTYLE DEFINE 11100000111000001°
PRINT *, LSTYLE DEFINE 6 11001100110011001"°
PRINT *,’LSTYLE DEFINE 7 11000000110000001"°
Draw chart axes

PRINT *,'LINE * ,XPST,’ ’,YPST,’ ’,XPST,’ ’,YPEN
PRINT *,’LINE ’ ,XPST,’ ’,YPST,’ ’,XPEN,’ ’ ,YPST
Draw N-1 lines.

IF (DEBUG .NE. 0O0) THEN

*

PRINT *,’LSTYLE DEFINE
*
*

N W= O

PRINT *,’-——PLOT DEBUG: ’
PRINT *,° X RANGE = ’ ,XMIN, XMAX
PRINT *,~ Y RANGE = ’ ,YMIN, YMAX
PRINT *,” X START, INC = ’ ,XPST,XPDS
PRINT *,° Y START, INC = ’,YPST,YPDS
ELSE
CONTINUE
ENDIF

DO 200 J = 2,N
Plot initial point for this col
XPNT = INT(XPST+(TL(1,1)-XMIN)/XPDS)+XOFF
YPNT = INT(YPST+(TL(1,J)-YMIN)/YPDS)+YOFF
PRINT *,’POINT ’ ,XPNT,’ ’,YPNT
Plot rest of points if necessary
IF (NDPS .GT. 1) THEN
PRINT *,’LSTYLE *,J-2," 1 O’
DO 100 I = 2,NDPS
IF (DEBUG .NE. 0) THEN
PRINT *,” **x% X=" TL(I,1),"’ Y=",TL(I1,J)
ENDIF

XPNT=INT(XPST+(TL(1,1)-XMIN) /XPDS) +XOFF
YVPNT=INT(VPRT+(TI (1 T)—WMIN) /VYPDS)+YOEE

100

200

300

999

D= O

PRINT *,’LSLINE LAST ’ ,XPNT,’ ’,YPNT
QONT INUE
ELSE
CQONT INUE
ENDIF
CONT INUE
Print x labels
PRINT *,°TEXT *,XPST,’ ’*,YPST-CHT, ’,XMIN
PRINT *,’TEXT ’,XPEN-2*CLEN,’ °’ ,YPST-CHT,’ ’,6 XMAX
Print line types
PRINT *,’TEXT ’,XPST,’ ’,YPST-2*CHT,’ ’,TITLE
PRINT *,°TEXT O ’,YPST-3*CHT,’ LINE LEGEND: °’
PRINT *,’LAST TEXT’
DO 300 I = 1,(N-1)
PRINT *,’TEXT LAST ” Y’,I,’ »’
PRINT * °LSTYLE ’,I-1," 1 0O’
PRINT *,’LSLINE TEXT ’,1*50+XPST,’ ’,YPST-3*CHT
Return to normal mode
PRINT *,’<36>G<42>0’
Wait for user to see graph before continuing.
PRINT *,’Graph finished...Press (New Line) to continue’
READ (10,1,END=999,ERR=999) 1
RETURN
Formats
FORMAT (A1)
FORMAT(11)
END

