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ABSTRACT

This paper considers models of physical phenomena, in particular

models from population dynamics. The main model of concern is a

combination of two previously developed models: the model of non-linear

age dependent population and the classic Lotka-Volterra model of

interacting predator and prey populations. It is shown that this model has

a unique solution for all time, and this solution is bounded for finite

time. A particular case is studied by computer simulation, and the results

show that indiscriminate eating leads to a stable periodic relation between

the predator and the prey, while selective eating leads to nonstable

behavior. It is suggested that age-selective predation can be a

stabilizing agent in a predator-prey scheme.
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1. Introduction*

This paper will consider the use of mathematical models in the study

of natural events, in particular in the area of population dynamics.

1.1 Introduction to Modelling

The basic assumption behind all models is that there is some logical

structure underlying natural happenings. Whether or not this assumption is

valid is an important point, although we will not concern ourselves with it

in this thesis. A model simplifies the study of natural events by

isolating the event to be studied from its background. Let us define what

it means to be an accurate model: a model is accurate if it retains many

of the salient features of the situation, and if the conclusions of the

model compare favorably with what is observed in nature. Modelling is not

just an exercise in abstract mathematics, as it takes a thorough

understanding of the real forces involved in an event.

Given the basic assumption that there is some logical structure, it is

a fairly straightforward, although not necessarily easy, process to develop

a model. The first step is to write down a system of relationships which

describes everything that might influence the event. Then by translating

these relationships into formulas, form a set of mathematical equations

incorporating all, or as many as is possible, of these relationships. This

part of the process is an art, as there is not usually a unique

mathematical expression for each set of relationships. Some careful

choices have to be made, since the different expressions may result in

different conclusions. Another difficulty is that it may not be known how

to translate some relationships accurately into mathematics. Also, when

*This paper conforms to the style of The American Mathematical Monthly.
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developing a model it is sometimes hard to keep in mind that the model is

supposed to represent a natural event. Thus a mathematical assumption

could be made which would turn out to be a very poor assumption. This

leads us to the major concern in the creation of a model.

With modern science and mathematics it would be possible, given enough

time, to model everything that happens in the world. The problem, then,

would be that while very accurate, the resulting expression would be

totally unsolvable, and thus useless. To make this model useable some

compromises would have to be made, but some accuracy would then be lost.

Now consider the opposite case: a model of the world based on a simple

relationship, like everything changing at a constant rate. This model is

easily solved, even by a first year calculus student, but because it is so

simple, it would not be at all accurate and, like the complex model above,

would supply no useful information. This shows that the important part of

modelling is not absolute accuracy, but a proper balance between accuracy

and solvability. The best, meaning most successfully used, models are

those that have maximum accuracy while remaining solvable.

1.2 Population Dynamics

The type of models which this paper will discuss come from the area of

population dynamics. Population dynamics is concerned with the growth of

one or more populations under various circumstances. Population growth is

a popular subject of modelling, because the basic relationships are fairly

simple (birth and death rates), there is data available to test the models,

especially for human populations, and the results of the model have

importance for future planning. Another advantage of population dynamics

is that as a mathematical field, it is young enough to have some simple
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unexplored areas left, and it is old enough to have developed a very good

foundation. Also, the history of population dynamics is well documented,

and reads like a lesson in model development.

1.2.1 Single Species

Although human population growth has been a topic of discussion among

philosophers and politicians since before Christ, the first person to do

any quantitative work in this area was the Reverend Thomas Malthus

(1768-1834). Malthus was not a mathematician, but more of a social

philosopher. In his paper "Population: The First Essay," [1] published in

1789, he discussed what he saw as the laws governing human population

growth and the logical result of these laws. Malthus' assumption was that

the growth of the human population is proportional to the total

population. The mathematical translation of this assumption is that

population grows geometrically. (See Appendix A.l for the mathematical

details.) Malthus also thought that food supplies would increase only

arithmetically, implying that there was some upper limit of the population

that could be supported. He realized that birth and death rates govern

population growth, so for a stable population either the death rate had to

increase or the birth rate had to decrease. Since Malthus believed "that

the passion between the sexes is necessary and will remain nearly in its

present state," he concluded that famine and starvation would be the only

ways to limit population growth and, thus, are inevitable. This idea is

not that strange in nature, as animals and plants reproduce as much as they

can causing a population larger than the environment can support. Then

part of the population will either starve to death or fall prey to other

animals, reducing the population to a sustainable level. Fortunately for
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us, Malthus' model is not accurate for human populations in general.

However, it is usable for small populations with unlimited resources, like

U. S. population before the 1840s. An important lesson is to be learned

from this model: linear models are, in general, not accurate.

The next page in the history of population dynamics is related to the

significance of the 1840s to U. S. history. In the 1840s the ever

expanding U. S. population reached the West coast, thus limiting the room

to grow. This oversimplification of history brings us to the idea

presented by Verhulst in 1839. Verhulst used the basic assumption of the

Malthusian model, but added the idea that the environment could only

support a certain population. This population is the carrying capacity for

the environment. So now instead of always growing geometrically, the

Verhulst model predicts that the growth rate will depend on the total

population times the room left in the environment. The major result of

this is the population is always below the carrying capacity. (See

Appendix A.2 for the mathematical details.) The Verhulst model was

relatively unknown until Pearl and Reed [2] rediscovered it in 1920 while

working with U. S. population predictions. Using data from the 1700s and

1800s the Verhulst model accurately predicts U. S. population until 1950.

Today the Verhulst-Pearl equation is the standard of single species

population dynamics as it combines good accuracy with explicit solvability.

As the Verhulst-Pearl equation was an improvement of the Malthus

model, the Verhulst-Pearl equation can be improved. Some of the first

modifications were to include another term to account for small

discrepancies between the model and actual population growth. Since then

others have used time dependent birth and death rates, and changing
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carrying capacities. These are just a few of the many possible

modifications, but in most cases when the final calculations are made, it

will be found that these changes affect the accuracy very little. The loss

in solvability, however, is often quite large, to the extreme of total

unsolvability. These fine adjustments are not the answer to give new

insight into human population growth.

To take the next step in population dynamics a new direction is

necessary. The improvement we are interested in is the addition of age

structure to the birth and death rates. This is a radical departure from

previous work, as now we can calculate the change in the age distribution

of the population over time, rather than just the change in the total

number. This will allow us to answer more important questions than just

what the total population is, like how many people between ages 18 and 22

will there be in the year 2000, or how many people will there be over the

age of 65 in 1990. Given an initial population distribution and the birth

and death functions, we can construct a mathematical equation which would

allow us to calculate the number of persons at each age for all time. (See

Appendix A.5 for details) The application of this to planning for the

future is almost unlimited. The resulting mathematical expression is, of

course, more complex than the previous models, as the relationships are

more complicated, but it is still solvable. The mathematical equation is

known as the Sharpe-Lotka equation (1925) [3,4]. The Sharpe-Lotka model is

linear, so in a sense it is like the Malthus model with age structure.

Because it is linear, it is unstable, so it does not give too much useful

information, unless the initial population is small and the resources large

in comparision. The next logical step would be to improve the Sharpe-Lotka
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model, like the Malthus model was improved into the Verhulst-Pearl model.

This has been done recently by Gurtin [5], in a paper on non-linear age

structure. He assumes that the birth and death rates are dependent on age,

but also on the total population. This makes for a fairly complex model,

but it is still solvable, and as he shows, it is stable, given the proper

restraints.

Again more improvements could be made. Other possibilities are using

time dependent birth rates, age and sex structure, or some other

modification. But again we have reached the optimization point between

solvability and accuracy. To realize a small increase in accuracy, we must

lose a large amount of solvability. So we must approach the problem from

another viewpoint.

1.2.2 Multiple Species

Now we will leave human population dynamics for awhile, and discuss

animal populations. All of the previous models work just as well for

animal populations, as for human populations. However, thre are factors

that affect animals that do not affect humans, primarily interaction with

other animals. Consider a case where two groups of animals are competing

for a common food source. Each group would have its own birth and death

rates (as complex as we want them to be, from above), but the death rate

should depend on the population of the other species. In this case of

competitive hunters, using a linear model, the birth rate for one species

would increase as the population increases, but would decrease as the

population of the other animal increased. The same would be true for the

other animal group. So we will have two equations which are

interdependent.
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Now we will use the same considerations to look at the situation where

one species eats the other. This is the predator-prey model. In this case

the interaction between the two species increases the predator and

decreases the prey population. Taking the linear model, we have the

predator population decreasing with more predators, as there would be more

competition, and increasing with more prey. The prey population increases

proportionally to the number of prey, like the Malthusian model, but

decreases with and increase in the predator population. This model is

easily solved and, while apparently complete, is very unstable. The choice

of the constant for the birth rate of the prey is so critical, that a small

change could change the growth from geometrically increasing to

geometrically decreasing. (See Appendix A.3 for the details.) This result

reaffirms what we learned before: linear models are unstable. We need to

improve the accuracy of the model.

The improvement that will solve our problem is based on the work of

Lotka and Volterra [6,9]. Their assumption is that the change should be

dependent not just on the other population but on the interaction between

the two populations. With this assumption even if there is an enormous

number of predators, the change in the number prey will be small, if the

number of prey is small. The model which results from this assumption is

called the Lotka-Volterra model, and is usually associated with a

predator-prey relationship. The advantage of this model is this model is

no longer linear. Unfortunately, one disadvantage is it is not solvable in

a closed form. Some qualitative results can be calculated. (See Appendix

A.4 for the details.) The important result is that the model predicts a

periodic relationship between the predator and the prey, which is
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comparable to what is seen in nature. Lotka-Volterra is like the

Verhulst-Pearl equation, in that it is highly successful, because of its

combination of simplicity with good accuracy and solvability.

No model is perfect, some are just better than others. In the above

case, the linear model was highly unstable, and thus useless, while the

Lotka-Volterra model predicts stable oscillatory behavior, similar to what

is found in nature. It seems that the Lotka-Volterra model could also be

improved. For instance, one could add higher order interaction terms, or

make the birth and death rates time dependent, but as before, these

improvements (whether they would actually improve the results or not is

highly questionable) come at the expense of solvability while adding little

accuracy [7]. One possibly profitable change would be to add age structure

to the interactions. Just adding age structure to the birth and death

rates would not make much difference, but if the interaction is also based

on age then some interesting and useful results may be found. If one looks

at the typical predator-prey relationship in nature, you have a small

number of predators eating on a comparatively large number of prey, but the

prey are eaten selectively, by age. For example, lions in the plains of

Africa eat only those they can easily catch, usually the young, the old,

and the sick. If a model of interaction could reflect this relationship it

would be more accurate than previous models. Also, questions about the

effects certain discriminatory eating habits would have on the age

distribution of the prey could be answered. This thesis will develop such

a model. It combines the interaction from the Lotka-Volterra model with

the age structure for a single species placed upon the prey. The

groundwork for this idea has been established by Gurtin [5,8].



9

The rest of this paper is divided into three sections. In Section 2

we develop our model formally, state and prove the existence and uniqueness

of a solution for all time, and discuss some of the consequences of this

mathematical study. Section 3 contains the development and results of the

computer simulation of our problem. And finally, in Section 4 we state our

conclusions.
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2. Development and Solution of Model

We will use the following notation throughout:

R+ = [0,00)

C(A:B) = if: A + BI f is continuous}

C(A) = C(A�)

C+(A:B) = {f E C(A:B)I f � O}

L1, Loo are sets of continuous functions whose integrals are finite.

2.1 Introduction of Problem

To create the model of a predator-prey system with age structure, we

need to combine two models. For the prey population we will use the

formation of the Sharpe-Lotka model (see Appendix A.5) with a few changes.

The birth function will remain the same, but the death function �(a) is

replaced with �(a,t;Q), i.e. it depends on the predator population. The

death function will now be:

S
n(a,S,t;Q) = exp(- J �(a,a+t-S;Q)da)

a

n(a,t;Q) n(O,a,t;Q)

For the predator population, Q(t), we will use the relationship from the

Lotka-Volterra model of predator-prey interaction. So, we have:

�t Q(t) = -cQ(t) + dQ(t)P(t),

where c, d > 0 constants. To complete our problem we need initial

conditions. For the prey population we have �(a) = p(a,O), the initial

population distribution, and for the predator population we have

QO= Q(O), the initial population.
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Before we start we need to lay down some basic hypotheses, which we

will assume are always satisfied. Some of these are of a technical nature,

while some are inherent to the problem, like �, B, $ > O.

(HI) $ £ LlOR+) is piecewise continuous

(H2) � £ C(IR+ x JR+) , B £ C(IR+); d
�(a,t;Q) exists for all a � 0,dQ

t � 0; �(a,t;Q) and �Q �(a,t;Q) as functions of Q belong to

CQR+: L (R+».
00

(H3) $ � 0, � � 0, B � 0, QO � O.

It is important to note that the formula for B(t) will not

necessarily hold for t = 0, because of the arbitrary initial conditions.

It will hold at t = 0 if and only if the following restrictions are

placed on $(a):

$(0)
00

f B(a)$(a)da
o

Since the initial conditions will be, in most cases, totally arbitrary, we

will not require that $(a) satisfy this restriction (Gurtin [5]).

Now we have the following:

(2.1) B(t) f� B(t-a)n(t-a,t;Q)B(a)da + f� B(a+t)n(a,a+t,t;Q)$(a)da

(2.2) pet) J� n(t-a,t;Q)B(a)da + f; n(a,a+t,t;Q)$(a)da

(2.3) Q(t) Qo exp(f� - c + dP(a)da)

where

n(t-a,t;Q)
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TI(a,a+t,t;Q)

This is our predator-prey model with age structure. Now to solve it.

2.2 Existence and Uniqueness of Solution

The basic outline of our method for finding a solution is to first

show we have a unique solution up to time T > 0 for some sufficiently

small T (Theorem 1). Then with another assumption, show that the

populations grow at an exponential rate at worst (Theorem 2), and from this

we show that a solution exists for all time (Theorem 3). First we need to

establish some basic lemmas.

Lemma 1 (Gronwall's Inequality)

If f(t), �(t), and k(a,t) are continuous functions, and

�(t) � f(t) + fg k(s,t)�(s)ds

then

where

Proof (see Brauer and Nohel [111)

Lemma 2 (Banach's Fixed Point Theorem)

Consider a metric space X = (X,d), x * ¢. Suppose X is complete and

M: X � X is a contraction on X, i.e. for some a < 1, d(Mx,My) � ad(x,y)

for all x,y E X. Then M has exactly one fixed point, i.e. there exists

a unique x E X such that Mx = x.

Proof (see Kreysig [10])
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Theorem 1

There exists aT> 0 such that the problem has a unique solution up to

time T.

Proof

Consider the equation for Q(t) (2.3), for fixed P(t) E C+[O,T], this

equation has an exact solution, call it QT(P)(t). For this fixed value of

Q, the equation for B(t) (2.1) is a linear Volterra integral for B(t).

This means that it can be solved using Laplace transforms for a unique

B(t). Call this solution BT(P)(t). Now, substituting the two solutions

QT(P) and BT(P) into the equation for P(t) (2.2), we can define an

operator PT(P) on C+[O,T]. The formula for PT(P) is:

Jg TI(t-a,t;QT(P»BT(P)(a)da + J; TI(a,a+t,t;QT(P»�(a)da •

From our hypothesis, TI, BT(P), and � are all continuous and

non-negative on �+ so PT maps C+[O,T] into C+[O,T].

Now all that needs to be done is to show that there is some

p(t) E C+([O,T]), such that PT(P) P. The next lemma will show that such

a P(t) exists (using Lemma 2). If we have such a p(t) then it will be

unique, and thus the corresponding Q(t) will be unique, and finally B(t)

will be unique. The set of equations P(t), Q(t), and B(t) will be the

unique solution to our problem up to time T > O.

The advantage of this next lemma is that it is constructive, that

means it will tell us how to find the fixed point P(t), rather than just

stating that it exists.
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Lemma 3

There exists T > 0 such that the operator PT(P) defined in the

previous lemma has a unique fixed point.

Proof (see Appendix B)

It is important to note that nothing has been said about the size of

T, except that T > O. This is just a statement of local existence; a

statement of global existence is desired, but it is seemingly unobtainable

by this present approach. We need the added assumption that the birth rate

is bounded. This, along with the hypothesis concerning �, will give us a

bound on the growth of the population. The next result is important

because it shows that P(t) and B(t) grow at most like a Malthusian

population.

Theorem 2

If P(t), Q(t), and B(t) are solutions to the problem for 0 < t � T, and

sup (S(a)) < +00, then
O<t<T

where

Po = Joo CP(a)da0

�O inf �(a,t;Q)
O<t<T
a>O

o - S -

�O-

0

Proof (see Appendix B)
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Now with this result we can show global existence.

Theorem 3

If So (from previous Theorem) < +00 then the problem has a unique

solution for all time.

Proof (see Appendix B).

2.3 Discussion of Results and Conclusion

So we have a solution for our given problem. That is, we have a

mathematical solution. Unfortunately the existence and uniqueness of the

solution tells us nothing of the properties of the solution. As it stands

now, there are many unanswered questions. Like, is the solution bounded

for all time, or better yet, does it exhibit periodic behavior? Even a

simple question like what the solution looks like, is unanswerable from the

work done so far. However, before we attmpt to answer any of these

questions, let us look at exactly what the mathematics tells us.

First, by construction, the solution equations for P(t), B(t), and

Q(t) are non-negative and continuous. This means that the age

distribution for the prey, p(a,t), has at most one discontinuity (at

a = t, from compatibility requirements). Second, the prey population and

the prey birth rate each grows at most geometrically (Theorem 2). The

final result, is that a necessary condition for global existence is that

the birth rate be bounded. Although the mathematics tells us little about

the properties, it is useful because of its generality. Since the birth

and death functions are used in a most ambiguous form, these results would

be true for any set of birth and death functions.
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The next step in looking for more answers would be to either try some

sample problems or delve deeper into the mathematics and try to determine

the existence and stability of some equilibrium populations. The second

option would be best, but it is beyond the scope of this paper. In

Gurtin's study of non-linear age structure [5], he examines the properties

of an equilibrium solution, but since he is only considering one

population, his results are not applicable here. Our approach then, is to

take a sample problem and write a computer program to arrive at a numerical

solution. The assumption in doing this is that the model is complex

enough, so that a common-sense problem would give fairly typical results.

The details of this work are in the next section. Of course, it is not the

intent of this thesis to imply that a successful computer simulation of the

problem constitutes a rigorous proof, however, the results from this work

show that the additon of age structure and age-dependent predation does not

change the general relationship between the two species from what was found

from the Lotka-Volterra model, for a constant eating rate. Figure 2.1 is a

graph of a typical solution to the Lotka-Volterra model, and Figure 2.2 is

a typical result of the computer simulation. The similarity between the

two curve is remarkable, but this is to be expected (see Gurtin [8]). Now

comes the surprising result. If we use a polarized prey selection process,

where the predator eats only the young and the old, the resulting curve is

not stable, but spirals into a equilibrium point (see Figures 2.3 - 2.5).

There is nothing in the model that would predict that such an eating

process would stabilize the relationship, and as a matter of fact, Gurtin

[8] considered a similar situation and found that the results were totally

unbounded.
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This model could be improved. Making the birth and death functions

dependent upon the prey population, as well as the age and the predator

population, would be a logical change. This would make the equations for

the prey population highly non-linear and probably very stable. Another

reasonable improvement would be to add the physical limitations of the

environment, by considering the density of the population. Beyond these

two, any other improvements to this model would be purely pedantic, since

this model has almost exceeded the bounds of solvability, as is.
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3. Computer Simulation of Sample Problem

The assumption made at the beginning of this computer simulation of

this problem, is that the solutions are fairly stable. From this

assumption, which we will soon see is not that unreasonable, we chose to

approach the problem by approximating the functions P(t), B(t), and Q(t)

by piecewise linear functions. Using the Finite Element Method, we were

able to create a computer program which could give us some of the answers

we needed. The first thing to consider is that there are many constants

and known functions involved in the expression of our problem. For most of

these common sense values were taken. Of course, it would have been best

to use values from a real situation, but there are three problems with

this. First, we did not have the time to search for data for our problem,

second, even if we had some real data, the values needed in the model are

not always well-defined, so it would still require some approximation, and

third, the object of this computer simulation is to test the general theory

of the model, not some particular case. So some trial and error was used

to find some numbers that seemed reasonable. For the birth function we

used the standard function, which starts out equal to zero at t = 0 and

then increases to the maximum birth rate at some optimal age and then

decreases asymptotically to zero after that. We asumed that the death

function was of the form:

�(a,t;Q) �o + f(a)Q(t),

where �O is the natural death rate, and f(a) is the selective eating

function for the prey. This function was chosen because it is similar to

the factor in the Lotka-Volterra predator-prey model, and it is fairly easy
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to work with. The initial conditions were chosen to be consistent with

other constants.

The process for calculating the approximate solution is to start with

an initial guess at t = 0, and iterate using the equations for P(t),

B(t), and Q(t) to get the value at time = t + dt. The idea is very

similar to the method used in the proof of Lemma 3. The advantage to this

process is that by iterating many times the error can be kept very small,

and that results can be produced at any time.

The results of this computer simulation can be seen in Figures

2.2 - 2.5 of Section 2. The only difference between the 4 graphs is the

function chosen for the selective eating process. In Figure 2.2 both

curves represent constant eating rates, with the outside one being a low

rate and the inside one being a high rate. When this graph was originally

done it was thought that any selective eating process with values between

the high and low rate would result in a graph which lies between these two

curves. Figures 2.3 - 2.5 show that this is not the case. Selective

eating causes a spiralling effect, where the populations approach the

equilibrium point asymptotically. As we said before, this was not at all

expected.
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4. Conclusion

This model is more accurate than the Lotka-Volterra predator-prey

model, since the age structure gives us more information about the prey,

and allows us to have age-structured predation. However, too much has been

lost in solvability. At this point, the only results come from a computer

simulation, and most of those results cannot be explained. So for any

situation where information about the age distribution of the prey is not

needed, the Lotka-Volterra model is adequate. The predator-prey model with

age-structure could be made better, if more work is done to try and explain

some of the behavior seen in the computer simulations. We suspect that it

will not be at all easy to show the spiralling effect as a result of a

selective eating process.

The future of population dynamics will probably be like its past.

Many people will work at making modifications to existing models, until a

new idea comes along for a completely different type of model. However,

the Verhulst-Pearl equation and the Lotka-Volterra model will still be the

standards of population dynamics, because of their fine balance between

accuracy and solvability.
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Appendix A

1. Malthusian Model

The assumption of the Malthusian model is that the rate of change of

the population is proportional to the population, that is:

�t P(t) aP(t),

where p(t) is the total population at time t, and a is the growth

factor. Solving this we arrive at the following equation:

P(t) at

POe , Po is the initial population

Thus for a > 0, P(t) grows without bound. See Figure A.l.

2. Verhulst-Pearl Equation [2]

The Verhulst-Pearl equation is:

�t P(t) aP(t)(b - P(t»,

where a, P(t) are as defined above, and b is the carrying capacity.

Solving this equation we get:

p(t)
b

If Po < b then P(t) approaches b asymptotically. See Figure A.2.

3. Linear Predator-Prey Model

The system of equations associated with the linear predator-prey

model, where Q is the predator, and P the prey, is:



15

/
I
I
I
/
I
/
/

/'/
,.
/
/
/
/
/
/
/
/

/
_ __ A.CT Ij A L

/

// - P14t.DI c. Tt.-O
/
/
/
,

."

s:
o

-+- 10
�

.:::>
a..

o
Q..

ieee \�50 19CD

�oo
",.--
'"

c
o
-

�
.....__

c
0
-

-+-

V

?
D-
O

0...

VI

�

--- p..,C;i \.) A\",

- �R£'\)\C. T£..D

\1cV



26

�t P(t) aP(t) - bQ(t)

�t Q(t) -cQ(t) + dP(t).

Written in matrix form, we have:

�t U(t) AU

where a, b, c, d are constants> 0, U = (P,Q), A = (a,b,c,d). This

matrix differential equation is solvable, and is dependent on the

eigenvalues of he coefficient matrix A. If the eigenvlaues are AI' A2,
Ait A2t

Al * A2, then the solution is (POe , QOe ). If, for instance, A is

near zero, the solution for P(t) would be increasing, constant, or

decreasing, depending on whether Al was> 0, = 0, < 0, respectively.

4. Lotka-Volterra Predator-Prey Model [9]

The system of equations for this model are:

�t p(t) aP(t) - bP(t)Q(t)

d Q(t)at -cQ(t) + dP(t)Q(t),

where P, Q are as defined above, and a, b, c, d are constants > O. As

mentioned in the text, this problem cannot be solved in closed form, that

is there is no equation which gives the solution exactly. One can,

however, notice that Q(t) = alb and P(t) = c/d is an equilibrium

point. Writing the Taylor series expansion of these two equations about

the point (c/d, a/b), and ignoring higher order terms, we can arrive at:



27

�t (P(t) - J) -

bc (Q(t) - �)d b

�t (Q(t) - i) = a� (P(t) �)

The curve in the P-Q plane, resulting from these equations, is shown in

Figure 2.1. This curve is typical of the Lotka-Volterra model. The

important result is that if the initial populations are not at the

equilibrium point, then the solution tends toward a limit cycle which does

not pass through the equilibrium point. We shall see that this is not the

case in the predator-prey problem with age structure of Section 2.

5. Sharpe-Lotka Model [3,4]

For this model we need to define some functions first.

pet) f� p(a,t)da

is the total population, where P(a,t) is the population distribution

function. P(a,t) is the number of individuals of age a alive at time t.

B(t) p(O,t),

is the birth rate. It is assumed that the birth rate is governed by a

birth law of the form:

B(t) J� S(a)p(a,t)da

where Sea), the birth function, is the average number of offspring (per

unit time) produced by an individual of age a. We also have the death

function, �(a), which is the death rate at age a per unit population of

age a. From this we can construct the life table n(a). n(a) is the
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probability of living to age a, and n(a,b) is the probability of living

to age b if presently age a. Formally this is:

n(a,b) = e(- fb �(t)dt)
a

n(a) = n(O,a)

With the birth rate, the life table, and the initial age distribution,

�(a) p(a,O), we can determine p(a,t) for all time t > O. First, for

a > t we have P(a,t) equal to the initial number of age a-t times the

probability of living from age a-t to age a. Formally:

p(a,t) n(a-t,a)�(a-t) a > t

Similarly, for a < t, p(a,t) equals the number born at time t-a times

the probability of living to age a. Formally:

p(a,t) n(a)B(t-a) o < a < t

Substituting these into the formulas for pet) and B(t) we have:

pet) fg n(t-a)B(a)da + f; n(a,a+t)�(a)da

B(t) fg S(t-a)n(t-a)B(a)da + f� S(a+t)n(a,a+t)�(a)da

The equation for B(t) is the Sharpe-Lotka equation, and is a linear

Volterra integral equation for B(t). This can be solved using Laplace

transforms.
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Appendix B

Some notational conventions which will be used in this Appendix:

1l1(P) ll(T-a,T;QT(P»

112(P) II ( r+a , T; QT (P) )

1T1(P) exp (- f� lJ1 (P)dT)

lT2(P) exp(-f� lJ2(P)dT)

Proof of Lemma 3.

Let

Po f; �(a)da, r > O.

Let

Define the following:

II = sup
(a,P)En
tE[O,T]

ll(a,t;QT(P»

d
sup dQ ll(a,t;QT(P»

(a,P)En
tE[O,T]

sup S(a)
a>O

Since S, ll, and
d

dQ
lJ are all continuous by (H2), the values

So are well-defined and finite. Now consider the complete Banach space

e[O,T] with the sup norm:



30

IIX(t)liT max I x( t) I 'tE[O,T]

Let DT = {fl f E C+[O,T], IIf -

Po liT i r}. Since C[O,T] is complete and

DT is a closed subset of C[O,T], DT is complete. So to use Lemma 2

(Banach's Fixed Point Theorem) all we need to show is that PT maps DT
into itself and is contractive, i.e. IIPT(P1) - PT(P2)IIT i allPI - P II for

2 T

all PI' P2 EDT' for some a > 1.

First we will show PT maps DT into itself. Let P EDT' then

from the definition of BO and the fact that n(p) < 1, we have

and by Lemma 1 (Gronwall's Inequality)

Next we have

Using the fact that leZ - 11 < IzleI2�, we have:
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so, using the previous approximations, we have

sup
a>O

tE[O,T]

SOT _ �T
� PO(e - 1) + PO�Te ,

which for sufficiently small T can be made less than r. So

Now we will show that PT is contractive. Let PI' P2 EDT' then

First let us look at III.

sup
a>O

tE[O,T]
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� Jg 1�2(Pl) - �2(P2)ldT exp(Jg 1�2(Pl) - �2(P2)ldT)
�2(Pl) - �2(P2)
QT(P1) - QT(P2)

• IQT(P1) - QT(P2)1

so

_ 2 (
_ SOT)Letting K(t) = d�QT exp 3�T + POTe we have for sufficiently small

1
T, K(T) <�, so:

o

Now for I:

from previous work we have
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so

which for sufficiently small T we have

Now for II:

Letting f(t) denote the last two integrals:

g(t) � So J� g(a)da + If(t)1

and by Lemma 1 (Gronwall's inequality)

We have from definition of f(t):

S T

If(t)1 � So (SOPOe
0

)TK(T)"P1 - P2"T



If ( t) I i KO II P
1

- P
2

II
T

where

KO < 1/3 for sufficiently small T.

Thus

which implies that for small T,

So we have

where a < 1 for sufficiently small T.

Therefore we have sohwn that PT(P) is contractive, and thus by

Lemma 2 has a unique fixed point.

Proof of Theorem 2

Let

J� <P(a)da

sup S(a) < +00

a)O

�O inf �(a,t;Q)
a)O

tE:[O,L]

then by definition

34
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1T(O,t-a,t;Q)

-ll (t-a)o
e

1T(a,a+t,t;Q)

So

and by Lemma 1 (Gronwall's inequality)

Then

So B(t), pet) can grow at most like a Malthusian population with growth

factor o.

Proof of Theorem 3

From the proof of Lemma 3 and hypothesis we have and as

defined in Lemma 3, dependent on PO' and as functions of Po are
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continuous. Since the time T (of Lemma 3) up to which a unique solution

exists, is dependent on these parameters (;, �Q and SO) continuously, we

have T as a continuous function of PO.
Define

We have existence of a unique solution for all t such that

o i t i T(PI,P2) as long as the initial populaiton Po is between PI
and P2•

To show existence for all time, let T > O. If we can show existence

up to time T, then, since T is arbitrary, we have global existence.

By theorem 2, as long as

P(t) � POe oT. Since e
oT

� I,

P(t) is a solution of our problem

oT
o � Po � POe ,we have so the solution

exists on Now letting
OT

Po = P(T(O, POe )), i.e. let

the starting point be the ending point of the previous solution.

By the same argument as above we can extend our solution by

Since P(t) is always bounded above by this

procedure will extend the solution to T in a finite number of steps.

Therefore, we have global existence.
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