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ABSTRACT 
 

Characterization of Soil Shrink-Swell Potential Using the Texas VNIR Diffuse 
Reflectance Spectroscopy Library 

 (April 2008) 
 

Katrina Hutchison 
Department of Bioenvironmental Sciences 

Texas A&M University 
 

Research Advisor: Dr. Cristine Morgan 
Department of Soil and Crop Sciences 

 

Shrinking and swelling soils cause extensive infrastructure and economic damage 

worldwide. Shrink-swell soils are of great concern in Texas for two reasons, 1) Texas 

has the most acreage of shrink-swell soils in the United States, and 2) yearly 

evapotranspiration rates exceed those of precipitation creating optimal conditions for soil 

wetting and drying cycles. This study was conducted to determine if visible near infrared 

diffuse reflectance spectroscopy (VNIR-DRS) can be used to predict the coefficient of 

linear extensibility (COLE) of soils. If successful, VNIR-DRS would provide a means to 

rapidly and inexpensively quantify a soil’s shrink-swell potential real-time. Using soils 

that have been previously analyzed and archived in the Texas Agrilife Research Soil 

Characterization Laboratory, our objectives were to: 1) predict the coefficient of linear 

extractability (COLE) using spectroscopy, 2) predict COLE using measurements of total 

clay and cation exchange capacity (CEC), and 3) compare the two models.  
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A total of 2454 soil samples were scanned to create the Texas spectral library. Of these 

samples, 1296 had COLE measurements. Seventy percent of the COLE samples were 

randomly selected to build a calibration model using partial least squares regression. The 

remaining thirty percent were used to validate the calibration model. The coefficient of 

determination (R2), root mean square deviation (RMSD), and relative percent difference 

(RPD) were calculated to assess the prediction models. The COLE prediction using 

spectroscopy had an R2, RMSD, and RPD of 0.61, 0.028, and 1.6, respectively. Using 

stepwise regression and backward elimination, we determined that CEC and total clay 

together were the best predictors of COLE with R2, RMSD, and RPD of 0.82, 0.019, and 

2.3, respectively. According to the RPD, using spectroscopy to predict COLE has some 

predictive value, while using CEC and total clay is more effective and stable. However, 

spectroscopy data collection is more rapid and has fixed costs. 
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. 

NOMENCLATURE 

 

COLE Coefficient of Linear Extensibility 

VNIR-DRS Visible-Near Infrared Diffuse Reflectance Spectroscopy 

CEC Cation Exchange Capacity 

RPD Relative Percent Difference (Standard Deviation /RMSD) 

RMSD Root Mean Square Deviation  
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CHAPTER I 

INTRODUCTION 

 

Shrinking and swelling soils are known to cause extensive infrastructure and economic 

damage worldwide. Shrink-swell soils, which are high in clay content, have the potential 

to shrink or swell with changing moisture. Some are known to increase 150 times their 

size. Shrink-swell soils are of great concern in Texas for two reasons, 1) Texas has the 

most acreage of shrink-swell soils in the United States, and 2) yearly evapotranspiration 

rates exceeds those of precipitation creating optimal conditions for soil wetting and 

drying cycles (Godfrey et. al., 1973). If you have ever been to central Texas and have 

seen the cracks in the ceilings and bumps in the interstate you have seen the effect of 

these soils.  

 

Whether the purpose of land use is agricultural or development purposes, the key to 

timely abatement and management is knowing the shrink-swell potential. Current 

methods of quantifying soil shrink-swell potential are time consuming and expensive. To 

calculate the coefficient of linear extensibility (COLE), which is the shrink-swell 

potential of soil natural fabric, an intact soil core must be collected in triplicate and the 

volume change of the core must be measured at moist and drying conditions. The 

_______________ 
This thesis follows the style of Soil Science Society of America Journal. 
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engineering equivalent of COLE uses a dried ground soil sample and measures the 

change in length after drying.  Visible near infrared diffuse reflectance spectroscopy  

(VNIR-DRS) can be used to scan soils rapidly and in situ, and possibly quantify a soil’s 

shrink-swell potential real-time, saving time, and  fixing costs for developers and 

resource managers in shrink-swell areas. 

 

Soil shrink-swell potential is primarily a function on two soil properties, clay 

mineralogy, particle size distribution or percent clay and fine clay particles (Wilding, 

1998). Soil scientists have proven the ability of visible and near infrared diffuse 

reflectance spectroscopy (VNIR-DRS) for in situ and lab characterization of soil 

mineralology and clay content (Waiser, 2007; Brown et al., 2005a; Brown et al.,2005b 

Chabrillat et al., 2000). Soil minerals have distinct spectral signatures which are 

identified as distinct spectral absorbencies at different wavelengths.  

 

In addition to quantifying clay mineralogy, clay content, and other soil properties that 

effect COLE research shows encouraging results for quantifying shrink-swell using 

VNIR-DRS. One study has used VNIR- DRS to categorize a geographically limited 

group of dried and ground soils into high, medium, and low potential for shrinking and 

swelling (Kariuki et al, 2004). Goetz et al. (2001) was able to predict the smectite 

content of soils with an r2 value of 0.83 and place the soils in a shrink-swell class based 

on mineralogy. Research using reflectance spectroscopy has mainly focused on soils in 

localized areas.  Kariuki et al. (2004) collected 198 samples in southern Spain and Goetz 
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et al. (2001) collected 178 samples from the Colorado Front Range. There has not been 

any research using VNIR spectral data to directly quantify a soils COLE value.  

That is why we want to evaluate soils from all over Texas. Texas is a large state and the 

soils have formed from many different parent materials. Additionally a wide range of 

climate and vegetation can affect soil reflectance. We are fortunate to have access to a 

soil characterization lab here at Texas A&M University which has been collecting and 

characterizing samples since the 1970’s. After they are analyzed, they are stored in a 

wharehouse. They are now available for us to start scanning.  

 

The overall objective of this research is to create a Texas spectral library that will 

expand the regional extent of available soil spectra. The spectral library can be used by 

anyone interested in rapidly quantifying soil properties using VNIR-DRS. The specific 

objectives of this research are to test the predictive ability of the spectrometer by 

performing the following tasks:  

1) Create a VNIR-DRS spectral library from archived Texas soils, 

 2) Provide a summary and descriptive statistics of the soils in the 

spectral library, and  

3) Create predictor models of COLE, clay content, and CEC that 

might affect COLE using the VNIR-DRS spectrometer. 
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Literature Review 

 

Shrinking and Swelling Soils 

Shrinking and swelling soils are soils that are high in clay content and have the potential 

to shrink or swell under changing moisture conditions (Nelson, 1992). The shrinking and 

swelling action is due to the clay’s ability to attract and absorb water. Some shrink-swell 

soils are known to increase 150 times their size. Shrink-swell soils are very sticky when 

wet and usually crack under drying conditions. Therefore during dying seasons cracking 

of the soil surface can be indicative of shrink-swell soils. These cracks can be very large 

and can cause damage to buildings located on top of theses shrink-swell soils. Shrinking 

and swelling soils are known to cause extensive infrastructure and economic damage 

worldwide. In fact in the United States, shrink-swell soils rank second to insect damages 

in economic losses. Shrink-swell soils are accountable for more damage to structures, 

such as buildings and pavement, than any other natural disaster including hurricanes and 

floods (Nelson, 1992). On top of causing extensive infrastructure damage the cracking of 

these soils allow for preferential flow. Due to the characteristic shrinking and swelling of 

shrink-swell soils, the hydrology of a soils landscape can be dramatically changed. 

Under ponded conditions the water channels through the cracks. As a result shrink-swell 

soils have the potential to transport water and pollutants such as pesticides and 

herbicides from agricultural practices and hazardous waste sites (Harris et al., 1994; 

Kelly and Pomes, 1998). This creates significant consequences for ground-water quality 

because contaminates can flow through the cracks directly into the groundwater.  
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Shrink-swell soils are of great concern in Texas for two reasons, 1) Texas has the most 

acreage of shrink-swell soils in the United States, and 2) yearly evapotranspiration rates 

exceed those of precipitation creating optimal conditions for soil wetting and drying 

cycles (Godfrey et. al., 1973). There are 12 million ha of shrink-swell soils in the US; 

Texas contains 6.5 million ha (Coulombe et al, 1996). These soils can be found in the 

most populated areas of Texas including the Coastal Plains (Houston) and the Blackland 

Prairies of central Texas (Dallas-Fort Worth, Austin, and San Antonio). As well as being 

highly urbanized with three of the top ten largest cities in the US, Texas is subjected to 

intensive and extensive agriculture practices. There is a greater possibility for 

infrastructure damages to the large cities as well groundwater contamination from the 

heavy agricultural practices. 

 

Shrink-swell soils are the most difficult soils to manage because their physical and 

chemical properties vary dramatically over space and time. The spatial variation of soil 

properties is due to self mixing caused by soil displacement in between the cracks 

(Coulombe et al, 1996). Temporally shrink-swell soils are difficult to manage because 

the swelling cycle of these soils can take 5 to 8 years and are not immediately noticeable 

(Nelson, 1992). Management of shrink-swell soils is also difficult because the swelling 

is not determined by one factor but is the outcome of many interacting factors. Amount 

of clay, type of clay mineral, cation exchange capacity (CEC), organic matter, and the 

soil moisture all play a significant role to swelling (Kariuki et al, 2004).  The swelling of 
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these soils is due to the presence of clay minerals with high surface areas that have the 

potential to accumulate water. These minerals can be categorized in to three main 

groups: smectite, illite, and kaolinites, listed in order of highest to lowest potential for 

swelling. However some studies show that in general soil shrink-swell potential 

increases with increased clay content, regardless of mineralogy (Schafer and Singer, 

1976a). When land is being used for development purposes, the key to successful 

management and planning is knowing the shrink-swell potential of the soil before 

construction. When shrink-swell soils are abundant and land use is in its natural 

conditions, such as in the case of contamination clean up or agriculture practices, the key 

to understanding hydrology and solute transport is knowing the spatial extent and 

variability of soil shrink-swell potential.  

 

Coefficient of Linear Extensibility 

The most common way to quantify a soil’s shrink-swell potential is calculating its 

coefficient of linear extensibility (COLE). The coefficient of linear extensibility (COLE) 

is the shrink-swell potential of soil natural fabric. A soil natural fabric describes a soil 

sample which has not been disturbed from its natural state. To measure COLE an intact 

soil core must be collected in triplicate and the volume change of the core must be 

measured at moist and drying conditions. When it is not possible to extract intact soils 

samples the COLErod method is often used. Vaught et al (2006) has found that COLE is 

highly correlated with COLErod with an r2 value of 0.88. The COLErod is an engineering 

method which uses a dried ground soil sample molded into the form of a rod and 
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measures the change in length of this rod after drying. Both of these techniques can take 

weeks to complete in the laboratory and can be very expensive if many samples need to 

be analyzed. Therefore there is a need to develop quick and inexpensive techniques that 

can preserve the integrity of the soil system and save time and money for those needing 

to quantify a soil’s shrink-swell potential (Islam et al, 2003). Proximal spectroscopy is a 

rapid sensing technique that is built on already collected COLE data. Using this 

technique you can get more COLE estimations faster. This will have the advantage of 

providing a means of mapping shrink-swell potential at a high spatial resolution. One 

possible use is making a high resolution 3D model of shrink-swell potential. This has 

applications to planning land development and modeling landscape hydrology.  

 

Spectroscopy 

Visible near infrared diffuse reflectance spectroscopy (VNIR-DRS) can be used to scan 

soils rapidly and in situ, and therefore quantify a soil’s shrink-swell potential real-time 

and at a spatial resolution of 5-10 m. Spectroscopy is a study of light as a function of 

wavelength that has been emitted, reflected, absorbed, or scattered from a solid, liquid, 

or gas. Clay minerals have distinct spectral signatures because of overtones and 

combination bands from chemical bonds within the soil minerals (Clark, 1999). For 

example kaolinite, smectite, and illite occur in the clay fraction of soil and have distinct 

spectral absorption features. Kaolinite [Al2Si2O5(OH)4} has two hydroxyl bands near 

1400nm and 2200nm (Hunt and Salisbury, 1970). Smectite 

[(Na,Ca,Mg,K)0.3Al2.7Si3.3O10(OH)2] has two strong water bands around 1400, 1900, and 
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2200nm (Goetz et al, 2001). Illite [KAl2(AlSi3O10)(F,OH)2] has hydroxyl bands at 

1400nm and between 2200 and 2600nm. (Hunt and Salisbury 1970). Therefore the clay 

content measured by VNIR is due to the recognition of these distinct spectral signatures 

of the common clay minerals.  

 

Recent research has not only proven the ability of spectroscopy to predict mineralogy 

but also a soil’s total clay content. Sheperd, (2002) were able to predict clay content of 

1000 air dried ground samples from east and South Africa with an R2 value of 0.80. 

Islam et al, (2003) predicted clay content of 161 air dried ground sample from Australia 

with an R2 and RPD value of 0.73 and 1.9 respectively. Brown et al. (2005b) created a 

global spectral library from 3768 air dried ground soil samples from all 50 states and in 

Europe. They were able to predict clay content with an RMSD value of 54 g-kg-1. There 

has been some research predicting clay content of insitu soils samples. Questions have 

been raised as to how the heterogeneity of soil and soil water content affect spectral 

predictions. Chang et al., (2001) used 802 soil samples to create natural product cells and 

predicted clay content with an R2 and RPD value of 0.67 and 1.71 respectively. Waiser 

(2007) found that water and heterogeneity of the soil does not significantly effect clay 

prediction. Waiser (2007) compared clay content prediction of 72 Texas soil samples for 

both field moist insitu, field moist smeared insitu, air dried insitu and air dried ground. 

They obtained R2 values of 0.83, 0.75, 0.92, and 0.84 respectively.  
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Soil shrink-swell potential is primarily a function on two soil properties, clay mineralogy 

and clay percentage (Wilding, 1998). Vaught et al (2006) found COLE to be highly 

correlated with total clay r2=0.88. Because soils shrink-swell potential is directly related 

to clay mineralogy and clay percentage and soil scientists have proven the ability of 

VNIR-DRS for in situ and lab characterization of soil mineralogy and clay content 

(Brown et al, 2005; Waiser, 2007) we expect spectroscopy to be able to predict COLE 

values. A soils COLE value is also influenced by other soil properties including cation 

exchange capacity (CEC), organic matter, and soil moisture (Kauriuki et al, 2003). 

Using stepwise regression and backward elimination, we determined that CEC alone was 

the best predictor of COLE with R2, RMSD, and RPD of 0.79, 0.021, and 2.2, 

respectively. Research has proven the ability of spectroscopy to predict not only clay 

content but these other soil properties that are highly correlated with COLE such as 

CEC. Chang et al. (2001) and Shepherd (2002) were able to predict CEC both with an R2 

of 0.81. Dunn et al. (2002) predicted CEC in the topsoil and subsoil of 550 air dried 

ground samples with an R2 value of 0.90 from the topsoil and 0.80 from the subsoil. 

 

In addition to quantifying clay mineralogy, clay content, and other soil properties that 

effect COLE research shows encouraging results for directly quantifying a soils shrink-

swell potential using VNIR-DRS. One study has used VNIR- DRS to categorize a 

geographically limited group of dried and ground soils into high, medium, and low 

potential for shrinking and swelling based on clay mineralogy (Kariuki et al, 2004). 

Goetz et al. (2001) was able to predict the smectite content of soils with an R2 value of 
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0.83 and place the soils in a shrink-swell class again based on mineralogy. Research 

using reflectance spectroscopy has mainly focused on soils in localized areas.  Kariuki et 

al. (2004) collected 198 samples in southern Spain and Goetz et al. (2001) collected 178 

samples from the Colorado Front Range. Research has used mineralogy to predict a soils 

shrink-swell potential class, there has not been research performed using VNIR spectral 

data to directly quantify a soils COLE value.  

 

To more rigorously test the capability of VNIR DRS models that predict soil shrink-

swell potential we would need soil samples that spanned the range of soil composition. 

Islam et al. (2003) found that a limited number of soil samples from similar parent 

material and land use can limit the robustness of the calibration. A large soil spectral 

libraries (104-105) which will represent the samples used for validation is needed to 

create calibration models (Brown et al, 2005b; Islam et al, 2003).Brown et al 2005b has 

expressed a need to expand soil-spectra libraries by scanning state and national soil 

archives. Models constructed using soils with greater geographic diversity would make a 

more robust model (Waiser, 2007; Brown et al 2005b). That is why we want to evaluate 

soils from all over Texas. Texas is a large state, and the soils have formed from many 

different parent materials. Additionally Texas has a wide range of climate and vegetation 

which can affect soil reflectance. We are fortunate to have access to a soil 

characterization lab here at Texas A&M which has been collecting and characterizing 

samples since the 1970’s. They have been stored and are available for scanning into a 

spectral library.  
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The overall goal of this project is to determine if VNIR-DRS is an effective tool for 

directly quantifying COLE.  A Texas spectral library needs to be built that will expand 

the regional extent of available soil spectra associated with soil characterization data. 

The spectral library can be used by anyone interested in investigating the association of 

soil properties and VNIR spectra. If successful VNIR-DRS can be used to scan soils in 

situ to map soil shrink-swell potential in the field. The specific objectives of this 

research project are the following: 1) Create a VNIR-DRS spectral library from archived 

Texas soils; 2) Provide a summary and descriptive statistics of the soils in the spectral 

library; 3) Create predictor models of COLE, clay content, and CEC that might affect 

COLE using the VNIR-DRS spectrometer. 
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CHAPTER II 

METHODS 

 

Laboratory Analysis 

 

The Texas VNIR-DRS spectral library was created with 2454 soil samples, archived by 

the Texas Agrilife Research Soil Characterization Lab. The characterization lab has been 

analyzing and archiving soil pedons from all across Texas since 1978. At the lab particle 

size distribution was measured using the pipette method (Kilmer and Alexander, 1949); 

cation exchange capacity (CEC) was measured by a modified procedure of USDA 

Handbook 60 (U.S. Salinity Laboratory Staff, 1969); and COLE was measured using the 

procedure described in the Soil Survey Laboratory Methods Manual, 1996. All soil 

analysis was performed two times to check for accuracy and any possible errors. The 

oven dried, 2 mm ground soil samples were stored in the warehouse after analysis. For 

this project,  2454 archives soil samples were transferred to 20 ml vials for easy storage 

and transfer. The soils were scanned from below with a mug lamp connected to an 

AgSpec® Pro( Analytical Spectral Devices, Inc) with a spectral range of 350-2500 nm. 

A Spectralon® panel with 99% reflectance was used to calibrate the spectrometer before 

soils samples were scanned; the same panel was used as a white reference to set 

reflectance to 100% before each scanning session (Waiser, 2007). Additionally for 

quality control and documentation purposes, seven calibrated standards were scanned 

before and after each soil scanning session. The reflectance values for each standard 



  13 

were 99%, 80%, 60%, 40%, 10%, 5%, and 2%. Approximately 28 g of ground soil was 

place into a borosilicate glass “puck” prior to scanning. Each soil sample was scanned 

twice with a 90° rotation between scans. 

 

Data Preprocessing 

 

The spectral data were pretreated by splicing, averaging, and taking the 1st and 2nd 

derivatives. The spectral data were spliced to produce seamless spectra where the three 

detectors overlapped across the wavelength spectra.  Results of the  two scans at 0° and 

90° were averaged (mean). The 1st and 2nd derivatives were taken at 10 nm intervals to 

remove albedo. The mean and 1st and 2nd derivatives were taken after a cubic smoothing 

spline, implemented in the R “smooth spline” function (R Development Core Team, 

2004) was fit to each raw spectral curve (Waiser, 2007). 

 

Spectral Predictions 

 

Out of the 2454 soil samples, only 1296 had COLE, total clay content, and CEC values. 

These 1296 were divided into a calibration and validation set. Seventy percent of the soil 

samples were used to create calibration models; while the remaining thirty percent  were 

used for model validation. Selection criteria for the validation and calibration samples 

were created to insure independence between the validation and calibration data. 

Complete soil pedons (A-C horizons) were randomly selected so that a single pedon was 
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not split between the calibration and validation datasets. Using only the calibration data 

set models were built with the first derivative, 10 nm averaged spectral data to predict 

COLE.  The prediction model was built using 1/25th cross validation partial least squares 

(PLS) regression in Unscrambler 9.0 (CAMO Tech, Woodbridge, NJ). The remaining 

thirty percent of the soil samples were used to validate the model. Negative COLE 

values were changed to zero before comparison of predicted COLE values to measured 

COLE values. Measured vs. predicted values of the validation samples were compared 

using simple regression. The coefficient of determination (R2), root mean squared 

deviation (RMSD), and relative percent difference (RPD) were calculated to compare 

the accuracy of different PLS models. Statistical formulas to calculate RMSD, RPD and 

bias follow Gauch et al. (2003), Brown et al. (2005a) and Chang et. al. (2001). 

 

Pedotransfer Functions 

 

To asses the usefulness of a VNIR-based COLE model, simpler, multiple regression 

equations were created using other laboratory data. The lab data for the soil samples 

include partial to complete pedon analysis such as, CEC, fine clay, total clay, fine sand, 

total sand, total silt, organic carbon, calcium carbonate, bulk density, COLE, and pH. 

Backward elimination using only the calibration dataset was run using the R program to 

predict the correlation and regression equation between COLE and other soil properties. 

First backward elimination was run with all the soil properties. The p-value was assessed 

for each variable and the variable with the largest p-value was pulled out until all the p-



  15 

values were below 0.05. Four variables showed the most significance, fine clay, CEC, 

organic carbon, and pH. Based on the literature clay content is also highly correlated 

with COLE (Vaught et al, 2006). Different combinations of these five variables were 

used to predict COLE. Diagnostics to choose the best models(s) included p-value, 

residuals plots, R2 values, and simplicity. The validation data were used to validate these 

models. After using the calibration model on the validation data, negative COLE values 

were changed to zero before comparison of predicted COLE values to measured COLE 

values. Measured vs. predicted values of the validation samples were compared using 

simple regression. . The coefficient of determination (R2), root mean squared deviation 

(RMSD), and relative percent difference (RPD) were calculated to compare the accuracy 

of different PLS models. Statistical formulas to calculate RMSD, RPD and bias follow 

Gauch et al. (2003), Brown et al. (2005a) and Chang et. al. (2001). 
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CHAPTER III 

RESULTS AND DISCUSSION 

 

Sample Description 

 

A total of 2454 soil samples were scanned to create the Texas spectral library. These soil 

samples have been archived by the Texas Agrilife Research Soil Characterization Lab. 

The characterization lab has been analyzing and archiving soils from all over Texas 

since 1978. Texas has a wide range of geologies, annual temperatures and annual 

precipitation; therefore the soil data base that was scanned is extremely variable in its 

parent material, mineralogy, and other soil formation factors (Godfrey et al., 1973). Of 

the 2454 scanned samples, 1296 had COLE measurements. The samples had ranges of 

COLE, total clay content, and CEC from 0.001 to 0.24 cm cm-1, 0.07 to 84.2 %, and 0.7 

to 105 cmol(+)kg-1, respectively (Table 3.1). The calibration and validation data had 

very similar ranges and averages of soil properties (Table 3.2). The mean COLE value, 

CEC and total clay content for the calibration set were 0.05 cm cm-1, 16.4 cmol(+) kg-1, 

and 27.8 %, respectively. The mean COLE value, CEC and total clay content for the 

calibration set were 0.044 cm cm-1, 15.7 cmol(+) kg-1, and 27.1 % respectively. 
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Table 3.1. Summary statistics for 1296 soils in the Texas spectral library 

Soil property Units Mean Max. Min. CV 
COLE† cm cm-1 0.048 0.240 0.001 0.881 
Clay % 27.67 84.1 0.7 0.699 
Cation exchange capacity cmol(+) kg-1 16.33 105 0.7 0.839 
pH  6.4 9.5 3.3 0.247 
Base saturation % 74.00 100 3 0.438 
CaCO3  equivalent % 19.3 86.7 0.1 1.048 
Organic carbon % 0.53 7.66 0.01 1.242 
† COLE is Coefficient of Linear Extensibility. 
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Table 3.2. Summary statistics for calibration and validation datasets 
 
Soil  property Units Mean Standard deviation 

calibration samples, n = 1031 
COLE† cm cm-1 0.05 0.042 
CEC‡ cmol(+) kg-1 16.4 12.9 
Clay % 27.8 18.9 

validation samples, n= 265 
COLE cm cm-1 0.044 0.045 
CEC cmol(+) kg-1 15.7 15.9 
Clay % 27.1 21.0 
† COLE is Coefficient of Linear Extensibility. 

‡ CEC is cation exchange capacity. 
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Predicting COLE Using Multiple Regression Total Clay and CEC 

 

To compare spectroscopy predictions of COLE to more general prediction using 

pedotransfer functions, we first predicted COLE using total clay and CEC.  Using the 

calibration data (n=1031) and backward elimination, fine clay content, CEC, organic 

carbon and pH were the best predictors of COLE (R2=0.79). Replacing fine clay with 

total clay only slightly reduced the R2. Subsequently different combinations of these 

variables were tried; R2 residuals and model simplicity were evaluated. 

 

After evaluating selection criteria, the multiple regression of clay content plus CEC, 

gave the best overall prediction to COLE for our Texas soils, R2 = 0.77. The residuals 

were homoscadastic, and the overall regression looked good. Though clay content was 

not the best predictor of COLE, soil clay content is relatively easy to measure compared 

to CEC. Hence clay content is a less expensive alternative for estimating COLE. Total 

clay alone as a predictor had an R2 value of 0.60; while CEC alone had an R2 of 0.76; 

however, adding total clay to the CEC regression improved residuals.    

 

Using the validation data (n=265), total clay alone predicted COLE with an RMSD, r2, 

and RPD value of 0.029, 0.57, and 1.5 respectively. Total clay and CEC together 

predicted COLE with an RMSD, R2, and RPD value of 0.019, 0.82, and 2.3 respectively 

(Table 3.3). The measured laboratory values of COLE were graphed against the 

predicted values of COLE using total clay content alone and total clay content with CEC 
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(Figure 3.1). Total clay with CEC model predicted COLE better than total clay alone. 

The clay alone model has some bias in under predicting COLE (-5.6e-06). Including 

CEC in the model probably improved the estimation of COLE because clay mineral type 

has been associated with soil shrink-swell potential, and clay minerals with a higher 

CEC values, such as smectite, are known to have high shrink-swell potentials (Wilding, 

1998). The CEC value may be further differentiating between smectitic and kaolinitic 

soils. Even though CEC and total clay content were able to predict COLE with an R2 

value of 0.82 there is much laboratory work which has to go into determining both the 

CEC and total clay content of a soil. Both procedures for predicting CEC and total clay 

content can be time consuming and expensive.  
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Table 3.3. Results of COLE predictions using spectroscopy, clay content and cation 

exchange capacity (CEC), and clay content. 

 Prediction model used 
 Spectroscopy Clay content & CEC Clay content 
RMSD, cm cm-1 0.028 0.019 0.029 
R2 0.61  0.82 0.57 
RPD 1.6  2.3 1.5 
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Fig. 3.1. Predicted vs. measured  COLE values of the validation set for (a) clay content 
and (b) clay content and CEC. 
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Predicting COLE Using Spectroscopy 
 
 
 
The results of the PLS prediction using spectroscopy are shown in Figure 3.2. 

Spectroscopy was able to predict COLE with an R2, RMSD, and RPD value of 0.61, 

0.028, and 1.6 respectively (Table 3.3). Spectroscopy predicted COLE better than 

predicting COLE with total clay content alone. However, clay content and CEC 

predicted COLE better than spectroscopy. Though spectroscopy was not as good as the 

clay plus CEC prediction, spectroscopy is very fast at scanning the soil compared to lab 

measurements of CEC and the costs of spectroscopy are fixed.  

 

One useful way to interpret the spectroscopy prediction results is to look at how the 

prediction errors translate into predicting shrink-swell classes. According to the USDA 

NRCS, soils are classified into five shrink-swell classes, from very low to very high 

(Kariuki et. al. 2003). Given the prediction errors of spectroscopy, the results were still 

useful for classification purposes (Table 3.4). The spectroscopy prediction error was an 

RMSD of 0.028 cm cm-1. In other words,  the spectroscopy predictions will be within 

2.8% of the actual COLE value, 66% of the time. The separation between the moderate, 

high and very high shrink-swell classes is greater then 3%. Therefore spectroscopy can 

correctly classify soils into these three shrink-swell classes. Total clay content and CEC 

prediction of COLE had an RMSD of 0.19 cm cm-1. The CEC and total clay content 

predictions can be used to predict COLE within 1.9% of the actual COLE value as 

compared to the 2.8% of the spectroscopy predictions. Taking into consideration the 
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price and size of a project, this difference between the two predictions may not be 

practically significant. 
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Fig. 3.2. Predicted vs. measured COLE content using spectroscopy for the validation 
data.
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Table 3.4. Shrink-swell classes and the corresponding COLE values 
 

 

Shrink-Swell Class V. Low Low Moderate High V. High 

COLE 0-.01 0.01-0.03 0.03-0.06 0.06-0.1 >0.1 



  27 

CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

Visible near infrared DRS spectroscopy was used on dried ground (2 mm) soil samples 

to predict soil COLE values. Spectroscopy, combined with PLS regression predicted 

COLE with R2, RMSD, and RPD values of 0.61, 0.028, and 1.6 respectively. As a 

comparison to spectroscopy results, multiple regression analysis was used to predict 

COLE using total clay content alone and total clay content and CEC together. According 

to the RPD, using spectroscopy to predict COLE has some predictive value, while using 

CEC and total clay is more effective and stable. Though total clay did not predict the 

calibration data COLE values as well as the clay and CEC model, the clay-alone 

prediction was kept because soil clay is relatively cheaper, easier to measure, and more 

available in databases than CEC measurements. Total clay alone predicted COLE with 

an RMSD, R2, and RPD value of 0.029, 0.57, and 1.5 respectively. Total clay and CEC 

was the best of all three COLE prediction models together with a RMSD, R2, and RPD 

value of 0.019, 0.82, and 2.3 respectively.  

 

Spectroscopy was able to predict COLE better than predicting COLE with total clay 

content alone. On the other hand total clay content and CEC predicted COLE better than 

spectroscopy. When using the prediction model results to classify the soils based on 

USDA NRCS shrink-swell potential classifications, the spectroscopy-based and clay and 

CEC- based prediction models both worked well. According to the NRCS classification 
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system, the separation between the moderate, high and very high shrink-swell classes is 

greater then 3%. Therefore spectroscopy should be able to distinguish between these 

three shrink-swell classes. CEC and total clay content together can be used to predict 

COLE within 1.9% of the actual COLE value as compared to the 2.8% of the 

spectroscopy predictions. When considering the amount of soils needing to be classified 

and the difference in cost for the two methods, the reduced accuracy in the spectroscopy-

based prediction is tolerable. 

 

Our results indicate that VNIR-DRS may be useful in predicting a soils shrink-swell 

potential. We envision using spectroscopy for in situ characterization of soils for greater 

spatial and vertical densities than is practical with conventional soil characterization 

techniques. To make this vision a reality, continued research is needed on in situ VNIR-

DRS applications. These in situ studies should be careful to include a wide range of soil 

diversity and field conditions.  
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