
 

DEPENDENCE OF CROSS SECTIONS FOR MULTI-

ELECTRON LOSS BY 6 MeV/amu Xe18+ IONS ON TARGET 

ATOMIC NUMBER 

 
 
 

A Thesis 
 

by 
 

YONG PENG 
 
 
 
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 
 
 
 
 
 
 
 

May 2003 
 
 
 
 
 
 

Major Subject: Chemistry 
 

 
 
 
 



 

DEPENDENCE OF CROSS SECTIONS FOR MULTI-

ELECTRON LOSS BY 6 MeV/amu Xe18+ IONS ON TARGET 

ATOMIC NUMBER 

 
A Thesis 

 
by 
 

YONG PENG 
 

Submitted to Texas A&M University 
in partial fulfillment of the requirements 

for the degree of 
 

MASTER OF SCIENCE 
 
 
 Approved as to style and content by: 
 
 
 

Rand L. Watson 
(Chair of Committee) 

 
 
 

 

 
John Reading 

(Member) 
 
 
 

 Sherry J. Yennello 
(Member) 

  Emile A. Schweikert 
(Head of Department) 

 
 

 
May 2003 

 
 

Major Subject: Chemistry 



iii 
 

 

ABSTRACT 

Dependence of Cross Sections for Multi-electron Loss by 6 MeV/amu Xe18+ Ions on 

Target Atomic Number. (May 2003) 

Yong Peng, B.A., Sichuan  University 

Chair of Advisory Committee: Dr. Rand L. Watson 

                                                      

It has been proposed to use heavy ion beams with energies around 10 MeV/amu, 

masses around 200, and average charges of 1+ as a driver for inertial fusion reactor. 

Current designs require the beams to travel through a region where the background gas 

pressure is several milli-torr. Thus, it is important to assess the rate at which the charge 

state of an incident beam evolves while passing through the background gas. The first 

objective of this project is to study the dependence of cross sections for multi-electron 

loss on target atomic number by using 6 MeV/amu Xe18+ ions and to compare the results 

with the n-body Classical Trajectory Monte Carlo calculations. A secondary objective of 

this project is to determine the extent to which the cross sections for molecular targets 

can be represented as sum of the cross sections for their atomic constituents.  

Cross sections for loss of one through eight electrons from 6 MeV/amu Xe18+ in 

single collisions have been measured with noble gas targets. The target Z-dependence of 

the total loss cross section was found to be well represented by two straight line 

segments. The cross section for He and Ne define one straight line segment and those for 

Ar, Kr and Xe define the other, where the second line exhibits a smaller slope. The 
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predictions of n-CTMC calculations are in good agreement with the measured total 

electron loss cross sections. A semiempirical fitting procedure based on the independent 

electron approximation provided a reasonably good representation of the individual 

cross sections for all of the noble gas targets. Additional measurements performed with a 

variety of molecular targets provided a rigorous test of cross section additivity and 

showed that the additivity rule works well for electron loss from heavy ions in the 

present energy and charge regime. A semiempirical calculation based the IEA shows that 

the average most probable impact parameter for electron loss is much smaller than the 

target molecular bond length. This result is believed to account for the finding of the 

insensitivity of the electron loss cross section to molecular structure. 
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1CHAPTER I 

INTRODUCTION 

 

     High-energy particle collisions with atomic and molecular targets provide fundamental 

information concerning atomic and molecular structure, and have significant applications in 

many areas. For example, they play a role in the design of heavy ion accelerators [1], in the 

development of design criteria for inertial fusion reactors, in the assessment of vacuum 

requirements for new heavy ion accelerators, in astrophysical phenomena [2], in x-ray 

astronomy [3], and in the diagnostics and plasma physics of fusion reactors. [4-6]. 

     Scientists have worked for many decades on the problem of developing a controllable 

fusion reactor to harness fusion energy. One approach is magnetic confinement fusion 

(MCF) which utilizes magnetic fields to confine low density high temperature plasmas [7]. 

Another approach, inertial confinement fusion (ICF) reactor, is a kind of thermonuclear 

internal combustion engine. ICF is essentially a scaled down thermonuclear explosion of 

sufficiently small size that it can be readily utilized for power production. Inertial 

confinement means that the inertia of the mass of exploding fuel provides a sufficient 

confinement time that the thermonuclear reaction can take place before the mass blows 

apart. A small amount of fusion fuel is compressed to a high density and temperature so it 

will ignite rapidly and burn efficiently [8]. A schematic diagram of an ICF target is shown 

in figure 1 [7]. Generally, the capsule is a spherical shell filled with low-density gas (≤ 1.0 

mg/cm3). The ablator is in the outer region and the fuel, frozen or liquid deuterium-tritium  
                                                 
This thesis follows the style and format of the journal Physical Review A. 
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Figure 1.  Schematic diagram of an inertial confinement fusion (ICF) target [7] 

 

 

(DT), is in the inner region. DT is used [9] because its fusion reaction rate is approximately 

two orders of magnitude larger than that of the next fastest reaction HePDHe 4),( in the 

relevant temperature range.  
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     Laser or heavy ion beams can be used to transfer energy to the ICF capsules to ignite an 

implosion. Heavy-ion drivers are superior to lasers in efficiency, durability and repetition 

rate [9-10], therefore heavy-ion driven fusion reactors have the greatest potential for future 

inertial fusion power plants. 

     A method has been proposed to use 10 MeV/amu heavy ions, mass around 200, and 

average charge state of 1+ as a driver for heavy-ion-driven fusion reactors [10]. Gains are 

critically dependent on the spot size attainable when the ion beam is focused on the target 

radiator. Charge changing collisions and scattering by the background vapor limit the 

quality of the beam focus and hence, it is important to assess the rate at which the charge 

state of an incident beam evolves while passing through a background gas. Currently, no 

beam of 10 MeV/amu ions having mass around 200 and charge of 1+ is available. It has 

been argued, however, that a beam of somewhat lower energy and higher initial charge 

could be used to test theories that might be capable of providing cross sections for the ion 

beam of interest [11].  

Since the pioneering work of Thompson and Rutherford, theoretical and 

experimental investigations of energetic particle collisions with matter have continued to 

provide important information concerning electron transfer and ionization processes.  

Comprehensive review articles containing valuable information on experimental and 

theoretical equilibrium and nonequilibrium charge-changing processes have been published 

by Nikolaev [12], Betz [13] and Tawara and Russek [14]. Nikolaev[13] primarily reviewed 

experimental and theoretical results concerning charge changing cross sections, equilibrium 

charge state fractions, and average equilibrium charges of fast light ions.  Betz=s [13] paper 
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contains theoretical and experimental results for total cross sections and charge state 

distributions. In addition, this article reviews the results of a number of experiments that 

have been performed to measure differential charge changing cross sections and to obtain 

information on the impact-parameter dependence of electron capture and loss by energetic 

ions. Of particular relevance to the present work is a discussion by Betz concerning the 

question of cross section additivity for molecular targets.  In the review article by Tawara 

and Russek [14], the charge changing processes of hydrogen ions in gases, metal vapors 

and gaseous  carbon  are  discussed  from  the experimental point of view.  Other relevant 

review papers include Allison [15], Tawara et al [16], Betz [17] and Greenland [18]. 

In general, the final charge of a projectile depends on the following parameters: 

projectile atomic number (Z1), velocity (v1), incident charge (q), target atomic number (Z2) 

and target thickness (π). Determination of the dependence of the charge changing cross 

sections on each of these parameters requires great amounts of experimental data as well as 

theoretical treatments. While a considerable amount of work has been performed for low 

atomic number projectiles, very few experimental investigations have focused on single 

collisions of high atomic number projectiles in gaseous targets. Alton et al [19] measured 

single- and multiple-electron-loss cross sections with 20-MeV Fe4+on thin targets of the 

noble gases, H2, N2, O2, CH4, CO2, CHF3 and SF6. A modification of a formula originally 

presented by Bohr was modified and shown to give good agreement with the experimental 

single electron loss cross sections for the noble gas targets. In the case of molecular targets, 

it was found that the effective atomic number, which was defined as the screened nuclear 

charge, was not consistent with the average atomic number. When q was greater than 8, the 
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effective atomic number was greater average target atomic number, otherwise it was less 

than the average atomic number. In other words, the additivity rule was not satisfied in this 

collision region.   

Boman et al [20] measured the cross sections for 1 MeV/amu oxygen ions in 5+, 6+,  

7+ and 8+ charge states passing through gaseous targets of D2, He, Ne, Ar, and Kr. They 

found that the single electron loss cross sections depended on nZ 2   where Z2 is the target 

atomic number and n ranged from 0.33 to 0.98 for change state 7+ down to 5+, respectively, 

for the noble gas targets. The cross sections for the molecular target D2, however, did not 

follow this empirical law. Olson [21] used the n-body classical trajectory Monte Carlo 

method to estimate the cross-sections for electron loss from fast, low charge state ions (20 

MeV/amu Xeq+ and 40MeV/amu Biq+, q=1-12) in collisions with BeF2. His calculations 

indicated that multiple electron loss represented a serious problem for schemes that propose 

to employ low charge state heavy ions for inertial fusion.  In the recent work of Mueller et 

al. [22], using 3.4 MeV/amu Kr7+ and Xe11+ ions, it was reported that the average number of 

projectile electrons removed in a single collision with a nitrogen atom was 1.86 for Kr and 

1.97 for Xe.  

In the present investigation, a 6 MeV/amu Xe18+ ion beam was used to examine the 

dependence of the cross sections for multi-electron loss on target atomic number. A 

secondary objective was to compare cross sections for molecular targets with those for 

atomic targets to investigate the applicability of a commonly employed additivity rule.  

     The organization of this thesis is as follows: Chapter II describes the experimental 

aspects of this study, including the beam preparation and selection, the gas targets, the gas 



6 
 

 

cell, the pressure regulation system, and the detection system. The methods used to analyze 

the data and to obtain the cross sections are given in chapter III. Details of the data analysis 

and the results are given in chapter IV. First, the dependence of the electron loss cross-

section on target atomic number is discussed for the noble gases. Then the dependence of 

the loss cross section on the number of electron removed ( q∆ ) from the projectile is 

discussed. A semiempirical method based on the independent electron approximation 

(IEA)[40,41] is presented for the purpose of establishing a systematic mean of estimating 

electron loss cross section. Finally, the electron loss cross sections for molecular targets are 

presented and the applicability of additivity rule is examined.  

     The conclusions are presented in chapter V.  
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CHAPTER II 

EXPERIMENTAL SETUP 

 
 
     In this chapter, experimental details concerning the beam preparation and the gaseous 

targets will be discussed. Then the detector system and data acquisition procedure will 

be described. 

 

A. Beam line 

 

     A 6 MeV/amu beam of Xe18+ was extracted from the K500 Superconducting 

Cyclotron and directed through a 22o bending magnet, to remove ions with charges other 

than 18+, into the target chamber. Details of the experimental arrangement for the valves, 

chambers, collimators, gas cell, pumps, disperse magnet and detector is shown in figure 

2. The target (front) chamber was located 10 m down-stream from the 22o bending 

magnet. As shown in the figure 2, hand valve 1 isolated the front chamber from the 

cyclotron beam line. Also, by closing hand valve 4, the back chamber could be isolated 

from the front chamber.  

     The beam was focused by adjusting the upstream quadrupole magnets while viewing 

the beam spot on a phosphorescent screen positioned at the back of the target chamber 

via a closed circuit TV monitor. The gas cell was not placed in its position until after the 

focusing was completed.  
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     Inside the target chamber, the beam passed through two collimators of diameter 1 mm 

and 2 mm, respectively before entering the outer cylinder of a windowless gas cell. The 

outer cylinder of the gas cell had a 1-mm entrance aperture, which also acted as a third 

collimator (see figure 3).  The cell was differentially pumped and had an effective length 

[23] of 2.08cm. Details of the gas cell system are described in section B. The pressure 

inside the gas cell was measured by a capacitance manometer and was held constant to 

within ±0.1 mTorr by a flow controller and an automated valve. The pressure controller 

compared the preset pressure setting with the manometer pressure and sent a feedback 

signal to the automated valve.  Ion gauges were used to monitor the pressures in the 

beam line and front chamber, which varied between 1.5×10-6 and 5.0×10-6 Torr, 

depending upon the gas cell pressure and vacuum history. After exiting the gas cell, the 

beam passed through a charge dispersing magnet and on into a 1-D positive sensitive, 

microchannel plate detector (PSD). Details of the detector are described in section C. 

The detector could be moved up and down on a motor driven mount in order to optimize 

the separation between charge states. To avoid rate-dependent gain changes and 

extraneous peaks due to pulse pile-up, the beam intensity was kept between 1000 and 

1500 counts/s. The charge distributions were counted until the statistics in the four-

electron loss peak was better than 2%. 
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Figure 3.  Schematic diagram of differentially pumped gas cell.  
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B. Gaseous targets 

 

The target Z-dependence of electron loss was investigated using the noble gases He, Ne, 

Ar, Kr, and Xe. The question of cross section additivity was explored using the 

molecular gases listed in table I.  Also tabulated are the atomic number, average atomic  

number and the pressure range employed. Special caution was taken when using silane 

because of its explosive properties when exposed to air.  

 

 

Table I.  The pressure (mTorr) range and the atomic number or average atomic number 

of the target gases 

Gas Pressure range Atomic or average atomic number
H2 0-200 1.00
He 0-200 2.00
CH4 0-64 2.00
C3H8 0-64 2.36
SiH4 0-64 3.60
CO 0-64 7.00
N2 0-64 7.00
CO2 0-64 7.33
O2 0-64 8.00
C3F8 0-64 8.18
CF4 0-64 8.40
SF6 0-64 10.00
Ne 0-64 10.00
Ar 0-64 18.00
Kr 0-64 36.00
Xe 0-64 54.00  
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Figure 4. Target gas manifold system. The pressure in the gas cell was regulated by the 

automatic flow valve 8 which was controlled by the MKS pressure/flow controller by 

comparing the pressure signal from the capacitance manometer with the preset pressure.  
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1. Gas Cell      

The gas cell assembly used in the present experiment consisted of an outer cylinder 

to limit the gas flow into the vacuum chamber and an inner cylindrical gas cell, as shown 

in figure 3.  Obviously the effective path length in the gas cell is longer than the physical 

path length because of the gas streaming from the apertures as the result of differential 

pumping. It was estimated that the effective path length was 2.08 cm and the diameters 

of the entrance and exit apertures of the gas cell were 2 mm. Differential pumping 

maintained the pressure in the vacuum chamber from1.0 to 5.0×10-6 Torr with gas cell 

pressures ranging from 0 to 300 mTorr. The effective thickness π  of the target cell is 

given by the following equation:  

ρπ =                                                    (2-1) 

where                        
RT

PN Aαρ =                                                         

In the above equations, l  is the effective length of the gas cell in centimeter, ρ  is the 

gas atom density in atoms/cm3, P is the measured pressure in atm, α  is the number of 

atoms per molecule, NA is Avogadro’s number, R is the gas constant (0.08206 

L atm
mol K
−
−

 ), and T is the temperature in K. 

 

2.      The target gas handling system 

     The target gas handling system is shown in figure 4. The gas cell pressure was 

maintained by regulating the gas flow with an automatic valve (valve 8). Generally, a 

pressure control system consists of three basic parts (a) the pressure sensor, (b) the 
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controller and control valve and (c) the system whose pressure is to be controlled. The 

pressure sensor was the Baratron Absolute Pressure Transducer (MKS Co. Type 627B), 

which provided repeatable pressure measurements in the range from 1000 Torr to as low 

as 0.02 Torr full scale. It was connected to the gas cell through a steel pipe and manual 

valve 7.   The   sensor   provided 0  to  10  VDC  output that was linear with pressure and 

independent of gas composition.  By  comparing  the  pressure  signal  from the Baratron 

 

with the pre-set pressure, the controller automatically adjusted the flow rate into the gas 

cell via the control valve 8 to maintain the desired pressure. The pressure could be held 

constant to within ±0.6% over the 20 minutes time period of a typical measurement. 

     Manual valves 5 and 6 were used to isolate the front and back chambers, respectively 

from the cyclotron vacuum system. The pump down procedure was described as follows: 

first, valve 1 was slowly opened (all the other valves initially were closed) and the 

mechanical pump started to rough the system down to approximately 1×10-3 Torr, at 

which point manual valves 3 and 4 to the diffusion pumps, were opened. Then valve 1 

was closed immediately.  Finally, manual valves 5 and 6 were opened after the front 

chamber pressure dropped below 1×10-5 Torr, and then valve 7 was opened. The reverse 

procedure was used to vent the chamber. 

     During the experiment, the pressure at the output side of the pressure regulator (13) 

was set at 5 psi.  

     When changing from one gas to another, the following procedure was used. First, 

valve 8 was closed. After attaching a new gas bottle and regulator, the tygon tubing to 
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valve 11 was disconnected and flushed by flowing same of the new gas through it for 

few seconds. Then the tygon tubing was quickly reconnected to valve 11.  The pressure 

at valve 12 was adjusted to 5 psi. Next, valve 11 was opened to allow gas to enter as for 

as valves 8 and 9. Then valve 11 was closed and pumped out by slowly opening valve 9. 

The last two steps were repeated several times in order to get all the residual gas out of 

the system. Finally, with valve 9 closed, valve 11 was fully opened and the system was 

ready for operation. 
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C. Detector system 

 

1. Position Sensitive Microchannel Plate Detector (PSD) 

     A Position Sensitive Microchannel Plate Detector (PSD) was used to measure 

the relative intensities of the different charge states of Xe ions. A schematic diagram of a 

microchannel plate, illustrating its principle of operation is shown in figure 5 [24 and 

references therein]. Microchannel plates are leaded-glass discs that contain millions of 

tiny pores etched into them. The pores are typically 8-25 micrometers in diameter, 10-40 

micrometers center to center and 40-100 times longer than their diameter. The inner 

surface of each pore is coated with lead-oxide (PbO) glass that will readily release 

multiple secondary electrons when a single incident particle (ion, electron, photon etc.) 

enters the channel and ejects an electron from the channel wall. One enlarged channel in 

figure 6 shows the principle of its gain. In the present application, two MCPs were 

stacked  one  on  top  of  the  other  to  form  what  is  called  a  chevron  array .The top 

surface of the top MCP, called the cathode, was held at a negative voltage of around -

1800 v and the bottom surface of the bottom MCP, was held at approximately -300 v. 

Having negative charge at the cathode, the electrons ejected within the MCP are 

accelerated towards the positively charged anode. Secondary electrons are also 

accelerated by the electric field. 
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Figure 5.  Illustration of the structure of  a Microchannel plate (MCP) [24] 
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Figure 6. An enlarged view of one channel of the MCP and the principle of its gain.  
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The secondary electrons travel along their parabolic trajectories until they strike the 

channel surface, thus producing more secondary electrons. This process is repeated 

many times along the channel; as a result, this cascade process yields a cloud of several 

thousand electrons, which emerge from the rear of the plate. The upper surface is coated 

with a semiconductor photocathode material that also penetrates slightly into each pore 

to improve the efficiency of the device. When two or more MCPs are operated in series, 

a pulse of 108 electrons is generated by a single particle input.  

     The PSD shown in figure 7 is composed of two MCPs having an active length of 10 

cm and width of 1.5 cm which are stacked with the angles of the channels oriented 

opposite each other. As will be explained in the coming section, the position of impact of 

the incident Xe ion was determined by comparing the top signal with the bottom signal 

of the PSD. The detector could be moved up and down in order optimize the separation 

of adjacent charge states. 

 

2. Data acquisition  

The amount of charge collected at each end of the resistive anode is proportional to 

the distance the charge must travel (i. e., the resistance associated with the path length 

through the anode). Therefore, the position of the incident particle may be determined by 

comparing the amplitude of the corresponding signal appearing at the top and bottom of 

the resistive anode. The electronic components used to accomplish this task are shown 

schematically in figure 7. Both the bottom and top signals from the resistive anode were 

amplified by preamplifiers and then fed to spectroscopy amplifiers (Ortec 571 or 572). 
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The amplified signals were added and the sum signal inverted by a Dual Sum & Inverter 

unit (Ortec 433A). The top signal and the sum signal were then sent to a position 

sensitive detector analyzer unit (Ortec 464). This unit produces an output signal that is 

proportional to the position of the incident particle on the PSD by taking the ratio of the 

top signal to the sum signal. The position signals were analyzed by a personal computer 

based multichannel analyzer system ( Oxford model PCA3) and the resulting charge 

distribution spectra were recorded on disk. 
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 CHAPTER III 
 

DATA ANALYSIS METHODS  
 

 

     In this chapter, the growth curve method [24] and an approximate solution to the rate 

equation will be described. Then the method used to determine cross sections for 

specific charge states will be discussed. 

 
 
 

A. Charge distribution and growth curves 

 

     When a high energy particle of charge q passes through a gaseous target, its charge 

may increase or decrease as a result of electron loss or capture. Generally, these charge 

changing processes can be represented as: 

' ( ' )i f fP T P T f f i e+ = + + + − , 

Where P represents the high energy projectile with initial charge i and final charge f; T 

represents the neutral target with final charge 'f ; ( ' )f f i e+ −  is the number of 

electrons released in the collision. 

     In order to completely describe the collision, it would be necessary to measure the 

charges of the incident particle and the target before and after the collision and to 

determine the momenta of the released electrons. However, this kind of experiment is 

generally too difficult to perform for a complex (many electron) collision. In the present 

work, the much simpler task of determining cross sections for single and multiple 
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electron loss from the projectile is undertaken. Specifically, the dependence of electron 

loss by 6 MeV/amu Xe18+ on target atomic number and composition was studied. 

     After passing through the target gas cell, a incident beam contains ions in many 

charge states. However, if the target is quit thin, the incident charge state still dominates. 

A typical charge spectrum of projectile ions, detected using the one dimensional position 

sensitive microchannel plate detector (MCP-PSD), is shown in figure 8. This figure 

shows that a) the charge state of incident beam still dominates; b) the probability of 

electron loss is much lager than that of electron capture, and c) as many as twelve 

electrons may be lost in a single collision. In figure 8, the dominant main peak is due to 

the charge unchanged Xe18+ beam. Positive numbers indicate the charge states of the 

projectile after passing through the gas cell. Each charge state peak appearing in the 

spectrum was integrated and divided by the total number of incident ions to obtain the 

corresponding charge fraction iF  of projectile ions in charge state i . For most of the 

targets, the charge state fractions were measured at pressures of 0, 1, 2, 4, 8, 16, 32 and 

64 mTorr. In the hydrogen and a helium target measurements, pressures up to 300 mTorr 

and 200 mTorr, respectively, were employed because of their lower densities. The 0-

mTorr spectrum is used to determine the contributions to the various charge states from 

stripping in the beam line residual gas. The rate of change of charge fraction iF  as the 

projectile traverses a gas cell of effective length l  cm containing gas atom density ρ  

cm-3 is given by the differential equations: 

∑∑ −=
j

ijiki
k

k
i FF

d
dF σσ
π

                                       (3-1) 
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Figure 8. Typical position spectrum of the outgoing projectile charge distribution. The 

probability of electron loss (q>18+) is much larger than that of electron capture (q<18+). 

The percentage of charge changed beam is less than 25% of the incident beam. 
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In equation (3-1), lρπ = and kiσ  represents the cross section for changing 

from charge state k to charge state i by either capture (k>i) or loss (k<i) of electrons 

while ijσ  represents the cross section for changing from charge state i to charge state j 

by either loss (j>i) or capture (j<i) electrons. The first summation represents the rate of 

increase of the fraction of ions in charge state i  via transformations from all the other 

possible charge states k , while the second term represents the rate of decrease of the 

fraction of ions in charge state i via transformations into all other possible charge 

states j .  

     The solutions to the set of coupled equation 3-1 are rather complicated, but for low 

enough pressures ( πσ mn  << 1), they may be approximately represented by the following 

polynomials [25]:  

2
iF a b cπ π= + + + ⋅⋅⋅   ,                                            (3-2) 

where 

        iFa =  when π=0 

        qib σ=  (cross section for changing from incident charge q to charge i  in a single 

collision) 

        c = products of cross sections for producing charge state i  in double collisions. 

     The first term in equation (3-2) is the background fraction of ions with charge state i  

(i.e., the fraction of incident ions that change to charge state i  as a result of collisions 

with the residual gas in the beamline when there is no gas in the gas cell). In the pressure 

range  employed,  higher  order  terms  (greater than 2)   representing  contributions from  
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Figure 9. Charge fractions for 6 MeV/amu Xe18+ plotted as a function of Ne target 

thickness.  Solid lines and filled circles are for electron loss. Dashed line and open 

circles are for electron capture. The lines show the results of least squares fits of 

equation 3-2 to the data In the low pressure region, the charge fractions vary linearly 

with target thickness, but at the higher values of π , substantial deviations from linearity 

are observed. 
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more  than  two  collisions  are  expected to be negligible. Figure 9 shows typical growth 

curves of charge fractions vs. π  (target gas thickness). These curves exhibit substantial 

deviations from linearity at the high target thicknesses. 

 

 

B. Cross section determination 

      

     In the present application of the growth curve method, the charge fractions were 

measured over a range of pressures and plotted as a function of target thickness (π). 

Then second order polynomials were fit to these data. According to equation (3-2), the 

cross sections qiσ  are given by the coefficients of the linear terms.  

     Two fitting procedures were employed in the data analysis. In the first procedure, 

second order polynomials were fit to the charge fractions without first correcting them 

for charge changing collisions with the residual gas in the beam line. Presumably, this 

contribution is automatically accounted for by the parameter a in equation (3-2). The 

second fitting procedure was applied to charge fractions that had first been corrected for 

residual gas collisions. The charge fraction corrections were accomplished by 

subtracting the normalized zero pressure spectrum from each of the spectra measured at 

the other pressures to explicitly correct for the residual gas background. Fits to the 

corrected charge fraction vs. target thickness data sets were then made with the 

additional restraint that a=0. The results of both types of analyses for the eight electron  
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Figure 10. Comparison of the cross sections obtained for 6 MeV/amu Xe18+ ions in Ne 

using the two fitting procedures: with residual gas contribution subtracted (open circles) 

and without residual gas contribution subtracted. 

 

 

loss peaks measured with a Ne target are shown in figure 10. The uncertainty in the cross 

section  due  to  statistical  errors  is  less  than  1%,   which  is  much   smaller   than  the 
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uncertainties associated with the peak integrations and the effects of the background. 

Agreement of the cross sections determined by the two methods of treating the 

background is quite good.  

     Errors in the cross sections are due to uncertainties in (a) the effective length of the 

gas cell (2%), (b) the pressure measurements with the capacitance manometer (5%), (c) 

counting statistics,  (d)  efficiency  nonuniformity  of  the  PSD,  and (e) peak integration.   

These uncertainties were taken into account along with the relative uncertainty of the 

fitting parameter b to obtain the absolute uncertainty in the cross sections, which was 

typically less than 15%. 

       The validity of the approximation involved in representing the thickness dependence 

of the cross section by a second order polynomial was tested by assuming a reasonable 

set of charge changing cross sections and calculating the growth curves for one to eight 

electron loss and one to three electron capture via numerical solution of the rate 

equations (equation 3-1). Then the calculated growth curves were fit with second order 

polynomials over the pressure range of zero to 100 mTorr and the cross sections 

obtained from the fits were compared with the assumed cross sections. In the case of 

electron loss, the largest difference between the value of the linear coefficient of the 

polynomial fit and the corresponding (assumed) cross section was 6%, which occurred 

for the one-electron loss case. The deviations for all of the multiple loss cross sections 

were less than 1%. In addition, it was found that the agreement improves rapidly as the 

pressure range is decreased. For larger pressure ranges, good agreement is obtained by 

increasing the polynomial to third order. 
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CHAPTER IV  

RESULTS AND DISCUSSION 

     

     In the first part of this chapter, the electron loss cross sections for 6 MeV/amu Xe18+ 

ions on noble gas targets are presented and discussed. A semiempirical scaling procedure 

based on the IEA is described. Then the results of the electron loss cross section 

measurements for molecular targets are presented. Based on these results, the 

applicability of an additivity rule is discussed in the second part of this chapter. 

 

 

A. Target Z-dependence of electron loss by 6 MeV/amu Xe18+ 

      

     Many investigators have put forth considerable effort to study the charge changing 

cross sections for electron capture and electron stripping by high energy particles in 

collisions with target atoms or molecules. Because of the complexity of the charge 

changing phenomena, theoretical methods must resort to various assumptions and 

simplifications when applied to multiple electron processes. Among these theoretical 

methods [reference 13 and references therein, 26-29], Bohr’s method [28-29] is well 

known and it states that if the distance of closest approach in a collision is much smaller 

than the atomic radius, the collision can be viewed as a collision between a bare nucleus 

and free electrons. Bohr’s theory predicts that the electron loss cross section of both light 

and heavy projectiles on a light target is a quadratic function of the target atomic number. 
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Whereas in the case of a heavy ion collision with a heavy target, a dependence on 3
1

2Z  is 

predicted. However, the present study shows that the electron loss cross section is a 

linear function of Z2 in both regimes. Details of the linear relationship will be discussed 

in the following sections. 

 

1. Cross sections for collisions with noble gas targets  

     By using the methods described in chapter III, the capture and loss cross sections of 6 

MeV/amu Xe18+ ions in the noble gases were determined and their values are listed in 

table II. The entries listed for q∆ ≥  9 (Ne through Xe) were determined from composite 

growth curves constructed by summing the charge fractions of all statistically significant 

peaks in the charge distribution above that of q∆  = 8. The one electron capture peak was 

statistically significant for all of the targets except H2 and He. Approximately 8 and 13 

statistically significant loss peaks were observed for targets whose average atomic 

numbers were less than and greater than 8, respectively. The exception was for He, 

which had only 5 significant loss peaks. The measured electron loss cross sections for 

noble gas targets also are shown as a function of the number of electrons removed from 

the projectile ( q∆ ) in figure 11. 
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Figure 11. Single and multiple electron loss cross sections plotted as a function of the 

number of electrons removed from the incident 6 MeV/amu Xe18+ ions. The solid lines 

were fit to the points using two exponential functions except for He, where only one 

exponential function was used.  
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2. Dependence of electron loss cross sections on ∆q 

     In Fig 11, the cross sections for the He target are reasonably well represented by a 

single exponential function (solid line), whereas the cross sections for the other targets 

display a dependence on q∆ that requires two exponential components to describe. This 

is because the rate of decrease in cross sections for q∆ ≥ 4 as a function of q∆  slows 

dramatically with increasing target atomic number. The second exponential component 

may reflect the effect of Auger decay, which should become an increasingly important 

mechanism for electron loss as electrons are removed from inner shells in high 

multiplicity (i.e., small impact parameter) collisions 

 

3. Z-dependence of the total loss cross sections 

The   total  electron loss cross section is defined as the sum of the individual electron  

loss cross sections (
8

1
( )total i loss

i
σ σ

=

=∑ ). As shown in figure 11, the individual electron 

loss cross sections decrease with the increasing q∆ . The cross sections for one- and two- 

electron loss ( 1σ  and 2σ ) are much larger than the other electron loss cross sections. 

This is shown in figure 12 where the ratios 1 2( ) / Tσ σ σ+  and 1 2( ) /T Tσ σ σ σ− − are 

plotted as a function of target atomic number. Clearly, 1σ  and 2σ are the dominant 

contributors to the total cross section. However, the one- and two- electron loss 

contribution decreases from around 80% for He to around 50% for Xe. This observation 
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points to the increasing importance of large multiplicity collisions as the target atomic 

number increases.  

      Figure 13 shows the dependence of the total electron loss cross section for 6 

MeV/amu Xe18+ on target atomic number for the noble gas targets. The plot shows that 

the data appears to lie along two straight lines, with the He and Ne points defining a line 

having a relatively steep slope and the rest of the points defining a line having a 

significantly smaller slope. This behavior is remarkably similar to that observed by 

Alton et al. [19] for 0.36 MeV/amu Fe4+ ions and by Graham et al. [30] for 4.66 

MeV/amu Pb54+ ions. Alton et al. also found that their measured one electron loss cross 

sections were well predicted by a dependence on 1/3
2Z . However, application of their 

formula to the present collision systems results in one-electron loss cross sections that 

are too small by a factor ranging from 1.7 for He to 8.5 for Xe.  

     The two lines shown in figure 13 intersect around atomic number 15. The total 

electron loss cross sections are given by the equations  

 

σT=-2.194+3.689Z2         for Z2≤ 10                                      (4-1) 

 

and  

 
 

        σT =36.72+1.076Z2          for Z2≥ 18                                     (4-2) 

 

with Tσ  in units of Mb. 
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Figure 12.  The cross section ratios 1 2( ) / Tσ σ σ+  (solid circles) and 1 2( ) /T Tσ σ σ σ− −  

(solid squares) plotted as a function of the target atomic number.  
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Figure 13.  Total electron loss cross sections for 6 MeV/amu Xe18+ ions colliding with 

noble gas targets plotted as functions of target atomic number. The dashed line was 

drawn through the experimental data of helium and neon while the solid line was fit to 

the experimental data of Ar, Kr and Xe. 
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     The results of n-CTMC calculations performed by Olson et al. [31] are also shown in 

figure 13.  For these calculations, 18 electrons were centered on the Xe-ion in order to 

model the  3d104s24p6  electron  configuration. The overall agreement with experiment is 

quite good and the slopes of the two straight line segments are accurately predicted. In 

applying the n-CTMC model, the actual ionization energy was assigned to each bound 

electron to account for the increasing ionization energies of the remaining electron as 

sequential stripping proceeds. After electrons are stripped, the actual ionization energy 

will increase. Therefore, the n-CTMC model may be considered to be an independent 

event model rather than an independent particle model. It also employed an energy 

deposition model to describe the high ionization stages. [32] 

     Generally, electron loss occurs as a result of (a) interaction between the projectile 

electron and the target electron (e-e interaction) and (b) interaction between the 

projectile electron and the target nucleus (e-n interaction). Therefore, the total electron 

loss cross section can be approximately expressed as: 

2
2 ( )T e e e e en Z effσ σ σ− −≅ +                                                      (4-3) 

where ee−σ  is the cross section for e-e interaction, ne is the number of target electrons 

and 2 ( )Z eff is the screened target nuclear charge. By assuming ne and 2 ( )Z eff for He are 

2, and equating equation (4-3) to the measured total electron loss cross section, ee−σ  can 

be estimated. If  we consider  only  interactions  including the target outer shell 

electrons(i.e.,  take  ne-e  to  be  the  number  of  target  outer shell electrons), then 
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2 ( )Z eff  can be estimated by equating equation (4-3) to the measured total electron loss 

cross sections. The results are listed in the last row of table II and are shown in figure 14.  
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Figure 14.  Effective charge ( )(2 effZ ) of the noble gas targets as a function of atomic 

number.  
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     It is evident that the trend of 2 ( )Z eff  is very similar to that of the total electron loss 

cross section shown in figure 13. The fact that the Ar, Kr, And Xe targets are more 

highly screened than the He and Ne targets suggests that the change in screening 

between Ne and Ar is responsible for the change in the slope of the Z-dependence 

exhibited by the data in figure 13.   

 

4. Single electron capture 

     The single-electron capture cross sections for noble gas targets plotted as a function 

of Z2 are shown in figure 15. The cross section for helium is much lower than the rest 

while neon gives the largest cross section. This low value of the cross section for He is 

probably attributable to both its low number of electrons and its relatively high electron 

binding energy. It is further noted that the capture cross section decreases above Z2 =10. 

Interestingly,  this observation is quite  different  from  the  theoretical  predictions  and 

experimental results for low Z1 projectiles, which generally shows the capture cross 

section to increase with Z2 when Z2 is not large [33-39]. The capture cross section 

becomes almost constant when Z2 tends to a large value [13]. The reason for the later 

observation is that capture follows a trend which is completely opposite to the loss, i.e. 

the higher the probability of electron loss, the lower the probability of electron capture 

and vice versa. 
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Figure 15.  Cross sections for single-electron capture by 6 MeV/amu Xe18+  from noble 

gas targets as a function of atomic number.  
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5. Semi-empirical method for systematizing the ( )qσ ∆  

     As a mean of exploring the systematic dependence of the electron loss cross sections 

on q∆ , a semi-empirical scaling method was developed by employing the IEA [40, 41] 

in conjunction with a simple empirical ionization probability function. The IEA is a 

method used to describe multiple ionizations in fast ion-atom collision. Only one 

parameter p(b), the single electron ionization probability, is needed to calculate the 

multiple electron ionization cross section. A binomial distribution function is employed 

to calculate the probabilities for multiple electron removal. Previous applications of this 

method are described in references [42-44] and other references therein. 

     Since we are only interested in the cross sections for removing projectile electrons, 

we focus on the interactions between the projectile electrons and the target, as shown 

schematically in figure 16. It is assumed that the net probability of removing a single 

electron via the e-e and e-n interactions can be represented by an impact parameter 

dependent probability function ( )p b . Then the differential cross section for removing a 

single electron may be expressed as 

2 ( )d p b bdbσ π=                                              (4-4) 

     

     In the present experiments, the cross sections for the removal of specific numbers of 

electron have been measured.  To calculate the probability of removing n and only n 

electrons from the total N electrons in the outermost shell of the projectile, we invoke 
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Figure 16.  Schematic diagram showing the differential area associated with collisions 

having impact parameters between b and b+db. 

      

 

 

the independent electron approximation which assumes that each of the n electrons is 

removed in a manner that does not affect the probability of removing any of the others. 

d =2 bdbs π
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This leads to a multiple-electron ionization probability that may be expressed in terms of 

a binomial distribution of the single electron ionization probabilities [40]. Specifically 

the probability of removing n electrons from an atomic shell containing N electrons is 

given by  

( ) ( ) [1 ( ) ]n n N n
n NP b C p b p b −= −                                (4-5) 

where 
)!(!

!
nNn

NC n
N −
=  

Then the cross section for removing n electrons may be computed from 

∫
∞

=
0

)(2 bdbbPnn πσ                                          (4-6) 

     Two probability functions were used to simulate the probability of removing a single 

electron. One was the normal distribution function (Gaussian), 
22 2/

0)( δbepbp −= , and 

the other was the exponential distribution function, rbepbp /
0)( −= , where b represents 

the impact parameter relative to the target nucleus and 0p , r, and δ  are probability, 

radius, and width fitting parameters, respectively. In the present application, only the 

eight outer-shell electrons were considered. Substitution of the Gaussian distribution 

function and equation (4-5) into equation (4-6), gives the following equation (4-7): 

 

2 2 2 2/ 2 / 2
0 0

0

2 ( ) (1 )n b n b N n
n NC p e p e bdbδ δσ π

∞
− − −= −∫                 (4-7) 
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     Cross sections calculated using the above expression were fit to the experimental 

cross sections to determine the two unknown parameters 0p  and δ  by means of a least 

squares precedure. Numerical integration was employed and all the calculations were 

processed using SigmaPlot® 2001. The best fits were obtained with the Gaussian 

function and are shown by the solid lines in figure 17. The fits improve as the target 

atomic number increases. The calculated cross sections and the two fitting parameters p0 

and δ  are tabulated in Table III. The average absolute differences between the  fitted  

and  measured  cross  sections  for  n  from  1  to  8  and  the  total are tabulated in Table 

IV.  

     The resulting values of the two fitting parameters (p0 and δ ) are plotted as functions 

of target atomic number in figure 18. The value of p0 dramatically increases from He to 

Ne and remains nearly constant over the rest of the Z2 range. The δ fitting parameter 

increases smoothly with the atomic number. These two parameters are accurately 

reproduced by the empirical formulas 

 

20.19
0 0.16 1.16(1 )Zp e−= − + −                                              (4-8) 

and  

 

 20.0620.060 0.16(1 )Zeδ −= + −                                              (4-9) 
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Figure 17.  Electron loss cross sections plotted as a function of the number of electrons 

removed from the incident Xe18+ projectile (filled symbols). The solid lines and empty 

symbols show the results of fits to the data using the semiempirical IEA prescription 

described in the text.  
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Table III.  Calculated cross sections obtained using a semiempirical procedure based on 

the IEA. The Gaussian distribution 2

2

2
0

δ
b

epp
−

=  was used to represent the single 

electron loss probability.  

Target He Ne Ar Kr Xe 
δ (Å) 0.077 0.13 0.17 0.19 0.22 

p0 0.21 0.83 0.97 1.00 1.00 
1 3.16 11.11 17.52 23.40 29.04 
2 0.98 5.56 8.76 11.70 14.52 
3 0.28 3.70 5.84 7.80 9.68 
4 0.061 2.76 4.38 5.85 7.26 
5 0.0096 2.15 3.50 4.68 5.81 
6  1.59 2.92 3.90 4.84 
7  0.94 2.45 3.34 4.15 

Loss cross 
sections 

(Mb) 

8  0.31 1.72 2.92 3.63 
Total loss cross 

section(Mb) 4.49 28.14 47.09 63.61 78.94 

 
 

Table IV.  Comparison of the experimental electron loss cross sections with the cross 

sections obtained using the semiempirical fitting procedure in absolute percentage; 

100 | |meas cal

meas

σ σ
σ
−

∆
. The last row lists the calculated )(2 effZ  for the noble gases. 

q∆  He Ne Ar Kr Xe 
1 6.4 31.1 26.0 14.0 13.0 
2 40.7 28.3 18.0 8.5 6.1 
3 46.6 2.8 4.7 8.0 7.3 
4 25.5 3.3 6.6 11.0 9.0 
5 53.6 9.7 8.2 4.2 4.7 
6   19.6 6.8 2.6 3.7 
7   11.2 2.9 5.6 9.2 
8   32.9 3.6 6.8 4.5 

Average difference 
between the fit and the 

Measured loss cross 
section (%) 

34.6 17.4 9.6 7.6 7.2 
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Figure 18.  The fitting parameters  0p  and δ  in the semiempirical IEA prescription 

described in the text plotted as functions of the target atomic number.  
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B. Molecular targets and cross section additivity 

1. Cross sections for molecular gases 

     The measured electron capture cross section, the multiple electron loss cross sections 

and total electron loss cross sections for the molecular targets are tabulated in table V. 

The particular molecular targets used in this study were chosen to span as wide a range 

of average atomic number as possible within the constraints of being readily available 

and reasonably safe to handle. Unfortunately, no molecular gas targets having average 

atomic numbers beyond 18 fulfilled the latter condition. The gas targets used in this 

study have average atomic numbers between 1 (hydrogen) and 10 (SF6). The target 

average atomic number, defined as ∑=
i

iiZfZ , where if  is the fraction of atoms in the 

molecule having atomic number iZ , is tabulated in table V. By substitution of the 

average atomic number into equation (4-1), the predicated electron loss cross sections 

for molecular targets were calculated and the results are also listed in table V.  
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2. The dependence of total loss cross sections on target average atomic number 

     The total electron loss cross sections per atom obtained in this study are shown in 

figure 19, plotted as a function of the target average atomic number. The per atom cross 

section is the cross section per molecule divided by the number of atoms per molecule. 

The dashed line in Figure 19 is the same line defined by the total electron loss cross 

sections for the monatomic targets He and Ne in Figure13. It is evident from the figure 

that the per atom total electron loss cross sections for the molecular targets (i) increase 

linearly with target average atomic number, and (ii) closely correspond to the predicted 

cross   sections  for  atomic  targets  having  ZZ = . This observation means that the 

following additivity rule applies to the molecular data: 

_ ( )per mol N Zσ σ=                                                          (4-10) 

where _per molσ  is the cross section per molecule, N is the number of atoms per molecule, 

and )(Zσ  is the cross section for an atom having an atomic number equal to the average 

atomic number of the molecule.  By substitution of the corresponding average atomic 

number ( Z ) of each molecular target into equation (4-1), the predicted cross sections 

can be calculated and they also are listed in table V. The absolute percentage differences 

between the experimental cross sections and the predicted cross sections are listed in 

table V. All the differences are within ±6.7%, except for the two lightest targets 

hydrogen and methane, which deviate by 21.0% and 10.3%, respectively. All the 

predicted cross sections are lower than the experimental cross sections except for CF4 

which is slightly higher (2.8%) than the experimental cross section.  
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Figure 19.  Total loss cross section (per atom) for 6 MeV/amu Xe18+ projectile in 

various molecular targets plotted as a function of target average atomic number. The 

dashed line is the same line that was defined by the He and Ne data points (shown here 

by empty circles) in figure 13. 



 

 

54

3. Additivity rule  

     The usual form of the additivity rule is 

( )mol i i
i

n Zσ σ=∑                                                     (4-11) 

where in  is the number of atoms in the molecule with atomic number iZ . The validity of 

this rule was tested by using the linear relationship between the total loss cross section 

and the target atomic number, as defined by the noble gas data, to calculate the )( iZσ . 

For example, the measured total electron loss cross section per atom for CO is 24±1 

Mb/atom,   while    the     cross     section     calculated    by   using   equation  (4-1) and 

(4-11) is 23.6 Mb/atom. An example for CF4 is by substitution of the cross section for 

carbon (19.9 Mb) and fluorine (31.0 Mb) into equation (4-11) to get the total cross 

section 143.9 Mb while the measured total loss cross section is (28±1 Mb/atom)×5 = 

140±5 Mb. The results for other molecular targets are shown in Figure 20, where the 

ratio of the measured cross section to the cross section calculated using the additivity 

rule (equation 4-11) is plotted versus the average atomic number. As shown in table V 

and figure 20, the additivity rule yields total electron loss cross sections that differ from 

experimental data by less than 6.7%, except for the H2 (not shown in figure 20) and CH4 

targets. The large ratio exhibited by H2 may indicate that the dependence on Z2 for 

atomic targets becomes nonlinear below He. However, similar large deviations from the 

additivity rule have been observed in cross sections for single electron capture by heavy 

ions from H2 targets. An analysis based on the Bohr-Lindhard model presented by 

Knudsen et al. [35] predicts a limiting value of the single electron capture cross section 
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ratio σ (H2)/σ (H) of 3.8 for E/q4/7>102, where E is the projectile energy in units of 

KeV/amu and q is the projectile charge. Rather coincidentally, the ratio of the present 

total electron loss cross sections obtained using equation (4-1) to calculate σ (H) is 3.4. 
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Figure 20.  Ratio of the measured total electron loss cross section and the cross section 

calculated using the additivity rule expressed by equation (4-11), plotted versus the 

target average atomic number. 
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4. The effect of molecular structure on the electron loss cross sections 

     In figures 21 and 22, the ( )qσ ∆  are compared for different molecular targets having 

nearly  the same  average atomic number. These figures show that the electron loss cross 

sections for specific q∆  are remarkably similar for targets within the same Z  group. 

However, a slight dependence of the cross sections on the number of atoms per molecule 

may be indicated by the data in figure 22, especially at the higher values of q∆ . It is 

reasonable to expect such a behavior because, as the number of atoms in a molecule 

increases, it becomes more likely that the projectile will experience collisions with 

several atoms while traversing through the molecule. A comparison of the cross sections 

for the atomic target Ne and the molecular target SF6 is shown in figure 23. It appears 

that the cross sections for high 5q∆ ≥  are somewhat larger in the molecular target, but 

the effect is surprisingly weak.  
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Figure 21.  Comparison of cross sections for the loss of one to eight electrons in the 

molecular targets N2, CO, and CO2. Average atomic numbers are indicated in 

parentheses. 
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Figure 22.  Comparison of cross sections for the loss of one to eight electrons in the 

molecular targets O2, C3F8, and CF4. Average atomic numbers are indicated in 

parentheses. 
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Figure 23.  Comparison of cross sections for the loss of one to eight electrons in the 

molecular target SF6, and atomic target Ne. Average atomic numbers are indicated in 

parentheses. 
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     One possible explanation for the insensitivity of the electron loss cross sections to 

molecular structure is that the average impact parameter for electron loss is much 

smaller than the target molecular bond length. This conjecture may be tested by 

calculating the most probable impact parameter '
nb  associated with collisions in which 

the projectile loses n electrons. The calculation procedure is described as follows. Using 

equation (4-8) and (4-9), the value of 0p  and δ  were calculated for the atoms in the 

molecular targets (these results are listed in table VI). Then the distribution function '
nσ , 

defined as 

' 2 ( )n bP bnσ π=                                                  (4-12) 

 

where 
2 2 2 2/ 2 / 2

0 0( ) ( ) (1 )n b n b N n
n NP b C p e p eδ δ− − −= − , 

was calculated as a function of b. 

     Figure 24 shows the calculated  '
nσ  as a function of impact parameter b for collisions 

with a sulfur atom target. Finally  '
nb  was determined by finding the value of the impact 

parameter corresponding to the maximum value of '
nσ . Using this same procedure, the 

'
nb  for the other molecular target atoms were calculated and the results are tabulated in 

table VII for n=1 to 8. 

     In figure 25, '
nb  is plotted as a function of the target atomic number for n=1 to 8. 

From this figure it is clear that '
nb  increases faster in the region of light atoms than in the 

region of heavy atoms (Z2>18). Furthermore, '
nb  is plotted as a function of  q∆   in figure 
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26 for the noble gas targets and hydrogen. It shows that '
nb  decreases sharply from '

1b  to 

'
2b  which is consistent with the decrease for the multiple electron loss cross section from 

1 loss to 2 loss.   

     Another important parameter is the radius of Xe18+, which was calculated using a 

Dirac-Fock program [45]. Its value was found to be 0.32 Å. Other parameters, such as 

target atomic radii and molecular bond lengths, are listed in tables VI and VIII, 

repectively. 

A schematic illustration is given in figure 27 for SF6 in which the most probable 

impact parameters for one-electron loss in collisions with F and S atoms are compared to 

the  S-F  bond  length.  It  is  assumed  that  the  target  is  stationary  and  only  the 

projectile is moving.  Only  four  out  of  six  fluorine  atoms  are  shown  in  the  figure.  

The   solid   circles   represent   the   average   radii  of   the   outermost shells of the 

atoms.   The   dotted   circles   represent   the   most   probable   impact   parameters  for 

 

 

 

Table VI.  Radii of the target atoms [46, 47], and calculated 0p  and δ  parameters 

atom 0p    δ  (Å)  Radius(Å) 
H 0.041831  0.069066  0.53 
C 0.635033  0.108143  0.67 
N 0.699265  0.114615  0.56 
O 0.752261  0.120701  0.48 
F 0.795985  0.126423  0.42 
Si 0.92336  0.150298  1.11 
S 0.948532  0.15797  0.88 
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Figure 24.  Calculated '
nσ vs. impact parameter b for one to eight electron loss in 

collision with sulfur atoms. 
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Figure 25.  The most probable impact parameters for one to eight electron loss are 

plotted as a function of the target atomic number.  

 

 

 

one-electron loss while the long dashed circles represent the outer shell radius of the 

projectile when it is centered on the dotted circles.  From table VI, table VII, table VIII 

and the calculations, the radii of S, F and Xe18+ are 0.88, 0.42 and 0.32 Å, respectively; 

the bond length of S-F is 1.56 Å; ( '
1b )S and ( '

1b )F are 0.34 Å and 0.26 Å, respectively. 
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Since the sum of the most probable impact parameters for electron loss collisions with S 

and F (0.60 Å) is much less than the S-F bond length (1.56 Å), it is unlikely that the 

projectile will undergo an electron loss collision with more than one atom in the 

molecule. Therefore, it may be concluded, that it is the small impact parameters which 

are responsible for the insensitivity of the electron loss cross sections to the molecular 

structure.   

 

 

 

 

∆q

0 1 2 3 4 5 6 7 8

b'
 (A

ng
st

ro
m

s)

0.0

0.1

0.2

0.3

0.4

0.5

Xe(54)
Kr(36)

Ar(18)

Ne(10)

He(2)

H(1)

 

Figure 26.  The most probable impact parameter plotted as a function of q∆ . 
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Figure 27.  Schematic diagram comparing the most probable impact parameters for one-

electron loss collisions of 6 MeV/amu Xe18+ with S and F atoms to the S-F bond length 

in SF6.  The radii are defined in the text. All the units are in Angstroms. 
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5. Average electron loss per collision 

     The average electron loss from a projectile having incident charge q in a single 

collision with a target atom (or molecule) can be calculated by means of the following 

expression 

   
,q q q

q

T

q
q

σ

σ

+∆
∆

∆
∆ =

∑
                                                           (4-13) 

in which Tσ  is the total electron loss cross section. The calculated average electron loss 

per collision q∆  for all the targets is plotted as a function of the target (average) atomic 

number in figure 28. Open circles represent the noble gas targets and are well 

reproduced by the function 

2 2
1

(1 ) (1 )bZ dZq a e c e
− −∆ = − + −   ,                                        (4-14) 

 

shown by the solid curve in the figure. The best fit parameter values are a=1.216,  

b=0.03858, c=2.018, and d=0.08287. The q∆  for molecular targets were calculated 

using the same method and the results are shown as solid circles in figure 28. It is 

evident that the q∆  for the molecular targets cluster about the solid curve defined by the 

noble gas values except in the case of  SiH4, which is far above the curve. The reason for 

the large deviation exhibited by SiF4 is presently unknown.  
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Figure 28.  The average number of electrons lost from 6 MeV/amu Xe18+ ions in single 

collisions as a function of target (average) atomic number. The open circles represent the 

noble gas targets while solid circles represent the molecular targets. The solid line is fit 

to the noble gas data. 
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CHAPTER V  
 

CONCLUSIONS 
 
 
 

     Cross sections for the loss of one through eight electrons from 6 MeV/amu Xe18+ 

in single collisions with noble gas and molecular gas targets have been measured. 

The results for noble gases show that: a) the one electron loss cross section is much 

larger than the cross section for multiple loss; b) the multiple loss cross sections of 

the projectile decrease exponentially with increasing number of electrons removed 

but,  at the higher values of q∆ , the rate of decrease is much slower than that at low 

values of q∆  for 2 10Z ≥ ; c) the dependence of the electron loss cross sections on 

the number of electrons removed is well represented by a single exponential function 

in the case of a He target, while two exponential functions are required to describe 

the q∆  dependence of the other noble gas targets; and d) the average electron loss 

per collision increased steeply from He to Ar and then became almost constant from 

Ar to Xe.  

     The observed dependence of the total loss cross section on target atomic number 

for noble gas targets is defined by two straight line segments; one extending from He 

to Ne with a relatively steep slope and the other extending from Ar to Xe with a 

much smaller slope. The predictions of n-body CTMC calculations are in good 

agreement with the total electron loss cross sections and reproduce the main features 

of the observed Z2-dependence.  
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     In an effort to develop a scaling procedure for predicting the individual electron 

loss cross sections for any Z2, a semiempirical method based on the IEA was 

employed. It provided a reasonably good representation of the cross sections for all 

of the noble gas targets except for He. 

     The single electron capture cross section was also measured for the noble gas 

targets. It was found that He has the smallest capture cross section while Ne has the 

largest. Following the abrupt increase from He to Ne, the capture cross section 

slowly decreased from Ne to Xe.  

     The electron loss cross sections were measured for a variety of molecular targets. 

The total electron loss cross section divided by the number of atoms per molecule 

plotted versus target average atomic number, closely mirrored the straight line Z2-

dependence established by the cross sections for the atomic targets He and Ne. An 

additivity rule stating that the total electron loss cross section for a molecular target 

is equal to the sum of the total electron loss cross section of its atomic constituents 

was tested by using the straight–line Z2 dependence established by the measurements 

for He and Ne to calculate the constituent cross section. The ratios of the predicated 

total electron loss cross section to the experimental total electron loss cross section 

were found to deviate from unity by an absolute average of 6.7% except for H2 and 

CH4. Therefore, it was concluded that cross section additivity works well for electron 

loss from heavy ions in the present energy and charge regime. This implies that the 

target molecules act as assemblies of individual atoms and alterations of electron 

densities and ionization energies due to molecular bonding do not significantly 
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influence the electron loss cross sections.  Further confirmation of this hypothesis 

was provided by comparisons of the individual cross sections as a function of q∆ , 

which showed only a slight dependence on the molecular nature of the target at the 

higher values of q∆ . A comparison of the most probable impact parameters for 

electron loss collision with molecular bong lengths provided a plausible explanation 

for the insensitivity of the cross sections to the molecular nature of the target. In the 

case of SF6, for example, it was estimated that the most probable impact parameters 

for single electron loss collisions with F atoms and S atoms are 0.26 Å and 0.34 Å, 

respectively, while the S-F bond length is 1.56 Å. Therefore, it may be concluded 

that an electron loss collision with more than one atom in the SF6 molecule is very 

unlikely.  
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