¹²⁹Iodine: A New Hydrologic **Tracer for Aquifer Recharge Conditions Influenced by River Flow Rate and** Evapotranspiration Kathleen A. Schwehr¹, Peter H. Santschi¹, and Jean E. Moran²

> ¹Texas A&M University ²Lawrence Livermore National Laboratory

Acknowledgements

•Allan Jones

•Jan Gerston

•Ric Jensen

David Elmore
Pankaj Sharma
Xiueng Ma

Greg WoodsideAdam Hutchinson

Outline

- Objective
- Introduction
- Input function
- Study Site
- Results
- Conclusions

Objective

•To test the potential tracer application of the iodine isotopic ratio ¹²⁹I/¹²⁷I in recent ground waters by analyzing its behavior in a well-characterized aquifer system.

Introduction

Importance of Iodine

- Largest fraction of short term and long term dose from nuke releases & fallout
- ¹²⁹I one of two long lived nuclides with high mobility in stored radioactive waste
- New tracer and geochronological applications
- Sea atm: **VOI** (greenhouse active & ozone destructive)

Introduction Background for Iodine

- Biophilic
- ¹²⁷I 100% abundance
- ¹²⁹I $t_{1/2} = 15.6$ ma
- Natural surface inventory
- Bomb testing
- Nuclear fuel reprocessing (Cap de La Hague, Sellafield)
- Chernobyl reactor accident (1986)

100 kg 150 kg 2600 kg

1.3 kg

1Liter drinking water:

<u>10⁻¹² Ci</u> ²²⁶Ra ~0.2 (Eisenbud & Gesell, 1997) ¹²⁹I 0.0000003

Atmospheric source input function for ¹²⁹I ~constant over last decade

Atmospheric Inputs of ¹²⁹ I in Europe [Schnabel et al., 2001]

¹²⁹I/¹²⁷I Ratios in Precipitation in Europe [Szidat et al., 2000]

Global atmospheric transport in 11 to 18 days

Global Distribution of log ¹²⁹I/¹²⁷I [Snyder and Fehn, 2003]

¹²⁹I Flux comparison between Western Europe and the Contiguous United States

Recent ¹²⁹I Emissions in Europe (Schnabel et al., 2001) and USA (Moran et al., 2002)

Santa Ana River Basin

Study Site in Semi-Arid Region

Aquifer Properties

Artificial recharge
Linear flow velocity ~5m/d
Hyd. cond. 200 to 300 m/d

Precipitation

- •Upper Basin 46 cm
- •Lower Basin 35 cm (ET)
- •(Texas ~20 to 160 cm)

Aquifer System
Unconfined
Alluvial fill sands & gravels
Dip & flow toward coast

Santa Ana River Basin

Cross Section contours are ground water age

Elevation (m)

Map Distance from SW shore of Anaheim Lake (m)

Mixing diagram

Concentration vs. age

TOC & Biophilic Iodine
TOC (Davisson et al., 1998)

-- Conc \downarrow 50 to 70 % from surface to gw -- \downarrow in size fraction (from < 1 µm to < 0.2 µm)

 ¹²⁹I (Santschi et al., 1999; Dissanayake & Chandrajith, 1999; Quiroz et al. 2002)

-- Conc ↓ 50 to 70 % from surface to gw
 -- Colloidal fraction 50 to 70 % > dissolved in Miss. River (Oktay et al., 2001)

Removal of macromolecular colloidal material during infiltration

Factors affecting recharge

- Subsurface aqueous geochem. ppt or dissolution---I, CI: conservative behavior
- Mixing: reclaimed water & imported water (10 to 25%) from Colorado River (COR)
 COR ¹²⁹I: 3.2 * 10⁷ atoms/L
 - SARPD ¹²⁹I: 4.1 * 10⁷ atoms/L
- ET: salts concentrate & ppt during dry cycles; leach & dilute during wet cycles

Evapotranspiration (ET)

 Catchment behavior through analogy to chloride

Long term database

Chloride: Analogy for Iodide

Concentration vs. Flow

¹²⁷I vs. River Flow

CI, ¹²⁷I exhibit different mobilities than ¹²⁹I

Conclusions

• ¹²⁹I/¹²⁷I & ¹²⁹I increase with aquifer residence time

- Contrasts with constant source function
- Attributed to river flow rate, base flow: ET storm flow: dilution
- ¹²⁹I exhibits different mobility than ¹²⁷I, CI
 In different chemical form or not equilibrated (¹²⁷I: τ~1000 yr)
- Potential for ¹²⁹I/¹²⁷I & ¹²⁹I as geochronometer for TOC:
 ? better than ¹⁴C for TOC < 50 yrs

References

- Davisson, M.L., Vengosh, A., & Bullen, T. (1999a). Tracing waste-water in river and ground water of Orange County using boron isotopes and general geochemistry, *In* Lawrence Livermore National Laboratory UCRL-ID-133529 (pp. 44).
- Davisson, M.L., Hudson, G.B., Herndon, R., & Woodside, G. (1999b). Report on isotope tracer investigations in the Forebay of the Orange County Groundwater Basin: Fiscal years 1996 and 1997, *In* Lawrence Livermore National Laboratory UCRL-ID-133531 (pp. 44).
- Dissanayake, C.B. & Chandrajith, R. (1999). Medical geochemistry of tropical environments. *Earth-Science Reviews* 47, 219-258.
- Drever, J.I. (1997). Evaporation and saline waters; cyclic wetting and drying. *In* Geochemistry of Natural Waters: Surface and Groundwater Environments (pp. 335-336). New Jersey: Prentice-Hall.
- Eisenbud, M. & Gesell, T. (1997). *In* Environmental Radioactivity, Boston: Academic Press, p.656.
- Fehn, U. & Snyder, G. (2003). Global distribution of 129I in rivers and lakes: implications for cycling in surface reservoirs. *Submitted.*
- Kocher, D.C. (1982). On the long-term behaviour of iodine-129 in the terrestrial environment. *In* Environmental Migration of Long-lived Radionuclides (pp. 669-679), Vienna: IAEA.
- OCWD (1999). Orange County Water District, Master Plan Report for 2020, <u>http://OCWD 2020 rpt\OCWD Online - Year 2020 Master Plan Study.htm</u>.
- McBride, M.B. (2000). Chemisorption and precipitation reactions, *In* M.E. Sumner, *Soils,* (pp. B-265-302). Boca Raton: CRC Press.

References

- Meijer, A., (2002). Conceptual model of the controls on natural water chemistry at Yucca Mountain, Nevada, *Applied Geochemistry*, *17*, 793-805.
- Moran, J.E., Oktay, S., Santschi, P.H., & Schink, D.R. (1997). Surface 129Iodine/127Iodine ratios: Marine vs. terrestrial, Applications of Accelerators, In J.L. Duggan & I.L. Morgan, *Research and Industry*, (pp. 807-810). New York: AIP Press.
- Moran, J.E., Oktay, S.D., Santschi, P.H., & Schink, D.R. (1999a). Atmospheric dispersal of 129Iodine from European nuclear fuel reprocessing facilities. *Environ. Sci. Technol.* 33 (15), 2536-2542.
- Moran, J.E., Oktay, S., Santschi, P.H., Schink, D.R., Fehn, U., & Snyder, G. (1999b). World-wide redistribution of 129Iodine from nuclear fuel reprocessing facilities: Results from meteoric, river, and seawater tracer studies. IAEA-SM-354/101.
- Moran, J.E., Oktay, S.D., and Santschi, P.H. (2002). Sources of Iodine and 129Iodine in Rivers. Wat. Res. Res., 38(8), 24-1 to 24-10.
- Oktay, S.D., Santschi, P.H., Moran, J.E., & Sharma, P. (2001). 129I and 127I transport in the Mississippi River. *Environ. Sci. and Technol., 35,* 4470-4476.
- Quiroz, N.G.A., Kotzer, T.G., Milton, G.W., Clark, I.D., & Bottomley, D. (2002). Partitioning of 127I and 129I in an unconfined glaciofluvial aquifer on the Canadian Shield. *Radiochim. Acta 90,* 1-10.
- Rahn K.A., Borys, R.D., & Duce, R.A. (1976). Tropospheric halogen gases –inorganic and organic components. *Science 192,* 549-550.
- Schnabel, C., Lopez-Gutierrez, J.M., Szidat, S., Sprenger, M., Wernli, H., Beer, J., and Synal, H.A. 2001. On the origin of 129I in rain water near Zurich. *Radiochimica Acta, 89,* 815-822.
- Szidat, S., Schmidt, A., Handl, J., Jakob, D., Botsch, W., Michel, R., Synal, H.-A., Schnabel, C., Suter, M., Lopez-Gutierrez, J.M., and Staede, W. 2000. Iodine-129: Sample preparation, quality control and analyses of pre-nuclear materials and of natural waters from Lower Saxony, Germany. *Nucl. Instr. And Methods in Physics Res. B*, 172, 699-710.

Supplementary Information

Aquifer parameters

Linear flow velocity

v = d/t where d = distance (m), t is age (days)

Comparison & Units • ¹²⁹I: 5.6 kg = 1 Ci = $3.7*10^{10}$ dps or Bq $= \sim 3 \times 10^{25} \text{ atoms}$ 129/127 10⁻¹³ to 10⁻¹² Natural USA (this study) 10-11 10⁻¹⁰ to 10⁻⁸ Europe Peak near nuclear facility 10^{-7} ¹²⁹I (this study) 10⁷ atoms/L 127 1 ppb ~ 5 * 10^3 atoms/L

Table 1. Iodine and water age data for the Orange County study wells.

	AM 33	AM 14	AM 9	AM 10	KB 1	Kraemer Basin	AM 44	Anaheim Lake	AMD 9-1	AMD 9-2	AMD 9-3	AMD 9-4
¹²⁹ I/ ¹²⁷ I * 10 ¹¹	13.2	8.47	6.11	3.78	2.29	9.88	4.40	5.04	6.89	6.25	8.02	1.74
¹²⁹ I (10 ⁷ atoms/L)	6.63	5.25	3.67	1.77	1.16	4.77	1.83	3.50	5.17	4.07	4.38	0.91
¹²⁷ I (ppb)	22.0 ^a	25.0 ª	26.8 ª	25.7 ª	27.2 ª	18.3ª	24.2 ^b	26	41.1	35.1	31.2	27.3
Ground water age (years)	6.8 °	1.9 ^d	1.2 ^d	0.2 ^d	0.1 ^d		0.25 ^e [20%]		0.08 e [0%]	0.55 e [40%]	n.d. ^f	25.3 ^d
Sample collection date	Aug 99	Aug 99	Aug 99	Sep 99	Aug 99	Aug 99	Aug 99	Sep 99	Sep 99	Sep 99	Sep 99	Sep 99
Date incl. $\tau_w^{\ g}$	Aug 92	Jun 97	Aug 98	Feb 99	Jan 99	May 99	Feb 99	Jun 99	May 99	Dec 98	n.d.	May 73
TOC (mg/L) ^h	0.89	1.13	0.9 ⁱ	0.89	1.88	3.74	1.19	4.53	2.44	1.76	1.52	1.37
CI (mg/L) ^h	86.9	73.8	78.8	89	91.6	87.9	103	89.2	105	98.9	86.9	121

Table 2. Comparison of ¹²⁹I, ¹²⁷I, CI concentrations and flux for regional rivers and the recharge ponds.

River or Pond	Date	Discharge (m³/s)	Discharge (*10 ¹² L/yr)	Drainag e (*10 ¹⁰ m ²)	¹²⁹ l (10 ⁷ atoms/ L)	¹²⁹ / ¹²⁷ *10 ¹ 1	¹²⁷ l ppb	Cl (mg/L)	Flux ¹²⁹ I*10 ¹⁸ (atoms/yr)
Mississippi ª	05/9 5	16400	517.00	327.00	8.00	85.0	19.8	n.d. ^d	41400
Mississippi ª	06/9 6	n.d. ^d			5.10	194.0	5.5	n.d. ^d	
Sacrament o ^a	12/9 5	845	26.60	5.00	0.60	80.5	1.6	1.7	160
Colorado ^a	08/9 6	111	3.50	32.00	3.20	123.2	5.5	57.0	112
SARPD ^b		6.6 ^e	0.21	0.58	4.14 ^f				8.62 ^g
Anaheim Lake °	09/9 9				3.50	5.04	26.0	89.2	
Kraemer Basin ⁰	08/9 9				4.77	9.88	18.3	87.9	

Table 3. Statistics for TOC (mg/L) from May 1990 through April 2001. Data provided by G. Woodside, OCWD.

·	Median	Minimum	Maximum	Number of samples
Site ID				
Surface Waters				
Anaheim Lake	5.13	2.82	12.20	118
Kraemer Basin	4.32	2.75	6.56	17
	4.72			

Ground Waters

AM 33	0.78	0.49	1.01	8
AM 14	0.80	0.65	1.13	16
AM 9	1.01	0.70	2.67	67
AM 10	1.09	0.73	4.03	55
KB 1	2.27	1.29	5.07	77
AM 44	1.64	1.08	2.48	67
AMD 9-1	2.46	1.55	4.32	110
AMD 9-2	1.39	0.80	2.89	98

1.24

