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ABSTRACT

This investigation is concerned with the applicability of the
linear convolution relationship for approximating the rainfall-runoff
phenomenon for small drainage basins. A solution for the transfer
function of the convolution relationship is obtained by employing
discrete mathematics similar to the Wiener-Hopf equation. The
solution is obtained, based on the restraints of the physical system
by linear programming.

In this investigation, the hydrologic system is analyzed as a
truly Tinear system. Recorded rainfall intensity is the input of the
system, and recorded runoff output. A major concern of the study
involves the effects of antecedent moisture conditions on the transfer
function.

Two basins are used to test the model -- an urban basin located
within the city 1imits of Bryan, Texas and a rural basin approximately
three miles east of Bryan, Texas. Results are presented which
substantiate the use of the proposed linear model as an approximation
to the hydrologic system. Generalized transfer functions are developed
for each basin and tested with independent events. Antecedent moisture
conditions are shown to have a definite predictable effect on the
transfer function, and rainfall events are classified with an ante-
cedent moisture condition criteria in order to select the proper
transfer function for the event.

Keywords -- rainfall-runoff relationships*/ hydrograph analysis/
surface runoff/ mathematical models/ hydrology/ watersheds/ unit

hydrograph.
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CHAPTER 1

INTRODUCTION

The concept of comprehensive management of our water resources
has only had active attention during the past thirty years. During
the past decade the public has come to realize that water
resources, which are vital to man, must have comprehensive manage-
ment. Senate Document No. 97 (1962) charges the federal agencies
with the responsibility for planning the use of water and related
land resources (52). Therefore, there has been increased attention
and research on problems of water resource management during the
past decade.

During this same decade, there also has been other research,
seemingly unrelated to water resources, which has developed the
technology for solving complex problems. This technology was
developed under defense, space, and other research efforts. The
opportunity to apply this new technology to water resources
problems is great. The Office of Water Resources Research
recognized this opportunity in the publication, "Areas of Defense
and Space Technology Applicable to Water Resources Research" (31).

The influx of new, powerful and versatile technology,

especially adaptable to computer use, prompted the Surface Water

The citations on the following pages follow the style of the
Transactions of the American Society of Agricultural Engineers.




Committee of the Hydrology Section of the American Geophysical
Union to hold a symposium on analytical methods in hydrology in
1967. An insight to the reasoning behind this symposium can be
found in the following quote from the introductory remarks in the
published proceedings (51):

Such rapid influx of new techniques into a discipline
based in large degree on empiricism and self-perpetuating
and lTimited methodology is inherently disturbing in that
a gap may develop between research leaders and a large
segment of practicing hydrologists. Of particular
concern to the Committee were those hydrologists not
located at research centers and, therefore, not in
position to learn new methods through direct contact.

It is the feeling of the Committee that the usual
references to methodologies in the literature do not
provide explanatory detail sufficient to enable most
readers to gain a working competence. The concept of a
symposium on analytical methods based on a principle of
education and retraining evolved from all of these
factors.

The need for research on the application of new techniques and
mathematical models to water resources also was emphasized in the
Office of Water Resources Research publication entitled,
"Recommendations for Watershed Research Programs” (39). The panel
which compiled this report stated:

The panel considers that mathematical models are an
effective method for analysis of watershed behavior.
Perhaps up to one-half of the total watershed research
efforts under P,.L. 88-379 should be directed toward the
development and improvement of general methods of
analysis, and research in mathematical models is a
good example of this type of activity. Research in
digital computer models will be restricted mainly by the
shortage of personnel and facilities for this type of
study.



The development of mathematical models is appropriate
for both university and federal agency research. High
hydrologic competence and the programming and statisti-
cal skilis are needed in model development. The more
elaborate mathematical models require medium to
large-scale computers that use the most advanced
programming languages. The principal research workers
on these projects should combine technical knowledge
of all the processes to be included in the
mathematical models with a knowledge of computer
programming and operation.
The hydroiogic cycle can be described in qualitative terms.
The principal components of the cycle are reasonably easy to
identify and most of the interactions between the major components

are known. The extension of this qualitative knowledge about the
hydrologic cycle to obtain quantitative results is much more
difficult. Few basic quantitative concepts exist in hydrology
compared to other fields. The science of hydrology has not
developed to the point of being a mathematically precise science.

A good portion of the hydrologic research has been directed
toward the runoff-prediction problem. A brief look at hydrologic
literature illustrates the tenacity with which hydrologists have
attacked this problem. But, the development of hydrology to date
does not, in general, permit adequate estimates of runoff response
for a given area.

Basically, a method is needed whereby the runoff hydrograph
can be predicted with an acceptable degree of relfiability. Such
a method must be sufficiently general and simple to allow its use

under diverse watershed conditions. Only with such a reliable tool



for prediction of runoff can water resource projects be designed on
a rational basis; viz., to produce optimum conditions for a

minimum cost.

Study Objectives

The general objective of this research was to develop a
simple method which is universally applicable that can be used in
the prediction of storm runoff for small, natural drainage basins.
The specific objectives were:

1. To determine the applicability of available linear
mathematical models to the rainfall-runoff hydrologic phenomenon
in small natural drainage basins;

2. To evaluate the ability of a specific Tumped Tinear
time-invariant system, the convolution relation, to represent
adequately the rainfall-runoff hydrologic phenomenon of small,
natural drainage basins; and

3. To investigate possible relationships between the
unit-impuise response of the convolution relation and drainage
basin characteristics provided the validity of the use of the con-

volution relation is substantiated.



CHAPTER TI

LITERATURE REVIEW

The development of a method for the accurate prediction of
runoff from small drainage basins has had the attention of many
researchers in water resource development during the last century.
Without a firm estimate of the expected runoff of an area, it is
impossible to approach rationally the design of surface water
drainage or control structures,

A complete review of watershed hydrology research would be
voluminous. Thus, only a brief review of past research in watershed
hydrology will be made. For a more thorough historical treatment
of the subject, reference is made to Singh (46) and Kulandaiswamy
(26).

Before 1925 the main objective of rainfall-runoff research on
small drainage basins was the prediction of the peak discharge due
to a given or design rainfall. Due to a very limited knowledge of
rainfall-runoff processes and a very Timited amount of reliable

data, proposed techniques were based mostly on empiricism.

Rational Method

According to Dooge (11), the principles of the "rational
method" were established by T. J. Mulvany in 1851. Mulvany's work

was based on rainfall-runoff data collected on arterial drainage



basins in Ireland. In 1889 the peak-discharge formula now known
as the "rational formula" was proposed by Kuichling (25).
Kuichling's work was based on urban areas and was proposed for
estimating peak discharge in sewer systems.

The rational method of predicting a design, peak runoff
rate is expressed by the equation

q = CiA R 2.1
where

Q = design peak runoff rate in cubic feet per second,

C = runoff coefficient,

i = rainfall intensity in inches per hour for the design

recurrence interval and for a duration equal to the
"time of concentration" of the watershed, and

A = watershed area in acres (43).

The "time of concentration" is defined as the time required
for water to flow from the most remote point of the watershed to
the outlet. The runoff coefficient, C, is defined as the ratio
of the peak runoff rate per unit area to the rainfall intensity.
Empirical procedures are available for estimating these
quantities (43).

The rational method is still used extensively for determin-
ing the design peak runoff for watersheds when the designed
structures are relatively inexpensive and the consequences of

failure are limited. Numerous methods of predicting peak discharge



have been developed and are in use today (43); however, they will

not be discussed.

Time-Area Methods

During the latter part of the 1920's design engineers
realized that the time distribution of the flow was important.
This led to the development of time-area and routing methods for
determination of basin flow. Development of the time-area diagram
involves the division of the basin into zones through the use of
isochrones of the travel time from selected points to the basin
outlet. Use of this method is described by Linsley et al. (29),

and continues to be used widely today.

Unit-Hydrograph Methods

In 1932, Sherman (45) introduced the concept of the unit graph.
This approach, known today as the unit-hydrograph approach, has
been the basis for almost all methods used in the prediction of
stream fiow. Today it is one of the most powerful tools in
applied hydrology.

As conceived by Sherman (45), in its empirical nature, the
unit-hydrograph approach was based on the following assumptions:

1. For a given watershed, runoff producing storms of equal
duration will produce surface-runoff hydrographs with an equal

time base, regardless of the intensity of the rainfall.



2. For a given watershed, the magnitude of the ordinates
representing the instantaneous discharge from an area will be
proportional to the volume of surface runoff produced by storms
of equal duration.

3. In a given watershed, the time distribution of runoff
from a given storm period is independent of precipitation from
antecedent or subsequent storm periods.

The unit-hydrograph is the hydrograph of direct surface runoff
from a given basin due to a unit rainfall excess (i.e., one inch)
distributed uniformly over the entire basin for a duration which
is less than the time of concentration. If the duration of the
unit rainfall excess is t hours, the unit-hydrograph is termed the
unit-hydrograph of t-hours duration. The principle of linearity
or superposition is an inherent part of the unit-hydrograph concept.
This principle leads to the development of direct surface-runoff
hydrographs for storms producing a rainfall excess of variable
intensity and duration. Sherman stressed the advisability of
deriving the unit-hydrograph from an observed hydrograph which
was produced by a rain of high intensity and short duration in
order to minimize any errors resulting from an incorrect estima-
tion of base flow. Although he followed the customary method of
expressing the amount of direct surface runoff as a percentage of
rainfall, he recognized that this percentage increased with an

increase in the rate and duration of precipitation and with the



occurrence of antecedent precipitation. He further noted that the
relative amount of direct surface runoff was affected by vegetal
cover, season, and temperature. Whereas application of the
rational formula is 1imited generaily to smail areas, the
unit-hydrograph method does not suffer from such a restriction.

No equation was proposed by Sherman for the unit-hydrograph in
terms of significant watershed parameters.

When sufficient rainfall-runoff data are available, an
average unit-hydrograph can be derived. The average unit-hydro-
graph is drawn with its peak equal to the average of the peaks of
the derived unit-hydrographs, with the time to its peak equal to
the average of the times to the derived peaks, and conforming to
the general shape of the derived unit-hydrographs. The S-curve
method can be used for converting a unit-hydrograph of a given
duration to one of a different duration (29).

Generalizing, all unit-hydrograph procedures (hydrologic
input-output systems) are based on two fundamental criteria
(12, 24):

1. Invariance--The hydrographs of surface runoff from a given
watershed due to a given temporal pattern of rainfall excess are
time invariant. The first assumption of Sherman's, which implies
invariance, also implies the added restriction of equal time base

for storms of equal duration.
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2. Superposition--The hydrograph resulting from any temporal
pattern of rainfall excess can be determined by superimposing
hydrographs computed from rainfall excess occurring in unit periods
of shorter duraticn. This restricts us to linear systems (i.e.,
the ordinates of the hydrograph are proportional to the volume of
rainfall excess for a given duration).

One of the first procedures developed for synthetic construc-
tion of a unit-hydrograph was presented by Snyder (49) in 1938.
Shyder worked on rainfall-runoff data for streams in the Appalachian
Highlands and correlated the basin characteristics with peak
flow, basin lag, and total time base of the unit-hydrograph.

While correlations were being actively established between
pertinent basin characteristics and uhit—hydrograph parameters,
some investigators developed an interest in finding rational
equations to explain the physics of the rainfall-runoff phenomenon.
They created conceptual models to simulate basin action in trans-
forming rainfall or rainfall excess to direct surface runoff.

In 1945, Clark (8) suggested that the unit-hydrograph for
instantaneous rainfall excess,i.e., the instantaneous unit
hydrograph (unit-impulse), could be derived by routing the
time-area-concentration curve through a linear storage reservoir.
An instantaneous unit-hydrograph is a hypothetical unit-hydrograph
whose duration of rainfall excess approaches zero as a limit,

while rainfall excess remains one inch.
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Given the instantaneous unit-hydrograph, the unit-hydrograph
of any desired duration can be cbtained easily, as discussed in
Chapter III. The instantaneous unit-hydrograph is more basic
to the system and was certainly an improvement in the understand-
ing of rainfall-runoff phenomenon.

Clark (8), Dooge (12), and Singh (46) utilized the concept of
pure translation and prepared unit, time-area curves, though the
base time of the diagram and the method of its determination were
not the same. The time-area curves were then routed through linear
channels and/or linear reservoirs.

Nash's (26, 37, 46) approach to obtaining an instantaneous
unit-hydrograph aroused considerable interest and discussion. By
routing the unit-impulse input through a series of n equal linear
reservoirs, Nash developed an expression for the instantaneous
unit-hydrograph. The Nash equation is very similar to that proposed
by Edson {16) in 1951. These developments utilized physical
reasoning to obtain mathematical results. Consequently, the
assumptions inherent to the development were somewhat obscured,
Kulandaiswamy (26) presented a systematic mathematical development
of Nash's equation with the assumptions fully stated. The assump-
tions required to obtain the Nash expression obviously demand liber-
ties on the physical system that are not feasible (26). This
observation is not made as a criticism to Nash but as an example of a

hydrologic mathematical model that cannot theoretically be applied
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to the system. Nevertheless, the procedure used is valid in light
of the fact that the results obtained from the model are quite
satisfactory for many applications (26, 37, 46).

Barnes (4) described a numerical procedure for unit-hydrograph

derivation using the "principle of progressive addition".
Progressive addition refers to certain variations in the form of
the discrete convolution equations. The method is a trial-and-
error solution which, according to Barnes, should be attempted
only by experienced hydrologists.

Snyder (49) presented a discrete solution for the instantaneous
unit-hydrograph using a least-squares technique. Snyder's method
requires prior arbitrary assumptions of the number of
unit-hydrograph points and their distribution.

0'Donnell (38) suggested the application of harmonic analysis
in deriving an instantaneous unit-hydrograph from an effective
hyetograph and a direct surface-runoff hydregraph. This method is
equivalent to the least-squares method, but perhaps easier to use,
because an instantaneous unit-hydrograph is obtained directly.

According to Minshall (35), both the peak of the unit-hydro-
graph and the time to the peak for small drainage areas (less
than 500 acres) are dependent on rainfall intensity and storm
pattern. As the intensity of rainfall increases, the time to peak
decreases while the magnitude of the peak increases; however,

the effect is less for large watersheds than for small ones
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in the areal range specified. Amorocho {2}, in a discussion of
Minshall's paper, showed that the parameters in the Nash aquation
for derivation of the instantaneous unit-hydrograph can be
correlated with the intensity of rainfall excess.

Gray (19) correlated the parameters in the Nash equation for
the instantaneous unit-hydrograph with the length and slope of the
main stream for smali drainage areas. He found the period of rise
of a hydrograph to be a significant parameter in correlating the
salient features of rainfall and runoff. The results were applied
to uniformly-distributed, short-duration, and high-intensity
storms over small basins.

Levi and Valdes (28) have presented a technique for deriving
the instantaneous unit-hydrograph using Fourier transforms. The
mathematical procedures are similar to those of Guillemin (20).
The resulting instantaneous unit-hydrograph is in the form of an
"impulse train" and exhibits negative as well as positive
ordinates.

Singh (46, 47) presented a rigorous least-squares analysis
{discrete solution) to obtain the instantaneous unit-hydrograph.

The solution is obtained by the inversion of the symmetric matrix:
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- 9 r - -~
Q.I C] C2 Cn 0 0 0 H'|
Q2 C2 C] Cn-] Cn 0 »--0 H2
_ 2.2
Q G "l G R
_9m-n+1_ i 0 0 =+« - - starting with Cn » - = C Hm-n+1
where {assuming the discrete time interval, At = 1)
_ n
Q(k) = Z f(\]) g(J+k'])a k = 1: 2! 3: ¢ (m'n+]) ’
j=1
_ n
C(p) = Z‘] f(J) f(j“p+1): p = ]s 2: 3: = N, (J“p) _’_O’
J:
H(k) = wunit-impulse response (instantaneous unit-
hydrograph),
f(j) = input time series,
g(j) = output time series,
n = number of points in input time series, and
m = number of points in output time series.

This matrix is only valid for {m-n+1) - n, where (m-n+1)

is the number of equations and the number of unknowns.



15

CHAPTER III
RESEARCH METHODOLOGY

A system may be defined as an organized set of connected parts
that determines a relation between a specified cause (input) and a
specified effect (output), Figure 3.1. The input and output under
consideration are functions of one or more variables (i.e., time,
location, etc.). A model of a system is a mathematical formula-
tion of the transformation of input into output, or an arbitrarily
close approximation to it.

The hydrologic cycle and certainly the transformation of
rainfall (input) into runoff (output) can be readily included in
the above definition of a system. The model which will adequately
describe the rainfall-runoff process should be sufficiently simple
in use and manipulation to be readily adaptive to computer use.

Hydrologic systems are, in general, time-lag systems. That
is, the output of these systems, at each instant, depends on the
input during some time before the instant. Wooding (55, 56, 57,
58) has recently demonstrated theoretically that the processes
governing the rainfall-runoff relationships are nonlinear. He
also has been quite convincing in exemplifying the additional
mathematical restraints necessary to manipulate a nonlinear model.

The need for a simple and adequate model of the rainfall-

runoff process has prompted the investigation of some linear
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mathematical models in the past decade. The most common linear
model applied to hydrologic phenomenon is that of a lumped-linear,
time-invariant sys tem.

According to linear theory, one means of defining this type
of input-output relationship is the convolution integral. The

convolution integral can be written (13, 27):

oo

g(r) = f(t) h(x-t) dt . 3.1
where

g(1) = output,

f(t) = input, and

h(t-t) = characterizing or transfer function of the system.
This integral representation of a linear system is well known.
However, for completeness the concepts and assumptions on which
the integral are based will be briefly reviewed (27).

A Tinear system can be characterized by its response to a
unit-impulse excitation. When a system is characterized by a
certain function, the output of the linear system, for an input
function of a general class, is expressible in terms of the
characteristic function and the input. In general the input and
output are functions of time. One convenient characterizing
function of a linear system is the system's response to a unit-

impulse function. A unit-impulse is defined as the limiting form
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of a rectangular pulse of a given height and base such that the
area of the pulse is always unity and as the height tends to
infinity, the base becomes dt. The unit-impulse, u(t), is

therefore defined as an impulse with an infinitesimal duration dt.
During the entire duration (not just at an instantaneous point),
the amplitude of the impulse tends to infinity. It is an
integrable function, since the area is unity in this extremely
Tong and narrow rectangle. The unit-impulse function is

located at the origin of the time axis such that t = 0 at the
midpoint of the pulse duration. In other words, u(t) will be an
even function,

We will now denote by h(t} the response of the linear system
to the unit-impulse. Since u{t) is applied at t = 0, it is
physically impossible for it to have any effect on the output for
t Tess than zero. With the system initially at rest, it is
therefore necessary that h{t) = 0 for t less than zero. For the
purpose of illustration, examine Figure 3.2 and suppose that the
system unit-impulse response h(t) is as shown.

We now wish to demonstrate that h(t) characterizes the
system behavior. We will define an important property of the
system and confine our further discussion to time-invariant
systems. The invariance in the input-output relation of a system
under a translation in time means that if the system were repre-

sented by a differential equation involving the input and output,
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the coefficients of the equation would be constant. Then, the
first important property of the system is that, if the applica-
tion of the unit-impulse is delayed by time t = ©, the response
h(t) also will be delayed by the same length of time, i.e., for
the unit-impulse u(t-v)} the unit response is h{t-t), as shown
in Figure 3.3.

Let us consider now a general class of functions consisting
of periodic, aperiodic and random functions and let f(t} be repre-
sentative of this class acting as the system input. For purposes
of illustration, let f(t) be represented as in Figure 3.4. Let
f(t) start at an arbitrary time t = -a. We have divided f(t)
into elements of infinitesimal widths, dt, as indicated by the
fine lines in Figure 3.4. At t = t, for example, the element has
the width dt and the height f(t)}. If this particular element
were a unit-impulse, we know that the output due to this element
alone would be h(t-t). However, this element is a very small
impulse, in the sense that it has the area f(r) dv h(t-t). Hence,
the differential of the output is

dg(t) = (1) dr h(t-1) s 3.2
as is shown in Figure 3.4. In arriving at this output element, we
have made the assumption that the system response to an impulse is
directly proportional to the area of the impulse. Since the widths

of the unit-impulse and the infinitesimal impulse at t = 1 are the
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same, we are assuming that the ratio of the output due to the
infinitesimal impulse to the output due to the unit-impulse is
equal to the ratio of the respective heights of the impulses.
Since the height of the infinitesimal impulse is f(t) and that of
the unit-impulse is 1/dv, the assumption can be stated mathe-

matically as

%%le) = f(1) . 3.3
t-1 T/dr

Equation 3.3 is simply Equation 3.2 rearranged. This agrees with
the basic assumption of linearity between the input and the output.
From Equation 3.2 it can be seen that if the input is multiplied
by a real constant k then the output also is multiplied by k.
Since it is a property of a set of linear equations that super-
position holds, the output of a linear system is the superposition
of the component outputs produced by the respective component
inputs acting individually. Therefore, by summing all the
infinitesimal outputs due to all the elements into which f(t)

has been divided, from the beginning to time t, we shall have, at
time t, the output g(t) due to cumulative effects of f(t); this

expression is

g(t) = f(t) h(t-1) dr . 3.4
-a
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Equation 3.4 is designated the convolution integral or super-
position integral expressing the so-called convolution of functions
f(t) and h(t). g(t) is the result of this convolution.

We will now consider the role of -, which was introduced as
a dummy variable in Equation 3.4, and will investigate the process
defined by this integral. Also, h{:) is assumed to be one of the
functions to be convolved as represented graphically in Figure 3.5.
In order to utilize the convolution integral we must now form the
function h(r-t). On the :-scale this is simply the function h(()
delayed by t seconds. Graphic representation of h(+-t} is shown
in Figure 3.6 by the dotted curve. Since the argument (t--) is
the negative of (:-t), we can see that the function h(t-:) is the
mirror image of h(--t) about a vertical line erected at the point
v = t. The solid curve in Figure 3.6 which is h(t--) and the
dotted curve are such a pair of images. It should be pointed out
again that + is the independent variable and t is a parameter.

f(1) can be represented graphically, as shown in Figure 3.7.
In Figure 3.8 the functions f(.) and h{t-:) are shown dotted.
The integrand appearing in Equation 3.4 is the product of these
two functions and is depicted by the solid curve in Figure 3.8.
The value of the integral of Equation 3.4 or the output is the
area under this solid curve. We can see from the graphical repre-

sentation and Equation 3.4 that f(:) is multiplied into the past

history of h{(t-:) up to the present moment t, and the product is
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integrated over the interval of the past history to yield the out-
put for the time t. Therefore, the linear system depends upon what
has happened to the input from v = -a to r = t to give its output.
The output is, therefore, the summation of the weighted past.

The weighted function is the system unit-impulse response. In
other words, a linear system scans the history of the input with
its unit-impulse response to yield its output.

Referring back to Equation 3.4 we note that, since f(t) is
assumed to be zero from -« to -a and since h{(t) = 0 for = < 0, the
product of h(t-<) f(r) is actually zero outside the limits of
integration. Furthermore, if f(t) starts from -, then a = «,
Therefore, nothing will be added to the integral if we replace
the Timits by (-«, =} and write the convolution integral in the

more general form as it is usually presented:

# o0

g(t) = f(z) h(t-r) dr . 3.5

The basic problem is to solve Equation 3.5 for a meaningful
h(t) when g(t) and f(t) are related by a system that is not truly
linear. With f(t) and g(t) as known analytic continuous
functions representing the transient input and output of a truly
linear monotone, h{t)} may be determined analytically by use of

Laplace transforms {10, 14, 55).
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In our application we will be concerned with the output
(runoff) at some time t due to the input (rainfall) starting at

time t = 0. Therefore, the a in Equation 3.4 will equal zero

and the expression for g(t) will be

or equivalently, with v = t-t . 3.6

where 1 or v are independent time variables.
This integral can be defined in discrete form. If we define
discrete time values i and j as 1 > 0, j > 0 and increment the

argument of h, Equation 3.6 can be written in the discrete form:

g(i) = f(3) h(i-3+1) 4]

H T~ —te

J=1

or equivalently, 3.7

1.
o) = 1 n(@) fli-g) a5
J.:

i=1,2,3, .. .m and m is the number of elements in the
observed output. It is this form of the convolution integral that

we will utilize in this work.
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For a truly linear system, Equation 3.7 can be solved for h(j)

by the method of "back substitution",

-3

n(2) = LKA A =) - AL g1y 38
. . |

(m) = Tam) - ] (k) hn-kt)] oy

k=2
or by other methods of matrix inversion (13, 21, 46).

For a truly linear system, the unit-impulse response obtained
through the solution of Equation 3.7 is a unigue characterization
of the system which is independent of the particular f(t) and g(t)
used in its determination. However, our problem is to solve
Equation 3.7 for a meaningful h(t) when g(t) and f(t) are related
by a system that is not truly Tinear. With this system we can
still obtain an exact solution of Equation 3.7 for any given pair
of input and output signals, but the h(t) so obtained is no
Tonger unigue and will vary with each pair of f(t) and g(t) used.
As an example, suppose that for a truly linear system the impulse
response is known to be

h{i) = [2, 1],
with an input

f(i) = [2, 6, 1].
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If aj = 1, Equation 3.7 gives

g{1) = (2) (2) = 4

g(2) = (2) (6) + (1) (2) = 14

g(3) = (2) (1) + (1) (6) = 8

g(4) = (2) (0) + (1) (1) = 1

g(5) = g(6) = ...... =0
or

g(i) = [4, 14, 8, 11.

Suppose that an error is made in measuring g(i) such that
g(i) = [4, 11, 8, 1],

then by Equation 3.8
4

h(1) = 5 =2

h(2) = ll_:?iﬁlig) = 172

ﬁ(?’) =8' (6)(";/2) - (1)(2) =9/2

n(4) = = -5 1/4
or

h_(1) = [2: ']/29 9/29 -5 ]/4! L -]’

which is both unstable and oscillating. With nonlinearity we would
expect this result from the linear approximation. Thus, a
technique must be devised for averaging several h{t)'s in order to
obtain an acceptable unit-impulse response of the system. It
easily can be demonstrated that the averaging process to obtain

h{t) often fails due to the loss of stability and physical
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realizability in the solution (14). The use of Equation 3.7 as an
approximation to a nonlinear system and in turn Equation 3.8 for

a solution of h{(t) can result in an unstable and oscillating
solution.

If we accept the fact that we can only provide, with the
derived linear system, an arbitrarily close approximation of the
observed output from a given input, then there are a muitiple of
methods by which we can obtain a stable solution to the system

unit-impuise response. Let

g(i} = observed output,
f(i) = observed input, and
*g(i) = predicted output.

Now, utilizing Equation 3.7 and requiring the predicted output be
an exact solution of the convolution relation, we obtain
i

*g(1) =NZ1 h(3) f(i-3+1) aj. 3.9
i=

Letting the time interval 4j = 1, the error in the predicted
output is:

;
E(i) = g(i) - E h(3) f(i-3+1). 3.10

h{j) f(i-j+1)]12 3.11

m
1]
I~ 8
m
N
—
-—
T
1l
-8
m
[{m]
—_——
-
—
1
I} T~ =

=1

as the performance criteria of the prediction system.
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Seeking to minimize ¢, the differential of ¢ with respect to the
predicting function h(j) is taken as zero, yielding the usual

linear normal equations

%%‘TF) =0, k=1,2,... . 3.12
Note that k is restricted to the positive range of time. Since
the system is at rest before the application of the unit-impulse
response at t = 0, and since the output (response) of the system
cannot precede the input, this condition must hold in order to
obtain a unit-impulse response of our physical linear system.

Hence, we have

® i
ae = - . - - .
PRGN 2121 [a(i) -j£1 h(j) F(i-3+1)] f(i-k+1) ,
kz+1 3.13

Rearranging Equation 3.13 yields

fli-k+1) % h{j) f{i-j+1) ,

g(i) fi-k+1) =
i=1 Jj=1

1 i

nr~18

W1 8

k>+1 . 3.14

Letting i-k+1 = j on the left side of Equation 3.14 and recognizing

that f(o) and g(c} are zero for o > 0, Equation 3.14 becomes

fli-k+1) f(i-j+1) s

ne- 8

£(3) algtk-1) = J n(3)

II‘M 8
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Letting v = i-k+1 on the right-hand side of Equation 3.15 gives

£(3) gli+k-1) =
J

Ht~18
HE~—18

@) TR Rl

k > +] . 3.16

By definition, we can write the discrete-time, cross-correlation

function as

II.M 8

f(3) g(j+i) 2] , 3.17

¢fg(1) = .

J

for all integer i's, and the auto-correlation function as

bee(i) = T F(V) Floti) av 3.18

AY

I~ 8
—

for all integer i's.
Now letting Aj and Av equal one in Equations 3.17 and 3.18
and utilizing Equation 3.16, we can write what is known as the

discrete time form of the Wiener-Hopf equation, or

It

¢fg(k']) ‘21 h(j)Opt ¢ff(k"j)a k 3_+ 1 s

J:
which in matrix form becomes 3.19

Lopgd = [hgped Logel
It can be shown {27) that satisfaction of Equation 3.12 in the form
of Equation 3.19 will Tead to the minimization of the mean-square
error. Therefore, the unit-impulse response, h(j), determined by
Equation 3.19 is optimum and stable and will be designated by the

subscript "opt". Lee (27) also shows that as long as *fq (k) is
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neither constant nor zero, Equation 3.19 is both a necessary and a
sufficient condition for defining the optimum linear system. By
comparing Equation 3.19 and Equation 3.7 it js easily seen that
Equation 3.19 has the form of the convolution equation with the
important exception that it applies only to positive arguments of
¢fg" This restriction entered the development of Equation 3.19
when the positive range of time was specified over which the
output error is to be minimized (Equation 3.12). This leads to
major difficulties in the solution to either the continuous or
discrete form of Equations 3.19.

From only a superficial look at Equations 3.19 it can be seen
that even the simplest set defined by these equations contains
more than one unknown h{j). Therefore, the system may not be
solved by synthetic division, and other means of matrix inversion
must be used,

Before we continue in the development of a discrete solution
of Equations 3.19 we must consider the physical problem at hand.
Our prime objective is to predict output (runoff) via Equation 3.7.
It is easily concluded that if h(j) is allowed to take on negative
values, then the possibility of predicting a negative output
(runoff) exists and this is physically unrealistic. Therefore, we
will add an additional constraint to Equation 3.19, namely,

Mgy 20 3.20
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We now 1imit the number of Equations 3.19 to m nonhomogeneous equa-
tions resulting from the m nonzero values of the observed output.
We will include all j elements of h(j)Opt that have nonzero
coefficients in Equations 3.19. Let the observed input have a
duration of n time units. Then there are 2n-1 nonzero elements in
¢ff and jmax = m+tn-1. Equations 3.19 can now be written as the
undetermined set

n-1

3

k-1) =
J

h(J)

: opt tpelk=d)s k=1, 2, ... 3.21

Il &~

beql
We now need a criterion for the selection of the best solution to
Equations 3.21. We will specify that the optimum response,
h(J)Opt,

the input and output, L = m-n+1. This criterion for L is easily

has a length, L, consistent with the observed duration of

seen by examination of Equation 3.7. Then, we will logically seek
the solution to Equations 3.21 that satisfies the condition that
m+n-1

h(3)
j=m-n+2

opt is a minimum. 3.22

Equations 3.20, 3.21 and 3.22 constitute the statement of a normal
lTinear programming problem, and a solution to this type of problem
can be obtained by the simplex method (18).

The simplex method assures that Equation 3.20 is always satis-
fied while an initial solution to Equations 3.21 is being sought.
In the absence of a starting basis {unit matrix), the simplex

method will introduce "artificial variables" into the basis.



38

When the artificial variables fail to vanish, the solution to
Equations 3.21 is infeasible. When this happens we will specify
that the vector of constant terms, [¢fg], constitutes a Timiting
value which may be approached but not exceeded and write
Equations 3.21 as

m+n-1

¢fg(k']) 2,j£1

h(j)opt ¢ff(k-j), k=1, 2, .. .m, 3.23

We can now introduce slack variables h{¢) to Equations 3.23
as a starting basis. With the introduction of the slack variables,
we are relaxing the Wiener-Hopf equations to admit approximate
positive solutions. The values of the individual slack variables
will represent the degree to which the original Wiener-Hopf
equations were not satisfied,

We now express our system mathematically as

m=n+1

¢fg(k'1) = Z h(j)

4 ¢ff(k-j) + h{m-n+1+k)

opt

k='[’2,nnum ’ 3.24

with the conditions that

Zm-n+1
h{c) is minimum . 3.25
g=m-n+2
and
h(j) ., > 0, h{g) > 0. 3.26

opt
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A solution to the linear programming problem posed by
Equations 3.24, 3.25, and 3.26 was obtained by utilizing an
International Business Machines (IBM) application program entitled
"Mathematical Programming System/360 (360A-C0-14X); Linear and
Separable Programming (32)". The linear programming procedures
of MPS/360 use the variable-product form of the inverse-revised
simplex method (32, 18). MPS/360 is a very versatile computer
program and was used in combination with the IBM application
program READCOMM (33) to obtain the solution to Equations 3.24,
3.25 and 3.26. The actual job-control language (JCL) and Fortran
IV Program are not reported herewithin. The JCL for these appli-
cation programs is specific to the Texas A&M University
installation and is being updated quite frequently; therefore, the
program used for this study undoubtedly will be outdated in the
near future,

The procedures being utilized have considerable similarities
to the Teast-squares procedures utilized by Snyder (50), Singh (46)
and other investigators. In 1962, Singh (46) presented a rigorous
solution of the least-squares analysis for deriving unit
hydrographs. The important differences between this approach and
a normal least-squares approach are:

1) There is no restriction on the time duration of

the transfer function (unit hydrograph}. In a

least-squares approach this time duration would



be Timited to the number of output intervals
less the number of input intervals plus one.
2) There is no restriction on the number of
equations to be solved.
The logical but arbitrary selection of the time duration of
the transfer function and the number of equations requiring

solution has been explained earlier in this chapter.

40
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CHAPTER IV

DESCRIPTION OF BASINS AND DATA COLLECTION

Two small drainage basins which have been instrumented by the
cooperative efforts of Texas A&M University, the U. S. Geological
Survey, and the O0ffice of Water Resources Research, the Department
of the Interior, were utilized in the evaluation of the hydrologic
model proposed in Chapter III. Burton Creek Watershed is located
within the city 1imits of Bryan, Texas. Figure 4.1 depicts the
Burton Creek Watershed. Approximately 16 percent of the watershed
has not been urbanized. These areas are indicated in Figure 4.1.
The watershed encompasses a total area of approximately 890 acres.
Impervious area is estimated to be approximately 210 acres, or
about 23.5 percent of the total area.

Hudson Creek Watershed, depicted in Figure 4.2, is located
approximately three miles east of Bryan, Texas. The basin
encompasses approximately 1,270 acres and is completely in pasture.

The predominant soil over the two basins is Lufkin-Tabor Clay.
Lufkin-Tabor Clay is a montmorillonite clay with a very high
water-holding capacity, but a Tow infiltration capacity. This
sojl cracks very severely when dry.

Bryan, Texas is approximately 150 miles inland from the Gulf
of Mexico in a northwest direction and is contained within the

upper portion of the Gulf Coastal Plains of Texas. The general
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topography of the area is gently undulating coastal prairies and
hills. Elevation at Bryan, Texas is 360 feet, and the mean annual
precipitation is 39 inches per year. Frontal activity is at a
minimum during the summer and most of the rain produced during
this period is provided by cumuliform clouds. Maritime air
flowing off the Gulf of Mexico is the dominate feature of the
climate of the area during late spring and early summer. Maximum
thunderstorm activity generally is observed during the
mid-afternoon and early evening.

The rainfall network on each basin is maintained by the
Department of Meteorology at Texas A&M University. In this
investigation, the most centrally located recording rain gage was
assumed representative for the basin. Recording rain gage number
46 was used for Burton Creek, and recording gage number 2 was used
for Hudson Creek. Both gages are U. S. Weather Bureau
weighing-type gages -- gage number 46 on Burton Creek is a
six~hour gage, and gage number 2 on Hudson Creek 1is a 24-hour gage.

The stage recording installation is a standard U. S.
Geological Survey installation utilizing an A-35 Stevens stage
recorder and also a five-minute, punched-tape stage recorder,
These installations are maintained by the U. S. Geological Survey.
The data were made available to Texas A&M University through a

cooperative agreement.
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CHAPTER ¥
PRESENTATION AND DISCUSSION OF RESULTS

The major objective of this study was to evaluate the abjlity
of the time-invariant convolution relationship to predict the
output (runoff) of a hydrologic system when only the input
(rainfall} is known.

Appendix B presents the results of the solution for the
transfer function for the Burton Creek Watershed. The

cross-correlation and auto-correlation functions were calculated

by utilizing equations 3.17 and 3.18. The solution for the
transfer function was obtained by solving equations 3.24, 3.25
and 3.26, as explained in Chapter III.

The important difference between this application of the
linear convolution model to natural hydrologic systems and other
applications (21, 26, 46, 49} is that the input (rainfall) has not
been adjusted for antecedent moisture conditions. Many researchers
have demonstrated that hydrologic systems do not perform in a
strictly linear nature. Therefore, this investigation was based
on the premise that the linear approximation model should include
the complete hydrologic system and utilize recorded rainfall
intensities as its input. The investigation of the effect of
antecedent moisture conditions on the transfer function is one of

the major considerations in this study and will be discussed later.
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Figure 5.1 exhibits graphically the solution for the transfer
function for six independent events occurring from May 10, 1968 to
June 18, 1968 on the Burton Creek Watershed in Bryan, Texas. To
allow better graphical comparison of the six events, the elapsed
time duration has been arbitrarily truncated at 525 minutes.
However, the solution was obtained with the input-output time
interval specified in Chapter III. The complete linear portion of
the solution to each event is given in Appendix B. Figures 5.2
and 5.3, based on two separate events, exhibit the recorded
hydrographs and the hydrographs obtained by convolving the computed
transfer function of length m with the recorded rainfall intensi-
ties. Similar results were obtained for all events analyzed.
These results indicate that the Tinear approximation model does an
adequate job of representing the system.

In order for the model to have any usefulness, a method of
obtaining a generalized transfer function (instantaneous unit
hydrograph) for a particular basin must be available. In order to
develop this general transfer function for Burton Creek it was
assumed that the six events reported in Figure 5.1 were represen-
tative and that the only variable basin characteristic was
antecedent moisture conditions. It would have been desirable to
utilize a Tonger record for development of the transfer function;
unfortunately, less than two years of record are available on the

watersheds. In addition, data from this same period were used to



a7

I _

- - - - | .
[ MMEEHVK:E 7
[ 0Oo=T=T Mo ]
[— -
[ @

— ® ® o Yoo

- 666999

= > a ==

S T S - B

— nU_..-..l_.D..iam

5 - W W ow w

- > >z zZzzZz =

— <> > 5> il

— T i N e

— _ ".-

[ I _ ! _ — T

- __— 1

— . _

— —=
o o o
~ 0 w

{J3S—"'NI/dH—-¢ld) (1)H

56

T {I5 MIN INTERVALS)

Transfer function for Burton Creek Watershed,
Bryan, Texas.

Figure 5.1.



o
I 0 TTTTYTTITTT I T I T T I T ITI T T T I Tl
™~
z !
- 2
|
-J 3
-
z 4
< 5
a4

500

400 /A\

— RECORDED

— / \ ---- PREDICTED
[ 73]
18
£ 300
u_ /
L
o
=
)

200 /

100 / \

/ Ny
0 Lt e e I b L]
0 8 |6 24 32 40 48 56
T (15 MIN INTERVALS)
Figure 5.2. Recorded and predicted hydrograph from the derived

transfer function, May 10, 1968, Burton Creek,

Bryan, Texas.

48



49

g - 3 :

- o w w
T
D 1
= 8}

- x © \H
- o0 +

| O Wi T
[ W o \ .,w
. @ o Pl

- : v\§ -
: IR i
[— \\\\\i .
| ]
: R -
i \\\ ]

\\nw\\ -

e -

_ = r,““lljlv —

% — = i
% I T —
2 A —
o T~ -
T x..unm\ .
<l ]
mWWM@ ‘ﬁ R
O — N M I3 O o o o o o

o o o o o
[Te) ~F N od -_
(4H/ NI} 1V INIVY (S42) 440NNAH

24 32 40 48 56

T (I5 MIN INTERVALS])

16

Recorded and predicted hydrograph from the derived
transfer function, July 9, 1968, Burton Creek,

Bryan, Texas.

Figure 5.3.



50

develop the transfer function and evaluate its performance.

From examination of Figure 5.1 and associated rainfall
records, it was surmised that the first portion of the receding
Timb of the transfer function moved to the right as antecedent
moisture conditions increased. From the premise that antecedent
moisture conditions did in fact affect the transfer function, the
six events were classified as either wet or dry events. The
classification was made upon examination of the rainfall records
and was based on the author's judgment as to the antecedent
moisture conditicns at the time the event occurred. Since Burton
Creek is located in Bryan, Texas and the author has resided there
for the past five years, an intuitive knowledge of the soils in
the area and their performance may have influenced the event
classifications; however, this very general classification could
be made by anyone who had descriptive knowledge of the soils and
rainfall records. The events occurring on May 10, 1968, May 17,
1968 and June 17, 1968 were classified dry and the events
occurring on June 1, 1968 and June 5, 1968 and June 18, 1968 were
classified wet. Each transfer function exhibited a tendency to
have an increasing limb to the peak and a decreasing 1imb made
up of a rather steep slope for a short period of time and then a
much flatter slope. Therefore, each transfer function for the six
events was divided by visual inspection into these three sections.

The data of these six events indicate that as antecedent
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moisture conditions move from wet to dry the peak of the transfer
function is lowered, but the slopes of the three sections described
above do not change appreciably.

Keeping in mind the intent of the research to develop a simple
workabie model for predicting runoff, the transfer function was
generalized by assuming a straight line for the three above
mentioned sections. The straight line equation for the increasing
1imb and the lower receding limb of the transfer function were
obtained by utilizing the data from all six events. Two equations
were obtained for the upper receding 1imb -- one by using the
three events classified wet and one with the dry events. The
generalized transfer function for Burton Creek is shown in Figure
5.1, and the equations for the four straight lines are as follows:

Increasing 1limb

H(T) = 9.60 T - 7.81, 5.1

Upper receding limb

H(T) = - 9.21 T + 122.03, wet, 5.2
H(T) = - 6.80 T + 80.30, dry, and 5.3

Lower receding Timb

H(T) = - 0.46 T + 14.869, 5.4
where
H(T) = generalized transfer function and
T = the number of 15 minute intervals since

the beginning of rainfall.
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An available Teast-squares regression program was utilized for
obtaining the best fit straight lines for the generalized transfer
function.

In order to further simplify the generalized transfer function,
the dry upper receding 1imb was assumed to have the same slope as
the wet limb but moved to the left by two time intervals (30
minutes). Therefore, the equation used in the predicting model
for the dry upper receding limb was adjusted so that

H(T) = - 9.21 T + 103,61, 5.5
Table 5.1 gives the generalized transfer function for Burton
Creek.

A computer program which utilizes equation 3.7 for discrete
convolution, with f(j) as the rainfall intensity input (in./hr)
and equations 5.1, 5.2 or 5.3 or 5.5, and 5.4 as the convolved
transfer function, was developed in order to evaluate the
prediction model. From the data available for Burton Creek, 20
events of appreciable runoff were selected for evaluating the
model., The six events used in developing the generalized transfer
function are included in the 20 events. A summary of the results
for Burton Creek is given in Table 5.2. Comparisons of the
recorded versus the predicted total volume, the time to peak from
the start of rainfall, and the peak flow rate are given in Table

5.2. The event classification, total rainfall, and the rainfall



TABLE 5.1. GENERALIZED TRANSFER FUNCTION FOR BURTON CREEK

*Time Interval Generazligﬁhlg?nffsgc§unction
Wet Dry
1 1.79 1.79
2 11.39 11.39
3 20.99 20.99
4 30.59 30.59
5 40.18 40.18
6 49.78 49,78
7 59.38 39.16
8 48.37 29.95
9 39.16 20,74
10 29.95 11.54
11 20.74 9.67
12 11.54 9.21
13 8.75 8.75
14 8.30 8.30
15 7.84 7.84
16 7.38 7.38
17 6.93 6.93
18 6.47 6.47
19 6.02 6.02

20 5.56 5.56



Table 5.1. Continued.

*Time Interval Generaz;igfhly?nffggcgunction
Wet Dry

21 5.10 5.10
22 4.65 4.65
23 4.19 4.1%
24 3.73 3.73
25 3.28 3.28
26 2,82 2.82
27 2.37 2.37
28 1.91 1.91
29 1.45 1.45
30 1.00 1.00
31 0.54 0.54
32 0.08 0.08

* Time Interval = T = the number of 15 minute intervals since the

beginning of rainfall.
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duration for each event also are given in Table 5.2. The informa-
tion presented in Table 5.2 was provided for general comparison;
however, based on this information no inferences should be made
with regard to rainfall intensities. The rainfall intensities
generally are varied, and it is not feasible to average these
values for use with the model. Rainfall intensities do not appear
to cause an appreciable effect on the prediction model. Due to
limited funds for computer time, the longer duration events were
not used in developing the generalized transfer function. The
solution to the higher density matrices produced by the longer
duration rainfalls was estimated to require in excess of fifteen
minutes of computer time. In any event, the shorter-duration,
higher-intensity events would be the most Togical events to use
for developing the generalized transfer function for the assumed
lumped-linear, time-invariant system. Intuition would indicate
that the longer-duration, lower-intensity events would result in a
much more oscillating transfer function with considerable more
activity in the slack variables.

In order to further exemplify the performance of the
prediction model for Burton Creek, Figures 5.4, 5.5, 5.6 and 5.7
are presented as typical plotted comparisons of the recorded
and predicted hydrographs. The particular events reported in
these four figures were selected for their diversity in antecedent

moisture conditions, total rainfall, and rainfall intensity.
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Figures 5.4 and 5.5 are for events occurring during 1968, and
Figures 5.6 and 5.7 are for events occurring in 1969.

Most of the rainfall events producing appreciable runoff
during 1968 and 1969 on Burton Creek occurred in the late spring
and early summer. The generalized transfer function was
developed for events occurring over only a 40-day period in late
spring of 1968. Keeping in mind the events used for developing
the transfer function, it is interesting to note the performance
of the prediction model for the rainfall event of November 26,
1968. Figure 5.8 gives a plotted comparison of the recorded and
predicted hydrographs for this event. In light of the rather
diverse rainfall intensity, the long duration of the rainfall
(510 minutes), and the time of year of this event, the agreement
between the recorded and predicted hydrograph is excellent.

From the data presently available, it appears that the only basin
characteristic that appreciably affects the Burton Creek
generalized transfer function is antecedent moisture condition, .

It should be pointed out that the base flow was assumed
negligible, This affected the agreement between the recorded and
predicted hydrograph on some of the events classified wet. The
intent of this research was to evaluate the prediction model and,
therefore, the effect of base flow was ignored. A correction for
base flow would refine the model and improve the accuracy for the

wet events on Burton Creek,
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Figure 5.9 exhibits the event of November 27, 1968 and is
presented to illustrate the effect of the wet or dry classification
on the prediction model. The November 27 event began two and
one-half hours after the November 26 event and, therefore, would
be logically classified wet. The event was also analyzed as a dry
event and the effect of the event classification can be examined
in Figure 5.9. In this particular case, the effect of base flow
was quite apparent and, therefore, the predictions were adjusted
upward 10 cfs.

To continue the evaluation of the prediction model, attention
was directed to the rural Hudson Creek Watershed which is located

approximately three miles east of the Burton Creek Watershed. The

original intent was to utilize the same six events that were used

on Burton Creek in developing the generalized transfer function

for Hudson Creek. Rain gages number 2 and 3 were not installed

on Hudson Creek until June 12, 1968. Rain gage number 1 is a remote

recording gage which is integrated with the stream-stage recorder,
and unfortunately the data obtained from this gage are not reliable.
The gage appears to report intensities that are too high for the
first part of the rainfall, and the total amount reported is not
consistent with other more reliable records. Therefore, the
intended direct comparison between the two watersheds was not

possible.
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ReTiable rainfall-runoff data were not available on Hudson
Creek until after June 15, 1968 and 12 events producing appreci-
able runoff were selected. From these 12 events only six events
had short enough rainfall durations tc make feasible the computa-
tion of the transfer function with the computer program being used.
Figure 5:10 exhibits graphically the solution for the transfer
function for these six events which occurred between February 14,
1969 to May 1, 1969. In Figure 5.10 the elapsed time duration has
been arbitrarily truncated at 750 minutes to allow better
graphical comparison. The complete solution was obtained with
the time interval specified in Chapter III. The complete
solution is not reported herein due to its voluminous nature;
however, the complete solutions appear very similar to those
reported for Burton Creek in Appendix B. Figures 5.11 and 5.12
exhibit the recorded hydrographs and the hydrographs obtained by
convolving the computer transfer function of length m with the
recorded rainfall intensities for two different events. Figure
5.11 is typical of all of the six events reported in Figure 5.10.

The transfer function for the July 9, 1968 event was obtained
in order to evaluate the model under rather extreme conditions.
This rainfall event occurred over a period of seven hours with a
total rainfall of 6.62 inches and intensities ranging from 0.04 to
3.20 inches per hour. Figure 5.13 exhibits the complete optimum

solution for the transfer function for this event obtained from
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equations 3.24, 3.25 and 3.26. The recorded runoff had a duration
of 88 intervals (1320 minutes) and, therefore, the slack variables
introduced to assure feasibility start with interval 115 and
continue to the end of the solution length. Much of the activity
involved in this solution takes place in the slack variables

which gives an intuitive indication that the linear model would
not produce a satisfactory prediction result. The predicted
hydrograph in Figure 5.12 is the result of convolving the linear
portion of the solution with the recorded rainfall. The linear
prediction is surprisingly good in light of the fact that only a
small portion of the optimum transfer function was used. This
particular event was selected because the transfer function for it
was the most misbehaved of all events that were analyzed. We

will Took at this event again with the generalized transfer
function, but it was felt that this illustration would help to
exemplify the apparent power of the proposed model in representing
hydrologic rainfall-runoff events.

In developing a generalized transfer function for Hudson
Creek, the inferences and results obtained from Burton Creek were
utilized. It is apparent that the wet and dry event classification
is not warranted if the six events in Figure 5.10 are the only
information avaiiable. However, it is felt that as more data
become available on Hudson Creek this phenomenon will be substan-

tiated. Furthermore, the greater temporal variability in basin
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characteristics in the rural basin, Hudson Creek, will complicate
the isolation of the effects of any specific characteristic on the
transfer function. In any event, the results of the evaluation
of the model with the Timited data available on Hudson Creek are
presented. It is felt that the results warrant further and more
detailed study.
The six events reported in Figure 5.10 were handled exactly
as the Burton Creek events with the February 14, 1969, February 21,
1969 and April 9, 1969 events classified as wet and the March 7,
1969, April 4, 1969 and May 1, 1969 events classified dry. The
developed generalized transfer function for Hudson Creek is shown
in Figure 5.10 and presented in Table 5.3. The equations for the
four straight lines are as follows:
Increasing limb
H(T}) = 2.58 T - 5.18, 5.6
Upper receding 1imb
H(T) = - 2.27 T + 74.01, wet, 5.7
H(T) = - 0.73 T + 30.96, dry, and 5.8

Lower receding limb

H(T) = - 0.24 T + 14.80, 5.9
where
H(T} = generalized transfer function, and
T = the number of 15 minute intervals since

the beginning of rainfall.



TABLE 5.3. GENERALIZED TRANSFER FUNCTION FOR HUDSON CREEK

*Time Interval Generagligﬁhly?g?fggcgunction

Wet Dy

1 0.00 0.00
2 0.00 0.00
3 2.57 2.57
4 5.15 5.15
5 7.73 7.73
6 10.32 10.32
7 12.90 12.90
8 15.48 15.48
9 18.07 18.07
10 20.65 20.65
11 23.24 23.24
12 25.82 22.14
13 28.40 21.40
14 30.99 20.67
15 33.57 19.94
16 36.15 15.20
17 36.10 18.47
18 33.82 17.73
19 31.55 17.00

20 29.28 16.27



Table 5.3. Continued.
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*Time Interval

Generalized Transfer Function

(ft3-hr/in.-sec)

Wet Dry
21 27.01 15.53
22 24.74 14.80
23 22.47 14.06
24 20.20 13.33
25 17.93 12.59
26 15.66 11.86
27 13.38 11.12
28 11.11 10.39
29 8.84 9.66
30 7.61 8.92
31 7.37 8.19
32 7.13 7.45
33 6.89 6.89
34 6.65 6.65
35 6.41 6.41
36 6.17 6.17
37 5.93 5.93
38 5.69 5.69
39 5.45 5.45



Table 5.3. Continued.

75

*Time Interval

Generalized Transfer Function

(ft3-hr/in.-sec)

Wet Dry
40 5.21 5.21
41 4.97 4.97
42 4.73 4.74
43 4.49 4.49
44 4,25 4.25
45 4.01 4.01
46 3.77 3.77
47 3.53 3.53
48 3.29 3.29
49 3.05 3.05
50 2,81 2.81
51 2.57 2.57
52 2.33 2.33
53 2.09 2.09
54 1.85 1.85
55 1.61 1.61
56 1.37 1.37
57 1.13 1.13
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Table 5.3. Continued,

*Time Interval Generagligﬁhl;?gffggc§unction
Wet Dry

58 0.90 0.90

59 0.66 0.66

60 0.42 0.42

61 0.18 0.18

* Time Interval = T = the number of 15 minute intervals since the

beginning of rainfall.
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As before, a least-squares regression program was utilized for
obtaining the best fit straight lines for the generalized transfer
function.

A summary of the results of convolving recorded rainfall
intensities with the generalized transfer function for Hudson
Creek is given in Table 5.4. The agreement between the recorded
and the predicted hydrographs is not as good as was experienced with
Burton Creek. The fact that less representative data may have been
used for developing the generalized transfer function plus the fact
that the rural basin appears to be a more compliicated hydrologic
system may have caused the disagreement between the predicted and
recorded events. As with Burton Creek, it was felt that the
tabular summary did not fully illustrate the abilities of the model.
Therefore, Figures 5.14, 5.15, 5.16 and 5.17, which are repro-
ductions of four selected events, are presented. Figure 5.14 is
the event of July 9, 1968 that was discussed in some detail
previously. The complicated rainfall histogram and compound hydro-
graph exhibited in Figure 5.16 explain some of the apparent discrep-
ancies in the summary in Table 5.4.

The hydrograph prediction with the generalized transfer
function for Hudson Creek generally produced total volume and peak
flow that were too low. It appears that antecedent moisture
conditions have definite effect on runoff from this basin., This is

suggested upon examination of the differences in the dry
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transfer functions in Figure 5.12. Some winter rainfall events of
one-half to one and one-half inches produced no recorded runoff
while other events, such as the event on November 30, 1968,
produced runoff that was predictable with the generalized transfer
function. The watershed cover conditions in the winter should

be conducive to greater runoff; therefore, the Hudson Creek basin
may be more responsive to antecedent moisture conditions than the
urban Burton Creek basin. Much additional study of the effect

of antecedent moisture conditions on the transfer function for
natural rural basins should be made in order to evaluate fully the
effect of this basin characteristic.

The relationship between the wet and dry slopes of the upper
descending limb of the transfer function exhibited by the general-
ized transfer function for Burton Creek was not apparent from the
data available on Hudson Creek. If the two February events were
removed from Figure 5,10, it is possible to conjecture that the
slopes of the upper receding limb for Hudson Creek would be very
similar to those reported on Burton Creek. This substantiates
the previous conjecture made about Hudson Creek with reference to
the performance of the basin during the winter.

Captain Robert G. Feddes is presently analyzing the same events
on both watersheds with more conventional hydrologic techniques.
This research will be reported in a Master of Science thesis and

will be available in January 1970. The examination of the results



reported herein with reference to the Feddes investigation will
allow a good comparison between the performance of the_proposed

model and more conventional hydrologic analysis.

84



85

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The results of this investigation indicated that reasonably
accurate predictions of runoff hydrographs for small drainage
basins in the Gulf Coastal Plains of Texas can be obtained by using
a linear model to approximate the rainfall-runoff phenomenon. The
use of the linear convolution relationship, as described in
Chapter III, produced a linear transfer function that quite
adequately predicted the recorded runoff when convolved with the
recorded rainfall.

The development of a generalized transfer function represent-
ing a particular basin with available rainfall-runoff records
appears guite feasible. The application of the model in the
realization of a generalized transfer function for a basin with no
available records is not easily substantiated at this time. For
the urban watershed, Burton Creek, the developed generalized
transfer function very adequately predicts hydrographs with a large
diversity in the input (rainfall). The extension of the generalized
transfer function to other urban basins was not undertaken in this
study, but should be considered for further study. This model can
provide the basis for developing a simple, inexpensive model for

predicting the response of urban basins to rainfall events.
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The conclusions with regard to the rural basin, Hudson Creek,
cannot be stated so efficaciously. The generalized transfer
function developed for Hudson Creek did not predict the recorded
hydrographs as well as the Burton Creek transfer function.
However, the validity of the linear model doces appear substan-
tiated. Most events that were analyzed were quite adequately
represented by the model, as jllustrated and discussed in some
detail in Chapter V. It should be pointed out that infiltration
is directly related to antecedent moisture conditions and,
therefore, included within the generalized transfer function.
Limited available data may have caused the results for the rural
basin to be rather inconclusive.

The investigation of the hydrologic system as a truly black
box system warrants further study. The effect of antecedent
moisture on the transfer function is apparent in all of the events
analyzed. The effect of basin characteristics other than
antecedent moisture was not evaluated in this study. The data
required for such an evaluation must be inclusive in nature. In
addition, long periods of record should be available. Data could
be collected and techniques developed to allow the eventual
selection of a generalized transfer function from limited basin
information. Although the development of these techniques is
feasible, it is pointed out that these techniques were not developed

in this research. O0f course, the proposed model could be used for
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any basin where rainfall-runoff data are available if the general-
ized transfer function is obtained by the method described in
Chapter III. The direct application of the proposed model is not
feasible from an engineering design point of view until simple,
inexpensive techniques have been developed for selecting the
generalized transfer function. However, it is not unreasonable to
assume that selection techniques similar to the selection of C for
the rational method could be developed for the selection of the
transfer function. Once the generalized transfer function is
obtained, the application {Equation 3.7) is analogous to applying
an instantaneous unit-graph.

This investigation presents ample justification for continued
research on the application of linear time theory to the hydrologic
phenomenon. The model presented herein is very simple and easy to
use once a representative transfer function has been obtained.

Its application to urban basins should be fully substantiated by
further testing. Continued research also is recommended onh rural
basins. It is recommended that subsequent investigations consider
the treatment of antecedent moisture conditions as an additional
basin characteristic rather than applying an antecedent index to

the recorded rainfall.
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f(t), (i)
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APPENDIX A

SYMBOLS

observed output (runoff in cfs)

observed input (rainfall in in./hr)

transfer function

dummy continuous time variables

durmy discrete time variables

predicted output (runoff in cfs)

error between predicted and observed output
mean-sguare error

generalized transfer function

the number of 15 minute intervals since the
beginning of rainfall

optimum stable transfer function (ft3-hr/in.-sec)
unit impulse

auto-correlation function

cross -correlation function

tength of optimum transfer function {m-n+1)
number of time units (15 min intervals) in the
observed input (rainfall)

number of time units (15 min intervals) in the

observed output (runoff)
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Table B.1. Data utilized in developing transfer function for
Burton Creek, Bryan, Texas.
Date Time f(t) g(t) ¢ff(t) ¢fg(t) hopt(t)
(in./hr)  (cfs)

05/10/68 0245 0.16 3.60 0.03 3545.86 8.54
0300 0.08 5.30 0.03 4180.23  30.60
0315 0.24 13.05 0.10 4662.94  35.62
0330 0.32 20.80 0.18 5017.20  39.01
0345 0.52 37.60 0.38 5246.07 45.30
0400 0.96 54.40 0.57 5269.68 34.72
0415 0.68 86.20 0.85 5230.05 33.29
0430 1.84 118.00 1.40 5043.05 22.79
0445 0.48 164.00 1.89 4821.67 22.23
0500 2.68 210.00 3.24 4544.96 19.84
0515 2.88 296.00 4.06 4210.50 17.91
0530 1.32 382.00 5.50 3832.91 17.73
0545 0.40 408.00 6.72 3411.48 14.86
0600 0.32 434.00 9.40 2977.27 10.63
0615 0.36 415.00 11.22 2575.26 8.79
0630 0.97 396.00 11.91 2197.11 9.07
0645 0.48 369.00 13.00 1826.79 4,13
0700 0.32 342.00 15.38 1497.05 2.38
0715 0.12 322.00 18.12 1210.00 0.19
0730 0.16 302.00 24.29 983.94 0.00
0745 272.50 18.12 788.17 0.00
0800 243.00 15.38 645.47 0.0Q
0815 202.00 13.01 525.27 1.85
0830 161.00 11.91 431.01 1.95
0845 134.50 11.22 348.33 0.53
0900 108.00 g.40 296.89 1.78
0915 83.20 6.72 247 .64 1.01
0930 58.40 5.50 214,26 0.81
0945 47.20 4.06 185.80 .49
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Table B.1. Continued.
Date Time f(t) g(t) ¢ff(t) ¢fg(t) hopt(t)
(in./hr)  (cfs)
1000 36.00 3.24 164.05 0.64
1015 30.80 1.89 145,92 0.47
1030 25.60 1.40 130.62 0.23
1045 25.60 .85 118.41 0.44
1100 18.20 0.57 107.04 0.38
1115 15.80 0.38 97.27 0.40
1130 13.40 0.18 88.57 0.24
1145 12.00 0.10 81.08 0.37
1200 10.60 0.03 74.72 0.29
1215 9.80 0.03 69,04 0.24
1230 9.00 64.45 0.26
1245 8.20 60.49 0.24
1300 7.40 57.45 0.27
1315 6.80 54,95 0.21
1330 6.20 53.09 g.24
1345 5.60 51.45 0.16
1400 5.00 49,92 0.10
1415 4,65 49,18 0.04
1430 4.30 49.63 0.04
1445 4.05 51.46 0.12
1500 3.80 54.44 0.36
1518 3.60 56.08 0.39
1530 3.40 56.98 0.40
1545 3.20 56.93 0.43
1600 3.00 55.00 0.27
1615 2.85 53.17 0.20
1630 2.70 51.16 0.09
1645 Z2.85 50.11 0.17
1700 3.00 49,53 0.35
1715 3.65 46.85 0.29
1730 4,30 42.99 0.20
1745 4.30 39.05% 0.23



98

Table B.1. Continued.
Date Time f(t) g(t) ¢ff(t) ¢fg(t) hopt(t)
(in./br)  (cfs)
1800 4.30 34.52 0.11
1815 3.95 31.01 0.09
1830 3.60 27.82 0.14
1845 3.40 24.28 0.15
1900 3.20 20,92 0.08
1915 3.50 18.56 0.00
1930 3.80 16.80 .00
1945 3.30 15.07 0.00
2000 2.80 12.78 0.00
2015 2.25 9.20 0.00
2030 1.70 6.08 0.00
2045 1.60 5.29 0.00
2100 1.50 3.26 0.00
2115 1.35 2.45 0.00
2130 1.20 1.40 0.00
2145 1.15 0.84 0.00
2200 1.10 0.50 0.00
2215 1.05 0.25 0.00
2230 1.00 0.16 0.00
05/17/68 1415 0.40 0.10 0.03 56.57 0.00
1430 1.36 0.10 0.16 75.69 1.87
1445 0.24 12.45 0.29 103.59 12.28
1500 0.24 24.80 0.54 148.24 22.94
1515 0.00 52.00 0.48 195.39 42,35
1530 0.00 79.20 0.13 193.33 33.25
1545 0.28 72.00 0.19 174.62 27.68
1600 0.28 64,80 0.48 148,82 21.24
1615 0.12 51.20 1.05 122,35 9,31
1630 0.08 37.60 2,30 121.53 7.77
1645 41.20 1.05 126.92 8.49
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Table B.1. Continued.
Date Time ft) g(t) ¢ff(t) ¢fg(t) hopt(t)
{in./hr}  (cfs)
1700 44,80 0.48 135.87 10.62
1715 48.40 0.19 139.30 15.20
1730 52.00 0.13 128.32 14.17
1745 44.40 0.48 113.53 10.99
1860 36.80 0.54 108.26 13.14
1815 36.80 0.29 105.16 13.80
1830 36.80 0.16 103.69 13.03
1845 38.40 0.03 102.45 13.35
1900 40.00 38.18 13.08
1915 39.20 93.17 13.42
1930 38.40 82.61 10.32
1945 33.60 70.35 8.02
2000 28.80 57.71 5.55
2015 22.90 45.75 2.14
2030 17.00 39.55 1.90
2045 15.20 35.16 1.75
2100 13.40 31.48 1.90
2115 12.00 28.11 1.88
2130 10.60 25.40 2.64
2145 9.60 22.98 2.91
2200 8.60 20.99 2.79
2215 7.85 18.19 2.51
2230 7.10 17.63 2.26
2245 6.50 16.16 1.86
2300 5.90 14.92 1.50
2315 5.45 13.78 1.22
2330 5.00 12.93 1.17
2345 4.75 12.17 1.15
05/18/68 2400 4,50 11.44 1.14
2415 4.25 10.74 1.16
2430 4.00 89.98 1.14
2445 3.70 9.19 1.07



100

Table B.1. Continued.
Date Time .f(t) g(t) ¢ff(t) ¢fg(t) hopt(t)
{(in./hr)  (cfs)
07100 3.40 8.43 0.97
0115 3.10 7.72 .83
0130 2.80 7.20 0.78
0145 2.65 6.80 0.72
0200 2.50 6.47 0.66
0215 2.35 6.11 0.62
0230 2.20 5.71 0.57
0245 2.05 5.37 0.57
0300 1.90 4.85 0.36
0315 1.60 4.75 0.52
0330 1.70 4.64 0.53
0345 1.65 4,51 0.47
0400 1.60 4.43 0.54
0415 1.60 4.32 0.67
0430 1.60 4.06 0.50
0445 1.45 3.76 0.32
0500 1.30 3.51 .49
0515 1.25 3.24 0.53
0530 1.20 2.85 0.00
0545 1.15 2.48 0.00
0600 1.09 2.45 0.44
0615 1.10 2.43 0.53
0630 1.10 2.11 0.00
0645 1.05 1.78 0.00
0700 1.00 0.40 0.00
06/01/68 2015 1.08 0.10 0.17 736.09 0.45
2030 0.32 7.95 0.61 1049.24 8.57
2045 0.60 15.80 0.82 1379.82 15.50
2100 0.52 39.10 1.21 1689.73  25.55
2115 1.96 62.40 3.29 1980.12 34.94
2130 2.04 100.20 4.75 2243.63 44.97
2145 0.60 158.00 4.90 2384.82 55.43
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Table B.1. Continued.
Date Time ft) g(t) ¢ff(t) ¢fg(t) Opt(t)
(in./hr) (cfs)

2200 g0.h2 203.00 5.68 2358.70 48 .50
2215 0.52 248.00 7.76 2237.68 39.71
2230 0.16 297.50 10.83 2068.90 36.55
2245 347.00 7.76 1841.57 38.79
2300 331.00 5.68 1479.59 7.20
2315 315.00 4.90 1177.57 13.20
2330 270.00 4.75 901.10 1.07
2345 252.00 3.29 704.79 4,51
06/02/68 2400 187.00 1.21 h27.47 7.34
2415 122.00 0.82 375.17 4,60
2430 89.00 0.61 275.03 2.17
2445 56.00 0.17 200.15 0.00
0100 46.80 167.96 1.59
0115 37.60 140.97 1.07
0130 27.30 119.03 2.52
0145 17.00 100.75 1.17
0200 15.50 92.92 1.59
0215 14.00 85.52 1.02
0230 12.90 79.00 1.04
0245 11.80 73.13 0.85
0300 11.00 68.07 1.00
0315 10.10 63.63 0.79
0330 9.40 59.76 0.96
0345 8.60 55.78 0.87
0400 8.00 51.92 0.82
0415 7.40 47.99 0.68
0430 7.10 44 . 35 0.57
0445 6.80 41.04 0.50
0500 6.35 37.88 0.47
0515 5.90 35.29 0.46
0530 5.35 33.20 0.54
0545 4,80 30.98 0.50
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Table B.1. Continued.
Date Time f(t) g(t) ¢ff(t) ¢fg(t) hopt(t)
in./hr {cfs)
0600 4,40 28.85 0.39
0615 4.00 26.99 0.32
0630 3.90 25.59 0.35
0645 3.80 24,45 0.28
0700 3.50 23.43 0.32
0715 3.20 22.42 0.40
0730 3.00 21.54 0.29
0745 2.80 20.69 0.27
0800 2.75 19.95 0.38
0815 2.70 19.28 0.22
0830 2.60 18.67 0.19
0845 2.50 17 .84 0.38
0900 2.40 16.95 0.14
0915 2.30 16.44 0.16
0630 2.25 15.75 0.46
0945 2.20 14,72 0.22
1000 2.05 13.52 .00
1015 1.90 12.25 .53
1030 2.00 11.10 0.00
1045 1.70 7.39 0.00
1100 1.70 4,20 0.00
1115 1.70 3.32 0.00
1130 1.65 2.29 0.00
1145 1.60 1.73 0.00
06/05/68 1715 0.40 0.00 0.05 407.78 0.59
1730 4.80 7.40 0.61 774.78 11.34
1745 1.40 62.70 0.60 1185.78 18.56
1800 0.36 118.00 0.76 1715.21 32.10
1815 0.04 202.00 0.63 2208.57 44 .57
1830 0.12 286.00 0.81 2518.94 49.76
1845 0.16 338.50 1.05 2684.62 58.69
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Table B.1. Continued.
Date Time f(t) g(t) ¢ff(t) ¢fg(t) hopt(t)
(in./hy)  (cfs)
1900 0.12 391.00 0.90 2369.16 45,41
1915 0.08 343.50 0.61 1980.93 38.60
1930 0.12 296.00 2.46 1486.07 25.83
1945 0.08 222.00 9.24 1052.66 13.54
2000 0.12 148.00 25.39 866.39 12.53
2015 124.50 9.24 714.99 8.66
2030 101.00 2.46 610.48 7.22
2045 86.90 0.61 512.56 5.58
2100 72.80 0.90 426.00 4.66
2115 60.40 1.04 352.05 3.23
2130 48.00 0.81 318.71 4.06
2145 44,00 0.63 289.36 4.00
2200 40.00 0.76 262.48 3.96
2215 36.40 0.60 237.07 3.79
2230 32.80 0.6] 215.78 3.49
2245 30.00 0.05 184.99 3.22
2300 27.20 174.49 2.86
2315 24.40 154.53 2.62
2330 21.60 135.87 2.18
2345 19.00 117.77 1.84
06/06/68 2400 16.40 101.76 1.52
2415 14.10 88.23 1.20
2430 11.80 82.90 1.24
2445 11.20 78.30 1.19
0100 10.60 73.71 1.14
0115 10.00 68.86 1.09
0130 9,40 63.21 1.00
0145 8.60 57.93 0.90
D200 7.80 54.16 0.87
02156 7.30 50.59 0.81
0230 6.80 47 .34 0.76
0245 6.35 44,31 0.70
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Table B.1. Continued.
Date Time f(t) a(t) ¢ff(t) ¢fg(t) opt(t)
(in./hr) (cfs)
0300 5.90 42.05 0.67
0315 5.60 35.93 0.63
0330 5.30 38.08 0.61
0345 5.05 36.36 0.58
0400 4,80 35.15 0.57
0415 4,65 34.07 0.55
0430 4.50 33.19 0.54
0445 4,40 32.70 0.54
0500 4.30 30.36 0.50
0515 4.05 28.77 0.46
0530 3.80 27.89 0.45
0545 3.70 26.94 0.45
0600 3.60 25.56 0.41
0615 3.40 24,29 0.40
0630 3.20 23.49 0.38
0645 3.10 22.67 0.38
0700 3.00 21.64 0.36
0715 2.85 20.65 0.35
0730 2.70 19.93 0.32
0745 2.60 19.35 0.32
0800 2.50 19.25 0.44
0815 2.50 18.96 0.00
0830 2.50 18.72 0.58
0845 2.50 18.27 0.00
0900 2.50 17 .44 0.156
0915 2.40 16.57 0.00
0930 2.30 15.87 0.00
0945 2.25 15.19 0.00
1000 2.20 14.46 0.52
1015 2.10 13.17 0.00
1030 2.00 10.16 0.00
1045 1.95 0.78 0.00
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Table B.1. Continued.
Date Time f(t) g(t) ¢ff(t ¢fg(t) hopt(t)
(in./hr)  (cfs)

06/17/69 1715 0.20 0.00 0.04 67.80 0.50
1730 1.40 0.20 0.51 116.42 0.78
1745 0.20 3.60 1.67 161.56 3.89
1800 0.04 14.00 0.34 230,24 23.70
1815 1.16 44.00 0.85 294.34  43.71
1830 0.20 76.00 3.43 328.20 53,15
1845 93.10 0.85 306.32 44.18
1900 107.00 0.34 265.46 29,21
1915 114.00 1.67 247.80 24.29
1930 120,00 0.51 179.00 12.39
1945 87.50 0.04 104. 22 0.00
2000 44.00 69.30 0.00
2015 29.60 45.36 0.00
2030 17.00 35.48 6.33
2045 14.00 29.13 2.52
2100 11.40 23.83 2.87
2115 9.40 19.43 0.00
2130 7.40 16.42 1.11
2145 6.20 13.80 1.00
2200 5.00 11.96 2.12
2215 4.30 10.73 1.44
2230 3.80 9.57 0.42
2245 3.40 8.49 0.18
2300 3.00 7.81 0.41
2315 2.80 7.12 1.07
2330 2.50 6.33 1.12
2345 2.20 5.69 0.72

06/18/69 2400 2.00 5.21 0.20
2415 1.90 4,74 0.00
2430 1.70 4,36 0.36
2445 1.50 3.90 0.61
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Table B.1. Continued.
Date Time f(t) g{t) ¢ff(t) ¢fg(t) hopt(t)
{(in./hr)  {(cfs)
0100 1.30 3.70 0.75
0115 1.20 3.34 0.28
0130 1.20 2.04 0.00
0145 1.10 1.96 0.09
0200 1.10 1.62 0.00
0215 1.00 0.20 0.00
06/18/6% 1715 1.00 1.90 0.04 221.56 0.00
1730 4.00 6.50 0.20 389.16 7.00
1745 0.08 46.40 0.20 610.87 17.00
1800 0.00 94 .50 0.28 836.97 26.29
1815 0.08 144.00 0.53 1062.59 37.39
1830 0.12 196.00 0.38 1254 .07 42.79
1845 0.20 237.00 1.01 1460.12 56.64
1900 0.20 284.00 0.97 1367.72 48.41
1915 0.04 253.00 0.61 1215.00 43.90
1930 0.12 226.00 0.39 907.69 29.62
1945 0.04 159.00 0.17 575.95 12.98
2000 0.04 94.50 4.41 457.14 9.9]
2015 0.04 82.40 7.13 388.83 6.69
2030 69.60 4.41 326.79 5.15
2045 58.40 0.17 270,30 3.47
2100 48.00 0.39 231.38 3.61
2115 41.60 0.61 200.24 3.58
2130 36.00 0.97 170.78 3.20
2145 30.50 1.02 144 .11 3.18
2200 25.60 0.38 118.72 2.71
2215 20.80 0.53 97.72 2.33
2230 17.00 0.28 85.75 2.25
2245 15,20 0.20 75.93 2.02
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Table B.1. Continued.
Date Time f(t) g(t) ¢ff(t) ¢fg(t) opt(t)
(in./hr}  (cfs)
2300 13.40 0.20 67.02 1.77
2315 11.80 0.04 60.08 1.57
2330 10.60 55.16 1.50
2345 9.80 49,08 1.30
06/19/69 2400 8.60 42 .65 1.07
2415 7.40 38.67 1.00
2430 6.80 35.36 0.90
2445 6.20 33.27 0.89
0100 5.90 30.34 0.80
0115 5.30 27.54 0.73
0130 4.80 24.88 0.65
0145 4.30 23.056 0.61
0200 4.00 21.04 0.54
0215 3.60 19.77 0.52
0230 3.40 18.67 0.49
0245 3.20 17.59 0.47
0300 3.00 16.50 0.43
0315 2.80 16.15 0.45
0330 2.80 15.60 0.43
0345 2.70 15.36 0.46
0400 2.70 14,27 0.39
0415 2.50 13.92 0.43
0430 2.50 12.70 0.38
0445 2.30 12.08 0.38
0500 2.30 11.44 0.36
0515 2.20 11.16 0.34
0530 2.20 10.36 0.39
0545 2.00 10.00 0.03
0600 2.00 2.00 0.00




