LECTURES ON APPLIED MATHEMATICS

Part 1: Linear Algebra

Ray M. Bowen?

Professor Emeritus of Mechanical Engineering
President Emeritus

Texas A&M University

College Station, Texas

Copyright Ray M. Bowen

Updated June, 2020/May, 2021/January, 2022/June, 2022

Ihttps://en.wikipedia.org/wiki/Ray M. Bowen



https://en.wikipedia.org/wiki/Ray_M._Bowen

PREFACE

To Part 1

It is common for Departments of Mathematics to offer a junior-senior level course on Linear
Algebra. This book represents one possible course. It evolved from my teaching a junior level
course at Texas A&M University during the several years | taught after | served as President. | am
deeply grateful to the A&M Department of Mathematics for allowing this Mechanical Engineer to
teach their students.

This book is influenced by my earlier textbook with C.-C Wang, Introductions to Vectors
and Tensors, Linear and Multilinear Algebra. This book is more elementary and is more applied
than the earlier book. However, my impression is that this book presents linear algebra in a form
that is somewhat more advanced than one finds in contemporary undergraduate linear algebra
courses. In any case, my classroom experience with this book is that it was well received by most
students. As usual with the development of a textbook, the students that endured its evolution are
due a statement of gratitude for their help.

This book is the first volume of a two volume work on Applied Mathematics. Part 2 is on
the topic of Numerical Analysis and builds on the results in this book. The index for Part 2 is given
below.

As has been my practice with earlier books, this book is available for free download at the
site https://rbowen.engr.tamu.edu/ or, equivalently, from the Texas A&M University Digital
Library’s faculty repository, https://oaktrust.library.tamu.edu/handle/1969.1/94772. It is inevitable
that the book will contain a variety of errors, typographical and otherwise. Emails to
rbowen@tamu.edu that identify errors will always be welcome. For as long as mind and body will
allow, this information will allow me to make corrections and post updated versions of the book.

First Edition Update

The First Edition, which was last updated in January, 2017, has been updated again in June,
2020. The updates are generally minor. A number of typos and small mistakes have been
corrected. A clarification has been addition for Sylvester’s Theorem for the case of repeated
eigenvalues. Also, the index has been more carefully constructed.

As with earlier updates of this textbook, | would greatly appreciate being told of errors and
other improvements that can be made to the text.

College Station, Texas R.M.B.
Posted June, 2020


https://rbowen.engr.tamu.edu/
https://oaktrust.library.tamu.edu/handle/1969.1/94772
mailto:rbowen@tamu.edu
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Chapter 1

ELEMENTARY MATRIX THEORY

When we introduce the various types of structures essential to the study of linear algebra, it
IS convenient in many cases to illustrate these structures by examples involving matrices. Also,
many of the most important practical applications of linear algebra are applications focused on
matrix algebra. It is for this reason we are including a brief introduction to matrix theory here. We
shall not make any effort toward rigor in this chapter. In later chapters, we shall return to the
subject of matrices and augment, in a more careful fashion, the material presented here.

Section 1.1. Basic Matrix Operations

We first need some notations that are convenient as we discuss our subject. We shall use
the symbol £ to denote the set of real numbers, and the symbol ¢ to denote the set of complex
numbers. The sets Z and ¢ are examples of what is known in mathematics as a field. Each set is
endowed with two operations, addition and multiplication such that

For Addition:
1. The numbers x, and x, obey (commutative)
X, 4+ X, =X, + X
2. The numbers x,, x,, and x, obey (associative)
(X, + X))+ X = X, + (X, + X5)
3. The real (or complex) number 0 is unique (identity) and obeys
X+0=0+x
4. The number x has a unique “inverse” —x such that.
X+(=x)=0
For Multiplication
5. The numbers x, and x, obey (commutative)
XX, = X, X
6. The numbers x,, x,, and x, obey (associative)

3
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(X1X2)X3 = Xl(X2X3)

7. The real (complex) number 1 is unique (identity) and obeys
X(1) =@)x=x
8. For every x =0, there exists a number 1 (inverse under multiplication) such that
X
(e
X X
9. For every X, X,, X;, (distribution axioms)

X (X, £ X3) = XX, £ X, Xg

(X, £ X,)X5 = XX, £ X X,

While it is not especially important to this work, it is appropriate to note that the concept of a field
is not limited to the set of real numbers or complex numbers.

Given the notation # for the set of real numbers and a positive integer N , we shall use the
notation %" to denote the set whose elements are N-tuples of the form (x,,...,x, ) where each

element is a real number. A convenient way to write this definition is
#" = {(xl,...,xN )|xj egfz} (1.1.2)

The notation in (1.1.1) should be read as saying “ #" equals the set of all N-tuples of real
numbers.” In a similar way, we define the N-tuple of complex numbers, #" , by the formula

¢" :{(zl,...,zN)|zj e{{} (1.1.2)

An M by N matrix A is arectangular array of real or complex numbers A; arranged in
M rows and N columns. A matrix is usually written

_An Aiz o AiN_

A21 Azz T A2N
A=| - (1.1.3)

AMIAMZ"'AMN_
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and the numbers A; are called the elements or components of A. The matrix A is called a real

matrix or a complex matrix according to whether the components of A are real numbers or
complex numbers. Frequently these numbers are simply referred to as scalars.

A matrix of M rows and N columns is said to be of order M by N orM xN. The
location of the indices is sometimes modified to the forms A”, A';, or A’. Throughout this

chapter the placement of the indices is unimportant and shall always be written as in (1.1.3). The
elements A, A,.,..., A, are the elements of the i" row of A, and the elements A, A,,,..., A, are the

elements of the k™ column. The convention is that the first index denotes the row and the second
the column. It is customary to assign a symbol to the set of matrices of order M x N . We shall

assign this set the symbol .#"*" . More formally, we can write this definition as

A" ={AAisan M x N matrix } (1.1.4)

A row matrix isa 1x N matrix, e.g.,*

[An A12 T AiN]

while a column matrix is an M x1 matrix, e.g.,

Ay
Ay

A1

The matrix A is often written simply
A=[A] (1.1.5)
A square matrix isan N x N matrix. Inasquare matrix A, the elements A, A,,,..., A, are its
diagonal elements. The sum of the diagonal elements of a square matrix A is called the trace and

is written tr A. In other words,

trA=A,+A, + -+ A, (1.1.6)

! A row matrix as defined by [A11 A, - - - Ay ] is mathematically equivalent to an N-tuple that we have

previously written (Aﬂ, A Ay ) . For our purposes, we simply have two different notations for the same quantity.
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Two matrices A and B are said to be equal if they are identical. Thatis, A and B have the same
number of rows and the same number of columns and

A, =By, i=1..N, j=1..,.M (1.1.7)
A matrix, every element of which is zero, is called the zero matrix and is written simply 0.

If A=[A;]and B=[B;]aretwo M xN matrices, their sum (difference) is an M x N
matrix A+B (A-B) whose elements are A; +B; (A, —B;). Thus

A+B=[A *B] (1.1.8)

Note that the symbol + on the right side of (1.1.8) refers to addition and subtraction of the

complex or real numbers A; and B, while the symbol + on the left side is an operation defined

by (1.1.8). Itis an operation defined on the set .#“*" . Two matrices of the same order are said to
be conformable for addition and subtraction. Addition and subtraction are not defined for matrices
which are not conformable.

If 2 isanumberand A isa matrix, then AA isa matrix given by
AA=[ A |= AL (1.1.9)

Just as (1.1.8) defines addition and subtraction of matrices, equation (1.1.9) defines multiplication
of a matrix by a real or complex number. It is a consequence of the definitions (1.1.8) and (1.1.9)
that

-A=(-DA=[-A] (1.1.10)

These definitions of addition and subtraction and, multiplication by a number imply that

A+B=B+A (1.1.11)
A+(B+C)=(A+B)+C (1.1.12)
A+0=A (1.1.13)
A-A=0 (1.1.14)
A(A+B)=1A+ /B (1.1.15)

(A+ 1)A= 1A+ uA (1.1.16)
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and
1A=A (1.1.17)
where A,B and C are as assumed to be conformable.

The applications require a method of multiplying two matrices to produce a third. The
formal definition of matrix multiplication is as follows: If A isan M x N matrix, i.e. an element

of 4™V and Bisan N x K matrix, i.e. an element of .#"*, then the product of Bby A is

N
written AB and is an element of .#™* with components ZAJBJS, I=1..,M,s=1..,K. For

i=1

example, if
Ar A, -
A=| A, A, and B{Bﬂ B”} (1.1.18)
21 22
AmMAn
then ABisa 3x2 matrix given by
A A, B, B,
AB=| A, A,
B, B
A5 A3 21 22
Lo (1.1.19)

AiBuy+ABy  AiBL +ALB,,
= A21Bll + Azz 821 Alelz + Azz Bzz
AuB +ABy  ALBL +ALB,,

The product AB is defined only when the number of columns of A is equal to the number
of rows of B.. If this is the case, A is said to be conformable to B for multiplication. If A is
conformable to B, then B is not necessarily conformable to A. Even if BA is defined, it is not
necessarily equal to AB. The following example illustrates this general point for particular
matrices A and B.

Example 1.1.1: If you are given matrices A and B defined by
-2

21 3
A=|2 4| and B= (1.1.20)
] 4 16

The multiplications, AB and BA, yield
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-14 1 -3
AB=|12 6 30 (1.1.21)
-14 -2 -15
and
-1 -1
BA= (1.1.22)
20 -22

On the assumption that A, B ,and C are conformable for the indicated
sums and products, it is possible to show that

A(B+C) = AB+AC (1.1.23)
(A+B)C =AC+BC (1.1.24)

and
A(BC) = (AB)C (1.1.25)

However, AB = BAin general, AB =0 does notimply A=0 or B=0, and AB = AC does not
necessarily imply B=C.

If Aisan M xN matrixand Bisan M x N then the products AB and BA are defined but
not equal. It is a property of matrix multiplication and the trace operation that

tr(AB)=tr(BA) (1.1.26)
The square matrix | defined by
1 0 0]
01 0
| = (1.1.27)
00 - - - 1]

is the identity matrix. The identity matrix is a special case of a diagonal matrix. In other words, a
matrix which has all of its elements zero except the diagonal ones. It is often convenient to display
the components of the identity matrix in the form
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1=[5,] (1.1.28)
where
1 fori=j
5 = ori=1 (1.1.29)
' 10 fori=j

The symbol &;, as defined by (1.1.29), is known as the Kronecker delta.?

A matrix A in .#™" whose elements satisfy A; =0, 1> j,is called an upper triangular
matrix , i.e.,

i Au A12 A13 A AiN
0 Azz Azz . AZN
0 0 A,
A=| - (1.1.30)
L 0 0 0 - Aw i

A lower triangular matrix can be defined in a similar fashion. A diagonal matrix is a square
matrix that is both an upper triangular matrix and a lower triangular matrix.

If A and B are square matrices of the same order such that AB=BA=1, then B is called
the inverse of A and we write B = A™. Also, Aisthe inverse of B,i.e. A=B™.

Example 1.1.2: If you are given a 2x2 matrix

1 2
A:L 4} (1.1.31)

then it is a simple exercise to show that the matrix B defined by

g__ L4 2 1.1.32
__ELs 1} (1132

obeys

2 The Kronecker is named after the German mathematician Leopold Kronecker. Information about Leopold Kronecker
can be found, for example, at http://en.wikipedia.org/wiki/L eopold _Kronecker.
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Therefore, B=A"*and A=B™.

and

Example 1.1.3: Not all square matrices have an inverse. A matrix that does not have an inverse is

10
A= {0 o} (1.1.35)

If A hasan inverse it is said to be nonsingular. If A has an inverse, then it is possible to prove
that it is unique. If A and B are square matrices of the same order with inverses A™and
B'respectively, we shall show that

(AB)*=B'A™ (1.1.36)
In order to prove (1.1.36), the definition of an inverse requires that we establish that
(B*AMAB =1 and (AB)BA™ =1. If we form, for example, the product (B™"A™)AB, it
follows that
(B'A")AB=B'A'AB=B"(A'A)B=B"(1)B=B"B=1I (1.1.37)
Likewise,
(AB)B'A'=ABBHA'=AIA = AA" = | (1.1.38)

Equations (1.1.37) and (1.1.38) confirm our assertion (1.1.36).

The matrix of order N x M obtained by interchanging the rows and columns of an M x N
matrix A is called the transpose of A and is denoted by A" . It is easily shown that

(AN =A (1.1.39)
and

(AB)" =B'A (1.1.40)
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A more detailed discussion of the transpose is given in Section 1.9.

Exercises

1.1.1 Add the matrices

1.1.2 Add the matrices

1.1.3 Add
1 -5i
[+3
HEN
1.1.4 Multiply
) 12 8
2i 3 7+2i .
] ] 1 6l
{5 4+ 3i i } .
3 2
1.1.5 Multiply
1 21 0
3 1
2 4 1 4
and
1 21
1 35
2 41

1.1.6 Show that the product of two upper (lower) triangular matrices is an upper lower triangular
matrix. Further, if
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A:[Ai]’ B:[Bii]
are upper (lower) triangular matrices of order N x N , then
(AB); =(BA); = AB;

forall i=1,.,N. The off diagonal elements (AB); and (BA)
equal, however,

i» 1# ], generally are not

1.1.7 If you are given a square matrix

e[ A
Ay Ay

with the property that A,A,, — A,A,, # 0, show that the matrix P _A”} is the

A11A22 - A12A21 {_An An

inverse of A. Use this formula to show that the inverse of

i

is the matrix
12
Afl: 10 5
3 1
10 5

1.1.8 Confirm the identity (1.1.26) in the special case where A and B are given by (1.1.20).
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Section 1.2. Systems of Linear Equations

Matrix algebra methods have many applications. Probably the most useful application
arises in the study of systems of M linear algebraic equations in N unknowns of the form

A11X1+A12X2+A13X3+”'+A1NXN :bl
A21X1+A22X2+A23X3+"'+A2NXN :bz

(1.2.1)

Ak + AyoXo + AyaXe +o+ Ay Xy = bM
The system of equations (1.2.1) is overdetermined if there are more equations than unknowns, i.e.,
M > N . Likewise, the system of equations (1.2.1) is underdetermined if there are more unknowns

than equations, i.e., N > M .

In matrix notation, this system can be written

i Au A12 o AiN X b1
AZl A22 AZN X2 b2
= (1.2.2)
_AMl AMZ o7 AMN__XN_ _bM_
The above matrix equation can now be written in the compact notation
Ax=b (1.2.3)
where x isthe N x1 column matrix
%]
X2
x=| (1.2.4)
_XN i

and bisthe M x1 column matrix
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b= (1.2.5)

by,

A solution to the M x N system isa N x1 column matrix x that obeys (1.2.3). Itis often
the case that overdetermined systems do not have a solution. Likewise, undetermined solutions
usually do not have a unique solutions. If there are an equal number of unknowns as equations,
i.e., M =N, he system may or may not have a solution. If it has a solution, it may not be unique.

In the special case where Ais a square matrix that is also nonsingular, the solution of
(1.2.3)is formally

x=A"b (1.2.6)

Unfortunately, the case where A is square and also has an inverse is but one of many cases one
must understand in order to fully understand how to characterize the solutions of (1.2.3).

Example 1.2.1: For M =N =2, the system

X, +2X, =5
2%, +3X, =8

B QKHQ (1.2.8)

By substitution into (1.2.8), one can easily confirm that

3

is the solution. In this case, the solution can be written in the form (1.2.6) with

L [-3 2
A {2 _J (1.2.10)

(1.2.7)

can be written
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In the case where M =N =2 and M = N =3 the system (1.2.2) can be view as defining
the common point of intersection of straight lines in the case M =N =2 and planes in the case
M =N =3. For example the two straight lines defined by (1.2.7) produce the plot

28 . ! .

>(1+2>c2:5

2><1+3x2:8

1] 05 1 1.5 2

%

Figure 1. Solution of (1.2.8)

which displays the solution (1.2.9). One can easily imagine a system withM = N =2 where the
resulting two lines are parallel and, as a consequence, there is no solution.

Example 1.2.2: For M =N = 3, the system

2%, —6X, — X, =38
—3X, — X, + TX, =34 (1.2.11)
—8X, + X, —2X%, =—20

defines three planes. If this system has a unique solution then the three planes will intersect in a
point. As one can confirm by direct substation, the system (1.2.11) does have a unique solution
given by

<

4
X=|X|=|8 (1.2.12)
X 2
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The point of intersection (1.2.12) is displayed by plotting the three planes (1.2.11) on a common
axis. The result is illustrated by the following figure.

- ———
—pEe

10

Figure 2. Solution of (1.2.11)

It is perhaps evident that planes associated with three linear algebraic equations can intersect in a
point, as with (1.2.11), or as a line or, perhaps, they will not intersect. This geometric observation
reveals the fact that systems of linear equations can have unique solutions, solutions that are not
unique and no solution. An example where there is not a unique solution is provided by the
following:

Example 1.2.3:

2%, +3X, + X, =1
X, + X, + %X, =3 (1.2.13)
3% +4X, +2X, =4

By direct substitution into (1.2.13) one can establish that

Xl
X=X, [=| X3=5 [=|-5|+| 5%, (1.2.14)
X3
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obeys (1.2.13) for all values of x,. Thus, there are an infinite number of solutions of (1.2.13).
Basically, the system (1.2.13) is one where the planes intersect in a line, the line defined by

(1.2.14)s. The following figure displays this fact.

30 .

20

10
0

0 |

X 10 -5

Figure 3. Solution of (1.2.13)

An example for which there is no solution is provided by

Example 1.2.4:

2%, +3X, + X, =1
3X, +4X, +2x, =-80
X, + X, + X, =10

The plot of these three equations yields

B
- )(1 +)(2+)(3:3
B 3x,+4,+ 2=4

Line of Intersection

(1.2.15)
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_________

aE v
B Sn e ey : .l""""'-3><1+4>c2+2x3:-80
_________ I -><1+><2+>(3:1D

Figure 4. Plot of (1.2.15)

A solution does not exist in this case because the three planes do not intersect.

Example 1.2.5: Consider the undetermined system

X, =X, + X, =2

(1.2.16)
2X, + X, — X, =4
By direct substitution into (1.2.16) one can establish that
X, 2
X=X, [=| X, (1.2.17)
X3 X3
is a solution for all values x,. Thus, there are an infinite number of solutions of (1.2.16).
Example 1.2.6: Consider the overdetermined system
X, +X, =2
X, —X, =1 (1.2.18)

X, =4
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If (1.2.18)3 is substituted into (1.2.18): and (1.2.18). the inconsistent results x, = -2 and x, =3 are
obtained. Thus, this overdetermined system does not have a solution.

The above six examples illustrate the range of possibilities for the solution of (1.2.3) for
various choices of M and N . The graphical arguments used for Examples 1.2.1, 1.2.2, 1.2.3 and
1.2.4 are especially useful when trying to understand the range of possible solutions.
Unfortunately, for larger systems, i.e., for systems where M =N > 3, we cannot utilize graphical
representations to illustrate the range of solutions. We need solution procedures that will yield
numerical values for the solution developed within a theoretical framework that allows one to
characterize the solution properties in advance of the attempted solution. Our goal, in this
introductory phase of this linear algebra course is to develop components of this theoretical
framework and to illustrate it with various numerical examples.
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Section 1.3. Systems of Linear Equations: Gaussian Elimination

Elimination methods, which represent methods learned in high school algebra, form the
basis for the most powerful methods of solving systems of linear algebraic equations. We begin
this discussion by introducing the idea of an equivalent system to the given system (1.2.1). An
equivalent system to (1.2.1) is a system of M linear algebraic equations in N unknowns obtained
from (1.2.1) by

a) switching two rows,

b) multiplying one of the rows by a nonzero constant

¢) multiply one row by a nonzero constant and adding it to another row, or
d) combinations of a),b) and c).

Equivalent systems have the same solution as the original system. The point that is embedded in
this concept is that given the problem of solving (1.2.1), one can convert it to an equivalent system
which will be easier to solve. Virtually all of the solution techniques utilized for large systems
involve this kind of approach.

Given the system of M linear algebraic equations in N unknowns (1.2.1), repeated,

'A&1X1+'A’12X2+A13X3+"'+'A’1NXN :b1
A21X1+A22X2+A23X3+"'+A2NXN :bz

(1.3.1)

AurXs + AyoXo + AygXs oo+ Ay Xy =Dy,
the elimination method consists of the following steps:

e Solve the first equation for one of the unknowns, say, x, if A, #0

e Substitute the result into the remaining M —1 equations to obtain M —1 equations in N —1
unknowns, X,,Xs,..., Xy -

e Repeat the process with these M —1equations to obtain an equation for one of the
unknowns.

e This solution is then back substituted into the previous equations to obtain the answers for
the other two variables.

If the original system of equations does not have a solution, the elimination process will yield an
inconsistency which will not allow you to proceed. This elimination method described by the
above steps is called Gauss Elimination or Gaussian Elimination. The following example
illustrates how this elimination can be implemented.
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Example 1.3.1: Given

X, +2X, — %X =1
2X, =X, + %X, =3 (1.3.2)
=X +2X, + 3%, =7

Step 1: The object is to use the first equation to eliminate x, from the second. This can be
achieved if we multiple the first equation by 2 and subtract it from the second. The result is

X, +2X, =% =1
—5x, +3%; =1 (1.3.3)
=X +2X, +3X, =7

Step 2: This step eliminates x, from (1.3.3)3 by adding (1.3.3)1 to (1.3.3)3. The result is

X, +2X, =X, =1
—-5x, +3%; =1 (1.3.4)
4x, + 2%, =8

Step 3: The second and third equations in (1.3.4) involve the unknowns x, and x,. The
elimination method utilizes these two equations to eliminate x,. This elimination is achieved if we

multiply (1.3.4), by % and add it to (1.3.4)3. The result is

X, +2X, =% =1
—5X, + 3%, =1 (1.3.5)
22 44
_X3 —_—
5 5

Step 4: The next step starts a back substitution process. First, we recognize that (1.3.5)3 yields
X, =2 (1.3.6)
This result is substituted into (1.3.5); to yield

5%, +6=1 (1.3.7)
and, as a result,

x, =1 (1.3.8)
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Step 5: We continue the back substitution process and use (1.3.6) and (1.3.8) to derive from (1.3.5)1

X, =1 (1.3.9)

Therefore, the solution is

x=|1 (1.3.10)

It should be evident that the above steps are not unique. We could have reached the same endpoint
with a different sequence of rearrangements. Also, it should be evident that one could generalize
the above process to very large systems.

Example 1.3.2:

X, +3X%, +X; =1
2% + X, +X; =5 (1.3.11)
—2X, +2X, =X, =—8

We shall use Gaussian elimination to show that

X, 2
X, |=| -1 (1.3.12)
X, 2

Unlike the last example, we shall not directly manipulate the actual equations (1.3.11). We shall
simply do matrix manipulations on the coefficients. This is done by first writing the system
(1.3.11) as a matrix equation. The result is

1 3 1]/x 1
2 1 1|x%|[=|5 (1.3.13)
-2 2 1|/ % -8

The next formal step is to form what is called the augmented matrix. It is simply the matrix

1 3 1 1
A=| 2 1 1 |augmented by the column matrix | 5 |. Itis customarily given the notation
-2 2 -1 -8

(Alb). In our example, the augmented matrix is
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1 3 1|1
(Ab)=| 2 1 1|5 (1.3.14)
-2 2 -1-8

Next, we shall do the Gaussian elimination procedure directly on the augmented matrix.

Step 1: Multiply the first row by 2 (the A,; element), divide it by 1 (the A, element) and subtract
the first row from the second. The result is

1 3 1|1 1 3 11
2 1 1|5|—=r—|0 5 -13 (1.3.15)
2 2 _1-8| el |2 2 —1-8

Repeating this process, which is called pivoting,

1 3 1|1 1 3 1|1
2 1 1|5 |—557—| 0 -5 -13
2 2 -1-8| fomrmz |-2 2 -1|-8
1 3 1|1
2xrow 1 added 0 -5 -13 (1316)
torow 3 O 8 1 _6
1 3 1|1
——|0 -5 -1 3
—=Xrow 2
5
st oo 3-8
L Sl 5
The last augmented matrix coincides with the system
X +3X, + X =1
—5X, =X, =3 (1.3.17)
3, __8
5° 5

The next step starts the back substitution part of the process. Equation (1.3.17)3 yields

Xy = 2 (1.3.18)

Therefore, from equations (1.3.17)2 and (1.3.17)s,
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—x3—3=_1

KK =3 = (13.19)

X, +3X, + X, =1= X =1-X%X,-3X,=2
Therefore, we have found the result (1.3.12)

The above steps can be generalized without difficulty. For simplicity, we shall give the
generalization for the case where M = N . The other cases will eventually be discussed but the
details can get too involved if we allow those cases at this point in our discussions. For a system of
N equations and N unknowns, we have the equivalence between the system of equations (1.3.1)
and its representation by the augmented matrix as follows:

A11X1 + A12X2 + A13X3 +eeet AiN Xy = b1 ::11 ::12 j:lj L ﬁZN El
-b A
'A21X1 + Azzxz + A23X3 teeet AZNXN 2 ASl Asz A33 L. b3
< (Ab)= (1.3.20)
=Dh
AIV1X1+AIV2X2+AV3X3+ +ANNXN N _ANl ANZ AN3 L. ANN bN_

Augmented Matrix

We then, as the above example illustrate, can perform the operations on the rows of the augmented
matrix, rather than on the equations themselves.

Note: In matrix algebra, we are using what is known as row operations when we manipulate the
augmented matrix.

Step 1: Forward Elimination of Unknowns:

If A, =0, our first step is to multiply the first row of the augmented matrix equation by

Lt} and subtract the result from the second row. The result is the augmented matrix
1
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An

)
Ao A, A

A

bN

(1.3.21)

In order to keep the notation from becoming unwieldy, we shall assign different symbols to the
second row and write (1.3.21) as

Ay
0

Au

A

A A
A A
Ay Ay
Av A

A&.N bl
0|

N

ANN bN

(1.3.22)

Next, we repeat the last procedure for the third row by multiply the first row by Ay and subtract

the result from the third equation. The result can be written

A,

0
0

LA

A A
AL A
A A
A A

An| b
|

N | ™2

A‘NN bN

1

(1.3.23)

This process is continued until the all of the entries below A, are zero in the augmented matrix.
The result is the augmented matrix
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_An A12 A13A1Nb1
]
0 AV AY .. b
: (1.3.24)
[0 AL AL - AQIY
The augmented result (1.3.24) corresponds to the system of equations
The result is that the original N equations are replaced by
ALK+ AXy + AgXy + -+ Ay Xy =b1
Ag)xz + Ag)x3 teeet Aglﬁ Xy = bgl)
A%, + A+ A =D
(1.3.25)

Ar(\ll)zxz + Asgxs teeet Ar(vlrzl Xy = br(\ll)

Note: In the above sequence, the first row is the pivot row and its coefficient A, is called the pivot
coefficient or pivot element.

The next step is to apply the same process to the set of N —1 equations with N —1
unknowns

A+ A A, <1
Ag);)xz + Ag)xa teeet Aﬁ\l) Xy = b?(,l)

(1.3.26)

AL+ AR o Al = bl
to eliminate the second unknown, X,. This process begins by multiplying the second row of

()
(1.3.24) by % (this step assumes Ag) # 0) and subtracting the result from the third row of

2

(1.3.24). This step is repeated for the remaining rows until the augmented matrix is transformed
into the following:
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_Ail A12 A13 T AiN b1
0 A AL Al
0 0 A . . . A
(1.3.27)
00 AR - - - AR

You should now have the idea. You continue this process until the augmented matrix
(1.3.20)z2 is replaced by the upper triangular form

_An A12 A13 T ’ AiN b1
0 AV AL A

0 0 AD - AD|H
o (1.3.28)

(N-2) (N=2)[|y(N-2)
A‘N—l,N—l AV—l,N bN—l
(N-1) | (N-1)
0 0 0 0 - - ANV

Each step in the process leading to (1.3.28) has assumed we have not encountered the situation
where the lead coefficient in the pivot row was zero. The augmented matrix (1.3.28) corresponds
to the system of equations

AX + AX, + AgXs -+ Ay Xy :bl
A;2X2+A;3X3+“'+A£NXN :bé
X ek Ay Xy = b

(1.3.29)

A, =Bl
Step 2: Back Substitution

If Al\™ #0, the last equation can be solved as follows:
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(N-1)
X ——bN
N = A(N-D)
N

(1.3.30)

This answer can then be back substituted into the previous equations to solve for X, ;, Xy ,,..., X; -
The formula for these unknowns, should it ever prove useful, is

N

i-1 i-1
b — > A,

j=i+1
X, = !

i Aﬁ(iH)

for i=N-1LN-2,..1 (1.3.31)

The process just described make repeated use of the assumption that certain coefficients
were nonzero in order for the process to proceed. If one cannot find a coefficient with this
property, then the system is degenerate in some way and may not have a unique solution or any
solution. Frequently one avoids this problem by utilizing a procedure by what is called partial
pivoting. The following example illustrates this procedure.

Example 1.3.3: Consider the system of equations

2X, +3X, =8
4%, +6X, +7X; =-3 (1.3.32)
2X, —3X, +6X; =5

The procedure we described above would first create the auxiliary matrix representation of this
system. The result is

0 2 38
(Ab)=|4 6 7/-3 (1.3.33)
2 -3 65

Because A, =0, we immediately encounter a problem with our method. The partial pivoting
procedure simply reorders the equations such that the new A, = 0. For example, we can begin the
elimination process with the auxiliary matrix

4 6 7-3
(Ab)=|2 -3 6|5 (1.3.34)
0 2 38

The usual practice is to switch the order of the equations so as to make the A, the largest, in
absolute value, of the elements in the first column.

Example 1.3.4: In Section 1.2 we discussed Example 1.2.3 which was the system
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2X, +3X, + X, =1
X+ X, + %X, =3 (1.3.35)
3X, +4X, +2x, =4

This system has the solution (1.2.14), repeated,

X, 8—2Xx,
X=|X, [=| X;—=5 (1.3.36)
XS X3

It is helpful to utilize the Gaussian Elimination procedure to see this solution. The first step is to
form the augmented matrix

2 3 11
(Ab)=|1 1 13 (1.3.37)
3 4 2/4

The sequence of steps described above, applied to this example, is

5 3 11 2 3 11
1 1{5

11 13— o0 -2 22 (1.3.38)
Zxrow 1 2 2|2

2
8 4 24 abmeed g 4 5y

Repeating this process,
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5 3 11 2 3 11
11 1f3|—— [0 -1 13
Zxrow 1 2 2|2

2
3 4 24] e |3, ol

2 3 1)1
1 15
Exrowlsubtralcted >0 _E EE (1339)
from row 3
o -1 15
i 212
2 3 1)1
————| 0 145
romrow3. 2 2|2
0 0 00

The occurrence of the zero in the 33 position of the last matrix means that we cannot proceed with
the back substitution process as it was described above. The modified back substitution process
proceeds as follows: The last augmented matrix coincides with the system

2%, +3X, + X, =1

1. 15 (1.3.40)
——X, =Xy ==
2 2 2

The occurrence of the row of zeros in the third row, results in only two equations for the three
unknowns x,,x, and X,. The next step starts the back substitution part of the process. Equation

(1.3.40), yields

X, =X3—5 (1.3.41)

Therefore, from equation (1.3.40)1,

X, :%(l—3x2 —X;) =8-2X, (1.3.42)

Therefore, we have found the result (1.3.36)

Example 1.3.5: In Section 1.2 we discussed Example 1.2.4 which was the system
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2%, + 3%, + X, =1
3%, +4xX, +2x, =-80 (1.3.43)
X, + X, + X, =10

It was explained in Section 1.2 that this system does not have a solution. This conclusion arises
from the Gaussian Elimination procedure by the following steps. As usual, the first step is to form
the augmented matrix

2 3 11
(A|b): 3 4 2/-80 (1.3.44)
1 1 110

The sequence of steps described above, applied to this example, is

S i 2 31 1 1163
4 2|-80 — 0 5 S5 (1.3.45)
EXTOW
PSS 11 1] 10
Repeating this process,
5 3 1] 1 2 3 1] 1
2|-80 |——| 0 _1 1168
xrow 1 2 2 2

2
11 1|10 | dbwaced |4 9 4f 49

2 3 1] 1
1 o -1 1j_163 (1.3.46)
Exrow 1 subtracted 2 2 2
from row 3
o .+ 18
2 2] 2 |
2 3 1] 1
1 1| 163
ez 2|0 75 ST
from row 3
0 0 0] 91

The last augmented matrix coincides with the system
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2%, +3X, + X, =1

1 1 163
CIX X, = 1.3.47
2% 273 2 ( )
0x, =91

Of course, the last equation is inconsistent. The only conclusion is that there is no solution to the
system (1.3.43). This is the analytical conclusion that is reflective of the graphical solution
attempted with Figure 4 of Section 1.2.

Example 1.3.6: All of examples in this section are examples where M = N =3. The assumption
M =N was made when we went through the detailed development of the Gaussian Elimination
process. The method also works for cases where the number of equations and the number of
unknowns are not the same. The following undetermined system is an illustration of this case.

X, +2X, —4X, +3X, + 9%, =1
4%, +5x, —10x; + 6X, +18x, =4 (1.3.48)
X, +8X, —=16X, =7

As usual, the first step is to form the augmented matrix

12 -4 3 91
(Ab)=|4 5 -10 6 184 (1.3.49)
7 8 -16 0 0|7

The sequence of steps that implement the Gaussian Elimination is

1 2 4 3 91 1 2 -4 3 9]1
4 5 -10 6 184 | —(mmen>!0 3 6 -6 -180
7 8 -16 0 07 7 8 -16 0 0]7

from row2

1 2 4 3 9 1 1 2 4 3 9]1
<im0 3 6 -6 -180|—p—mmm—>|0 -3 6 -6 -18/0((1.3.50)
from row3 O —6 12 -21 —63 0 from row3 0 0 0 _9 _97 0

1 2 -4 3 91
Divide row 2 by -3 > 0 l _2 2 6 O
and row 3 by -9 0 O O l 3 O

The last augmented matrix coincides with the system
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X, +2X, —4X, +3X, + 9%, =1
X, —2X; +2X, +6X, =0 (1.3.51)
X, +3X; =0

The back substitution process takes the third equation of the set (1.3.51) and eliminates x, or X,
from the first two. In this case, the result turns out to be

X =1
X, —2X; =0 (1.3.52)
X, +3%, =0

The Gaussian Elimination process applied to the augmented matrix produces attempts to
produce a triangular form as illustrated with (1.3.28). Example 1.3.2, which involved a system
(1.3.11) that had a unique solution produced a final augmented matrix of the form (see equation
(1.3.16))

1 3 1|1

0 -5 -1|3 (1.3.53)
0 0 38

L S| 5]

Example 1.3.4, which involved a system (1.3.35) that did not have a unique solution produced a
final augmented matrix of the form (see equation (1.3.39))

2 3 1

0o = 12 (1.3.54)
2 2|2

0 0 0|0

Example 1.3.5, which involved a system (1.3.43) that did not have a solution produced a final
augmented matrix of the form (see equation (1.3.46))

2 3 1] 1

o -1 1j_163 (1.3.55)
2 2| 2

0 0 0 91

Our last example, Example 1.3.6, which involved an undetermined system (1.3.51) produced a
final augmented matrix of the form (see equation (1.3.50))
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12 -4 3 911
01 -2 2 6|0 (1.3.56)
00 0 1 30

These examples illustrate that we might not reach the triangular form if the equations are
inconsistent or if the solution is not unique. The final step in the Gaussian elimination process,
regardless of where it ends, is known as the row echelon form. This upper triangular matrix can be
given a more formal definition as follows:

Definition: A M xN matrix A isinisin row echelon form if
1) Rows with at least one nonzero element are above any rows of all zero.
2) The first nonzero element from the left (the pivot element) of a nonzero row is always
strictly to the right of the leading coefficient of the row above it.
3) The leading coefficient of each nonzero row is 1.

The above examples, with minor rearrangement in the first three cases, are row echelon
matrices. The minor rearrangement involve insuring 3) is obeyed by simply normalizing the row
by division. It should be evident that the results are

1) Example 1.3.2

1 3 11
01 1.3 (1.3.57)
5 5
0 0 1|2
2) Example 1.3.4
p 311
2 2|2
0 1 -1-5 (1.3.58)
0 0 00
3) Example 1.3.5
1 3 11t
2 2|2
0 1 -1163 (1.3.59)
0 0 01
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-4 3 91

-2 2 6[0
1 3|0

0

(1.3.60)

The row echelon form is one step away from another upper triangular matrix we shall
identify in later sections called a reduced row echelon form. These concepts, which are important,
will be discussed in the following sections of this chapter.

Exercises

1.3.1 Complete the solution of (1.3.32). The answer is

Il
XXX

N

1.3.2 Solve the system

3X, +3X, —4x, =7

499

23
1
46
61

23 |

X, + X4

-5.4239
=| 0.0217 (1.3.61)
2.6522
+Xx,=0
(1.3.62)

X, + X, + X, +2X, =6

2%, +3X, + X, +3X, =6

X 4
. X, -3
The answer is X = =
X3 1
X

1.3.3 Solve the system
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—X, = X;+X,=0

X, +X, +X,+X, =6
2%, +4X, + X, —2X, =-1

3X, + X, = 2%, +2X, =3

X 2
- X2 _1
The answer is X = =
Xy 3
X

~

1.3.4 Solve the system

X +X, =X+ X, +X%X =1
=X, =X, + X =-1

—2%, —2X, + 3%, =1
Xy + X, +3% =-1

X, + X, +2X; +2X, +4%, =1

The answer is that this system is inconsistent and, thus, has no solution.
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(1.3.63)

(1.3.64)
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Section 1.4. Elementary Row Operations, Elementary Matrices

The last section illustrated the Gauss method of elimination for finding the solution to
systems of linear equations. The basic method that is implemented with the method is to perform
row operations that are designed to build a row echelon matrix at the end of the process. If the
system allows it, one builds an upper triangular matrix that allows the solution to be found by back
substitution. As summarized at the start of Section 1.3, the row operations are simply creating
equivalent systems of linear equations that, at the end of the process, are easier to solve than the
original equations. The row operations utilized in the Gaussian Elimination method are

a) switching two rows,

b) multiplying one of the rows by a nonzero constant

c) multiply one row by a nonzero constant and adding it to another row, or
d) combinations of a),b) and c).

The first three of these row operations are call elementary row operations. They are the building
blocks for the fourth operation. It is useful for theoretical and other purposes to implement the
elementary row operations by a matrix multiplication operation utilizing so called elementary
matrices.

Elementary matrices are square matrices. We shall introduce these matrices in the special
case of a system of M =3 equations in N =4 unknowns. The generalization to different size
systems should be evident. The augmented matrix for a 3x4 a system is

A A A Adby
(A|b)E A Ay Ay Aylb (1.4.1)
Ay A As Aulb

If we wish to implement a row operation, for example, that switches the first and second row, we
can form the product

01 0[lA; A, Ay Ayb
10 0 Ay A, Ay Aylb, (1.4.2)
O 0 1 ASl A32 ABS A34 b3

When the multiplication in (1.4.2) is performed, the result is



40 Chap. 1 . ELEMENTARY MATRIX THEORY

01 0]|A; Ay As Aub
1 O 0 A21 A22 A23 A24 bZ
O O 1 A31 A32 A33 A34 b3

Ay A Ay Aylb,
=lAr A, Ay Ay b1
An Ay Ay Aulbs

(1.4.3)

The result of the multiplication is the original augmented matrix except that its first two rows are
010

switched. The matrix that achieved this row operation, |1 0 0|, is an example of an elementary
0 01

matrix. Note that the elementary matrix that switches rows is no more than the identity matrix with
its two rows switched. This is a general property of elementary matrices. If we were wished to

multiply the second row of (Alb) by a constant, say 4, we would multiply it by the matrix
1 00
0 A4 0]. If wewish to define an elementary matrix that adds the second row to the and third
0 01

1 00
row of a matrix we would multiply (A|b) by the matrix |0 1 0. The conclusion is that row
0 11

operations can be implemented by multiplications by elementary matrices.
Example 1.4.1: In Example 1.3.4, we looked at the system (1.3.35), repeated,

2%, +3X, + X, =1
X, + X, + X, =3 (1.4.4)
3X, +4X, +2X, =4

This example was worked with a set of three elementary row operations. These operations can be
displayed in terms of elementary matrices by the formula
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11
1 1i5

2 2|2
0|0

1 0 O
=0 1 0
0 -11

Subtractsrow 2 |

from row 3

1 0 0
=0 1 0
0 -1 1

Elementary Row Operations, Elementary Matrices

1 0 0
=0 1 0|0 —=
0 -11

Subtracts row 2
from row 3

0 2 3

1 0|0 —=
2
3

0 1||3 4
2 i
.

3
—xrow 1 subtracted

2|4

from row 3

1 0
1 0f|—-=

1 00

10
3

0 110 01

Subtractsrow2 |

from row 3

The final step in creating the row echelon form from | 0 —%

2 -

| E———
E>< row 1

subtracted
from row 2

§>< row 1 subtracted
from row 3

2 3

0 O

N~ N, -
NN |or e

41

2 3 11
1 1 13
3 4 24

11

0|0

by a division by 2 and the second row by a division by —%. The result is

(1.4.5)

is to normalize the first row
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1 2 Y1 o0 ot g o
2 2|2 1 2
0 1 -1-5|=|0 ) 0{l0 1 0O|x
0 0 0f0 0 0 1 0 01
- - Dividerow2 = ~
1 Divide row 1
by‘g by 2
- - (1.4.6)
1 0 0|1 00O 11 00 2 3 11
0O 1 0|0 10 5 1 0|1 1 1|3
0 -1 1 _§ 0 1ll o o 1 3 4 2/4
Subtractsrow 2 | 2 i |
from row 3 — 1 row 1
Exrow 1 subtracted szubtracte g
from row 3 from row 2

From a computational standpoint, the method of solution utilized in Section 1.3 is preferred.
It achieves the final row echelon form without the necessity of identifying the elementary matrices.
However, as indicated above, it is a useful theoretical result that

A M xN matrix A can be convertedtoa M x N matrix in row echelon form by
multiplication of A by a finite number of M x M elementary matrices.

Equation (1.4.6) illustrates this assertion in the particular case where the matrix A is an augmented
matrix associated with finding the solution of a system of M x N equations.

Example 1.4.2: In Example 1.3.6, we looked at the system (1.3.48), repeated,

X, +2X, —4X, +3X, + 9%, =1
4%, +5x, —10x, + 6X, +18x, =4 (1.4.7)
X, +8X, —=16X, =7

This example was worked with a set of five elementary row operations. These operations can be
displayed in terms of elementary matrices by the formula



Sec.1.4 . Elementary Row Operations, Elementary Matrices 43
1 2 -4 3 91 10 1 00 1 0 0
01 -2 2 6/0(=|0 1 0 -= 04j/l0 1 O
‘000130‘00_30010—21
Row echelon form L A Subtract 2xrow2
%K—/Dividerowsby-g Divide row2 by -3 from row3 (148)
1 0 0][1 0 0]|]1 2 -4 3 91
x0 1 0|-4 1 0{|4 5 -10 6 18/4
-7 0 1)J0 0 1]7 8 -16 0 0|7
Subtract 7xrowl ' Subtract 4xrowl Given augmented matrix
from row3 from row2
Exercises:
1.4.1 Find the row echelon form of the matrix
011 1|0
3 0 3 47
(Alb)= (1.4.9)
1 11 2|6
2 3 1 3|6
Express the result in terms of elementary matrices.
1.4.2 Find the row echelon form of the matrix
0 -1 -1 10
1 1 1 1|6
(Alb) = (1.4.10)
2 4 1 =21
3 1 -2 2|3
Express the result in terms of elementary matrices
1.4.3 Find the row echelon form of the matrix
11 -1 1 1]1]
-1 -1 0 0 11
(Ab)=|-2 -2 0 0 31 (1.4.11)
0O 0 1 1 3-1
11 2 2 41|
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Section 1.5. Gauss-Jordan Elimination, Reduced Row Echelon Form

In Section 1.3, we introduced the Gaussian Elimination method and identified the row
echelon form as the final form of the elimination method that one reaches by the method. In this
section, we shall extend the method by what is known as the Gauss-Jordan elimination method and
identify the so called reduced row echelon form of the augmented matrix.

We shall continue to discuss the problem that led to (1.3.28), namely, a system of M = N
equations and N unknowns. Equation (1.3.28), repeated, is

_Au A12 A13 T ) AiN bl
o AL AV A

0o 0 A - AD|w
. (15.1)

(N-2) (N=2) [ |y(N-2)

: AN—l,N—l AN—l,N bN—l
(N-1) [ R (N-1)

0o 0 0 0 - : N0 |

In order to reach this result, we have assumed that the pivot process did not yield zeros as the lead
element in any row. If this had been the case, the elimination scheme would have not reached the
triangular form shown in (1.5.1). The next step in the Gaussian Elimination method is to utilize
back substitution to find the solution. The Gauss-Jordan elimination scheme is a refinement of the
Gaussian elimination method. It avoids back substitution by implementing additional row
operations which zero the elements in the upper triangular part of the matrix. This scheme is best
illustrated by an example.

Example 1.5.1: In Section 1.3, we worked Example 1.3.2. This example involved finding the
solution of

X, +3X, +X; =1
2% + X, +X; =5 (1.5.2)
—2X +2X, =X, =—8

The augmented matrix is given by (1.3.14) and the row echelon form, which in this case, was an
upper triangular matrix is given by (1.3.57). This row echelon form is

1 3 1|1 1 3 11
1l 3

S R = R (1.5.3)
_2 2 _1 _8 Row Operations 5 5
0 0 12
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The Gauss-Jordan process begins with (1.5.3) and proceeds as follows

1 3 1 3 11 1 3 0]-1
01 == T >0 1 O-1|—m==5—>|0 1 01
5l 5 Subtract =xrow 3 frl:)mrzrigwr(iw
fromrow52 O O 1 2 0 O 1 2
0 0 1f2 (1.5.4)
1 0 02
?ubtract3xrow2 > 0 1 0_1
rom row 1 0 0 1 2
The final matrix in (1.5.4) shows that the solution is
X | [2
X=X, |=|-1 (1.5.5)
X; | |2
1 0 0]2
which is the result (1.3.12). The matrix |0 1 0[|-1| in (1.5.4), as the end result of the Gauss-
0 0 12
Jordan elimination process, is the reduced row echelon matrix in this example.

Example 1.5.2: In Section 1.3, we considered Example 1.3.3. The augmented matrix in this
example is given by (1.3.34), repeated,

4 6 7-3
(Ab)=|2 -3 6|5 (1.5.6)
0 2 38

The Gaussian elimination portion of this solution is
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4 6 7/-3 46
2 -3 65 |0 -6
Subtract —xrow 1
0 2 3 8 from row 2 O 2
4 6 7 |-3
5 13
Divide row 2 0 _E _E
by -6 and
row 3 by ? 00 1 g
L 23 |

Add E><row 2
torow 3

-3
13

2
8

o O &
o O
o
|

N

4 6 7 |-3
01 _>| 18 5
12| 12| Add Zxrows
00 1 g to row 2
L 23 |
4 6 0 23
1
Subtract 7xrow 3 > 0 1 0 R
from row 1 0 O l 46
61
I 23 |
_499]
10 0 %
1
Divide row 1 01 0o —
by 4 O 0 1 46
61
I 23 |

Subtract 6xrow 2
from row 1

o o &~

o~ O

= O O

Gauss-Jordan Elimination, Reduced Row Echelon Form

6 7|-3

5 5[
2|2

o 26l
6|6

499

23

1

46

61

23 |

47

(1.5.7)

(1.5.8)

Therefore, the reduced row echelon form of the augmented matrix is the last matrix in (1.5.8) and

the solution is
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__@_
92

X=X, |= 1 (1.5.9)
X

X

46
61
L 23 ]

w

The Gauss-Jordan elimination method illustrated above is easily applied to cases of
underdetermined systems and overdetermined systems. The following illustrates the method for an
underdetermined system.

Example 1.5.3: In Section 1.3, we considered Example 1.3.6. We looked at the same example in
Section 1.4 when we worked Example 1.4.2. The end of the Gaussian Elimination process
produced the augmented matrix(1.3.60), repeated,

12 -4 3 911
01 -2 2 60 (1.5.10)
00 0 1 30

The special form of (1.5.10) makes the Gauss-Jordan part of the elimination simply from a
numerical standpoint. Consider the following steps

1 2 4 3 91 1 2 -4 3 91
01 -2 2 60}——=+——01 -2 0 00

2xrow 3

00 0 1 30| jwzeedfom g 9 0 1 30

(1.5.11)
1 2 -4 0 011 10 0 0 o1

——————/0 1 2 0 00|—==F7—0 1 -2 0 00

oapeedom g 0 0 1 30| ei™™ 1o 0 0 1 30

The final result, which is in reduced row echelon form, displays the solution (1.3.52), repeated,

X =1
X, —2X; =0 (1.5.12)
X, +3% =0

The reduced row echelon matrix, that is determined after completion of the Gauss-Jordan
elimination method, is defined formally as follows:

Definition: A M xN matrix A isinis in reduced row echelon form if
1) Rows with at least one nonzero element are above any rows of all zero.
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2) The first nonzero element from the left (the pivot element) of a nonzero row is always
strictly to the right of the leading coefficient of the row above it.

3) The leading coefficient of each nonzero row is 1 and is the only nonzero entry in its
column.

If this definition is compared to that of the row echelon form of a matrix given in Section 1.3, then
a reduced row echelon form of a matrix is a row echelon form with the property that the entries
above and below the leading coefficient are all zero. In Section 1.4 it was explained how the row
echelon form of a matrix can be found by a series of multiplications by elementary matrices. If the
additional row operations that implement the Gauss-Jordan elimination are represented by
multiplications by row operations, we have the equivalent result

A M x N matrix A can be converted toa M x N matrix in reduced row echelon
form by multiplication of A by a finite number of M x M elementary matrices.
Exercises:

1.5.1 Use row operations to find the reduced row echelon form of the matrix

011 1|0
3 0 3 47
(Alb) = (1.5.13)
1 11 216
2 3 1 3|6
1 000 4
i i . . . /01 0 0 -3
This augmented matrix arose earlier in Exercise 1.3.2. The answer is 0010
0 001

1.5.2 Use row operations to find the reduced row echelon form of the matrix

1 2 -3 4 6
(Ap)=1 3 1 -2 4 (1.5.14)
2 5 -2 -5 10

1 0 -11 0 10
Theansweris |0 1 4 0 -2].
00 0 1 0
1.5.3 Use row operations to find the reduced row echelon form of the matrix
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0O -1 -1 10
1 1 1 1|6
(Alb)= (1.5.15)
2 4 1 -2-1
3 1 -2 2|3
1000 2
: : . . . 101 0 0 -1
This augmented matrix arose in Exercise 1.3.3. The answer is
0010 3
0001 2
1.5.4 Use row operations to find the reduced row echelon form of the matrix
1 1 -1 1 1)1]
-1 -1 0 0 11
(Ab)=|-2 =2 0 0 31 (1.5.16)
0O 0 1 1 3-1
11 2 2 41|

This augmented matrix arose in Exercise 1.3.4. The answer is

o O O O -k
O O O — O
o O +» O O
O B O O O
o O O o o
m O O O O

1.5.5 Find the solution or solutions of the following system of equations

2X, — X, + X, =—4
X, —2%X; =2 (1.5.17)
—2X, —2X, +5X; =2

1.5.6: Find the solution or solutions of the following system of equations

X\ +X, +X;=6
2X, +5X, —2X; =6 (1.5.18)
X, +7X,—1X; =—6

1.5.7: Find the solution or solutions of the following system of equations
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X, +2X, —3X;, —4X, =6
X, +3X, +X; —2X, =4 (1.5.19)
2X, +5X, — 2%, —5%, =10
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Section 1.6. Elementary Matrices-More Properties

In this section we shall look deeper into the idea of an elementary matrix. This concept was
introduced in Section 1.4. In that section, we explained that an elementary matrix isa M x M
matrix that when it multipliesa M x N matrix A will achieve one of the following operations on
A:

a) switch two rows,
b) multiply one of the rows by a nonzero constant,
¢) multiply one row by a nonzero constant and add it to another row.

The objective of the elementary matrices is to cause row operations which can transform a matrix,
first, into its row echelon form and, second, to its reduced row echelon form. In Sections 1.4 and
Sections 1.5, this fact was summarized with the statement

A M x N matrix A can be converted toa M x N in row echelon form and its
reduced row echelon form by multiplication of A by a finite number of M x M
elementary matrices.

The row echelon form as the result of multiplication by elementary matrices was illustrated with
examples in Section 1.4. The additional multiplications by elementary matrices that convert a
matrix from its row echelon form to its reduced row echelon form are illustrated by the following
example.

Example 1.6.1: Example 1.4.2, which originated from a desire to solve the system of equations,

X, +2X, —4X, +3X, + 9%, =1
4%, +5x, —10x, + 6X, +18x, =4 (1.6.1)
X, +8x,-16x, =7

The solution process produced (1.4.8), repeated,
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1 2 4 3 91 10 1 00 1 0 O
01 -2 2 6/0|=0 1 0O —— 0|0 1 O
‘0 0 0 1 30‘ 00 - 1 0 o0 1 0 -2 1
Row echelon form L A Subtract 2xrow2
%K—/Divide w3y 9 Divide row 2 by -3 from row3 (162)
1 0 0|1 0 0|1 2 -4 3 9|1
x 0 1 0|]-4 1 0||4 5 -10 6 184
-7 0 1)0 0 1jj7 8 -16 0 O}
Subtract 7xrowl ' Subtract 4xrowl ‘ Given augmented matrix
from row3 from row2
1 2 4 3 91
The problem is to find the elementary matrices that will convert the matrix ([0 1 -2 2 6|0

0 0 0 1 3o

Row echelon form

into is reduced row echelon form. As explained in Section 1.4, the elementary matrices are derived
from the identity matrix by applying the desired row operation to the identity matrix. The three

row operations that achieve this step are shown in
matrices that achieve these steps are as follows:

1) 2xrow 3 subtracted from row 2

equation (1.5.11). Therefore the elementary

1 00 1 0 0
010 f2xrow 3subtracted 01 -2 (163)
0 0 1 rom row 2 0 0 1

2) 3xrow 3 subtracted from row 1
100 10 -3
010 3xrow 3 subtracted >0 1 0 (164)
00 1 fromrow 1 00 1

3) 2xrow 2 subtracted from row 1
1 00 1 -2 0
010 2xrow 2 subtracted >0 1 0 (165)
0 0 1 from row 1 O O 1

Therefore, the reduced row echelon form is given

by
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1 0 0 0 01 1 -2 0f|1 0 3|1 0 O
1 -2 0 00f=0 1 0|0 1 0|0 1 -2|x
00 0 1 30| |0 O 1j0 0 1|0 1 1

2xrow 2 subtracted 3xrow 3 subtracted 2xrow 3 subtracted

from row 1 from row 1 from row 2
Calculates reduced row echelon form
from row echelon form
- . (1.6.6)
1 0 O
1 0 O 110010010012—4391
100—50010010—41045—106184
OO—EO 0 1‘0 -2 1”—701HO 01“78—16007’
9_%,—/ Subtract 2xrow2  Subtract 7xrowl  Subtract 4xrowl Given augmented matrix
Divide row 2 by -3 from row3 from row3 from row2

-
Divide row 3 by -9

Calculates row echelon form

It is a property of elementary matrices that they are nonsingular. We shall illustrate this
assertion by consideration of three examples.

Example 1.6.2: If you are given the elementary matrix that corresponds to switching the first and
second row, i.e.,

010
E,=(1 00 (1.6.7)
0 01
Then the inverse of E, must obey
010/ (010 100
E'l1 0 0|=[1 0 O|E*'=|0 1 O (1.6.8)
0 0 1] |0 01 0 01
The matrix
010
E'=|1 00 (1.6.9)
0 01

can be substituted into (1.6.8) and verify that it is the inverse. Just as (1.6.7) corresponds to
switching the first and second row, its inverse, (1.6.8), corresponds to switching them again to
return to the original matrix.
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Example 1.6.3: If you are given the elementary matrix that corresponds to multiplying the second
row by a nonzero constant, i.e.,

(1.6.10)

O » O
R O O

(1.6.11)

O » O
o~ O
= O O

The matrix

o

(1.6.12)

o o
o Nk o
[EEN

can be substituted into (1.6.11) and verify that it is the inverse. Just as (1.6.10) corresponds to
multiplying the second row by the nonzero constant A, its inverse, (1.6.12), corresponds to
dividing the second row by the nonzero constant 1.

Example 1.6.4: If you are given the elementary matrix that corresponds to multiplying the third
row by a constant and adding the result to the first, i.e.,

10 4
E,=|0 1 O (1.6.13)
0 01
Then the inverse of E, must obey
10 4] |1 0 4 1 00
E,){0 1 0|={0 1 O|E'=|0 1 O (1.6.14)
0 0 1] |00 1 0 01

The matrix
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0
1 0 (1.6.15)
0

can be substituted into (1.6.14) and verify that it is the inverse. Just as (1.6.13) corresponds to
multiplying the third row by a nonzero constant and adding the result to the first, (1.6.15)
corresponds to multiplying the third row by a nonzero constant and subtracting the result from the
first row.

In summary, we have the following two facts about elementary matrices:
1) Anelementary matrix isa M x M matrix obtained from the M x M identity matrix by an
elementary row operation.
2) If E is an elementary matrix, then E is nonsingular and, its inverse, E™" is an elementary
matrix of the same type.

Definition: A M xN matrix B is row equivalenttoa M x N matrix A if there exist a finite
number of elementary matrices E,E,,...,E, such that

B=E, E,EA (1.6.16)

This definition is an adoption of the idea of equivalence to matrices which we introduced in Section
1.3 for systems of equations. It is possible to use the definition (1.6.16) to establish the following
two important properties of row equivalence:

1) If B isequivalentto A, then A isequivalentto B.
2) If B isequivalentto A and A equivalentto C, then B isequivalentto C.

The proof of the first property follows directly from the definition (1.6.16). The details are as
follows. Because each elementary matrix is nonsingular, we can repeatedly use the identity
(1.1.36) and establish from (1.6.16) that

A=(E, ---EE,) "B

=(E.,--EE) E'B

1] -
(Ek—z EZEl) Ek—llEle
(1.6.17)

=E'E,"---E./'B

Since the inverse elementary matrices are themselves elementary matrices, this result establishes
property 1). The proof of the second property follows from a similar line of reasoning.
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If we are given that A is a square matrix, we can identify three properties of A that relate
to whether or not it is nonsingular.

Theorem 1.6.1: The following three conditions are equivalent for a square matrix A.

a) A is nonsingular.
b) The equation Ax =0 only has the solution x =0.
C) A is row equivalent to the identity matrix I .

Proof: The proof requires that we accept any one of the propositions as true and, from that
proposition, prove that the other two are also true. We begin by accepting a) and showing that a)
implies b).

a)=Db): If Ais nonsingular, the equation Ax =0 can be multiplied by its inverse to obtain
A*Ax =Ix=x=0. Thus b) is established.

Given b), we shall next show that it implies c).

b)=c): We are given that the system Ax =0 only has the solution x=0. Let E ,E,,...,E,
be elementary matrices selected such that

U=E, - EEA (1.6.18)
is in reduced row echelon form. It follows from Ax =0 and (1.6.18) that
Ux=E,---E,E/AX=0

Because x =0 is the only solution allowed by the equation Ux =0, the matrix U cannot have a
zero on its diagonal. If it did, for example, in the NN position, this would allow x, =0 which

would violate the condition that x =0. Because the reduced row echelon form of the matrix which
has nonzero diagonal elements has the identity | for its reduced row echelon form, the result is
established.

Given c), we shall next show that it implies a).

c) =a): We are given that A is row equivalent to the identity matrix | . Therefore, there
exists elementary matrices E,,E,,...,E, such that

| =E, - E,E,A (1.6.19)

Because each elementary matrix is nonsingular, this last result implies that the matrix A is given
by
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A=(E, ---EE) =E'E,*-E* (1.6.20)

where the identity (1.1.36) has been used. Given (1.6.20), it follows that A™ is given by

1E71 - ) -1

'=(E,
(B ( e (1.6.21)
E, ---E,E

where we have again used the identity (1.1.36). Equation (1.6.21) establishes that A is
nonsingular.

It is a corollary to the last result that the system of N equations with N unknowns Ax =b
has a unique solution if and only if A is nonsingular. The argument to prove this corollary is as
follows: First, assume the square matrix A is nonsingular, it then follows from Ax =b that the
solution exists and is uniquely given by x = A™b. Conversely, we need to prove that if only
unique solutions exist, the square matrix A must be nonsingular. The proof of this part of the
corollary, like virtually all uniqueness proofs, begins with the assumption that the solution is not
unique and then establishes condition that will force uniqueness. We begin with the assumption
that there exist two solutions, x, and X, , that obey

Ax,=b (1.6.22)
and
Ax, =b (1.6.23)
Given (1.6.22) and (1.6.23), it is true that
A(X,—X,)=Ax,—AX, =b-b=0 (1.6.24)

Equation (1.6.24) and part b) of Theorem 1.6.1 tell us that x, —x, =0 if and only if A is
nonsingular,

Theorem 1.6.1 tells us that in those cases where A is nonsingular we can construct the
inverse A™ by finding the elementary matrices E,,E,,...,E, which satisfy (1.6.19). When these

elementary matrices are known, we can calculate A™ from (1.6.21).

Example 1.6.5: As an example, consider the matrix
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1 3 1
A=[2 1 1 (1.6.25)
2 2 -

which is the coefficient matrix in Example 1.3.2. This is also the matrix utilized in Example 1.5.1.
Consider the following sequence of elementary matrices:

Step 1:
1 0 0|1 3 1 1 3 1
EA=|-2 1 0/2 1 1|=|0 -5 -1 (1.6.26)
0 0 1|-2 2 -1 -2 2 -1
%V—J
2xrow 1
subtracted
from row 2
Step 2:
1 0 0|1 3 1 1 3 1
EZ(ElA)= 01040 -5 -1|={0 -5 -1 (1.6.27)
2 0 1|2 2 -1 0 8 1
2xrow 1 added
to row 3
Step 3:
1 0 0fj1 3 1 1 3 1
E,(E,EA)=|0 1 0]|0 -5 -1|=|0 -5 -1 (1.6.28)
0o 240 8 1ljg o -2
L 5 L 5]
[
§xrowz

added
torow 3

Step 4
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Step 5

Step 6

Step 7

Step 8

Elementary Matrices-More Properties

E, ( E;E, ElA) =

1
E, (E,E,E,E,A)=| 0
0

E, (EEEEEEA) =0 —2

E, (E,E.EE,E;E,E,A)=|0 1

E, (E,E,E,E,E,A)=|0 1 0 |0

1 0 01 3 1 1 3 1
0 00 -5 -1|=|0 -5 -1
00 -2/o o -2 001
3L 5
multiple row
3by—§
0 0|1 3 1 1 3 1
1 140 -5 -1|=|0 -5 0
0 1|0 0 1 0 0 1
Add row 3
to row 2
1 0 -1||1 3 1 1 3 0
-5 0|=/0 -5 0
00 10 0 1 0 0 1
Subtract row 3
from row 1
1 00 1 3 0 1 30
1 0{fj0 -5 0(=/0 1 O
0 0 1 0 O 0 01
Divide row 5
by -5
1 -3 0||1 3 0 1 00
00 1 0|=|0 1 O
0 0 10 0 1 0 01

Subtract 3xrow 2

from row 1

Given equation (1.6.33), it follows from (1.6.21) that

61

(1.6.29)

(1.6.30)

(1.6.31)

(1.6.32)

(1.6.33)
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A" = E,E,E,EE,E,E,E,

1_30-100

1
=0 1 0|0 —= 0}|0
0

1
0 1 1|x
0 0 1 0

U1l = O
N
[EEN
o
o

- S (1.6.34)

m
~

m
[

(1.6.35)

>
AN
Il
o
|
w | o Wl wlo
|
w | o Wik wiN

Example 1.6.6: As an additional example, consider the following matrix A and the following
sequence of elementary matrices:

1 4 3
A=-1 -2 0 (1.6.36)
2 2 3
Step 1:
1 0 0|1 4 3 1 4 3
E,A={1 1 0||-1 -2 0|=|0 2 3 (1.6.37)
0 0 12 2 3 2 2 3

Add row 1
to row two

Step 2:
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Step 3

Step 4

Step 5:

Step 6:

Elementary Matrices-More Properties

1 0 0|1 4 3
E,(EA)=| 0 1 0[[0 2 3
2 0 1|2 2 3
Multiply row 1
by -2 and add
torow 3
1 (l) 0 1 4
E,(E,E,A)= |0 > O[]0 2
00 1|0 ®
[ —
Multiply row 2 by 1/2
1 0 1 4
E,(E,EEA)=|0 1 0 [|[0 1
00 -1lo -6
_ 6.
Multiply row 3
by—g
1 0 O 14
E,(E,E;E,EA)=|0 1 00 1
0 -1 1
Subtract row 2 0 1
from row 3
1 0 O !
E, (EsE,E,E,E,A)=/0 1 00
0 0 -1 0

%/_/
Multiply row 3 by -1

NP, NDlw w

N|lw w

Nk, NWw w

N|w w

P, NNjw w

63

(1.6.38)

(1.6.39)

(1.6.40)

(1.6.41)

(1.6.42)
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Step 7
L 4 ot 4 2 10 —33
E,(E.EE,EE,EA)=|0 1 00 1 S| 0 1 > (1.6.43)
0 0 1
L ° “Jo o 1| (0 0 1
Multiply row 2 by 4
and subtract from
row 1
Step 8:
10 0310—33 Lo -3
E, (E,E¢E;E,E,E,EA)=|0 1 -5 0 1 S| 01 0 (1.6.44)
00 1/ oo 1| 001
Multiply row 3
by —-3/2 and
add to row 2
Step 9:
1 0 3|1 0 -3 1 00
E, (E,E,E,E,E,E,E,E,A)=10 1 0[|0 1 0|=|0 1 O|=] (1.6.45)
0 0 1{/j0 0 1 0 01
Multiply row 3
by 3 and
add to row 1
Therefore,
A = E,E,E,EE.E,EE,FE,
1 0 3 100 1 4 0}|1 0
=0 1 0|0 1 —g 1 0}0 0 |x
0 01 0 0 1|0 -1
_O 0 1] |
Eo —E,—z E; Es
1 0 0}1 0 100 1 0 01 0
0 1 O 00%0010110
0 -1 0 1 -2 0 1]|0 1
-~ o 0 -=||0 0 1} |
Es L 6_ f E, E (1646)
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If this multiplication is performed, the following result is obtained for A™

2111
2 2 2
Al % _% _% (1.6.47)
11 1
6 2 6

The above two examples illustrates how the elementary matrices generate the inverse for a
nonsingular matrix. These examples are illustrations of the theoretical formula (1.6.21). As a
practical matter, we are typically only interested in the inverse and not the recording of the
individual elementary matrices. A computational algorithm based upon the augmented matrix
approach gives the answer more directly. We shall illustrate this algorithm for the matrix in the
second example above, i.e. the matrix defined by (1.6.36). The procedure is as follows:

First, form the augmented matrix ( All):

1 4 3100
(All)=|-1 -2 00 1 0 (1.6.48)
2 2 30 01
A |

We next perform row operations on this auxiliary matrix until an identity appears in the left slot.
The step by step process is the following:

Step 1(Add row 1 to row 2.)

1 4 31 00
0 23110 (1.6.49)
2 2 30 0 1
| EA E ]
Step 2:(Multiply row 1 by -2 and add to row 3.)

1 4 3|1 00

0 2 3|1 10 (1.6.50)

0 6 -3-2 01

E,EA E,E;
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Step 3(Multiply row 2 by 1/2.)

1 4 3|1 0O
0 1 3|11 0 (1.6.51)
212 2
0 6 -3-2 0 1
EsE,EA E;E,E;
Step 4(Multiply row 3 by — 1/6.)
14 31 0 O
01 311 0 (1.6.52)
2(2 2
o1 3o -2
2|3
——
| EsEsEEiA E,E;E,E;
Step 5:(Subtract row 2 from row 3)
10 -31 0 O
o1 3|1 1 | (1.6.53)
2 2
00 -1 1 1
EsE,EE.E\A 6 2 6
B EsE,E3E,E;
Step 6:(Multiply row 3 by -1.)
1 4 31 0O
01 3|11 0 (1.6.54)
212 2
001)1 11
E(SESE4E3EZE1A 6 2 6
;ﬁf—J
L EgEsEEsEoF; |
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Step 7:(Multiply row 2 by 4 and subtract from row 1.)

1 0 -3
01 3

2
0 0 1
%f_/
E;E¢EsE,EE,E A

ol N
Nk N, O

%/_J
E;EsEsE4E5E,E, |

Step 8:(Multiply row 3 by — 3/2 and add to row 2.)

Step 9:(Multiply row 3 by 3 and add to

o -

0

1 0 -3
01 0
0 0 1

%r_/
EgE,EEsE,E5E,E A

—
| =EgEqE; EgEsE, E5E,E A

row 1.)

— O
o O

01

-1 -2 0

1
4
1
6

1 1

1 1

2 6

AANNANN

1

1 1

1
4
1
6 2 6

AT =EgE; E¢E5E, B4, |

(1.6.55)

(1.6.56)

(1.6.57)

If the matrix A is singular, the above calculation process will not reduce to the identity
matrix in the left slot. In the singular case, of course, the formula (1.6.21), i.e., A*=E, ---E,E,, is

not valid.

Exercises:

1.6.1 You are given the matrix
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1 3 3
A=|1 4 3 (1.6.58)
1 3 4
7 -3 -3
anditsinverse A" =|-1 1 0 |. Express A" as the product of a finite number of elementary
-1 0 1
matrices.
1.6.2 Use the computational algorithm illustrated above to determine the inverse of
2
A=|-2 2 0 (1.6.59)
0
1.6.3 Use the computational algorithm illustrated above to determine the inverse of
011 1
3 03 4
A= (1.6.60)
1 11
2 31
The answer is
17 -2 -8 -3
-10 0 20 -10
Aol (1.6.61)

200-13 -2 -8 7
3 2 -12 3
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Section 1.7. LU Decomposition

At this point in our understanding of Matrix Algebra, we have two closely related
approaches for solving systems of linear algebraic equations. One is based upon Gaussian
Elimination, and the other method is based upon Gauss-Jordan Elimination. There is another class
of solution methods based upon decompositions of the matrix A. Decomposition is the ability to
start withan M x N matrix A, and derive from A two or more matrices which allow A to be
decomposed into the product

A=AA - A (1.7.1)

Decomposition methods are useful because the factors in the decomposition have properties which
make the subsequent solution of

Ax=Db (1.7.2)
easier. One such method is called the LU Decomposition. For our purposes, there are two kinds
of LU decompositions. For our purposes here, we shall call the first kind the elementary LU
decomposition. After we discuss this calculation, we shall discuss the second kind, which we shall
call the generalized LU decomposition.

The Elementary LU Decomposition

The question is under what circumstance can an M x N matrix A, can be decomposed in
the form

A=LU (1.7.3)
where
U = An upper triangular M x N matrix
and

L = A lower triangular nonsingular M x M matrix with 1s down the
diagonal.®

While not sufficient, it is certainly going to be necessary for the number of unknown
elements of L and U to be equal to the given number of elements of A, namely MN . Itis
helpful to do a little counting of these various elements in order to characterize the cases where this
necessary condition is obeyed. For the square M x M matrix L:

3 In some discussions of the LU decomposition, the diagonal elements of L are not required to be unity. It can be
shown that this requirement ensures that when the decomposition exists, it is unique.
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Number of Unknown Elements of L :%M (M —1)
For the M x N matrix U , there are two cases

IM(M+1)+(N-M)M  for N=M
Number of Unknown Elements of U =
EN(N+1) for N<M

The total number of unknown elements in L and U is, therefore,*

Ivm —1)+%M (M+1)+(N-M)M  for N=M

Total Number of Unknown Elements= 1 1
EM (M _1)+EN(N +1) for N<M

These totals can be rearranged to yield

MN for N>M

Total Number of Unknown Elements= 1
N+E(M —~(N+1))(M-N)  for N<M

In the case N > M , the necessary condition is clearly satisfied. Inthe case N <M it is generally
not satisfied unless M = N +1. These two pieces of information mean that we shall base our
following discussion on the cases where N, the number of columns of A, obeys N >M —1. In
other words, the number of columns can be one less than the number of rows or it can be equal to
or greater than the number of rows. Most, but not all, of our examples will be for square matrices.
We shall briefly discuss later in this section the issues that arise when N <M —1.

Example 1.7.1: If A is the matrix we have used before
2
2 (1.7.4)
9

then the following is an elementary LU Decomposition

41t is also possible to conclude that the number of known elements in U , the zeros, equals the number of unknown

elements in L, namely %I\/I (M —l). Because L is square, %M (M —l), is also the number of zeros in L.
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242100242
1 5 2:% 1 olo 31 (1.7.5)
4 -19] |5 5 |00 8
_ A S
A -  u

Later in this section, we shall develop the computational procedure that constructs the
decomposition (1.7.3).

The example (1.7.5) shows that elementary LU Decompositions do exist. However, one of
the many questions about LU decompositions is whether or not they always exist. If it does not
always exist for every M x N matrix with N > M —1, then can we characterize those situations
when it does? The answer is that it does not always exist. It is this fact that will cause us to look at
the generalized LU decomposition mentioned earlier. Returning to the elementary LU
decomposition, it turns out that the factorization (1.7.3) always exists if the following is true:

If the M x N matrix A, with N >M —1, can be reduced to upper triangular form without
using partial pivoting (i.e. row switching) then A has an elementary LU decomposition.

We shall give an example below where the elementary LU decomposition does not exist. For the
moment, we shall proceed and see what problems arises as we attempt the construction.

It is useful to note at this point one of the reasons the LU decomposition is useful. If we
have the decomposition, (1.7.3), then the system of linear equations Ax = b can be written

LUx =b (1.7.6)

Because L, is nonsingular, we can multiply on the left by L™ and obtain
L'LUx = IlUx =Ux = L'b (1.7.7)

Thus, our problem is reduced to solving

Ux=L" (1.7.8)
Because U is an upper triangular matrix, (1.7.8) can be solved, for example, by back substitution
or Gauss-Jordan elimination. Another benefit of the LU Decomposition is that it depends only on
the properties of A. In other words, the decomposition does not depend upon b. This means that

we can perform the decomposition and then solve for x for a variety of choices of b. The
methods we have used to date, Gaussian Elimination and Gauss-Jordan Elimination, involved

manipulations of the augmented matrix, (Alb), and, as a consequence, the intermediate
calculations depended upon the specific b.
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The source of the method to create the elementary LU Decomposition is actually Gaussian
Elimination. When the decomposition can be achieved, Gaussian Elimination will give us the
matrix U . Our challenge is to discover how to find L such that A=LU . The construction of U
begins with certain row operations on A. As these operations are conducted, either with
elementary matrices or by row operations, we shall see that we build the matrix L.

As a motivation of how Gaussian Elimination plays a role in the derivation of A=LU , itis
instructive to try what is essentially a brute force method. We shall briefly illustrate this method in
the case where A isa 4 x3 matrix. In this case, the equation we hope to derive, namely (1.7.3),
can be written in components as

Ail A12 A13 l O O O U 11 U 12 U 13
A: AZl A22 A23 — L21 1 0 O O U22 U23 (179)
A?.l A?.Z A33 L31 LSZ 1 O O O U 33
AAl A42 A43 ‘ L4l L42 L43 1 O O 0
L U

Equation (1.7.9) connects the given twelve components of A on the left side to the unknown six
components of L and the six components of U on the right side. If we expand the product on the
right-hand side, the result is

Ail A12 A13 Ull U12 U13

A’Zl A22 A23 — L21U11 LZlU 12 + U 22 L21U 13 + U 23

ASl A32 A33 L31U11 L31U12 + L32U 22 LSlUlS + LSZU 23 + U33
A41 A42 A43 L41U11 L41U12 + L42U 22 I‘41LJ13 + L42U 23 + L43U 33

(1.7.10)

Our goal is to calculate the twelve unknown quantities that appear on the right side of (1.7.10). As
we proceed with this calculation, we shall see explicitly how the calculation might fail and give
some motivation for the generalized LU decomposition to be discussed later.

Our first step in the determination of L and U from (1.7.10) is to equate like elements on
both sides of (1.7.10), the first row yields

[

(1.7.11)

c c C
I
> > >

w

Given (1.7.11)1, we can equate the remaining elements in the first column of the two matrices and
conclude
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A21 = L21U11
Ay =L Uy (1.7.12)
A41 = L41U11

If we assume A, which by (1.7.11): equals U,,, is nonzero, it follows from (1.7.12) that

|-21:i:i

U, A

A A
Lal—Ull A, (1.7.13)
I—nzi:i

U, A

The fact that we have committed to the special case U, = A, # 0 represents one way that our

calculation is special. Next, we equate the remaining unknown elements in the second row of the
two matrices and obtain

A,=LU,+U,, =LA, +U22H2 Egs and 2 Unknowns
Ay = LU +U s = L Ag +Uy | (U, and Uy,) (1.7.14)

Because we have assumed A, # 0, the two unknowns in (1.7.14) are given by

Uy =A,-LA,=A, _iAiz

::1 (1.7.15)
Uy =As - LA = Ay __lAis
A
Equating the remaining unknown elements in the second column yields
A, =LU,, + LUy, (1.7.16)

A42 = L41U12 + L42U 22

If we assume U,, =0, which is a further specialization of this calculation, equations (1.7.16) yield
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Ay
A, — LUy, _ he (Aﬂinz

Ly, =
U22 Azz _2121A12
' (1.7.17)
_[ A
A42 I‘41U12 _ A42 ( Ail j Alz
42 LJ22 - A21
Ay = A, A,
Equating the remaining unknown element in the third row yields
Ay = LU + LUy +U, (1.7.18)
A, _[ZMJ M A
Ugp =Ap— Ly Ay - LUy = Ay - [ 1jA1 - - (Azz - AiSJ (1.7.19)
AT A _221 A A,

Next, we assume U,, =0 in this special case and equate the 43 elements of (1.7.10) to obtain

A,
A, - ( jaz
Ay —Pup, at (Am L ASJ

Au A2 221 A12 Au
L43 — A43 — L41Lljla — L42U 23 _ %1 (1_7.20)
® Ay, — [ : j A,
Ass - (AMJ A13 - 2121 [Azs A21 Am]
A11 Az2 All A12 A11

In summary, if we assume A, #0, U, =A, - L,A,=A, —%Au #0 and
1

A, (Aﬂja
A " A
3= Ay~ et Ay — LU = A — (Asllp&_ - (Az lAisj;tO then the
Aﬂ Azz_iAiz Aﬂ

elementary LU decomposition (1.7.9) is given by®

5 In the case of an arbitrary M x N matrix with N > M —1, the above results generalize to
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! 0 0 0]
e 1 0 0
Ay
A
A Ay A, A, ) ;
Ar A Ag & Ay _::iAiz
ac| P P P A
Ay Ay Ag A A (Allj A, A
A41 A42 A43 Aas_ilAlz_ : [A23—1A13j
A _(AM}AI A, Azz_iAiz A,
Ax ? A, ? A 1
A Pz _221'6&2 Ay, [Aalj A,
! A Au M
N e (S
An A22 _71A12 Au
i Ay
A A, As |
s )
0 2 T T T2 3° A 13
& Ay & Ay A
A
A32 _(] A12
0 0 Ass (EJ A13 2121 (Azs _iAisj
A11 A22 _71A12 An
Ay
| 0 0 0 |
) (1.7.21)
Ujk:Ajk—jiququ for k=12,..,N and j<k

for the unknown components of U , and

for the unknown components of L

for k=1,2,.,Nand k< j<M
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It is a simple calculation to specialize the above to the case of a 3x 3 matrix and use the resulting
formulas to produce the result (1.7.5) shown in Example 1.7.1. This derivation also shows that not
all matrices have an elementary LU decomposition like (1.7.3). An example where the above
formulas cannot be used is the following:

Example 1.7.2:

(1.7.22)

Because of the two zeros in the second column of the matrix (1.7.22), (1.7.15)3 shows that U,, =0

which invalidates the derivation of (1.7.17). Thus, the elementary LU decomposition as defined by
(1.7.3) does not exist for (1.7.22). When we discuss the generalized LU decomposition, we shall
see how it avoids the problems that cause this example to fail.

In those cases where A, #0, U,, #0 and U,, =0 are valid, it should be noted that the
steps dictated by the above formulas implement the following rearrangements of

Ar Ay A U, U, U,
A= A A, Ay to reach Uy, Uy :
An Ay, Ay 0 0 Uy
An An Ag 0 0 0
A A A
N
Ay Ay Ay
A An Ay
A A, A |
P L™
U, U, U, ° A A, Az A Ay As
0 Uy Uyl A,
0 0 Us, ) 0 0 Ay & _(Allj Ay 729
0 0 0 A?.B_ ? A13_ A21 AZS_KAB
! Azz T A A12 !
Ay
0 0 0 |

This result shows that the second row of U is simply the second row of the matrix equivalentto A
obtained by Gaussian elimination. If one studies the above formulas one can also conclude that the
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third row is also what one would obtain by Gaussian Elimination. These facts reveal an alternate
way of generating the LU Decomposition.

Recall that we implemented Gaussian Elimination by performing row operations.

a) switching two rows,
b) multiplying one of the rows by a nonzero constant
c) multiply one row by a nonzero constant and adding it to another row.

We mainly used c). The operation b) was used when we chose to normalize a row such as occurs
when finding the row echelon form of a matrix. The operation a) was used when the occurrence of
a zero made it necessary to change the pivot row. An important fact is that the method of finding
building the LU Decomposition will only make use of c). It will not proceed with row operations
that produce the row echelon form or the reduced row echelon. It will proceed to the point where
the coefficient matrix is an upper triangular form as with the Gaussian Elimination examples
discussed in Section 1.3. Of course, we can view these row operations in the equivalent way as
elementary matrix operations.

The key to finding the matrix L with the specified properties is to simply set up a tracking
system as the matrix U is derived. The key to the tracking system is equation (1.7.8). Itis a

feature of the calculation that we shall actually construct L™. After it is calculated, it can be
inverted to yield the L in the decomposition A= LU .

We begin the calculation with the equation Ax =b. We shall perform row operations of
the type c) above (or elementary matrix multiplications). These row operations, providing we do
not confront a division by zero, will transform the matrix A into an upper triangular matrix we

shall call U . It turns out that when we introduced the augmented matrix (A|b) and did row

operations, we were, implicitly building the matrix L™. The construction was masked because we,
in effect, multiplied each step by b. To make this step explicit, we shall first write the equation
Ax=Db as

Ax = Ib (1.7.24)
where | isthe M x M identity matrix.

As we do row operations on A, we shall perform the exact same row operationon | . At
the end of the set of operations which convert A to U, | will be converted to L™. Just as we

facilitated the calculation of U , by use of the augmented matrix (A|b), we shall facilitate the

calculation of U and L by starting the calculation with the M ><(N + M) matrix (A| I) defined by
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An A12 o AiN 1
A21 Azz o AzN 01
(A= . ' (1.7.25)
A Az - - - A0 0O -1
L A an MxN matrix I an MxM matrix i

We shall perform row operations of the type c) on (A| I ) until we achieve the conversion

(A“)—@@;;:+QHL1) (1.7.26)

The following example will help illustrate the process just described.

Example 1.7.3: An example of the LU Decomposition for a matrix where it does exist is the
following. We are given the matrix

2 1 3
A=|6 4 10 (1.7.27)
4 1 5
The first step is to form the augmented matrix (A| I ) Therefore,
1 3|11 00
(Al1)=|6 4 100 1 0 (1.7.28)
1 5|0 01
%I&_JHI_/

Next, we wish to perform row operations of the type c) that convert A to the upper triangular
matrix that we shall call U . It is important to stress again that we shall only use row operations of
the type c). Therefore, we will not reach the row echelon form of A. Because, we are interested in
the elementary matrices that are equivalent to these row operations, they will be tracked during the
step by step operations on (1.7.28).

Step 1:
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where

Step 2:

where

Step 3:

where

LU Decomposition

2 1 3/1 00 2131 00
6 4 100 1 0|———0 011-310
4 1 50 0 1| fwomaez |4 1 50 0 1
L A I | | EA E,l=E;
1
E,=|-3 1 0
0 0 1
2131 00 2 1 3/1 00
01131 0]—=7—0 1 1|3 10
41 50 0 1| fomos |0 -1 -1-2 0 1
%,_/%/_J
ElA E1I L EZE1A E2E1
1 00
E,=[0 1 0
2 0 1
2 1 3|1 00 2 131 00
1 1|-83 1 0|—7=—5>|0 1 1]-3 1 0
0 -1 -1-2 0 1] “™ o 0 0-5 1 1
%,_J
E,E,A E,E E;E,E A E4E,E;
100
E,=[0 1 0
01 1

The result of the last row operation is the upper triangular matrix

(1.7.29)

(1.7.30)

(1.7.31)

(1.7.32)

(1.7.33)

(1.7.34)
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2 1
U=EEEA=|0 1 (1.7.35)
00
and the matrix we shall denote by L™ given by
1 0
L'=E,EE=|-3 1 (1.7.36)
-5 1

Because the matrix we have denoted by L™ is equal to the product of three elementary matrices, it
is nonsingular as the notation suggests. We can use (1.7.36)1 in (1.7.35)1 and obtain

U=L"A (1.7.37)
or, equivalently, the decomposition
A=LU (1.7.38)

We can obtain the explicit formula for L in this example by inverting the matrix (1.7.36). With the
tools we have developed thus far, the easiest way to find L is to use (1.7.36): to write

-1 1 -1

1 0O 0 0/ (1 0O
L=E'E,'E,'=|-3 1 0 1 00010
0O 01 (-2 0 1|0 11
(1.7.39)
1 0 0||1 0 Of1 0 1 0 O
=3 1 0|0 1 0|0 0 3 1 0
0 0 1(2 0 1}j0 -1 1 2 -1 1

where the formulas (1.7.30), (1.7.32) and (1.7.34) have been used. We have also used equations
like (1.6.15) to construct the inverses in (1.7.39).. Therefore, for this example, the LU
Decomposition of (1.7.27) is

21 3] 1 0 o2 13
6 4 10|=/3 1 0|0 1 1 (1.7.40)
41 5| |2 -1 1]j0 00
A‘ L ‘U‘

The general conclusion from the explanation above and the example just completed is that,
providing we do not encounter the necessity to divide by zero, we can find a number of row

M(M-1
operations of the type c) equal to the number of zeros in the lower diagonal, %
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: M (M -1) _
represented by elementary matrices E ,E,,...,E;, where G = — such thata M x N matrix
A has the decomposition®

A=LU (1.7.41)
where
U=E, EEA (1.7.42)
and
L=(E;-EFE) =E'E*Eg (1.7.43)

As the example indicates, the row operations continue until U is in upper triangular form. The
resulting L, as calculated from (1.7.43), is lower triangular with 1’s for diagonal elements because
of the special forms of the elementary matrices E ,E,,...,E; . It should be noted that, depending on

the particular matrix A, some of the elementary matrices can be identity matrices.

Our numerical examples thus far have been for the case where A is square. We have
asserted that the calculation scheme works when N >M —1. A case where N > M is the
following example.

Example 1.7.4: In Example 1.3.6, we studied the solution of the system (1.3.48), repeated,

X, +2X, —4X, +3X, + 9%, =1
4x, 45X, —10x, +6X%, +18%x, =4 (1.7.44)
7%, +8X, =16X, =7

The matrix of coefficients in this case is

12 -4 3 9
A=|4 5 -10 6 18 (1.7.45)
7 8 -16 0 0

The matrix (A| I) is

M (M -1)
2

matrix operates on one row of A. Itis always possible, and sometimes convenient, to combine the elementary
matrices such that one elementary matrix operates on all of the elements in a column below the diagonal. Our
examples will reveal the possible choices.

& The indexing of elementary matrices can be confusing. The number presumes that each elementary
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(Al)=4 5 -10 6 180 1 0

7 8

-16 0 0|0 0 1
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(1.7.46)

The row operations sufficient to reduce A to upper triangular form can be read off from equation
(1.3.50). Utilizing this previous calculation, it follows from (1.7.46) that

1 2 4 3 9
4 5 -10 6 18
7 8 -16 0 O

where

and

A

Therefore, from (1.7.42)

o O -
ok O
= O O

1

Subtract 7xrowl

from row3

Subtract 2xrow2

from row3

1 2 -4 3 9|1 O
Subtract 4xrow1 0 -3 6 —6 -18-4 1
from row2 7 8 —16 0 O 0 0
L EA E,
1 2 -4 3 911 0 O
-3 6 -6 -18-4 1
0 6 12 -21 -63-7 0 1
L BB A E,E, ]
1 2 -4 3 911 0 O
-3 6 -6 -18-4 1
O 0 0 -9 27711 -2 1
L U=E;E,E,A LB E,
1 0
E,=|-4 1 0
0 01
1 0
E,=[0 1 0
-7 0 1
1 0
E,=[0 1 0
0 -2 1

(1.7.47)

(1.7.48)

(1.7.49)

(1.7.50)
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1 2 -4 3 9
U=EEEA=|0 -3 6 -6 -18 (1.7.51)
00 0 -9 -27

and from (1.7.43)

1 0 0[1 0 0][1 0 O]}
L=(EEE,) =EE'E" = {o 10 {o 1 0[|-4 10
0 -2 1||-7 0 1|0 0 1
(1.7.52)
1 0 0ff1 0 0fj1 0O 1 00
=4 1 0||0 1 0|0 1 0|=(4 1 O
0 0 1{|7 0 1jj0 2 1 7 21
Therefore, the LU Decomposition for this example is
12 -4 3 9 1 00|12 2 4 3 9
4 5 -10 6 18|={4 1 0||0 -3 6 -6 -18 (1.7.53)
7 8 -16 0 O 7 2 1|0 0 0 -9 -27
| A ‘ | L : U ‘

It is instructive to briefly discuss the case where N <M —1. Anexample is the 4x2

matrix
All A‘.LZ 1 O O O Ull U12 Ull UlZ
AZl A22 — L21 1 O O 0 U22 — I‘21U11 L21U12 + U22 (1 7 54)
A31 A32 LSl L32 1 O 0 L31U11 I‘31U12 + LSZU 22
AAl A42 L41 L42 L43 l 0 0 I‘41U11 I‘41U1L2 + I‘42U 22

There are eight given elements of the matrix A. Unfortunately, there are nine unknown elements
in the two matrices L and U . The element L,; is simply not determined by A. In other words, it

does not appear in the product LU . In this case, the convention seems to be to take L,, to be zero,
and the resulting decomposition is

Ail A.Z 1 0 0ju 11 U 12 U 11 U 12

AZl A22 — L21 1 00 0 U 22 — L21U 11 L21U 12 +U 22 (1755)
Ar Ayl |kn L 10100 0 LU, LU, +LUy,

A4l A42 L4l L42 01 0 0 L41U 11 L41U 12 + L42U 22

Because
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1 0 0O0Ju, U, 1 o0 U, U,

L, 1 0 0)0 U, _ Ly 1 [Un U12:| _ LUy LUy, +Uy (1.7.56)
L, L, 1 010 0 Ly Lp |l 0 Uy LUy LUy + LUy

Ly L, 0 1] 0 0 Ly Le LUy LaUp, + LU,

for the kind of case being discussed, we could relax the requirement that L be a square M x M
and that U be M x M and generate a different kind of decomposition.

The Generalized LU Decomposition

The discussion of the elementary LU revealed a couple of restrictions. First, in order to
satisfy the necessary condition that the number of unknown elements in L and U equal the number
of elements of A, we restricted our discussion to cases where N > M —1. We shall see that in the
generalized case, this restriction is unchanged. We also, in the elementary case, had to limit our
discussion to cases where the Gaussian Elimination process would proceed to an upper triangular
form for U without row switching. This was achieved by assuming certain coefficients that arise
in the elimination process were not zero. It is this restriction that we shall relax for the generalized
case. We shall begin with (1.7.25) and proceed with row operations of both types a) and c) until
we reach an upper triangular M x N matrix U in the first slot. In other words, we proceed with
row operations of types a) and c), repeated,

(A|I)m>(U|D) (1.7.57)

At this point the M x M matrix D is something the process will determine. How it relates to a
lower triangular nonsingular matrix L is something we shall also determine.

We shall associate with each row operation of the type c) an elementary matrix of the type
introduced in Example 1.6.4. Likewise, the row operation of the type a), the row switching, can be
associated with an elementary matrix of type introduced in Example 1.6.2. In this discussion, we
shall refer to row switching elementary matrices as permutation matrices. Permutation matrices
shall be given the symbol P . In order to distinguish row operations of the type a) from those of
type c), we shall denote the latter by the symbol E. As we learned in Section 1.6, elementary
matrices are nonsingular. The inverse of a permutation matrix P is the transpose P .” Given
these preliminaries, then the upper triangular M x N matrix U can always be written

U=Eg, P, EPREPA (1.7.58)
where our convention for the elementary matrices is as follows

P, = Row switch that brings a non zero element into the jj position, for j=1,2,...,Q

" The transpose of a matrix is defined in Section 1.1 and discussed in detail in Section 1.9.
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and

E; = Elementary matrix resulting from type c) row operation to elements below jj element
forj=12,..,Q.

If a zero is not encountered which forces row switching, the associated permutation is the trivial
one represented by the M x M identity matrix. Equation (1.7.35) is an illustration of (1.7.58) in
the case where every permutation matrix is the identity matrix.®

In the elementary LU decomposition case, we obtained the M x M matrix L from
equations like (1.7.35). In the generalized case, we first define the overall permutation matrix P

by

P=P....

PP, (1.7.59)

The elementary matrices E,E,..., E, and P,P,,..., P, are known quantities. We definea M xM
nonsingular matrix L by

P

Q Q' Q

L' =(EoR, - ER )P =(EqPy - ER) (PP -+Py) (1.7.60)
where (1.1.40) has been used. Given the definitions (1.7.60) and (1.7.59), it follows from (1.7.58)

that
PA=LU (1.7.61)

Equation (1.7.61) is the generalized LU decomposition. We know that P isan M x M
permutation matrix, and we know that U is an upper triangular M x N matrix. We also know that
the M x M matrix L, as defined by the inverse of (1.7.60) is nonsingular. What we do not know
as yet, but what is true, is that L is a lower triangular and it has 1s down its diagonal. These
properties follow from the specialized properties of the elementary matrices that make up the
definition (1.7.60).

An elementary example of the property just described can be illustrated at this point by
applying the above argument to the matrix that we considered in Example 1.7.2.

Example 1.7.5: Equation (1.7.22), repeated, is the matrix
0
2 (1.7.62)

>

1
o o -
= O O

-1

8 The elementary matrices in Equation (1.7.58) and (1.7.35) are indexed differently. The two elementary matrices that

correspond to the (1.7.58) indexing would cause (1.7.35) to be written U = E, ( E, E1) A
——

H_J
2 1
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In Example 1.7.2, we explained why this A does not have an elementary LU decomposition. Our
first step in illustrating that it does have a generalized LU decomposition is to construct (1.7.58)
for this case. First, there is not a need for a row switching in order to make A, nonzero. Also, we

already have zeros below A,. Asaresult,

1 00
R=E=/0 10
0 01
We do need a row switch
1 00
P,=|0 0 1
010

which is in the desired upper triangular form. As a result,

1 00
E,=[0 1 0
0 01
These results and the definition (1.7.60) yield
1 0 0][1 0
L' =(E,REPR)(P'P)=RP =0 0 1]0 0
0 1 0f|0 1

Also, the permutation matrix P is given by (1.7.59) which yields

P=PR=P =

o O

0
0
1

o — O

Thus, the generalized LU decomposition in this case is

o - O

o O -

o - O

= O O

(1.7.63)

(1.7.64)

(1.7.65)

(1.7.66)

(1.7.67)

(1.7.68)
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1 00][t0 0]t oo][Lto0 O
0010 0 2|=l0 1 0f0 1 -1 (1.7.69)
01 o0f01 -1/ |00 10 0 2

An example that is more substantial is the following:

Example 1.7.6: We are given the matrix

(1.7.70)

>

I
o N O
© © u
© o u

Because A, =0, this matrix will not have an elementary LU decomposition. We can built the

matrix U by identifying the row operations that give us (1.7.58). We can switch the first and third
rows with the permutation P, defined by

0 0 10 5 5| [6 8 8
PA=|0 1 0|2 9 0|=|2 9 0 (1.7.71)
10 0/6 8 8| |05 5
R

The row operation that creates a zero in the 22 position is E, defined by

11 0 0l g g1 [6 ]2 2
0o 0 119 3 |g 5 5

E

Because the 22 element of (1.7.72) is not zero, P, is the identify matrix. The row operation that
creates a zero in the 32 position is E, defined by

L 00 6 12:9 88 6 189 88
E,REPA=0 1 0|0 — ——=|=|0 — ——= (1.7.73)
15 3 3 3 3
0 -—= 11/|0 5 5 135
19 0O 0 —
L - | 19 |
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Therefore, from (1.7.58) and (1.7.73)

6 8 8
U=E,REPA=|0 % —% (1.7.74)
0 0 1B
L 19 |
It follows from (1.7.60) that
Lﬁlz(Ezszlpl)(PlTPzT)
1 0 O0f1 00 1100001001100
=0 1 0010—510010010010
0_E1001 0 01‘100‘,100‘001‘
19 | P, — R Ny P
E, !
1 0 O
= = 1 0
3
.5 15 (1.7.75)
L 19 19
The inverse of the matrix (1.7.75) yields
1 0 O
1
ng 1 0 (1.7.76)
0 e 1
L 19 |

and the generalized LU decomposition becomes
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0 0 1|0 5 5 i 0 06 189 88
0 10|29 0|=|=- 1 0|0 — — (1.7.77)
1 0 0|6 8 8 3 3 3
, )\ ! 15 135
5 )9 0 — 0 0 —
.19 L 19 |
L U

In addition to illustrating that L is a lower triangular matrix with 1s down its diagonal, Example
1.7.6 also illustrates that the generalized LU decomposition is not unique. A different permutation
could have been used for P, in order to address the zero in the 11 position of the matrix (1.7.70).

This would have started the calculation with
0 1 0|0 5 5 2 90
PRA=|1 0 0|2 9 0|=(0 5 5 (1.7.78)
0 0 1||6 8 8 6 8 8
R
which would have created a different set of row operations and a different U and L.

Exercises

1.7.1 Show that the elementary LU Decomposition for the matrix

1
A= 2 1 1 (1.7.79)
-2 2 -1
is
1 3 1 0|1 3 1
2 1 1|=/2 1 0/|]0 -5 -1 (1.7.80)
-2 2 -1 8 3
. - |2 ——= 1)|0 0 -—=
A L 5 1L 5]
L U

1.7.2 Show that the elementary LU Decomposition for the matrix

(1.7.81)

>

Il
w kN
NP W
N R
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5 3 1 1 0 0|2 3 1
1 1 1|= 1 1 0}|0 S (1.7.82)
3 4 2 2 2 2
3 11 0O 0 O
A E -0
L . _ U
1.7.3 Show that the elementary LU Decomposition for the matrix
2 1 2 1
3 0 1 1
A= (1.7.83)
-1 2 21
-3 2 31
is
1 0 0 0][2 1 2 1]
212 1|3 1 g ofo -2 o 1
301 ; i ; (1.7.84)
—12—21‘%%1000—%% o
3231 3 7 4 20
)4 " |-—— -—— —-—— 1]|0 o0 0o —
.2 3 13 | 13 |
L U
1.7.4 Start with the permutation shown in (1.7.78) for the matrix
0 55
A=12 9 0 (1.7.85)
6 8 8
and illustrate that the generalized LU decomposition that results is
1 0|0 5 5 1 0 0f2 9 0
1 0 0/l2 9 =0 1 0}/0 5 5 (1.7.86)
0 1(6 8 19 0 0 27
I 3 — 1j— -
P A L 5 | U
e > -

rather than the result derived in Example 1.7.6.
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Section 1.8. Consistency Theorem for Linear Systems

The various examples discussed in Sections 1.2, 1.3 and 1.5 reveal some of the possibilities
when one attempts to construction of solutions to systems of linear equations of the form (1.2.1),
repeated,

A11X1+A12X2+A13X3+“'+A1NXN :b1
A21X1+A22X2+A23X3+"'+A2NXN :bz

(1.8.1)

Al\/IlX1+AM2X2+AM3X3+”'+A1\/INXN :bM

In the case where M = N, we encountered examples where the system had a unique solution,
examples where the system had a solution that was not unique and a system where there was no
solution. The corollary to Theorem 1.6.1 told us that the system Ax =b has only unique solutions
if and only if A is nonsingular. For the case of an over determined system, i.e., when M > N, we
gave an example where the system did not have a solution. Finally, for the case of an
undetermined system, we gave an example where the system had a solution, but it was not unique.

One of our objectives in the study of linear systems is to find general theorems that will
allow one to have information about the solution before a solution is attempted. In this short
section, we shall look at one such theorem. It is called, the Consistency Theorem.

As we have done in several sections, we shall often write (1.8.1) in the matrix form
Ax=b (1.8.2)

In Section 1.1, we introduced the notation .#"*" for the set of M x N matrices. The matrix A is
an element of the set .#"*" . This fact is expressed symbolically by writing Ac .#"". Viewed
as a function, the matrix A is a function that maps column matrices in .#"** into column matrices
in .. Itis customary to express this functional relationship by writing

A 4 (1.8.3)

The set .#"** is the domain of the function A. The range of the function A is the set of all values
of the function. In other words, the range is the set of possible values of Ax generated for all

possible values of x in .#"*. Itis customary to use the symbol R(A) for the range. A more
formal way to introduce this notation is to write
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R(A)={AX xe.a"*} (1.8.4)

Note that R(A) is a subset of .#"**. As such, it is not necessarily true that all column matrices in
4™ are also in the range. The following figure should be helpful.

v

M M

The above definitions allow the statement of the following theorem:

Theorem 1.8.1: Given a matrix Ae .#™" and a vector b e 4", the system Ax=Db hasa
solution if and only if be R(A).

Theorem 1.8.1 is known as the consistency theorem for linear systems. A less formal way of
stating the same result involves writing the product Ax as
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i An A12 A13 I AlN 1 X ]

A21 Azz A23 I AZN X,

A31 Asz Ass I X3

AX = .
_AM1 AM 2 AM3 I AMN 1R

i A11X1+A12X2+"'+A1NXN
A21X1+A22X2+"'+A2NXN
A31X1+A32X2+"'+A3NXN

_AM1X1+AN|2X2+"'+AMNXN_

Ail A12 A13 AiN
Azl A22 AZS AZN
A’sl A’SZ A53 ASN
= - IX | X [ X Xy (1.8.5)
_AM1_ _AMZ_ _AM3_ _AMN_

Linear Combination of Column Vectors

As a further rearrangement, we shall use the symbol a; for the j™ column of A. Therefore, we
are writing

a =| - for j=1,2,...,N (1.8.6)

LA ]

This definition allows (1.8.5) to be written

AX =a, X, +a,X, + 85X, + -+ 8y Xy (1.8.7)
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Given (1.8.7) the linear system (1.8.2) is the equation
X +a,X, +aX;+---+ayXy =b (1.8.8)
Given (1.8.8), we can restate Theorem 1.8.1 as

Theorem 1.8.1a: The linear system Ax = b is consistent (has a solution) if and only if b can be
written as a linear combination of the column vectors of A.

Example 1.8.1: Example 1.2.4 is concerned with finding the solution of a system of linear
equations given by (1.2.15), repeated,

2X, +3X, + X, =1
3X, +4X, +2x, =-80 (1.8.9)
X, + X, + X, =10

We discovered with this example that it did not have a solution. The above theorem indicates why
it does not. It is not possible to find an x;,x, and x, for which, forming (1.8.5),

2 3 1 1 1
3% +|4|X,+|2|X, will add to obtain | —80 |. In the words of Theorem 1.8.1, the vector | —80
1 1 1 10 10

2 31
isnotintherangeof A={3 4 2].
111
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Section 1.9. The Transpose of a Matrix

In this section, we shall return to a discussion of matrix algebra. In particular, we shall
briefly discuss the important operation of taking the transpose of a matrix. This operation was

introduced in Section 1.7. It begins with a matrix Ae .#"*" given by

A11 A12 A13 . AiN
A21 Azz A23 . AZN
A Ay Ay
A=| - (1.9.1)
_AMl Ams AMS . AMN |

and one constructs a matrix, called the transpose of A, in .#"*" obtained by interchanging the
rows and columns of A. The transpose of A is denoted by A" . It is easily shown that

(A1) =A (1.9.2)
(AA)T = AAT (1.9.3)
(A+B) = A" +B’ (1.9.4)

These properties are easily established from the definition of the transpose. Another important
property of the transpose is

(AB)" =BTAT (1.9.5)

for matrices Ae .#™" and B e.#"". The proof of (1.9.5) is a little tedious but straight forward.
It involves no more than constructing the left side and the right side of (1.9.5) followed by a
comparison of the results. Let

A=[A;] and B=|B] (1.9.6)

where Ae #™" and B e.#"". Then the definition of matrix multiplication introduced in
Section 1.1 tells us that C = AB, a member of .#"*", has components



96 Chap. 1 . ELEMENTARY MATRIX THEORY

N
C; =D ABy i=12,..,M and j=12,..,L (1.9.7)
k=1
Therefore,
_Cll C21 CMl_
C12 C22 CMZ
Cc'= (AB)T =
_ClL CZL CML_
N N N T
z Aik Bkl z Azk Bkl z AIVIk Bkl
k=1 k=1 k=1
N N N
ZAZkBkl ZAZkBkZ ZAMkBkz
k=1 k=1 k=1
N N N
B B B
_kz_l:Aik kL kZ:;Azk kL éAMk kL_ (1.9.8)
Next, we shall form BT AT .
_Bll Bz1 T BNl__Ail A21 T AMl_
Blz Bzz o7 BNz A12 Azz o7 AMZ
BTA =| ' (1.9.9)
_BlL BZL BNL_ _AlN AZN AMN _

If this product is multiplied by use of the rule for multiplying matrices, we find
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N N N T
zAlk Bkl ZAZk Bkl ZAMK Bkl
k=1 k=1 k=1
N N N
zAszkl zAszkz ZAMkBkZ
k=1 k=1 k=1
BTA" = (1.9.10)
N N N
zAik BkL ZAZk BkL ZAMkBkL
| k=1 k=1 k=1 i

Equations (1.9.9) and (1.9.10) establish the result (1.9.5).

Example 1.9.1: It is perhaps useful to verify (1.9.5) with a specific example. You are given

1 2
A=|3 3
2 4
Therefore
1 3 2
AT=12 3 4
1 51
and, as a result,
1 2 1|1
AB=[3 3 5|2
2 4 1|5
and
10 6
(AB)' =|34 23
15 8

Next, evaluate the product

1 0 3

and B=|2 1 1 (1.9.11)
5 4 1
1 2 5

and B ' =|0 1 4 (1.9.12)
31 1

0 31 [10 6 6

1 1|=|34 23 17 (1.9.13)

4 1| |15 8 11

6] [10 34 15

17| =| 6 23 8 (1.9.14)

11 6 17 11
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1 2 5|1 3 2 10 34 15
B'A"=|0 1 4|2 3 4|=|6 23 8 (1.9.15)
31 1|1 51 6 17 11

which confirms (1.9.5) in this example.

Another important property of the transpose arises when Ae.#"*" is nonsingular. In this
special case, it is true that A" is also nonsingular and its inverse is given by

(A) " =(at) (1.9.16)

The proof of (1.9.16) requires an application of the definition of inverse given in Section 1.1. In
order to establish (1.9.16), we need to establish that

(A1) AT =A(AY) =1 (1.9.17)
We start the proof of (1.9.17) with the definition of the inverse of A which is

AAT = ATA= (1.9.18)

The transpose of (1.9.18), after (1.9.5) is used, is
(A1) A=A (AY) =1 (1.9.19)

which confirms the result (1.9.17).

There are other definitions involving the transpose of square matrices that are useful to
introduce at this point. A square matrix Ae.#"" is symmetric if A= A" and skew symmetric if
A=—A". Therefore, for a symmetric matrix

A=A, (1.9.20)

and for a skew symmetric matrix

A=A, (1.9.21)

Equation (1.9.21) implies that diagonal elements of a skew symmetric matrix are all zero.

It is an interesting fact that every square matrix A can be written uniquely as the sum of a
symmetric matrix and a skew symmetric matrix. The proof of this assertion arises simply by
writing the identity
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1 1 :
A=Z(A+ A+ (A= AT) (1.9.22)

The first term is symmetric because

Loaany) _Loaar
E(A+ A) =E(A+ A') (1.9.23)
Likewise, the second term is skew symmetric because
T
[%(A—AT)) :%(AT —A):—(%(A—AT)j (1.9.24)

There is another way to build a symmetric matrix. In this case, the matrix A need not be
square. In particular, given a matrix A< .#™" | it is straight forward to use the definition of
symmetry to show that AA" is a symmetric matrix in .#"*" and A" A is a symmetric matrix in
'/”NXN ]
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Section 1.10. The Determinant of a Square Matrix

The determinant of a matrix is a property of a square matrix. The determinant of a square
matrix A shall be written det A. On occasion, it will be convenient to use the alternate notation

|A|. The determinant has many uses in matrix algebra. For our immediate purposes, the most

important property of determinants is the fact that a square matrix A is nonsingular if and only if it
has a nonzero determinant. We need to define a determinant of a square matrix and then establish
this result.

There are many equivalent definitions of a determinant of a square matrix. Some depend
upon more abstract ideas than we shall use in this introduction to matrix algebra. For our first
discussion, we shall simply use a direct method of stating the formula for various cases. One of our
goals later in this section is to provide a definition based upon more general linear algebraic
concepts. We shall begin the discussion of a determinant as a series of definitions.

Definition: If A isa 1x1 matrix, i.e. a number, its determinant, written det A, is defined by

detA= A (1.10.1)
Definition: If A isthe 2x2 matrix
A= {Aﬂ A”} (1.10.2)
A Ay
its determinant, written det A, is defined by
detA=A,A, - A,A, (1.10.3)

It is customary to distinguish the matrix A which we write as in (1.10.2) from its determinant by
writing

Ar A,
A Ay

det A= = A A, = A A (1.10.4)

It is possible to show that the absolute value of the determinant (1.10.4) is the area of the
parallelogram
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(A11+ A12’A11+ AZZ)
(A, A,)

Area= |A¢1Azz - Alz A21|

(AL A)

A couple of features of the definition (1.10.4), that are general properties of determinants of all
sizes, are

a) The determinant is a linear function of each column.
b) The determinant is skew symmetric in its columns. Thus, if you switch the two columns
you change the sign of the determinant.

For a 3x 3 matrix, the definition of the determinant is given by

Definition: If A isthe 3x3 matrix

Ar A As
A=A A, Ay (1.10.5)
Ay Ap Ag
its determinant is defined by
Ar A As
An Ay Ay, As A, As
det A= Ay A, Agl=A - Ay, + A,
A, A, A, An Ag An Ag Ay Ay

= An(AzzAsa - A32A23) - A21 (A12A33 - A32A13) + A’Sl(AIZAZS - A22A13) (1-10-6)
= A11A22A33 - A11A23A32 - A12A21A33 + A13A21A32 + A12A23A31 - A13A22A31

The absolute value of the determinant (1.10.6) is the volume of the parallelepiped formed from the
three column vectors in (1.10.5).

Example 1.10.1: The determinant of the matrix



Sec. 1.10 . The Determinant of a Square Matrix 103

2 1 2
A=|3 2 2 (1.10.7)
1 2 3
is, from the definition (1.10.6),
2 1 2
2 20 |11 20 |1 2
detA=|13 2 2|=2 -3 +1
2 3 12 3 |2 2
1 2 3
=2(2x3-2x2)-3(1x3-2x2)+1(1x2-2x2) (1.10.8)

= 2x2-3x(-1)+1x(-2)=4+3-2=5

Example 1.10.2: The determinants of the elementary matrices E,,E, and E,, given in equations
(1.6.7), (1.6.10) and (1.6.13), can be showed from (1.10.6) to be

010
detE, =1 0 0/=-1 (1.10.9)
001

detE, =

o O B+
O >» O

0
ol=4 (1.10.10)
1

and

10 -4
detE,=0 1 0]|=1 (1.10.11)
00 1

As with 2 x2 matrices, the definition (1.10.6) reveals a couple of general properties of
determinants. They are as follows:

a) The determinant is a linear function of each column.
b) The determinant is skew symmetric in its columns. Thus, if you switch the two columns
you change the sign of the determinant.

A more formal display of the property a), utilizing the first column, is the formula
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A+4B A, Ayl [Ar Ay Ayl |4By A, A
A +4By Ay Agl=1Ay Ay Agl+|ABy A, Ay
Ay +ABy Ay Ayl |Ar Ay Al 4By Ay Ag
A A, A By A, As
=Ay Ay Ap|tABy A, Ay
Ay Ay Ay By Ay Ay

(1.10.12)

for all real numbers 1 € Z. Likewise, b) is summarized by the formulas

Ar A Al A2 A Al A2 A A
A Ay Aul=—IA, Ay Agl=IA, Ay Ayl ete (1.10.13)
A An Agl A A Asl [Ar As Ay

Relationships like (1.10.13) are often used to explain that a determinant is a completely skew
symmetric linear function of the columns of A. It is a consequence of this skew symmetry that if
two columns of a matrix are identical the determinant is zero. This simple fact follows if we form a
matrix with two identical rows, switch the rows and obtain a determinant equal to minus itself. The
only conclusion is that the determinant is zero.

It is useful to look at (1.10.6)4 as a source of a greater insight into a more general definition
of the determinant. The essential idea that one needs in order to interpret (1.10.6)4 is the idea of a
permutation. The idea of a permutation of the ordered set of the first three positive integers,

(1,2,3), is as follows: A permutation is a rearrangement of the three integers (1,2,3) into a

reordered set of the same three integers. Viewed as a function, which we shall denote by o, the
following are a list of possible permutations of (1,2,3):

1,2,3)—> (12,3

(e

)——(12.3)
1,2,3)——(1,3,2)
1,2,3;:22’1' 3; (1.10.14)
)——(2.31)
)——(3.2.1)

(e}

12,3 312
1,2,3)—>(2,31

(e

1,2,3)—> (3,21

(
(
(
(
(
( -
As this example reflects, there are 3!=6 possible permutations of the ordered set (1,2,3). The list

(1.10.14) includes the identity permutation (1.10.14):. A permutation is even if it takes an even
number of transpositions of the values in the above list to return the starting ordered set (1, 2, 3) . A

permutation is odd if it takes an odd number of transpositions of the values in the above list to
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return the starting ordered set (1,2,3). For example, the even and odd permutations in the list
(1.10.14) are®

(1.2,3)—>(1,2,3)

—
Even

(1,2,3)—>(1,3,2)

(e

Odd

(1,2,3)——(2,1,3)

odd (1.10.15)
(1,2,3)—>(3.1,2)
%/_/

(e

Even

(1,2,3)—>(2,3,1)

Even
(1.2,3)—(32,1)
Odd

The parity of a permutation is the even or odd designation of that permutation. Given the idea of
parity, it is customary to utilize the symbol ¢_ defined as follows:

£ = (1.10.16)

o

+1  if o isaneven permutation of (1,2,3)
-1 if o isanodd permutation of (1,2,3)

This definition tells us that for the permutations in (1.10.15)

® Sometimes the permutation o is displayed symbolically by the notation

":(a?n Gé) ofsﬂ

where 0(1) , 0'(2) and 0'(3) are distinct elements from the set {1, 2, 3} )
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%/_/
odd (1.10.17)

Given the idea of a permutation and the associated idea of its parity, the definition (1.10.16)
allows us to write the definition of the determinant of a 3x 3 matrix, equation (1.10.6)4, as

detA=)"s,A A (1.10.18)

0'(2)2 Ao‘

(3)3
where the sum is understood to be over all permutations of the ordered set (1,2,3) . The formula

(1.10.18) is often the starting place for the definition of the determinant of a 3x 3 matrix. It should
be evident that the idea of permutation generalizes to permutations of ordered sets of the type

(1,2,3,..., N) and, for example, the definition (1.10.3) can be expressed in a fashion entirely similar
to (1.10.18).

Returning to the result (1.10.6) or the more formal expression (1.10.18), there are important
conclusions that can be reached about the determinant of a 3x 3 matrix. The expression (1.10.6)
for det A can be rearranged to yield an expansion in terms of the first row rather than the first
column. The rearrangement takes the following form:

Ar A Ag
detA=|A, A, A,
A Ap Ag
= A11A22A33 - A11A23A3,2 - A12A21A33 + A13A21A32 + A12A23A31 - A13A22A31 (1-10-19)

= Au(A22A33 - A23A32)_ A12 (A21A33 - A23A31) + A13(A21A32 - A22A31)
A Ay A Ay Ay Ay
“Rla, M AT A,

In a notation like that used in (1.10.18), (1.10.19) can be written
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det A= e, A0 A0 A (1.10.20)

The results (1.10.6) and (1.10.19) give us the interesting result that the determinant of a matrix and
the determinant of its transpose are the same, i.e.,

det A=det A" (1.10.21)

The form of (1.10.18) and (1.10.20) reveal an interesting characteristic of determinants that
one can expand about any row or column to obtain the answer. One simply must assign the proper
sign to the column or row utilized. As an example of an expansion of a 3x3 expanded about its
second column consider the following

A Ay Ar A Ar A
Slag Al e Al A,
=As (A21A53 - A23A31) — Ay, (AnAss - A13A31) + Ay, (Aquz - A13A21)
= A13A21A33 - A13A23A31 - A22A11A33 + A22A13A31 + A32A11A22 - A32A13A21
=—A, (A22A33 - A32A23) + Azl(AizAss - A32A13) — A (A A — ALAS)

A, A A, A A, A (11022
TRl Al M, Al M, A
A A, A
:_AZl Azz A23=—detA
A A, A

This result simply reflects the fact that the determinant is also a linear function of each row and, as
a function of its rows, it is completely skew symmetric.

The definition (1.10.18) generalizes to higher order square matrices. For example, for a
4 x 4 matrix, the definition is as follows:

Definition: If A isthe 4 x4 matrix

Ar A A A

AP P P P (1.10.23)
A Ay Ay Ay
Ar A As A

its determinant is defined by

det A= zgcrAa(l)lAa(Z)Z Ao‘(3)3AU(4)4 (1.10.24)
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or, in expanded form

21 f\f /’:f 2“ A, Ay A A A A
q _ | 2 3 al _ _
etA ASl A32 Ass A34 An Aaz Aas A34 A21 Aaz Aas A34

A A, A, A, Ar As Ay Ar As Ay (1.10.25)

A, As Ay A, As Ay
+A31 Azz Aza Az4_A41 Azz Aza Az4
Ao As A A As Ay

where the 3x 3 determinates are evaluated by (1.10.6). Both of the formulas (1.10.24) and
(1.10.25) reveal the feature identified above for 3x3 matrices that the determinant is linear in each
column and completely skew symmetric in its columns.

The expansion in our definition (1.10.25) can be rearranged into an expansion by the first row of A
just as was done for the 3x 3 matrix in (1.10.19) above. The formula in this case looks like

po A A AL (A A A,
det A=|"2 2 3 al _ _
et AL A, AL A, AilAy, As A-A A A Ay

A, A, A, A, Ar As Ay An A A (1.10.26)

P Ay Ay P Ay Ay
+A13 A31 Asz %4_'6‘14 A31 Aaz A33
An Ay Ay An Ap Ag

As an alternate to (1.10.26) as an expansion by rows formula, one can establish the generalization
of (1.10.20), namely,

det A= Zga A1y Paoa) Pio(e) (1.10.27)

Just as (1.10.21) holds for 3x 3, the last result shows that it also holds for 4 x4 , indeed, for
N x N matrices.

The pattern illustrated by (1.10.4) for 2 x 2 matrices, by (1.10.6) for 3x 3 matrices and by

(1.10.26) for 4 x4 matrices can be generalized to square matrices of arbitrary order. More
formally, the expressions (1.10.18) and (1.10.24) generalize to

det A= &, A A op A A (1.10.28)
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for the determinant of a N x N matrix. Again, we see that the determinant is linear in each column
and it is completely skew symmetric in each column. It is also true that an expansion by rows will

yield the same result, i.e.,
det A= ZgaAla(l)AZa(Z)AJJ(S) A

and, thus, again it is displayed that
det A=det AT

Example 1.10.3: The identity matrix in .#"" is given by (1.1.27), repeated,

10 - - -0
01 - - -0
| =
00 - - - 1]
It follows from (1.10.28) or (1.10.29) that
detl =1

(1.10.29)

(1.10.30)

(1.10.31)

(1.10.32)

Example 1.10.4: A matrix that arises in multiple applications is the Vandermonde matrix.'° Itis a

square matrix that takes the form

1 1 1 11 1]

X X, X3 Xy

2 2 2 2

= X X, X3 Xy
N-1 N-1 N-1 N-1
R X, X3 XN

It turns out that the determinant of this matrix is

detV :lﬁ[(xi —xj)

i,j=1
i>]

(1.10.33)

(1.10.34)

10 The Vondermonde matrix is named after Alexandre-Theophile Vandermonde, a French musician and chemist.

Information about VVandermonde can be found, for example, at http://en.wikipedia.org/wiki/Alexandre-

Th%C3%A90phile VVandermonde.
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1 1 1
detv =|x, x x|=12 Slox|t Lo/t ?
™M 2 3| X2 X2 1 X2 XZ 1 X X
Xlz X22 X§ 2 3 2 3 2 3
U T E I T A
o X2 X3 ' X22 X: ' X2 X3
:xzxs(x3—x2)—x1(x§—x22)+xf(x3—x2) (1.10.35)
=(x3—x2)(x2x3—xl(x3+x2)+xf)
Z(X3—X2)(X3—Xl)(X2—X1)

The same kind of straight forward expansion based upon (1.10.26) yields

1 1 1 1
X, X, X X
detV=|7 2 0 A=(X% %) (% =% ) (X =% ) (X =%, ) (% =% ) (%, — %) (1.10.36)
Xl XZ X3 X4
§ e K X

Example 1.10.5: One can continue the individual expansions, as with the derivations of (1.10.35)
and (1.10.36), and infer the general result (1.10.34). It is instructive to reach (1.10.34) by
utilization of the property that a determinant is linear in each of its columns and derive a formula
that works directly with the determinant

1 1 1 1
X, X, X Xy
X2 X2 X X2
detvV =| ? 3 N (1.10.37)
XlN -1 X2N -1 X:;\l -1 X:\\‘I -1

The first step is to subtract from (1.10.37) a series of determinants, each having value zero, as
follows:



111

Sec. 1.10 . The Determinant of a Square Matrix
1 1 1 1 1 1 1 1
X1 X2 X3 XN Xl XZ X3 XN
| %% K R T
The N®row is x;xrow N-1 = equal to 0
1 1 1 1
Xl X2 X3 X4
X; X X; X4
A XX XXy
0 xx " -x" XX ox -
The (N-1)" row is x,xrow N2 = equal to 0
1 1 1 1
X X X X
_‘“_0 )(1)(2_)(12 )(1)(3_)(12 X1XN_X12 _
0 XX =X XX -x XXy =X
0 X1X2N_2 _ XiN—l X1X3N-2 _ XlN—l Xlxr’\\:-z _ XlN—l

The second row is x;x first row = equal to 0

The linearity property illustrated with equation (1.10.12) allows (1.10.38) to be written

detV =

N-2

X;

1
Xy — X
X = XXy

N-2
3

N-2

X N

X

N-1 dimensional Vandermonde Determinant

(1.10.38)

(1.10.39)
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If the above process is repeated on the N —1 dimensional Vandermonde determinant, we obtain a
product involving the N —2 dimensional Vandermonde determinant and so forth. This iterative
scheme produces the result (1.10.34).

Another, equivalent, way of defining the determinant of a N x N matrix is to introduce the
minor and the cofactor of a matrix.

Definition: Givena N xN matrix A, where N >1, the determinant of the (N —1) x (N —1) matrix
obtained from A by omitting the i" row and the j™ column is the minor of the ij element of A.

It is customary to denote the minor of the ij element by M;.

Example 1.10.6: For a 3x3 matrix

Ay A, A
A=|A, A, A, (1.10.40)
Ay Ay, Ay
it follows from the definition that
T o IV [ T VI A
Ay, Ay Ay Ay Ay Ay
woo A A AL, A A (L1041
Ay Ay Ay Ay Ay Ay
wooe AL A AL A A
Ay Ay Ay Ay A Ay

Definition: The ij cofactor of the nxn matrix A is
cof A, =(-1)"' M, (1.10.42)

For the 3x3 example above the cofactors are
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S A

H L

cofAzzzMzzzﬁ: ZZ cofAB:—MB:—:i :Z (1.10.43)

L N B
M|

The results (1.10.43) allow (1.10.6), the formula for the determinant of a 3x 3 matrix, to be
rewritten

dotac Al PelonlBe Al A A
An Ay An Ay An Ay (1.10.44)
= A, cof A, + Ay cof A, + Ay cof A,
Likewise, the formula (1.10.19) yields
O S N S N
Ap Ay Ar Ay Ay Ay, (1.10.45)
=A; cof A+ A, cof A, +A; cof A,
We can generalize (1.10.44) and (1.10.45) for N x N matrix A by the formulas
N
det A=>" A, cof A, (1.10.46)
k=1
and
N
det A=>" A, cof A, (1.10.47)
k=1

As with the 3x 3 matrix discussed above, it is possible to write the determinant of a N x N matrix
A as expansions about any column or any row. As a practical matter, one chooses the row or

column so as to capitalize on as many zeros as possible. In any case, the formula which reflects
this last assertion is



114 Chap. 1 . ELEMENTARY MATRIX THEORY

N
det A=>" A, cof A, i=1..,N (1.10.48)
k=1

for an expansion about the i" column and

N
detA=>" A, cof A, j=1..N (1.10.49)
k=1

for an expansion about the j" row. The fact that a determinant vanishes when two of the columns
or rows are the same tells us that

0=>" A,cof A, i # (1.10.50)
for an expansion about the i™ column and
N
0=> A, cof A, j#i (1.10.51)
k=1

for expansion about the j™ row. Fortunately, the four formulas (1.10.48) through (1.10.51) can be
written as two formulas if we utilize the Kronecker delta defined by (1.1.29), repeated,

1 fori=j
5 = ) (1.10.52)
"0 fori=j

With this definition, equations (1.10.48) and (1.10.50) can be written
N
5;det A=>" A, cof A, ij=1..,N (1.10.53)
k=1
and equations (1.10.49) and (1.10.51) can be written

N
5;det A=Y A, cof A, ij=1..,N (1.10.54)

k=1

The right sides of equations (1.10.53) and (1.10.54) are of the same general form as the
N
formula, ZAJ.BJ.S ,1=1..,M, s=1.. K, introduced in Section 1.1 for the product of two
j=1

matrices A and B. We shall next exploit this fact and rewrite (1.10.53) and (1.10.54) as the
product of two matrices. We have already introduced the symbols A=[ A; ] and I =[5 | for the

matrix whose components are A; and J;

; » respectively. The matrix whose components are the
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cofactors, cof A, ,isan N x N matrix called the adjugate matrix of A A1 1t is given the symbol

adjA. Inorder to accommodate the different order of the indices in (1.10.53) and (1.10.54), over
that used in the definition of matrix multiplication, the definition of the adjugate involves the
transpose of the matrix of cofactors is follows

[cof A, cof A, cof A, - - cof A, ]
cof A, cof A, cofA, - - cofA,
cof cof cof :
adjA= A & & (1.10.55)
| cof A, : : - - cof Ay |

Transposed Matrix of cofactors of A

Thus, the adjugate matrix is simply the transposed matrix of cofactors.

Example 1.10.7: If A isthe matrix (1.10.7), then

22 32 B 2T
‘2 3‘ _‘1 3‘ ‘1 2‘
S R
2
120 22 |21
22 32 |32]
2 2 1 20 1 2]
2 3 |2 3 22
‘3 2‘ ‘2 2‘ ‘2 2‘
_ _ (1.10.56)
13 13 32
320 21 |21
IERERE]
(2 1 2
-7 4 2
4 3 1

The definition (1.10.55) allows us to write (1.10.53) as the matrix equation

11 Many textbooks use the word adjoint for what we have called adjugate. The adjoint name can be confused with
another operation, which we shall see later, given the same name.
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(adjA) A= (det A)I (1.10.57)

Likewise, we can write (1.10.54) as
A(adjA) = (det A)I (1.10.58)

Thus, the adjugate matrix, adj A, has the interesting property that when it multiplies A on
the left or the right, one gets the diagonal matrix (det A)I . These last two results lead us to an

important result in matrix algebra. Namely, when the determinant of a matrix A is nonzero, it is
nonsingular. This assertion follows by recalling from Section 1.1 that a matrix A is nonsingular if

there exists a matrix, which we wrote as A™, that obeys
AAT = ATA= (1.10.59)

If det A= 0, the two equations (1.10.57) and (1.10.58) can be written

(_adj A) A= A(_adj A) .y (1.10.60)
det A det A

Thus, A™ not only exists when det A= 0, it is given explicitly by

Al adj A

- 1.10.61
det A ( )

Example 1.10.8: For the matrix (1.10.7) whose determinant is given by (1.10.8) and whose
adjugate matrix is given by (1.10.56), its inverse is given by

2 1 2
5 5 5
Al :%: 42 (1.10.62)
det A 5 5
4 81
| 5 5 5 |
Example 1.10.9: You are given the 2x2 matrix
A{A&l A”} (1.10.63)
A Ay

The determinant of this matrix is given by (1.10.4). When we assume that det A is not zero, we are
assuming that
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APy = APy #0 (1.10.64)

From the definition of cofactor and the definition of the matrix adj A, it is given by

adj A = [COf Ay cof Aﬂ} :{ o _A”} (1.10.65)
cof A12 cof Azz _A21 An
and, from (1.10.61) the inverse of A is given by
ato_ Lt { P _/ﬂ (1.10.66)
APy = A Ay ‘ A Ay

det A Swap position of diagonals
Switch sign of off diagonals

The theoretical formula (1.10.66) was used in Example 1.1.2 to calculate the inverse given in
equation (1.1.32). This formula was given without proof in Exercise 1.1.7.

. adjA . . . :
The equation A™ = ﬁ is a valuable theoretical result which allows one to determine
e
when a matrix is nonsingular and to calculate the inverse. The converse result, namely, that if A is
nonsingular, then its determinant is nonzero is also true. This is a result we shall develop as soon

as we derive one more theoretical result.

The theoretical result we need concerns the determinant of the product of two matrices. If

A andB are in .#"*" matrices then the product AB isalsoin .#"". The theoretical result we
need is

det AB = det Adet B (1.10.67)
This interesting and simple result is either easy or hard to prove depending upon how one

introduces the idea of a determinant. The essential features of the general proof are well illustrated
in the special case where N =2. For this case, the product AB is

AB — |:A11 AJ.2:||:Bll BlZ:| — |: AilBll + A12 BZl AllBlZ + A12 BZZ:| (1 10 68)
A21 A22 BZl B22 AZlBll + A22 BZl AZlBIZ + AZZ BZZ
The determinant of this product requires that we expand
det AB — AllBll + A12 BZl AllBlz + A12 BZZ (1 10 69)
AZIBll + A22 BZl AZlBIZ + A22 BZZ
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The fact that the determinant of a matrix is linear in the column or row vectors allows us to write

(1.10.69) as

AilBll + A’iZ BZl
AZlBll + AZZ BZl

det AB =

A11812 + A12 BZZ
A21812 + A22 BZZ

Use linearity in first column
All Bll Ail Blz + A12 BZZ
AZl Bll A21 Blz + A22 BZZ

+

A12 BZl All BlZ + A12 BZZ
A22 BZl AZl BlZ + AZZ BZZ

All Bll Ail BlZ
AZl Bll A21 BlZ

+

Use linearity in second column

Ail Bll AlZ BZZ
A21 Bll A22 BZZ

Factor constants
from columns

A12 BZl All BlZ
A22 BZl AZl BlZ

+

Factor constants
from columns

A12 BZl A’iZ B22
AZZ BZl A22 BZZ

+

Factor constants
from columns

Ar As
A Ay

Identical
columns
=det zero

A A
Ao Py

= Bll Blz

+ BZl BlZ

Au

1

=0+B,B,,

= ( Bll Bzz - le BlZ )

Factor constants
from columns

Ar A

+ Bll BZZ A2 A2
1 2

A A
Ay Ay

Identical
columns
=det zero

A A
A Py

Switch colunns
change sign

+ BZl BZZ

Ad,
A

21712

Ar A

1 2

=detBdet A

+0

(1.10.70)

The generalization of the above argument to N x N matrices requires a little care, but follows the

same type of argument just utilized for 2x 2

matrices.

Next, we shall utilize the formula (1.10.67) to prove that if a matrix is nonsingular, its
determinant is nonzero. We begin by assuming we are given a matrix Ain .#"". Because, by

assumption A is nonsingular, there exists a matrix A"in .#"*" such that

AA" = AA=

(1.10.71)
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If we calculate the determinant of this equation and use (1.10.67) and (1.10.32), we obtain
det AA" =det A det A=detl =1 (1.10.72)

The equation det A~ det A=1 rules out the possibility that the determinant of a nonsingular matrix
can be zero.

In summary, we have learned that a nonsingular matrix A in .#"" is nonsingular if and
only if its determinant is nonzero.

Exercises

1.10.1: Show that the determinant of the matrix

4 3 O
A=|3 1 2 (1.10.73)
5 -1 4
is det A=58.
1.10.2: Show that the inverse of the matrix (1.10.73) is
. -2 12 6
A‘lzg 22 -16 -8 (1.10.74)
-8 19 -5
1.10.3: Show that the determinant of the matrix
-1 2
A=|1 3 2 (1.10.75)
1 6
is det A=0.
1.10.4: Show that the determinant of the matrix
3 3
A=|0 1 (1.10.76)
0 2

is det A=-3.
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1.10.5: Show that the inverse of the matrix (1.10.76) is

. -1 -7 5
A—lz—g 0 9 -6 (1.10.77)
0O -6 3
1.10.6: Show that the determinant of the matrix
2 -1 3
A=|-1 2 =2 (1.10.78)
1 4 0
is det A=0.
1.10.7: Show that the determinant of the matrix
1 1 11
2 -1 3 2
A= (1.10.79)
0 1 21
0O 0 7 3
is det A=0.
1.10.8: Show that the determinant of the matrix
2 1 2 1
3 0 1 1
A= (1.10.80)
-1 2 21
-3 2 31
is det A=20.
1.10.9: Show that the inverse of the matrix (1.10.80) is
10 -5 0 -5
26 -23 4 7
ool (1.10.81)

20| 4 2 -4 2
34 37 4 13
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1.10.10: If A isin .#™" and is an upper triangle matrix

_An A12 A13 e AiN ]
0 Azz A23 e A2N
A<l 0 M ' (1.10.82)
0
100 0 A
show that
det A=A ALA;- Ay (1.10.83)

Thus, the determinant of an upper triangular square matrix is simply the product of the diagonal
elements. A similar result holds for lower triangular matrices and, trivially, for diagonal matrices.

1.10.11 If Aisin .#""and has the LU decomposition (1.7.3), show that
det A=detU (1.10.84)

In certain numerical applications, it is numerically better to evaluate the determinant with (1.10.84)
after a LU Decomposition.

1.10.12 If A and B arein .#"" show that
adj( AB) =adjBadjA (1.10.85)
1.10.13 If A is a nonsingular matrix, establish the following properties of the adjugate matrix:

det (adj A) = (det A)" "
adj(adjA) = (det A)" * A (1.10.86)
det (adj(adj A)) = (det A)™*

1.10.14 If Ais nonsingular, show that adjA is nonsingular and given by
(adjA) " =adjA™ (1.10.87)

1.10.15 Show that adj A" is given by
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adj A" = (adjA)’ (1.10.88)

1.10.16 Show that the adjugate and the inverse of the Vandermonde matrix

1 1 1
V=X X X (1.10.89)
XX X
are given by
XX (X3 = X,) X5 = X5 Xy — X,
adiV =| XX, (X = X;) X5 =X7 X, —X (1.10.90)
XX, (X, = X) X =X2 X, —X
and
I X, Xq B X, + Xq 1 |
(Xl_xz)(xl_XS) (Xl_xz)(xl_XS) (Xl_XZ)(XI_X3)
1
Vil X, X3 X 1 % _ (1.10.91)
(Xl—XZ)(XZ—X3) (Xl—XZ)(XZ—X3) (Xl—XZ)(XZ—X3)
X X, B X + X, 1
L (Xl_xs)(xz_xs) (Xl_xs)(xz_xs) (Xl—X3)(X2—X3) |

1.10.17 There are applications where the elements of a matrix depend upon a parameter and it is
necessary to differentiate the determinant with respect to this parameter. If, for example, N =3
and the matrix is written

A
detA(t)=|A, (1) A,(t) Asl(t) (1.10.92)
A

show that
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d d d
A a0 A (a0 228 a0 a0 am B

d(de;tA(t)LdA;lt(t) A () Ao (t)|+]An(t) dAj;t(t) A (1) + A (1) A (1)

dA,, (t) dA,, (1)
dt dt

aa,, (1) (11093)

A (1) As(t) |Au(t)

Au(t) [Aa(t) As(t)

dA(t)

= tr[(adj A(t))Tj
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Section 1.11. Systems of Linear Equations: Cramer’s Rule
The formula (1.10.61), repeated,

Al adj A

= 1.11.1
det A ( )

is useful when one wants to calculate the inverse. While they are numerically more useful
algorithms for large systems, (1.11.1) is a formula with a lot of applications. One of these arises

when one knows that a matrix Ae.#™" is nonsingular and the goal is to find the solution to the
linear system

Ax =b (1.11.2)

We know from Section 1.6 that this system has a unique solution when the matrix A is
nonsingular. Equation (1.11.1) allows us to write that solution in the explicit form

x=A"b= deﬁ(adj A)b (1.11.3)

Example 1.11.1: In the special case N =2, we can use the formula (1.10.66) to express the
solution (1.11.3) as

b1A22 — b2A12
|:X1:|: 1 |: Azz _AJ.2:||:b1:|: A11A22_A12A21 (1.11'4)
Xa AnAzz - A12A21 _A21 An bz _b1A21 + bzAu
Aquz - A12A21
One way the solution (1.11.4) is sometimes written is
b A, Ar b
X, :% and X, = 22—2122 (1.11.5)
Ay Ay Ay Ay

Equation (1.11.5) is an example of Cramer’s Rule!2. One simply places in the numerator of each
formula the determinant formed from the determinant of the matrix of coefficients except that the
first column is replaced by the components of b in the formula for x; and the second column is

replaced by the components of b in the formula for X,.

12 This rule is named after the Swiss mathematician Gabriel Cramer. Information about Gabriel Cramer can be found,
for example, at http://en.wikipedia.org/wiki/Gabriel Cramer.
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Just as (1.11.5) follows from (1.11.3), Cramer’s rule for systems of arbitrary order also
follow from (1.11.3). The first step is to express (1.11.3) in the component form

1 N
X, :m;(cof A;)b (1.11.6)

Just as (1.10.53) expresses the determinant as a cofactor expansion, one can recognize the
numerator of (1.11.6) as a determinant. Except that it is a determinant with the j™ column of A
replaced by the components of b. For example, in the case N =4, the four solutions are given by

b, A, A, A, A, b A, A,
b, Ay As Ay Ay b, Ay A,
b, Ay As A, A, b A, A,
oA A Al A b A A,
A A, A A 2T [A A A A,
A Ay Ay A, Ay A, A A,
Ay A, Ay A, Ar A, A A,
Ar As Ag A, Ar A, A A,
A.l A&.Z bl AA 'Ail AZ A13 bl
AZl A22 b2 A24 AZl AZZ A23 b2
A, A, by A, A A, Ay b
X:Azu A42 b4 A44 X:A"l A42 A43 b4
A A, A A TR A, A A,
A Py Ay A, A By Ay A,
Ay A, Ay A, A A, Ay A,
As Ap Ag Ay As Ay Ag Ay (L1L7)

Example 1.11.2: In Example 1.3.1, we solved the system (1.3.2), repeated,

X +2X,—X;=1
2X, =X, + X, =3 (1.11.8)
=X, +2X, +3X; =7

Cremer’s rule tells us that if det A= 0 the solution is
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b, A, A P 2 -1
b, A, Ay 3 -1 1
‘= b, A, A [7 2 3 _1(—5)—3(8)+7(1) —22_1
' A A, A 1 2 -1 1(—5)—2(8)—1(1) -22
A21 Azz A23 2 -1 1
A31 A32 A33 -1 2 3
A11 bl A13 1 1 -1
A21 b2 A23 2 3 l
oA b A 1T 3 _1(2)-2(10)-1(4) -2 _,
*TIA, A, A [T 2 A 1(-5)-2(8)-1(1) -22
A Ay Ayl |2 -1 1
An A Ayl 123
A A, bl 1 2 1
A21 Azz bz 2 -13
oA A b 12 7 1(-13)-2(12)-1(7) 44
AL A, Al |12 -1 1(-5)-2(8)-1(1) -22 (1119)
Azl Azz A23 2 -1 1 o
A31 Azz Azs -1 2 3
which, of course, is the earlier result (1.3.10).
Exercises
1.11.1: Utilize Cremer’s rule to find the solution of the system
2%, +4x,=9
(1.11.10)
2% +X, =6
1.11.2: Utilize Cremer’s rule to find the solution of the system
2X, +3X, + %X, =9
X, +2X, +3%, =6 (1.11.11)

3% + X, +2%X; =8

1.11.3: Utilize Cremer’s rule to find the solution of the system
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3X, =X, +2X; =6
2X + X, +X; =6 (1.11.12)
X, —3X, =6

1.11.4: Utilize Cremer’s rule to find the solution of the system introduced in Exercise 1.3.2, i.e.,
the system

X, +3X, + X, =1
2X, + X, + X, =5 (1.11.13)
—2X, +2X, — X; =—8

1.11.5: Utilize Cremer’s rule to find the solution of the system introduced in Exercise 1.3.3, i.e.,
the system

2X, +3X, =8
4%, +6X, +7X; =3 (1.11.14)
2%, —3X, +6X; =5

1.11.6: Utilize Cremer’s rule to show that the solution of the system

X, +2X, +1%; =5
2% +2X, +1X, =6 (1.11.15)
X +2X, +3%X; =9

isx=|[1].

1.11.7: Utilize Cremer’s rule to show that the solution of the system

X, +X;+X, =0
3%, +3X, —4x, =7 (111.16)
X, + X, + X, +2X, =6 o

2%, +3X, + X, +3%X, =6
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Chapter 2

VECTOR SPACES

Chapter 1 consisted of a quick summary of a lot of topics in matrix algebra. Matrices
represent an excellent introduction and example of a concept known as a vector space. Another
example is the geometric one in the form of a directed line segment. This one is usually
represented graphically as a straight line with an arrowhead. The topics of this chapter involve
abstracting and generalizing the matrix algebra concepts from Chapter 1 and the geometric
concepts of a directed line segment. The generalization leads to the study of Vector Spaces or,
equivalently, Linear Spaces. The concept of a vector space put forward in this chapter is purely
algebraic. Itis a set with a prescribed list of properties. After the abstract idea of a vector space is
introduced, it will be illustrated with examples that should provide a good connection with the
discussions in Chapter 1 plus a connection with that of a vector as a directed line segment. Other
connections will be made with examples of vector spaces that arise in other subjects.

Section 2.1. The Axioms for a Vector Space

Before, we list the formal axioms that define a vector space, it is useful to introduce a few
fundamental concepts. One of the basic building blocks to assigning structure to a set is a function
called a binary relation. Prior to giving this definition, we need to be sure we understand the idea
of the Cartesian product of two sets.

Definition: If & and # are two sets, their Cartesian product is a set denoted by .« x Z defined
by

.salx,%’:{(a,b)|ae.sa{ andbeﬂ} (2.1.1)

In words, the Cartesian product is simply a set of ordered pairs, the first element from & and the
next element from £ .

It should be evident how to generalize the above definition to the Cartesian product of an
arbitrary number of sets. We have already seen this definition, for example, when we wrote 2" in
equation (1.1.1) as short hand for what is really Zx#Zx---x%.

N times

Definition: A binary relation on a set ¥ is a function ¥ x¥ — 7.

In words, a binary relation on a set ¥~ is simply a function that takes a pair of elements of ¥~ and
produces an element of ¥".

131
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A vector space is a triple, i.e. a list of three quantities, written ("//,5**, f ) . The first

quantity, denoted by ¥, is a set known as an additive Abelian or commutative group.* This is sort
of a mouthful. More importantly, it is a set with a property call “addition” which we shall note
by +. This property, or function, is a rule which takes two members of ¥~ and produces another
member of ¥~ according to a certain set of rules. The rule is an example of the binary relation or
binary operation just introduced. In the notation above, the + function is the rule

+: VXY >V (2.1.2)
If u,vey , we write the value of the + functionas u+v.

This function has properties defined by the following four rules:

@) There exists a binary operation in %" called addition and denoted by + such that

1 (u+v)+w=u+(v+w) forall u,v,we? .

2 u+v=v+u forall uvey .

3) There exists an element 0 e¥” such that u+0=u forall uev".

4) For every u e there exists an element —u e¥".such that u+(-u)=0.

Rule (al) is an associative rule, (a2) is a commutative rule, (a3) specifies the existence of an
additive identity and (a4) specifies the existence of an additive inverse. . In this definition the
vector u+Vv in ¥ is called the sum of u and vand, when needed, the difference of u and v is
written u—vand is defined by

u-v=u+(-v) (2.1.3)

The second quantity, denoted by & in the definition of a vector space, is an algebraic
structure known as a field. This structure was briefly introduced in Section 1.1. For the sake of
completeness, we shall repeat the definitions here.

A field is a set of quantities # which is equipped with two binary operations + and - such
that

(bl) The binary operation + is a commutative group whose binary operation is called
addition and whose members, therefore, obey

1) A+f=p+A1 (commutative)
@) A+pB)+y=2+(B+y) (associative)
3) O+a=«a (additive identity 0)

! Abelian groups are named for the Norwegian mathematician Niels Henrik Abel. Information about Neils Henrik
Able can be found at https://en.wikipedia.org/wiki/Niels Henrik_Abel
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4) For every a € & , there exists an element, written —« , such that
a+(—a)=0. (inverse)

(b2)  The binary operation - is a binary operation on & , called multiplication, whose
members obey

1) A-p=p-1 (commutative)

(2) A-B)y=1-(B-y) (associative)

3) 1-1=2 (multiplicative identity) 1

4) For every element « € # , there exists an element, written o™, such that
a-(a)=(")-a=1 (inverse)

(b3)  The multiplication operation distributes over addition such that

1) A(B+y)=1-B+A-y
2 (A+B)y=4-y+By

It is conventional in the following not to indicate multiplication between elements of fields
by a special symbol such as -. In the following, our convention will be to write

AB=A-B (2.1.4)
and the - will be understood.

Example 2.1.1: Examples of Fields

a) The two most important examples of fields we shall confront in this course are the two
introduced in Chapter 1. Namely, set of real numbers £ and the set of complex numbers
¢ .

b) The set of rational numbers can be shown to form a field. Recall that rational numbers are

real numbers of the form aﬂ where « and g are integers (S #0).

Example 2.1.2: An example of a subset of Z that is not a field is the set of integers. They are not
a field when you use the usual definitions of addition and multiplication. The problem is the
inverse under multiplication. The integers do have inverses that are real numbers, but they are not
integers.

The binary operations we have introduced thus far are examples of internal binary
operations. Addition in ¥ is an operation on elements of ¥ . Likewise, the two operations we

have defined on & are operations on elements of & . The third element of the triple (7", &, f) is
the function f which takes an element of # and an element of ¥~ and, through a specific set of
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rules, produces an element of ¥. More formally, f isa function f :# x¥ — v, called scalar
multiplication, such that

(4)

(©)
(1) f (4 f (V)= (AuV)
2  f(A+pu)=f(Au)+f(mu)
(3) f( f(2,u)+f(2,v)
£

forall A,ueZ andall u,ve? .

The operation f :# x¥ — ¥ is an example of an external operation. It takes two elements from
different sets in order to produce the result.

The elements of ¥~ are called vectors. The elements of the field % are called scalars. The
notation (7, &, f ) for a vector space will be shortened to simply ¥". Itis also customary to use a

simplified notation for the scalar multiplication function f . It is customary to write

f(A4,v)=2av (2.1.5)

and also regard Av and vA to be identical. In this simplified notation we shall now list in detail
the axioms of a vector space.

Definition of Vector Space Restated:

Definition. Let ¥ beasetand & afield. ¥ isa vector space if it satisfies the following rules:
@) There exists a binary operation in %" called addition and denoted by + such that

(1) (u+Vv)+w=u+(v+w) forall uv,we? .
(@) u+v=v+u forall uvey .
3 There exists an element 0 ¥ such that u+0=u forall uev..

4 For every u e¥ there exists an element —u €. such that u+ (—u) =0.

(b) There exists an operation called scalar multiplication in which every scalar 1 e #
can be combined with every element ue¥” to give an element Au € such that

1) A(uu)=(Au)u
(2 (A+wp)u=iu+pu
B  A(u+v)=Au+av
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4) lu=u forall L,ueF andall u,vey .

If the field # employed in a vector space is actually the field of real numbers £, the space is

called a real vector space. A complex vector space is similarly defined. For the most part, it is
useful to think of the vector spaces being discussed here as complex. Many of our examples will
be for real vectors spaces as a special case.

There are many and varied sets of objects that qualify as vector spaces. The following is a
partial list:

a) A trivial example is the set consisting of the zero element 0 of any vector space. This
single element is a vector space.

b) The set of complex numbers #,with the usual definitions of addition and multiplication by
an element of # forms a real vector space.

c) The vector space ¢" is the set of all N-tuples of the form u= (/11 Ay e Ay ) where N is a
positive integer and A, ,4,,...,4, €% . Since an N-tuple is an ordered set, if

V= (/J,l TN ) is a second N-tuple, then uand v are equal if and only if
u =4 forall k=12,..,N (2.1.6)

The zero N-tuple is 0=(0,0,...,0) and the negative of the N-tuple u is

-u= (—/11 = Ay ey = Ay ) . Addition and scalar multiplication of N-tuples are defined by the
formulas

UV =(ty + Ayl + 2y fiy + Ay ) (2.1.7)

and
pU =Ly iy oo i) (2.1.8)

respectively. The notation #" is used for this vector space because it can be considered to
be an N™ Cartesian product of ¢ .

d) Theset ¥ =.#"" ofall NxM complex matrices is a vector space with respect to the

usual operation of matrix addition and multiplication by a complex number. Of course, the
zero matrix and the negative matrix (additive inverse) are defined as in Chapter 1.
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e) Let o be avector space whose vectors are actually functions defined on a set .« with

valuesin ¢ . Thus, if he #, xe then h(x)e? and h:o# €. If kis another vector of
2 then equality of vectors (functions) is defined by

h=kifandonlyif h(x)=k(x) forall xe« (2.1.9)

The zero vector (function) is given the symbol 0 and is defined as the function on &«
whose value is zero for all x. Addition and scalar multiplication are defined by

(h+k)(x)=h(x)+Kk(x) forall x e« (2.1.10)

and

(Ah)(x)=A(h(x)) forall xe« (2.1.11)

respectively.

Example 3 is frequently stated in a more elementary context. Recall that

[a,b] = {x|a< x<b} isaclosed interval of the set of real numbers and (a,b) ={x|a < x<b}|

is an open interval of the set of real numbers. Let C[a,b] be the set of real valued functions
defined by

Cla,b]= { f | f continuous on every open subinterval of [a,b]} (2.1.12)

i.e., the set of all real valued functions defined on every closed interval [a,b] and
continuous on (a,b). The set C[a,b] is a vector space providing one defines addition and
scalar multiplication as above with (2.1.10) and (2.1.11). In particular, addition is defined
by

(f+9)(x)=f(x)+g(x) forall xe[a,b] (2.1.13)
and scalar multiplication by

(A1)(x)=2(f(x)) forall xe[a,b] (2.1.14)

g) Let C?[a,b] be the set of real valued functions defined by

C’[a,b]= { f | f twice differentiable on every open subinterval of [a,b]} (2.1.15)
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If the above definitions (2.1.13) and (2.1.14) of addition and scalar multiplication are
adopted, it is easily shown that C°[a,b] is a vector space.

h) Let £ denote the set of all polynomials p of degree equal to or less than N defined, for all
Xe¥, by

P(X)=4 + AX+4XE +-+ A X" (2.1.16)

where 4,,4,,4,,...,4y €% . The zero polynomial in #, is given the symbol 0 and, formally,
is defined by

0(x) =0+ 0x +0x* +---+0x" (2.1.17)

The set £, forms a vector space over the complex numbers ¢ if addition and scalar
multiplication of polynomials are defined in the usual way, i.e., by

(p,+p,)(X)=p,(X)+ p,(x) forall xe (2.1.18)
and

(Ap)(x)=4p(x)  forall xeZ (2.1.19)

Exercises

2.1.1 Let ¥ and % be vector spaces. Show that the set ¥ x % is a vector space with the
definitions

(ux)+(v,y)=(u+v,x+y)
and

A(u,x) = (Au, Ax)
where u,ve? ; X,ye#;and 1%
2.1.2 Let ¥ be avector space and consider the set " x¥". Define addition in ¥ x¥ by

(uv)+(xy)=(u+x,v+y)

and multiplication by complex numbers by
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(A+ip)(u,v)=(Au—puv, uu+Av)

where A, €. Show that ¥ x¥  is a vector space over the field of complex numbers.
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Section 2.2. Some Properties of a Vector Space

Next, we shall prove certain results which follow by a systematic application of the above
properties of a vector space. Aside from yielding important information, the proofs are excellent
illustrations of how the axioms of a vector space are used to deduce additional conclusions. First,
we shall prove that the zero vector, 0, and the additive inverse of an arbitrary vector u, which we
call —u, are unique.

Theorem 2.2.1: The zero vector, 0, is unique.
Proof: As mentioned in Section 1.6, uniqueness theorems usually begin by the assumption of a

lack of uniqueness. One then attempts to establish a contradiction. By Axiom (a3), if the zero is
not unique, we must have, forall uev”,

u+0=u and u+0'=u (2.2.1)
(a3) (a3)

where 0 and 0" are the two zeros. Because u is arbitrary, in the first equation take u=0" and in
the second equation take u=0. The results are

0'+0=0" and 0+0'=0 (2.2.2)
Because of (a2), 0'+0=0+0', and, as a result the only conclusion from (2.2.2) is
0=0' (2.2.3)

Next, we want to establish that the additive inverse is unique. We shall approach this result by first
establishing a more general result.

Theorem 2.2.2: For every pair of vectors v,w ¥, there exists a unique u such that u+v=w.

Proof: As usual, assume a lack of uniqueness. As a result, for given v,w e ¥,

u+v=w and u+v=w (2.2.4)

Our goal is to prove that u’=u. It follows from (2.2.4) that

u+v=u'+v (2.2.5)

Next, let —v be an additive inverse of the element v and, in effect, add it to (2.2.5) to obtain

Uu+v+(-v)=u+v+(-v) (2.2.6)
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Properties (a4) and (a3), reduce the last equation to

u=u’ (2.2.7)
which establishes the uniqueness of the solutionto u+v=w.
Corollary: The element (the additive inverse), for every v e ¥ is unique.

Proof: Make the choice w =0 in equation (2.2.4) of the last theorem. Asaresult, u+v=0. The
uniqueness of u establishes the result.

Theorem 2.2.2 established the uniqueness of solutions, u, to u+v=w. A related question relates
to whether or a solution actually exists. The axioms of a Vector Space give us this existence. The

proof is simple, one just postulates a solution and shows that it satisfies the given equation,
u-+v=w. The postulated solution is

u=w+(-v) (2.2.8)

and it is elementary to substitute this assumed solution into u+ v =w and use appropriate axioms
to establish the validity of the solution. Recall that earlier we defined the difference in two vectors
w and v by the formula w—-v =w + (-V)

The next theorems relate to relationships between the zero scalar and the zero vector.

Theorem 2.2.3:

Au=0 ifandonlyif 41=0 or u=0 (2.2.9)

Proof: The proof of this theorem requires the proof of the following three assertions: a) Ou =0, b)
A0=0andc) Au=0=4A=0o0ru=0. We shall establish these results in the order listed.

Part (a): We shall prove that Ou=0.

Proof: Take =0 and A =1 in Axiom (b2) for a vector space; then

u=u+0u (2.2.10)
%/_/

(b2) and (bd)

Therefore, after utilizing u—v=u+(-v))



Sec. 2.2 . Some Properties of a Vector Space 141
u-u=(u+0u)-u=(u-u)+0u (2.2.11)
(a1) and (22)
where Axioms (al) and (a2) have been used. Next, by Axiom (a4) the last result is
0=0+0u (2.2.12)
Next, we can use (a3) and conclude the result 0=0u.
Part (b): We shall prove that 210=0.

Proof: Set v=0 in Axiom (b3), then

Au=Au+ A0 (2.2.13)
_
v=0 in (b3)
Therefore
AU—Au=Au+A0-Au=Au—-Au+ 10 (2.2.14)
%/_J
(al) and (a2)
and by Axiom (a4)
0=0+40=40 (2.2.15)
- “ -
(a4)  (ad) (a3)

Part (c): We shall prove that Au=0=A1=00ru=0.

Proof: We begin with the assumption that Au=0. If 2 =0, we know from (a) that the equation
Au=0 is satisfied. If 40, then we show that u must be zero as follows:

1 1 1
u=lu= 2| =] u= —(iu) ==(0)=0 (2.2.16)
©%) A A A
—
Mult inverse Cr%mg;g}aigve
gggﬁﬁ%r:%f Field Efg?&'t;% % N
Theorem 2.2.4:
(-Du=-u (2.2.17)

Proof:



142 Chap. 2 . VECTOR SPACES

u+(-Du=(1-1)u =0u=0 (2.2.18)

(b2) with 2=1 and x=—1 and (b4) Part (a)

Because the negative vector is unique, equation (2.2.18) and (a4) yield the result (2.2.17).

Two other theorems of interest are the following:

Theorem 2.2.5:

(-A)u = -au (2.2.19)

L Negative of
Scalar multiplication  vector Au

of (—=A1) timesu

Proof: Let x=0and replace 4 by —1 in Axiom (b2) for a vector space and this result follows
directly.

Theorem 2.2.6:

—AU =4 (-u (2.2.20)
Negative of N%%of
vector Au vector u
Proof: Take x#=-1 in (b1) to obtain
A(=u) =(-A)u (2.2.21)

and use (2.2.20).

Finally, we note that the concepts of length and angle have not been introduced. They are
not part of the definition of a vector space. However, they can be introduced as additional
algebraic structure. These ideas will be introduced later in Chapter 4.
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Section 2.3. Subspace of a Vector Space

In this section, we shall introduce the idea of a subspace of vector space. The idea is
elementary. A subspace is simply a subset of a vector space that is itself a vector space. A more
precise definition is as follows:

Definition: A non empty subset % of a vector space ¥  is a subspace if:

(@ u,we% impliesu+w e % for all u,w e %.
(b) ue# implies Aue % forall 1%

Conditions (a) and (b) in this definition can be replaced by the equivalent condition:
(@') u,we implies Au+ uw e % forall A, ue?.

A few examples of subspaces of vector spaces are as follows:

Example 2.3.1: Trivially, any vector space ¥ is a subspace of itself.

Example 2.3.2: Another trivial example is the set consisting of the zero vector {0} is a subspace of
V.

As stated in these two examples, the vector spaces {0} and 7 itself are considered to be trivial

subspaces of the vector space ¥ . If % is not a trivial subspace, it is said to be a proper subspace
of v .

Example 2.3.3: The subset of the vector space #" of all N-tuples of the form (0,4,,4;,...,4, ) isa
subspace of ¢" .

Example 2.3.4: The set of real numbers Z can be viewed as a subspace of the vector space of
complex numbers €.

Example 2.3.5: Consider the vector space .#"*" of square matrices with real elements. Let & be
the subset of .#"*" defined by

#={NAca™" A=A"| (2.3.1)

The question is whether or not .% , the subset of symmetric matrices, is a subspace of .#"*" .
Because
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(AA+uB) = AA+ uB (2.3.2)
forall 1,ue# andall A Be¥, then from the above definition & is a subspace.

An elementary property of subspaces is given in the following theorem:

Theorem 2.3.1: If % is asubspace of ¥/, then 0 e %

Proof. The proof of this theorem follows easily from (b) in the definition of a subspace above by
placing 4 =0.

If one is given a set of N vectors {u,,u,,...,u, } =7, then one can construct a subspace as

by essentially constructing all possible linear combinations of the elements of the set. More
formally, this construction is as follows:

Definition: Let {u,,u,,...,u, } be aset of vectors in a vector space #". A sum of the form
U, + a,u, +---+ oy Uy is a linear combination of u,,u,,...,uy

Definition: The set of all linear combinations of u,,u,,...,u, is called the span of u,,u,,...,u, . It
is denoted by Span(u,,u,,...,uy)

Theorem 2.3.2: The Span(u,,u,,...,u, ) is asubspace of 7.

The proof follows directly from the definition of subspace.

Definition: The subset {u,,u,,...,uy } is a spanning set for 7" if every vector in ¥" can be written
as a linear combination of u,,u,,...,uy .

Example 2.3.6: Consider the vector space of 3-tuples, #°. A typical element of %° can be written
u=(uy,U,,u,) (2.3.3)

Consider the set of two vectors {i,,i,} in %° defined by

i, = (1,0,0) (2.3.4)
and

i, =(0,1,0) (2.3.5)
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The span of {i,,i,}, written Span(i,,i,), consists of all possible linear combinations of the form
aji, + a,i,. Given (2.3.4) and (2.3.5), a vector v e Span(i,, i2) will necessarily be of the form

V=0, +0,i, =0,(1,0,0)+v,(0,1,0) = (v;,0,,0) (2.3.6)

Therefore, the subspace Span(i,,i,) consists of all of those vectors in #° that have zero in their
third position. This simple example of a subspace in %° is usually illustrated by the simple figure

Thus, Span(i,,i,) is the horizontal plane through the point (0,0,0).

Example 2.3.7: Consider the vector space #, of polynomials of degree less than or equal to 2. A
typical element of £, can be written

P(X) =4+ Ax + 2,X° (2.3.7)

Next, consider the subset of &, defined by {1— X?,x+2,x*}. The span of {1-x*,x+2,x*},

Span(1—x*,x+2,x*), is the set of polynomials of the form

u(x):ul(l—xz)+uz(x+2)+u3x2 = (v, +20,) + U, X + (0, — 0, ) X2 (2.3.8)

We wish to determine the is the relationship between the subspace, Span (1— X2, X+ 2, x2) , and the
vector space &,. They are the same because if we force
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Ao =0; + 20,
A=, (2.3.9)
A =00
Then one can solve (2.3.9) and obtain
v =4 =24
v, =4 (2.3.10)
V3=4 + 4 —24

Therefore Span(1-x*,x+2,X*)=4,.

Example 2.3.8: Consider the vector space C° [a,b] of twice differentiable functions on every
open subset of [a,b]. This vector space was defined by equation (2.1.15). The subset of functions
in Cz[a,b] that obey the differential equation

d*f(x)
dx?

+f(x)=0 (2.3.11)

can be shown to be a subspace of C*[a,b]

Example 2.3.9: Consider the set of functions C” [a,b]. These functions are real valued functions
defined on [a,b] that have derivatives of arbitrary order on every open subset of [a,b]. This set is

a vector space when one defines addition and scalar multiplication by (2.1.13) and (2.1.14). The
vector space &, was introduced in Section 2.1. Each element is also an element of C*[a,b]. Itis

elementary to show that 2, is a subspace of C*[a,b].
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Section 2.4. Linear Independence

This section is concerned with the idea of a linearly independent set of vectors. It arises
from the desire to identify those vector spaces which have a minimal spanning set, i.e. a spanning
set with no unnecessary elements. If such a set can be found, then from the definition of spanning
set, every vector in the vector space would have the representation as a linear combination of
members of this minimum spanning set.

It is helpful to consider the following example as motivation of the idea of linear
independence and the related idea of linear dependence.

Example 2.4.1: Let ¥ =.#>*, the vector space of column vectors of order 3. You are given the
following three vectors in ¥ :

1 —4 -1
u, =|-1}, u,=| 71 uU=|4 (2.4.1)
2 8

Let ¥ =Span(u,,u,,u,) be the subspace of ¥ =.#** spanned by u,,u,,u,. The question is
whether or not % can be generated by less than the three vectors u,,u,,u,. The answer is yes
because

-1 3-4 3 -4 1 -4
U, =4 |=|-3+7|=|-3|+| 7 |=3|-1|+| 7 |=3u,+u,

(2.4.2)
8| |6+2| | 6] |2 2| |2

This equation is an example of what is known as linear dependence, i.e. one of the vectors can be
written as a linear combination of the others. On the basis of this dependence, any linear
combination of the three vectors u,,u,,u, can be expressed, by (2.4.2), as a linear combination of

u,,u,. The conclusion is that

& =Span(u,,u,,u,) =Span(u,,u,) (2.4.3)

The choice of the two vectors u,,u, rather than, say, u,,u, is arbitrary. One can solve the
equation u, =3u, +u, for u, =u, —3u, and formally eliminate u,. The bottom line is that

& =Span(u,,u,,u,) =Span(u,,u,) = Span(u,,u,) = Span(u,,u,) (2.4.4)



148 Chap. 2 . VECTOR SPACES

The question naturally arises whether or not, for example, one can express u, in terms of u, and
further reduce the spanning set. If one forces a relationship

au, +a,u, =0 (2.4.5)
Then (2.4.1) and (2.4.4) would require
1 —4
a|-1(+a,| 7 |=0 (2.4.6)
2 2
As a matrix equation, (2.4.6) requires
a, —4a,=0
-o,+7a,=0 (2.4.7)
20, +2a, =0

which only has the solution ¢, = «, =0 which renders the relationship (2.4.5) trivial. The
conclusion is that one cannot express u, in terms of u, and, as a consequence, {u,,u, } is the
minimum spanning set for % .

The concept of linear independence is introduced by first defining what is meant by linear
dependence in a set of vectors, and then defining a set of vectors that is not linearly dependent to be

linearly independent. The general definition of linear dependence of a set of N vectors is an
algebraic generalization and abstraction of the concepts of co-linearity from elementary geometry.

Definition. A finite set of N (N >1)vectors {vl] Vy e Vy }in a vector space ¥ is said to be

linearly dependent if there exists a set of scalars {o;, ..., }, not all zero, such that

N
> av,; =0 (2.4.8)
j=1

It is a trivial consequence of this definition that every set of vectors which contain the zero vector is
linearly dependent.

The essential content of the definition of linear dependence is that at least one of the vectors
in the set {vly Ve Vy } can be expressed as a linear combination of the other vectors.

Example 2.4.2: Consider the set of four vectors in .#>* {i,,i,,i,,v} where
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1 0 0 1
i,=|0i,=|1]i,=|[0|v=]2 (2.4.9)
0 0 1 3

The question is whether or not we can find four scalars «,,a,,a; and «, , not all zero, such that

oyl + o, + oy +a,v=0 (2.4.10)

If we use the explicit forms of the four vectors given in (2.4.9), then we need to find
a,,a,,a, and ¢, such that

1 0 0 1| |0
|0(+a,l1|+a|0|+a,|2|=|0 (2.4.11)
0 0 1 3| |0

These equations require that the «,,r,,, and ¢, obey

o +a,=0
a,+20,=0 (2.4.12)
o, +3a,=0

Therefore,

a =-a,
a, = —2a4 (2413)

a, =-3a,
If these equations are substituted back into (2.4.10), the result is
—-a,i, —2a,i, —3a,i, + a,v=0 (2.4.14)
or, since ¢, Is nonzero,
V=i, +2i,+3i, (2.4.15)

and the conclusion that the given set is linearly dependent.
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A more or less obvious consequence of the definition of linear dependence is the following
theorem:

Theorem 2.4.1: If the set of vectors {vly V, oV } is linearly dependent, then every other finite

set of vectors containing {vly V, o,V } is linearly dependent.

Definition: A finite set of N (N >1)vectors {Vl,vz,""VN } in a vector space ¥~ is said to be
linearly independent if they are not linearly dependent.

Equivalent Definition: A finite set of N (N >1)vectors {v, v, ...,v, }in a vector space ¥ is said

to be linearly independent if the only scalars {al,az,...,aN } which obey

N
> av, =0 (2.4.16)
j=1

are oy =, =---=ay =0
An evident consequence of this definition is the following theorem.

Theorem 2.4.2: Every nonempty subset of a linearly independent set is a linearly independent set.

There is a relationship between linearly independent column vectors and matrices that is
useful to establish at this point. Let {u,,u,,...,u, }=.#"* be aset of N column vectors in .#"*.

The test for linear independence or dependence requires determining whether or not the equation
U, +a,U, -+ L+ oy Uy =0 (2.4.17)

has nonzero solutions for some of the coefficients «,,,,...,a, . We can write (2.4.17) as a matrix
equation, as follows:

ull u12 ulN
u21 u22 u2N
o +a, +otay =0 (2.4.18)
| Uya | Un2 | | Uun |
— — —_—
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or,
U, Uy Uy || & 0
Uy Uy Uy || & 0
= (2.4.19)
_UM1 Uyo, - - UMN__aN_ _O_
— —
M xN N x1 M x1

We know from the matrix algebra discussion in Chapter 1, that whether or not (2.4.19) has a
nonzero solution depends upon the properties of the matrix of coefficients. The next formal step in
the calculation would be to reduce the augmented matrix to reduced row echelon form and see
whether or not (2.4.19) allows a nonzero solution for some of the unknowns «;,a,, ..., .

If the number of vectors and the size of the column vectors agree, i.e., M =N, then the
matrix of coefficients in (2.4.19) is square. In this case, the system has nonzero solutions if and
only if the matrix of coefficients is singular. Thus, the set {ul, U,,...,Uy } is linearly dependent if

and only if the N x N matrix of coefficients is singular.

Example 2.4.3: Consider the following three column matrices in .#>*

4 2 2
u=[2|,u,=[3|,u;=|-5 (2.4.20)
3 1 3
The next step is to form the sum (2.4.17)
oUu; +a,uU, + Uy =0 (2.4.21)

Given the definitions (2.4.20), the matrix form of (2.4.21) is

4 2 2| o
2 3 -5|a,|=0 (2.4.22)
31 3o

As explained above, the linear independence of the three column matrices (2.4.20) depends upon
whether or not the coefficients «,,«,,, are all zero. We know from the results of Theorem 1.6.1
that (2.4.22) has the zero solution if and only if the matrix of coefficients is nonsingular. We know
from the results of Section 1.10 that the matrix is nonsingular if and only if its determinant is
nonzero. The determinant of the matrix of coefficients in (2.4.22) is
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4 2 2
2 3 -5/ =4(14)—2(4) +3(~16) =0 (2.4.23)
31 3

Therefore, the matrix is singular and the system (2.4.22) has a nonzero solution. As a result, the
three column matrices (2.4.20) form a linear dependent set. More detailed information about this
example is obtained if (2.4.22) is converted to reduced row echelon form. The result turns out to
be

10 2|«
0 1 -3fea,|=0 (2.4.24)
0 0 0| e
Therefore,
o, =—2a, (2.4.25)
and
a, =3a, (2.4.26)

As aresult of (2.4.25) and (2.4.26), the three vectors in (2.4.21) are related by
—2u, +3u, +u, =0 (2.4.27)

It is helpful to observe in passing that equation (2.4.27) not only defines the relationship between
the three columns of the matrix of coefficients in (2.4.22). It also defines the relationship between
the three columns of the reduced row echelon form that appears in (2.4.24). This is a general
feature we shall see in our other examples. Our theoretical results later will show the origin or this
result.

In Section 2.1 we introduced the vector space %, consisting of the set of polynomials of

degree less than or equal to N . Given this vector space, it is useful to establish a procedure for
whether or not a subset of polynomials in £, is linear independent. If we are given a subset

{pl,..., pK} of £, . The check for linear independence, according to the above definition is whether
or not the equation

P+ Py -+ ay Py =0 (2428)
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implies that the scalars o, a,, ..., are necessarily zero. Each polynomial in (2.4.28) has the

representation

Pj(X) = Agj + A X4+ Ay X" for j=12..K (2.4.29)
Therefore, (2.4.28) can be written
P+ a, P+ oy Py
:al(AO1+Allx+"'+ﬂ“NlXN)
(2.4.30)

0ty (g + AppX -+ Ay, XV )

+oetay (%K +/11Kx+---+/”LNKxN):O
The terms in (2.4.30) can be grouped in like powers of x to yield

(alﬂm + 0 Ay o+ O Ay )
(o ey + @y + o+ A Ay ) X (2.4.31)
(Ao, + Ay dy -+ A Ay ) X

N _
+o A (g + A Ay, +o o+ o Ay )X =0

Because (2.4.31) must hold for all x, it implies the following N +1 equations, written in matrix
form, which the K coefficients, «,,...,a, , must obey

_ﬂm Ao 0 A ] a,
Ay Ay o A || @&
' | |=0 (2.4.32)
_/1N1 Ank 1% |
-
(N+1)xK K1

If this system only has the zero solution, then the set of polynomials are linearly independent.
Otherwise, they are dependent.

Example 2.4.4: Consider the vector space &, and the subset of &, consisting of the following

three polynomials:
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p,(X) =3-2x+Xx*
p,(X) =8+ x+2x° (2.4.33)
P, (X) =7 +8x+ x?

As with the discussion just completed, the test for linear dependence or independence of this subset
requires that we look for implications of the following linear combination:

a, Py (X)+ e, P, (X) + Py (X)

=, (3-2x+X*) + t, (8:+ X+2X7 ) + o, (7 +8x +x* ) =0 (2.4.34)

In order for (2.4.34) to hold for all x, like powers of x must be placed to zero. The results are

3, +8a, + T, =0 for x°
20, +a,+8a,=0 for x* (2.4.35)
a, +2a, +a, =0 for x°

As a matrix equation, these three equations can be written

3 8 7|
-2 1 8|l |=0 (2.4.36)
1 2 1|a,

If you calculate the determinant of the matrix of coefficient, you find it is zero. The conclusion is
that the matrix of coefficients is singular and, as a consequence, the coefficients «,,a,,, are not
all necessarily zero. As such, the set of three polynomials defined above are linearly dependent.

More detailed information about this example is obtained if (2.4.36) is converted to reduced row
echelon form. The result turns out to be

1 0 3|
01 2|ea,|=0 (2.4.37)
0 0 0|e

Therefore, o, =3a,,a, =—2a,. These results when substituted into (2.4.34); yield the following
relationship between the elements of the set {pl, P, p3}

3p,—2p,+p,=0 (2.4.38)
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Example 2.4.5: Consider again the vector space #,. In this case, we are given the subset of £,
consisting of the following four polynomials:

p(x) =1

P, (X) =X
ps(x) = x*
P, () =%

(2.4.39)

The test for linear dependence or independence of this subset requires that we look for implications
of the following linear combination:

a, pl(X)+a2 P, (X)+“3 p3(x)+ o, P, (X)

(2.4.40)
=a, + X+ o X +a,x* =0

In order for (2.4.34) to hold for all x, we quickly conclude that o, = o, = ; = ¢, =0 and the set
{P., P, Py, P, } is linearly independent.

The set £, is an example of a set of functions. In Section 2.1 this set was shown to be a

vector space. Also, in Section 2.1, we introduced other sets of real valued functions by symbols
such as:

C[a,b]={f| f continuous on all open subsets of [a,b] |

C?[a,b]= { f| f continuous and with continuous second derivatives on all open subsets of [a,b]}

We explained that, with the usual definitions of addition of functions and multiplication by scalars,
these sets are examples of vector spaces.

In the next discussion, we are interested in finding a condition that characterizes when real
valued functions in a vector space C"'[a,b], i.e. the set of real valued functions that are
continuous and have continuous N —1 derivatives on every open subset of [a,b], are linearly
independent. This question is one that arises, for example, in the study of the solutions of ordinary
differential equations. Let {fl,..., fy }c C"'[a,b]. The question about linear independence or

dependence, as with any vector space, requires that we determine the implication of a relationship
of the form

a, f,(X) + 0, T, (X) +++a, T (x) =0 forall x e [a,b] (2.4.41)
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on the coefficients o, ,, ..., . Given that these functions have N —1 continuous derivatives, we
can differentiate the above equation N —1 times to obtain the following N —1 equations:

a, /(X)) + o, 1‘2'(X)+-~-+05N fN'(X) =0
a, fl"(x)+052 fz"(X)Jr~-~+0¢N fN"(X) =0

(2.4.42)

o fN )+ o, BN X))+ V(X)) =0

Equations (2.4.41) and (2.4.42), like (2.4.31), must hold for all x €[a,b]. Expressed as a matrix
equation, (2.4.41) and (2.4.42) can be written

RO RO - R0 T
f, (%) f,'(x) £,/ () || o
NOBRAD W00 | g asd
RO A O IR e K

This matrix equation must hold for all x [a,b]. Given what we know about the solution of
systems of N x N equations, we can conclude that if there exists an x, say x, in [a,b], where

I fl(XO) fz(xo) I fN (Xo) |
F(%)  f(x) fu' (%)
det flﬂ(xo) fz’,(xo) fN”(XO) #0 (2_4.44)
L le_l(Xo) sz_l(Xo) oot fNN_l(XO)_
then o, =, =--- =, =0 and the given set of functions is linearly independent. If no such x,

exists, the set of functions is linearly dependent. The determinant above is called the Wronskian
and is of fundamental importance when one tries to establish the linear independence of solutions
to ordinary differential equations.? It is usually given the symbol W and written

2 The Wronskian is named after the Polish mathematician J6zef Hoéne-Wronski. Information about J6zef Hoéne-
Wronski can be found, for example, at http://en.wikipedia.org/wiki/J%C3%B3zef Maria_Hoene-Wro%C5%84ski.
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fl(X) fz(x) oo fN (X)
f 00 £, (%) fyy (%)

WL f, e £ 100 =] 0 £(X) fy" (%) (2.4.45)
0 B0 - - - VYK

Example 2.4.6: Consider three of the simplest kinds of functions on the interval [—71',72'] , hamely

f,(x)=1 (2.4.46)
f,(x) = cos x (2.4.47)

and
f,(x)=sinx (2.4.48)

Because these functions have derivatives of all order, they are elements of the set C*[-z,7z]. The
question is whether or not set of functions {1,cos(x),sin(x)}is linearly independent. In this case,
the Wronskian (2.4.45) is

() 00 GO 11 cosx  sinx
W[, f, £,1(x)=|f'(x) f,(x) f (X)|=[0 -sinx cosx
') () £/ [0 —cosx —sinx

=sin’ X +cos’ x =1

(2.4.49)

Because the Wronskian is nonzero, the set of functions {1, COS X,Sin x} is a linearly independent set.

Example 2.4.7: Consider the set {1, COS X,Sin X,€0S2Xx,sin 2x} in C*[-x,z]. The question of

linear dependence or independence of {1, COS X,SiNn X,C0S2X,Sin 2x} depends upon whether or not
the Wronskian



158 Chap. 2 . VECTOR SPACES

1 cosx sinx C0S2X sin2x
0 -sinx cosx —2sin2x  2C0s2X
W[f, f, f,, f,, 1(x)=]0 —cosx —sinx —4cos2x —4sin2x
0 sinx —cosx 8sin2x —8cos2x
0 cosx sinx 16cos2x 16sin2x (2.4.50)

—sinx cosx —2sin2Xx  2Cc0S2X
—C0sX —sinx —4co0s2x —4sin2x
sinx —cosx 8sin2x —8c0s2x
cosx  sinx 16cos2x 16sin2x

is zero or not for some X, € [—72'7[] . Rather than try to expand this 4 x4 determinant, we can
evaluate itat x =0 to obtain

0o 1 0 2
1 0 2| (1 0 2
-1 0 4 O

Wi f £t £10)= 0 0 =t 0 -§-jo -4 0
0 16 0| |-1 0 -8

1 0 16 0
1 2| |1 2

=-16 +4 =16(6) — 4(6) = 72
-1 -8 |-1 -8

The fact that the Wronskian is nonzero at x =0 tells us that the functions in the set
{1,cosx,sin x,cos2x,sin2x} are linearly independent.

Many more examples of the type just discussed can be generated by simply looking at sets
& in C*[-rx,x] of the type

& ={1,c0s X,sin X,C0S 2X,SiN 2X,...,cOSMX,sin mx } (2.4.51)

where m is an arbitrary positive integer. The bottom line is that that in C”[-x, 7] there are
subsets of linearly independent vectors (functions) with an arbitrary number of elements. By
choice of m, one can constructs sets of linearly independent vectors of any size desired. We shall
have more to say about this example later. However, if you happen to be familiar with the theory
of what is called a Fourier Series you know that certain classes of functions can be represented as
infinite series of the form

f(X) :%+Zan cosnx + b, sinnx (2.4.52)

n=1 n=1

where
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a, :if f (x) cos xdx n=0,123,.. (2.4.53)
4 -
and
17% .
b,=— I f (x)sin xdx n=12.3,.. (2.4.54)
4 -

In some sense, the infinite set of vectors (functions)
& ={1,c0s X,sin X,C0s 2X,sin 2X,c0s 3x,5in 3x,...} (2.4.55)
span C*[-rx,x].
Next, we need to record a theorem which will prove useful later.

Theorem 2.4.3: Let {v,,V,,..,V, } be a set of vectors in a vector space ¥". Also, let
Span(V,,V,,...,vy ) be the span of the set {v,,v,,..., v, }. Thenavector veSpan(Vv,,v,,...V,)
has a unique representation as a linear combination of {v,,v,,...,v, } if and only if the set
{V,,V,,...,v } is linearly independent.

Proof: First, assume v eSpan(v,,v,,..,V, ) is not unique, i.e., it has two different representations
V=V, + a,V, +-+ oV, (2.4.56)
and
V=BV, + PV, ++ BV, (2.4.57)
The difference of these two equations yields
(o, =BV, +(a, = BV, ++-+(ay — fy )V =0 (2.4.58)

If we add the given condition that the set {v,,v,,...,v } is linearly independent, the definition of
linear independence implies that (2.4.58) can only be satisfied if
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(2.4.59)

ay = Py

Equation (2.4.59) establishes the uniqueness of the representation for v e Span(vl,vz,...,vN ) Cf
the set {v,,V,,..., v, } is linearly dependent, the definition of linear dependence asserts that not all
of the coefficients of in the equation

(0(1 _ﬂ1)v1 +(a2 _ﬂz)vz +"'+(aN - By )VN =0 (2.4.60)

can be zero. Thus, the representation for v eSpan(v,,v,,...,v, ) is not unique.

Exercises:

2.4.1 Given the vector space #, and the subset & :{pl, P,, Pss Py p5} of #, defined by

p(x)=1

p,(x)=x-a

p;(X)=(x—a)(x—h) (2.4.61)
p,(x)=(x-a)(x—b)(x-c

Py (x) = (x-a) (x~b) (x~c)(x0)

where a,b,c,d are real numbers. Show that the set & is linearly independent. Polynomials of the
form (2.4.61) are the building blocks of a form of interpolation known as Newton Interpolation.

2.4.2 Given the vector space #, and the subset & ={p,, p,, p;, P, Ps} of &, defined by
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o (x=b)(x=e)(x=d)(x-e)
P ()= by (a—c)(ad)(a=e)
) (X):(x—a)(x—c)(x—d)(x—e)
2 (b—a)(b-c)(b—d)(b—e)

. =(x—a)(x—b)(x—d)(x—e)
()= e 2y (e (e=d)(c=e)
. (X) = (x—a)(x—=h)(x—c)(x—e)
* (d-a)(d -b)(d-c)(d -e)

. :(x—a)(x—b)(x—c)(x—d)
)= e Za)(eb)(e—o)(e—d)

161

(2.4.62)

where a,b,c,d,e are distinct real numbers. Show that the set % is linearly independent.
Polynomials of the form (2.4.62) are the building blocks of a form of interpolation known as

Lagrange Interpolation.

2.4.3 Determine whether or not the vectors e*,sin x and e™* are linearly independent in

c” [—72',72'].

2.4.4 Use the more or less obvious generalization to 4 x4 determinants the formula for the
derivative of a determinant given in Exercise 1.10.16 and show that the derivative of the
Wronskian in equation (2.4.50)2 is zero. The conclusion is that the determinant, in this case, does

not actually depend upon x.
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Section 2.5. Basis and Dimension

In this section, we introduce two important properties of vector spaces. These properties
are basis and dimension. In rough terms, a basis is a set of vectors that form building elements for
the other vectors in the vector space. Also in rough terms, the dimension of a vector space is the
number of vectors that form this basis. A more formal approach to these concepts begins with the
following definition:

Definition: A minimal spanning set is the set containing the smallest number of vectors of ¥
whose span is ¥ .

A minimal spanning set has an important characteristic that might not be evident from this
definition. Elements of a minimal spanning set are necessarily linearly independent. If they were
not, some could be eliminated in favor of others in the set and, such elimination, would violate the
idea of the spanning set being minimal.

Definition: A basis for a vector space ¥ is a minimal spanning set. In other words, a basis for a
vector space ¥ is a set of vectors {v,,v,,...,v, } such that

a) The set {v,,V,,..., Vv, | is linearly independent.
b) Span(V,,V,,...,Vy ) =%

4x1

Example 2.5.1: Consider the vector space ¥ = .#
An arbitrary vector v e ¥ has the representation

consisting of the set of 4 x1 column vectors.

Uy
v=| 2.5.1)
U3
v,
By rearranging (2.5.1), we can write
v, 1 0 0 0
v=| "2 0 + ! + 0 + 0 (2.5.2)
= =0 v i) v 0.
v, | 10| ?lo| *l1] *|o
v, 0 0 0 1

This equation shows that every vector v e  is in the span of
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(2.5.3)

Because these four column vectors (2.5.3) are linearly independent, the set {i,,i,,i,,i,} is a basis
for v =.4**. This particular basis is sometimes called the standard basis of ¥ = .#*".

Example 2.5.2: Consider the vector space ¥ = .#>*. Since Ac v , it has the representation

_ Ail A12 _ 10 0 1 00 00
A{An AZJ_A“{O 0}’*{0 o}”\ﬂL 0}/&{0 J (254)

the 2 x 2 matrices

i—loi—01i—00andi—00 (2.5.5)
Yo o' Jo o'* |10 210 1 "

form a basis for ¥ = .#*. Like the first example above, this basis is sometimes called the
standard basis of ¥ = .#*?.

Theorem 2.5.1: If N is a positive integer and {v,,v,,...,v } is a basis for a vector space ¥, then
any set of vectors {ul,uz,...,uM } where M is a positive (finite) integer greater than N, is linearly
dependent.

Proof: Since {v,,V,,...,v } is a basis of ¥", every vector in the set {u,,u,,...,u,, } can be written
N
U =AV, + ANV, ++ AV =D AV, fori=12,..,M (2.5.6)
j=1

The theorem asserts the set {u,,U,,...,u,, } is linear dependent when M > N . The test for linear
independence or dependence requires that we examine a linear relationship of the form

M
au, + a,u, +---+a, U, =205iui =0 (2.5.7)
i=1
If the vectors {u,,u,,...,u,, } are linear dependent when M > N , as the theorem asserts, some of

the coefficients o, ,,...,,, must be nonzero. Equation (2.5.7) can be expressed in terms of the
basis {v,,V,,...,vy } by use (2.5.6). The result of utilizing (2.5.6) in (2.5.7) is
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M M N N M
Sau =Y a S Av, :z(zaiAj]vj ~0 (258)
i=1 =1 j=l =1\ i=1

We are given that the set {v,,v,,...,v, } is linearly independent. As a result, the coefficients in
(2.5.8) must be zero. The resulting N equations for the M > N coefficients ¢, ,,...,¢,, are

M
Y aA =0 for j=12..N (2.5.9)
i=1

The proof of the theorem comes down to asking whether or not (2.5.9) has nonzero solutions for
some of the coefficients ¢,,,,...,a,, . As an undetermined system, i.e., a system with more

unknowns than equations, it is the case that the o, ,,..., ), are not all necessary zero and, as a
result, the set {u,,u,,...,u,, } is linearly dependent.

Corollary: If {v,,v,,..,v,} and {u,,u,,..,u, } are both bases of a vector space ¥, then M =N .

Proof: Theorem 1.5.1 says that if M > N , the set {u,,U,,...,u,, } must be linearly dependent.
Since we have postulated that {u,,u,,...,u,, } is linearly independent, we must conclude that

M <N . If we now reverse the roles of {v,,v,,..,v, } and {u,,u,,...u, }, we are led to conclude
that N <M . These two conditions force the conclusion that M =N .

We have defined a basis as a minimal spanning set. We have just established with Theorem
2.5.1 that when a basis has a finite number of elements it is also a maximal set in the sense that it
not a proper subset of any other linearly independent set. The above corollary allows us to
conclude, for the case where the basis has a finite number of elements, that number is a property of
the vector space. It is given a name.

Definition: Let ¥ be a vector space. If ¥* has a basis of N vectors, where N is a positive
integer, then ¥  is said to have dimension N =dim¥".

Definition: The subspace {0} of %" has, by definition, the dimension 0.

Definition: The vector space ¥  is finite dimensional if the basis has a finite number of members.
If this is not finite dimensional, it is infinite dimensional.

Exclusive of a few examples, the vector spaces we shall study will be finite dimensional.
The following two theorems are most useful in the applications that will follow later in this
textbook;

Theorem 2.5.2: If % is a subspace of a vector space ¥, then
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dim# <dim» (2.5.10)

Proof: This result is more or less obvious. If {u,,u,,...,u,, } isabasis for  and {v,,v,,..,v,} is

a basis for ¥, then we need to rule out the case M >N . If M > N, the basis for
¥ {V,,V,,..., vy }, would not be a minimum spanning set.

Theorem 2.5.3: If % is a subspace of a vector space ¥, then dim# =dimv¥” if and only if
U="Y .

Proof: If % =v,then dim#% =dimy~ . Conversely, if dim% =dimv , a basis for the subspace #
is a basis for ¥~ which implies % =¥

Example 2.5.3: Examples 2.5.1 and 2.5.2 tell us that dim.#>* =3 and dim.#** =4. Itis a fact
that

dim.™*" = MN (2.5.11)

Example 2.5.4: Every element of the set £, is a polynomial of the form (2.1.16), repeated,
P(X)=4 + A X+ A, XE +--+ A X" (2.5.12)

An elementary generalization of Example 2.4.5 shows that the set {1, X, X2, XN } is linearly

independent. It is perhaps evident that if this set is augmented by any other polynomial of order
less than or equal to N the resulting set will be linearly dependent. The conclusion from this
observation is that

dim#, =N +1 (2.5.13)

Example 2.5.5: This example is a vector space that is not finite dimensional. Let £, be the vector

space of all polynomials. We assume it is finite dimensional and look for confirmation or a
contradiction. If it is finite dimensional, say of dimension N, then we know from Theorem 2.5.1
that a set of N +1 polynomials in £ would be linearly dependent. Consider the subset of £,

defined by

Z={Lx,X . x" | (2.5.14)

The subset &% of 2, contains N +1 polynomials. Theorem 2.5.1 asserts that if £, has dimension

N, then & is a linearly dependent set. A convenient test of this linear dependence is given by
whether or not the Wronskian, equation (2.4.45), is zero for some x e Z. It follows from (2.4.45)
that the Wronskian of this set of functions in (2.5.14) is
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1 x x2 - x"
1 2x NxN
Ay N-2
WL X, X x"]00 =[O 2 NIN=DXEE_ o @n. (>0 (25.15)
00 0 - - NI

Thus, the set ¥ must also be linearly independent. This conclusion contradicts the assertion that
the dimension of 2 is N . Because N is arbitrary, we can only conclude that £, is not finite

dimensional, i.e. it is infinite dimensional.

Example 2.5.6: The set C*[—x, ] is also infinite dimensional. The proof is like the last one
except that one starts with the set

& ={1,c0s X,sin X,C0S 2X,Sin 2X,...,c0s NX,sin Nx} (2.5.16)

for some prescribed N . On the presumption that the dimension of C*[—z, 7] is 2N +1 (the
number of members of ), the next step is to consider the set

S = {1, COS X,Sin X, €0 2X,sin 2X,...,€08 Nx,sin Nx,cos(N +1)x,sin(N +1)x} (2.5.17)

and examine whether or not this set is linearly independent or independent. It turns out that it is
linearly independent for all N . The fact that N is arbitrary leads to the conclusion that C”[-x, 7]
is infinite dimensional.

Example 2.5.6 explains that C*[—x, 7] is an infinite dimensional subspace. For given N,

the set & is linearly independent because its Wronskian is non zero at, for example, x=0. The
span of &, Span.¥, is a vector space of dimension N . It is an example of a finite dimensional

subspace of an infinite dimensional vector space. The theory of Fourier Series is, in effect, an
approximation of an arbitrary vector in C”[-x, ] by a finite dimensional vector in % . Our

interest is primarily in the study of finite dimensional vector spaces, thus we will not pursue the
mathematical ideas behind Fourier Series in this chapter.

Exercises

2.5.1 What is the dimension of the subspace spanned by the set {v,,v,,v,}, where
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1 3 1
2 1 5
B glVeT o YT g
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Section 2.6. Change of Basis

In Theorem 2.5.1 we established that if {v,,v,,...,v } is a basis for a vector space ¥, then

any set of vectors {u,,u,,...u, | in ¥, M > N, is linearly dependent. We also established the

Corollary to Theorem 2.5.1 that said that if two different sets of vectors were a basis for ¥, then
each set had to have the same number of elements. This number is the dimension of ¥~ which we
wrote dim¥” .

Given Theorem 2.5.1, and a basis {e, e,,...,e, } for a finite dimensional vector space ¥, we
can conclude that an arbitrary vector v e ¥ has the representation®

N
v=vle +0%, +---+0"ey =D vle, (2.6.1)
i1

The scalars v',0?,...,0" are called the components of v with respect to the basis {e,.e,,....e, }. If

we apply the results of Theorem 2.4.3, we can conclude that the components of v with respect to
the basis {e, e,,...,e, } are unique.

While (2.6.1) holds in great generality for every vector space of finite dimension, it is
important to connect it with geometric ideas that are a part of our experience with elementary
mathematics. For example, consider the two-dimensional vector space of geometric vectors in the
plane. We can visualize vectors in the plane with the following figure:

ve

A

3 The scalars are indexed with superscripts in order to follow a notation conventional in Linear Algebra. For much of
what we do, there is no loss of generality if one wanted to stick strictly with subscripts.
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If we choose a different basis {€,,&,}, we can also expand the vector v in the form

V=08 +0°€, (2.6.2)

The geometric representation of this equation can be displayed by superimposing it on the above
figure. The result is

v=o'e, +0%,

= 0%, + 0%,

This figure is a geometric representation of a change of basis. The fact that a finite dimensional
vector space has multiple ways to represent the same vector gives rise to the idea of a change of
basis in a vector space. In the study of geometric vectors, this change is usually characterized as a
change of coordinates. In any case, we shall now formalize the transformation rules of vectors
under a change of basis.

Let {e,,e,,....ey } and {&,,é,,....& } be two bases foran N dimensional vector space ¥ .
Because {e,,e,,...,e, } is a basis, we can express any vector in ", including those in

{
{

D>

1+&,,...8, }, as an expansion in the vectors e,,e,,...,e, . Therefore, for the j" vector of

eyl

D>

N
é,=>Te forj=12..,N (2.6.3)
k=1

One way to look at (2.6.3) is that the coefficient TJ.k is the k™ component of éjwith respect to the
basis {e,,e,,....ey |.
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If we reverse the roles of {€,,8,,....6,} and {e,,e,,....e, }, then we can also write

e => T8 for k=12..,N (2.6.4)

s=1

As one would suspect, the coefficients TS, s,k =1,.., N, are related to the coefficients Tjk :
k, j=1,...,N . To see this relationship, we can substitute (2.6.4) into (2.6.3) and obtain
. N ) N ) N . N /(N R
&, =D Tle, =) T T8, =Z(ZT§T,. ]e (2.6.5)
s=1 \_k=1

k=1 k=1 s=1

Likewise, we can substitute (2.6.3) into (2.6.4) and obtain
N N . N N /N R
e, =378, = TS Tle, :Z(ZTSqusjeq (26.6)
These equations force the following relationships on the coefficients fkj and Tjk , k,j=1,..,N

N N A~
DTT =06 and Y TTS =5 (2.6.7)
k=1

s=1

Where the Kronecker delta, defined by equation (1.1.28), has been redefined with the notation

iy
It is helpful to write (2.6.7) in matrix notation by introduction of the notation*
T= [TJ."] and T = [‘I:k"] (2.6.9)
These definitions allow the two equations (2.6.7) to be written as matrix equations
TT =1 and TT =1 (2.6.10)

These two equations tell us that the matrix T is nonsingular and that T=T". Thematrix T is
called the transition matrix.

4 When the superscript-subscript notation is used as with Tjk the convention is that the superscript denotes the row of

the matrix and the subscript the column.
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Example 2.6.1: Let ¥ be a vector space of dimension 3 with basis {e,,e,,e,}. You are given a
second basis {€,,€,,&,} defined by the formulas

€,=2e,—e,—¢e,
€, =—€, +e, (2.6.11)
e, =4e, —e, +6e,

If (2.6.11) and (2.6.3) are compared, we see that the transition matrix is

8T T [2 -1 4
T=[T =17 T} T7|=|-1 0 -1 (2.6.12)
2T TR |-1 1 6

The inverse of the transition matrix turns out to be

21 101
’\11 Azl Asl 2 -1 47" 9 9 9
r £ f2 2 7 16 2
— | - 2 2 2 _ | _ _ I <
T=[T/]= LT T L0 1) =-5 =5 (2.6.13)
1 2 3 -11°6 1 1 1
9 9 9
Therefore, (2.6.4) takes the form
3 ria r1a £2a 2 3A 1. 7 1.
e, =) T)8, =T +T78,+ 8y =gt od,
j=1
Noain a2 o2y 10, 16, 1
ezzz € = S8, + 22e2+T23eS:—?0 1—§e2+§e2 (2.6.14)
j=1
N .o o . . 1. i
e3:Z S8, = 3181+T3292+T3363=—§e1+—e2+—e

1]
uN

Example 2.6.2: Consider the vector space of polynomials of degree less than or equal to 3, i.e.,
%, . Elements of % consist of polynomials of degree 3 or less and from (2.1.16) are defined by

P(X) =4y + X+ X" + A,%° (2.6.15)

Example 2.4.5 established that a basis for this four dimensional vector space are the polynomials
(2.4.39), repeated,
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pl(x) =1
X) = X
P2(x) , (2.6.16)
Ps(X) =X
p4(X) =x°
If a,b,c are given real numbers, one can establish that the four polynomials
L(X)=1
,(X)=x-a
(2.6.17)

'O);D) - OO
>
~— N N =
Il
—_~
>
|
QD
>
|
o

N

are also linearly independent and thus a basis. Polynomials of the form (2.6.17) are the building
blocks of a form of interpolation known as Newton Interpolation. The change of basis from

{P1, Ps Ps. P} 0 { Py, Py, Py, P, } is defined by (2.6.3). In the notation being used for the basis
elements, (2.6.3) is

4
p,=>.Tp, forj=12..4 (2.6.18)
k=1
Ateach xe £, (2.6.18) becomes
4
p,(X)=DT{p (x) for j=12,...4 (2.6.19)
k=1

The components of the transition matrix, Tkj , for j,k=1,2,...,4 are obtained by substitution of
(2.6.16) and (2.6.17) into (2.6.19). The resulting four equations are

I=T + T x+Tx* +T'%°
X—a=T, +T/X+T x> +T,'x°
(x—a)(x=b)=T; + T x+T,)x* + T,'x°

Xx—a)(x=b)(x=c)=Tr+T2x+T3x*+T/x®
4 4 4 4

(2.6.20)

If these four equations are forced to hold for all x € Z, it readily follows that the transition matrix
IS given by
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=
N
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>

N

>

DN

>

™

>

PN

>

W

>

LN

>

® W

>
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Chap. 2 .
T, T, T,] [1 -a ab
T, T2 T |01 —(a+b)
T, T2 T} 0 1
T, T T, 0 0 0
1 -a ab —abc
0 1 —(a+b) ab+ac+bc
0 0 1 —(a+b+c)
0 O 0 1

-1

—abc
ab+ac+bc
—(a+b+c)
1

o O O -

o O - D

a.2

VECTOR SPACES

(2.6.21)

aS

a+b a’+ab+b?

1
0

a+b+c
1

(2.6.22)

Example 2.6.3: Consider again the vector space of polynomials of degree less than or equal to 3,

i.e., %. If a,b,c,d are distinct real numbers, one can establish that the four polynomials

R =y
05669
P e e )
O R

(2.6.23)

are also linearly independent and thus a basis. Polynomials of the form (2.6.23) are the building
blocks of a form of interpolation known as Lagrange Interpolation. In any case, the change of basis

from {p,, P, Ps, P4} t0 {P, P,. s, P, } is again defined by(2.6.18). The same kind of calculation
used in Example 2.6.2 yields the transition matrix
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i bed ~ acd ~ abd ~ abc
(a-b)(a-c)(a-d) (b-a)(b-c)(b-d) (c-a)(c-b)(c-d) (d-a)(d-b)(d-c)
cd +bd +bc ad +cd +ac ab-+ad +bd ab+ac+hbc
| @D)a-c)a-d) (E-a)jo-c)b-d) (c-a)(c-b)(c-d) (d-a)(d-b)(d-c)
b+c+d B a+c+d B a+b+d B a+b+c
(a-b)(a-c)(a-d) (b-a)(b-c)(b-d) (c-a)(c-b)(c-d) (d-a)(d-b)(d-c)
1 1 1 1
| (a-b)(a—c)(a-d) (b-a)(b-c)(b-d) (c-a)(c-b)(c-d) (d-a)(d-b)(d-c)
(2.6.24)

The inverse transition matrix turns out to be

1 a a* a°
~ |1 b b® B
T= 2.6.25
1 ¢ ¢ ¢ ( )
1 d d* d°
If (2.6.25) is compared to the Vandermonde matrix given in (1.10.33), we see that it is a
Vandermonde matrix transposed.
The change of basis from {e,.e,,...e, } to {€,,é,,....&, } is characterized by the transition

matrix through equations (2.6.3) and (2.6.4). If we are given a vector v e ¥, it can be expanded in
the basis {e,.e,,....e, } or, equivalently, in the basis {é,,é,,....&, }. The result is two equivalent
representations of the same vector of the forms

N .
V= ZUJe. (2.6.26)
-1

and

|
— MZ
Sid

(2.6.27)
-1

As explained at the start of this Section, the set of scalars {01,02,...,UN } are the components of v

with respect to the basis {e,,e,,...e, }. Likewise, the set of scalars {0*,5%,....0" } are the

components of v with respect to the basis {é,,€,,....€, }. The connection between the two bases as
given by (2.6.3) and (2.6.4). We shall now use these formulas to derive a transformation rule for
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the components resulting from the basis change from {e, e,.....e, } to {&,,é,,....8 }. The first step
is to equate (2.6.26) and (2.6.27) and use (2.6.3) to eliminate the basis {&,,¢,,...,é, }. Therefore,

21y

=z

i :iﬁjiTjkek :iiﬂkajek (2.6.28)

j=1 j=1 j=L k=L k=1 j=1

In order to extract additional information from (2.6.28), it is rewritten

N

Z;uiej :kZN;ZN;Tjk&jek (2.6.29)
i= =1l j=

Next, we simply change the name of the summation index on the left side from j to k and rewrite
the result as

i[uk — iTjkaj jek =0 (2.6.30)

k=1 j=1

Because the basis {el,ez,...,eN} is a linearly independent set, (2.6.30) yields the desired component
transformation rule

N
v =>"T/0 (2.6.31)

J
i1

If we were to have eliminated {e, e,,....e, } in favor of {€,,é,,....é }, we would have obtained the
transformation rule

0" => T’ (2.6.32)

=1

which, of course, is just what one obtains when the system (2.6.31) is inverted. Equations (2.6.31)
and (2.6.32) represent the transformation rules for the components of vectors v e ¥ .

Example 2.6.4: Given the basis {e,,e,,e,} for a vector space ¥* and a vector ve ¥ defined by
v=e, +2e,+3e, (2.6.33)

The components with respect to {e,,e,.e,} are
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1
2
3

1
2 (2.6.34)
3

c C ¢C

You are given a second basis {&,,€,,&,} defined by (2.6.11) of Example 2.6.1. It follows from
(2.6.32) and (2.6.13) that

U 8

Al 3 196 29 : 131
O |=|TF T2 T2|v|=|—~ -= = |2|=|-= (2.6.35)

S I PSR Y BRI

LT Y

9 9 9| 3 ]

Therefore, with respect to the basis {é,,€,,&,},

V= —%él —1—31é2 +%é3 (2.6.36)

Example 2.6.5: Given the basis {pl, 0,, Ps, p4} of the vector space £, defined by (2.6.16) and a
member of £, i.e., a third order polynomial given by

p(x)=0'p, (X)+0°p, (X)+0°py (X)+0*p, (X)=4-3x—2x* + x° (2.6.37)

Therefore, the components with respect to {p,, p,, p,, p,} are

19
v (2.6.38)
19
19

(2.6.39)
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It follows from (2.6.32), (2.6.38), the inverse transition matrix (2.6.22) and the choices

a=1b=2,c=3 that

O O O O O O B

2 3 1

a v
a+b a’+ab+b’||v
1 a+b+c |lo
0 1 v

a

(2.6.40)

OO Fr P OO RO
o, W Kk

RN

|

Y

[N

Therefore, with respect to the basis {f,, p,, f,, p, }. the polynomial p is given by

Exercises:

+0°P,(X)+0° Py (x) +0° P, (X)
—2(x-1)+4(x-1)(x-2)+(x—1)(x—-2)(x—3)

(2.6.41)

2.6.1  Given the following two bases of .#**

and

Find the transition matrix.

1 0
e = [J,ez = [J (2.6.42)
~ |5, |3
e, = LJ,eZ = L} (2.6.43)

2.6.2 If v is defined with respect to the basis (2.6.42)

v =10e, +7e, (2.6.44)

determine the components of v with respect to the basis {él,éz} defined by (2.6.43).
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2.6.3 The vectors {e,,e,,e,} are a basis for a three dimensional vector space ¥". The set of
vectors {&,,&,,8,}, defined by,

e, +2e,+e,
e, —e, +2¢e, (2.6.45)
e, —e,—¢,

M D> D>

1
2
3

represent a change of basis. Determine the transition matrix for the basis change
{6,,8,,8;} > {e,.e,,e,}. Also, if v=3e, +2e,, determine the components of v with respect to the

basis {é,,€,,6,}.

2.6.4 Let ¥ be a vector space of dimension 3 with basis {e,,e,,e,}. You are given a second
basis {€,,€,,&,} defined by the formulas

R 4
el = —Eel +§e2
" 10 7
2 :—?el +§e2 (2646)
és =€,
If avector vev is defined by
v=e, +2e,+3e, (2.6.47)

A

determine the components of v e ¥~ with respect to the basis {&,,€,,8,}.

2.6.5 Let ¥ be a vector space of dimension 3 with basis {e,,e,,e,}. You are given a second
basis {€,,€,,&,} defined by the formulas

~ 4i 3
L= —gel +ge2
e, = %eﬁgez (2.6.48)

If a vector ve¥ is defined by

v = 2ie, + 2e, +5ie, (2.6.49)
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A

determine the components of v e with respect to the basis {€,,€,,8,}.

VECTOR SPACES

2.6.6 A four-dimensional vector space ¥* has a basis {e,e,,e;,e,}. A vector ve ¥ hasthe

component representation
v =5e, +3e, +6e, + 2e,

You are also given a change of basis to a new basis for ¥, defined by

(2.6.50)

(2.6.51)

Determine the transition matrix associated with this basis change. Also, determine the components

of the vector vwith respect to the basis {é,,€,,€;,é,} of 7.
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Section 2.7. Image Space, Rank and Kernel of a Matrix

The ideas introduced in Sections 2.1 through 2.6 contain useful information relative to the
problem of solving the matrix equation (1.2.1), repeated,

A11X1+A12X2+A13X3+“'+A1NXN :bl
A21X1+A22X2+A23X3+"'+A2NXN =bz

(2.7.1)
AuiX + AuaXy + AyaXs +-+ Ay Xy :bM
Equivalently, we can write (2.7.1) in its matrix form equation (1.2.2), repeated,
_Au A12 I AiN—_Xl— _b1_
AZl A22 A2N XZ bZ
= (2.7.2)
_AM1 AM2 o7 AMN__XN_ _bM_
or, equivalently, as (1.2.3), repeated,
Ax=hb (2.7.3)
where, as usual, A is the matrix
AL A Ay |
Ay Ay
A= (2.7.4)
LA Az A

The matrix A is an element of the vector space .#"*", the column matrix x is a member

of the vector space .#"* and b is a member of the vector space .#"**. Recall from Section 2.5
that dim.#"" =MN , dim./"* =N and dim.#" =M . In equation (1.8.3), we stressed the
view of Ae.#™™" as a function
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A: ™t — Mt (2.7.5)

As a function whose domain is the vector space .#"** and whose values lie in the vector space
4™, the usual matrix operations imply

A(v, +V,)=Av, + Av, (2.7.6)

for all vectors v,,v, e #"* and
and

A(AV) = 1A(V) (2.7.7)

for all vectors ve .#"* and 1 % . Functions defined on vector spaces that obey rules like (2.7.6)

and (2.7.7) are called linear transformations. The matrix A< .#"*" is but one example of a linear
transformation. These functions will be studies in greater generality in Chapter 3. In this section,
we are interested in recording properties of this particular kind of linear transformation.

As explained in Section 1.8, the range of the function A is the set of all values of the
function. In other words, the range is the set of possible values of Ax generated for all possible

values of x in .#™*. In Section 1.8, we gave this quantity the symbol R(A). It was defined
formally in equation (1.8.4), repeated,

R(A)={AX xe.a"*} (2.7.8)

The following figure should be helpful.

v

/le '/ﬂMxl



Sec. 2.7 . Image Space, Rank and Kernel of a Matrix 183

It is a fact that the set R(A) is a subspace of .#"*. The proof of this assertion, like all such
assertions about subspaces, simply requires that the definition of subspace be satisfied. If v, and
v, are two members of .#"*, then Av, and Av, are members of R(A). We need to prove that
their sum, Av, + Av,, is also in R(A). The proof follows from (2.7.6), repeated,

Av, + Av, = A(V, +V,) (2.7.9)

Since v, +v, e 4™, A(v,+V,)eR(A) and, by (2.7.9), Av, + Av, e R(A). Thus, the first part

of the definition of a subspace is established. An entirely similar manipulation establishes that
A(Av)eR(A) forall ,and, thus, R(A) is asubspace. Inorder to stress the fact that the range is

a subspace, we shall begin to refer to the range as the image space. There are two other important
concepts involving the matrix A:.#"* — 4" that we will now introduce.

Definition: A matrix A:.#"* — .#"* is said to be onto if it has the property that R(A)=.4"".

Definition: A matrix A: . #"* — #™* is one to one if
Av, = Av, implies v, =v, (2.7.10)

Onto and one to one matrices have special properties which we will characterize later in this
section.

In Section 1.8, we assigned the columns of the matrix (2.7.4) the symbols a;, j=1,2,...,N,
by the formulas

A;

a = for j=1..,N (2.7.11)

Aui

The set of column vectors {a,,a,,...,a, } consists of vectors in the set .#™**. As established in
Section 1.8, for an arbitrary vector x e .#""*, equation (1.8.7), repeated, tells us that

AX=a, X +a,X, + 83X, + -+ +ay Xy (2.7.12)
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Equation (2.7.12) establishes that every vector in the image space R(A) has the representation as a
linear combination of the vectors in the set {a,,a,,...,a }. This fact is summarized by the formula

R(A)=Span(a,,a,,....ay ) (2.7.13)

Because of the result (2.7.13), the image space R(A) is also known as the column space. We next
defined the rank of the matrix A.

Definition: The rank of Ae.#"" is dimR(A).

Given that the result (2.7.13), an equivalent definition of rank is as follows:
Definition: The rank of Ae .#™" is the number of linearly independent columns of A.°

An interesting and important result can be established about the rank of Ae.#"*" and that of any
matrix B e .#"" that is row equivalentto Ae .#"". Recall from Section 1.6,a M x N matrix
Be.#™" isrowequivalenttoa M x N matrix Ac.#"*" if there exist a finite number of
elementary matrices E,E,,...,E, € 4" such that

B=E, -E,EA (2.7.14)

The image space of Ae.#"*" is given by (2.7.13). Likewise, the image space of B e .#"*" is
given by

R(B)=Span(b,,b,,....b,) (2.7.15)

where b,,b,,...,b, are the column vectors of the matrix B . It follows from (2.7.14) that the two
sets of column vectors {a,,a,,....ay } and {b,,b,,....b, } are connected by the formulas

for j=1,2,...,N (2.7.16)

Because the product of elementary matrices, E, --- E,E,, is a nonsingular matrix, it follows that

Ae 4™ and the matrix row equivalentto A, Be.#"*", have the same number of linearly
independent columns. As a result, the matrix A and its row equivalent B have the same rank.
The formal relationship that reflects this equality is

dimR(A)=dimR(B) (2.7.17)

> The rank as defined by the number of linearly independent columns is sometimes called the column rank.
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for row equivalent matrices A and B in .#™" . It is important to observe that we have not
asserted that R(A)=R(B). This equality is simply not true as we shall show with an example

below.

It is possible to give some general information about the rank of a matrix Ae.#"™" . If we
apply the results of Theorem 2.5.2, the theorem that says the dimension of a subspace is less than
or equal to the dimension of the containing vector space, then

dimR (A) <dim.#™* =M (2.7.18)

It also follows from (2.7.13) that the dimension of R(A) can never be larger than N =dim.#""*,
the number of vectors in the set {a,,a,,...,a, }. Therefore, the rank, dimR(A), is bounded by

dimR(A) < min(dim.#"*,dim.4"*)=min(M,N) (2.7.19)

Therefore, the rank is less than or equal to the smallest of N and M .

Example 2.7.1: Determine the rank of the matrix of coefficients in Example 1.2.3 (also in
Example 1.3.4). From equation (1.2.13), the matrix is

2
A=|1 (2.7.20)
3

N N Y]
N R

We immediately know from (2.7.19) that the rank is less than or equal to three. Step one in finding
the actual rank involves utilizing the definition to identify the three column vectors whose span
generates the image space of A. As (2.7.20) shows, these column vectors are

(2.7.21)

N B e

2 3
a,=|1lla,=|1]a,=
3 4

From the definition, the rank of A is the dimension of the span of the three column vectors (2.7.21).
This dimension is equal to the number of linearly independent vectors in the set {a,,a,,a,}. In

Section 2.4, we established a procedure for establishing whether or not a set of column vectors is
linearly independent. If we utilize (2.7.21), the test for linear independence or dependence, i.e.,

oa, +a,a, + a8, =0 (2.7.22)

takes the form of finding whether or not
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2 3 1|
11 1fea,|=0 (2.7.23)
3 4 2| a,

has at least one nonzero solution for the coefficients ¢, ,,,. We can quickly determine if
(2.7.23) forces the coefficients ¢, a,,a, to be zero by calculating the determinant of the matrix of
coefficients. It is an elementary calculation to show that

2 3 1] 2 3 1
det|1 1 1{=1 1 1
34 2| 342 (2.7.24)
11 |3 1 3 1
=2 =17 J|+37 J=-4-2+6=0
4 2 la 271 1

Thus, one cannot conclude that all of the coefficients ¢, «,,, are zero. Therefore, the rank of

(2.7.20) is less than 3. The actual numerical value of the rank is obtained by first reducing the
matrix (2.7.20) to reduced row echelon form by a series of row operations. If one implements the
row operations by the use of elementary matrices, the reduced row echelon form can be shown to
be given by

1
102712 %99%1 101 0 o
0 1 -1|=(0 1 0 0|0 1 Ofx
00 O 0 10 10 -1 1
- - _ (2.7.25)
1 0 0| 1 0 100 2 31
0 -2 0 10 —% 1 0fl1 11
0 0 -2] 3 0o 1l 0 o0 1 3 4 2
L 2 ]
Therefore, (2.7.23) can be replaced by
10 2|
0 1 -1||e, |=0 (2.7.26)

00 0ea
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o, -2

Therefore, | r, |=a,| 1 |. Thisresult, combined with (2.7.22) and the fact that «, is arbitrary,
a, 1

yields,

—2a,+a,+a,=0 (2.7.27)
and we concluded that,

R(A)=Span(a,,a,,a,)=Span(a,,a,) (2.7.28)
Therefore, the dimension of R(A) i.e. therank of A is 2.

As with Example 2.4.3, equation (2.7.27) defines the relationship between the three
columns of the matrix of coefficients in (2.7.23). It again defines the relationship between the three
columns of the reduced row echelon form that appears in (2.7.26). This feature is a theoretical
consequence of (2.7.16). If there are linear relationships between the column vectors of a matrix A
as, for example, with (2.7.27), it follows from (2.7.16) that the same relationships exist between the
columns of matrices row equivalentto A. In addition, we can reach the number for the rank of
(2.7.20) rather quickly if we simply use (2.7.17). For example, it follows from (2.7.26) that the
reduced row echelon form of (2.7.20) is

10 2
U=(0 1 -1 (2.7.29)
00 0

Of course, the reduced row echelon form is row equivalent to the matrix A (2.7.20). The
simplicity of the reduced row echelon form reveals the two linearly independent columns and, as a
result, the rank of 2.

It mentioned above that we have not asserted that the image space R(A) and the image

space of a row equivalent matrix, such as R(B) are the same. In fact, they are not. Example 2.7.1

and the later examples illustrate this observation. For example, if we look at the matrix studied in
Example 2.7.1, namely, the matrix given in equation (2.7.20)

(2.7.30)

>

Il
w =N
N Y]
N R

We showed that the image space of A is the two dimensional subspace spanned by the two vectors
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2 3
a =1 and a,=|1 (2.7.31)
3 4

given in equations (2.7.21); and (2.7.21)>. The reduced row echelon form of A is given by
(2.7.29)

It should be evident that the image space of the matrix (2.7.29) is the two dimensional subspace
spanned by

1 0
i,=|0 and i,=|1 (2.7.32)
0 0

Because a vector in R(U ) cannot have a nonzero element in its third position, a subspace spanned

by (2.7.31) is necessarily not the same as one spanned by (2.7.32). The following figure shows the
plane that represents the image space R(U) and the vectors a, and a, that span R(A).

Example 2.7.2: Determine the rank of the matrix

11 -2 1 3
A=[2 -1 2 2 &6 (2.7.33)
3 2 -4 -3 -9



Sec. 2.7 . Image Space, Rank and Kernel of a Matrix 189

For this particular problem, equation (2.7.19) tells us that the rank of the matrix of coefficients
obeys

dimR(A) < min(dim.#"*,dim.4"**) = min(3,5)=3 (2.7.34)

If we utilize (2.7.33), the test for linear independence or dependence takes the form of finding
whether or not

o, +o,a, +aa, +a,a, +aa, =0 (2.7.35)
where
1 1 -2
a=|2a=-1lla,=2|a =2 |a=|6 (2.7.36)
3 2 —4 -3 -9

has nonzero solutions for the coefficients «,,ar,,;,a,,c;. As usual, (2.7.36) can be written as a
matrix equation of the form

o]
11 2 1 3)q
2 -1 2 2 6| al=0 (2.7.37)
3 2 -4 -3 9|

L %s ]

As with Example 2.7.1, we can reduce (2.7.37) by row operations to obtain the reduced row
echelon form

o
10 0 0 0)a
2 0 0||a,|=0 (2.7.38)
00 0 1 3|a,
| %s

Thus, o4 =0,a, =2a;,a, =-3a, and (2.7.35) reduces to
a,(2a, +a;)— o, (33, —a;) =0 (2.7.39)

It follows from (2.7.39) and the fact that o, and «, are arbitrary, that
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a,=—2a, and a,=3a, (2.7.40)

Equations (2.7.40), which are obvious from (2.7.36), show that there are three linearly independent
vectors in the set {a,,a,,a;,a,,a;} and, thus, the rank of (2.7.33) is 3. If we were to use the

theoretical result (2.7.17), the rank of 3 is evident from the reduced row echelon form displayed in
equation (2.7.38). As with our previous examples, the relationships between the column vectors of
A, (2.7.40), are also obeyed for the columns of the reduced row echelon form of A shown in
(2.7.38).

A related concept to rank is the concept of row rank. For our purposes, the most direct way
to introduce this concept is to recall the definition of the transpose of a matrix discussed in Section
1.9 and define the row rank by the following definition:

Definition: The row rank of Ac #"*" is dim R(AT).

In other words, the row rank of Ae .#™"" is the dimension of the span of the column vectors of
A" e 4" Equivalently, the row rank is the dimension of the subspace of .#*" spanned by the
row vectors of Ae .#™" . The row space of Ac.#™" is that subspace. The row space can also
be thought of as the image space of the transpose of Ae.#"*", R(A"). Technically, R(A")isa
subspace of .#"* and not .#". However, these two different vector spaces are in one to one

correspondence. In any case, it is a theorem, that we shall establish later, that the rank and the row
rank are the same. The proof utilizes an interesting and useful result that connects the image space

of the transpose, A", to the image space of B', where B is a matrix row equivalent to A. This
result, which we shall now establish, is that

R(A")=R(B") (2.7.41)

for any matrix B e .#"*" that is row equivalent to Ae.#™" . Recall from Section 1.6 and as was
mentioned above,a M x N matrix B e .#"*" is row equivalenttoa M x N matrix Ac .#"" if
there exist a finite number of elementary matrices E,,E,,...,.E, € 4™ such that (2.7.14),
repeated,

B=E,---E,E/A (2.7.42)
This definition and the rule for transposing matrix products, equation (1.9.5), yields
B'=A"E/E] ---E/ (2.7.43)

The definition of image space, equation (2.7.8), applied to this case yields



Sec. 2.7 . Image Space, Rank and Kernel of a Matrix 191

R(B™)={B"x| x c.4"*| = [ATEE] - E]X| x c.4""]

2.7.44
R(AT) (2144

{ATx| XG,//M“}

where the fact that the elementary matrices are nonsingular has been used. The result (2.7.41) is
usually most useful when B is the reduced row echelon form of A. One can easily illustrate the
validity of (2.7.41) utilizing the results in Examples 2.7.1 and 2.7.2.

In the case where we are given a matrix Ae.#"*" with a reduced row echelon form U , it
follows from (2.7.17) that

dimR(A)=dimR(U) (2.7.45)
and, from (2.7.41),

dimR(A")=dimR(U") (2.7.46)
Equations (2.7.45) says that the rank of A and that of U are the same. Likewise, (2.7.46) says that

the row rank of A and that of U are the same. Next, we shall prove that the rank and the row rank
are the same. This result follows from the form of the reduced row echelon form U . From its

definition, as given in Section 1.5, the reduced row echelon form of a matrix A< .#™" will be of
the form

R N-R
0 Dl,RJrl DlN )
0 2,‘R+l DZN >R
U=|0 - - 1 Dypy - Dy |J (2.7.47)
1o 0 v 0 N
: Dol MR
0 0 0 |

Equations that illustrate the generic row echelon form (2.7.47) are (2.4.24), (2.7.29) and (2.7.38).
Several other examples can be found in Section 1.5 and in the Exercises at the end of Section 1.5.
The row rank of (2.7.47) is the number of nonzero rows of U . We have given this number the
symbol R in (2.7.47). The first R columns of U are clearly linearly independent. Thus, we have
established that

dimR(U)<dimR(U") (2.7.48)

This result and (2.7.45) and (2.7.46) yield
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dimR(A)<dimR(A") (2.7.49)
If we repeat the above construction, but apply it to A", the result is
dimR(A")<dimR(A) (2.7.50)
The two results (2.7.49) and (2.7.50) combine to yield the asserted result
dimR(A)=dimR(A") (2.7.51)
The next property of Ae .#"*" we wish to introduce is the kernel.
Definition: The kernel of Ac.#™" is the subset of .#"** defined by
K(A)={v|Av =0} (2.7.52)

It is easy to establish that K (A) is a subspace of .#"**. It consists of those vectors in .#"*
mapped to zero by the matrix Ae.#"*". The figure below should be helpful.

v

M M

Definition: The nullity of Ae.#"" is dimK(A).
Because K (A), is a subspace

dimK (A) <dim.4"* =N (2.7.53)
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Example 2.7.3: The kernel of the matrix used above in Example 2.7.1 is, from (2.7.20), the set of
vectors that obey

2 3 1y
Av=|1 1 1o, |=0 (2.7.54)
3 4 2| v,

Equation (2.7.54) is equation (2.7.23) that we solved in Example 2.7.1. The solution is again

v, -2
v=|v, =0, 1 (2.7.55)
Uy
-2
Therefore, for this example, the kernel is the one dimensional subspace of .#>* spanned by | 1
1

This example reveals an important relationship between the calculation that was used with
Examples 2.7.1 and 2.7.2 to determine the image space and rank and the calculation in Example
2.7.3 to determine the kernel and nullity. These examples illustrate that the scalars «;,a,,...,a,

that appear in the test for linear independence of the column vectors a,,a,,...,a, , i.e., in the
formula

oa +a,a, +-+ayay =0 (2.7.56)

are the components of a column vector in K (A) . This relationship is also the origin or

L %N
another feature illustrated by this example. In this example, the rank of the matrix A is two. Thus,
the rank plus the nullity equals the dimension of the domain of A. This is a general result, a result

we shall prove after the next example.

Example 2.7.4: The objective is to find the kernel of the matrix Ae .#** defined by

1110
A= (2.7.57)
2 101
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The kernel of (2.7.57) consists of those column vectors v e .#** that obey

by
1110 0
Av = Yz | (2.7.58)
2 10 1], 0
v,

The reduced row echelon form of (2.7.57) is obtained from

{1 0 -1 1} {1 0}{1 1}{1 0}{1 11 0}
= (2.7.59)
01 2 -1] |0 -1/0 1|2 1][2 1 0 1

It therefore follows from (2.7.58) that

% Uy
10 -1 1]vo, 1 01 11 0|1 1 1 0fv, 0
= = (2.7.60)
01 2 -1ljjlu,| |0 -1]|0 1|-2 1|2 1 0 1|vs| |O
1)4 04
Therefore,
v, L, — U, 1 -1
v, —20, + U, 2 1
V= = =0, +v, (2.7.61)
U, U, 1 0
v, v, 1
1
The kernel of (2.7.57) is the subspace spanned by the two linearly independent vectors _1 and
0
-1

. Therefore, the nullity of (2.7.57) is 2. Also, one can see from the reduced row echelon form

1

shown in (2.7.60) that the rank of (2.7.57) is 2, so again we see the result we wish to prove below
that the rank plus nullity equals the dimension of the domain of A, which is 4 in this case.

The last example illustrates another general result that is important to mention. We started
with equation (2.7.58), repeated,
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%
1110 0
V2| (2.7.62)
210 1|o0,| |0
U,
and replaced it with (2.7.60)1, repeated,
%
1 0 -1 1 0
- (2.7.63)
01 2 -1|o,| |0
U,

which utilized the reduced row echelon form of the original matrix (2.7.57). Explicit in the
relationships (2.7.62) and (2.7.63) is that the kernel of a matrix and that of a matrix row equivalent
to it are the same.

The general result just stated is a consequence of the relationship between matrices and
those it is row equivalent to, namely equation (1.6.16), and the definition of kernel. As explained

in Section 1.6 and utilized twice in this section,a M x N matrix B e .#"*" is row equivalent to a
M x N matrix Ae.#"™" if there exist a finite number of elementary matrices

E,.E,,....E, e 4" such that (2.7.14) or, equivalently, (2.7.42) hold. The kernel of B equals the
kernel of A because

K(B)={v|Bv=0}={V|E,E, ,---E,Av=0}={v|Av =0} =K(A) (2.7.64)

where we have again made use of the fact that the elementary matrices are nonsingular.

In the examples above it was observed that the sum of rank plus nullity equaled the
dimension of the domain. The formal theorem, which we shall now prove, is as follows:

Theorem 2.7.1: Given Ae . 4™V, then

dim;lNX1=dimR(A)+dimK(A) (2.7.65)

Rank=R Nullity=P

This theorem is usually referred to as the rank-nullity theorem.

Proof: Because of (2.7.17), applied in the case where the row equivalent matrix B is the reduced
row echelon form of A, it is true that
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dimR(A)=dimR(U) (2.7.66)
Likewise, because of (2.7.64), it is true that
dimK (A)=dimK(U) (2.7.67)
Therefore, because of (2.7.66) and (2.7.67), we can establish the result (2.7.65) if we can prove that
dim.#™* =dimR(U ) +dimK(U) (2.7.68)
The result (2.7.68) is a consequence of the form of the reduced row echelon form. From its

definition, as given in Section 1.5, the reduced row echelon form of a matrix Ae.#™" will be of
the form

R N-R
0 D1,R+1 D1N )
0 D2,.R+1 D2N \ R
U=0 -+ -+ 1 Dggy - Dgy |/ (2.7.69)
1o 0 - 0N
: : ~ MR
0 0 0 |J

The rank of the reduced row echelon form (2.7.69) is the number of linearly independent columns
and, as shown above, the number of linearly independent rows. As shown, the rank is

R=dimR(U)=dimR(U"). The kernel of U , which by (2.7.64) is the kernel of A, consists of

those column vectors v e 4" that obey
Uv=0 (2.7.70)

The next step in the calculation is illustrated in Example 2.7.4. The same argument that produced
(2.7.61) will yield from (2.7.70)
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% - Dl,R+l T DlN - Dl,R+l - Dl,R+2 - DlN
U, _Dz,R+1 _DZN _D2,R+1 _DZ,R+2 _DZN
o. | |-D.., - —D_ | 7*" D D, D
V= RO R,R+1 RN : = Uy, RR+L | Vrss RR+2 | v, RN (2.7.71)
Dy 1 - 0 1 0 0
. . ON .
: 1
Loy | | O 1 | 0 | . 0 ] 1]

The N —R column vectors on the right side of (2.7.71) are clearly linearly independent. As a
result,

dimK(U)=N -R=dim.4"* -dimR(U) (2.7.72)
Equation (2.7.72) is the result (2.7.68) which, in turn, yields the asserted result (2.7.65)
Equation (2.7.65), written in the form
R=dimR(A)=dim.#"* —dimK(A) (2.7.73)
improves on the inequality (2.7.19), repeated,

R =dimR(A) < min(dim.«"*,dim.4""*) (2.7.74)

Example 2.7.5: Given a matrix Ae.#"™", we can associate with this matrix its reduced roe
echelon form which we have denoted by U . It follows from (2.7.17) that

dimR(A)=dimR(U) (2.7.75)
but, as observed earlier in this section,
R(A)#R(U) (2.7.76)
In equation (2.7.41) we showed that
R(A")=R(UT) (2.7.77)
Finally, in equation (2.7.64) we showed that

K(A)=K(U) (2.7.78)
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These theoretical formulas are illustrated by the examples given in this Section. As an additional

example, the matrix

2 1 -2 0 2
A=|-7 4 -8 0 -7
4 -3 6 0 4

can be shown to have a reduced row echelon form of

1 0 0 01
Uu=/0 1 -2 0 O
0O 0 0 0O
Therefore,
dimR(A)=dimR(U)=2
2 1 1((0
R(A)=span||-7|,| 4 ||#R(U)=span||0|,|1
4 ||-3 0110
2] [-7] (1] 0]
1 4 0 1
R(A")=span||-2]|,[-8||=R(UT)=span| 0|, -2
0 0 0|| 0
| 2 || —7] 1[0 ]
and
0] ]0][-1]
2110110
K(A)=K(U)=span||1,/0],| O
0|11]]0
0] 10 [1]

(2.7.79)

(2.7.80)

(2.7.81)

(2.7.82)

(2.7.83)

(2.7.84)

This example illustrates a possible point of confusion. The matrix U™ is not the reduced row

echelon form of AT. This fact is evident from the formula
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1 00
0 1 0

Uu'=l0 -2 0 (2.7.85)
0 0 0
1 0 0]

which is not even in reduced row echelon form. If one forms the matrix A" and then reduces this
matrix to its reduced row echelon form, the result turns out to be

1o L
3
01 2
V= 3 (2.7.86)
00 0
00 0
00 0

We now return to the problem of finding solutions to (2.7.3). In Section 1.8, we stated and
proved the consistency theorem for linear systems. This theorem repeated is

Theorem 1.8.1 (Repeated): Given a matrix Ae .#"" and a vector b e #"*, the system Ax=Db
has a solution if and only if be R(A).

If be R(A), then, by definition, it is expressible as a linear combination of the column vectors of
A. This fact, gives the following simple test to determine whether or not b R(A) :

Theorem 2.7.2: Given a matrix Ae .#""", the vector be .4 isin R(A) if and only if the rank

of A and the augmented matrix (Alb) are the same.

Theorem 1.8.1 tells us that if b e R(A), then the equation Ax =b has a solution. It does

not tell you that the solution is unique. Next, we will look at conditions sufficient to insure that the
solution is unique. The first result we need is the following theorem.

Theorem 2.7.3: A matrix A:.4"* — 4™ is one to one, if and only if K(A)={0}.

Proof: As The key to the proof is the relationship Av, = Av,, which by linearity can be written
A(v,-V,)=0. Thus, if K(A)={0}, then Av, = Av, implies v, =v,. Conversely, assume A is
one to one. Since K(A) is a subspace it must contain the 0 e .#"**. Therefore, AO=0. If K(A)
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contains any other element v, as an element of the kernel it would be true that Av=0. This
formula contradicts the fact that A is one to one.

Next we shall prove:

Theorem 2.7.4: If beR(A), then the solution to Ax =b is unique if and only if K(A)={0}.

Proof: To prove this theorem, we follow the usual procedure and assume a lack of uniqueness.
Given be R(A), then let v, and v, be solutions, i.e.

Av, =b and Av,=b (2.7.87)

Therefore,

Av, = Av, (2.7.88)

and, as aresult, v, —v, e K(A). If we take K(A)={0}, it follows then that v, = v, and thus the
solution is unique. If we assume the solution is unique, we need to prove that the subspace K (A)
only contains the 0. Let v be the unique solution, i.e., Av =b and assume K(A) contains, in
addition to 0, a vector w. As an element of K(A), it would have to be true that Aw =0. This
factand Av =b would yield A(v+w) =b which would mean v +w s also a solution in

contradiction to the assumed uniqueness. Thus, K(A)={0}.

If K (A) contains more vectors than 0, then the situation is more complicated. There is a
representation which is useful:

Theorem 2.7.5: If beR(A), and if x, is a particular solution of Ax=b, i.e. a vectorin .#"*
which obeys Ax, = b, then the solution to the matrix equation Ax =b has the representation

X=X, +X, (2.7.89)
where x, e K(A),i.e., Ax, =0.

The proof of this theorem uses Ax, =b to write the equation Ax=Db as Ax = Ax,, which, in turn,
can be written

A(x-X%,)=0 (2.7.90)

which implies x, =x-X, €K (A) Therefore, the representation (2.7.89) is valid.
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The equation Ax, =0 is the homogeneous equation associated with the problem of solving Ax=b.

Example 2.7.6: You are given the following system of three equations and five unknowns:

o
1 1 2 1 37 x| [1
2 -1 2 2 6| x|=[2 (2.7.91)
3 2 -4 -3 -9 x| |3

_X5_

From Example 2.7.2, we learned that the rank of the matrix of coefficients in (2.7.91) is 3. We can
conclude in advance whether or not the system (2.7.91) has a solution by application of Theorem
2.7.2. In particular, we need to determine whether or not the augmented matrix

11 2 1 31
(Ab)=[2 -1 2 2 6|2 (2.7.92)
3 2 -4 -3 93

also has rank 3. By the usual method, the reduced row echelon form of (2.7.92) is

1 1 -2 1 31 10 0 0 01
2 -1 2 2 6[2—>|0 1 -2 0 00 (2.7.93)
3 2 -4 -3 -93 00 0 1 30

Equation (2.7.93)2 shows that the augmented matrix has three linearly independent columns and,
thus, a rank of 3. The equality of the rank of A and (A|b), from Theorem 2.7.2, tells us that

be R(A). This result and Theorem 1.8.1 tell us that the system (2.7.91) has a solution.

Of course, we are also interested in constructing the actual solution. In particular, we are
interested in showing that the solution has the representation prescribed by Theorem 2.7.4. The
manipulations required to show that the solution exists are, for this example, almost bring us to the
solution. If we use the reduced row echelon form of (2.7.91) given in (2.7.93),, the system (2.7.91)
is replaced by
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Xl
1 0 0 X, 1
01 -20 X; |=]0 (2.7.94)
0 0 1 3| x, 0
_X5_
Therefore, the solution from (2.7.94) is
'x ] [ L ][] 0] [1] 0] 0] [1]
X, 2X, 2X, 0 2 0 0
X=X |=| X |=]| X |[+]|0]|=%X]|1[+X| O [+]0 (2.7.95)
X, —3X; —3X; 0 0 -3 |0
X5 | X | | X% | [O] 10| | 1] [0]
—_— =
xpe K(A) Xp

The solution (2.7.95) reflects the decomposition asserted in Theorem 2.7.4. The number of free
parameters in the solution, x, and X, is the same as the dimension of the kernel of the matrix of

coefficients.

The case where the matrix A is square is of special importance. When Ae .#"" , we are
talking about situations where the number of equations and the number of unknowns are the same.
Equation (2.7.65), repeated, is

dim4" =dimR(A)+dimK (A) (2.7.96)
%/_/
N Rank=R Nullity=P
We also have (2.7.19), repeated,
R =dimR(A) < min(dim.#"*,dim.4"*)=min(M,N) (2.7.97)

Equations (2.7.96), (2.7.97) and the additional requirement M = N allow us to reach the following
conclusions:

When the rank, R=dimR(A), equals N,
a) the nullity, P =dimK(A), is zero which shows that K (A)={0}. As a result, the matrix A

iS one to one.
b) the image space R(A) equals .#"*. Asaresult, the matrix A is onto.

The situation characterized by these two cases is illustrated in the following figure
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v

./JN x1 jNXl

Note that for a one to one matrix A:.#"* — 4", Theorem 2.7.3 tells us that K (A)={0}. It
follows, in this case, from (2.7.65), that dim.#"** =dimR(A). If we require, in addition that

A ™ — 4™ be onto, the image space R(A) equals .#"** and, of course,

dim.#""* =dimR(A). Therefore, when the matrix A:.#"** — .4 is both one to one and onto,

it is necessary that dim.#"** =dim.#"*. Therefore, one to one onto matrices necessarily are
functions that map column vectors between spaces of column vectors of the same size. In more
simple terms, it is necessary that M =N .

If we continue to focus on the case where M =N, when A:.#"* — 4" is onto, every
member of .#"* isin R(A). Theorem 1.8.1 tells us that the system Ax =b has a solution. When

A: 4™ — 4N is also one to one, Theorem 2.7.3 tells us the solution is unique. The one to one
correspondence of a one to one onto function A:.#"* — .#"*, was reached by the two
assumptions M =N and dim R(A) =N . The one to one correspondence means that

A: ™t — 4" has aninverse A 4Nt — 4N . The summary conclusion is that when
M =N and dim R(A): N, then A is nonsingular.

Because an equivalent definition of the rank is the number of linearly independent columns
of A, another way to state the last result is that when M =N and the N columns of A are
linearly independent, then A is nonsingular. Conversely, if M =N and A is nonsingular, then the
N columns of A are linearly independent.

Exercises
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2.7.1 In Example 2.7.1, we started with the matrix

2 31
A=|1 1 1 (2.7.98)
3 4 2
and showed that its reduced row echelon form is
1 0 2
Uu=/0 1 -1 (2.7.99)
0 0 O
Confirm the theoretical result (2.7.41). Namely, that
R(A")=R(U") (2.7.100)

2.7.2 In Example 2.7.2, we started with the matrix

11 -2 1 3
A=l2 -1 2 2 &6 (2.7.101)
3 2 -4 -3 -9

and showed that its reduced row echelon form is

10 0 0O
u=/0 1 -2 0 O (2.7.102)
00 0 1 3
Confirm the theoretical result (2.7.41). Namely, that
R(A")=R(U") (2.7.103)
2.7.3 For the matrix
7 3 2
A=12 2 4 (2.7.104)
4 7 9

Find a basis for the column space, R(A), the row space, R( A" ) and the kernel, K (A).
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2.7.4 For the matrix
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-3
A= 1
-3

2 3 1
4 -1 -3
7 4 2
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Find a basis for the column space, R(A), the row space, R(A" ) and the kernel, K (A).

2.7.5 For the matrix

1
A=|2
4

1 2 1
3 -1 2
5 3 0

Find a basis for the column space, R(A), the row space, R(A" ) and the kernel, K (A).

2.7.6 For the matrix

Find a basis for the column space, R(A), the row space, R( A" ) and the kernel, K (A).

2.7.7 For the matrix

1 2
A=|4 5
7 8

-4 3 9
-10 6 18
-16 0 O

Find a basis for the column space, R(A), the row space, R( A" ) and the kernel, K (A).

2.7.8 For the matrix

1
2
|3
4

-1 5
4 4
2 10

-5 21

(2.7.105)

(2.7.106)

(2.7.107)

(2.7.108)

(2.7.109)
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Find a basis for the column space, R(A), the row space, R( A" ) and the kernel, K (A).

2.7.9 You are given the system of equations

36X, —9X, +18%, +9x, =36
42X, —7X, +19x, +8x, =53
48X, —5X, + 20X, +7Xx, =70
58x, — 25X, + 35X, + 22X, =25

(2.7.110)

a) Utilize Theorem 2.7.2 to determine whether or not the solution exists for the system

(2.7.110).
b) If the solution to the system (2.7.110) exists, express the solution in the form predicted by
Theorem 2.7.5.

2.7.10 You are given a matrix Ae.#>° defined by

2 1
3 0 1 (2.7.111)

1
A=|2
1 1

N BN

What is the rank of the matrix (2.7.111)? Also, determine a basis for the kernel of the matrix
(2.7.111).

2.7.11 A certain matrix Ae .#*° has the reduced row echelon form

1200 -1
U=/0 0 1 0 -2 (2.7.112)
0001 1

Determine the rank of, the basis of the kernel and the basis of the row space of Ae .#>°.

2.7.12 Let Ae.#%°be a matrix with three linearly independent column vectors a,,a,,a,. The two
remaining column vectors obey

a,=a,+3a,+a,

(2.7.113)
a; =2a,—a,

Determine a basis for the kernel, K (A) Also, determine the reduced row echelon form of .
Ac 4%,
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LINEAR TRANSFORMATIONS

In Section 2.7, we looked at a matrix Ae.#"" as a function A: 4" — #"*. Because
of the usual rules for matrix addition and matrix multiplication, it was pointed out that

A(v, +V,)=Av, + Av,
for all vectors v,,v, € 4" and
A(AV) = 1A(V)

for all vectors ve 4" and 1% . In this Chapter, we shall study linear transformations. As
explained in Section 2.7, matrices such as A .#"" are examples of linear transformations. It is

important to observe that linear transformations are more general mathematical objects than are
matrices. While all matrices are linear transformations, not all linear transformations are matrices.
It is this generality that we hope to capture in this chapter.
Section 3.1. Definition of a Linear Transformation

Linear transformations are functions defined on a vector space with values in a vector

space. Let ¥ and % be two vector spaces. Most of our examples will be for finite dimensional
vector spaces. When we need to make explicit the dimensions, we shall use the convention that

N=dimy and M =dim% (3.1.1)

We shall continue to denote the scalar field by &, the set of complex numbers. When we intend
the scalar field to be the set of real numbers, we shall continue to denote this set by £.

The formal definition of a linear transformation is as follows:

Definition: If ¥ and % are vector spaces, a linear transformation is a function A:% — % such
that

1) A(u+v)=A(u)+A(v) (3.1.2)

2) A(Au)=2A(u) (3.1.3)

207
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forall uve? and A1e?.

Observe that the + symbol on the left side of (3.1.2) denotes addition in¥, while on the right side
it denotes addition in % . Likewise the scalar multiplication on the left side of (3.1.3) isin ¥,
while on the right side the scalar multiplication is in % . It would be extremely cumbersome to
adopt different symbols for these quantities. Further, it is customary to omit the parentheses and

write simply Au for A(u) when A is a linear transformation.

The two parts of the definition of a linear transformation can be combined as follows:

Alternate Definition of a Linear Transformation: If ¥ and % are vector spaces, a linear
transformation is a function A:¥ — % such that

A(Au+ pv) = AAu+ uAv (3.1.4)
forall uuvev and A1, uec?.
It is also possible to show that
A(AV, + LV, -+ Ve ) = LAV, + LAV, + -+ L, AV, (3.1.5)

forall v,,...,vpe? and 4,...,4; €. From (3.1.3) of the definition, we can take 4 =0 and see
that

A0=0 (3.1.6)

Of course, we have used the same symbol for the zero in ¥ as for the zero in % . When we need
to distinguish these zeros, we will write 0, and 0,,, respectively. If we make the choice 4 =-1,

(3.1.3) yields
A(-v)=-Av (3.1.7)

Linear transformations arise in virtually all areas of mathematics, pure and applied. A few
examples are as follows:

Example 3.1.1: Define a linear transformation 1:7 — 7 by

lv=v forallvey (3.1.8)

This linear transformation is the identity linear transformation.
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Example 3.1.2: Define a linear transformation A:¥ — ¥ by

Av = av for all ve ¥ and for a given a €% (3.1.9)

This linear transformation simply takes a v € #” and produces the same vector amplified by the
scalar « .

Example 3.1.3: We select for ¥~ the vector space C”[0,oc]. Next, we define a function
A:v — ¥ by the formal rule

(At)(s)= [ &= f (3.1.10)

The fact that the function defined is a linear transformation should be evident. Some of you will
recognize this definition as that of the Laplace Transform of a function.

Example 3.1.4: We again select for ¥~ to be the vector space C”[0,x], and define a function
A:v — ¥ by the formal rule

(AF)(x)=a® zd‘;gx) ny; dfd(xx) +yf(x) forallxe(0,0) (3.1.11)

where «,f and y are scalars. The definition (3.1.11) shows that A is a linear transformation. It

is the usual second order differential operator one encounters in elementary courses on ordinary
differential equations.

The next few examples arise in the study of various topics in theoretical mechanics.

Example 3.1.5: When one studies heat and mass transfer in solids, one of the models is based
upon the so called Fourier’s Law.! Basically, it proposes that the flow of heat is caused by
temperature gradients in the solid. The formal mathematic relationship for Fourier’s Law is

g=-Kg (3.1.12)

where q is the heat flux vector, g is the temperature gradient and K is a linear transformation
known as the conductivity. The heat flux vector and the temperature gradient are vectors in a three
dimensional vector space ¥~ and the conductivity is a linear transformation K: % — ¥". For the
special kinds of heat conductors known as isentropic, the conductivity takes the special form

K =kl where k is a positive number.

! Additional information about Jean Baptiste Joseph Fourier can be found at
http://en.wikipedia.org/wiki/Joseph_Fourier.
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Example 3.1.6: When one studies rigid body dynamics like arises in the study of gyroscopes and
the study of space vehicles, one encounters the concept of moment of inertia. The moment of
inertia is a linear transformation that connects the angular velocity to the angular momentum in
certain special cases. The formal relationship is

(=lo (3.1.13)

where o is the angular velocity, ¢ is the angular momentum and 1 is a linear transformation
known as the moment of inertia. The angular velocity and the angular momentum are vectors in a
three dimensional vector space ¥~ and the moment of inertia is a linear transformation 1: ¥ — 7.

Example 3.1.7: In the study of the electrodynamics of magnets, electrical conductors and other
electrical materials, one encounters a need to model a relationship between current and voltage.
The relationship that is often used is known as Ohm’s law.? It usually takes the form

j=Ce (3.1.14)

where e is the electrical field strength, j is the current density and C is a linear transformation
known as the electrical conductivity. The electrical field strength and the current density are
vectors in a three dimensional vector space ¥~ and the electrical conductivity is a linear
transformation C: ¥ — % .

Example 3.1.7: In the study of continuum mechanics, one is concerned with the result of forces on
deformable media. One category of force is the so called contact force. This force is characterized
by a quantity known as a stress vector and it is calculated by a result known as Cauchy’s Theorem.®
The mathematical form of this theorem is

t=Tn (3.1.15)

where t is the stress vector representing the force per unit area on a surface with unit normal n.
The linear transformation T is usually called the stress tensor. It represents a linear transformation
that when multiplied by the unit normal yields the local force on the surface with that unit normal.

2 Additional information about Georg Simond Ohm can be found at http://en.wikipedia.org/wiki/Georg_Ohm.
3 Additional information about Augustin-Louis Cauchy can be found at http://en.wikipedia.org/wiki/Augustin-

Louis_Cauchy.



http://en.wikipedia.org/wiki/Georg_Ohm
http://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
http://en.wikipedia.org/wiki/Augustin-Louis_Cauchy

Sec. 3.2 . Matrix Representation of a Linear Transformation 211

Section 3.2. Matrix Representation of a Linear Transformation

We first encountered the idea of a linear transformation in Section 2.7 when we were
discussing matrices. Many of the examples of linear transformations given here involve matrices.
In this section, we explore this relationship and try to establish to what extent a linear
transformation is equivalent to a matrix. The short version of the answer is that when we restrict
ourselves to finite dimensional vector spaces there is a one to one correspondence between a linear
transformation and a matrix. The advantages of this fact and the disadvantages will be discussed.

The first idea we shall introduce is that of the components of a linear transformation. This
idea arises only in the case where ¥ and % are finite dimensional. Let {e,,e,,....e} be a basis

for ¥ and {b,,b,,...,b,, } be abasis for . Given a linear transformation, A:¥ — %, itis true
that the set {Ae,,Ae,,...,Ae, } is a set of vectors in % . As such, they can be expanded in the basis
of #,i.e.intheset {b,,b,,..b, }. Therefore, we can write

Ae, = ALb, + Ab, +--+ A" b, for  k=12,.,N (3.2.1)

In this equation, A’, represents the j" component of Ae, with respect to the basis for . We
shall typically write (3.2.1) in the more compact form

Ae, =ZAJ’kbj k=12,.,N (3.2.2)

Definition: The components of a linear transformation A:¥ — % with respect to the bases
{e,,&,,...ey} and {b,,b,,...,b,, } arethe MN scalars A, for j=1,2,..,M and k=1,2,..,N .

Example 3.2.1: Let A:¥ —> %, and {e,,e,} be a basis for ¥ and {b,,b,,b,} abasis for % .
Define a linear transformation by the rule

Av =u'b, +0°b, +(v' +0% )b, (3.2.3)

forall ve . We wish to find the components of A with respect to the basis {e,,e,} and the
basis {bl,bz,bs}. We need to apply the definition (3.2.1), which in this case reduces to

Ae, = A'b, + A’ b, + A’ b,
(3.2.4)
Ae, = AL,b, + A’,b, + A’ b,
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In order to find the coefficients Al,, j=1,2 and k =1,2,3, we need to use the defining equation
(3.2.3). Asavectorin ¥, v, it has the component representation

v=y'e +0%, (3.2.5)
Therefore, the choice v =g, implies v* =1 and v* =0. Therefore,

Ae, =b, +b, (3.2.6)
and the choice v=e, implies v' =0 and v* =1. Therefore,

Ae,=b, +b, (3.2.7)

If these equations are compared to (3.2.4), we see that

AL =1 A% =0,A% =1
(3.2.8)
AL =0,A%, =1 A% =1

As one would anticipate, and as the notation suggests, it is convenient to arrange the components of
a linear transformation in a matrix. This idea results in the following definition:

Definition: If A: ¥ — %, is a linear transformation, and if ¥~ and # are finite dimensional, the
matrix of A:¥ — & with respect to the basis {e, e,,....e, } of ¥ and {b,,b,,...,b,, } of # isthe

M x N matrix

ALAY A
AN, AZ
A A
M(Ae.bj)=| 3 (3.2.9)
_AM1 AM , . .. AM N

It is customary to give the matrix of a linear transformation a different symbol than that of the
linear transformation it represents. Equation (3.2.9) shows the notation M (A,ek b ) for the

matrix. This notation has the advantage of showing that the matrix depends upon the choice of the
bases for the two vector spaces. Later, we shall show how the components of a linear
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transformation transform when the two bases are changed. In those cases where the choices of
bases do not need to be stressed, it is sometimes conventional to write [A] for the matrix.

The above construction shows a correspondence, for finite dimensional vector spaces,
between a linear transformation and the matrix of a linear transformation. The fact that one must
select a basis for ¥ and a basis for % in order to display the matrix means that the physical
quantity represented by the linear transformation is now dependent upon the choice of basis.
Physical quantities have intrinsic meaning and do not depend upon how one chooses to project
them into a basis. Thus, it is advantageous to study linear transformations as mathematical objects
and not complicate the picture by the arbitrary selection of bases. Of course, if we are not talking
about infinite dimensional vector spaces. For infinite dimensional vector spaces, the idea of a
matrix is meaningless.

Example 3.2.2: A linear transformation A: ¥ — %, is defined, for all vectors ve ¥, by
AV:(L)2 +21)3+304)b1+(—ul+02 —1-41)3+u4)b2

(3.2.10)

+(—ul+u2 +1)3—204)b3+(01+1)2 —21)3+204)b4
v'(-b, b, +b,)+0* (b, +b, +b, +b,)
+0°(2b, +4b, +b, —2b,)+v*(3b, +b, —2b, +2b,)

where {e,.,e,,e,,e,} isabasis for ¥ and {b,,b,,b,,b,} is a basis for % . It follows from this
definition that

Ae, =-b,-b,+Db,
Ae,=b,+b,+b,+b,

(3.2.11)
Ae, =2b, +4b, +b, -2b,
Ae, =3b, +b, —2b, +2Db,
Next, we need to utilize (3.2.2) which for this case reduces to
Ag, = A'b, + A’ b, + A’b, + A b,
Ae, = AL,b, + A’,b, + A’ b, + A',b, (3.212)

Ae, = ALb, + A*b, + A’b, + A'b,
Ae, = A',b, + A’,b, + A’ b, + A’,b,

If (3.2.12) is compared to (3.2.11), we see that
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AL A, A, A, 01 2 3
AN, AN -11 4 1
M(Ae.bj)=|"F "2 P = (3.2.13)
A A, A, A, -11 1 -2
A'AL, AL A, 1 1 -2 2
Exercises
3.2.1 You are given a linear transformation A: ¥ — % defined by
Av=u'(b, +2b, +b,)+0*(4b, + b, — 2b,) (32.14)

+0° (b, +b, +b,)+0* (b, +2b,)

forall v=o'e, +v’, + 0%, +v'e, € ¥ . Determine the matrix of A:¥ — & with respect to the
bases {e,e,.e;.e,} and {b,,b,,b,}.

3.2.2 You are given a linear transformation B: % — # defined by

Bu=u'(d, +5d, +d,)+u?(2d, -d,)+u’(-3d, + 2d, +d,) (3.2.15)

forall u=u'b, +u’b, +u’b, e %. Determine the matrix of B:% — % with respect to the bases
{b,,b,.b,}and {d,.d,,d,}.

3.3.3 Alinear transformation A:¥ — % is defined, for all vectors ve¥”, by

Av = (Ul —iv® + 71)3) b, + (—8iul +90° + 8iu3) b,
(3.2.16)
+(4Ul —90? +15iz)3)b3 + (7i1)l +4iv? ) b,
for all vectors v =v'e, +v’, +v’e, € ¥, where {e,,e,,e,} isabasis for ¥ and {b,,b,,b;,b,} is
a basis for # . Determine the matrix of A:% — % with respect to the bases {e,,e,,e,} and
{b,,b,,b,,b,}.

3.3.4 Alinear transformation A:¥ — £ is defined, for all vectors ve v, by
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AV=(31)1—21)2 —204) p1+(—ul—u2 +403+04) P,
(3.2.17)
+(-0t + 0% +0° = 20%) py + (V7 +0° +30* ) p,

for all vectors v =u'e, +v%, +v’e, +v', € ¥, where {e,,e,,e,,e,} isa basis for ¥ and
{P., P, Py, P, s abasis for . Determine the matrix of A:¥ — % with respect to the bases
{e,.e,.8;.€,} and {p,, p,, P, P, -



216 Chap. 3 . LINEAR TRANSFORMATIONS



Sec. 3.3 . Properties of a Linear Transformation 217

Section 3.3. Properties of a Linear Transformation.

As with matrices, the image space of a linear transformation is defined to be set of all
values of the function. More formally, the image space is the set

R(A)={AX xe7} (3.3.1)

Utilizing the usual kind of proof, it is easy to show that the subset R(A) of % is actually a
subspace of % . As such, we know from Theorem 2.5.2 that

dimR(A) < dima (33.2)

In Section 2.7, we introduced the rank of a matrix. Likewise, the rank of a linear transformation is
dim R(A). If, the linear transformation A:% — % has the property that

R(A) =9 (3.3.3)
it is said to be onto. If a linear transformation A: ¥ — % has the property that
Av, =Av, implies v, =v, foreveryv, v, e? (3.3.4)

then it is one to one. Linear transformations that are one to one are also called regular linear
transformations.

In Section 2.7, we introduced the kernel of a matrix. For linear transformations, the related
idea is also called the kernel. The kernel of a linear transformation A:¥ — % is the subset of ¥
defined by

K(A)={v|Av=0} (3.3.5)

As with matrices, the nullity of a linear transformation is the dimension of the kernel, i.e.,
dimK (A). Itis not difficult to establish that K (A) is a subspace of ¥". As such, it is true that

dimK (A) <dimy (3.3.6)
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The following figure should be helpful as one tries to conceptualize the subspaces K (A) and
R(A).

v

Theorem 3.3.1: A linear transformation A:¥ — % is one to one, i.e., regular, if and only if

K(A)={0}.
Proof: As with the corresponding proof for matrices, the key to the proof is the relationship
Av, = Av,, which by linearity can be written A(v,—v,)=0. Thus, if K(A)={0}, then

Av, =Av, implies v, =v,. Conversely, assume A isone toone. Since K(A) is a subspace it

must contain the 0 e #". Therefore, AO=0. If K(A) contains any other element v, as an

element of the kernel it would be true that Av =0. This formula contradicts the fact that A is one
to one.

In Section 2.7, when discussing matrix equations, we established a uniqueness theorem. The linear
transformation version of this theorem is

Theorem 3.3.2: If beR(A), then the solution to Ax=b is unique if and only if K(A)={0}.

The proof of this theorem is formally the same as Theorem 2.7.4 for matrix equations.*

The special case where A: ¥ — % is both one to one and onto would correspond to the
figure

4 Theorem 3.3.2 is one part of what is known as the Fredholm Alternative Theorem. Theorem 3.3.2 is actually the
Second Alternative. The First Alternative will be established in Section 4.12 with the proof of Theorem 4.12.3. The
Fredhollm Alternative Theorem occurs in the study of boundary value problems and integral equations in addition to
the linear systems being discussed here.
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v

Theorem 3.3.3: If {v,,v,,...,v; }is a linearly dependent set in ¥ and if A:¥ — % is a linear

transformation, then {Av,,Av,,...,Av_}is a linearly dependent set in% .

Proof ~ Since the vectors {v,,v,,...,V.} is a linearly dependent set, we can write
R
Z;ajvj =0 (3.3.7)
]=

where at least one coefficient is not zero. Therefore

R R
A[ZajvjlzZajAvj =0 (3.3.8)
j=1 j=1

Because the coefficients are not all zero, (3.3.8) establishes the result.

If the set {v,,v,,...,v }is linearly independent, then their image set {Av,,Av,,...,Av,} may or

may not be linearly independent. For example, A might be a linear transformation that maps all
vectors into 0.

The following theorem gives another condition for such linear transformations.

Theorem 3.3.4: A linear transformation A:% — % is one to one, i.e., regular if and only if it
maps linearly independent sets in ¥ to linearly independent sets in %.
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Proof. We shall first prove that if A:¥ — % is one to one then it maps linearly independent sets
in ¥ to linearly independent sets in%. Let {vl,vz,...,vR} be a linearly independent set in ¥~ and

A:¥v — % be aregular linear transformation. Consider the sum

J J

R
> a,Av, =0 (3.3.9)
j=1

Equation (3.3.9) is equivalent to

A[iajvjjzo (3.3.10)

Theorem 3.1.1 tells us that K (A)={0}, therefore (3.3.10) yields

R
D> av,=0 (3.3.11)
j=1

Because {V,,V,,...,vs} is a linearly independent set, (3.3.11) shows that o, =, =--- =z =0,

which, from (3.3.9) implies that the set {Avl,...,AvR} is linearly independent. Next, we must

prove that if A:¥ — % maps linearly independent sets in ¥ to linearly independent sets in # ,
then it is one to one. The assumption that A preserves linear independence implies, in particular,
that Av =0 for every nonzero vector v € ¥ since such a vector forms a linearly independent set.

Therefore, K (A) consists of the zero vector only, and thus A is one to one.

Theorem 3.3.5:

dimy =dimR(A)+dimK (A) (33.12)

N

Rank=R Nullity=P

This theorem was proven for matrices in Section 2.7. It is the rank-nullity theorem for linear
transformations.

Proof: For notational convenience, we have written in (3.3.12)

R=dimR(A)and P=dimK(A) (3.3.13)

We wish to show that N =R+P. Let {e, e,,....6;,6p,,,€5,,,....€, } be a basis for ¥". We shall
select these vectors such that the subset {e,,e,,...,e, } is a basis for K(A). Our task is to show that
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N — P is the rank of A. Our first step in the proof is to form the set
{Ae,,Ae,,...,Ae,,Ae,, , Ae;,,,...,Aey } . This set spans R(A) because

{1,€,,.,80,€5.1,€5.,,,...,€, | IS @ basis for ¥ . This fact is formally expressed by the equation,
R(A)=Span(Ae,,Ae,,.... Ae,,Ae,.,, Ae,,,.... Aey ) (3.3.14)

The next step utilizes the fact that, as defined, that the set {e, e,,...,e, } is a basis for K(A). As
such, it is true that Ae, = Ae, =---= Ae, =0. Therefore,

R(A)=Span(Ae,,;, Ae,.,,... Aey) (3.3.15)

If we can conclude that the set of N — P vectors are linearly independent, then we can conclude
that R =dim R(A) =N — P and the proof is complete. The test for linear independence, as is

always, is to analyze the equation

aAes,, + AR, + o+ ay Al =0 (3.3.16)

Our challenge is to establish that the coefficients «,,a,,...,a,_, are zero. The first step is to
rewrite (3.3.16) as

A(ap + e, + +ay_p8y ) =0 (3.3.17)

Therefore, aye,,, +@,€,,, ++--+ay_p€y € K(A). However, we selected the vectors
{e,,€,,..,85,€5,1,€5.,5,...,€, } 10 be & basis for ¥~ such that the subset {e, e,,...,e, } is a basis for
K(A). The only vector of the form e, + @,€,,, ++-+ ay_»€, , i.€., @ linear combination of
vectors not in K (A) thatisin K(A), is the zero vector, 0. As a result,

HCpyy + ABp , + -+ 2y _p€y =0 (3.3.18)

The sum (3.3.18) forces o, =, =--- =, _, =0 because of the linear independence of the set
{€p.1,€p.2,--,8y |- This completes the proof.

Other relationships involving the dimensions of ¥, %, R(A) and K(A) are

dimy =dimR(A)+dimK (A) (3.3.9)

and



222 Chap. 3 . LINEAR TRANSFORMATIONS

dimR(A)<min(dim 7, dim%) (3.3.20)

The proofs of these results are essentially the same as the proofs used in Section 2.7 for matrices.
Theorem 2.5.2 told us that a subspace of a vector space equals the vector space if and only if the

subspace and the vector space have the same dimension. This theorem and the fact that R(A) isa
subspace of # gives the following result

Theorem 3.3.6: dimR(A)=dim# if and only if A is onto.

Another important result for one to one and onto linear transformations is the result

Theorem 3.3.7: If A:¥ — 9% is one to one and onto, then

dim¥ =dim# (3.3.21)
Proof: This result follows from Theorems 3.3.1, 3.3.4 and 3.3.5.

In the special case when dim¥ =dim#, it is possible to state the following important
theorem:

Theorem 3.3.8: If A:7 — % is a linear transformation and if dim¥ =dim# , then A is a linear
transformation onto % if and only if A is one to one.

Proof. Assume that A:%" — % isonto %, then dim# =dimR(A)=dim¥ . Therefore, the
equation dim¥ =dimR(A)+dimK (A) forces dimK(A)=0 and thus K(A)={0}and A is one
to one. Next assume that A is one-to-one. By Theorem 3.1.1, K(A)={0}and thus
dimK(A)=0. Asaresult, the equation dim¥ =dimR(A)+dimK(A) shows that

dimy =dimA(7)=dim% (3.3.22)
Therefore, by Theorem 3.3.4,
AV )=u (3.3.23)
and A is onto.

In the case where A: ¥ — % is onto and one to one, the two vector spaces ¥ and # are in
one to one correspondence. As such, there is an inverse function A™:% — ¥ . One of our
objectives later will be to show that this inverse function, when it exists, is actually a linear
transformation. However, before we can properly introduce this linear transformation, we need to



Sec. 3.3 . Properties of a Linear Transformation 223

define what is meant by the product of two linear transformations. This topic, among others, will
be introduced in the next section.

In Section 1.8, we stated and proved Theorem 1.8.1, the consistency theorem for linear
systems. That discussion concerned solutions of the matrix equation Ax =b, and said that the

system has a solution if and only if b e R(A). When the problem to be solved is stated in terms of

linear transformations instead of matrices, the theorem is readily generalized to be that the vector
equation Ax =b has a solution if and only if be R(A).
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Section 3.4. Sums and Products of Linear Transformations

In this section, we shall assign meaning to the operations of addition and scalar
multiplication for linear transformations. In addition, we shall explain how one forms the product
of two linear transformations. For finite dimensional vector spaces, you will not be surprised to
learn that these operations are generalizations of familiar matrix operations. First, we shall define
the operations of addition of two linear transformations and multiplication of a linear
transformation by a scalar.

Definition: If A and B are linear transformations¥” — % , then their sum A + B is a linear
transformation ¥~ — % defined by

(A+B)v=Av+Bv (3.4.1)

forall vey'. If 1%, then AA isa linear transformation ¥ — % defined by

(/1A)v = }L(AV) (3.4.2)
forall vev.

If we write 3(%;%) for the set of linear transformations from ¥~ to %, then (3.4.1) and (3.4.2)

make #(¥;%) avector space. The zero elementin £ (¥";%)is the linear transformation
0 defined by

ov=0 (3.4.3)

forall ve¥’. The negative of Ae 3(%;%) is a linear transformation —A € ,?("//;%)defined by

~A=-1A (3.4.4)

It follows from (3.4.4) that —A is the additive inverse of A e % (7';%). This assertion follows
from

A+(-A)=A+(-1A)=1A+(-1A)=(1-1)A=0A=0 (3.4.5)

where (3.4.1) and (3.4.2) have been used. Consistent with our notation introduced in equation
(2.1.3), we shall write A—B for the sum A +(-B) formed from the linear transformations A

andB . The formal proof that f("//;%) is a vector space is left as an exercise.
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Theorem 3.4.1.

dim&Z (v, %) =dimy dim% (3.4.6)

Proof. Let {e,,....e, }be abasis for ¥ and {b,,....b,, } be a basis for%. Define NM linear
transformations E"j Y > U by

E‘e =b,, k=1..N; j=1...M

(3.4.7)
E‘e,=0, k=p

If A is an arbitrary member of #(¥';%), then Ae, e % , and thus can be expanded in the basis
{b,,....b,, }. We shall write this expansion as we did in equation (3.2.2)

Ae =) Alb; j=12..M and k=12...N (3.4.8)

- k - -
Based upon the properties of E®; in (3.4.7), we can write (3.4.8) as

M _ M N .
Aek = ZAJkEkjek = ZZAJSESjek (349)
j=1

j=1s=1

A simple rearrangement of (3.4.9) yields

(A —iiAisEstek =0 (3.4.10)

j=1 s=1

Since the set of vectors {e,,....e, } form a basis of ¥", an arbitrary vector ve ¥ has the
representation

N
v=> v, (3.4.11)
k=1

Equation (3.4.11) allows (3.4.10) to be written
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M N
A-Y > AE, [v=0 (3.4.12)
j=1s=1
M N
for all vectors ve¥”. Thus, from (3.4.3), A —ZZ A E®; is the zero liner transformation. As a
j=1s=1
result
M N
A :ZZ A E’, (3.4.13)
j=1 s=1

Equation (3.4.13)means that the set of MN linear transformations
{Esj fors=1..,Nandj=1..,.M } span £ (7/;%). If we can prove that this set is linearly
independent, then the proof of the theorem is complete. To this end, set

> Y ALE, =0 (3.4.14)
j=1s=1
Then, from (3.4.7),
M N . M .
;;AJSEsj(ep)zéAjpbj -0 (3.4.15)

Because the set {b,,...,b,, } is linearly independent in %, (3.4.15) yields A’ =0. Hence the set
{E*;} isabasis of #(¥;4). Asaresult, we have

dim&(7;%)=MN =dim#dim¥ (3.4.16)

At the end of Section 3.3, we mentioned the need to define the product of two linear
transformations. The formal definition is as follows:

Definition: If A:¥ —> % and B:% — # are linear transformations, their product is a linear
transformation ¥ — # , written BA , defined by

BAv =B(Av) (3.4.17)

forall vev.

The properties of the product operation are summarized in the following theorem.
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Theorem 3.4.2.

C(BA)=(CB)A
(AA+uB)C=1AC+ uBC (3.4.18)
C(AA+uB)=ACA+ uCB

forall A, €% and where it is understood that A,B,andC are defined on the proper vector spaces
so as to make the indicated products defined.

The definition (3.4.17), which is given without the introduction of bases for the three vector
spaces ¥, %, , actually implies the matrix multiplication formula

M(BA.e,.d,)=M(B,b;,d,)M(Ae.b,) (3.4.19)
where {e,.e,,...ey } isthe basisof ¥, {b,,b,,....b,, } is the basis of # and {d,.d,,...,d,} is the

basis of # . The proof of this formula involves utilizing the many definitions we have
accumulated. The connection between A: ¥ — % and its components is (3.2.2), repeated,

Ae, = ZAikbj for  k=12,..,N (3.4.20)

Likewise, the connection between B: % — # and its components is

P
Bb, =) B‘d, for  j=12,..M (3.4.21)

g=1

From the definition (3.4.17),

BAe, = B(Ae,) (ZA’ j iA‘ka

j=1

j=1 q=1

(3.4.22)

If we now recognize that the relationship between BA: ¥ — # and its components is, from the
definition, an equation like (3.4.22), we see that we have derived an expression for the components
of the product BA . If we write the product as
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C=BA (3.4.23)

then, the components of C, by definition, are given by
P
Ce, = > CYd, for k=12,..,N (3.4.24)
q=1
Therefore, the three sets of components connect by the formula
M .
C% =D B A (3.4.25)

=1

Equation (3.4.25)is precisely the matrix equation (3.4.19) given above.

Exercises

3.4.1 Show that
M(AA+uB.e, b;)=AM (A, ,b;)+uM(B.e,.b;) (3.4.26)

Viewed as a function M : (¥ ;%) — 4""", equation (3.4.26) shows that M is a linear

transformation. It is easily shown to be one to one, and by virtue the result (3.4.16) and Theorem
337, M :,?("//;%) — 4" is an onto linear transformation. The one to one correspondence

between linear transformations between finite dimensional vector spaces and matrices is a
fundamental and useful result in linear algebra. The fact that this correspondence depends on the
choices of bases is also a fundamental result that is important in the applications.

3.4.2 You are given linear transformations A:¥ — % and B: % — # defined by

Av=u'(b, +2b, +b,)+v?(4b, +b, - 2b,)

(3.4.27)
+0°(b, +b, +b,)+v* (b, +2b,)
forall v=o'e, +v’, +v%, +v'e, e¥ , and
Bu=u'(d, +5d, +d,)+u’(2d, -d,)+u’(-3d, + 2d, +d,) (3.4.28)

forall u=u'b, +u®b, +u’b, e . Calculate the linear transformation BA: % — ¥ .
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Section 3.5. One to One Onto Linear Transformations

In this section, we shall record some important properties of one to one and onto linear
transformations A: ¥ — % . In Section 3.3, it was mentioned that when a linear transformation
A7 — 9 is both one to one and onto, the elements of ¥~ are in one to one correspondence with
the elements of % . One to one onto linear transformations are sometimes called isomorphisms.
The one to one correspondence between ¥ and # means there exists a function f: % — ¥  such
that

f(Av)=v forallvey (3.5.1)

The next result we wish to establish is that f is actually a linear transformation. This means that if
we are givenv,,v, € ¥" and if we label the corresponding elements in % by

u,=Av, and u, =Av, (3.5.2)
then
f(Au, + pu,) = Af(u,)+ uf (u,) (3.5.3)
forall 2, ue% andall u,u, in %.

The proof of (3.5.3) goes as follows. First, form the left side of (3.5.3) and use the
properties of A as a linear transformation. The result is

f(Au, + pu, ) =f(AAvV, + uAv,)
=f(A(Av, +uv,)) (3.5.4)

= AV, + uv,
where (3.5.1) has been used. Next, it follows from (3.5.1) and (3.5.2) that
v, =f(Av,)=f(u,) (3.5.5)
and
v, =f(Av,)=f(u,) (3.5.6)

Equations (3.5.5) and (3.5.6), when utilized in (3.5.4) yield the result (3.5.3).
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As with matrices, it is customary to denote the inverse linear transformation of a one to one

onto linear transformation A:¥ — @ by A™'. Also, the linear transformation A™:% — ¥ is one
to one and onto whose inverse obeys

(A1) =A (3.5.7)

Theorem 3.5.1. If A:¥ —> % and B: % — # are one to one linear transformations, then
BA:¥ — # isaone to one onto linear transformation whose inverse is computed by

(BA) =A"B™ (3.5.8)

Proof. The fact that BA is a one to one and onto follows directly from the corresponding
properties of A and B. The fact that the inverse of BA is computed by (3.5.8) follows directly
because if

u=Av and w=Bu (3.5.9)
then
v=A'u and u=B'w (3.5.10)
It follows from (3.5.9) that
w =Bu=B(Av)=BAv (3.5.11)
which implies that
v=(BA)"w (3.5.12)
It follows from (3.5.10) that
v=A'u=A"'B'w (3.5.13)
Therefore,
v=(BA) 'w=A"B"w (3.5.14)

As aresult of (3.5.14)
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((BA)*l - A‘lB‘l)w =0 forall wew (3.5.15)
which implies (3.5.8).
The notation A™ for the inverse allows (3.5.1) to be written

A™(Av)=v forallvey (3.5.16)

The product definition (3.4.17) allows (3.5.16) to be written

A'Av=v forallvey (3.5.17)

Likewise, for all ue % , we can write

AA'u=u forallue# (3.5.18)

The identity linear transformation 1:%” — ¥ was introduced in Example 3.1.1. Recall that it is
defined by

lv=v (3.5.19)

forall v in ¥. Often it is desirable to distinguish the identity linear transformations on different
vector spaces. In these cases we shall denote the identity linear transformation by 1,.. It follows

from (3.5.17), (3.5.18) and (3.5.19) that

AAT =1, and A*A=1, (3.5.20)

Conversely, if A is a linear transformation from ¥ to% , and if there exists a linear transformation
B:% — ¥ such that AB=1, andBA =1, ,then A isonetoone and onto and B=A". The

proof of this assertion is left as an exercise. As with matrices, linear transformations that have
inverses, i.e., one to one onto linear transformations, are referred to as nonsingular.

Exercises

3.5.1 Show that

M(Ate; e )=M(Ag.e;)" (35.21)
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for a nonsingular linear transformation A: ¥ — % .

3.5.2 In Example 3.2.2, we were given the linear transformation A: ¥ — % defined by

AV:(02+21)3+3u4)b1+(—1}1+1)2+4U3+U4)b2

(3.5.22)
+(—Ul +0° +0° —21)4)b3 +(Ul +0° - 20° +21)4)b4
for all v=uv'e, +v%, +0%, +v%, € ¥ . Show that A is nonsingular and that the inverse
A — v is defined by
i 10
A u= ( 7u1+ u +4u j
+(-u, +u, )e2
(3.5.23)
+(—2u, +2u, —u; +u,)e,

+

(-
(- u,

2
(Zu1 u+3u uje4

forall u=u'b, +u’b, +u’b, +u‘b, e %.
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Section 3.6. Change of Basis for Linear Transformations

In Section 2.6, we introduced the idea of a change of basis and were led to the idea of a
transition matrix. For a finite dimensional vector space ¥, we considered two bases {e,.e,,....e, }

and {é,,€,,....8, }. Because each basis element of the first set can be written as a linear
combination of the elements of the second set, we were able to write equation (2.6.3), repeated,
é,=>Te forj=12..,N (3.6.1)

and its inverse, equation (2.6.4), repeated,

N ~ .
e, =y TJ&, for k=12..,N (3.6.2)
j=1

We defined the transition matrix for the basis change {e,.e,,....e, } = {&,,é,....,& } to be the matrix
(2.6.9)1,repeated,

= ' (3.6.3)

TlN TZN . .. TNN

Also, in Section 2.6, we derived the transformation rules for the components of a vector
v e¥ . This calculation began with equations (2.6.26) and (2.6.27), repeated,

N N
v=> vle,=> 0%, (3.6.4)
j=1 j=1

The two sets of components {v*,07,...,0" | and {5",07,...,0" | are connected by the formulas
(2.6.31) and (2.6.32), repeated,

N
V¢ =>"T/0 (3.6.5)
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N ~ .
0" => T (3.6.6)
j=1

]

In this section, out task is to derive the formula which connects the components of a linear
transformation A:%¥ — % when one changes bases in ¥~ and % . The result, like the results
(3.6.5) and (3.6.6), reveals the dependence of A:¥" — % on the bases. The dependence will be
displayed as a matrix equation which connects the matrix of A: ¥ — % to two transition matrices,
one for ¥~ and one for % . This formula, when it is derived, will allow us to define what is meant
by similar matrices.

The derivation we are going to perform, like virtually all in a linear algebra course, simply
follows by a consistent application of the definitions. We are given A:¥ — %, bases

{e,e,.....ey} and {&,,é,,...&,} for ¥ and bases {b,,b,,...,b,, } and {61,62,...,6M} for @ . The

connection between the bases {e,.e,,...e, } and {€,,€,,...,8 } is given by (3.6.1) and (3.6.2). By

exactly the same logic, the bases {b,b,,...,b, } and {b,,b,,...,b,, | are given by

~ M
b,=>Ub, for j=1,2,..,M (3.6.7)
k=1
and its inverse,
M A . A
b, =>Ulb, for k=12...,M (3.6.8)
j=1

From (3.2.2), the components of A: ¥ — % are

Ae, =ZAJ’kbj k=12,..,N (3.6.9)

when one selects the basis {e,,e,,...,e, } for " and the basis {b,,b,,...,b,, } for . However, if
we select the other bases {é,,é,,....€, } and {61,62,...,6M} , the components of A: % —  are

given by

M ~ . ~
Aé => Ab, k=12,..,N (3.6.10)
j=1

The transformation rule we are trying to derive arises from the substitution of the equations
which connect the bases for ¥~ and the bases for % into (3.6.9) and the result is written in the form
of (3.6.10). The result we are going to derive is
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M

uiAaTd j=1..M and k=12..,N
=1

. N
Ajkzz S

g=ls

(3.6.11)

The derivation of this result is as follows: First, substitute (3.6.1) into (3.6.10). The result

of this substitution is

Mo N
Y Alb, =A8 =) TAe, k=12,.,N
j=1

gq=1

We next substitute equation (3.6.9) into the right side of (3.6.12) to obtain

iAiKBj = iquAeqziiAqukqbs k=12,..,N
j=1 gq=1 g=1 s=1

Finally, we use (3.6.8) to rewrite (3.6.13) as

T'b, =ii§:AquﬂU;’6j k=12,..,N

j=1 q=1 s= j=19=1s=1

Mz
3>
=)
1]
=
>

Mz
—
>
|
Mz
Mz
mC)
:%.
—
N
=
1]
~
1l
el
n
=

A

(3.6.12)

(3.6.13)

(3.6.14)

(3.6.15)

Because the set of vectors {61, 62 N o } is a basis and, thus, linearly independent, (3.6.15) yields

M

ujATd j=1..M and k=12..,N
=1

. N
Ajkzz s

g=1s
As a matrix equation, this set of equations is equivalent to

A=U"AT

(3.6.16)

If we adopt the notation introduced in equation (3.2.9), equation (3.6.16) can be written in the

slightly more informative notation

M(A&.b;)=U"M(Ae,b,)T

(3.6.17)
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An important special case is for the linear transformation A:¥ — ¥, a linear
transformation on ¥~ with values in the same vector space ¥ . In this case, the components of A
are related by

M (A8 .8)=T M(Ae,e)T (3.6.18)

Equation (3.6.18) is an example of similar matrices. More formally, similar matrices are defined
by

Definition: If two square matrices A and B are related by a nonsingular matrix S by the formula
B=S"AS,then A and B are said to be similar.

The derivation of (3.6.18) shows that the matrix M (A&, &) is similar to the matrix

M (A,eq,es). It is the transition matrix which plays the role of S in the definition.

The fact that the linear transformation A:¥ — ¥ represents a quantity that does not
depend upon the choice of basis for ¥~ means we can represent it in components with respect to
any basis. The choice of basis which produces the result most amenable to finding a solution to a
physical problem is always a desirable choice. This choice usually results in the utilization of

(3.6.18) to calculate the transition matrix from given information about M (A,ék,éj) and

M (A,eq,es). We shall see an example of this kind of calculation later in this textbook.

Similar matrices arise in a lot of applications and are worthy of a short discussion. Some of
the easily established properties of similar matrices are as follows:

a) If B issimilarto A, then A issimilarto B. This is true because if B =S'AS, then
A=SBS™
b) If B issimilarto A and C issimilarto B, then C issimilarto A. This is true because

B=S"'AS and C=W"'BW (3.6.19)
implies
C=W"'S"ASW =(SW )’1 ASW (3.6.20)

c) If B issimilarto A, then B issimilarto A". This is true because if B=S"AS, then
B'=STAT(S")".

d) If B issimilarto A, then detB =det A. This is true because
detB = det(S'AS) =detS " det Adet S = det(S 'S )det A=det A,

e) If B issimilarto A, and A is nonsingular, then B is nonsingular. This follows from d)
because detB =det A=0.
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f) If B issimilarto A, and A is nonsingular, then A™ is similar to B™. This follows
because B =S"AS implies B =S™"A™S when A is nonsingular.

An example of the use of (3.6.17) is provided by the following:

Example 3.6.1: You are given a linear transformation A:¥ — ¥  whose matrix with respect to a
basis {e,,e,,e,} is

2 20
M(Ae.e)=1 1 2 (3.6.21)
1 1 2
and a change of basis
él =€, -6,
€,=-2e +e, +e, (3.6.22)
€, =€, +e,+e,

It follows from (3.6.1) that the transition matrix is given by

T, T, TL] 1 -2 1
T=[T% T3, T%4|=[-1 1 1 (3.6.23)
TS T3, TS| |0 1

The inverse of the matrix (3.6.23) is

0 -1 1
T:Tl—-—% _% % (3.6.24)

111

|3 3.

Therefore,
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0 1 1 2 o1
A AT 1 1 2
M(AE.E)=T'M(Aee)T= -3 3 3t 12t
1 131120
L3 3 3.
000
=0 10
00 4

Example 3.6.2: You are given a linear transformation A:¥ — % defined by

LINEAR TRANSFORMATIONS

(3.6.25)

Av =v'(9b, +6b, —5b, +4b,)+v*(-b, = b, + b, )+ 0°(8b, +5b, —4b, +5b,) (3.6.26)

For all vectors v =v'e, +v’e, +v°%, €#". The matrix of A with respect to the bases {e, e, ,e,}

and {b,,b,,b,,b,} is

9 -1 8
6 -1 5
M(A.e,.b,)= 51 4
4 0 5

~

You are given bases {é,,¢,,é,} and {b1,62,63,64} defined by

€, =€ -6,
€, =—2e +e,+e,
€, =€ +e,+e,

and

b, = 2b, +3b, +3b, —2b,
b, =3b, —2b, +2b, +4b,
b, =—2b, +b, +3b,

b, = 4b, +2b, +4b, +5b,

The problem is to find the matrix M (A,ék : Bj) . It follows from (3.6.28) that

(3.6.27)

(3.6.28)

(3.6.29)
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T=|T> T/ T/|=[-1 1 1 (3.6.30)

and from (3.6.29) that
ur ul ul uil 2 3 -2 4
Uy U7 Uy U 3 -2 1 2
ud ud ud uil|3 2 3 4
5

U= = (3.6.31)
us U Ul Ul |2 4 o0
Given (3.6.27), (3.6.30) and (3.6.31), we can use (3.6.17) and find
2 3 -2 479 -1 8
3 21 2/l 15|t 21
M (A8,.b;)=U"M(Ae,b,)T = -1 1
j " 3 2 3 4|5 1 4
2 4 0 5|4 0 5
(48 -15 37 -62|[9 -1 8
1 21
13 -100 56 -32||6 -1 5
= 1 1 1 (3.6.32)

28660 -17 61 6 (|-5 1 -4
| 8 74 -30 584 0 5
[ 95 37 236 -0.332 0.1294 -0.8252
1| -824 914 -1192 -2.8811 3.1958 -4.178

286 -1061 1205 -1564 -3.7098 4.2133 -5.4685
| 850 888 1374 29720 -3.2049 4.8042

If A isalinear transformation A: ¥ — ¥, the transformation formula is again (3.6.18).
We shall use (3.6.18) to motivate the concept of the determinant of A:% — ¥ and the trace of
A ¥ — ¥ . First, we shall discuss the determinant. The determinant of the square matrix

M (A,eq,es) , written detM (A,eq,es) , can be computed by the formulas in Section 1.10. It
follows from (3.6.18) and equation (1.10.60) that

detM (A e, )= (detT)(M (A8, &, ))(detT™)
=detM (A8, .8))

(3.6.33)
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Thus, we obtain the important result that for a linear transformation A: %" — ¥, detM(A,e,,e,)

is independent of the choice of basis for #~. With this fact in mind, we define the determinant of a
linear transformation A:¥ — ¥, written det A, by

detA=detM(A,e,.e,) (3.6.34)

By the above argument, we are assured that det A is a property of A alone.

The definition of the trace of a linear transformation A: 7 — ¥  is motivated by the same
kind of argument that was just used for the determinant. The trace of a matrix is defined by

equation (1.1.6). Therefore, the trace of the square matrix M (A,eq,es) , written tr M (A,eq,es) is

just the sum of the diagonal elements. Because of the transformation formula (3.6.18) and the
special property of the trace operation, equation (1.1.26), it follows that

trMm (A,ék,éj):tr(T’lM (A,eq,eS)T)

tr(TT M (Ase, e, )
tr(IM (A,eq,es))

:tr(M (A,eq,es))

(3.6.35)

Therefore, the trace of a matrix is independent of the basis used to derive the matrix from the linear
transformation. As a result, we define the trace of a linear transformation by the formula

trA=trM(Ae,.e,) (3.6.36)

Exercises:

3.6.1 You are given a linear transformation A:¥ — ¥ defined by

AV =v'(12¢, +3V2e, ) + 07 (342e, +158, | + v, (3.6.37)

for all vectors v=u'e, +v’e, +v%, € ¥ in a three-dimensional vector space ¥ . You are given a
basis {€,,€,,8,} defined by

e —ie +_2
1 \/§ 1 \/§ 2

A 2 1

g, =——8e, +— 3.6.38
2 \/§ 1 \/§ 2 ( )
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Find the matrix M (A,&,,&;). You should obtain

00

9 0 (3.6.39)
01

3.6.2 You are given a linear transformation A:¥ — % defined by

Av =v* (8b, - 2b, ) +v? (6b, — b, ) +v* (-5b, +b, ) (3.6.40)

for all vectors v =v'e, +v’e, +v’%e, €¥ . You are given bases {&,,¢,,é,} and {61,62} defined by

e
€, =3, —2e, +e, (3.6.41)
e

and
b, =b, +b
Lo (3.6.42)
b,=-2b, +b,
Find the matrix M (A,é.,f)k). You should obtain
" A 1| 22 1 11
M(A,e ,b.|== 3.6.43
( “ ') 3[—43 ~10 —26} ( )
3.6.3 A certain linear transformation A:¥ — ¥ has the matrix
1 0 2
M(Ae;.e)=/0 2 1 (3.6.44)
01 2

with respect to a basis {el,ez,eg} . 'You are given a change of basis defined by
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3. 1.
e, =Ee1 +=8,
1. 3.
e, = _Eel +Ee2 (3.6.45)
€; :éz

Calculate the matrix of A:¥" — ¥ with respect to the basis {&,,€,,&,} . You should obtain

(113 5]
10 10 2
A A 3 19 5
M(Ae e |=-— = = 3.6.46
(A8).8) 10 10 2 ( )
B
. 5 5 i
3.6.4 You are given a linear transformation A: ¥ — % defined by
Av =y, (e, +e,+e,)+v,(e —3e,+2e,)+ve, +v,(4e,—38,) (3.6.47)

A A

for all vectors v =v'e, +v’, +v’%, +v'e, € ¥ . You are given bases {€,,¢,,8,,8,} defined by

e,=6,+6,+3¢,
e, =6 +6,+6,+2¢, (3.6.49)
e,=8,+8, -
€, =_él
Find the matrix M (A,&,.&).
3.6.5 You are given a linear transformation A: ¥ — % defined by
Av=v'(-b, -b,+b,)+0*(b,+b, +b, +b,) (36.49)

+0°(2b, +4b, +b, -2b,)+v*(3b, +b, —2b, + 2b,)

A A

for all vectors v =v'e, +v’, +v’%e, +v’e, €¥". You are given bases {é,,¢,,8,,6,} and

{b,,b,,b,,b, defined by
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€, =e,—e,+e,

e, =—2e,+e,+e,+2e,
€

€

(3.6.50)
;=6 +6,+€;,+¢,
,=26,+e,+3e,+e,
and

b, =2b, +3b, +3b, - 2b,

b, =3b, —2b, +2b, + 4b

R (3.6.51)

b,=-2b, +b, +3b,

b, =4b, +2b, +4b, +5b,
Find the matrix M (A,ék,Bj) . You should obtain

-161 235 52 362 —-0.5629 0.8217 0.1818 1.2657
M(Aé 6.): 1 |-120 626 -416 -828| |-0.4196 -2.1888 -1.4545 -2.8951
KTI) T 286|-335 —687 —494 -810| |-1.1713 -2.4021 -1.7273 -2.8322
146 652 468 750 05105 2.2797 1.6364 2.6224

(3.6.52)

3.6.6 Given the linear transformation A:¥ — ¥ from Exercise 3.6.3, calculate the determinants
detM (A,e,.e;) and detM (A,&,,&;). This calculation should illustrate the theoretical result
(3.6.33) above.
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Chapter 4

VECTOR SPACES WITH INNER PRODUCT

There is no concept of length or magnitude in the definition of a vector space. In this
chapter, we first take a formal approach and add structure to that of a vector space so as to make it
an inner product space. We shall then illustrate by examples how one makes many of the vector
spaces we have encountered thus far into inner product spaces. From this discussion, we will be
led naturally into ideas of length and angle that one can associate with inner product spaces. This
discussion will add a familiar geometric vocabulary to that we have been using for vector spaces.

In the application of mathematics to solve problems, it is often the case that one cannot
obtain an exact solution. One has to settle for an approximate solution of some type. The ability to
speak sensibly about an approximation requires ideas of distance and closely related ideas of length
and angle. The way one judges the validity of an approximation is to specify that it is close in
some sense to the exact solution. The ability of assign a mathematical meaning to “close” depends
upon the structure of the mathematical model used to model the problem being solved. For the vast
majority of problems one encounters, the underlying mathematical model establishes relationships
between elements of vector spaces. If these elements have the additional structure which allows
one to sensibly talk about distance, then the door is open to discussions of approximate solutions
and their closeness to exact solutions. It is the structure of an inner product space which will
provide us the way to talk about concepts such as distance, length and angle. These are the
concepts that allow one to discuss the idea of an approximate solution to a problem being close to
its exact solution.

Section 4.1 Definition of an Inner Product Space

In all of our discussions in Chapters 1, 2 and 3, we have allowed the scalar field to be the
set of complex numbers ¢ . Most of our examples have utilized the special case of real numbers
Z . In this chapter we shall discuss a so called eigenvalue problem that arises in many areas of the
applications. As we shall see, a discussion of this problems is best done in the context where the
scalar field is allowed to be ¢ . It is for this reason, we shall continue to allow complex numbers
for the scalar field. Thus, we shall first define an inner product in this more general case. We will
often illustrate the concepts with examples where the scalar field is the set of real numbers.

It is useful to briefly remind ourselves of certain arithmetic manipulations with complex
numbers. You will recall that complex numbers always have the representation

247
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A=a+ib (4.1.1)

where a and b are real numbers and the symbol i obeys i =—1. The complex conjugate of a
complex number A is the complex number

A =a-ib (4.1.2)

It follows from (4.1.1) and (4.1.2) that

A+A=a+ib+a—ib=2a=2Re(1) (4.1.3)

where Re(4) means the real part of the complex number 4. Also, if A =a+ib, then

ALl =24 =(a+ib)(a—ib) =a’+iab—iab—i’b? =a’+b? (4.1.4)

is a real number. If one refers to the absolute value of a complex number it is a real number
denoted by || and it is defined by

14| =A% =Ja® +b? (4.1.5)

When dealing with complex numbers, it is convenient to useful to have a formal condition which
reflects the special case when a complex number is, in fact, real. This condition is the equation

A=4. Inorder to see that this condition does imply that A is real simply form the equality 1 =14
. The resultis

A=a+ib=1=a-ib (4.1.6)
Equation (4.1.6) implies that b =0, and thus the complex number A is real.

If you are given a vector space with its long list of properties summarized in Section 2.1, an
inner product space is a vector space with additional properties that we shall now summarize.

Definition: An inner product on a complex vector space ¥ is a function f: ¥ x¥ — % with the
following properties:

(1) f(uv)="f(v,u)
(2) Af (u,v)=f(Au,v)

(3) f(u+w,v)="f(uv)+f(w,v)

(4) f(uu)>0and f(u,u)=0 ifandonlyif u=0
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forall u,v,we¥ and A<%. InProperty 1 the bar denotes the complex conjugate. Properties 2
and 3 require that f be linear in its first argument; i.e.,

f(Au+pv,w)=2f(uw)+puf(v,w) (4.1.7)

forall u,v,we¥ andall A,ue® . Property 1 and the linearity implied by Properties 2 and 3
insure that f is conjugate linear in its second argument; i.e.,

f(uAv+uw)=2f(u,v)+af(uw) (4.1.8)

forall u,v,we¥ andall 1, <% . Note that Property 1 shows that f (u, u) is real. Property 4
requires that f be positive definite.

There are many notations for the inner product. In cases where the vector space is a real
one, the notation of the “dot product” is used. In this case, one would write the function
f:¥x¥ >4% as

f(uv)=u-v (4.1.9)
In cases where the vector space is a complex one, it is useful to adopt the notation

f(u,v)=(u,v) (4.1.10)
for the function f : ¥ x¥ — €. In this work, we shall adopt the notation (4.1.10).

An inner product space is simply a vector space with an inner product. To emphasize the
importance of this idea and to focus simultaneously all its details, we restate the definition as
follows.

Definition. A complex inner product space, or simply an inner product space, isa set ¥ and a
field ¢ such that:
@) There exists a binary operation in ¥ called addition and denoted by + such that:
(1 (u+v)+w=u+(v+w)forall u,v,we?
2 u+v=v+u forall uve?
(3) There exists an element 0 e ¥ such that u+0=u forall ue ¥
4) For every u e there exists an element —u € ¥~ such that u +(—u) =0

(b) There exists an operation called scalar multiplication in which every scalar 1 € %
can be combined with every element u e ¥ to give an element Au € ¥~ such that:

) A(uu)=(Au)u
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2  (A+p)u=Au+pu
(3  A(u+v)=Au+Aiv
4 lu=u
forall A,u,e% andall u,vey

(c) There exists an operation called inner product by which any ordered pair of vectors
u and v in ¥ determines an element of ¢ denoted by (u,v) such that

1) {uv)=(v,u).

(2) A{u,v)=(au,v)

(3) (u+w,v)=(u,v)+(w,v)

4) (u,uy>0 and (u,u)=0 ifandonlyif u=0
forall U,v,We? and 1c%

A real inner product space is defined similarly. One simple formally omits the appearance of
complex conjugates in the definitions.

Example 4.1.1: The vector space 2" becomes an inner product space (a real inner product space)

if, for any two vectors u,v e £" where u=(u,u,,..,u,) and v =(v,,v,,..,v, ), we define the
inner product of U and Vv by

{uv)=2 up, (4.1.11)

Example 4.1.2: The vector space ¢ " becomes an inner product space if, for any two vectors
u,ve#".where u=(u,u,,..uy,) and v=(u,uv,,..,0, ), we define the inner product of U and v

by

<u,V>=iujUj (4.1.12)

Example 4.1.3: The vector space M becomes an inner product space if, for any two column
vectors u,v e 4", we define the inner product of U and Vv by
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N
(uv)=fu, u, uy - - uy] = =Y u;p, =u'v=v'u (4.1.13)

The next example shows how one assigns an inner product to the vector space of M x N matrices,
MM . Before we state this definition, recall that in Section 1.2 we defined the trace of a square

matrix. In particular, if A is a square matrix, say a matrix in Ve , the trace of A, written tr A,
is defined by equation (1.1.6), repeated,

trA:A11+A22+A33+---+ANN:ZN:Akk (4.1.14)

If Ac 4™ and B e 4™, then the rule for multiplying matrices and the definition (4.1.14) of
the trace yield

r(AB =ii A, B, =tr(BA) (4.1.15)

j=1 k

Equation (4.1.15) is equation (1.1.26) repeated.

Example 4.1.4: The vector space MM becomes an inner product space if, for any two M x N
matrices A, B e .#"*" , we define the inner product of A and B by

Au A12 A13 7 AlN gn §21 §31 I§M 1

Az1 Azz Azs AZN BlZ Bzz Baz BM 2

<A, B> _ tr(AgT ) —tr A3l Aaz A33 ABN BlS st B33 BM 3
i A, . . A | _|§1N . . .. |

(4.1.16)
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Example 4.1.5: Recall in Example 2.5.5 we introduced the symbol £ for the infinite dimensional
real vector space of all polynomials. If we view these functions as defined over an interval [a, b]
and if we C[a,b] is a positive valued continuous function on [a,b], the real vector space Z,
becomes a real inner produce space if for any two polynomials p,qe £ , we define the inner
produce of p and q by

(p.a) =], w(x) p(x)a(x)dx 4.1.17)
The positive valued function w e C[a,b] is called a weighting function.

Example 4.1.6: Next consider the real vector space of polynomial of degree less than or equal to
N. In Section 2.1, we gave this vector space the symbol £, . In Example 2.5.4 we showed that

this vector space has dimension dim£, =N +1. An inner product of two polynomials in £, is

defined as follows. If we are given K, where K > N +1, distinct values of X which we shall
denote by x;, X,,..., X , the inner product in £, is defined by

K

(p.ay=2.p(x,)a(x,) (4.1.18)

a=1

Example 4.1.7: The vector space C[a,b] becomes an inner produce space (a real inner product
space) if for any two functions f,g € C[a,b], we define the inner product of f and g by

<f’9>=I: f () g(x)dx (4.1.19)

The actual proof that the inner product spaces introduced in the above seven examples requires that
each definition be shown to obey the rules (c) above.

The structure of an inner product space makes it possible to introduce the idea of length or
norm of a vector.

Definition: Given an inner product space ¥, the length or norm of a vector is an operation,
denoted by || |,that assigns to each nonzero vector v e a positive real number defined by:

NENCAD: (4.1.20)

Of course, it follows from rule (c)(4) above that the length of the zero vector is zero. The definition
represented by equation (4.1.20) is for an inner product space of N dimensions. It generalizes the
concept of “length” or “magnitude” from elementary Euclidean plane geometry to N-dimensional
spaces.
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Example 4.1.8: For the vector space a" , the length of a vector vV e A" is

||||m[z]y w121)

Example 4.1.9: For the vector space g" , it follows from (4.1.13) and (4.1.20) that the length of a
vector Ve %" is

M=o =[S0 (S| 12

- =1

I
4N

Example 4.1.10: For the vector space 4", the length of a column vector V € 4" is

= [V V) =WW'w {jz”_;upj T - (jz“_;|uj|2j% (4.1.23)

Example 4.1.11: For the vector space MM , the length of the matrix Ae MM s

— M N _ % M N P!
A= (A A) = \/tr(AAT) :[Z;AjkAjk] =[ZkZ|Ajk|2J (4.1.24)
j=1 k=1 j=1 k=1
Example 4.1.12: For the vector space £, the length of the polynomial pe £ is
[oll=Tp. o} =( [} w(x) p* ()] (4.1.25)

Example 4.1.13: For the vector space £ , the length of the polynomial p e &, is

K %2
Iol=o.00 = 35°(x.) @120

Example 4.1.14: For the vector space C[a,b], the length of the function f €C[a,b] is
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RN NGO dx)% (4.1.27)

Exercises

4.1.1 In Example 4.1.3 an inner product was defined on the vector space M tis possible for
the same vector space to have more than one inner product. Define an inner product different than
the one in equation (4.1.13) by the rule

9 0 0 - - 0 Uy
0 g, 0 - - 0]p,
0 O - - 0 |lo.
(uv)=[u u, u, Uy | 9 vs
(4.1.28)
_O 0 O Jy _UN_

where g; >0 for j=12,..,N . Show that the definition (4.1.28) makes M an inner product
space.
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Section 4.2 Schwarz Inequality and Triangle Inequality

As we build upon the properties of an inner product space, there are two fundamental
inequalities that allow us to associate, with inner product spaces in general, certain concepts
familiar from elementary geometry. The first is an inequality called as the Schwarz Inequality and
the second one is called the Triangle Inequality.

Theorem 4.2.1: The Schwarz inequality

{u,v){<[ul|v] (4.2.1)

is valid for any two vectors u, v in an inner product space.

Proof: The Schwarz inequality is easily seen to be trivially true when either u or Vv isthe 0
vector, so we shall assume that neither u nor Vv is zero. Next, consider the vector
(u,u)v—{v,u)juand employ Property (c4), which requires that every vector have a nonnegative

length, hence

(u,u)v=(v, u>u||2 =((u,u)v—(v,uju,(u,u)v—(v,uju) =0 (4.2.2)
We shall algebraically rearrange this equation and show that
[ upv = ¢v upul = (Julf [vIF = (u. v){u. v )l = 0 (4.2.3)
The algebra necessary to derive this result is

o)) = o)y~ (o)
=((u,u)v, {u,u)v—(v,upu) - ((v,u)u,(u,upv - (v,uju)

Used linearity in the first argument of the inner product.

= (u,u)(v,{u,u)pv—(v,upu) = (v,u)(u,(u,upv—(v,uju) (4.2.4)

Factor the scalars from the first argument of the inner product.

=(u,u)(u,u){v,v)=(u,u){v,up(v,u)—(v,u)(u,u){u,v)+(v,u){v,u)(u,u)

These terms cancel each other.

Used conjugate linearity in the second argument of the inner product
=l JvIF = (v u) (vl = (Julf [vIF (. v){u.v) ) uff 20

Returning to the proof of the theorem, since U must not be zero, it follows that |u|| > 0 and, as a
result, it follows from (4.2.4) that
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JulF VI 2 . v){u,v) = [(u,v)f (4.2.5)

where the equality |<u v>| =4/{u,v){u,v) has been used. The positive square root of the last
equation is Schwarz’s inequality.

Theorem 4.2.2: The triangle inequality

Jlu-+ v < | +[v] (4.2.6)
is valid for any two vectors u, v in an inner product space.

Proof: The squared length of u+ v can be written in the form

lu+ v||2 =(u+Vv,u+v)= ||u||2 +||v||2 +(u,v)+(v,u)
= Julf + VI +{us v)+ {u,v) (4.2.7)
=[ul] +[lv[" +2Re((u,v))

where, as with (4.1.3), Re signifies the real part. The inequality Re(<u,v>)£|<u,v>| and (4.2.7)
show that

Ju-t v =l + "+ 2Re ((u, v)) < ull+ V]| + 2[(u. v) (4.2.8)
The Schwarz inequality (4.2.1) allows this inequality to be written
Ju-s v < fluf? 7+ 28w, )] < Julf + v + 2l = (Jul+ vI) (4.2.9)

The positive square root of (4.2.9) yields the triangle inequality (4.2.6).

For a real inner product space ¥, the concept of angle is arises from the following
definition:

Definition: The angle between two vectors U and V in ¥ isby @ and is defined by

cosg = A4 V) (4.2.10)

Jullv]
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This definition angle between two vectors in a real vector space is meaningful because the Schwarz
inequality (4.2.1) shows that

u-v
~1< <+1 (4.2.11)
v

Jull

For a real inner product space, the definition (4.2.10) can be used to write

Ju+ v||2 =(U+V,u+V)= ||u||2 + ||v||2 +2(u,v)= ||u||2 +||v||2 +2|u][v] cos & (4.2.12)

In elementary geometry, (4.2.12) is known as the “Law of Cosines.”

As the material in this section shows, when the structure of an inner product is added to that
of a vector space, we can define, in very general terms the geometric ideas of length and, in the real

case, angle. This structure, for example, when applied to the vector space MMM , allows one to
talk about the angle between two M x N matrices.

Example 4.2.1: Consider the following 2x3 matrices

59 7 1 3 4
A= and B= (4.2.13)
8 5 6 9 0 2

a) The length of A and B are

NS

8 5 6

5
Al =i AT | 1 {5 0 7} 9
7

(4.2.14)

P!
B 155 127 B Yy Yy
—(tr(lﬂ 125D = (155+125)'2 = (280)'2 = 24/70

and
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1 %
8= BB =| 1 F 3 4} 3
9 0 2
4 (4.2.15)
O %— 26+85)2 = 111
B 17 85 = )=
b) The cosine of the angle between A and B is
19
tr( AB'
°°39:||<§|'||BB>||: ﬁﬁ\nnsn):z Tk E : Q >0
(D) 4 2 (4.2.16)

72

__ {60 59} -1 (e0+84)=——"2___ 8168
T2 701y (47 84)) 2701111 o1y

Therefore, the angle between A and B is approximately 35°,

There is another idea which is familiar from elementary geometry that has a more general
counterpart for inner product spaces. It is the concept of distance. The formal definition is as
follows:

Definition: Given an inner product space ¥ the distance between vectors U,Ve?¥ is Ju—v]|-

In more abstract mathematical discussions, there is the idea of distance but it is not necessarily
derived from the equation |ju —v||. Such structures are called metric spaces. Also, one sometimes

hears of normed linear spaces. These are vector spaces for which the idea of length is defined
without the necessity of the full structure of an inner product.® In our discussion, these structures
all collapse together when we introduce the idea of a vector space with inner product.

The inner product as well as the expressions (4.1.20) for the length of a vector can be
expressed in terms of any basis and the components of the vectors relative to that basis. Let
{e,.e,.,....e, } be a basis of ¥"and denote the inner product of any two base vectors by e, i.e.,

s = (65,0 = (60.8;) =5 (4.2.17)

1 An example of a norm that is not derived from an inner product is the so called Manhattan or taxicab norm defined for
two vectors in a finite dimensional vector space by the sum of the absolute differences in their coordinates. A nice
discussion of this norm can be found at http://en.wikipedia.org/wiki/Taxicab_geometry.
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Thus, if the vectors uand Vv have the representations

N N
u=>ule, v:kZukek (4.2.18)
i1 =

relative to the basis {e,,e,,...,e,} then the inner product of U and V is given by

(u,v}:<iujej,iukek>:i2u"5k <ej,ek>:i2ejku"5k (4.2.19)

From the definition (4.1.20) for the length of a vector v, and from (4.2.17) and (4.2.18),, we can
write

vl :(iiejkujakJ (4.2.20)

j=1 k=1

Equations (4.2.19) and (4.2.20) give the component representations of the inner product and of the
length for the basis {e,,e,,....e\}

Exercises

4.2.1 Show that the length or norm || || induced by an inner product according to the definition
(4.1.20) must satisfy the following parallelogram law;

Ju-+ i +u =" = 2]+ 2l (4:2.21)

for all vectors U and V.

4.2.2 Show that in an inner product space

2<u,v>+2<v,u>:||u+v||2—||u—v||2 (4.2.22)

4.2.3 Show that for a complex inner product space

2(u,v)-2(v,u)=ifu+ iv||2 ~ifu- iv||2 (4.2.23)
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4.2.4 Use (4.2.22) and (4.2.23) and show that
2(u,v)=u+ v||2 +ifu+ iv||2 ~(1+ i)||u||2 ~(1+ i)||v||2 (4.2.24)

which expresses the inner product of two vectors in terms of the length or norm. This formula is
known as the polar identity.?

4.2.5 Show that for real vector spaces the Schwarz and triangle inequalities become equalities if
and only if the vectors concerned are linearly dependent.

4.2.6 Show that |ju—v| = |Ju||—|v]| forall u,v inaninner product space »". Hint: Write

u=v+u-v and apply the triangle inequality.

4.2.7 Prove that the N x N matrix [ejk] defined by (4.2.17) is nonsingular. Hint: Utilize the fact

that {e ,e,,....e, } is a basis of " and prove that the rank of [ejk] IS N .

4.2.8 You are given a real inner product space ¥ of dimension 3. You are also given two vectors
V and U in ¥ that have the representations

V=28, 128,48,

A a A (4.2.25)
u=-e -5, +€,

with respect to a basis {&,,&,,&,} . You are also given a basis {i,,i,,i,} which is related to the
basis {&,,&,,&,} by the equations

e, =i, +i, +i,
e, =i, —i,—1i, (4.2.26)
8, =2i, +i, -1,

where the basis {i,,i,,i,} has the special property

(i,i) =0, (4.2.27)

2 In the case of a real vector space, equation (4.2.22) reduces to

(uv) =5 (Ju+ v ~Ju-vFF)

This result is the polar identity for real inner product spaces. This result and the similar result for a complex inner
product space, equation (4.2.24) show that given an inner product space, there is a norm function defined and
conversely. However, there are other ways to define a norm on a vector space that is not derived from the inner
product structure, i.e., from the definition (4.1.20).
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Calculate cos @, where @ is the angle between the vector v and the vector u. The answer you

2
should obtain is —
5J6

4.2.9 You given areal inner product space ¥ of dimension 3. You are also given vectors Vv and
u in ¥ that have the representations

v=2e +e,—4e,

(4.2.28)
u=e, —5e,+e,
with respect to a basis {e,,e,,e,} . You are also given the six inner products
(e,6,)=3(e.e,)=—1(e,e;)=2
(4.2.29)
(e,8,)=3,(e,.8,)=2,(e,0;)=6

Calculate cos @, where @ is the angle between the vector v and the vector u. The answer you
should obtain is 0.2064

4.2.10 Consider the inner product space M** as defined in Example 4.1.2. You are given a basis
{e,,e,,e,} defined by

__4_i_ __7_i_
35 73 0

e = c e, = 3 e, = (; (4.2.30)
0 0

Calculate the six quantities €; = <ej ,ek> for J,k=12,3 and the length of the vector
v = 2ie, + 2e, +5ie, (4.2.31)

4.2.11 A three dimensional inner product space 7" has a basis {e,,e,,e,} . Avector vey has
the component representation

v =2e +4ie, +e, (4.2.32)

You are also given a change of basis to a new basis for v, {&,,&,,&,} , defined by
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e, =3ie, +¢,
€, =6, +e,+e, (4.2.33)
e, =ie,

Determine the components of the vector v e ¥~ with respect to the basis {&,,¢,,é,} of 7. If you

are given the numbers for the inner products €; = <ej ,ek> as follows:

1 00
[e, =0 1 0 (4.2.34)
0 01
and a vector
u=2ie, +6e, +ie, (4.2.35)

Determine the distance between U and V.

4.2.12 You are given a complex inner product space ¥ of dimension 3. V and U are two vectors
in ¥ that have the representations

v=2i8, +28, - 38,

A oA (4.2.36)
u=-€ -5, +6,

with respect to a basis {&,&,,&,} . You are also given a basis {i,,i,,i,} which is related to the
basis {&,,&,,&,} by the equations

e, =i, +ii, +i,
e, =i, —i,—i, (4.2.37)
8, = 2i, +i, i

where the basis {i,,i,,i,} has the special property
(i,i) =0, (4.2.38)

Calculate the distance between the vector v and the vector U. The answer is /182

4.2.13 Equation (4.2.19) arose from the choice of a basis {e,,e,,...,e, } for the inner product space
v . Because the choice of basis was arbitrary, the resulting component expression is independent
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of the choice {e,,e,,...,e, } . However, it is instructive to start with (4.2.19) and show that its right
hand side is unchanged when there is a basis transformation{e,,e,,....e, } — {&,,8,,....8, } -
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Section 4.3. Orthogonal Vectors and Orthonormal Bases

The structure of an inner product space allows for a meaning to be assigned to the idea that
a pair of vectors are orthogonal or perpendicular. Motivated by the definition (4.2.10) for real

inner product spaces, for inner product spaces in general, two vectors U,V €7 are orthogonal or,
equivalently, perpendicular, if

(u,v)=0 (4.3.1)

A set of vectors in an inner product space ¥ is said to be an orthogonal set if all the vectors in the
set are mutually orthogonal.

Theorem 4.3.1: If {v,,v,,..., v} isan orthogonal set, then the set of vectors {v,,v,,..., v} is
linearly independent.

Proof: As with virtually all proofs of linear independence, we first form the sum
oV, oV, +-+ oy vy =0 (4.3.2)

Next, calculate the inner product of the vector a,v, +a,V, +---+ v, with one of the members of
the set, say v, . The result is

<a1v1 +a,V, +---+anN,vj>: 0 (4.3.3)
By virtue of the fact that the inner product is linear in its first slot, this result becomes
a1<vl,vj>+a2<V2,Vj>+---+aN<VN,Vj>:0 (4.3.4)
Next, use the fact that the set {v,,v,,...,v,} is orthogonal and you find
a;=0 for j=1,2,.,N (4.3.5)
The result (4.3.5) establishes the liner independence of the set {v,,v,,... v} .

It is often beneficial to utilize bases that consist of mutually orthogonal elements. In
addition, it is convenient to normalize the basis vectors so that they have unit length. Vectors with
a length of 1 are called unit vectors or normalized vectors. An orthonormal set is an orthogonal set
with the property that all of its elements are unit vectors. More formally, a set of vectors {i,,...,i, }

is an orthonormal set if
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fipi)=o, = =k (436)
PRLTTR 0 i jek e

for j,k=12,..,M . Of course, the symbol &, in (4.3.6) is the Kronecker delta introduced in
Section 1.1.

If we are given a basis {e,,e,,...,e, } for an inner product space ¥, we shall next outline a
procedure that will construct an orthonormal basis {i,,...,i } . This procedure is called the Gram-

Schmidt orthogonalization process. More precisely, the Gram-Schmidt process is summarized in
the following theorem:

Theorem 4.3.2. Given a basis {e,,e,,...,e, } of an inner product space 7", then there exists an
orthonormal basis {i,,...,i,} such that, for K=1,2,..,N, Span(e,...,e, ) =Span(i,,...,iy)-

Proof: The construction proceeds in two steps; first a set of orthogonal vectors is constructed, then
this set is normalized. Let {d,,d,,....d } denote a set of orthogonal, but not unit, vectors. This set
is constructed from {e,,e,,...,e,} as follows: Let

d, =¢ (4.3.7)
and define d, by the formula

d, =6, +&d, (4.3.8)

The unknown scalar & will be calculated from the requirement that d, is orthogonal to d,. This
orthogonality requires that

(d,.d,)=(e,,d,) +&£(d, -d,) =0 (4.3.9)

Therefore, the scalar & is determined by

g:—< ) (4.3.10)

Of course, d,-d, =e, -e, #0since e, = 0. Given (4.3.10), it follows from (4.3.8) that

(e,,d,) < d > d
d, =e, - d, =e —(e, — )L 4.3.11
T (dndy) T\ )/ @31y
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The vector d, is not zero, because e, =d, and e, are linearly independent. The analytical
expressions that define d, and d, are suggested by the following elementary figure:

d \d
e, — )—L
< 2 ||d1||>||d1||

While (4.3.11) is a general result for any inner product space, this figure, drawn in two dimensional
space, illustrates that the calculation of d, simply removes from e, the projection of e, in the
direction of d; =e,. The result is the vector d, which is perpendicular to d, =e, .

The vector d, is defined by

d, =e, +&%d, + £, (4.3.12)

The scalars & and &' are determined by the requirement that d, be orthogonal to both d,and d,;
thus

(d;,d;)=(e;,d,)+&(d,,d; ) =0 (4.3.13)
(d;,d,)=(e;,d,)+&%(d,,d,)=0 (4.3.14)
and, as a result,
1__<e3'd1>
&= (d,.d,) (4.3.15)
2 _ <esidz>
¢ = (d,.d,) (4.3.16)

Therefore, equation (4.3.12) becomes
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;dl (4.3.17)

The linear independence of e, ,e,, and e, requires that d, be nonzero. Motivated by the discussion
of the above figure, one can see that d, is the vector resulting from the removal from e, its
projections in the two directions d, and d,.

It should now be clear that the schemes used to calculate d,,d, and d,can be repeated until
aset of K orthogonal vectors {d,,d,,...,d, } has been obtained. The orthonormal set is then
obtained by defining

i, =d. /|d]|, k=12,...,K (4.3.18)

It is easy to see from the above construction that {e,...,e,}, {d,,...,d},and, hence, {i,,...,i.}
generate the same subspace of ¥ for each K.

It is convenient to collect the above formulas and eliminate the intermediate set of vectors
{d,,d,,....d} . Itfollows from (4.3.7) and (4.3.18) that

&

j=—L (4.3.19)
" el
It follows from (4.3.11), (4.3.18) and (4.3.7) that
. d2 €, _<ezvi1>i1
i, = = =L (4.3.20)
© . ||e2 (e, '1>'1”
In a similar fashion
Sl Yl Y (4.3.21)
”es _<e31 i2> iz _<es' i1> il”
The pattern of these results reveals that
k-1
e, — <ek,ij>|J
i = ;j for k=12,....K (4.3.22)
e, — <ek,ij>iJH
j=1
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The construction above leading to the result (4.3.22) is what one might call the classical or
traditional Gram Schmidt process.® Our examples in this section and later in an exercise in Section
4.15, are a straight forward application of (4.3.22). We shall discussin Chapter 7 a numerical
problem that can surface with (4.3.22). For certain problems, round off errors can produce vectors
{i,,...,i,} thatfail to be orthogonal. For these kinds of problems, a modified Gram Schmidt

process is adopted. We shall discuss the modification in Section 7.3.*

Example 4.3.1: Given the following three column vectors in 4",

2 -1 4
2 4 -2

e = 5 8, = A 8= 5 (4.3.23)
2 -1

These vectors are linearly independent and span a certain subspace of ./ . The objective is to use
the Gram-Schmidt process to find three orthonormal vectors that span the same subspace of 4 w
Recall that the inner product of the vector space A " is given by (4.1.13), repeated,

(u,vy=u'v=v'u (4.3.24)

Step 1: The unit vector i, is given by (4.3.19). Therefore,

2
. e 1 112 1|1
| :—1:—6 =— =— (4325)
! e /elTel Y oa|2] 21
2

Step 2: The unit vector i, is given by (4.3.20). It follows from (4.3.23) and (4.3.25) that

3 Information about the Danish mathematician Jergen Pedersen Gram can be found at
https://en.wikipedia.org/wiki/J%C3%B8rgen_Pedersen_Gram. Information about the German mathematician Erhard
Schmidt can be fournd at https://en.wikipedia.org/wiki/Erhard_Schmidt.

4 A discussion of the modified Gram Schmidt process can be found in many references. The textbook, Strang, Gilbert,
Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, 1986, has a good discussion.
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-1 -11 |1 1 -1 -5
- 11 4| (1|11 4 111] 1|5
e, — (e, i), =| |- Sla 31117l 4 _(3)51 =1 & (4.3.26)
-1 1] |1 1| |-1 5
The norm of the column matrix (4.3.26) is
51\ ( [-5
. 1| 5 11 5 1
||92_<ez,|1>|1||= E 5 E 5 ZE\/].OO =5 (4327)
-5 -5
Therefore,
-1
e,—(e,i )i, 1|1

(4.3.28)

Step 3: The unit vector i, is defined by (4.3.21). It follows from (4.3.23), (4.3.25) and (4.3.28)
that

(4] 47 -17)-1 47 1)1
e_<ei>i_<ei>i_—2_11—2 1| 1] 1)1|-2]|1||
oV AT g g2t 2 1|2 2[2] 21|
0 0 -111]] -1 0 1()|1
~ N ~(43.29)
4 -1 1 4 -2 2
-2 1 1 -2 0 -2
- ) L 2= 1 |
2 2 1 2 1 2 0 2
0| -1 1l o] [-2] |-2]
The norm of the column matrix (4.3.29) is
2\ (T 2
o\ - -2 -2
les —(e5.1,)i, — (&5, )iy = ) , =4 (4.3.30)
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Therefore,

- (4.3.31)

Given the Gram-Schmidt construction process as described, the result is a basis for the
subspace spanned by {e,,e,,...,e, } and an orthonormal basis {i,,i,,...,i, } that spans the same

subspace. These two bases are necessarily connected by the usual change of basis formula as
discussed in Section 2.6. We shall write this formula as

K
e, =Y Rii, for k=1,..,K (4.3.32)
q=1

Because the set { i} isorthonormal and, thus, obeys (4.3.6), the coefficients

R!,0,k=12,..,K, are given by

1 PO

R =(eiy) (4.3.33)

Example 4.3.2: For Example 4.3.1, it is possible to use

2 1 4 1 1
2 4 2| 1l1]. 11|, 1|1

P R e I R e P R P e ) (4.3.34)
2 -1 -1 -1

and calculate the coefficients R?,q,k =1,2,3. The results are
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271 -1 1 4711
. 112 |1 4 1 2|11
Rll=<e1,|1>:§ o |1 =4 R;=(e,i,)= e =3 Ry=(e,i;)= . =2
2111 =111 1
27 [-1 17 -1 477-1
: 1/2 . 4 : 11-2| |1
Rf:<el,|2>:5 ) =0 RI=(e,,i,)== =5 R32=<e3,|2>:§ 5 =-2
2] |1 -1| |-1 0| |-1
2711 171 4771
. 112 |-1 ) 41 |-1 . 12| -1
Fef=<e1,|3>=E o 1|70 R =(e,.i;)== L =0 R§:<e3,|3>:5 o174
2| |1 -1] -1 0] |-1
(4.3.35)
Therefore, the matrix R = [Rf] is the upper triangle matrix
RI R R 4 3 2
R=|R* R} R!|=|0 5 -2 (4.3.36)
RP RR R| |0 0 4
These results, reduce (4.3.32) to
e, =4i,
e, = 3i, +5i, (4.3.37)

e, = 2i, - 2i, +4i,

It is a general result that the Gram-Schmidt process yields an upper triangular matrix as
illustrated by the example (4.3.36). This result is contained in the formula (4.3.22) which can be

solved for e,k =1,2,...,K to obtain

k-1

i+ (eij)i; for k=12,.,K (4.3.38)

j=1

k-1

ek—z<ek,ij>ij

j=1

€, =

Equations (4.3.38) and (4.3.32) identify the components of R = [Rf] . The results are
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<ek,i > for gq=12,...k-1
R} = ek—ki<ek,ij>ij for g=k (4.3.39)
j=1
0 for q>k

An equivalent but possibly more informative display of the matrix R is

e (€2.1) (€s:1) C (i)
0 e, ~(e..in)iy (e5:i2) C G

0 0 Jes —(es.i)i, ~(es,in)if| - - (8ia)
aol , 0 . . (4.3.40)
K-1
0 0 0 eK—Z<eK,|j>|j

Example 4.3.3: The Gram-Schmidt process is a good way to introduce the concept of a set of
orthogonal polynomials. The study of orthogonal polynomials is a large and somewhat
complicated undertaking. They arise as the solution to certain second order ordinary differential
equations that occur in many applications. The orthogonal polynomials introduced in this example
are called Legendre Polynomials.® In addition to arising during the study or ordinary differential
equations, they have application in certain numerical integration applications known as the
Newton-Cotes formulae.® In any case, a Legendre polynomial of degree k , where k=0,1,2,.....,
is a polynomial of degree k defined on the interval [-1,1]. It is given the symbol P. The first six

Legendre polynomials turn out to be

5 Information about the French mathematician Adrien-Marie Legendre can be found at
http://en.wikipedia.org/wiki/Adrien-Marie_Legendre.

& A good summary of the Newton-Cotes formulae can be found at
http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas
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o(x):]'

R(x)=x
1

P,(x)==(3x"-1

Z(X) 2( X )
1

Ps(x)=§(5 *—3x) (4.3.41)
1

P, (x) =§(35x4 —30x° +3)

P.(x)= %(63X5 - 70x° +15x)
1

P,(x)= E(231x6 —315x* +105x* -5)

They are normalized such that

R.(1)=1 (4.3.42)
They also obey a recursion relationship
P, (X)= (Zkkjllj XP, (X) —(é} P, (x) for k=123,.. (4.3.43)
Finally, they obey the integral condition
[ R ax= 2 (4.3.44)
x= 2k +1

In Example 4.1.5, we assigned an inner product to the N +1 dimensional vector space of
polynomials £, . The inner product we wish to assign is the special case of (4.1.17) defined by

x=1

<p,q>=L=71 p(x)q(x)dx (4.3.45)

In Example 2.5.4, we showed that the set of polynomials {1, XXy XN} form a basis for £, .

Next, we shall apply the Gram-Schmidt procedure to the set {1, X, X, XN} . We shall utilize the
inner product (4.3.45). If, for the purposes of this example, we take N =6, and use the symbol

p(x)=x* for k=1,2,34,56 (4.3.46)
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and {i,,i,,i,,i,,i5,i;} to denote the orthonormal set that results from the Gram-Schmidt procedure.

In order to implement the procedure, we need to adopt the general formula (4.3.22) for k =1,2,...,6
. Of course, the inner product is the one defined by (4.3.45). As a result, the first three elements of

i (x)= = pranty - (4.3.47)

for k=2 and p, (x)=x

pz_ p21i1 i1 - x=1 1 2
o~ 1] J (1]
ST U2 2 (4.3.48)

for k =3, and p,(x)=x?
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XZ—E XZ_E Xz_i
x=1 2 x=1 8
1 2. D, B
\/X_Il(x _3) o \/XL(X 3X 7)™ Va5 (4.3.49)

Similar calculations yield

i4(x):\/g(5x3—3x)

iy ()= \/% (35x* ~30x° +3) (4.3.50)

i (X) = /% (63x° — 70x° +15x)

Equations (4.3.47), (4.3.48), (4.3.49) and (4.3.50) show the relationships between the orthonormal
polynomials produced by the Gram-Schmidt procedure and the Legendre polynomials defined by
(4.3.41). The Legendre polynomials are normalized to obey (4.3.42) and the polynomials in

with the polynomials in the set {1, XX XN} , adopt a definition of inner product as illustrated by
(4.3.45) and generate a set of orthogonal polynomials that have importance in certain applications.
Other examples of orthogonal polynomials that arise in the applications go by the names of

Chebyshev, Gegenbaur, Hermite, Jacobi and Leguerre.

Exercises
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4.3.1: Determine an orthonormal basis for the basis {e ,e,,e,} of M** defined by

1 1 4
e,=|-1l,e,=| 3 |, g;=|-2 (4.3.51)
1 -1 1
The correct answer is
T I T N R T
J3 V2 J6
1 1 1. 1
== | = - (4352)
LB V2| B
1 0 2
3 L) L el

4.3.2: Determine an orthonormal basis for the basis {e,e,,e,} of M** defined by

0 i i
e,=|3|[e,=|-2|e,=|3i (4.3.53)
3i 2 0
The correct answer is
0 i 1-3i
. 1 1 . 1 1.
= — |,i,=—=| -1+i |,i,=——=| -1+=i (4.3.54)
l V2 It s 1+i C5V2
ii —+1i
V2 i 1

by

2 3i —2i 4
3 -2 1 2i
e, = .. .= 8, = 8, = (4.3.55)
3i 2 3i 4
—2i 4 0 5i
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The correct answer is

0.3922 0.0855 + 0.4416i ~0.0660 —0.6967i 0.3925 +0.0016i

- 0.5883 - ~0.2422-0.1710i o —0.3899 +0.3374i o 0.1884 + 0.5144i

171 05883 |'? | 0.5414+0.1282i |'° | 0.0684+0.3850i |" * | 0.4331-0.0618i

~0.3922i 0.6268 — 0.0855i 0.2934 —0.0733i ~0.1235+0.5824i
(4.3.56)

4.3.4 You are given a matrix A€ M*? defined by

>

[
5N P
g w -

Find an orthonormal basis for the image space R(A) of A. The correct answer is

1] 2 ]
NeR N
i=| 2 |- 2
bVt | Via
4 1
V2] | Va4l

435 You are given amatrix Ae M¥ defined by

1
A=|2
i

g w

Find an orthonormal basis that spans R(A). The correct answer is

1] (~1+5i)
44/51

(2+5i)
24/51

(25-7i)

| V6 | 451

(4.3.57)

(4.3.58)

(4.3.59)

(4.3.60)
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Section 4.4. Orthonormal Bases in Three Dimensions

The real inner product space of dimension three is especially important in applied
mathematics. It arises as the underlying mathematical structure of almost all application of the
broad area known as applied mechanics. For this reason and others, in this section, we shall build
upon the results of Section 4.3 and study this special case in greater detail. We begin with the
assumption that we have an orthonormal basis for this real inner product space ¥ that we will
denote by {i,i,,i,}. Givenany basis for ¥, the Gram-Schmidt process discussed in Section 4.3

allows this orthonormal basis to be constructed. It is customary to illustrate this basis with a figure
like the following

4

1,

The first topic we wish to discuss is the basis change from the orthonormal basis {i,,i,,i,}

A A

to a second orthonormal basis { iy, i3} . Geometrically, we can illustrate a possible second basis

on the above figure as follows:
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As follows from (4.3.6), the fact that the two bases are orthonormal is reflected in the requirements
(ig, i) =0y s,k=1,2,3 (4.4.1)
and

(i,i)=0, k=123 (4.4.2)

j H

As we have discussed several times and discussed in detail in Section 2.6, the two sets of bases are
related by an expression of the form

. 3
i, => Qi for j=123 (4.4.3)
k=1

It follows from (4.4.3) and (4.4.1) that the coefficients of the transition matrix are given by
.2 e ) 3 o
<|5’Ij>:<IS’ZQkilk>=szj<'57'k>:Qsj (4.4.4)
k=1 k=1

Because we are dealing with a real vector space, the result (4.4.4) combined with the definition

A

(4.2.10) tells us that Q; = <is, ij> Is the cosine of the angle between the vectors i, and ij . These

cosines are the usual direction cosines that are familiar from elementary geometry.

The coefficients of the transition matrix
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Qll QlZ Ql3
Q = I:ij] = Qzl Q22 Q23 (445)
QSl Q32 Q33

are restricted by the two requirements (4.4.1) and (4.4.2). The nature of the restriction is revealed
if we substitute (4.4.3) into (4.4.2) to obtain

<ii ’iQ> = <ZQsjis'Zquik> = ZZQSiqu <is; |k> = §jq (4.4.6)

s=1 k=1

If we now utilize (4.4.1), (4.4.6) reduces to

ZZQszkqé‘sk = kZz;ijqu = 5jq (4.4.7)

s=1 k=1

The matrix form of (4.4.7), is

Q'Q=! (4.4.8)
Because the transition matrix is nonsingular, it follows from (4.4.8) that

Q'=qQ' (4.4.9)

Therefore, the inverse of the transition matrix between two orthonormal bases is equal to its
transpose. The special result (4.4.9) also implies

QQ" =1 (4.4.10)
in addition to (4.4.8). Also, because of (1.10.21), it follows from (4.4.8) that
det(QQ" ) =det QdetQ" =(detQ)” =1 (4.4.11)
and, thus,
detQ = +1 (4.4.12)

The transition matrix Q is an example of what is known as an orthogonal matrix. It has the
property, as reflected in the construction above, of preserving lengths and angles.

If we view the transition matrix as consisting of 3 column vectors q,,q, and g, defined by
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Q,;
q; =] Qy; for j=123 (4.4.13)
Qs

then it is easy to restate the orthogonality condition (4.4.8) as a condition of orthogonality on the
column vectors (4.4.13). The formal condition that reflects this fact is

quqk = 5jk (4-4-14)

Example 4.4.1: An elementary example of the basis change described above is one where Q takes
the simple form

Qll Q12 0
Q=[Qy]=|Qx Q, O (4.4.15)
0 0 1

With this choice for the transition matrix, the basis change defined by (4.4.3) reduces to

Qllil + Q21i2
Qui, + Qul, (4.4.16)

I
I,
I3

w

where, from (4.4.8)

(Q11)2 + (Q21)2 =1

(Qw )2 +(Qz )2 =1 (4.4.17)
QuQy, +Q,,Q,, =0

and, from(4.4.10),
(Qll)z +(Qp )2 =1

(Qu) +(Qy) =1 (4.4.18)
QQy +Q,Q, =0

For the basis change defined by (4.4.16), the above figure is replaced by
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Thus, the choice (4.4.16) corresponds to some type of a rotation about the 3 axis. If we view the
above figure from the prospective of a rotation in the plane, the result is

where the 3 axis can be viewed as pointing out of the page. The six equations (4.4.17) and (4.4.18)
have certain obvious implications. First, (4.4.17)1 and (4.4.18)1 imply

Qy =%Qy, (4.4.19)

The result (4.4.19) reduce (4.4.17) and (4.4.18)2 to the same equation. Also, given (4.4.19), it
follows from (4.4.17)1 and (4.4.17) that

sz = inl (4.4.20)
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Given (4.4.19) and (4.4.20), equation (4.4.17)3 or, equivalently, (4.4.18)3 yield

Q11Q21 + Q12Q22 = Qll (i_le ) + le (i_Qll) =0

INNER PRODUCT SPACES

(4.4.21)

If we exclude the trivial case where Q,, or Q,, are zero, (4.4.21) says that the multiplicity reflected
in (4.4.19) and (4.4.20) must be paired such that if

then

sz = inl

Q21 = ¢Q12

(4.4.22)

(4.4.23)

Given (4.4.22) and (4.4.23), we see that the first column of (4.4.15) determines the two possible
choices for the second column of (4.4.15). The remaining condition on the elements of the first
column is (4.4.18)1, repeated,

or, equivalently,

Case 1:

Case 2:

Qu
Q= [ij] =| Qx

Qu
Q= [ij] = Qx

(Qll)z "’(le )2 =1

Q.= i\/l_ (Qll )2

Equations (4.4.22) through (4.4.25) reduce the transition matrix (4.4.15) to eight possible choices.
Four of these are as follows:

Qp
QZZ

Q.
Qx

Ql 1

1_(Q11)2
0

Qu
—y1- (Qll)z

~1-(Q,)" ©

Qu
0

1- (Qll )2
Qu

0

(4.4.24)

(4.4.25)

(4.4.26)

(4.4.27)
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Case 3:
Q, Q, O Qu _Vl_(Qll)z 0
Q=[Qy]=|Qu Q, 0|=|-1-(Q,) —Q, O (4.4.28)
0 0 1 0 0 1
and, finally,
Case 4:

Qll 1_(Q11)2 0

Qll le 0
Q - I:ij ] - Q21 Q22 0= l_(Qll )2 _Q11 0 (4429)
0 0 1 0 0 1

The other four cases result from formally replacing Q,, with —Q,, in the above four. Returning to

the four cases listed, the details become a little more transparent if we introduce an angle ¢ that
makes cos 6 the direction cosine between i,and i,. Given this interpretation, we can use (4.4.4)

to write

Qu =(is, 1, ) = cos o (4.4.30)

which reduces the above four cases to

Case 1:
cosd —-sin@ O
Q=|sind cosdé O (4.4.31)
0 0 1
Case 2:
cosd sin@ O
Q=|-sin@ cos@ O (4.4.32)
0 0 1

Case 3:
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cosd singd O
Q=|sin@ -cos® O (4.4.33)
0 0 1

and

Case 4:

cosd -—singd 0
Q=|-sin@ -cosfd O (4.4.34)
0 0 1

The first two cases correspond to the situation where detQ =1 and the second two cases

correspond to the case where detQ =—-1. Also, Case 2 differs from Case 1 and case 4 from case 3

by the sign of the angle. If Cases 1 and 3 represent some sort of rotation by an amount @, then
Cases 2 and 4 represent the same type of rotation by an amount —@. The following four figures
display geometrically these four cases:
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Case 1l

In a sense that we will describe, Case 1 is the fundamental case illustrated by this example.
Cases 2 and 3 are similar to 1 and 4, respectively. They simply represent rotations by a negative
angle. Case 3 can be thought of as being Case 2 followed by another basis change i, — i, and

i, >—i,. Likewise Case 4 can be thought of as being Case 1 followed by another basis change
i, > 1, and i, —»—i,. The bottom line of all of this is that Case 1 represents a basic rotation.

Cases 2,3 and 4 represent a negative rotation in one case and a rotation followed by a second basis
change which simply flips one of the axes. Cases 3 and 4, as mentioned, have the property that
detQ =-1. Rotations with this property involve the kind of axis inversion illustrated by Cases 3

and 4. They are sometimes called improper rotations. If we rule out improper rotations and
recognize that Case 2 is a special case of Case 1, the transition matrix that characterizes a rotation
about the 1, axis is (4.4.31), repeated,

cosd -sin@ O
Q=|sin@d cosd O (4.4.35)
0 0 1



288 Chap. 4 . INNER PRODUCT SPACES

It should be evident that the transition matrix for rotations about the other axes are

cosd 0 -siné@
Q=| 0 1 0 (4.4.36)
sin@ 0 cosé

for a rotation about the i, axis and

1 0 0
Q=|0 cos@ -sin@ (4.4.37)
0 sing cosé

for a rotation about the i, axis.

Exercises

4.4.1 In the applications it is often the case where the angle © depends upon a parameter t such as
the time. The result is, for example, that the orthogonal matrix Q depends upon t. Given Q (t)

defined by

cosd(t) —sind(t) O
Q(t)=|sind(t) cosd(t) 0 (4.4.38)
0 0 1
Show that
i 0 do(t) 0_
dt
dQ(t) do(t)
— -Q(t) — 0 o (4.4.39)
0 0 0
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_ » -
o %0
dt
_ 1 do(t) o _ do(t)
Therefore, the skew symmetric matrix T 0 0 |, which is determined by T
0 0 0

determines the angular velocity for the rotation (4.4.35)

4.4.2 Generalize the results of Exercise 4.4.1 for an arbitrary orthogonal matrix and show that

E%Q:sz@) (4.4.40)

where Z(t) is a skew symmetric matrix, i.e., where Z (t)=-Z (t)T . The result (4.4.40) generalizes

the special result (4.4.39) and shows that the angular velocity of the basis {fl,fz,?g} with respect to

the basis {i,,i,,i,} is determined by z(t). As askew symmetric matrix in three dimensions, Z (t)
can have only three nonzero components. It is customary to use these three components to define a

A A

three dimensional vector which is known as the angular velocity vector of the basis { 1 |2,i3} with

respect to the basis {i,i,,i,}. If «w(t) is the angular velocity vector, and its components with

respect to the basis {?1,f2,i3} are related to the components of Z(t) by the simple relationship

0 Z, Z, 0 -0 o
Z(t)=|-Z, 0 Z,|=| o, 0 - (4.4.41)

where

A A

o(t)= o, (1)i, +o,(t)i, +o,(t)i, (4.4.42)
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Section 4.5 Euler Angles’

Geometric constructions like the one discussed in Section 4.4 arise in a lot of applications.
There is an entire branch of mechanics where one studies the motion of rigid bodies like, for

example, gyroscopes, where the basis {i,,i,,i,} is a reference or fixed orientation in space and the

basis {?1, |2,i3} is fixed to the rigid body and, thus, defines the position of the rigid body relative to

the fixed orientation. Another application is when one thinks of the basis {fl,fz,?s} as fixed to the

body of an aircraft and its orientation relative to {i,,i,,i,} gives the orientation of the aircraft.

These applications get rather complicated as one tries to characterize the position of, for example, a
rigid body as a consequence of a general rotation. The usual approach is to view the final position
as the result of a sequence of three rotations of the form of (4.4.35) through (4.4.37). In
aerodynamics the three rotations are known by the names of roll, pitch and yaw. In a more general
context of rigid body dynamics they are known as the Euler angles.®

The usual way these three rotations are represented is shown in the following figure:

The sequence of rotations are:

1. Rotate about the i, axis by an angle ¢ .

" Information about Leonhard Paul Euler can be found at http://en.wikipedia.org/wiki/Leonhard_Euler.
8 There is an excellent discussion of Euler angles at http://en.wikipedia.org/wiki/Euler_angles.



http://en.wikipedia.org/wiki/Leonhard_Euler
http://en.wikipedia.org/wiki/Euler_angles

292 Chap. 4 . INNER PRODUCT SPACES

2. Rotate about the “rotated” i, axis by an angle @ which aligns the “rotated” i, with i,.
3. Rotate about the ?3 axis by an angle y to align with i, and i,

The details to construct these bases changes are complicated. We really need four bases to fully
characterize the three rotations listed. Two of them are the first basis, {i,,i,,i,}, and the final

basis, {fl, |2,?3} . Unfortunately, we need to introduce more symbols. The four bases are labeled as
follows:

{ilnizvi3}T){jlaj21j3}T){j1.’jz.’jg}7>{’i\l, Iz,’i\3}

The basis change from {i,,i,,i,} t0 {j.j,,j,} is shown in the following figure:

A A A A A A

The basis change from {i,,i,,i,} 0 {j.j,.j,} from {j,,j,.j,} to {jl,jz,js} and {jl,jz,ja} to

{fl,fz,?g} are shown in the following figure:
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The three transition matrices that characterize the three rotations just described are

{il’iz’is}T){jl’jyja}

cosp —sing O

Q,=|sing cosp O (4.5.1)
0 0 1
(i dords} =5 {00320 3a
1 0 0
Q,=|0 cos@ -sing (4.5.2)
0 sin@ cosd

and

A A A

-{jlvjzijs}—>{i1’iz’i3}-
v

cosy —siny O

Q, =|siny cosy O (4.5.3)
0 0 1
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A

The transition matrix for the rotation {i,,i,,i,} — {il,?z,is} is the product®

Q=Q,QQ, (4.5.4)

Equation (4.5.4) gives the transition matrix for a complicated rotation in three dimensions
in terms of three elementary rotations. The utility of the Euler angles is the ability to break down
complicated rotations in this fashion. The mathematical feature that makes a representation like
(4.5.4) possible is a special property of the set of orthogonal matrices. The set of orthogonal
matrices is an example of what is known as a group. For our purposes, we do not need to examine
this concept in any detail. It suffices to point out that the identity matrix is orthogonal and for each
orthogonal matrix, its inverse is also orthogonal. In addition, orthogonal matrices have the features
that if two orthogonal matrices are multiplied together, the result is an orthogonal matrix and they
obey the usual matrix multiplication property of associativity.

Exercises:

4.5.1 Carry out the multiplication in (4.5.4) and show that

COS@COSy —Sin@cosdsiny —siny CoS@—CoSy cosdsing  sindsing
Q=|cosysinp+siny cosfcosp cospcosdcosy —singsiny  —sindcose | (4.5.5)
sin@siny cosy sin@ cosd

If one were given the components of the orthogonal matrix Q, equation (4.5.5) can be used to
calculate the three angles . ,6. and . This information then determines the three elementary

rotations represented by the matrices (4.5.1), (4.5.2) and (4.5.3). The key formulas that follow
from (4.5.5) are

Q,; =cosé (4.5.6)
=singsin
Qy ) v :tam//:ﬁ if sin@=0
Q,, =sin@dcosy 22 (4.5.7)
and
=sin@sin
s oene :»tango:-% if sing=0 (4.5.8)
Q,; =—sindcosg ba

% Equation (4.5.4) follows from the application of (3.6.18) to each of the three basis transformations represented by

Q,, Q,and Q,
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Because of the multiplicity of the inverse trigometric functions, the solution obtained from (4.5.6),
(4.5.7) and (4.5.8) will not be unique.

4.5.2 Recall from Exercise 4.4.2 that the angular velocity associated with an orthogonal matrix
Q(t) is determined by a skew symmetric matrix Z(t) defined by

Z(t)=Q(t) —+~ (4.5.9)

Utilize (4.5.4) and show that the skew symmetric matrix Z (t) can be expressed in terms of the
corresponding angular velocities of the rotations Q,,Q, and Q, by the formula

Z(t)=2,(1)+Q,'2,Q,+Q,'Q,'Z,Q,Q, (4.5.10)

The components of equation (4.5.10) give the angular velocity of the basis {fl,?z,?s} with respect
to the basis {i,,i,,i,}. Its components are the components of a linear transformation projected into
the basis {?l,fz,fg}.

4.5.3 Utilize the formulas for the various matrices in (4.5.10) and show that

0 —¢(t) 0
Z,(t)=[e(t) 0 O (4.5.11)

- 0 O_

0 0 0
Z,(t)={0 0 -4(t) (4.5.12)

0 4(t) o |

0 -wy(t) 0
Z,(t)=|y(t) 0 O (4.5.13)

0 0

and
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0 —7 (t)—¢(t)cosd ¢(t)cosysing—o(t)siny
Z(t)= y (t)+¢(t)coso 0 —6(t)cosy —g¢(t)siny sind
—g(t)cosysin@+0(t)siny  O(t)cosy +¢(t)siny sind 0
(4.5.14)

The components of the matrix (4.5.14) define the components of the angular velocity vector with

respect to the basis {fl,?z,?s} according to the correspondence (4.4.41). Therefore,
0 (t) = a)iﬁl + a)izi2 + a)iai3
= (é(t)cosw +¢(t)sinysin H)?l +(gb(t)cosz//sin 6—06(t)sin W)iz +(1/)(t)+(p(t)c059)f3
(4.5.15)

4.5.4 As explained above, equation (4.5.14) represents the components of a linear transformation
project into the basis {il, iy, i3}. That same linear transformation projected into the basis {i,,i,,i,}

is related to the matrix (4.5.14) by the change of basis formula (3.6.18). In this case, the transition
matrix is (4.5.4). Show that the resulting matrix is

0 —¢(t)—y (t)cosd 6 (t)sinp—y (t)cospsin @

QZ(1)Q" = ¢(t)+y (t)cosd 0 ~6(t)cosp—yr (t)singsin @
—gsing+y (t)cosgsin®  O(t)cose+y (t)singsind 0

(4.5.16)

The components of the matrix (4.5.16) define the components of the angular velocity vector with
respect to the basis {il,iz,i3} according to the correspondence (4.4.41). Therefore,

o(t)=oi+o,i,+o,i,

= (9c05¢+y'/(t)sin psin 49)i1 +(6?sin @ -y (t)cosgsin 9) i, +(@(t)+y (t)coso)i,
(4.5.17)



Sec. 4.7 . Reciprocal Bases 297

Section 4.6. Cross Products on Three Dimensional Inner Product Spaces

In Sections 4.4 and 4.5 involved certain ideas that are special to three dimensional real inner
product spaces. This section concerns another topic that is also special to these spaces. While
portions of the topics in Sections 4.4 and 4.5 can be generalized to inner product spaces of arbitrary
dimension, the topic of this section is for all practical purposes a unique one for three dimensional
vector spaces. The topic we shall briefly discuss is how to assign the operation of a cross product
to a real inner product space of dimension three.

Definition: A cross product in a three dimensional real inner product space ¥ is a function,
written ux v, from ¥ x¥ — ¥ such that

(1) uxv=-vxu

(2) wx(U+V)=wxu+wxV

3)  wu(uxv)=(uu)xv forall u,v,we? and uec2
@)  {(uuxv)=0

6)  Juxv|=[u][v]sing where coso = 9] and 0= o <180°.

Julliv]

Geometrically, [ux v] is the area of the parallelogram with sides ||u[| and ||v| intersecting at an
angle 4.

It follows from properties (1) and (2) that

(U+V)XW=UXW+VXW (4.6.1)

and from properties (1) and (3)
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auxv)=ux(uv) (4.6.2)

Also, from property (1) that

uxu=0 (4.6.3)

The scalar triple product of three vectors u,v and w in ¥is (w,u><v>. Geometrically,

|<w, ux v)| is the volume of the parallelepiped formed by the co-terminus sides u,v and w.

If {i,,i,,i,} is an orthonormal basis for ¥". Then the cross product connects the basis
members by the formulas

I, X1, =i,
I, %0, = =i, (4.6.4)
I, Xy ==i;

The proof of (4.6.4) involves the kinds of arguments we have used many times. Since i, xi, e ¥,
this vector can be expanded in the basis {i,,i,,i,} and written

i, xi, = i, + A, + i, (4.6.5)

According property (4), (i,,i,xi,)=0 and (i,,i,xi,)=0. Therefore, x=1=0 and (4.6.5)
reduces to
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i, xi, = &i, (4.6.6)

It follows from property (5) that [i, xi,||=1. This fact and (4.6.6) yield & =+1 and the result
(4.6.4)1 is obtained. The other two results follow by an identical argument.

Given the choices (4.6.4), the component formula for the cross product for vectors

u=> uji, (4.6.7)
j=1
and
3
V=Y v, (4.6.8)
k=1

can be written

3 3 3 3
UXV=;UJIJX§UKIK=;;UJUKI 46.9)

=1(U,0; —U30,)i; £ (Ugo, —U03)i, + (U, —U,0, )iy

Equation (4.6.9), which has its origin in (4.6.4) shows that there are two cross products in the three
dimensional inner product space ¥ . These two cases are characterized as follows:

Definition: A vector space ¥~ with the cross product

UxV = (U0, —U0,)i; + (Uso, —U0,)i, + (U0, —U,0) )i, (4.6.10)
is said to have positive orientation.
Definition: A vector space ¥~ with the cross product

UxV =—(U,0, —U0,)i; — (U0, —U,0,)i, — (U0, — UL, )i, (4.6.11)
is said to have negative orientation.

Vector spaces with positive orientation are sometimes called right-handed, and vector spaces with
negative orientation are sometimes call left-handed.

The following two figures illustrate the bases for positive oriented and negative oriented
vector spaces:
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i i

L,

Positive Orientation Negative Orientation

Given the component formula (4.6.9), the scalar triple product <w, ux v> of three vectors
u,v and win ¥7is

= £(U,05 = U0, ) (W, i; ) £ (U0, U0 (W, 1, ) £ (U, —U,0 ) (W,iy)  (4.6.12)

=W, (U,0, —U,0,) £ W, (U0, —U,0;) £ W, (U0, —U,L,)

Often the result (4.6.12) is written

Wl W2 W3
(W,uxv)=%u, u, U, (4.6.13)
b U, U

One of the results illustrated by (4.6.12) or, equivalently, (4.6.13) is

(w,uxv)=(v,wxu)=(u,vxw)=—(w,vxu)
= _<v,u X W (4.6.14)

)
=—(u,wxv)

The results (4.6.14) also follow from a geometric argument based upon the interpretation of
[(w,uxv)| as the volume shown above.

Exercises
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4.6.1 Derive the vector identity
ux(vxw)=(wxv)xu=v{uw)-w(u,v) (4.6.15)
4.6.2 Derive the vector identity

(sxu,vxw)=(s,v}{u,w)—(s,w){u,v) (4.6.16)
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Section 4.7. Reciprocal Bases

The results of Sections 4.4, 4.5 and 4.6 are based upon the convenience of orthonormal
bases. The results of these sections were also restricted to the special case of a real inner product
space of three dimensions. These results are useful in a large variety of applications of linear
algebra. Unfortunately, there are important physical problems for which an orthonormal basis is
not the best choice and, in addition, there are important applications where the vector space is not
real and it is not of dimension three. Therefore, in this section, we shall look at bases that capture
some but not all of the convenience of orthonormal bases called reciprocal bases. In addition, we
shall not assume the vector space is real or that it is three dimensional.

Let {e,,e,,...,e, } beabasis foran N dimensional vector space ¥ . In equation (4.2.17) of
Section 4.2, we defined the symbols e, , for j,k=12,..,N, by

ey =(e0) =(ece;) =8 (4.7.2)

Because {e,,e,,....e,} isabasis, the NxN matrix

(eve) (enes) (enes) (even)
(e281) (e2:8,) (e28y) Gy
SRND RGBS s

_<eN.,el> (en @) ' ' <eN,.eN>_

has rank N and is thus nonsingular. To confirm this assertion about the rank, we can examine the
linear independence of the columns by the usual test, namely, examine whether or not the equation

(e,.&,) (ee;) (e.ey)
(ez,e1> <92,ez> <eZ’eN>
o (e58,) ‘a, C bt ay (esen) ~0 (4.7.3)

_<eN., &) _<eN;e2>_ {ex ,'eN ]

forces the coefficients «,,«,,...,a, to be zero. If we use the linearity of the inner product in its
second slot, (4.7.3) can be rewritten
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(e}, a8, +@,e, ++ayey) =0 for j=1,2,...N (4.7.4)
Because {e,,e,,...,ey | isabasis, (4.7.4) implies
(Vo8 + @8, ++ayey ) =0 forall vev (4.7.5)

Property (4) of the defining properties of an inner product space listed in Section 4.1 tells us that
(4.7.5) implies

ae +a,e,+-+ae, =0 (4.7.6)
If we again use the fact that {e,,e,,...,e, } is a basis, we can conclude that &, =a, =--- =, =0.

Given the basis {e,,e,,....e, } of ¥, we shall next define what is known as the reciprocal
basis as follows:

Definition: The reciprocal basis to a basis {e,,e,,....e,} of ¥ is a basis {el,ez,...,e’“} of ¥
defined by

<e",ej>:5!‘ for j,k=12,.,N (4.7.7)

]

Geometrically, the definition (4.7.7) says that the reciprocal basis vector e* is a vector
perpendicular to the N —1 basis vectors e,,...,e, ;,€.1,--€y -

An obvious example of a reciprocal basis is the orthonormal basis {i,, i,.,...,i, } which by

(4.3.6) is its own reciprocal basis. Thus, the distinction between basis and reciprocal basis vanishes
when one begins with an orthonormal basis.

Given the two basis {e,e,,....e,} and {el,ez,...,eN} for ¥, they must be connected by the

usual formulas like (2.6.3). If we rewrite (2.6.3) to fit the notation used in this section, the two
bases {e,,e,,....ey} and {el,ez,...,e’“} must be related, for example, by

N
e; =D Te (4.7.8)
q=1

It immediately follows from (4.7.1) and (4.7.7) that the components of the transition matrix are
T, =€, and, as a result, the basis change (4.7.8) is
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N
e,=>e.e! for j=12..,N (4.7.9)
q=1
The basis change {e, e,,....e, } —>{e",e*,...e" | is
el =>el%, for j=12,..,N (4.7.10)
q=1

where the matrix [ejq] is the inverse matrix to the matrix [eik] . It is useful to note that (4.7.7)
and (4.7.10) show that

ek :<e",e">:<ej,e">:3 (4.7.11)

Example 4.7.1: Consider the following elementary construction for the two dimensional inner
product space %°. The base vectors {e,,e,} consist of two vectors 45° apart, the first one, e,, two

units long and the second one, e, , one unit long. If we calculate the inner products in (4.7.1), the

given information yields
| (ene) (ene,)| | 4 V2
[ejk]_LeZ,el> <e2,e2>}{\/§ 1} (4.7.12)

The inverse of this matrix is easily seen to be

11
[e¥]= 21 V2 (4.7.13)
= 2
V2
Therefore, from (4.7.10),
e' =e''e, +e’e, = %el —%ez
. (4.7.14)
e’ =e%e, +e%%, = _fel +2e,

The following figure shows the basis {e, e, } , its reciprocal {¢",e’} and the graphical
representation of (4.7.14).
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eZF ,,,,,,,,,,,,,,,,,,,,,,,, e22e2 e' =e''e, +e7e,
= 1e —ie
eZ 9L \/E 2
1
81281 <”/21 i ?1 , 6 e’=ee +e%e,
e’le, 1
,,,,,,,,,,,,,,,, el =—$el+262

Example 4.7.2: You are given a basis {e,,e,,e,} of .#** defined by

0.9659 0.2588 0.2500
e, =|0.2588 |,e, =| 0.9659 |,e, = | 0.0670 (4.7.15)
0 0 0.9659

The problem is to find its reciprocal basis {e*,e®,e’}. The inner product for .¢>* is, of course,
given by (4.1.13), repeated,

{u,v)=u'v=v'u (4.7.16)
This definition allows us to utilize (4.7.15) and (4.7.2) to obtain

(e,.e;) (e,e,) (e,e)| [1.0000 0.5000 0.2588
les |=|(e,&) (ee,) (e,€,)|=|05000 1.0000 0.1294 (4.7.17)
(e;,6,) (e;e,) (eje;)| |0.2588 0.1294 1.0000

The inverse of this matrix can be shown to be

1.4051 -0.6667 —-0.2774
[e"]=|-0.6667 1.333 0 (4.7.18)
02774 0 1.0718
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Therefore, from (4.7.10),

1 11 12 13
e =ee +e’e, +ee,

0.9659 0.2588 0.2500] [ 1.1154 (4.7.19)
—1.4051{ 0.2588 |—0.667| 0.9659 |—0.2774| 0.0670 | =| —0.2989 o
0 0 0.9659 | |-0.2679
0.9659 0.2588] [-0.2989
e’ =e”e, +e%e, +e”e, =—0.667| 0.2588 [+1.333| 0.9659 |=| 1.1154 (4.7.20)
0 0 0
and
0.9659 0.2500 0
e’ =e’e, +e%e, +e¥e, =-0.2774| 0.2588 |+1.0718| 0.0670 |=| O (4.7.21)
0 0.9659 | |1.0353

The following figure illustrates these vectors for this example:
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If one has constructed a reciprocal basis {el,ez,...,eN } , it is possible to expand a vector
v e ¥ in that basis as follows:

N .
v=> v’ (4.7.22)
j=1
Equation (2.6.26), repeated, is
N
v=>) v, (4.7.23)
k=1

which represents v e ¥ with respect to the basis {e,,e,,....e,}. The two sets of components

{ul,uz,..., UN} and {v;,0,,...,0, } are connected by the usual change of basis formulas discussed in
Section 2.6. Given the special notation being used in this section, it is convenient to rewrite these
formulas in this notation. Two important formulas that follow from (4.7.22) and (4.7.23) are

N N

vi(ele ) =D v =u, (4.7.24)
=1

i=L

j
and
) N ) N _ N . :
(v.el)= <Zu"ek,e‘> => v (e, ') =>4} =0 (4.7.25)
k= k=1 i1

where the defining condition (4.7.7) has been used. These formulas simply say that the
components {ul,uz,...,uN } are the projections of the vector v e ¥ in the directions of the

reciprocal basis {el,ez,...,eN} , and the components {01,02,...,UN} are the projects of the vector

v e in the directions of the basis {e,,e,,....e,}. It follows from (4.7.1), (4.7.23) (4.7.24) that the
two sets of components are connected by

v =(V.e,) :<ZN:u"ej,ek>: i”j <ej,ek> = ZN:ejkuj (4.7.26)
=1 =1 =1

or, by the reciprocal relationship, utilizing (4.7.11), (4.7.22) and (4.7.25)

vl =(v.el)= <ZN:Ukek'ej>= ZN:vk (e*,el)= ZN:ek"uk (4.7.27)
k=1 k=1 k=1



Sec. 4.7 . Reciprocal Bases 309

It is customary to refer to the components {ul,uz,...,uN } as the contravariant components of

ve¥ and the components {v,,v,,...,v, } as the covariant components of ve ¥ .

As an example of the covariant and the contravarient components of a vector, consider the
geometric construction introduced in Example 4.7.1 above.

Example 4.7.3: In this example the base vectors {el,ez} consist of two vectors 45° apart, the first
one, e;, two units long and the second one, e, , one unit long. You are given a vector v defined by

v:%eﬁZe2 (4.7.28)
Therefore, for this example, the contravariant components of v are
1 1 2
v =5 and v =2 (4.7.29)
Equations (4.7.12), (4.7.26) and (4.7.29) yield the following covariant components:

v =60 +6,0° = 4(%}+\/§(2) =2+24/2

L . (4.7.30)
v, =e.0 +e 02:\/2(—j+2 1)=—+2
2 12 22 2 ( ) \/E

The figure below shows the reciprocal basis and the covariant and contravarient components of v.
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Example 4.7.4: You are given the basis and reciprocal basis calculated in Example 4.7.2 above.
You are also given a v e .#** defined with respect to the basis {e,,e,.e,} by
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v=0u'e, +0%, +U’e,
=0.3167e, +0.4714e, +0.579%¢, (4.7.31)

S Sl- Bl

The covariant components of v e .#>* are given by equation (4.7.27) where the numerical values
of the e, for k, j=1,2,3 are given by (4.7.17). Therefore,

v, =e,0" +e v’ +e,0°

- (1.0000)(0.3167)+(0.5000)(0.4714) +(0.2588) (0.5799) = 0.7071
v, =€,0" +e,0° +e,0°

~ (0.5000)(0.3167) + (1.0000)(0.4714) + (0.1294)(0.5799) = 0.7071
v, = €,0" +e,0° +e,°

~ (0.2588)(0.3167)+ (0.1294)(0.4714) + (1.000)(0.5799) = 0.7407

(4.7.32)

and, with respect to {el,ez,e3} , the vector v e .#>* is given by

V=0 +0,6° + 0.’
=0.7071¢' +0.7071e* + 0.7407¢’ (4.7.33)

Sl - Sl

Exercises

4.7.1 You are given a basis {e,,e,,e,} of .>* defined by
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1 1 4
e,=|-1|e,=| 3 |, ;=2 (4.7.34)
1 -1 1

Find the reciprocal basis {e',e?,e*} . The answer is

1] ]t
8 4
el = > e = 3 e = 1 (4.7.35)
8 8 4
! 1 1
| 4 ] | 4 ] L 2]
4.7.2 1f we are given the basis {e,,e,,e,,e,} for the vector space .¢** defined by
2 3i —2i 4
e—3e—_2e—1e—2i (4.7.36)
s 2 st |4 o
—2i 4 0 5i
Find the reciprocal basis to {e,,e,,e,,e,}. The answer is
0.0631+0.1516i 0.0756 + 0.0362i
o _|0.2733 —0.1085i | . | ~0.1430 - 0.1042i
- 0.0059 +0.0100i |’ 0.0157 +0.0718i |
0.0200 — 0.0119i 0.1436 — 0.0313i
] ) (4.7.37)
~0.0387 - 0.2743i 0.0542 + 0.0002i
;| 02481+ 0.1691i | , | 0.0260 + 0.0710i
| 0.0305+0.2332i | | 0.0598 — 0.0085i

0.0664 — 0.0611i —0.0171 + 0.0804i
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Section 4.8. Reciprocal Bases and Linear Transformations

In Section 3.2, we introduced the components of a linear transformation A: % — % with
respect to a basis {e,,e,,....ey} for ¥ and abasis {b,,b,,...b,,} for . The fundamental formula

that defined the components is equation (3.2.2), repeated,

M .
Ae,=> Alb, k=12,.,N (4.8.1)
j=1

The matrix of the linear transformation was defined by A: ¥ — % by equation (3.2.9), repeated,

All Alz ’ e AlN
A21 AZ2 A2N
AS Al . _
M(A.e.b;)= ! 3 | =[A] (4.8.2)
_AM1 A’V'2 . .. AMN_

In Section 3.6, we examined how the matrix (4.8.2) is altered when there are basis changes
{ee,,...ey} —>{6,8,,..,8,} and {bl,bz,...,bM}—>{61,62,...,6M}. The result was equation
(3.6.17), repeated,

M(A8,.b;)=U"M(Ae,b,)T (4.8.3)

k) q’

where T is the transition matrix for {e,,e,,...e,} > {€,,&,,....&,} and U is the transition matrix
for {b,,b,,...b, } > {b;,b,,...by }

Now that we have complicated the discussion by the introduction of the reciprocal basis
{¢",e?,...e"} and {b',b?,...,b"}, and introduced the basis change {e, e,,....e } —{e",e?,....e"}
and {b,,b,,...b,} > {bl,bz,...,bM } , we have three other ways to create matrices from A: ¥ — %

. Repeating (4.8.1) and adding the other three, the four sets of components of A:¥ — % are
defined by
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Ae, =Y Alb,
j=1
Ae, —%:AjkbJ
" (4.8.4)
Ae‘ =3 A'b,
J';l
Ae“ =" A'b’
j=1
for k =1,2,...,N. The corresponding matrices are
M (Ae,.b;)=[ Al ]
M(Ae,bl)=]A
(Aeb') [A’d (4.8.5)
M (Ae",b;)=[ A¥]
M (Ae,b7)=[ A¥]

Consistent with (4.8.1), the convention in building the various matrices is that the first index,
whether a subscript or a subscript, denotes the row of the matrix and the second index the column.
Now that our vector spaces are inner product spaces, we can derive from (4.8.4) the following
formulas for the components.

. =(Ae,,b")
<Aew i)
{p)
‘=(Ae

Aeb,)

(4.8.6)

These formulas arise by forming the respective right hand sides, substituting from (4.8.4) in terms
of the components and then making use of the definition of the reciprocal basis, equation (4.7.7).
The four sets of components of A:¥ — % in (4.8.6) are the mixed contravariant-covariant
components, the covariant components, the contravariant components and the mixed covariant-
contravariant components, respectively.

As with any basis change, the various sets of components are connected by a basis change
formula identical to (4.8.3). The problem is that an already complicated notation gets even more
complicated. It is probably more direct to derive the formulas that connect the components in

(4.8.6) in each case rather than try to adapt (4.8.3). The bases {e,e,,...,e, } and {el,ez,...,eN}are
connected by(4.7.9) and (4.7.10), repeated.
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N

e,=>e.e! for j=12..,N (4.8.7)
q=1

] _ 1q 1 —

e _Zl‘e e, for j=12,..,N (4.8.8)
q=

Likewise, the bases {b,,b,,....b,,} and {b*,b?,...,b™}| are connected by

M
b,=>bb? for j=12..,M (4.8.9)
g=1
. M . .
b’=Zl:b’qbq for j=1,2,..,M (4.8.10)
q=

The approach we shall take is to derive formulas that relate the components in (4.8.6):1 to each set
of components in the remaining three equations. Given (4.8.6)1, it follows from (4.8.6). that

M M ___ M ___
Ay =<Aek,bj>=<Aek,qZ;qubq> = Eq:qu (Ae,,b%)= Zq:quAqk (4.8.11)

where (4.8.10) and (4.8.6)1 have been used. If we next use (4.7.1) applied to the basis
{b,,b,,....b,, }, the transformation formula (4.8.11) simplifies to

M
Ay =D by A% (4.8.12)
q
Identical calculations starting from (4.8.6)3 yields
A¥ =(Ae“bl) =" Al e” (4.8.13)
p=1
Likewise, when one starts from (4.8.6) it follows that
k k Ry k
AF=(Ae" b )=D"> bA e (4.8.14)
p=1 g=1

At the risk of introducing more notation, if we introduce the matrices

E=[e"] (4.8.15)
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and
B=[b"] (4.8.16)

Then the matrix versions of (4.8.12), (4.8.13) and (4.8.14) are, respectively,

M (A, b')=BM(Ae,b,) (4.8.17)
M(A.e.b;)=M(Ae, b )E (4.8.18)

and
M(Ae“,b1)=B M (Ae,b,)E (4.8.19)

Equation (4.8.19) can also be read off from (4.8.3). The transition matrix for the transformation
{e,.6,,...e,} —>{e',e?,....e" | turns out to be the complex conjugate of the matrix (4.8.15), and the

transition matrix for the transformation {b,,b,,....b,, } — {bl,bz,...,b“"} the transition matrix is the
complex conjugate of the matrix (4.8.16).

In the special case where the linear transformation is one from the vector space ¥ to itself,
i.e., when A:¥ — ¥, the transition matrices E and B become the same. Also, operations like
the determinant and trace of a linear transformation can be performed on A:¥ — ¥ . In Section

3.6, we defined the determinant of a linear transformation A:% — ¥~ by equation (3.6.34),
repeated,

det A=detM(A,e, e)) (4.8.20)

It is important to recall that the matrix det M (A,e;,e,) consists of elements defined by the
equation

N .
Ae, =D Ale, (4.8.21)
j=1

Equation (4.8.21) is equation (4.8.4)1 specialized to the case of a linear transformation A: ¥ — ¥ .

In Section 3.6, we also illustrated how the determinant does not depend upon the choice of
basis. The proof of this result, as shown in Section 3.6, arose from the fact that the matrix

detM (A,e,e;) is similar to the matrix M (A,é,,&;) resulting from a basis change
{e,e,.....ey} > {€,,8,.....8, }. The question naturally arises as to what is the relationship between
the determinant of A defined by (4.8.20) and the three matrices M (A,e,,e’),M (A,e",e; ) and
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M (A,e",ej ) The answer is provided by the transformation formulas (4.8.17), (4.8.18) and
(4.8.19) applied in the case B=E. The results are summarized as follows:

det A=detM(A,ee;)=detM (A,ek,ei)
— _ _ (4.8.22)
:det(M (A,ek,ej)E‘1)=det(EM (A,ek,e’))

For the case under discussion, equation (4.8.19) shows that the matrix M (A,e,,e;) is similar to the

matrix M (A,e*,e’). Equation (4.8.22), reflects the result mentioned in Section 3.6 that similar
matrices have the same determinant.

A similar calculation as that leading to (4.8.22) shows that the trace of A: ¥ — ¥ is
related to the trace of the four matrices by

trA=trM(A,e,.e;)=trM (A7ek'ej)

" | L (4.8.23)
:tr(El\/I (A7ek,e1)):tr(M (A,ek'ej)E—l)
Exercises

4.8.1 You are given a linear transformation A:7 — % defined by

Av =v'(9b, +6b, —5b, +4b,)+ v’ (b, —b, +b;)+v° (80, +5b, —4b, +5b,) (4.8.24)

For all vectors v =v'e, +v%, +v’e, € ¥, where ¥ is a real inner product space. The matrix of A
with respect to the bases {e,,e,,e;} and {b,,b,,b;,b,} is

9 -1 8
6 -1 5

M(A.e.b;)= 5 1 4 (4.8.25)
4 0 5

You are given that the matrix of inner products (4.7.1) is

3 3 7
ley|=| -3 11 -3 (4.8.26)
7 -3 21
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1 -1 -3 1
-1 3 2 -4
b, |= 4.8.27
[b4] -3 2 2 =2 ( )
1 4 2 1

Calculate the three sets of components for the linear transformation, A: ¥ — ¥,
M(A.e.b'),M (A" b;)and M(A",e"e;). The answers are

(4.8.28)

706 134 —204
_ 475 89 -138

M (A,ek,b.)z[Alk] _1 (4.8.29)
] 32|-398 -74 116

274 54 76
and

689 123 206
1|-1173 231 326
T 32| 2512 —480 720
124 20 40

M (Ae",b’)=[ A¥] (4.8.30)
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Section 4.9. The Adjoint Linear Transformation

In this section, we shall briefly examine certain special concepts involving linear
transformations defined on inner product spaces. In particular, we shall introduce what is known as
the adjoint linear transformation. This linear transformation generalizes the transpose of a linear
transpose in those cases where the inner product space is not real. As we shall learn, with the
proper choice of bases, the adjoint of a linear transformation or the transpose of a linear
transformation is directly related to the corresponding concept for matrices.

We begin our discussion by consideration of a linear transformation A7 — % defined on
two inner product spaces ¥~ and % . At this point in the discussion, we shall allow ¥~ and # to
be complex inner product spaces. The adjoint linear transformationto A:¥ — % is defined as
follows:

Definition: Given a linear transformation A:¥ — %, the adjoint linear transformationto A isa
linear transformation A" : % — ¥ defined by

<u,Av>:<A*u,v> forall vey and ue# (4.9.1)

Note that the inner product on the left side of (4.9.1) is the one in % and the one on the right side

of (4.9.1) is the one in %". Also, note that the property (u,v)=(v,u} of an inner product allows us
to replace the definition (4.9.1) by the equivalent definition

(Av,u>:<v,A*u> forall vey and ue% (4.9.2)

In the special case where the inner produce spaces ¥ and % are real, the adjoint is called the
transpose and the definition (4.9.1) is written

<u,Av>:<ATu,v> forall vey and ue# (4.9.3)

Equation (4.9.1) and the special case (4.9.3) are component free definitions of the adjoint and the
transpose, respectively. This is an important feature of the definition. Physical quantities
represented by geometric objects like vectors and linear transformations do not depend upon the
special basis that might be selected in a particular application. Thus, it is important to understand
when a quantity does or does not depend upon the basis.

Properties of the adjoint that follow from the definition (4.9.1) are summarized in the
following theorem.

Theorem 4.9.1:



320 Chap. 4 . INNER PRODUCT SPACES

(A+B) =A"+B’ (4.9.4)
(AB) =B'A’ (4.9.5)
(AA) =2A (4.9.6)

I"=1 (4.9.7)
0"=0 (4.9.8)
(A) =A (4.9.9)

(A} =(Aa%) (4.9.10)
The proof of the above theorem is straightforward and is left as an exercise.

Equation (4.9.2) defines the adjoint in a component free or basis free fashion. In other
words, the definition does not involve choices of the bases in ¥~ or % . Some of our operations on
linear transformations, such as the determinant and trace operations introduced in Section 3.6, were
introduced by defining certain operations on the components with respect to specific basis choices.
We then showed that the results, in this case the determinant and the trace, were actually
independent of the choice of bases. The important conclusion was that the determinant and the
trace of the matrix was a basis free quantity. We could have followed a similar approach with the
definition of the adjoint but the component free definition is preferred when possible. Component
free definitions of the determinant and trace are possible but not without a diversion into topics we
do not wish to discuss at this point.

Having stressed the benefits of a component free definition of the adjoint, it is useful and
important to select bases for ¥ and # and examine how the adjoint and, for the real case, the
transpose are related to their matrix. First, we shall select bases for " and % . As in Section 4.8,
the situation is complicated by the number of choices. If we denote the basis for ¥~ by

{e,.e,,...ey }, we have a reciprocal basis {el,ez,...,eN } . If we denote the basis for % by
{b,,b,,....b,, }, we have a reciprocal basis {bl, b?,...,b" } . The four sets of components

corresponding to these choices are listed in equation (4.8.4). A similar set of formulas hold for the
components of the adjoint linear transformation A" : % — ¥ . We shall write these formulas as
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* N *k
A'b,=> A%e,
k=1
* N * k
Am:;A@
* 1 N * et
A'b! => Ale,
k=1

. N *
Abl=> A" Jef
k=1

forj=12,...,.M.
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(4.9.11)

The basic question is how are the coefficients A™;, A", A™ and A" in (4.9.11) related

to the components of the linear transformation A in (4.8.4). Unfortunately, the relationships can
be complicated. Equations (4.8.6) give the various components of A interms of A and the inner

product with the basis vectors. For the adjoint, A”,similar formulas are

(4.9.12)

The four sets of components of A™: % — ¥ in (4.9.12) are the mixed contravariant-covariant
components, the covariant components, the contravariant and the mixed covariant-contravariant

components, respectively.

Our goal is to determine how the various sets of components are related. The four results

we do wish to record are

K k
A i = AJ.
A*kj = Ajk
A = AK

and

(4.9.13)

(4.9.14)

(4.9.15)

(4.9.16)
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Equations (4.9.13) through (4.9.16) simply state that the components of the adjoint are obtained by
transposing and forming the complex conjugates of the appropriate components of the linear
transformation A: ¥ > % .

The derivation, for example, of (4.9.13) begins with the result (4.9.12)
and the definition (4.9.1). The sequence of calculations is

A" =(A%;,e")=(b;,Ae") = (A", b)) (4.9.17)

The result (4.9.13) follows by application of the result (4.8.6)4 to (4.9.17). The results (4.9.14),
(4.9.15) and (4.9.16) follow by identical arguments.

If we were to decide, for example, to derive a formula that connected the components A*kj :

for k=1,2,..,N and j=1,2,..,M tothe components Al ,for j=1,2,..,M and k =1,2,..., N, the

results are much more complicated. The derivation of the kind of formula is not difficult but the
details are more involved. The starting place is the formula (4.9.17). This formula, (4.8.4)3 and
(4.8.13) combine to yield

A =(Ae'b,)= ibqu“pekp =3 3 b, AT e (4.9.18)

The complexity of the relationship between the coefficients A", for p=1,2,..,N and
q=12,...M and A*kjfor k=12,..,N and j=12,...,M inequation (4.9.18) obscures the more
elementary result (4.9.13).

It is instructive to write the results (4.9.13) through (4.9.16) as matrix equations. From the
definition of the matrix of a linear transformation given in Section 3.2, it is true that

M(A"bj.e )= A% ]

M A0, ) <[ A (4.9.19)
M (A" ble)=[AY] .

M (A" b e")=[A})]

With these expressions and the corresponding definitions for the various matrices of A given in
(4.8.5), equations (4.9.13) through (4.9.16) can be written

M(A"b;.e)=M(Ae b} (4.9.20)

M(A"b,.e)=M(Ae,b') (4.9.21)
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M(A"be,)=M(Ae D) (4.9.22)
and
M(A"b'e)=M(Ae,b;) (4.9.23)

The more complicated formula (4.9.18) is equivalent to the matrix equation

M(A"b,.e)=EM(Ae,b;) B™ (4.9.24)

where the transition matrices are defined by (4.8.15) and (4.8.16). One way to derive (4.9.24) is to
substitute (4.8.19) into (4.9.20).

The results (4.9.20) through (4.9.23) reveal the fact that, with the proper choice of basis, the
matrix of A" is the transposed complex conjugate of the matrix of A. The phrase “proper choice
of basis” is fundamental. Equation (4.9.24) shows that the matrix M (A*,bj ,ek) is not the

transposed complex conjugate of the matrix M (A,ek b )

For the special case where the adjoint linear transformation is one from the vector space ¥

to itself, i.e., when A" : ¥ — ¥, an application of the definition of the determinant, equation
(3.6.34) yields the result

det A" =detM (A" ,e;,e,) (4.9.25)

where the matrix det M (A*,ej ,e,) consists of elements defined by the equation
* N *k
Ae, :kZA & (4.9.26)
=1

Equation (4.9.26) is equation (4.9.11): specialized to the case of a linear transformation
A" ¥ — ¥ . Our interest is the relationship between the determinant of A:¥ — ¥ and the

determinant of A™:% — ¥ . The answer is given by the definition (4.9.25) and equation (4.9.24)
in the special case we are discussing, namely, where B = E. These two equations yield
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det A" = det M (A*,ej,ek):det(ElM (A,ek,ej)TE)

= det E* det Edet(M (A,ek,ej)Tj (4.9.27)

:det(M (A,ek,ej)T):det(M (A,ek,ej))
The definition of the determinant of A, equation (3.6.34), reduces (4.9.27) to the simple result

det A" = det A (4.9.28)

Also in Section 3.6, we defined the trace of a linear transformation A:7 — ¥ by (3.6.36),
repeated,

trA=trM(Ae,.e;) (4.9.29)
Likewise, the trace of the adjoint is defined by
trA =trM(A",e,.e,) (4.9.30)
If one starts with (4.9.24), of course with B =E, it is easily shown that

trA =trA (4.9.31)

The point of this discussion that needs to be seen through the equations and their many
subscripts and superscripts is that the matrix of the adjoint linear transformation is not simply the
matrix created by transposing and taking the complex conjugate of the matrix of the original linear
transformation. It takes a special choice of the bases for simple formulas such as (4.9.20) through
(4.9.23) to be valid. The basis dependence of these relationships stands in contrast to relationships
like (3.5.18), repeated,

-1

M(A e e )=M(Ae.e) (4.9.32)

In this case, one starts with a basis, creates the matrix, inverts the matrix and then, utilizing the
same basis, creates the linear transformation that is the inverse. In the case of the adjoint, the
matrix operation, i.e., transposing and forming the complex conjugate, does not produce the adjoint
linear transformation unless the proper bases are adopted.

Another important result to extract from the above detail is that if {i,,i,,...,iy} isan

orthonormal basis for ¥~ and {jl,jz,...,jM} is the orthonormal basis for % , the matrix relationships
between a linear transformation and its adjoint take the simple form
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M (A" Jp. i) =M (A, d,) (4.9.33)

Most of our discussions that require that we utilize the components of a linear transformation will
allow the use of orthonormal bases. Thus, the complexity of the component representations of the
adjoint will not create difficulties. The fact that most of our fundamental discussions can be
conducted in a component free fashion is also a benefit as we try to keep our discussions simple
from a notation standpoint.

As we have seen in this section, the inner product structure on the vector spaces ¥ and %
allows for the introduction of the adjoint linear transformation to a linear transformation
A:v — % . Given the idea of an adjoint linear transformation, we can define an inner product

structure for the set of linear transformations .Z(“//;%) in a fashion that generalizes the inner
product we introduced on ™" in Example 4.1.4. The formal definition is

(A,C)=tr(AC) (4.9.34)

for all linear transformations A,C e ,7(1/;%) . It is elementary to show that the definition (4.9.34)
obeys the four properties of an inner product given in Section 4.1. The first three of these
properties are more or less obvious. The fourth one, namely, that (A, A)>0 and (A,A)=0 if and

only if A =0 can be seen to be true by simply adopting an orthonormal basis for ¥~ and % and
utilize the matrix result (4.1.16). The fact that the definition (4.9.34) does not depend upon the
choice of the bases for ¥~ and # insures that the fourth property of an inner product space is
obeyed.

If desired, one can express (4.9.34) in terms of the various components introduced in this
section and obtain the following component representions of the inner product defined by (4.9.34):

N M

(AC)=tr(ACT )= > ALC/ =33 b, e*ALCT (4.9.35)

k=1 j=1 k=1 p=1 j=1 g=1

The matrix form of the complicated result (4.9.35) is

(AC)=tr(AC")=tr(M(Ae,b,)M(C by .e,))
— (4.9.36)
=tr(M(A,ek,bj)EM(C,ek,bj) Blj

where (4.9.19): and (4.9.24) have been used.
In closing this section, it is important to call attention to the case where the inner product

space is real. In this case, the adjoint reduces to the transpose, that we shall write A". The above
equations all remain valid with a simple elimination of the various complex conjugates that appear.
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Exercises

4.9.1 Confirm the formula (4.9.10). This problem, as one would expect, uses the definition (4.9.1)
and the defining property AA™ = AA =1 for the inverse.

4.9.2 You are given a linear transformation A:%¥ — ¥, defined by
Av = (v +40° +0° e, + (0! +0° - 20° Je, + (v —30% + 20° e, (4.9.37)

forall v=yu'e, +v%, +v’%, € ¥, where ¥ is a real inner product space. It follows from (4.9.37)
that the matrix of A with respect to the basis {e,,e,,e,} is

1 4 1
(A ]=M(Ag.e)=|1 1 -2 (4.9.38)
1 -3 2

You are given that the matrix of inner products (4.7.1) is

3 -3 7
[ey]=|-3 11 -3 (4.9.39)
7 -3 21

Calculate the four sets of components for the adjoint linear transformation, A" : ¥ — ¥,
M (A% e )=[ A% | M (A" e )=[ Ay [ M(A" el e, )=[ A¥]and M (A"e),e")=[ A} ].
The answers are

257 1777 107 |

32 32 32
75 347 71

[A*kj]='\/'(A*’e,-'ek)=M(A,ek,e")T =% 3 m (4.9.40)
10 5% 38
| 32 32 32|
7 5 25
(A ]=M(A"e,e)=M(Ag.e)) =|-12 8 -38 (4.9.41)

23 31 55
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(161 25 5]
32 4 8
i . i 43 5 3
AYT=M (A el e )=M(Ace) =| == 2 _2 4.9.42
[ } ( k) ( J) 32 4 8 ( )
B, 1
| 16 4
and
1 1 1
M (A el e)=[ A ]=M(Ae.e;) =|4 1 -3 (4.9.43)
1 -2 2
4.9.3 Utilize the results in Exercise 4.9.2 and calculate <A,A>. The answer is
__ 257 1777 107 |
1 4 1 32 32 32
N M -
(AA) =tr(AA") =S AL Af=tr||1 1 -2 _h 34 Ty 3253
i) 1 -3 2 32 32 32 32
10 59 38
| 32 32 32 |
(4.9.44)
4.9.4 You are given a linear transformation A:¥ — % defined, for all vectors ve ¥, by
Av = (Ul —iv*+ 71)3)b1 +<—8iu1 +90° +8iu3)b2
(4.9.45)

+(4U1 -9v? +15iu3)b3 +(7iz)l + 4iu2)b4

for all vectors v =uv'e, +v%, +v’e, € ¥, where {e,,e,,e,} isabasis for ¥ and {b,,b,,b,,b,} isa
basis for % . The linear transformation defined by (4.9.45) was introduced earlier in Exercise
3.3.3. It follows from (4.9.45) that the matrix of A with respect to the basis {el,ez,es} is

1 - 7
4 -8 9 8i

(AL J=M(Ae b, )= 4' 9 15Ii (4.9.46)
7i 4i 0

You are given that the matrix of inner products (4.7.1) is
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3 1+21  1+2i
J=|1-2i 11 —6+5i
1-2i -6-5i 21

Likewise, for the basis {b,,b,,b;,b,}, the matrix of inner products (4.7.1) is

[bik] -

26 —6+8i
—6-8i 33
12+4i -8-6i
-2+61 8-4i

12—-4i -2-6i

-8+61 8+4i
14 —2i
2i 61

Calculate the four sets of components for the adjoint linear transformation, A" : ¥ — %,

M (A" b€ )=[ A% | M(A"b; )= Ay | M(A" bl e )=[A®]and M(A",b’e")

. The answers are

[A]

M(A"b, e )=M(Aeb!)

[ 1185-1293i  1551+69623i 12919-8823i 11374-25103i |
29 290 145 145
| —3468+5364i 20142-6217i —-7428-4804i —17311-13983i
B 145 145 145 290
1237+2319i 15769-19369i -4473-1299i  —14361+47i
| 145 290 145 290 |
(A ]=M (A" b,e)=M(Ae,b')
~32-50i -10+224i 102-60i 30-—349i
=|-186+142i 393-92i -210-42i 66-300i
186-132i 48-200i 36-118i —16-22i

(4.9.47)

(4.9.48)

=AY ]

(4.9.49)

(4.9.50)
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[A"]=M(A"ble)=M(AeD,)

5.
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[-39+93i 79+2170i 634-63i 118-561i |
145 290 145 145
72+52i 557 32i 73 58li -413-113i
145 145 29 58 290 290
92-3i 439 1151 63 40l —263+97i
145 290 58 58 290 290 |
(4.9.51)
1 8 4 —7i
* i T . .
]=M(A"ble)=M(Ae.b;) =[i 9 -9 —4i (4.9.52)
7 -8 -15i 0

4.9.5 Utilize the results in Exercise 4.9.4 and calculate <A,A>. The answer is

(AA)=tr(AA") =

=tr

885994
145

=
1L z

M
2 ANAS
j=1
1185-1293i  1551+69623i 12919-8823i 11374-25103i |
29 290 145 145
—3468+53641 20142-6217i —7428-4804i —-17311-13983i
145 145 145 290
1237+23191 15769-19369i —4473-1299i —14361+ 47i
145 290 145 290 |

(4.9.53)
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Section 4.10. Norm of a Linear Transformation

In Section 4.1, with equation (4.1.20), we introduced the idea of length or norm of a vector.
While vector spaces can have norms that are not defined in terms of an inner product, thus far all of
our examples have this property. In particular, we gave several examples in Section 4.1 for
different types of vector spaces. In Section 4.9, we introduced the idea of an inner product in the

vector space of linear transformations ,?(V; %) by the definition (4.9.34). Given this definition,
we can continue to calculate the norm from the inner product by the formula

|A]= (A A) = ftr(AA") (4.10.1)

for a linear transformation A:¥ — % . The component representation of (4.10.1) can be read off
from (4.9.35).

If we are given a linear transformation A:¥ — %, then for every vector v e ¥, the vector
Av € % is defined and has the component representation

M N

Av=>"> Al o*b, (4.10.2)

j=1 k=1

Therefore, from the definition of the norm of vectors in # ,

j=1 k=1 g=1 s=1

M N M N
:\/ZZZZA‘kASUkJSqu

|Av] = JTAV.AV) = \/<zz ALob Y Aququ>

(4.10.3)

Because of the special rules for multiplying linear transformations in finite dimensional vector
spaces, i.e., the matrix rules, equation (4.10.3) can be used to establish a relationship between the
norm of a vector and the norm of a linear transformation. The particular result is

[Avi<]Aliv (4.10.4)

For norms in general, the special relationship (4.10.4) is not necessarily true. In our case it is true.
When it is true, the various norms involved are sometimes referred to as being compatible.

The derivation of (4.10.4) follows from (4.10.3) and the component version of (4.10.1).
Because our equations are basis independent, there is no loss of generality to simply take all bases
to be orthonormal. In this case, the component version of (4.10.1), as follows from (4.9.35), is
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”A” - \/ZZ Ajkﬂjk = \/z Z”Ajk ”2 (4.10.5)

Likewise, (4.10.3) reduces to

M N N _
|Av]= \/ZZZ A ADD, (4.10.6)

[Av]

Il
_
Mz
Mz
Mz
>
>l
<
S
Il
_
.Mz
Mz
Mz
—
=<
>
x('D
-
—
<
P
)
<

(4.10.7)

Next, we apply the Schwartz Inequality to each term in the sum in (4.10.7) to obtain

N —_—
v, D A
1 k=1

||Av||=Ji

M 2

2

j=t

N —
2 Akt

k=1

2
=|v| (4.10.8)

2 M ,
<M

N —_—
2 A
k=1

2
The final manipulation involves rewriting the term

N —_—
D A
k=1

N N N N N N
:<z jkek,ZAjseS>=ZZAjkAjs<ek,es>=ZAjkAjk=Z|Ajk|2 (4.10.9)

k=1 s=1 k=1 k=1

where we have used our assumption that the basis {e,,e,,...,e, } is orthonormal. When we
substitute (4.10.9) into (4.10.8) and use (4.10.5) we obtain the result (4.10.4).%0

Exercises

4.10.1 Utilize the results of Exercises 4.9.2 and 4.9.3 and illustrate the validity of (4.10.4) for the
linear transformation defined by (4.9.37) and the particular vector

10 An important and interesting result that we shall not pursue here is a theorem that establishes that in a finite
dimensional vector space all norms are equivalent. The equivalence is based upon a formal definition. It is such that
the various norms produce the same topological structure.
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V=e, +2¢,+3e, (4.10.10)
The results for the factors in (4.10.4) turn out to be

|Av]| = 37106 = 30.89

4.10.11
JAliv| = 374095 ~152.1 A

4.10.2 Utilize the results of Exercises 4.9.4 and 4.9.5 and illustrate the validity of (4.10.4) for the
linear transformation defined by (4.9.45) and the particular vector

v=e +2e,+3e, (4.10.12)
The results for the factors in (4.10.4) turn out to be

|Av| = 35471 = 221.90

4.10.13
|IA[v]= %x/6644955 =1031.11 ( :
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Section 4.11. More About Linear Transformations on Inner Product Spaces

In this section, we shall briefly add to the information provided in Section 4.8 by studying
certain other properties of linear transformations defined on complex inner product spaces. In
Section 1.9, while discussing the idea of the transpose of a matrix, we introduced the idea of a
matrix being symmetric and a matrix being skew-symmetric. The corresponding ideas for linear
transformations defined on complex inner product spaces are Hermitian and skew-Hermitian. The
formal definition is as follows:

Definition: A linear transformation A:¥ — ¥ is called Hermitian if A = A"and skew-Hermitian
if A=-A".

If the underlying inner product space is real, the designations symmetric and skew-symmetric are
often used instead of Hermitian and skew-Hermitian. The following theorem, which follows
directly from the definition (4.9.1), characterizes Hermitian and skew-Hermitian linear
transformations.

Theorem 4.11.1: A linear transformation A is Hermitian if and only if

(v, AV,)=(Av,,V,) (4.11.1)
forall v,,v, e ¥, and it is skew-Hermitian if and only if

(v, AV, ) =—(Av,,V,) (4.11.2)
forall v,,v, v .

As with matrices, see equation (1.9.22), a linear transformation A:¥ — ¥  can always be
written

1 o1 \
A:E(A+A )+E(A—A) (4.11.3)

which decomposes A into a Hermitian part and a skew-Hermitian part. In Section 3.4, we
introduced the notation £ (¥";%) for the vector space of linear transformations from ¥ to # . In

the current circumstance, where we are looking at a linear transformation A:7 — ¥, we shall
denote by &(7/;%)and o« (7;7") the subsets of & (7";#") defined by

(¥ )={AAeg(¥;¥)and A=A"} (4.11.4)

and



336 Chap. 4 . INNER PRODUCT SPACES

o(V:¥)={AAc2(¥:7) and A=-A"} (4.11.5)

In the special case of a real inner product space, it is easy to show that the subsets ,7("//; "//) and

o (¥;¥") are both subspaces of #(7;%).* In particular, £ (¥";%) has the following
decomposition:

Theorem 4.11.2: For a real inner product space ¥, every linear transformation A e Z(V;V)
has the unique decomposition

A=D+W (4.11.6)
where De & (7;7) and We (V7).

Proof. If we utilize (4.11.3) in the case of a real vector space, the decomposition (4.11.6) follows
from the definitions

1
D:E(A+AT) (4.11.7)
and
_LliaaT
W—Z(A A") (4.11.8)

Equations (4.11.7) and (4.11.8) establish the existence of the representation (4.11.6). The
uniqueness of this representation follows by the following argument. We shall assume the
representation (4.11.6) is not unique and write

A=D,+W,=D,+W, (4.11.9)
It follows from (4.11.9) that
D,-D,=W,-W, (4.11.10)

Equation (4.11.10) forces the symmetric linear transformation D, — D, to equal the skew-
symmetric linear transformation W, —W,. Because the only linear transformation that is both
symmetric and skew-symmetric is the zero linear transformation, D, =D, and W, =W, which
establishes uniqueness.

11 In the case of complex inner product spaces the subsets . (1/; %)and =sz{(V; 1/) are not subspaces.
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In Section 4.4, we encountered the idea of an orthogonal matrix in .#>°. A generalization
of this concept to linear transformations A:¥ — % defined on complex inner product spaces is the
idea of a unitary linear transformation.

Definition: A linear transformation Q:¥ — % is unitary if
(QV,,Qv,) =(v,,v,) (4.11.11)
forall v,,v, e .

For a real inner product space ¥, equation (4.11.11) defines an orthogonal linear transformation.
In the definition (4.11.11), the inner product on the left side of the equation is the one in % while
the one on the right side of the equation is the inner product in 7. Geometrically, the definition
(4.11.11) asserts that unitary (or orthogonal) linear transformations preserve the inner products. In
geometric terms, they preserve lengths and angles.

Theorem 4.11.3: If Q is unitary, then it is one to one.

Proof. Take v, =v, =V in (4.11.11), and use the definition of norm (4.1.20). The result is
IQv] =|v]| (4.11.12)

Thus, if Qv =0, then v=0. Therefore, the kernel of Q, K (Q) only contains the zero vector. If
we now use Theorem 3.3.1, this theorem is proven.

If we combine the definition of a unitary linear transformation (4.11.11), with the definition
of an adjoint linear transformation, equation (4.9.1), then

(Qv,,Qv,) =(v,,QQv,) =(V,,v,) (4.11.13)
Therefore, a unitary linear transformation Q: ¥ — % obeys
QQ=1, (4.11.14)
If we require ¥~ and # to have the same dimension, then Theorems 4.11.3 and 3.3.5

ensure that a unitary transformation Q is a one to one and onto, thus, a nonsingular linear
transformation. In this case we can use (4.11.14) and conclude

Ql=Q (4.11.15)

Equation (4.11.15), in turn, implies
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QQ =1, (4.11.16)

Recall from Theorem 3.3.4 that a one to one linear transformation maps linearly
independent vectors into linearly independent vectors. Therefore if {e,,...,e, } is a basis for ¥

and A:7 — % isoneto one, then {Ae,,...,Ae |} is basis for R(A) which is a subspace in % . If,
in addition, {e,,...,e,} is orthonormal and A is unitary, it easily follows from the definition

(4.11.11)that {Ae,,...,Ae, } is also orthonormal. Thus the image of an orthonormal basis under a

unitary transformation is also an orthonormal basis. Conversely, one can show that a linear
transformation which sends an orthonormal basis of ¥ into an orthonormal basis of R(A) must

be unitary.

If we specialize our discussion to a three dimensional real inner product space ¥ as
discussed in Sections 4.4 and 4.5, we can quickly extract some interesting results that have
application in Mechanics. Among the topics we discussed in Section 4.4 was a change of basis

from an orthonormal basis {i,,i,,i,} to a second orthonormal basis {fl,fz,f3} . Recall from
equation (4.4.3), repeated,

R 3
i, =>.Qi, for j=123 (4.11.17)
k=1

that the two bases are connected by an orthogonal matrix

Qi Q, Qg
Q=1Qx Q, Qu (4.11.18)
Qu Q5 Q

If we define an orthogonal linear transformation Q:¥" — ¥, by

3 3
Qv=2> Qi (4.11.19)
j=1 k=1
3
for all vectors v=>uv,i, €%, then
j=1
R 3
i;=Qi, =) Qi for j=123 (4.11.20)
k=1

In the special case where the rotation caused by (4.11.17) is in the plane, the result of the
orthogonal linear transformation Q is such that it takes an arbitrary vector v and creates another
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one with the same components as v has with respect to the basis {il, i2} but points in the direction
defined by {fl,iz} . It is perhaps easier to see the effect of Q by an examination of the following
figure:

As displayed in the figure, the orthogonal linear transformation Q takes a vector v and rotates it

A A

by the angle & while preserving its length. It also preserves the relative position of Qv to {il, iz}

as that of v to {i,,i,}.

The study of the dynamics of systems of particles or the dynamics of rigid bodies
necessitates a discussion of the so-called kinematics of motion. This subject involves such things
as viewing the motion of a particle from a basis that is rotating relative to one fixed in space. This
view is modeled by allowing the orthogonal linear transformation Q to depend upon the time t. A
time dependent vector v can be viewed instantaneously from the fixed basis or the rotating basis.
The two component representations are given by

V(1) =30, (0, = X6, (Vi (1) (4.11.21)

j=1 j=1
It follows from (4.11.21) that
dv(t) do(t), & db;(t): 3. dig (1)
= = (t (t 4.11.22
dt Z T Z dt "()+ZU’() dt ( )
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3 do (t
The term ZU‘—()ij represents the time rate of change of v(t) seen by an observer fixed in the
j=1
o : 3,do; (1) - _
{i,i,,i,} basis. Theterm > (;It i, (t) represents the time rate of change of v(t) seen by an
j=1

P 3 di (t
observer fixed in the {il,iz,i3} basis. The term "0, (t)lé—t() is the time rate of change of v(t)
j=L

caused by the rotation of the second basis relative to the first. It is this term that we shall now
examine. It follows from (4.11.20) that

di, (1) _de(y); (4.11.23)
dt dat
The derivative de—t(t) is constrained by the formula
Q(1)Q(t) =1 (4.11.24)

Equation (4.11.24) is (4.11.16) applied to the case of a real vector space. The derivative of
(4.11.24) is

d?jt(t) Q(t)' +Q(t)(de—t(t)JT =0 (4.11.25)
Next, we observe that if we define a linear transformation Z by
Z(t)= de—t(t)Q(t)T (4.11.26)
then, by (4.11.25),
Z(t)=-2(t) (4.11.27)

In other words, the linear transformation defined by (4.11.26) is skew symmetric. Given the
definition (4.11.26) and the equation (4.11.15), it follows that

— /- 7(1)Q(t) (4.11.28)

This formula and (4.11.20) allow (4.11.23) to be written
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d?ét(t) B d?jt(t) i =Z(1)Q(t)i; =Z(1)i; (1) (4.11.29)

Equation (4.11.29) shows that Z(t) measures the angular velocity of the basis {fl,iz,?s} with

respect to the basis {i,,i,,i,}. Since Z(t) is skew symmetric, its matrix with respect to, for
example, the basis {i,,i,,i,} will be of the form

(1) (4.11.30)

Thus, the nine components of Z(t) are actually determined by three quantities. It is common

practice to identify a three dimensional vector that has these components and write (4.11.29) in
terms of that vector. The formal step is to define a vector m(t) by the requirement

Z(t)v=o(t)xv forall vevy (4.11.31)

where the cross product is defined in Section 4.6. While we do not need to introduce components,
it is perhaps useful to point out that (4.11.31) can be used to write (4.11.30) as

0 -, (t) , (t)
M(Z(t)ii)=| &(t) 0 -aft) (4.11.32)
t

—w,(t)  o(t) 0

for the cross product associated with a positively oriented system. In dynamics, the vector co(t) IS

the angular velocity. The definition (4.11.31) allows (4.11.29) to be written in the possibly more
familiar form

50 _ ) 1) (4.11.3)

and (4.11.22) to be written

i (t)+o(t)xv(t) (4.11.34)
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Sv(t)
ot

It is customary to give the first term on the right side of (4.11.34) a different symbol such as

to signify that it represents the rate of change as seen from the rotating basis.

Exercises:

4.11.1 If you are given a linear transformation A:¥ — % show that the linear transformation
AA": % — 9 and the linear transformation A"A:¥ — ¥ are Hermitian.

4.11.2 Use the definition of the scalar triple product introduced in Section 4.6 and show that the

determinant of a linear transformation A:¥ — ¥, where ¥ is a three dimensional real inner
product space, is given by the component free expression

detA(u,vxw)=(Au,AvxAw)  forall u,v,we¥ (4.11.35)

Equation (4.11.35) defines the determinant of a linear transformation in a completely component
free fashion. It is limited to the case of three dimensions but, perhaps, gives some insight in how
the determinant of a linear transformation could be defined when the vector space has dimension
greater than three.

4.11.3 Given a linear transformation A:¥ — ¥, where ¥ is a three dimensional real inner
product space, define a linear transformation K, : ¥ — ¥~ by

(K u,vxw)=(u,AvxAw) forall u,v,we¥ (4.11.36)

Show that

K A=AK, =(detA)l (4.11.37)

Therefore, from (1.10.50) and (1.10.51), K, is the linear transformation whose matrix is the
adjugate matrix of the matrix of A. In the following we shall write adjA to denote the linear
transformation defined by (4.11.36).

4.11.4 Show that the trace of a linear transformation A:¥ — ¥, where ¥ is a real three
dimensional inner product space, is given by the component free expression

tr AU, vxw)=({Au,vxw)+{u,Avxw)+{u,vxAw) forall u,v,wev (4.11.38)

Equation (4.11.38) defines the trace of a linear transformation in a component free fashion. Like
the definition of the determinant given in Exercise 4.9.1, the definition (4.11.38) is limited to the
three dimensional case.
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4.11.5 Certain applications require that a determinant be differentiated. If A= A(t) isa
differentiable linear transformation, use the results of Exercises 4.11.1 and 4.11.2 and show that

d(det(A(1)) _ tr[(adj A(t))dA_(t)} (4.11.39)

dt dt

where adjA is the linear transformation denoted by K, in Exercise 4.11.3. While we have not

proven it here, equation (4.11.39) holds for linear transformations defined on real inner product
spaces of arbitrary finite dimension.
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Section 4.12. Fundamental Subspaces Theorem

In this section, we shall return to the discussion of linear transformations given in Section
3.3 and augment those concepts in the case where the underlying vector spaces are inner product
spaces. We shall show how to interpret some of our earlier results in an interesting geometric
fashion. The main result of this section is known as the Fundamental Subspaces Theorem.

We begin this discussion by again looking at a linear transformation A:% — % . Unlike
the discussion in Section 3.3, we now allow ¥ and % to be inner product spaces. We shall allow

them to be complex inner product spaces. In Section 3.3, we defined the subspace of ¥~ known as
the kernel of A:¥ — % . This subspace was defined by equation (3.3.5), repeated,

K(A)={v|Av=0} (4.12.2)

We also defined the subspace of  known as the range. This subspace was defined by equation
(3.3.1), repeated,

R(A)={Av|ver} (4.12.2)

For the inner product spaces we are considering, the corresponding concepts for the adjoint
A"y >y are

K(A")={ulA'u=0| (4.12.3)
for the kernel and

R(A")= {A*u| Ue %} (4.12.4)
for the range.

The subspace K (A) of ¥ and the subspace R(A*) also of ¥~ have a special geometric

relationship that we now wish to characterize. In order to characterize this relationship, we make
the following definitions:

Definition: A subspace ¥, and a subspace ¥, of the inner product space ¥~ are orthogonal if
(v,,v,)=0 forevery v, e¥ and v, e ¥%.

If a subspace ¥, and a subspace ¥, of the inner product space ¥ are orthogonal it is customary to
write ¥ L ;. If ¥ L, the only element the two subspaces have in common is the zero vector,
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le. 4N, = {0} . A related geometric concept is the orthogonal complement of a subspace. This
definition is as follows:

Definition: Let ¥ be a subspace of an inner product space ¥, the orthogonal complement of ¥/,
written %", is a subspace defined by

% ={ve¥|(v,v,)=0 forallv,ev | (4.12.5)

In simple geometric terms the orthogonal complement consists of all of those vectors in the inner
product space ¥ that are perpendicular to those in ¥ .

The first part of the fundamental subspaces theorem is that the subspace K (A) is the

orthogonal compliment of R(A*). In the notation we have just introduced, the assertion is
K(A)=R(A) (4.12.6)

The proof of this result follows from the definition of the adjoint linear transformation, equation
(4.9.1), repeated,

(u,Av) = <A*u,v> (4.12.7)

For a vector ve K(A), since Av =0, equation (4.12.7) yields <A*u, v> =0. Thus, the vector

Aue R(A*) is orthogonal to ve K (A) . The second part of the fundamental subspaces theorem
is

K(A")=R(A)" (4.12.8)

The proof of this result is essentially the same as the proof of (4.12.6). One simply interchanges
the roles of A and A”.

Example 4.12.1: You are given a matrix A< M*® defined by

(4.12.9)

>

Il
P NN DN
w A~ MW
P O o B

Viewed as a linear transformation A:.#>* — .#4**, one can easily show that
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01
1(1]0
R(A)=span : (4.12.10)
1110
0|1
and
2
K(A)=span||-1 (4.12.11)
1
Since,
12 21
AT=(3 4 4 3 (4.12.12)
1 001
a simple calculation shows that
112
R(A")=span||3||4 (4.12.13)
1110
07 1]
-1/ 0
K(A")=span 4.12.14
(A")=span|| "I ( )
_O 1_

The fundamental subspaces theorem asserts that K (A)=R(A' )L and K(A")=R(A)". These
results are validated for this example because

For K(A)=R(A)

~1| |3]|=]-1] |4]|=0 (4.12.15)
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and, for K(AT):R(A)L

1
|
)
1
|
1
|
]
1
|

0 0 0 1
1111 -1110
= -0
1 1 1 0
0 0 0 1
- T (4.12.16)
-1110 =111
0 1 0 0
= =0
0 1 0 0
11] (0] | 1] [1]

Next, we shall introduce the ideas of the sum and the direct sum of two subspaces. The idea
is useful in the context of the results (4.12.6) and (4.12.7).

Definition: If ¥/ and ¥, are subspaces of a vector space ¥, the sum of ¥ and ¥, is written
¥+, and is the subspace of ¥~ defined by

¥ +%={v[v=v,+V, wherev, e ¥ and v, e 7; } (4.12.17)

If every vector in ¥~ can be expressed in the form v =v, + v, where v, €% and v, € %, then
Y =9+7.

Definition: If ¥ and ¥, are subspaces of a vector space ¥ such that the only vector they have in
common is the zero vector, i.e., if %N, ={0}, them the sum ¥ +%; is called the direct sum and
Is written %, @7, .

Theorem 4.12.1: If ¥/ and ¥, are subspaces of a vector space ¥, the representation v=v, +V,
of a vector v e ¥/ +%; is unique if and only if % n¥; ={0}.

Proof: Every vector in v e ¥ +%, has the representation

V= (4.12.18)

<
<

l+ 2
-~ —
Aon,

B
5

If ¥, = {0} , we need to prove that the representation (4.12.18) is unique. As with all
uniqueness proofs, we assume the representation is not unique. In particular assume v € ¥+ %, has
two representations
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V=V, +V, =V, +V, (4.12.19)
-~ —— —~ ——
In¥ Inv% In¥  Inv%
Rearrangement yields
V, -V =V, -V, (4.12.20)
- -~ — ——
Iny In% Iny; Inv%

Because the only vector in ¥/ thatis also in ¥, is 0, equation (4.12.20) yields v, =v; and v, =V,
. Therefore, the representation is unique.

Conversely, if we have uniqueness, it must be true that /N, = {0}. Because, if this were not the
case, any nonzero vector w € % "%, could violate the assumed uniqueness by writing

V=V, +V, =V, +W+V,—W.
%,_J %/_/
In % In%

Theorem 4.12.2: If ¥/ is a subspace of ¥, then
Y =4O (4.12.21)

Proof: Let v, be an arbitrary vector in ¥ . Without loss of generality, we can select v, such that

|[vi|=1. For example, if one selected a v, which did not have unit length, the vector %/ ” would
1

have unit length. For any vector v e ¥, we can write the identity

v=v—{V,v )V, +(V,v;)V, (4.12.22)
In %+ In %

The first term, v—(v,v,)v,, isin %" because,

(V=(v,v )V, vy ) = (v, v ) = (v, v, (v, v, )

, (4.12.23)
=(v,vy) = (V)] = (v vi) = (v, v,) =0
We have established that any vector in v e ¥" has the decomposition
V=V, + V, (4.12.24)
-~ —
N7 Inyt

To complete the proof of the theorem, we need to prove that this decomposition is unique. Because
the only vector in % %" is 0, Theorem 4.8.1 tells us the decomposition is unique.
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Corollary:
dimy =dim¥ +dim¥" (4.12.25)

Proof: One simply writes v =v, +V,, and expresses each vector in terms of a basis for each
subspace. The union of these two bases is a basis for 7 .

Given A:7 — 4, we know that the kernel, K (A), is a subspace of ¥". Theorem 4.8.1
applied to this subspace yields

1

¥ =K(A)@K(A) (4.12.26)
Equation (4.12.6) allows (4.12.26) to be written

7 =K(A)®R(A") (4.12.27)
In a similar fashion, the fact that R(A) is a subspace of % allows us to write

2=R(A)®OR(A) (4.12.28)
which by (4.12.8)

%=R(A)OK(A") (4.12.29)

The following figure summarizes the various geometric relationships reflected in equations (4.12.6)
, (4.12.8), (4.12.27) and (4.12.29).

¥ =K(A)®R(A) 2=R(A)®K(A")
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The Fredholm Alternative Theorem was mentioned in Section 3.3. It was mentioned that
this theorem has two parts and our Theorem 3.3.2 was the second part of the Alternative Theorem.
The first part is the theorem*?

Theorem 4.12.3: Given A:¥ — % and b e , the equation Av =b has a solution if and only if

(u,b)=0 (4.12.30)

forall ue K(A*).
Proof: If vev isthe solution of Av=Db, then for arbitrary u e #

(u,b)=(u,Av) :<A*u,v> (4.12.31)

It follows from (4.12.31) that if ue K (A”), which implies A'u=0, equation (4.12.30) holds.
Conversely, if (4.12.30) holds for all ue K(A”), then b e K (A*)l =R(A), where (4.12.8) or,

equivalently, (4.12.29) has been used. Given b e R(A) , the consistency theorem discussed in
Section 3.3 tells us that there exists a v e ¥ such that Av=Db.

A final result that can be identified from the above geometric construction is that
dimR(A)=dimR(A") (4.12.32)

This result is a direct consequence of (3.3.13) and (4.12.25) applied to equation (4.12.27). In the
case of a matrix A:.#"* — .#M* with real elements, equation (4.12.32) reduces to equation

(2.8.3). It was this earlier result that gave us the important fact that the row rank and the column
rank of a matrix are the same.

Exercises
4.12.1 You were given the following system of equations:

X, +X, +2% +X, =5
2X, +3X, — X, —2X, =2 (4.12.33)
4% +5X, +3X; =7

a) Show that the kernel of the matrix of coefficients is

12 Information about the Swedish mathematician Erik Ivar Fredholm can be found at
https://en.wikipedia.org/wiki/Erik_lvar_Fredholm.
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7[5
5 4

K(A)=span Lo (4.12.34)
1

b) Utilize (4.12.6) and show that

R(A")=span (4.12.35)

RN R e
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Section 4.13. Least Squares Problem

In the introduction to this Chapter, it was explained that the inner product structure makes it
possible to construct approximations based upon the idea of elements of vector spaces being close
in some sense. In this section, we shall illustrate an approximation procedure that occurs in many
applications. It is based upon the idea of minimizing the distance between two vectors. The
resulting idea is known as a least squares problem. The details of this idea will be presented in this
section. In the next section, we shall apply the idea to the problem of fitting a curve to a set of
data.

We begin by the assumption that we are given a real vector space ¥ of dimension N . The
problem we shall investigate is how to approximate a vector v e ¥~ by a vector u in a subspace of
¥, we shall call ¥ . Inaway to be described next, we shall define a quantity that measures the

approximation.

Given v e ¥, the approximation to v, which we have called u e, is measured by the

distance between v and u. The structure of the inner product space provides a measure of this
distance. Our first step is to define the residual by

r(u)=v-u (4.13.1)
and measure the departure of v from u by the squared norm
Jr ()] =Jv-uf (4.13.2)

The problem we are examining is, given v e , how do we calculate u in order to minimize the
squared norm ||r(u)||2 =|v-u[.

As a function of the u, we shall minimize the squared norm (4.13.2). The result of this
minimization problem is straight forward if we remember how the derivative of a function with
respect to a vector is defined. If f:% — £ is a real valued function defined on an open set ¥, of a

vector space ¥, then the gradient of f is a vector valued function on ¥ defined by

df (x+Ac)

m =(grad f (x),c) (4.13.3)

A=0

for all vectors c ¥, . The minimum state we seek is the vector u € ¥ which satisfies the
condition
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- <grad ||r(u)||2 ,c> =0 (4.13.4)

;7(||r(u+ﬂc)||2)

=0

for all vectors ce ¥ . From (4.13.2) and (4.13.4)1, at the point of minimum, it is necessary that

;7(||v—(u+ic)||2) =0 forall ce¥ (4.13.5)

A=0

Equation (4.13.4), is equivalent to the M equations
<grad||v—u||2,c>:0 forall ce¥ (4.13.6)

The manipulations are slightly easier if we perform the calculation based upon (4.13.5). The result
IS

=) = (v (ude) v (o )

=0 A=0

=—(v-u,c)—{c,v-u) (4.13.7)
=-2(v-u,c)=0  forall ce¥

If (4.13.7) is rewritten, the minimization condition is defined by
(v-u,c)=0 forall ce¥ (4.13.8)

Thus, we obtain the elementary result that the residual, as defined by (4.13.1) must be orthogonal to
every vector in the subspace ¥, . Another way of stating this result is that the minimum residual is

a vector in the orthogonal complement of the subspace ¥, .

Thus, in its most elementary form, if we wish to approximate a given vector ve ¥ by a
vector u in the subspace 7, , we simply calculate the vector u that obeys (4.13.8). If we select a

basis {e,,e,,....e,, } for %, and express u in components by the usual formula
u=> ule, (4.13.9)

it follows from (4.13.8) that

uj:<u,ej>:<v,ej> for j=12,...M (4.13.10)



Sec. 4.13 . Least Squares Problem 355

where {el,ez,...,e“"} is the reciprocal basis to {e,,e,,....e,, }. If (4.13.10)2 is substituted into
(4.13.9), the answer to our least squares problem is

M

u=y(v.elle, (4.13.12)

j=1

Equation (4.13.11) says we simply calculate the reciprocal basis to {el,ez,...,eM } , project the given
vector ve ¥ inthese M directions and substitute the result into (4.13.11).

Example 4.13.1 In Section 2.1 we gave a number of examples of vector spaces. One of these was
the vector space C [a,b] consisting of those continuous functions defined on every open

subinterval of [a,b]. In this example, we shall select the interval to be [0,b] and the associated
vector space is written C [O, b] . A subspace of this vector space is the subspace created by the span
of the set { f,, f,, f;, f,, f;} where

1
f(X)=—=
) Vb - (4.13.12)
fj(x):ﬁcos% for j=2,3,4,5

In the notation used in this section, ¥ is the vector space C[0,b] and ¥ =span( f,, f,, f;, f,, f;).
The vector space becomes an inner product space with the definition (4.1.19), repeated,

(f.9)=], t()g(x)dx (4.13.13)

for all vectors f,geC[0,b]. You are given that the set { f,, f,, f,, f,, f,} is orthonormal. This
assertion can be established by utilization of (4.13.12) and the definition (4.13.13) to confirm that

(f;.f)=0; for jk=12345 (4.13.14)

In order to illustrate the approximation (4.13.11), we shall make the choice
g(x)=1-— (4.13.15)

In the notation being utilized in this example, (4.13.11) takes the form

5

X
Q(X)=1—5=JZ_;<9, f)f, (4.13.16)
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where the fact that { f,, f,, f;, f,, f;} is orthonormal has been used. The next step is to make
explicit the approximation by evaluating the inner products in (4.13.16). The results turn out to be

e

(9, fj>=j0b(1—§J[ %cos%jdx (4.13.17)

More explicitly,

1 2 7[2
,f.)=0
(9. f) (4.13.18)
CA 92
(9,75)=0
If these results are utilized in (4.13.16), the resulting approximation is
x 1 4 X 4 37X
X)=1l-—=—+—C0S— +—C0S—— 4.13.19
900 =1 =g+ 7 O g 0 (4.13.19)

The quality of the approximation (4.13.19) is illustrated in the following plot



Sec. 4.13 . Least Squares Problem 357

Approxirnation for gia=1-«/b, O<xba

1 T T T T T T T T T
~ : : : fix)=1x/b
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Example 4.13.1 is an example of a Fourier Cosine series expansion for the function g (x) :1—%
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Section 4.14. Least Squares Problems and Overdetermined Systems

In this section, we shall formulate another solution procedure based upon the concept of
least squares. Essentially, we shall examine a problem that does not have a solution and attempt to
find an approximate solution that is close in some sense to the original problem. It will turn out
that the approximate solution found is equivalent to the results in Section 4.13 above.

The basic idea leading to the approximate solution is as follows. Recall that when we are
given a linear transformation A:%” — % and a vector b € % , the consistency theorem for linear
systems says that the system

Ax=b (4.14.1)

has a solution if and only if b e R(A) . This theorem was discussed in Sections 1.8 and 2.7 for
matrix systems. It was mentioned again in Section 3.3.

Interestingly, there are problems which arise in the applications that lead to systems like
(4.14.1) for which b ¢ R(A) . Our theory tells us that these problems do not have a solution. The
question still remains whether or not there is an approximate solution that is useful. A major

application of this kind of problem is curve fitting. This is when one is trying to fit a curve to a set
of data. A typical problem in the applications is when you are given a discrete table of data

Yi Y2 Ys : : : Y
X X, X, : : : X

and your application requires that you have values of y for values of x intermediate to values in
the table. There are two curve fitting approaches to this problem that we shall be discussing.

1. The data exhibits a significant degree of error or scatter as shown in the following figure.

The approach is to derive a single curve that represents general trend of the data.
You make no effort to find a curve that intersects the given points.

The curve is designed to follow the pattern of points taken as a group.

The approach is to try pass a curve through the data that minimizes error in some
fashion.

e. This kind of problem is known as a regression problem.

cooe
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2. The data is known to be precise.

a. The approach is to fit a curve or series of curves that pass directly through each of
the points.
b. The estimation of values between well known discrete points is called interpolation.

Consider the following problem as an example regression example. The example is an
application involving spring constants. It is derived from an elementary idea in mechanics known
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as Hooke’s Law. It is named after the 17" century British physicists Robert Hooke.*® This so
called law is an effort to model, in a crude way, the elongation of a spring resulting from an applied
force:

k

F

You are given a force-elongation table, in some consistent set of units, is as follows:

Force Elongation
0
2
4
7
11

gl wWwN O

A table such as this would arise from a series of experiments involving loading different weights to
a spring. The problem is that Hooke’s Law says that

F = kx (4.14.2)

where k is a property of the spring, a constant known as the spring constant. The model presumes
that there is one spring contant that defines the spring. Unfortunately, the experiment yields four

different spring constants! They are 1%%%' Viewed as a system of equations in the matrix

form Ax=b, we have a system

13 http://en.wikipedia.org/wiki/Robert Hooke
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2 2

3 4
K|= 4.14.3

{ORE 4143
1x1

5 11

—— ——

4x1 4x1

This is an overdetermined system of four equations in one unknown. It should be clear that the
rank of the matrix of coefficients is one and the rank of the augmented matrix is two. Thus, when
Theorem 2.7.2 is utilized, we see that the system (4.14.3) does not have a solution. In the language
we have used when discussing systems of equations, our example is one where the column matrix

2
4

b= (4.14.4)
7
11

is not in the image space of the matrix

2
3

A= 4.14.5
4 ( )
5

The matrix A is one to one but it is not onto. For this problem there are a couple of approaches
one might utilize in an effort to build a model based upon the given data. One approach is simply
to stop and declare that the physical problem is not modeled by Hooke’s Law. In other words,
there is a more complex physical model governing the spring. This is sometimes the best approach.
However, you lose the benefit of simple (linear) mathematical equations that are more readily
solved. The second approach is to find a value of k that produces a spring constant corresponding
to a “best approximation” or “best fit” of the experimental data to the hypothetical physical law, i.e.
Hookes Law.

An approach which has proven effective is to define an error or residual for each
experiment and to minimize the error in some fashion. The residuals are as follows:

n=2-2k
r,=4-3k
r,=7-4k
r, =11-5k

(4.14.6)

The least squares method is a method to find the value of k which causes the sum of the squared
residuals to be a minimum. This means that we want to find k such that
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R 4+n+n? 17 =(2-2K)" +(4-3K)" +(7-4k)" +(11-5k)’ (4.14.7)

is a minimum. The plot of this equation is

N /
. \ /
I /
N

—

Squared Residual

0 0.5 1 1.5 2 2.5 3 3.5 4
Spring Constant

Therefore, the squared residual is never zero, but it can be minimized. At the minimum point, it
would necessarily be true that

d(rl2 +r2 41} +r42)

o =0 (4.14.8)
If this derivative is calculated and placed to zero, we get
~4(2-2k)-6(4-3k)—8(7-3k)-10(11-5k) =0 (4.14.9)
or, after simplification,
k =2—Z=1.8333 (4.14.10)

This number represents an approximation, derived from the set of four experiments, built around
the decision to accept the least squares of the residuals as the definition of an approximate solution.
The figure illustrates the result of the above calculation.
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Hooke's Law

Force

Erice

Least Sguared
I

i i i i i !
1] 1 2 3 4 g 4] 7 g
¥ = Elangatian

Example 4.14.1 Itis instructive to cast the calculation leading to (4.14.10) in the notation used in

Section 4.13. The vector space ¥ corresponds to the four dimensional vector space .#**. The
given vector we denoted by v in Section 4.13 is the column matrix b in (4.14.4), repeated,

v=b= (4.14.11)

The subspace of ¥~ we have denoted by ¥, is the one dimensional subspace spanned by (4.14.5),
repeated,

(4.14.12)

g b~ WO DN

This problem is an application of the ideas in Section 4.13 but it is special in the sense that the
subspace ¥, is defined by the problem, i.e., by the matrix (4.14.12) rather than the result of a

choice made in advance. In the notation of Section 4.13, we would write the vector (4.14.12) as
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(4.14.13)

and ¥/ is spanned by the set containing the single vector e,. Given the above identifications, the
general solution in the form (4.13.11) specializes to

u=(v.e'e, (4.14.14)

In order to utilize (4.14.14) we need the vector €' € ¥ that is reciprocal to e, as is defined by

(4.14.13). As with all reciprocal bases, we need to utilize (4.7.1) and (4.7.10). Because the
subspace ¥, one dimensional, the calculations are elementary. It follows from (4.14.13) that

2
3
e,=(e,e)=[2 3 4 5] s =54 (4.14.15)
5
and
2
3
g =e''e, = ie1 _1 (4.14.16)
€, 5414
5
Given (4.14.11), (4.14.16) and (4.14.13), the answer (4.14.14) is
211|2 2
1 313 99/3
u=(v,etye,=|—[2 4 7 11 == 4.14.17
< > ' 54[ ] 4(||4| 54|4 ( )
5|)|5 5

Therefore, the contravariant component of the approximate solution in the one dimensional
2

3
direction e, = 4 is % Of course, the answer % is the result (4.14.10) obtained earlier.

5
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Given the motivation provided by the example leading to (4.14.10) and the same example
worked in Example 4.14.1, we now turn to the following more general problem. We are given a
linear transformation A:¥ — % and a vector b € % , where ¥ and % are real inner product

spaces. We are also given that b ¢ R(A) . Therefore, a system Ax =Db does not have a solution.

At this point in the discussion, A:¥ — % is perfectly general. We have said it is not onto and we
do not require that it be one to one. For a single three dimensional vector space, the following
figure suggests the geometric arrangement we are discussing

TN e

Ax

The plane shown is the image space of the linear transformation. The given vector b is not in the
image space. The vector b — Ax in some sense measures the inconsistency in the system. If we fit
the notation used in the above figure with that used in Section 4.13, the vector space % which

contains the vector b corresponds to the ¥~ of Section 4.13. The image space R(A), asa
subspace of %, corresponds to the subspace ¥, of ¥". The product Ax corresponds to what we
called u in Section 4.13. As with Example 4.14.1, the subspace R(A) is not arbitrary. Itis
determined from the properties of A: ¥ —> % .

As with the general discussion in Section 4.13, the least squared method defines, for each
vector x € 7, the residual to be the vector

r(x)=b-Ax (4.14.18)

Because our vector spaces have inner products, we can again measure the error by the length or
norm squared of the residual (4.14.18). The length squared of this residual is

[r()] =(b-Ax.b-AX) (4.14.19)

where the inner product is the one for % . The fact that it is a dependence on x € ¥~ rather than a
depence on Ax e R(A) that makes the formulation in this section slightly different than the one in
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Section 4.13. However, they are entirely equivalent. In any case, our problem is to find the x e ¥,
which makes the squared residual, ||r(x)||2 ,aminimum. As with the case in Section 4.13 and as
with the elementary example above, we will differentiate (4.14.19) and place the result to zero.

The result of this minimization will be an equation which will determine the particular
X € ¥ which minimizes the squared residual. The equation that we shall obtain is known as the
normal equation. It says that x must obey the system of N =dim¥~ equations

ATAx=A"b (4.14.20)

The minimization process follows the same procedure used in Section 4.13. The minimum state
we seek is the vector x e ¥~ which satisfies the condition

d ||r(x+/1a)||2

da - <9rad||f(x)||2 'a> =0 (4.14.22)

A=0

for all vectors ac¥ . Itis easier, for the simple function ||r(x)||2 , to form the derivative on the left
side of (4.14.21) than it is to worry about how one calculates the gradient on the right. From the
definition of the function ||r(x)||2 equation (4.14.19), it follows that

Ir(x+2)[ =(b-A(x+2a),b-A(x+1a)) (4.14.22)
Therefore,

d ||r(x+/1a)||2

) =(b—Ax,—Aa)+(-Aa,b—-Ax)=-2(b—Ax,Aa)=0  (4.14.23)

=0

Equation (4.14.23) corresponds to (4.13.7) in the formulation of Section 4.13. The next step is
slightly different than used in Section 4.13. The inner product in (4.14.23) isthe one in % . The

inner product in (4.14.23) vanishes for all vectors in R(A) , a subspace of # defined by A. A

more useful result is obtained if we use the definition of the transpose, equation (4.9.3). This
definition allows (4.14.23) to be written

<AT (b—Ax), a> =0 forall vectorsaec ¥ (4.14.24)

where the inner product in (4.14.24) is the one in ¥*. Geometrically, (4.14.23) says that the
residual b — Ax is orthogonal to the subspace R(A). The equivalent result, equation (4.14.24)

says that A’ (b—Ax) is orthogonal to all vectors in ¥ . Therefore,
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A" (b-Ax)=0 (4.14.25)

which is the result (4.14.20). As mentioned above, equation (4.14.20) is called the normal
equation. A geometric interpretation of (4.14.25) is that b— Ax isin K (AT ) which from (4.12.8)

equals R(A)l . Therefore it is a consequence of (4.14.25) that
Ax-beK(AT)=R(A)" (4.14.26)

Equation (4.14.20) and the earlier result, (4.13.11) are entirely equivalent. If we apply (4.13.11) to
the case at hand, then it yields

u=AX=i<v,ej>ej (4.14.27)

=1

As a practical matter, (4.14.20) is more convenient. With (4.14.27), one must analyze the linear
transformation A to determine a basis and reciprocal basis for its range. With (4.14.20), this
calculation need not be performed. It is implicit in the normal equation (4.14.20).

It is helpful when trying to understand solutions to the normal equation to utilize the figure
above augmented with the geometric result (4.14.26). If we adopt the notation x, ;. for any

solution to the normal equation (4.14.20), and display how it arises as a special choice of all
possible vectors x € #". The following figure is the result.

R(A) =K(A")

P

b r(xmin)

/T(X)

min
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As the figure suggests, a solution X, is the one that produces a residual vector r(X,;,)=b—Ax,

orthogonal to the image space R(A). In other words, r(x,,,) is the projection of r(x) into the

min

orthogonal compliment of R(A) .

The last figure is a good motivation for the inequality

lo— Ax|>|b—Ax (4.14.28)

min ”

Another way to write this inequality is | (x)]=|r (X, )

. This fact, while obvious from the simple

geometric construction above, needs to be established in general in order to be sure that we have
actually found a minimum point when we find solutions of the normal equation. The derivation of
(4.14.28) follows by the calculation

2

b-Ax|[ =[(b=Ax_ )+(Ax . —Ax
|| || min min

InK(AT)=R(A)" INR(A)
=((b = AXyp )+ (AXyy = AX), (0 = AX ) + (AX,y, — AX))
=[lb — A% || + A% = AX|" +2(b = AX, 1y, AX i — AX) (4.14.29)

Equal to 0 because L
=[b — AX o [+ [ A% = AX[
> |- A% |

min |

The positive square root of the last inequality gives the result asserted.

Further properties of the normal equation (4.14.20) are as follows:

1. The normal equation (4.14.20) was derived to be useful for cases where b ¢ R(A) Ifbis
,infact, in R(A), then (4.14.20) written in the form (4.14.25) shows that b— Ax , which is
avector in R(A), isalsoin K(AT). Because from (4.12.8), K(AT)=R(A)". Itis
necessarily true that

Ax=b (4.14.30)

The conclusion is that when b R(A) , the normal equation (4.14.20) and (4.14.30) have the same

solution.
2. The linear transformation ATA:¥ — ¥ is symmetric. This result simply follows from the

calculation (ATA) = AT (A7) =ATA.
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3. The kernel of ATA:¥ — ¥ equals the kernel of A:¥ — % . In equation form this
assertion is

K(ATA)=K(A) (4.14.31)

The proof of (4.14.31) goes as follows: Let v be a vector in K (A) By the definition of the
kernel, it is true that Av=0. Thus, it is true that A"Av =0 and, as a result, v e K (ATA).
Conversely, let v be a vector in K (ATA). It follows that ATAv =0 and, as a result, the vector
Av whichisin R(A), isin K(AT). Because from (4.12.8), K(A")= R(A)" and that the only

vector that is both in R(A) and K (AT ) = R(A)L is the zero vector, we can conclude that Av=0
which forces ve K(A)

4. The rank of the symmetric linear transformation A"A:% — ¥ and the linear
transformation A:¥ — % are the same. In other words

dimR(ATA)=dimR(A) (4.14.32)

This result follows from (4.14.31) and the rank-nullity theorem, equation (3.3.12), applied to the
linear transformations A" A and A.
5. The solution of the normal equation (4.14.20) is unique if and only if K (A) = {0} . This

assertion follows from (4.14.31) and Theorem 3.3.2.
6. In the case where the solution of the normal equation (4.14.20) is not unique, the residuals
for the solutions are the same. More explicitly, if x, and x, are two solutions of the

normal equation (4.14.20), then

Ax, = AX, (4.14.33)

This equation follows from (4.14.31) which shows that when the solution is not unique x, —X,
must be in K (ATA) = K(A). Since the least squares solution minimizes b — Ax, the two

solutions x, and X, yield the same vector in R(A) and that vector is the closest in the least
squared sense to the vector b.

In the special case where K (A)={0}, i.e., when A:% — % is one to one, we know from

(3.3.12) that the rank of A and ATA isequal to dim7 . As a result, the symmetric linear

transformation A"A:¥ — ¥ is nonsingular even though the linear transformation A: ¥ — % is
not. The unique solution of the normal equation (4.14.20) is then

x=(ATA)" A'b (4.14.34)
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In general, when one is given a linear transformation A:¥ — % with the property that
dimR(A)=dim", the combination (ATA)_1 A" is known as the left pseudo inverse of A. Itis
the left pseudo inverse that gives the solution to the least squared problem. If the linear
transformation A is nonsingular, it is evident that (ATA)fl AT =AM (AT )71 AT =A"

While it is not important to us here, it is worth noting in passing that the combination
A’ (AAT )71 arises in some applications and it is known as the right pseudo inverse of A.

Exercises
4.14.1 Find the least squares solution to the following system

X, +2X, + %X, =2

3X + X, —2%, =1
CRE (4.14.35)
4x, —3X, — X, =3
2X, +4X, +2X, =4
X, 1
The answer you should obtainis | x, [=| 0 |.
X, 1
4.14.2 Find the least squares solution to the following system
X, —3%; =1
3%, +12x, =3
% 3 (4.14.36)
X +X+X =1
2X +3X, =%, =1
[ 97 |
X, _4 1(2)5
The answer you should obtain is | x, |=%,| 3 |+ =
X, 1 0
L

4.14.3 You are given the matrix equation Ax =Db, where
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1 3
A=2 -3| and b=|1 (4.14.37)
0 0 2

If it exists, determine the solution to the matrix equation Ax=b. If it does not exist, determine an
approximate solution based upon the least squared approximation.

4.14.4 As mentioned above, when K (A)={0}, the the rank of A:¥ — % and ATA: Y ¥ is

equal to dim¥”. In this case, the solution (4.14.34) is sometimes expressed in terms of a so called
QR decomposition or factorization. The purpose of this exercise is to show how this factorization
is constructed and to show how it simplifies the solution (4.14.34). The argument begins with

selecting a basis {e,,e,,....e, } for ¥ and a basis {b,,b,,...,b,, } for . The fundamental formula
that defined the components is equation (4.8.1), repeated,

M
Ae, => Alb, k=12..,N (4.14.38)
j=1

The matrix of this linear transformation was defined by equation (4.8.2), repeated,

All Alz ’ T AlN
Azl A22 AzN
_ A8 A3 .
M (A, b;)=[Al,]= ! 3 | (4.14.39)
_AMl AM2 . . AMN |

The matrix M (A,ek,bj), under the assumptions we have made, has rank N =dim»". If we

denote the N linearly independent columns of M (A,e,,b; ) by
Alk
A2

A3
fo=| "k for k=12,..N (4.14.40)

A",

The next formal step is to apply the Gram-Schmidt process explained in Section 4.3 and derive an
orthonormal set of column vectors {i,,...,iy | . Because the column vectors f,, k =1,2,...,N arein
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4™, the orthogonal column vectors i,, k=1,2,...,N are also in .#"**. In component form, we
shall write these vectors as

_Qﬁ_
Q%
Q3
io=| " for k=12,..,N (4.14.41)
Q"
The inner product that is used to construct the orthonormal set {il,...,i } is the one defined by

equation (4.1.13) except that in this section the vector spaces ¥~ and % are real. As explained in
Section 4.3, the two sets of column vectors, {f,,...,f,} and {i,,...,i, }, are connected by the
formula (4.3.32), repeated,

fo=> Rli, for k=1..N (4.14.42)
where the coefficients R/, for k,q=1,2,...,N , are determined by (4.3.33). As (4.3.40) illustrates,

the transition matrix R =| R | .4"*" is upper triangular. Given (4.14.40), (4.14.41) and
(4.14.42), the various components are connected by the formula

N
A =D Q%R for s=1,2,.,M and k=12,..,N (4.14.43)
g=1

Equation (4.14.43) is a decomposition of the matrix M (A,ek , bj) into the product of an orthogonal

matrix
I Qll le ' e QlN |
Q3 Q% Q%
Q= QL Qs (4.14.44)
_QMl QM 2 ' T QM N _|

and the upper triangular matrix R. For matrices, equation (4.14.43) is the QR factorization

mentioned above. Given the usual connection between matrices and linear transformations,
equation (4.14.43) establishes a corresponding factorization of the linear transformation
A:¥ — 9 . The result, which can naturally be written



374 Chap. 4 . INNER PRODUCT SPACES

A=0R (4.14.45)
Because Q:¥ — %, is orthogonal, equation (4.11.14), repeated
Q'Q=1, (4.14.46)

holds for Q. The linear transformation R :¥ — ¥, which was constructed from the transition
matrix R = [Rf] e #"" is nonsingular. Given this long preamble to this exercise, use the QR

factorization and show that the solution (4.14.34) can be written
x=R'Q'b (4.14.47)

Equation (4.14.47) can have some computational advantages when one is trying to generate the
solution of (4.14.34).
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Section 4.15. A Curve Fit Example

As the Hooke’s Law example showed, a good illustration of the least square method of
finding an approximate solution is when one wishes to fit a curve to the data that captures the data
trend. In this section, we shall look at another curve fit example. In this example, we shall fit the
data to a polynomial of degree of degree S. Polynomials were first discussed in Secion 2.1. In
this section, we shall write the polynomial as

y(X)=a,+ax+a,x +a,x’ +---+agx’ (4.15.1)

Viewed as a member of a real vector space, the polynomial (4.15.1) is in the vector space £

introduced in Section 2.1. Our objective is to utilize the least squares procedure to determine the
S +1 unknown real numbers that are coefficients in (4.15.1). The regression we shall formulate
will be built upon the assumption that we have a data set of K distinct points, where K > S +1.
The data set is displayed in the table

Y1 Y Y : : : Yk

X, X, X, . . . X¢

As with the Hooke’s Law example, we can evaluate the polynomial (4.15.1) at each data pair and
obtain the system of K equations for the S +1 unknowns

2 3 s

B + X FAX +AX +eF A K =Y,
8+ AX, + 8, X, +aX ot AKX, =Y,
8y + A X; 8K + X+ AX; = Vs

8 +aX, + X + A+t agxs =y, (4.15.2)

2 3 s _
a0+a1xK +a2xK +8.3XK +---+anK =Yk

This result can be written as the matrix equation
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1% X X raq [%]
Lx % S lla | |
e “lle | (4.15.3)
s
11 X Xe o Xi—(ml L Yk |
Kx(S+1) Kx1

As an over determined system of K equations in S +1 unknowns, (4.15.3) is usually
inconsistent and, as such, does not have a solution. Following the formalism of Section 4.14, we
can define the residuals as a column vector r defined by

r=y-Aa (4.15.4)
where

Y1
Y,

Ys
y=| - (4.15.5)

a=|" (4.15.6)

and
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N><r\> '—?<r\:
[%2] N><w "><u7

I : (4.15.7)

1 X X

Xk

Note that the (S +1)>< K matrix A is similar in form to the transpose of the square Vandermonde

matrix introduced in Section (1.10). Because the points x;, X,,..., X, are distinct, it is possible to
conclude that the rank of A is S +1 and, thus, A is one to one.

The normal equation (4.14.20), rewritten in the above notation is

ANA a = Ay (4.15.8)
— - — ]

(SHLx(S+1) (S+1)x1  (S+L)xK ki1

Symmetric

Example 4.15.1: Given the data set

X 5 10 15 20 25 30 35 | 40 | 45 50
y 49 50 | 46 | 43 39 36 33 30 22 19

we will try to fit a cubic to the given data. Therefore, you are asked to determine coefficients

EN
a—| & (4.15.9)
a‘2
&
in the cubic equation
y=a, +aX+a,x* +ax’ (4.15.10)

The matrix A in the normal equation is
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1 x % xX|[1 5 25 125
1 x, X x| |1 10 100 1000
1 x, X x| |1 15 225 3375
1 x, x> x| [1 20 400 8000
Ao 1 x X{ X5z _ 1 25 625 15625 (4.15.11)
1 x x2 x| |1 30 900 27000
1 x, X x| |1 35 1225 42875
1 x, x¢ x| |1 40 1600 64000
1 % X x| |1 45 2025 91125
1 %, x% | |1 50 2500 125000

and, because the points x,,X,,..., X, are distinct has rank 4. The matrix y , which is notin R(A),
is

o
50
46
43

y = 39 (4.15.12)

36

33

30

22

19

The symmetric matrix A" Ain the normal equation (4.15.8) turns out to be

10 275 9625 378125
. 275 9625 378125 15833125
A= (4.15.13)
9625 378125 15833125 690078125

378125 15833125 690078125 30912578125

The inverse of the matrix (4.15.13) can be shown to be
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‘a3 19 1 1]
30 36 50 4500
19 13073 2 761
( AT A)_l _ 36 154440 585 19305000
1 2 103 1
50 585 715000 585000
1 761 1 1
| 4500 19305000 585000 48262500 |
(4.15.14)
[ 3.7667 -0.5278 0.0200 -0.0002
| -0.5278 0.0846 —0.0034 0.0000
| 0.0200 -0.0034 0.0001 0.0000
| —0.0002 0.0000 0.0000 0.0000
Given (4.15.11), (4.15.12), and (4.15.14), the solution of (4.15.8) can be shown to be
[ 1531 |
30
4019 51.0333
a —0.1561
a—| 2°740|_ (4.15.15)
547 -0.0128
42900 0.0001
19
| 321750 |

Therefore, from (4.15.10) and (4.15.15) the least squares approximation to the given data is

y =51.0333-0.1561x -

0.0128x’ +0.0001x° (4.15.16)

The plot of the data and this polynomial is as follows:
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Example 4.15 1
y=510333-0 156130 0128:2+0 0015

® data points
: : : ! ; ; Zubic
15 | ] i i | | T I

5 10 15 20 25 30 35 40 45 50

Example 4.15.1 provides an example that shows how one could use (4.13.11), repeated,

M

u=y(v.elle, (4.15.17)

j=1

to work least squares problems. If we adapt (4.15.17) to the last example above, then v represents
the vector y e .#'>* defined by (4.15.12). The vector u defined by (4.15.17) is the vector in

R(A) that is the least squared approximation to y =v e .#'*. The basis {e,,e,,....e,, } and its
reciprocal basis {el,ez,...,eM} represent bases of the image space, R(A), defined by the matrix

(4.15.11). The first step is to determine M =dim R(A) , the rank of A. If the reduced row echelon
form of A is calculated by the usual method, the result is
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(4.15.18)

O O O O O O O O O
O O O O OO o o+ o
O O O O O o o Fr O o
O O O O O O r O O O

Thus, the rank of A is M =4. Thus, as observed earlier, A is one to one. A basis for R(A)
consists of the four columns of A. Therefore,

1 5 25 125

1 10 100 1000

1 15 225 3375

1 20 400 8000

1 25 625 15625

e, =|_|e-= 8, = e, = (4.15.19)

1 30 900 27000
1 35 1225 42875
1 40 1600 64000
1 45 2025 91125
1] 50 | | 2500 | 125000 |

The inner products e, = <ej,ek> are given by

10 275 9625 378125

275 9625 378125 15833125

[ jk]: 9625 378125 15833125 690078125
378125 15833125 690078125 30912578125

(4.15.20)

and the resulting reciprocal basis is given by
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8 _ 397 9 ] 7]
5 2145 1430 107250
4 19 __ 16 7
15 1170 10725 321759
2 1361 199 7
5 12870 42900 128700
By 2909 19 31
30 25740 4290 643500
2 29 23 1
g | 5 || 429 |_| 10725 ._| 53625
1] 2 | 2 |7 1
15 2145 2145 53625
4 81l 151 3
15 12870 42900 643500
13 2203 31 7
30 25740 7150 128700
4 29 3 7
152 ;325 14132 3271759 (4.15.21)
. 5] | 858 | | 3575 | | 107250 |

Given (4.15.12), (4.15.19) and (4.15.21), equation (4.15.17) becomes
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[ 35708 |

715
34503

715
65811

1430
185683

4290
85979

IR 2145
— ] —
u_§<y’e )ei= 78224

2145
139343
4290
120833
4290
50554

2145 (4.15.22)
13393

715 |

Again, u in (4.15.22) is the vector in R(A) that is the least squared approximation to y defined

by (4.15.12). Given (4.15.22) and the fact that u e R(A), insures that there is a vector a e .#**
that is mapped by A into u , i.e., obeys Aa=u. In order to determina a we must solve
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10
15
20
25
30
35
40
45
50

Aa =

R N = T T T o Y S Sy REN BN

25
100
225
400
625
900

1225
1600
2025
2500

125
1000
3375
8000
15625
27000
42875
64000
91125

125000 |
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35708 |

715
34503

715
65811

1430
185683
4290
85979

2145
78224

2145
139343
4290
120833
4290
50554

2145
13393

715 |

(4.15.23)

Repeating our earlier observations, equation (4.15.23) has a solution because we know that its right
hand side is in the range of A. Because A is one to one, we know (4.15.23) has a unique solution.
This solution is obtained by the method we have used extensively. Namely, construct the
augmented matrix and reduce it to row echelon form. The details are tedius at best, but the
resulting augmented matrix allows us to replace (4.15.23) with
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O O OO OO0 o o o+

O O OO O o o o r o

O O OO OO o+ o o

O O O O O o+ O o o

[ 1531 ]

30
4019

25740
547

42900
19

321750

O O O O o o

385

(4.15.24)

Thus, we again obtain the result (4.15.15). This calculation, perhaps, gives insight into the direct
use of the normal equation (4.14.20). It certainly displays the convenience of utilizing (4.14.20)
directly rather than the somewhat round about method based upon the use of (4.15.17).

Exercises

4.15.1 You are given a table of data containing K pairs of data:

Y1

Y,

Y3

Y

X

X,

X3

a) Show that if you fit the straight line

Y =3 +ax

to this data, the coefficients a, and a, are the solution of

(4.15.25)
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_ - v, ]
X, Y,
1
11 1 - - -1 % al [1 1 1 - .. 1 &
. - : (4.15.26)
XX X X . a XX X Xy )
1 X | | Yk |

b) Show that the solution of (4.15.26) is

K

i=1 i
8

(4.15.27)

K

i=1

4.15.2 The numerical example in Section 4.15 provides the opportunity to illustrate the QR

decomposition discussed in Exercise 4.14.3. Perform the Gram-Schmidt orthogonalization process
on the matrix (4.15.11) and show that
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19 3 21
J10 V330 33 2145
17 1 7
J1I0 330 433 2145
15 1 35
J1I0 330 2433 242145
13 3 31
JI0 V330 2433 242145
112 6
o-| VIO V30 3 V2145
1 1 2 6
J1I0 V330 B33 (2145
1 3 3 3
J1I0 330 2433 242145
1 5 1 3
V10 /330 2433 22145
1 7 17
J10 /330 V33 J2145 (4.15.28)
1 9 3 21
V10 V330 33 (2145 |

4.15.3 Use the matrix (4.15.11) and the matrix (4.15.28) and show that the matrix R in the QR
decomposition is given by

/o 5510 192510 7562510 |
2 2 2
5330 2754330 13175+/330
R=| 0 > : . (4.15.29)

0 0 100433  82504/33
0 0 0 150,/2145 |
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Chapter 5

EIGENVALUE PROBLEMS

Section 5.1 Eigenvalue Problem Definition and Examples

There is a special problem that arises in a large variety of physical circumstances that we
shall now study. It is called the eigenvalue or proper value problem. In its most basic form, it is a
problem that arises when one is given a linear transformation A:¥ — ¥, where ¥ is an inner
product space, and you are asked to fine certain intrinsic directions for that linear transformation.
In particular, directions defined by a vector v e ¥~ such that such that when Av is calculated, you
get back a vector proportional to v, i.e., a vector that is parallel to the vector v. This geometric
statement is equivalent to the algebraic condition of finding a nonzero vector v

Av = Av (5.1.1)
Eigenvalue problems arise in a wide variety of circumstances. A partial list is as follows:

Finite Dimensional: Eigenvalue problems defined on finite dimensional vector spaces.
a) Mechanical Vibrations
a. These problems typically involve finding the solution to systems of linear constant
coefficient ordinary differential equations. We shall look at this kind of application.
b) Rigid Body Dynamics
a. The application usually involves finding the solution to Euler’s rigid body equations
when studying, for example, the motion of gyroscopes. As explained in Chapter 3,
the angular momentum of a rigid body is given in terms of a linear transformation,
known as the moment of inertia, and the angular velocity by equation (3.1.13),
repeated,

(=l (5.1.2)

The eigenvalue problem (5.1.1) seeks to find those directions in the rigid body where the angular
momentum vector is parallel to the angular velocity. The directions defined by (5.1.1) are the
called the principal directions and the proportional coefficients are called the principal moments of
inertia.
c) Material Behavior:
a. Applications that involve modeling material behavior with formulas such as
Fourier’s Law, equation (3.1.12), and Ohm’s Law, equation (3.1.14) often require a
calculation of the directions where, for example, the heat flux is parallel to the
temperature gradient.

389
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d) Strain Kinematics: In the mechanics of deformable solids, the strain of the body is
characterized by a linear transformation. The eigenvalue problem is a way of finding the
intrinsic directions where the strains are pure elongations or compressions. In other words,
the shear strains are zero. These strains are called the principal strains.

e) Stress Tensor: In Example 3.1.7 of Chapter 3, Cauchy’s Theorem, equation (3.1.15) was
stated as follows:

t=Tn (5.1.3)

The eigenvalue problem arises when one wishes to find the directions where the stress vector t is
parallel to the unit normal n. In such directions, the stresses are pure compressions or tensions.
They are called the principal stresses.

Infinite Dimensional: Eigenvalue problems defined on infinite dimensional vector spaces.

a) The study of liner partial differential equations is the study of linear transformations defined
on infinite dimensional vector spaces. For a certain category of problems, the problem of
solving these equations comes down to finding the eigenvalues to these linear
transformations.

Our interests here continue to be finite dimensional vector spaces.
A more formal statement of the eigenvalue problem is as follows:

Eigenvalue Problem: Given a linear transformation A:%¥ — ¥, where ¥ isan N =dim¥
dimensional inner product space, find a nonzero vector v such that

Av = Av (5.1.4)

The vector v which satisfies (5.1.4) is called an eigenvector of A. The scalar A is called the
eigenvalue of A

Some observations about the eigenvalue problem:

a) The eigenvalue problem may not have a solution. This circumstance arises when one
restricts the discussion to real vector spaces. If the vector space is complex, as is the case
here, it is a theorem that every linear transformation A:% — ¥ has at least one solution to
its eigenvalue problem.?

b) If there are solutions to the eigenvalue problem, there is no guarantee or requirement that
the components of v be real numbers or that the associated eigenvalues be real numbers.
For example, a linear transformation can have the property that its matrix A consists of real
numbers and still have eigenvectors with complex components and eigenvalues that are
complex numbers.

c) The length of an eigenvector, if it exists, is not determined by the defining equation (5.1.4),
i.e.,, by Av=Av. Itisthe direction that is determined by Av = Av. This fact allows us to

! The proof of this theorem can be found in most linear algebra books. For example, the textbook, Vector Spaces of
Finite Dimension, by G. C. Shephard has this proof.
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normalize the eigenvectors to suit the particular application. Often, they are normalized to
be unit vectors.

If {e,,e,,....ey} is abasis for the inner product space ¥, the matrix equivalent of (5.1.4) is

Av = Av (5.1.5)
where
A=M(Ae;.¢,) (5.1.6)
and
- -
2
v=| (5.1.7)
_UN -

As pointed out, there is no assurance that the eigenvalue problem has a solution. However
if one is fortunate enough such that a linear transformation (or its matrix) has N such vectors, say

{V1,V,,...,Vy }, and one has the additional good fortune that these vectors are linearly independent,

then {v,,Vv,,..., v} isabasis for ¥ . Itis a basis with the property that

AV1 = /11\/1
AV1 = /szl

(5.1.8)

Av, =4V,

Our definition of the matrix of a linear transformation, equation (3.2.9), tells us that, in this case,
the matrix of A with respect to the basis {v,,v,,...,v, } takes the diagonal form
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A 0 0 0
0 4 O 0
0 0 0
M (A v v,)= % (5.1.9)
00 0 - - 4]
NxN Diagonal Matrix
If {e,.e,,....e} isan arbitrary basis for ¥ and we are fortunate enough to have a basis
{V1,V,,.., vy } of vectors with the property Av; = 4,v,, then, by our usual change of basis
arguments, i.e., by equation (3.6.18),
M(A v, v, )=T'M(Ae;e)T (5.1.10)
where, as usual, T is the transition matrix defined by
N k
v, =Y Te, (5.1.11)
k=1

Equation (5.1.10), in the cases where the above construction exists, tells us that the matrix of A
with respect to {e,,e,,...,e, } is similar to a diagonal matrix. The construction of this diagonal

matrix through a similar transformation is usually referred to as diagonalizing the matrix.

Example 5.1.1: A very simple example that illustrates some of the features of the eigenvalue
problem is the following. We are given a linear transformation A:¥ — ¥, where ¥ is a two
dimensional inner product space, defined by

Al _Ei1 L I,
2° 2 (5.1.12)
. 1. 3.
Ab=—§h+§b

where {i,,i,} is an orthonormal basis. The question is whether or not there are any vectors v for

which Av is parallel to v. This problem is one where we can display the effect of A on a vector
geometrically. The following figure is a consequence of the above definition (5.1.12) of A:
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The linear transformation defined by (5.1.12) deforms the unit square into the parallelogram as the
figure shows. The eigenvalue problem is the question whether or not there are vectors v for which
Av is parallel to v. For this simple example, the answer is yes. If one takes

v1=i2(il+i2) and sz%(—ilﬁ-iz) (5.1.13)
Then,
| ) E ) A .
=(i2j [gll—1|2j+(—%il+gizn—(T)(iﬁiez)=v1
and
AVZ:A[(IJ( |l+i2)j{\F](—A(il)m(iz)) .

N 2
(3t

If the vectors v, and v, are added to the figure above we get
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______________

Another way to geometrically look at what one is doing when the vectors v, and v, are plotted is
to look at the following figure.




Sec.5.1 . Eigenvalue Problem Definition and Examples 395

One can think of the unit vectors i, and i, as defining a unit circle. The linear transformation A
distorts this circle into an ellipse that is rotated relative to the axes defined by i, and i,. In this

case the angle of rotation is 45° and the major axis of the ellipse is 2 and the minor axis is 1.
Notice that in the above example the vectors v, and v, are unit vectors. However, any vectors

parallel to these will also satisfy the equation Av = Av.

The matrix of the linear transformation defined by (5.1.12) with respect to the basis {il, i2}

(5.1.16)

while the matrix of the linear transformation with respect to the basis of eigenvectors {v,,v,} is

M (A,vj,vk){; g} (5.1.17)

The transition matrix that connects the two orthonormal bases is given by (5.1.13) and is the
orthogonal matrix

11

T = V2o 2 (5.1.18)
11
V2o V2

Another example, but one without the simple geometric interpretation above is as follows:

Example 5.1.2: We are given a linear transformation A:¥ — ¥, where ¥ is a two dimensional
inner product space, defined by

Al =1L
(Y L )
V2 ©y2 (5.1.19)
Al = =i, + i
2 \/E 1 \/E 2

where {i,,i,} isan orthonormal basis. One can show that the linear transformation defined by
(5.1.19) is orthogonal. The eigenvectors for this example turn out to be
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1, .. . 1, .
v, zﬁ(—lll+lz) and v, :—2(||1+|2) (5.1.20)
and the corresponding eigenvalues are
A= (1-i) and 4 =——(1+i) (5.1.21)
V2 V2

Of course, the matrix of the linear transformation (5.1.19) with respect to the basis (5.1.20) is the
diagonal matrix

1 .
——(1-1) 0
M (A Vv, )= V2 (5.1.22)
0 L+
V2
and, from (5.1.20), the transition matrix is
b
T= V2 V2 (5.1.23)
1 1
J2. 2

This example, because the eigenvalues are complex numbers and the eigenvectors have complex
components, does not lend itself to the simple geometric construction used with Example 5.1.2.
Nevertheless, there are important applications for which the linear transformation occurring in the
eigenvalue problem is orthogonal.

The fundamental question is now does one find the vectors v, and v,? Also, in Example
5.1.1 the eigenvectors v, and v, turned out to be orthogonal. This raises the question as to what

were the special properties of the linear transformations (5.1.12) that caused the eigenvectors to be
linear independent and, in addition, to be orthogonal. In the following Sections we shall examine
these questions, among others.
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Section 5.2. The Characteristic Polynomial

In this section, we shall discuss a polynomial, called the characteristic polynomial, and its
role in the eigenvalue problem. As we shall see, this polynomial plays a fundamental role in the
calculation of the eigenvalues and the eigenvectors. Before defining this polynomial, we need a
few preliminary definitions and results.

Definition: The spectrum of A:¥ — ¥ is the set of all eigenvalues of A.

Definition: If A4 isan eigenvalue of A:¥ — 7, the eigenspace or characteristic subspace
associated with A is denoted by ¥ (i) and is defined by

¥ (4)={ve¥|Av=1v} (5.2.1)

In words, the characteristic subspace of A is the subspace of ¥~ consisting of vectors that are
eigenvectors associated with the eigenvalue A. There is nothing in this general discussion that
would say that there is only one eigenvector associated with an eigenvalue. In other words, we are
not presuming that the dimension of the characteristic subspace of a particular eigenvalue is one.

Definition: The geometric multiplicity of an eigenvalue A is the dimension of its characteristic
subspace, i.e. dim¥"(4).

Theorem 5.2.1: The characteristic subspace of an eigenvalue A is the kernel of the linear
transformation A-Al:% > ¥, i.e.

¥ (1)=K(A-A4l) (5.2.2)
To see this result, just write the defining equation (5.1.4) as

(A-a1)v=0 (5.2.3)

It follows from the equation 7" (1) = K(A—Al) thatif 4 is an eigenvalue of A:¥ — ¥, then

A — A1 must be singular and conversely. The condition that A— Al is singular is equivalent to the
condition

det(A—11)=0 (5.2.4)

Definition: The N™ order polynomial in A defined by

f(2)=det(A-Al) (5.2.5)



398 Chap. 5 . EIGENVALUE PROBLEMS

is the characteristic polynomial of A: v — ¥ .

The important result we have obtained is that the eigenvalues of a linear transformation
A:¥ — v are the roots of the characteristic equation. There are a couple of ways one can write

this polynomial. Asan N™ order polynomial, it will have N roots. They need not be distinct
roots and they need not be real numbers. If we list these N rootsas 4, 4,,..., 4, , then the

characteristic polynomial can always be written as

f(2)=det(A=21)=(4=2) (A= 2A) (A= 2)-(2y —2) (5.2.6)

N Factors

Example 5.2.1: For Example 5.1.1, the characteristic polynomial is

3 1
24 =
f(4)=det(A-A1)=det(M(A-1le;e,))=det 2 L s 2
= =-i
> 5 (5.2.7)
2
=G—ﬂ) —%=/12—3/1+2:(/1—1)(ﬂ—2)

Therefore, the roots of the characteristic polynomial are 4, =1,4, =2. Note, in passing, that for this
example:

3 1
2 2

det A = =2=44, and trA=3=4+4, (5.2.8)
2 2

Example 5.2.2: For Example 5.1.2, the characteristic polynomial is

f (1) =det(A-A1)=det(M (A-Ale, ¢,)) = det 21
7 ﬁ—i (5.2.9)
1

—/1)2 +%:12 —\/5/1+1=(ﬂ—%(l—i))(i—ﬁ(lﬂ)j

1%
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Therefore, the roots of the characteristic polynomial are 4, = %(14),&2 = i(1+i) . Asisa

V2

general feature for the roots of polynomials with real coefficients, complex roots occur in complex
conjugate pairs. Also note, as with Example 5.2.1, for this example:

1 1
det A = det ‘/15 f —1=44, and trA=\2=14+4, (5.2.10)
V2 2

The results (5.2.8) and (5.2.10) are special cases of a general feature for polynomials, in this
case for the characteristic polynomial. It is a fact that for a linear transformation A:% — ¥~ with
eigenvalues 4, 4,,..., 4, that

trA=A4+4,++4, (5.2.11)
and
detA=44, -4, (5.2.12)

The details of the derivations of (5.2.11) and (5.2.12) are complicated because of the complications
associated with writing down a general expansion of the determinant

f(4)=det(A-Al)= det(M (A—/ll,ej,ek))
All _ﬂ/ A12 A13 . . AlN
AN, - A, A (5.2.13)

AY,AY, LAY -2

and forcing the result, by (5.2.6), to equal (4, —1)(4,—4)(4—4)---(4, —4). The expansion of
(5.2.13) will always turn out to be on the form

f(A)=det(A—a1)=(-2)" + 1 (-2)" "+t py 4 (-2) + 1y (5.2.14)

The algebraic problem is to find formulas for the N coefficients y, 1,,..., 1, in terms of the linear
transformation A. While it is perhaps evident from (5.2.14) that

i, =detA (5.2.15)
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the complications of the algebra make it not so obvious that

w=trA (5.2.16)
The algebraic details are not excessively complicated if we temporarily restrict the
discussion to the case N =dim¥” =3. The algebraic problem above is to extract information by
forcing the equality
A1 A, A

AN, -2 A, | =(4-A) (4L -A) (A4 4) (5.2.17)

A N
If both sides of this equation are expanded, the result, after some labor, is

D8 A = o+ pty = =204 (D4 Ay + 2y ) AP~ (Dl 4 Ry Aude) Ak Aol (5.2.18)

where the three coefficients x4, u,, 1, are given by?

u=1trA
14 =%{(tr A) -tr(AA)] (5.2.19)
My =det A

As an identity in the parameter A, (5.2.18) forces the coefficients of the like powers of A to be the
same. As a result,

=t A=A+ Ay +

1y =%{(trA)2 —tr(AA)} = Ay + A + A (5.2.20)

My =det A= A4, 4,

2 There is another formula for the second fundamental invariant £z, that one sometimes finds. It is

1, :tr(ade (A,ej,ek))
where adjM (A,ej ,ek) is the adjugate matrix defined in Section 1.10. In terms of the components of the matrix
M (A,ej,ek ) , this formula is

AZ, A2
A, A

ALA,
AN,

AL A,

I, :tr(adjl\/l (Ayejvek )): A21 A22
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The three coefficients s, 1,, 12, defined by the above formulas are called the fundamental

invariants of the linear transformation A:% — ¥ (remember in the case under discussion

dim¥ =3). The first and third are defined in terms of operations that we have used throughout
this textbook. In Section 3.6, we showed that these two operations do not depend upon the choice
of basis. A similar proof can be given for ., , since it is defined in terms of the trace operation.
The word “invariant” arises because the three quantities do not depend upon the choice of basis
used to represent A:¥ — ¥ . Inthe case of a linear transformation A:¥ — ¥, where

N =dim¥”, then one can show that the N coefficients z, 1, ,..., 1, do not depend upon the

choice of basis. These N quantities are the fundamental invariants of A: ¥ — 7 .

Example 5.2.3: Consider a matrix Ae.#>° defined by

3 -8 0
A=[2 3 0 (5.2.21)
0 0 1
The eigenvalues are the roots of
3-4 -8 0
det(A-Al)=| 2 3-2 0 |=(1-2)((3-4)"+16
0 0 1-4 | | (5.2.22)
=(1-2)(4*-62+25)=(1-2)(A—-3-4i)(A1-3+4i)
Therefore, the eigenvalues are given by
A=1
A, =3+4i (5.2.23)
A, =3-4i

If we calculate the fundamental invariants using the matrix A and the definitions (5.2.19), we
obtain
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w=trA=7
1
1 = E{(t.r A) -tr(An)]
3 -8 0][3 -8 0
:%(7)2—” 2 3 0|2 3 0
0 0 1j[0 0 1
7 48 0
5.2.24
:% (7Y -tr||12 -7 0 (6224
0 0 1
1
= {49+13} =31
3 80
p=detA=2 3 0=25
0 0 1

If we use the formulas for the invariants in terms of the eigenvalues, i.e. equation (5.2.20), we
obtain

=4+ +A,=1+3+4i+3-4i=7

ty =4 + A+ A, :(1)(3+4i)+(3+4i)(3—4i)+(1)(3—4i)
=6+9+16=31
sy = det A= 42,4 = (1)(3+4i)(3-4i) =25

(5.2.25)

This example illustrates a feature observed with Example 5.2.2. Namely, a linear transformation
whose matrix has real components can have complex eigenvalues. Because the characteristic
polynomial in these examples has real coefficients, the complex roots occur in complex conjugate
pairs. If we had stated in advance that our inner product space was a real inner product space, we
would have to conclude that not all linear transformations on real inner product spaces have
eigenvectors. However, if we allow complex scalars, then we are assured that all linear
transformations have a least one eigenvector.®> We shall see examples where the occurrence of
complex eigenvalues is an essential feature of the application.

There is nothing in our discussion that requires the eigenvalues, the roots of the
characteristic equation (5.2.5) to be unique. Because of this, the factored characteristic equation
(5.2.6) will sometimes need to be written to display the multiplicity of its roots. If, for example,

the characteristic polynomial has L distinct roots and the j™ of these roots is repeated d; times,
then the characteristic polynomial, when factored, looks like

3 See footnote 1 above.
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f(2)=det(A=Al)=(4-2)" (A —2)" (L =2)" (A —2)" (5.2.26)

where d,,d,,d,,...,d,_ are positive integers which obey
D>.d; =N (5.2.27)

The positive integer d; is the algebraic multiplicity of the eigenvalue 4;. Itis a theoretical result,
which we shall not pursue, that

dimy(4;)<d (5.2.28)

i

i.e. the geometric multiplicity of a particular eigenvalue is less than or equal to its algebraic
multiplicity.*

Example 5.2.4: Consider the matrix A e .#*° defined by

4 -6 2
A=|2 -4 2 (5.2.29)
2 -6 4

Then, the characteristic equation is
detf 2 —4-2 2 |=-2(2-2) (5.2.30)

Therefore, the factorization shown in (5.2.26) corresponds to

=0, d, =1
A ! (5.2.31)
A,=2,d,=2

where d, +d, =3.

It is helpful to summarize what we have illustrated for the characteristic polynomial of a linear
transformation A:¥ — 7, where N =dim¥~,

A proof that the geometric multiplicity is always less than or equal to the algebraic multiplicity can be found, for
example, on page 157 of Stakgold, I., BOUNDARY VALUE PROBLEMS OF MATHEMATICAL PHYSICS,
Volume I, The MacMillan Company, 1-333, 1967
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a) There are N roots to the characteristic polynomial.

b) The roots are both real and complex numbers.

c) When the coefficients of the characteristic polynomial are real numbers, the complex roots
occur in complex conjugate pairs.

d) The roots need not be distinct.

Exercises

5.2.1 You are given the linear transformation A:¥ — ¥ defined by

Ai, =7i, - 2i, +i,
Ai, = -2i, +10i, - 2i, (5.2.32)
Ai, =i, —2i,+7i,

where {i,,i,,i,} is an orthonormal basis for ¥". Calculate the fundamental invariants of the linear
transformation A: ¥ —» ¥".

5.2.2 Given the polynomial (5.2.14) where the invariants are assumed to be real numbers, show
that

det(A—Al)=det(A-11) (5.2.33)

Use (5.2.33) to prove that the roots, for the situation stated, occur in complex conjugate pairs.

5.2.3 The Cayley-Hamilton Theorem says that a linear transformation satisfies its own
characteristic equation. Thus, if the characteristic equation of a linear transformation A% —» ¥
is given by equation (5.2.14). The Cayley-Hamilton asserts that

(A" 4 24 (<A T  (FA) + 1 =0 (5.2.34)

where the powers of A are definedby A’ =1, A" =AAA--A for n=12,...
n times

Confirm (5.2.34) for the matrix (5.2.29).
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Section 5.3. Numerical Examples

In this section, we shall illustrate the procedure for solving eigenvalue problems and use
these examples to illustrate some general features of the solution we will examine in detail in later
sections.

Example 5.3.1: (A distinct eigenvalue example.) The problem is to solve the eigenvalue problem
for the linear transformation A:%¥ — ¥ defined by

Ae, =e, +e, +4e,
Ae, =2e, —4e, (5.3.1)
Ae, =—e, +e, +5e,

where {e,,e,,e,} is abasis for ¥". By the usual procedure the matrix of A with respect to this
basis is

1 2 -1
A=M(Ae; e )=l1 0 1 (5.3.2)
4 -4 5

Step 1: Form the characteristic equation: The characteristic equation is defined by (5.2.5). Given
the matrix (5.3.2), we find

1-4 2 -1
f(2)=det(A-Al)=det(M(A-Al))=| 1 -1 1
4 -4 5.2 (5.3.3)
=-2°+61* -1 +6=-(1-1)(1-2)(1-3)
Therefore, the three eigenvalues are
A =1
Ay =2 (5.3.4)
Ay =3

Because the eigenvalues are distinct, the algebraic multiplicity is 1 for each eigenvalue. Also, the
ordering of the eigenvalues is arbitrary. As a quick check of the answer (5.3.4) it is good practice,
for complicated problems, to check the calculated eigenvalues against the formulas (5.2.20). If this
check is made, one will confirm that (5.2.20) is obeyed.
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Step 2: Determine the characteristic subspaces. In other words, determine the eigenvectors. This
calculation involves solving the defining equation (5.1.5), written

(A-Al)v=0 (5.3.5)
for the three different eigenvalues. Of course, we shall solve (5.3.5) as the matrix equation

1-2 2 17
1 -4 1 [[v*]=0 (5.3.6)
4 -4 5-1|0°

Case 1: A =1. This choice reduces (5.3.6) to

0 2 -1||Yyp
1 -1 1|0 |=0 (5.3.7)
4 -4 4 3

Y

The reduced row echelon form of this equation is

1o L]
] o)
01 —= uz)zo (5.3.8)
00 0|
Equation (5.3.8) yields
v, = 03(1) (_%el Jr%e2 +e3j (5.3.9)

Therefore, the characteristic subspace associated with the first eigenvalue is the one dimensional

1 1 . .
subspace spanned by _Eel +Ee2 +e,. We can write this result as

v (4)= K(A—All):span(—%eﬁ%ez+e3j (5.3.10)

For this eigenvalue, the geometric multiplicity is one as is the algebraic multiplicity.
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Case 2: A =2. This choice reduces (5.3.6) to

12 1|V
1 -2 1|0, |=0 (5.3.11)
4 -4 3|,

Y

The reduced row echelon form of this equation is

1o L]
21 c)
01 -= 02(2) =0 (5.3.12)
3
0 0 0 ||V
Equation (5.3.12) yields
Vv, :03(2) (_%el +%e2 +e3) (5.3.13)

Therefore, the characteristic subspace associated with the second eigenvalue is the one dimensional

1 1 o
subspace spanned by _Eel +Ze2 +e,. We can write this result as

¥V (4,)= K(A—/Izl)zspan(—%eﬁ%ez+e3j (5.3.14)

For this eigenvalue, the geometric multiplicity is one as is again equal to the algebraic multiplicity.

Case 3: 41 =3. This choice reduces (5.3.6) to

2 2 1Yy
1 -3 1|07, |=0 (5.3.15)
4 -4 2,3

U

The reduced row echelon form of this equation is
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1o 1]
41 Y@
01 i 02(3) =0 (5.3.16)
3
0 0 0|V
Equation (5.3.16) yields
Vv, = 03(3) (—%91 jt%e2 + eaj (5.3.17)

Therefore, the characteristic subspace associated with the third eigenvalue is the one dimensional

1 1 . .
subspace spanned by _Zel +Ze2 +¢e,. We can write this result as

¥V (4)= K(A—ﬂal)zspan(—%eﬁ%ez+e3j (5.3.18)

For this eigenvalue, the geometric multiplicity is one as is also the algebraic multiplicity.

This example, which has distinct eigenvalues, yields three linearly independent
eigenvectors. We shall prove a theorem later that shows that distinct eigenvalues produce linearly
independent eigenvectors. Thus, our example illustrates a general result. Another way to display

that the eigenvectors are linearly independent is to use the idea of a direct sum introduced in
Section 4.11 and write

V=7 (4)®¥ (1) (%) (5.3.19)

As has been explained, the eigenvalue problem does not determine the lengths of the
eigenvectors. If we make an arbitrary choice of the lengths by defining the three eigenvectors to be

1 1
Vv, = —Eel +Eez +e3

Vv, :—%eﬁ%ez +€, (5.3.20)

1 1
V, = —Zel +Zez +€,

Then the matrix of A: ¥ — ¥ with respect to this basis is



Sec. 5.3 . Numerical Examples 409

1 00
M(Av;,v,)=|0 2 0 (5.3.21)
0 0 3
and the transition matrix is
11 1]
2 2 4
- 1 1 (5.3.22)
2 4 4
1 1 1

Note that with our normalization leading to (5.3.20), the transition matrix is the square matrix made
from the column matrices of the components of the eigenvectors. The formula is

Vg VY Y

T= 02(1) 02(2) 1)2(3) (5.3.23)
3 3 3
Vg Vi Vg

The matrices (5.3.2) and (5.3.21) are connected by (5.1.10), repeated,
M(A Vv )=T"'M(Ae,.e)T (5.3.24)

where the transition matrix is given by (5.3.22).

Example 5.3.2: ( A repeated eigenvalues example.) The problem is to solve the eigenvalue
problem for the linear transformation A:7 — ¥  defined by

Ai, =i, —2i,+2i,
Ai, =-2i, +i, + 2i, (5.3.25)
Ai, =2i, +2i, +1,

where {i,,i,,i,} isan orthonormal basis for ¥". By the usual procedure, the matrix of A with
respect to this basis is

1 -2 2
A=M(Aji i )=|-2 1 2 (5.3.26)
2 2 1
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The fact that the matrix (5.3.26) is symmetric will turn out to be an important feature of this
example. Based upon our discussion in Section 4.9, in particular equation (4.9.39), because we are
using an orthonormal basis, symmetry of the matrix implies symmetry of the linear transformation
(5.3.25).

Step 1: Form the characteristic equation: The characteristic equation is defined by (5.2.5). Given
the matrix (5.3.26), we find

1-1 -2 2
f(1)=det(A-Al)=det(M (A-Al))=| -2 1-2 2
2 2 1-4 (5.3.27)
=-2%+322+94-27 =—(1+3)(2-3)
Therefore, the three eigenvalues are
=-3
A (5.3.28)
A, =3

The algebraic multiplicity for A, is 1 and that for 4, is 2.

Step2: Determine the characteristic subspaces. This calculation involves solving the defining
equation (5.1.5), written

(A-Al)v=0 (5.3.29)
for the two different eigenvalues. Of course, we shall solve (5.3.5) as the matrix equation

1-14 =2 2 | ot
2 1-1 2 ||[v*]=0 (5.3.30)
2 2 1-2|0°

Case 1: 4 =-3. This choice reduces (5.3.6) to

4 -2 2 Ul(l)
-2 4 2 02(1) =0 (5.3.31)
2 2 4,8

@

The reduced row echelon form of this equation is
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1 0 1|V
011 02(1) =0 (5.3.32)
0 0O ,)3(1)
Therefore, (5.3.32) yields
Vv, = 03(1) (=i, —i,+i,) (5.3.33)

Therefore, the characteristic subspace associated with the first eigenvalue is the one dimensional
subspace spanned by —i, —i, +1i,. We can write this result as

¥ (4)=K(A-A1)=span (i, i, +i,) (5.3.34)
For this eigenvalue, the geometric multiplicity is one as is the algebraic multiplicity.

Case 2: 4 =3. This choice reduces (5.3.6) to

-2 -2 2 ||V
-2 -2 1 02(2) =0 (5.3.35)
2 2 2|8

The reduced row echelon form of this equation is

11 -1V
0 0 0|0, |=0 (5.3.36)
00 0]y,
Therefore, (5.3.36) yields
V, =07 (=i +i, ) + 07 ) (i +ig) (5.3.37)

Therefore, the characteristic subspace associated with the second eigenvalue is the two dimensional
subspace spanned by —i, +1i, and i, +i,. We can write this result as

¥ (A)=K(A=2,1)=span(—i, +i,,i, +i,) (5.3.39)
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For this eigenvalue, the geometric multiplicity is two as is the algebraic multiplicity. Because
4 (/12) is two dimensional, an eigenvector associated with the repeated eigenvalue is necessarily of

the form
v, =a (i, +i,)+ B(i, +i,) (5.3.39)

where « and £ are arbitrary. We know that the defining equation for the eigenvalue problem,

equation (5.1.4), will never determine the length of the eigenvector. In the repeated root case,
equation (5.3.39) has an even greater indeterminacy. Any vector in the two dimensional subspace

spanned by {—i1 +i,,1,+ i3} is an eigenvector. Because the subspace is two dimensional, only two
of these eigenvectors can be linearly independent. What is done for problems of this type is to

select two of these eigenvectors which, when joined with the one for the distinct eigenvalue, form a
basis for ¥~ . Without loss of generality, one can simply take the eigenvectors associated with the
repeated eigenvalue to be

V,=—i,+i, and v,=i +i, (5.3.40)
With the choice (5.3.40), and the choice

v, =i, —i, +, (5.3.41)

the set {v,,v,,Vv,} is a basis for ¥". With respect to this basis, the matrix of the linear
transformation defined by (5.3.25) is

300
M(Av;,v,)=| 0 3 0 (5.3.42)
0 0 3

This example, which has two distinct eigenvalues, yields three linearly independent eigenvectors.
However, unlike Example 5.3.1, the directions of two of the eigenvectors are not unique. A way to
display that two of the eigenvectors are not unique is to write ¥ as the direct sum of two
subspaces, one of dimension 1 and one of dimension 2. The result is

V=9 (4)®7 (%) (5.3.43)

Another feature of Example 5.2.2 is that the subspaces ¥"(4,) and ¥'(4,) are orthogonal.

In other words ¥"(4,) = "//(/11)l . This interesting result follows by calculating the inner products

(v,,v,) and (v,,v,). Itisa theorem that, for a self adjoint linear transformation, the characteristic

subspaces of distinct eigenvalues are orthogonal. It is also a theorem that the eigenvalues of self
adjoint linear transformations are necessarily real. We shall prove these results later. Given that
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the subspaces are orthogonal and that within "//(/12) the eigenvectors are not unique, it is often the
practice to select a basis for "//(27) that is mutually orthogonal. In other words, instead of the
choices (5.3.40), select v, and v, such that (v,,v,)=0.

Finally, it is a feature of Example 5.3.2 that the algebraic multiplicity of both roots equals
their geometric multiplicity. This fact lies at the root of why it was possible to find a basis of
eigenvectors. The next example is one where it is not possible to find such a basis.

Example 5.3.3: The problem is to solve the eigenvalue problem for the linear transformation
A ¥ — ¥ defined by

Ae, =g,
Ae, =¢, +e, (5.3.44)
Ae, =¢ +e, +e,

where {el,ez,e3} is a basis for ¥". By the usual procedure the matrix of A with respect to this
basis is

A=M(Ae ¢, )=

1jl

(5.3.45)

o o -
o R K
N

Step 1: Form the characteristic equation: The characteristic equation is defined by (5.2.5). Given
the matrix (5.3.2), we find

f(2)=det(A-Al)=det(M(A-Al))=| 0 1-2 5,346
=—(2-1)’
Therefore, the eigenvalue is
A =1 (5.3.47)
and it has an algebraic multiplicity of 3.

Step2: Determine the characteristic subspaces. This calculation involves solving the defining
equation (5.1.5), written

(A-A1)v=0 (5.3.48)
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for the eigenvalue 4 =1. The matrix equation we must solve is

1%
0 1-4 1 |[v*|=0 (5.3.49)
1y

0 1 1Yy
0 01 02(1) =0 (5.3.50)
0 0 0},
Y
The reduced row echelon form of this equation is
01 0]V
0 01 uz(l) =0 (5.3.51)
0 0 0},
Y

Therefore, the characteristic subspace associated with the eigenvalue 1 =1 is the one dimensional
subspace spanned by e,. We can write this result as

¥ (4)=K(A-A41)=span(e,) (5.3.52)

Unlike the two previous examples, Example 5.3.3 is a case where the geometric multiplicity of a
characteristic subspace (1 in this case) is not the same as the algebraic multiplicity (3 in this case).
Therefore, we are unable to construct a basis of eigenvectors. Thus, there is not a basis for the
linear transformation that makes its matrix diagonal. As we shall see when we examine in greater
detail the theoretical foundations of the eigenvalue problem, the condition that the geometric
multiplicity and the algebraic multiplicity agree is a fundamental property of linear transformations
that have a basis of eigenvectors. In circumstances where basis of eigenvectors does not exist, one
can formulate a procedure for constructing what is known as the Jordan Normal Form of the
matrix. This procedure will not be covered here.

Example 5.3.4: (Complex eigenvalues example.) The problem is to solve the eigenvalue problem
for the linear transformation A:%¥ — ¥ defined by
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2 2
Ael :781 +7es
Ae, =e, (5.3.53)
Ae3 = —ﬁe \/E
2 2

where {e,,e,,e,} is a basis for 7". By the usual procedure the matrix of A with respect to this
basis is

V2o V2
2 2
A=M(Ae,e )=l 0 1 0 (5.3.54)
V2o V2
L 2 2

Step 1: Form the characteristic equation: The characteristic equation is defined by (5.2.5). Given
the matrix (5.3.2), we find

f(2)=det(A-Al)=det(M(A-Al))=| 0 1-2 O
% 0 %—1 (5.3.55)

41;%(%1]2 %}:(1@)(%(1”)g](f(u)g]

Therefore, the three eigenvalues are

A :%(1“)
A, =1 (5.3.56)
f =2

Because the eigenvalues are distinct, the algebraic multiplicity is 1 for each eigenvalue

Step2: Determine the characteristic subspaces. This calculation again involves solving the
defining equation (5.1.5), written
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(A-A1)v=0

for the three different eigenvalues. Of course, we shall solve (5.3.5) as the matrix equation

V2, . Y2
2 2 v
0 1-1 0 v* =0
3
1%
2oy Y2,
L 2 2 J
Case 1: A4, =1. This choice reduces (5.3.58) to
g 2]
2 2 (2)
0 0 0 uz(z) =0
3
ﬁ 0 Q—l U2
L 2 2
The reduced row echelon form of this equation is
1 0 0%y
2 —_—
0 0 1jv°%,|=0
0 0 0},
Y@

(5.3.57)

(5.3.58)

(5.3.59)

(5.3.60)

Therefore, the characteristic subspace associated with the second eigenvalue is the one dimensional

subspace spanned by e,. We can write this result as

¥ (4,)=K(A-4l)=span(e,)

For this eigenvalue, the geometric multiplicity is one as is the algebraic multiplicity.

Case 2: 4, = %(H i). This choice reduces (5.3.58) to

(5.3.61)
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B ]
2 2 1
1y
@
V2 .

0 1—7(1+|) 0 Uz(l) =0
V2 J2 |V
— 0 ——— i

- 2 2 -
The reduced row echelon form of this equation is
1 0 —i Ul(l)
2 | _
0 1 0o |=0
0 0 0,3
Y
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(5.3.62)

(5.3.63)

Therefore, the characteristic subspace associated with the second eigenvalue is the one dimensional

subspace spanned by ie, +e,. We can write this result as

¥ (4)=K(A-Al)=span(ie, +e,)

(5.3.64)

For this eigenvalue, the geometric multiplicity is again one as is the algebraic multiplicity.

Case 3: 4, :%(1— i) . This choice reduces (5.3.58) to
V2 V2]
2 2 1
1%
@)
J2
0 1—7(1—0 0 02(3) =0
J2 NI
— 0 — i
(- 2 2 -
The reduced row echelon form of this equation is
1 0 i Ul(s)
2 |_
0 1 0fjv°,|=0
0 0 0},

(5.3.65)

(5.3.66)
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Therefore, the characteristic subspace associated with the third eigenvalue is the one dimensional
subspace spanned by —ie, +e,. We can write this result as

7 (%)= K(A-2l)=span(-ie, +e,) (5.3.67)
For this eigenvalue, the geometric multiplicity is again one as is the algebraic multiplicity.

As with Example 5.3.1, each characteristic subspace is one dimensional and the three
dimensional vector space ¥~ has the direct sum decomposition

V=7 (4)®¥ (1) (%) (5.3.68)

If we select the three eigenvectors to be the spanning vectors introduced above, i.e.

v, =le +e,
V,=¢ (5.3.69)
v, =—ie, +¢,

The matrix of A with respect to the matrix of eigenvectors is

%(1”) 0 0

M(A v, v, )= 0 1 0 (5.3.70)

H J 1

Vg Vi VY i 0 i
T= 02(1) 02(2) 02(3) =10 1 0 (5.3.71)
vy Uy U 1ol
The inverse of this matrix is
-=1 0
(5.3.72)

_|
AN
Il
o
'_\
N, O N




Sec. 5.3 . Numerical Examples 419

Given (5.3.54), (5.3.70), (5.3.71) and (5.3.72), equation (5.1.10) takes the explicit form

s o o L )2 g 2
2 2 21 2 2 (|1 0 -
0 1 0 =l 0 1 0l0 1 o0 ||lO1 O (5.3.73)
1 1 0 1
0 0 £(1_|) —i 0 = ﬁ 0 ﬁ ¢ J
i 2 ] L 241 2 2 ] T
M(A,vj,vk) T M(A,ej,vk)

Example 5.3.5: (A complicated numerical example.) The problem is to solve the eigenvalue
problem for the matrix A:.#%* — .#%* defined by

0o 0 0 1 0 0
0 0 0 1 0
0o 0 0 0 0 1
A= (5.3.74)
2 1 0 -76 4 .06
1 2 1 4 -8 4
0 5 -15 03 .2 —26]

This particular matrix has its origins in the study of a three degree of freedom vibrations problem.
The characteristic polynomial turns out to be

det(A-Al)= A° +1.84004° +6.29221* +5.41864° +9.2928.1% +3.08004 +3.5000

(5.3.75)
The roots of this sixth order polynomial turn out to be
A } =-0.6072+1.6652i
4
13} =—0.2474+1.2611i (5.3.76)
A

/s

} =-0.0654 +0.8187i

6

Because the roots are distinct, the algebraic multiplicity of each root is one and, because of (5.2.28)
, the geometric multiplicity of each eigenvalue is one. The eigenvectors associated with these
eigenvalues turn out to be
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[-0.1130-0.2939i
0.1252 +0.3433i
~0.0599 - 0.0717i
0.5581—0.0097i
~0.6478
| 0.1557-0.0563i |

[ 0.0834+0.4253i |
—0.0517 +0.2001i
—0.1491-0.3526i

—0.5570
—0.2396 — 0.1147i

| 0.4815-0.1009i |

[ 0.4112-0.0111i |
0.5535
0.3395+0.0793i
—0.0178+0.3374i
—0.0362 + 0.4532i

| ~0.0872+0.2728i |
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[~0.1130+0.2939i |
0.1252 - 0.3433i
~0.0599 +0.0717i
0.5581+0.0097i
-0.6478
| 0.1557+0.0563i |

[ 0.0834-0.4253i |
—0.0517 - 0.2001i
—0.1491+0.3526i

—0.5570
—0.2396 + 0.1147i

| 0.4815+0.1009i |

[ 0.4112+0.0111i |
0.5535
0.3395-0.0793i
—0.0178-0.3374i
—0.0362 - 0.4532i

| ~0.0872-0.2728i

where the six eigenvectors have been normalized to each have a unit length.

(5.3.77)

(5.3.78)

(5.3.79)

If we return to the characteristic polynomial (5.3.75) and compare that formula with the
general result (5.2.14), we can identify the six fundamental invariants for this problem. The results

are

14, =—1.8400

H, =6

2922

11, =—5.4186

Hy =9

2928

1t =—3.0800

Mg =3.

5000

(5.3.80)

Because (5.2.16) holds for linear transformations of arbitrary finite dimension, it can be used to
confirm (5.3.80)1. This same number can be calculated from the formula
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=A+ A+ A+ A+ A5+ A (5.3.81)

The last invariant, x, can be checked against the general formula

1t = det A= A4, AR, A (5.3.82)

Exercises

5.3.1 Determine the eigenvalues and the characteristic subspaces of the linear transformation
A:v — v defined by

Ai, = 6i, - 2i,
. 2 (5.3.83)
Ai, =-2i, +6i,
where {il,iz,is} is an orthonormal basis for ¥ .

5.3.2 Determine the eigenvalues and the characteristic subspaces of the linear transformation
A ¥ — ¥ defined by

A= Bi L,
2 \; (5.3.84)
Ai, = 1i + 33

where {i,i,} is an orthonormal basis for ¥".

5.3.3 Determine the eigenvalues and the characteristic subspaces of the linear transformation
A:v — v defined by

Av:w(gh-%g+%g]+&(—%h+gg+%gj+w(%g+%g+§gj (5.3.85)

for all vectors v =i, + 0%, +0%,, where ¥ is an inner product space and {i,, i,,i,} is an
orthonormal basis of 7.

5.3.4 Determine the eigenvalues and the characteristic subspaces of the linear transformation
A ¥ — ¥ defined by

AV = 0! (2, —i,) +0? (iy) +v® (~6i, - 3i, - 2i,) (5.3.86)
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for all vectors v =i, + 0%, +0%,, where ¥ is an inner product space and {i,, i,,i,} is an
orthonormal basis of 7.

5.3.5 Determine the eigenvalues and the characteristic subspaces of the linear transformation
A ¥ — ¥ defined by

Av =0 (41 +i,)+ 0% (=5i, +iy)+0° (i, —i, 1) (5.3.87)

for all vectors v =i, + 0%, +0%,, where ¥ is an inner product space and {i,, i,,i,} is an
orthonormal basis of 7.

5.3.6 Definea N x N matrix C by

000 0 ()" g,
100 0 (-1)" us
010 0 (-1)" 4,
C=|0 0 1 : (5.3.88)
01
0
00 01 ()m |
Show that
det(C—Al)=f (1) =det(A-Al) (5.3.89)

The matrix C is called the companion matrix to the matrix A. Equation (5.3.89) shows that the
companion matrix and the matrix A have the same eigenvalues.
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Section 5.4. Some General Theorems for the Eigenvalue Problem

The five examples in Section 5.3 illustrated certain features of the eigenvalue problem that
are more general than the examples might indicate. In this section, we shall collect some of these
general results. The first is the important one discussed after Example 5.3.1. Namely, that distinct
eigenvalues imply linearly independent eigenvectors. The formal statement is the following
theorem.

Theorem 5.4.1: If 4,,..., 4, are distinct eigenvalues of A:¥ — % and if v,,...,v _ arethe
corresponding eigenvectors, then {vl,...,vL} is a linearly independent set.

Proof: Let v, be an eigenvector associated with the eigenvalue 4, and, so forth. As with any
question of linear independence, we need to examine the implication of the equation

aV, +oV, +aV, ++a Vv =0 (5.4.1)

If we can establish that this equation implies o, =, =, =---=a, =0, then the theorem will be
established. Given that Av, = A4v,,Av, =4,V,,Av, = 4V,,..,Av =4 Vv , we can multiply (5.4.1)
by A and obtain

AoV, + L0V, + LoV, +--+ A a v =0 (5.4.2)

We can repeat this process L —2 more times until we obtain the following L equations ( including
the two above):

oV, +a,V,+aV,+--+a Vv =0
AoV, + LoV, + AoV, 4+ A a v =0
ﬂfozlvl + /122052V2 + ﬂgza3V3 +eeet /1L205LV,_ =0

AN, + AV, + AlaN, -+ A e v, =0 (5.4.3)

AV + A, e, + A eV e+ A e v =0

If we select a basis for ¥, equations (5.4.3) can be rewritten as the matrix equation
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1 1 1 ]
b A A
AZZ 2 /1 2
L
ﬂ/LL_l

ﬂiL—l /12L—1 ﬂgL_l

1
Uy

2
o @

3
Uy

L
LAY @

1
AU (5

2
AU )

3
a,v )

L
AV ()
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1
AU 5,

2
A0 3

2
oL @3)

L
AV (5

1
v,
2
a v,

3
o L

L
av w |

=0 (5.4.4)

The coefficient matrix in (5.4.4) is the Vandermonde matrix introduced in equation (1.10.33). This
matrix is nonsingular because, as shown with equation (1.10.34),

det

1 1 1
Ao L4
VA PR

I Ao M

1

27

L-1
ZL

(5.4.5)

and we have postulated that the eigenvalues are distinct. Given that the coefficient matrix in
nonsingular, we can multiply (5.4.4) by its inverse and obtain

1
Uy

2
a0y

3
Uy

L
_alu o)

1
AU (5,

2
AU,

3
AU (5

L
AV

1
AV 3,

2
A0 3

2
A0 3

L
AV (5

1
v,
2
a v,

3
U’

L
av w |

(5.4.6)

In order for this L x L matrix to be zero, each of its L* elements must be zero. The L equations in
the first column are

(5.4.7)
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Because the eigenvector is nonzero, the column matrix of its components is nonzero. Thus, we
conclude that ¢, =0. Identical arguments applied to each columnyield o, =, =---=a, =0 and

the theorem is proven.

This theorem explains why in Example 5.3.1, the eigenvectors were linearly independent.
It also explains why the characteristic spaces were all one dimensional. If one of the characteristic
subspaces has a dimension greater than one, we would be able to construct a set of linearly
independent vectors with more than N members inan N dimensional vector space. Such a
construction would be a contradiction. Recall that it was explained, without proof, in Section 5.2
that geometric multiplicity is always less than or equal to the algebraic multiplicity. In Example
5.2.1, the algebraic multiplicity of each eigenvalue is one and, consequently, the geometric
multiplicity had to be equal to one.

As a corollary to the preceding theorem, we see that if the geometric multiplicity is equal to
the algebraic multiplicity for each eigenvalue of A, then the vector space ¥~ admits the direct sum
representation

V=V () OY (1)®-®¥(4,) (5.4.8)

where 4,,...,4, are the distinct eigenvalues of A. The reason for this representation is obvious,

since the right-hand side of the above equation is a subspace having the same dimension as #;
thus that subspace is equal to . Whenever the representation holds, we can always choose a
basis of ¥~ formed by bases of the subspaces ¥(4,),...,#"(4,) . Then this basis consists entirely of

eigenvectors of A becomes a diagonal matrix, namely,

A

M(A,V,,V,) = ' (5.4.9)
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where each A, is repeated d, times, d, being the algebraic as well as the geometric multiplicity of
A . Of course, the representation of ¥~ by direct sum of eigenspaces of A is possible if A has

N =dimy  distinct eigenvalues. In this case the matrix of A taken with respect to a basis of
eigenvectors has the diagonal form

A
Y8 0

M(A,V,,V,) = : (5.4.10)

//i'N

If the eigenvalues of v are not all distinct, then in general the geometric multiplicity of an
eigenvalue may be less than the algebraic multiplicity. Whenever the two multiplicities are
different for at least one eigenvalue of A, it is no longer possible to find any basis in which the
matrix of A is diagonal. However, if ¥ is an inner product space and if A is Hermitian, then a
diagonal matrix of A can always be found; we shall now investigate this problem.

Recall from Section 4.9 that if u and v are arbitrary vectors in ¥, the adjoint A™ of
A:¥ — ¥ isalinear transformation A" : ¥ — ¥~ defined by

(u,Av) = <A*u,v> (5.4.11)
From Theorem 4.9.1, if A Hermitian, i.e., if A=A", then (5.4.11) reduces to

(u,Av) =(Au,v) (5.4.12)
forall u,vey .

Theorem 5.4.2. The eigenvalues of a Hermitian linear transformation A:¥ — ¥ are real.

Proof. Let A:¥ — ¥ be Hermitian. Since Av = Av for every eigenvalue 1, we have

(Av,v)

()

Therefore we must show that (Av, v} is real or, equivalently, we must show (Av,v)=(Av,v).

This result follows from the definition of a Hermitian linear transformation (5.4.12) and the
rearrangement

A= (5.4.13)
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(Av,v)=(v,Av) =(Av,V) (5.4.14)

where the rule (u,v)={v,u) in the definition of an inner product has been used. Equation (5.4.14)
yields the desired result.

Theorem 5.4.3. If A is Hermitian, the characteristic subspaces corresponding to distinct
eigenvalues 4, and A, are orthogonal.

Proof. Let Av, =4V, and Av,=4,v,. Then

(Vi Vy ) =(AV,V, ) =(V, AV, ) = 4, (V,,V,) (5.4.15)
Therefore,
(A4 —=2,){V;,V,)=0 (5.4.16)
Since 4, # 4,, (V,-V,) =0, which proves the theorem.

Another important property of Hermitian linear transformations is that the algebraic multiplicity of
each eigenvalue equals the geometric multiplicity. We shall use this result here, however, we shall
not give its proof.®

The main theorem regarding Hermitian linear transformations A:% — ¥ is the following.

Theorem 5.4.4. If A:¥ — ¥ is aHermitian linear transformation with distinct eigenvalues
Ay Aysn A, then ¥ has the representation

¥V =Y (A4)SYV(L,)D--- @Y (1) (5.4.17)
where the eigenspaces ¥(4,) are mutually orthogonal.

The proof of this theorem follows from (5.4.8) which holds when the geometric multiplicity and
the algebraic multiplicity are the same and from Theorem 5.4.3.

Another Corollary of Theorem 5.4.3 is that if A is Hermitian, there exists an orthogonal basis for
¥~ consisting entirely of eigenvectors of A. This feature was observed in our solution to Example
5.3.2. This corollary is clear because each characteristic subspace is orthogonal to the others and
within each characteristic subspace an orthogonal basis can be constructed by the Gram-Schmidt
procedure discussed in Section 4.3. With respect to this basis of eigenvectors, the matrix of Ais

> The proof can be found in Introduction to Vectors and Tensors, Vol. 1, by Ray M. Bowen and C.-C. Wang. This
textbook can be found at https://rbowen.engr.tamu.edu/.
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diagonal. Thus the problem of finding a basis for ¥~ such that M (A, v;,v,) is diagonal is solved
for Hermitian linear transformations.

The Hermitian property causes the eigenvalues to be real and the characteristic subspaces
for distinct eigenvalues to be orthogonal. Often in the applications, Hermitian linear
transformations have additional properties that are important to define. In particular, a Hermitian
linear transformation A:% — ¥ is defined to be

positive definite >0
ositive semidefinite >0
P _ ot if (v,AV) (5.4.18)
negative semidefinite <0
negative definite <0

all nonzero v, Equation (5.4.18) places conditions on the eigenvalues of a Hermitian linear
transformations A:¥ — ¥ that are important to understand. We shall next derive these
conditions. Because (5.4.18) holds for all nonzero vectors in ¥, we can select v to be an
eigenvector of A and use (5.4.13) to conclude

positive definite >0
positive semidefinite | . >0
. o implies 4 (5.4.19)
negative semidefinite <0
negative definite <0

In addition, it follows from (5.4.17) and the definition of direct sum that any vector v e ¥  can be
uniquely written

V= v, (5.4.20)

where each v, e?]. Given Avj = A.v., it follows that

I

(v,AV>=<ZL:VJ’ L AV">: ,-,kL

=1 k=1

25{vivy) = Zﬂu,— vi[ (5.4.21)

1

Equation (5.4.21) allows the definition (5.4.18) to be replaced by

positive definite

ositive semidefinite L >0
POSIth i Y[ (5.4.22)
negative semidefinite <o

negative definite <0
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>
Equation (5.4.22) shows that if all of the eigenvalues obey 4 0 ,then A:¥ > 7 is

positive definite

posmye semlfjeﬂ_mt[e . Therefore, we have established the following theorem
negative semidefinite

negative definite

positive definite
positive semidefinite
negative semidefinite
negative definite

Theorem 5.4.5 A Hermitian linear transformation A: ¥ — ¥ is if and

only if every eigenvalue of A is

As corollaries to Theorem 5.4.5 it follows that positive-definite and negative-definite Hermitian
linear transformations are one to one and, as a consequence, nonsingular.

Positive definite linear transformations occur frequently in the applications. It is often that
case that one need the ability to confirm the definiteness property but without going to the trouble
of actually calculating the eigenvalues. For this reason, it is important to have criteria that establish
when a Hermitian linear transformation is positive definite without actually solving the associated
eigenvalue problem. There are tests that can be applied to the linear transformation that achieve
this purpose. One of these is as follows:

Theorem 5.4.6: A Hermitian liner transformation A:¥ — ¥ is positive definite if and only if its
fundamental invariants 4, 4,,..., 11, are greater than zero.

Proof: The proof of this result follows from Theorem 5.4.5, the characteristic polynomial (5.2.14),
repeated,

det(A—21)=(=2)" + 4 (=2)" "+ 4 1y 4 (<2) + g2y (5.4.23)
and the formulas that connect the eigenvalues to the fundamental invariants like (5.2.20) (for the

N =3 case). These formulas prove one part of the theorem. Namely, if the eigenvalues are greater
than to zero, the fundamental invariants are greater than to zero.

The reverse implication follows from (5.4.23). The eigenvalues are the roots of the
characteristic equation, i.e., the roots of
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N —

()" + a4 (=) gy 4 (<A) 1y =0 (5.4.24)

If the fundamental invariants are greater than zero, roots less than or equal to zero are not allowed
by (5.4.24) because in such a case the left side cannot add to zero. If the roots cannot be negative
or zero, they must be positive.

Theorem 5.4.6 is also valid is you replace positive definite with positive semidefinite and replace
the condition on the fundamental invariants with the requirement that they be nonnegative.

If we adopt an orthonormal basis {i,,i,,...,iy }, we can display the matrix of the Hermitian
linear transformation A:¥ — ¥ by the formula

E A12 A13 T AiN
A Ay A A

M(A,ij,ik): Al3 A23 A33 ASN (5425)
_K a E e ANN_

The second characterization of positive definiteness is a criterion known as Sylvester’s criterion.
This criterion says that a Hermitian liner transformation A:¥ — ¥ is positive definite if and only
if its matrix with respect to an orthonormal basis is such that its N leading principal minors are
positive. The leading principal minors of the matrix (5.4.25) are the N determinants formed from
the upper left 1x1 corner, the upper left 2x2 corner, the upper left 3x3 corner and so forth.
More explicitly, the Hermitian linear transformation A:¥ — ¥ is positive definite if and only if
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A, >0
All
A,
A,
det|A,
A

det

As
A,
det As

Ay

Al
A,

Ar Ay
Ay

Ay A
A A
Ay A
Ay A
A A

A,l>0

An
Ao
Ao

Aw
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(5.4.26)

The proof of Sylvester’s criteria will not be given here.® However, its essential features will be

outlined in the exercises below.

Exercises

5.4.1 In Exercise 4.11.1 it was pointed out that when we are given a linear transformation

A ¥ — %, the linear transformations AA”™ : % — % and the linear transformation A'A: ¥ — ¥
are Hermitian. Show that they are also positive semidefinite. As positive semidefinite linear
transformations, their invariants are greater than or equal to zero. This fact provides an alternate

proof that the definition (4.9.34) does obey the fourth property of an inner product.

5.4.2 Show that for a positive definite Hermitian linear transformation A:% — ¥ displayed as

the matrix

& An elementary proof for symmetric matrices can be found on pages 72-74 of Introduction to Matrix Analysis by
Richard Bellman, McGraw-Hill, New York, 1960. A more advanced proof plus additional references can be found at
http://en.wikipedia.org/wiki/Sylvester's_criterion.



http://en.wikipedia.org/wiki/Sylvester's_criterion

432 Chap. 5 . EIGENVALUE PROBLEMS

E A12 A13 ol AlN
E E Ay Ay
M(A,ij,ik): A13 A23 A33 ASN (5427)
_H E K T ANN_
_E A12 A13 T AiN_
a aq[A A AR R e
the leading submatrices [AM]{K1 Aj’ A, Ay Al o Ae A A | are
T A A A,
_H a g T ANN_

all positive definite. As positive definite matrices, their fundamental invariants must be positive.
Each matrix has the number of fundamental invariants equal to its dimension. Included in the list
of invariants for each matrix is its determinant. Thus, we have established that if the matrix
(5.4.27) is positive definite, Sylvester’s criterion holds. The converse, namely if Sylvester’s
criterion holds then the matrix (5.4.27) is positive definite is not established by the arguments given
in this problem. A proof of the converse can be constructed a number of ways. A convenient one
involves what is known as a Cholesky decomposition.” Some of the details of this decomposition
are developed in the next exercise.

5.4.3 A Cholesky decomposition is a decomposition of a positive definite Hermitian N x N
matrix Ae.#"" into the product®

*

A=LL, (5.4.28)

where L, e .#""" is a lower triangular matrix. It is a theorem that every Hermitian positive

definite matrix A< .#"*" has a unique Cholesky decomposition. The purpose of this exercise is to
establish this result.

a) You are given a positive definite Hermitian matrix A< .#"" . If you apply the results in
Section 1.7, the matrix A has the LU decomposition

" Information about Andre-Louis Cholesky can be found at http://en.wikipedia.org/wiki/Andr%C3%A9-

Louis_Cholesky.
8 Like the LU decomposition, the Cholesky decomposition is useful when finding the solution of Au =D inthe

case where A is positive definite and Hermitian. The system Au = b is replaced by L ( Lzu) =Db. This equation is

solved by forward substitution and that result is solved by back substitution for U.


http://en.wikipedia.org/wiki/Andr%C3%A9-Louis_Cholesky
http://en.wikipedia.org/wiki/Andr%C3%A9-Louis_Cholesky
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A=LU (5.4.29)
where U is an upper triangle N x N matrix and L is a lower triangle nonsingular N x N matrix
with 1s down the diagonal. The fact that A is positive definite Hermitian shows that the

elementary LU decomposition exists. It also shows that the matrix U is nonsingular. Given the
fact that A is Hermitian, show that

LU =uL™ (5.4.30)

b) Show that the matrix LU is a lower triangular matrix and that UL™"" is an upper triangular
matrix. These two facts and (5.4.30) combine to show that there exists a diagonal matrix
D e.#"" such that

U=DL (5.4.31)
Show that

A=LDL (5.4.32)
and that D is a positive definite Hermitian matrix.

c) Explain why the diagonal matrix D can always be written as the square of a diagonal
matrix D, e 4" and that (5.4.32) can then be written®

*

A=LDL =LD?L =(LD,)(LD,) =LL, (5.4.33)

which is the Cholesky decomposition. The uniqueness of this decomposition follows from the
uniqueness of the LU decomposition in this case.

5.4.4 You are given the positive definite Hermitian matrix A e .#*®

4 —14i -10i
A=|14i 53 & (5.4.34)
17
i 81 13297
i 17 289 |

You are also given that A has the LU decomposition

% The Cholesky decomposition can be implemented in other ways. For example, because A is Hermitian, there is a
unitry matrix T and a diagonal matrix D of eigenvalues of A suchthat A=TDT . Next apply the QR

decomposition, discussed in Section 4.1, to the matrix D%T* =QR. Thenitis readily shown that A=R R which
is a Cholesky decomposition.
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0 0|4 -14i -10i
acll 1 oflo 4 18048 (5.4.35)
2 17
5 35-2i 1 0 0 4
L 2 17 i
Show that, from (5.4.30), that
4 00
D=LU"=UL"=|0 4 0 (5.4.36)
0 0 4
Also, determine the Cholesky decomposition of A and show that
5 0 0 2 —Ti 70—5|4.
A=LL' =|7i 2 ollo 2 ;' (5.4.37)
5i 1024 5llo 0 2
L 17

Note the general feature displayed by (5.4.35) and (5.4.36) that the diagonal matrix D and the
upper triangular matrix U have the same diagonal elements. This fact is readily confirmed from
(5.4.30) and the properties of the LU decomposition.

5.4.5 Exercise 5.4.4 established that if the Hermitian matrix (5.4.27) is positive definite, its
principal minors are positive, i.e. obey (5.4.26). The converse, namely, that if (5.4.26) is true, the
Hermitian matrix (5.4.27) is positive definite. The key to this result is actually the result (5.4.32),
repeated,

A=LDL (5.4.38)

Show that the elements of the diagonal matrix D e .#"*" are related to the principal minors of
Ae 4" by the formulas
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Dy=A,
Dzzzidetﬁ Ao
A A Ay
A A Aj
det|A, A, Ay
D oA A A
detﬁ A
A, Ay
A A A Ay
Ao P Ay Ao
il A P A A
o Ay Ay Ay A
"TA A A A
A A Ay Aors
ol B A A A
AlN—l AZN—l ABN—l AN—l,N—l
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These results, when established, show that if the principal minors are positive the matrix
D e .#""" is positive definite and, because of (5.4.38), the Hermitian matrix A< .#"*" is positive

definite.

(5.4.39)

Hint: In order to establish (5.4.39), recall that the diagonal elements of D and those of U , in the
LU decomposition, are the same. Given this fact, the result (1.7.71) gives the elements of U in

terms of those of A.

5.4.6 Show that the eigenvalues of a unitary linear transformation have unit magnitude.

5.4.7 Show that a linear transformation A:¥ — ¥ is nonsingular if and only if zero is not an

eigenvalue.
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5.4.8 You are given a nonsingular linear transformation A:¥ — ¥  and a vector b € ¥". Because
A is nonsingular, the equation Au = b has the solution

u=A"b (5.4.40)

Show that when A has N distinct eigenvalues the solution (5.4.40) can be written

u:Z%mwj (5.4.41)

where {v,,v,,---,v, } are the eigenvectors of A and b’ =<b,vj> where {vl,vz,m,vN } is the basis

reciprocal to {v,,v,,---, v, }.*°

10 The result (5.4.41) is generalized in Section 6.8 for the case where the linear transformation A is singular.
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Section 5.5. Constant Coefficient Linear Ordinary Differential Equations

In Section 5.1, it was mentioned that eigenvalue problems arise in problems involving the
solution of systems of ordinary differential equations. In particular, they arise when solving
systems of constant coefficient linear ordinary differential equation. In this section, we shall see
how this particular eigenvalue problem arises.

It is important when studying ordinary differential equations to classify the kinds of systems
of ordinary differential equations being considered. We are interested in problems for which the
system can be written

S ax+g() (55.1)

where x(t) isa N x1 column matrix, A isan N xN matrix and g(t) isa N x1 column matrix.

As the notation suggests, x(t) and g(t) are functions of a parameter t, which for simplicity we

shall regard as the time. Also note that the matrix A does not depend upon t. The initial value
problem associated with (5.5.1) is the problem of finding the function x =x(t) such that

?j_)t(: Ax+g(t) and  x(0)=x, (5.5.2)

where X, is given.

It is typically the case that applications lead to systems of ordinary differential equations of
order higher than one. Equation (5.5.1) was selected as the starting place for our discussion
because almost all systems of linear constant coefficient ordinary differential equations can be
written in the form (5.5.1). Equation (5.5.1) is sometimes referred to as the normal form of a
system. This designation is probably more common when discussing the more complicated
problem of numerical solutions of systems of nonlinear equations. The following example
illustrates how a system of two second order linear constant coefficient equations can be put into
the form (5.5.1).

Example 5.5.1: Consider the two degree of freedom vibration problem:

— U —u—

C, c,

m,
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where m, and m, are masses, k, and k, are spring constants, c, and c, are damping constants and
u, and u, are displacements. Finally, the functions f,(t) and f,(t) are forcing functions. The

constants m,,m,,k;,k,,c, and c, are positive constants. The ordinary differential equations which
govern the motion of this system are?

mlul = _Clul - klul +C, (uz - ul) + kz (uz - ul) + f1 (t)
(5.5.3)

m,u, =—-C, (uz - u1) - kz (Uz - Ul) + fz (t)

where, for example, u, = % . This second order coupled system of ordinary differential equations

can be written in the form (5.5.1) if we define the 4 x1 matrix x(t) by

u, (t)
x(t)= l:jé:; (5.5.4)
0, (t)
The first derivative of (5.5.4) is
G (t)
dx(t) | (1)
& i (1) (5.5.5)
t, ()

We now use (5.5.3) to eliminate G, (t) and i, (t). The result of this elimination is

11 Equations (5.5.3) and (5.5.6) illustrate a general feature of systems of linear equations governing forced vibration
problems. These equations always take the general form

M (t)+Cu(t)+ Ku(t) =f(t)

where M is a symmetric positive definite matrix of masses, C is a symmetric positive semidefinite matrix of
damping coefficients and K is a symmetric positive definite matrix of spring constants. The normal form of this

equation is
TN i YN
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_ . .
dx(t) k t 1
X(t C . 1 C, . 2
| ——Uu —— —(u, - —(u, — —f (t
| Tm, 0, (r:nl U + m, (Uzk u)+ m (u, 1“1)+ m (1)
I _m_zz(uz _ul)_m_zz(uz _U1)+m_2 fz (t) |
0 0 1 0 | 0
0 0 0 1 Ul(t) f0
B _(kl"'kz) Ky _(Cl+cz) S luy(t) (1)
B m, m, m, m, ul(t) tom
ko koo o) R0
L m m, m, M, 1 L m, |

which fits the form of (5.5.1) with the choices

0 0 1 0
0 0 0 1
A _(k1+k2) ks _(C1+C2) G
B ml ml ml ml
k k6 G
L m, m, m, m, |
and
S
0
f.(t)
9(t) = T
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(5.5.6)

(5.5.7)

(5.5.8)
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Section 5.6. General Solution

Given the fact, as illustrated by Example 5.5.1, one can write systems of ordinary
differential equations in the common form (5.5.1), in this section we shall examine how the
solution of these systems involve the solution of an eigenvalue problem. Before we display the
eigenvalue problem, we need to recall a result from the first course on ordinary differential
equations. The result is that linear inhomogeneous ordinary differential equations always have
solutions that can be written as the sum of a solution of the homogeneous equation plus a particular
solution. In our case, the ordinary differential equation is the system (5.5.1). Therefore, the
solution of (5.5.1) will be of the form

x(t)=x, (t)+x,(t) (5.6.1)
where X, is the general solution , i.e., the solution of the homogeneous equation

dx,
— = AX 5.6.2
ot h (5.6.2)

and x, is a particular solution of

d
%:AXp +9(t) (5.6.3)

This theoretical result is reminiscent of a similar result for systems of linear algebraic equations
that we discussed in Section 2.7.

The eigenvalue problem that arises when solving systems of linear ordinary differential
equations is when one is solving for the homogeneous solution. For simplicity, we shall assume for
the moment that our task is to solve a homogeneous equation and we shall delay the problem of

finding the particular solution. In other words, we are temporarily restricting our discussion to the
case

g(t)=0 (5.6.4)
We know from our experience with ordinary differential equations that the solution of

ax

— = AX 5.6.5
™ (5.6.5)

is often an equation of the form

x(t)=ve* (5.6.6)



442 Chap. 5 . EIGENVALUE PROBLEMS

where Vv is a column matrix to be determined and A is a scalar, real or complex, which is to be
determined. You will recall that the general solution is a linear combination of solutions of the

form (5.6.6). Foran N™ order system one needs N linearly independent solutions of the form
(5.6.6) in order to generate the general solution.

If the assumed solution (5.6.6) is substituted into the ordinary differential equation (5.6.5),
we see that v and 4 must obey

Ave™ = Ave™ (5.6.7)
Because (5.6.7) must hold for all t, (5.6.7) reduces to the eigenvalue problem
Av = Av (5.6.8)

If (5.6.8) yields N linearly independent eigenvectors, the general solution is
X(t)=c,v,e™ +¢,v,e +cv,e™ - o v et (5.6.9)

where c,,c,,...,C, are arbitrary constants. The constants are determined by imposing initial

conditions. Equation (5.6.9), which does not utilize the initial conditions, is usually called the
general solution to the homogenous problem. The form of the solution (5.6.9) shows that the

vector x(t) is the linear combination of vectors pointing in the direction of the eigenvectors. The
individual terms, v,e™',v,e”, v, ... v, e™", each pointing in the direction of an eigenvector,
representing the building blocks for the full solution x(t). If the solution to the eigenvalue

problem does not yield N linearly independent eigenvectors, then the mathematics is telling us that
the solution is not of the form (5.6.6).

It helps our later manipulations if we rewrite (5.6.9) in a slightly different form. As with
our examples in Section 5.3, we can arrange the eigenvectors as columns ofa N x N matrix T .
The notation we shall use is

Yo Y@ Yo Y

Uiy Uy Vg V%)

Uiy VU U V)
T=[v,V,,.vy]=| - : : : (5.6.10)
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This definition, allows us to write (5.6.9) as

et 0 0 - - - 0 ¢
0 e o . . . 0 c,
0 0 e . . . 0]¢
x(t)zT . . . ) . (5.6.11)
| 0 0 o - - - eﬂNt_ | Cy |

Also, given (5.6.10), the solution to eigenvalue problem (5.6.8) is equivalent to the matrix equation
AT =TD (5.6.12)

where D is the diagonal matrix of the eigenvalues defined by

A4 0 0 0]
0 4 0 0
0 0 A 0
D=[. - . . : (5.6.13)
0 0 0 - - - A

Of course, equation (5.6.12) is equation (5.1.10) given earlier. It simplifies our notation later if we
adopt the symbol e for the diagonal matrix that appears in (5.6.11). Therefore,

e 0 0 - - - 0
0 e 0 - - - 0
0 0 e . . . 0
=l . . : (5.6.14)
0 0 0 - - - e

and the solution (5.6.11) can be written in the more compact form

x(t)=Te c (5.6.15)



444 Chap. 5 . EIGENVALUE PROBLEMS

where ¢ is the column matrix

c=| . (5.6.16)

Cy

Example 5.6.1: You are given the familiar second order ordinary differential equation governing
harmonic motion. Namely,

Ui+awiu=0 (5.6.17)

where @, is a positive constant. If we define

u(t)
05t G019
The equation to solve takes the form (5.6.5) with
A= 0 1 (5.6.19)
| -@? 0 o
The eigenvalues of A are the roots of
0-4 1 o .
det(A-Al)=| , =2+ = (i, — A1) (-, — A) (5.6.20)
-y 0-4

We shall order the eigenvalues as follows:

A =i,

5.6.21
A, =—law, ( )

The eigenvector associated with the first eigenvalue is the solution of

0-i 1 v
DY =0 (5.6.22)
-, O-ia, || M
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The reduced row echelon form of (5.6.22) is

—ia)0 1 Ul(l) _
{ . OH ; ]o (5.6.23)

Therefore,

Ul(l) ot 1 — /V(ﬂ’l) = span . (5.6.24)
02(1) @i, o, -

Likewise, the characteristic subspace associated with the second eigenvector is

¥ (1) :span[[ ! D (5.6.25)

—law,
These two eigenvectors give the solution to the system of two ordinary differential equations in the

form of a superposition of the two possibilities of solutions of the form x = ve™. The result, as
follows from (5.6.9), is

17 17 .
x(t):c{_ }e"”ﬂ%cz[ _ }e et (5.6.26)
~im,

i,

Or, in the equivalent form (5.6.11)

11 e o e
ol AT 8T sozn

This solution can be written in a more familiar form if we utilize the Euler identity
e = cos(ayt) +isin(awyt) (5.6.28)

These equations allow the general solution (5.6.9) to be written
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1. 1 .
x(t):c{i }e'”’ﬂt +c{ i }e"”‘)‘
Wy —la,

6, [cosla)isin(aag) e, | fcos(aag)-tsin ()

@, —ia,
[ ¢, +c, i(c,—c, _
= iy (6, c, )}cos(wot) + L’:((—Cl - C)z Jsm (pt) (5.6.29)

[ (e+c,)cos(ant) +i(e, —c, )sin(ayt) }
@, (=C, = ¢, )sin(@yt) +im, (¢, — ¢, ) cos(myt)

_ [ d, cos(myt)+d,sin(myp) } {u(t)}

|~y sin(mpt) + yd, cos(agt) || u(t)

where the complex coefficients ¢, and c, are related to the real coefficients d, and d, by the
formulas

C, :%(dl —id,) and ¢, :%(dl +id,) (5.6.30)

Example 5.6.2: As a generalization of Example 5.6.1, you are given the problem of damped
harmonic motion governed by the ordinary differential equation
mi+cu+ku=0 (5.6.31)

where m,c and k are positive constants representing the mass, the damping coefficient and the
spring constant, respectively. The figure that is often associated with the ordinary differential
equation (5.6.31) is

‘—u »‘
C .

A\

It is customary to introduce the symbols
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, kK c
m 2Ma,
and write the differential equation (5.6.31) as
U(t) + 2cam,(t) + w, u(t) =0 (5.6.33)

Equation (5.6.33) modifies the ordinary differential defining harmonic motion, equation (5.6.17),
by the inclusion of the first derivative proportional to the dimensionless damping coefficient
(5.6.32)2. If we define, as with Example 5.6.1,

u(t)
X(t)= 5.6.34
0ot 0%
The equation to solve takes the form (5.6.5) with
A= 0 ! (5.6.35)
|- -2¢w, o
The eigenvalues of A are the roots of
0-4 1
det(A-Al)=| |, =A%+ 2cap A +
—y  —20w, — A (5.6.36)
= (—ga)o +iagJ1-¢? —l)(—ga)o — iy J1-¢? —ﬂ)
We shall order the eigenvalues as follows:
=—Cw, +imy\1-¢?
A=mcoprlol—¢ (5.6.37)

A, =—Cw, _ia’o\/l_cj2

Equations (5.6.37) are written to fit what is called the under damped case. For this case, the
damping is assumed to be such that \/1-¢? >0.

The eigenvector associated with the first eigenvalue is the solution of

0+ Ly, —imp1-¢° 1 O -0 (5.6.38)
@ 0-Ca, —imp1-¢7 || V°

)
The reduced row echelon form of (5.6.22) is
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{é“wo—iwo 1-¢* 1}{%]_0 (5.6.39)

Therefore,

V') . 1 ) 1
F R O g

Likewise, the characteristic subspace associated with the second eigenvector is

1
¥ (4,)=span H—Ca)o ) i%WD (5.6.41)

These two eigenvectors give the solution to the system of two ordinary differential equations in the

form of a superposition of the two possibilities of solutions of the form x = ve™. The result, as
follows from (5.6.9), is

1 —CHi1-22 |t 1 —¢=if1-¢? |apt
x(t):c{ }e( Foni-d7) +c{ }e( S (5.6.42)

—g”a)0+ia)0s/l—g“2 —g“a)o—ia)oxll—gz

As with Example 5.6.1, this solution can be written in a more familiar form if we utilize the Euler
identity

<" = 0o, 1= 7t +isin(,1- 7t (5.6.43)

These equations allow the general solution (5.6.9) to be written
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1

x(t)=c |~y +imp1-¢?

:Clt—cja) +i;\/1—7 e‘“”‘)‘(cos(a)0 1—§2t)+isin(a)0 1—§2t))

+C{—§a)0—ia1)0\/1—7}%t(cos(% l—cjzt)—isin(a)0 1—§2t))

1

; 2
e—;’(uotelwo 1-4°t +C2 - .
—Cwy — g 1-¢

i _ 2
ile—{(uote imyA/1-¢t

C, +C,

S TR == N At N
{ (6-0) }(a, %)
-y (¢, —¢)) + ap1-¢7 (-6, - ¢,)
[ e‘@““’ot((c1+c2)cos(a>0 1=t +i(e,—c, )sin(a, 1—§2t))
_ {e@ot% 1-¢7 ((—cl—cz)sin(a)o 1—§2t)+i(cl—cz)cos(a)o 14%))}

~Cawe ™ ((c1 + cz)cos(a)0 1- g“zt) +i(c,—c, )sin(a)0 1- gzt))

e‘g“’“‘(dlcos(co0 1—§2t)+dzsin(ao0 1—§2t))
= [e‘%twoﬁ(dlsin(a)o 1—4’2t)+dzcos(a)0 14”%))1 {38}

—La,e ™ (d1 cos(a;0 1- §2t) +d,sin (a)o 1- gzt))
) (5.6.44)

where the complex coefficients ¢, and c, are related to the real coefficients d, and d, by the same
formulas used with Example 5.6.2, namely,

C, = %(dl —id,) and ¢, :%(dl +id,) (5.6.45)
Example 5.6.3:
dy, (t
y;t( ) =Y (t) +6Y, (t)
(5.6.46)
dy, (t
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16
The eigenvalues for the matrix A= [1 2} are

A =-1 and A4,=4 (5.6.47)

The two characteristic subspaces turn out to be

¥ (4)=span ﬂﬂ] and  ¥(,)=span [mJ (5.6.48)

Therefore, from (5.6.9) the general solution of (5.6.46) is,

x(t)=c, {_13} el +c, {ﬂ e (5.6.49)

The three examples above are typical of the solution procedure for finding the
homogeneous solution to systems of first order constant ordinary differential equations. The
solution procedure works because the geometric multiplicity of each eigenvalue has equaled its
algebraic multiplicity. In cases where this is not true, the solution is not as simple as the above.
The following example illustrates the problems that can arise.

Example 5.6.4
S AURSACRIAC
L)y, 0+ v, (5:6:50)
Bl -y 0

This system can be rewritten as the matrix equation

dx(t)
dt

AX(t) (5.6.51)

where

o R K

1
1 (5.6.52)
1



Sec. 5.6 . General Solution 451

Equation (5.6.51) is the matrix that we considered in Example 5.3.3. The results of that example
are that (5.6.52) has a single eigenvalue A =1 of algebraic multiplicity 3. The characteristic
subspace associated with this example has dimension 1. As a result, we cannot represent the
solution of (5.6.50) in the form (5.6.9). The general solution in this case turns out to be

o1, ] 1
. , to2t2 ce' +c,te' +c, (t +Et2Jet
x(t)=c,|0|e'+c,[1le'+c,| t  |e'= c,el +cyte! (5.6.53)
0 0 1 c,e'

which is not a solution of the form x = ve™.

Example 5.6.5: (Complex Eigenvalues) The system or ordinary differential equations is

dy, (t
AUy, +5y,0
dy. (1) (5.6.54)
22—y, ()45,
t
In this case, the matrix is given by
1 5
Az{ } (5.6.55)
-1 5
and the eigenvalues are easily shown to be given by
=3-Ii
A ) (5.6.56)
A, =3+i

The characteristic subspaces can be shown to be

¥ (4,)=span [FI 'D and  ¥(4,)=span Hzl_ 'D (5.6.57)

Therefore, from (5.6.9) the general solution is
2+1 : 2—1 :
x(t)= c{ . }e(s'” +cz{ . }e(s“)t (5.6.58)

The solution is usually written in terms of real coefficients, as with Example 5.5.1, by using
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e" ™ =e¥e™ =¥ (cost—isint) (5.6.59)
and
=e¥e" =¥ (cost +isint) (5.6.60)

Therefore,

2+1
c{ 1 }e3t(cost—isint)+c2{ .

| ere) et gy |G R AE G gy g
c, +C, —i(c,—¢,)

}ef“ (cost +isint)

[2d, +d d —-2d
= ! 2}eg"cost+{ ! 2}eg"sint
dl _dz

(2d, +d,)e™ cost +(d, —2d, )e* sint
d,e* cost—d,e*sint

Example 5.6.6: (Two Degree of Freedom Free Vibrations) Consider a generalization of the the
coupled spring-mass-damper system introduced in Example 5.5.1 shown in the following figure:

T I

G

AAS

C, c,
ml
LAZA A\

The equations of motion for this system are a generalization of (5.5.3)

m,

mlul = _Clul - klul +C, (U2 - ul) + kz (uz - u1)
(5.6.62)
mzuz =-C, (uz - ul) - Csuz - kz (uz - ul) - ksuz

The designation “free vibrations” refers to the fact that this example does not have external applied
forces. In other words f, (t) =1, (t) =0. Inorder to express the governing equations in normal

form define
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and, as a result,

' 0, (1) ‘
u (t)] [ (t) u, (t)
t 1, (t
dX(t):i UZ( ) = UZ( ) = _iul_ﬁul+c_2(u2_ul)+_2(u2_ul)
dtdeju(t)| | a(t) m-omoom X
e (t) & (t) __2(U2 _u1) __Suz _ﬁ(uz - ul) __3U2
L 2 2 m, 2
0 0 1 0 ]
0 0 0 1 |fu(t)
o ktk, ko gte, 6 [[W(Y)
ml ml ml ml ul(t)
ko etk G 6+G [U(1)
. om, m, m, m, |
=Ay(t)

Therefore,

(5.6.63)

(5.6.64)
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0-4 O 1
0 0-4 0
-2 1 0-4
1 -2 0

o O +—» O

-4 0
0 -4
-2 0

1 0
1|+|-2
-A |1

-1
1
-2

1
0

-1
1

UG

=-A(-A°-22)+ (2(,12 +2) —1)

—A
0

0 1
-4 1

A

= 2" + 422 +3=(/12 +1)(1»2 +3)

(5.6.66)

Therefore, we can arbitrarily order the eigenvalues as

Ay =3
2, =3
Ay =i
A, =i

The characteristic subspaces turn out to be

(i-2)(-i-2)(3i-2)(~3i-4

-A
-2

)

EIGENVALUE PROBLEMS

(5.6.65)
1] -1 1
_l_
a1 o
0
(5.6.67)
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___3|_ _ ﬁl i}
3
¥ (4,)=span % ¥ (A,) =span _gi :
-1 -1
1 1 (5.6.68)
i i
[ —i
¥ (A;) =span . ¥ (2,)=span .
I 1
Therefore, from (5.6.9) the general solution is
_ \@I_ _ \/§I ;
3 3 i —i
_ : i —i| .
x(t)=c, ﬁi eV +c, _ﬁi eV e, let+c,| e (5.6.69)
3 3 1 1
-1 -1 1 1
(. 1 - _ 1 -

As usual, we can eliminate the complex exponentials by the formulas

e =cost +isint

e " =cost—isint (5:6.70)
et — cos+/3t +isin+/3t o

e V3t — cos+/3t —isin/3t

The result of this elimination is

d, cost +d, sint +d, cos~/3t + d, sin+/3t

d, cost +d,sint —d, cos~/3t —d, sin/3t
(5.6.71)
—d, sint +d, cost —~/3d, sin~/3t +~/3d, cos+/3t
| —d, sint +d, cost +/3d, sin/3t —+/3d, cosv/3t |

U,
x(t)= l:zg
U, (

Example 5.6.7: The following figure shows a possible configuration of a three degree of freedom
system with linear springs, linear damping and forcing functions.
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) %
|— U — — us— > — Us— >
m m

This example is too complicated to work without the aid of MatLab or something equivalent. In
matrix form, the equations of motion for this damped three degree of freedom system are'?

m 0 0] C,+C,+C —C, —C, U
0 m, O |Uu/l+ —C, C, +C; +Cq —C, u,
0 0 mfu —C —C C,+C,+C || U
3 3 5 3 3 4 5 3 (5672)
k,+k, -k, 0 u, f.(t)
+ -k, Kky+ky ko |lu, (=] (1)
0 -k, ky+Kk, || ug f,(t)
If we define
%7 T
X2 u2
X u
x=| °|=|° (5.6.73)
X, u,
X5 u,
[ Xs] [Us]

The matrix A in the standard form (5.5.1) is given by

12 Note that (5.6.72) is in the form mentioned in footnote 6 of Section 5.5.
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0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
_ky +k, k_2 0 G HC+C C,
A= m, m, m, m,
k_2 _k2+k3 ﬁ C GG+
m2 m2 2 m2 m2
0 ﬁ B k; +K, Cs C;
L m3 m3 m3 m3
and the matrix g(t) is given by
F 0
0
0
f,(t)
g (t) = m
f, (1)
m2
f (1)
L m3 i

If, for the purposes of this example, we adopt the numerical values

m=m,=1m,=2

¢, =.3,¢c,=.4,c,=.4,c,=.06,c, =.06c, =.02

The matrix (5.6.74) reduces to

o0 0 1 0 O
0o 0 0 0 1 0
o0 0 o0 0 1

Al 1 0 _76 4 06
1 2 1 4 -8 4

0 5 -15 03 2 -.26]

457

3 |wo 3 |mo , o o

GG tC

(5.6.74)

(5.6.75)

(5.6.76)
(5.6.77)

(5.6.78)

(5.6.79)
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This is the matrix that was adopted when we worked Example 5.3.5. The eigenvalues for this

problem were given by equation (5.3.76), repeated,

A } =—0.6072+1.6652i
z

4

7]

/5

6

} =-0.2474+£1.2611i

} =-0.0654 £ 0.8187i

(5.6.80)

and the eigenvectors were given by equations (5.3.77), (5.3.78) and (5.3.79). With this
information, one could utilize our solution (5.6.15) and analyze this complicated problem. As
indicated above, the problem is too complicated to attempt without the aid of a computer. For our
purposes here, we simply want to note that the three degree of freedom system shown in the above
figure has six eigenvalues. These six, which occur in complex conjugate pairs, represent three
modes of vibration. In each case, the eigenvalues take the general form

A, =-¢;tio; for j=1,2.3 (5.6.81)
The positive numbers
¢ 0.6072
&, 1=40.2474 (5.6.82)
&, 0.0654

are the damping coefficients, and the three positive numbers

m) [(1.6652
o, +=11.2611
w,| |.8187

are the natural frequencies.

Exercises

5.6.1 Find the general solution of the system

(5.6.83)
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dy,

e 2y, -6y,
Yoy, -3y,
%= Y, =2y,
5.6.2 Solve the initial value problem
dt 2 2
di:—iyﬁﬁyz y;(0)=1y,(0)=-1

dt 2 2

459

(5.6.84)

(5.6.85)
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Section 5.7. Particular Solution

Given the solution to the homogenous equation as generated in Section 5.6, the next
question is how to generate the particular solution. This solution, combined with the results of
Section 5.6, can then be used along with initial conditions to yield the solution to the initial value
problem (5.5.2).

There are various ways to generate the particular solution. The method of variation of
parameters is probably the best to use at the present point in our understanding of eigenvalue
problems. This method builds the particular solution from the solution to the homogeneous
equation by a procedure we shall describe. For our purposes, the solution to the homogeneous
equation is equation (5.6.15), repeated,

X, (t)=Te c (5.7.1)

The variation of parameters method seeks a particular solution of the general form of (5.7.1) except
that the constants in the matrix ¢ are replaced by a function that must be determined. The form of
the particular solution we shall adopt is

X, (t)=Te"w(t) (5.7.2)

where the N x1 column matrix of functions w(t) is the quantity to be determined. If (5.7.2) is
substituted into the ordinary differential equation (5.5.1), the result is

dw(t)
Cdt

Te™ = (AT -TD)e™w(t)+g(t) (5.7.3)

Equation (5.6.12) tells us that the first on the right side of (5.7.3) is zero, and, as a result, the
column vector w(t) is determined by

aw(t) oo
e T7g(t) (5.7.4)

where the notation ™™ stands for the square matrix
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e 0 0 - - - 0
0O e 0 - - - 0
0 0 e* . . . 0
e Pt =| . . . . . (5.7.5)
0 0 0 - - . e

It is elementary to show that the square matrix e ™" is the inverse of the matrix e™ defined by

equation (5.6.14). It follows from (5.7.4) that the solution for w(t) is given by the integral
w(t)=[" e T g(r)ds (5.7.6)

where, without loss of generality, we have taken selected the constant of integration such that
w(0)=0.

Equation (5.7.6) when combined with (5.7.2) gives the particular solution

X, (t)=Te"w(t)=Te™ :e‘D’T‘lg(r)dr
s (5.7.7)
:J.r:OTe T7g(zr)dr

Given (5.7.1) and (5.7.7) the solution (5.6.1) is

X(t)=x, (t)+x, (t)

(5.7.8)
=TePc+ L;Te’D(H)T “g(r)dr

Given (5.7.8), the solution to the initial value problem (5.5.2) is obtained by evaluating (5.7.8) at
t =0 which yields

c=T7"%, (5.7.9)
and allows the solution (5.7.8) to be written in terms of the initial condition as follows:
Dt -1 = _D(r—t) -1
X(t)=Te®T M, + [ Te ™ "Tg(r)dr (5.7.10)

Equation (5.7.10) is extremely general. Other than presuming the matrix A in (5.5.1) can be
diagonalized, i.e. has a basis of N linearly independent eigenvectors, it provides the solution to a
wide class of systems of inhomogeneous linear constant coefficient ordinary differential equations
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that occur in the applications. When A cannot be diagonalized, there is a generalization of (5.7.10)
that provides the solution. This generalization will be discussed in Chapter 6. In this section, we
shall restrict our discussions to cases where (5.7.10) is valid.

Example 5.7.1: As an illustration of how to use (5.7.10), consider the following initial value
problem

U+ wju = H cos(wt) u(0)=u,, u(0)=uv, (5.7.11)

We generated the solution for the homogeneous version of this equation in Example 5.6.1. In this
example, the forcing function H cos(a)t) is included in the ordinary differential equation. The

frequency @ is sometimes called the forcing frequency. The frequency «, is called the natural
frequency. The figure that is associated with this ordinary differential equation is

R

_N\N_ m f (t) = mH cos(at)
—_—

The matrix form of (5.7.11); that we are trying to solve is

d>;£t) —MX“){H Cog(wt)} (5.7.12)

A 9(1)

where x(t) is again defined by (5.6.18). It follows from (5.7.11), that the initial condition on
(5.7.12) is

x(0)=x, :{UO} (5.7.13)

In Example 5.6.1, we looked at the homogeneous version of this problem and derived its general
solution. Among the results from Example 5.6.1 that apply to this example is the solution to the
homogeneous equation written in the form (5.6.27), repeated,
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1 1 oyt C
X, (t):[_ _ }{e 0 M 1} (5.7.14)
lo, —law, || 0 e']|cC,
It follows from (5.7.14) and (5.7.1) that the transition matrix in this case is
1 1
T=]. : (5.7.15)
o, —lo,

The inverse of (5.7.15) is the matrix

e e N IR (5.7.16)
2w, | —lw, 1] 2 o

Given (5.7.16), (5.7.15), (5.7.13) and the g(t) identified in (5.7.12), the solution (5.7.10) takes the
form

X(t)=Te"T *x, + r:;Te’D(H)T “g(r)dr

.
_ 1 — |
1 1 1ot u
4 S E 0 @l " (5.7.17)
2liw, —iw, || O e 1 |l
Wy
i i
—iay (r-t) 7 1 T
1r_t{1 1}e“’° 0 a)o{ 0 }
+= ) ) , ) dr
200w, —im, 0 glnlr0 | s cos(wr)
L %

If the various square matrices are multiplied together, (5.7.17) can be written

1/ —ia i i
X(t)= E(e%tﬂe ") T%(e%‘—e K [u"}
i%(eiwot _efiwot) %(ei%t +e—ia)0t) Yy

(5.7.18)
1 ( ) +eia>o(r—t)) zi (e—imr—t) _eiwo<r—t>) )
| i, [ } i
e lﬁ(e-i%(r-t) B eia)o(r—t)) 1<e-iwo(z-t) N eia)o(r—t)) cos(wr)
2
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If trigometric functions are introduced in place of the complex exponentials, (5.7.18) simplifies
further to

x(t)= cos(ayt) ;%‘“n(a%t) [uo}

—,Sin(w,t)  cos(ayt)

(5.7.19)

| cos(a,(r—t)) —isin(a)o(r—t)) 0

+HI*0 “ cos(wr) |7

wosin(a)o(r—t)) Cos(a)o(r—t)) [ ( )}

_ Uy COS (ayt) + = p —Lsin(ayt) HI ——sm (@, (7 —t))cos(wr) i
— Uy SN (@yt) + 1, €S (yt ) cos(a)o(r—t))cos(a)r)

If the integrations in (5.7.19)are carried out, the results are

Uy cos(a)ot)+ﬁsin(a)0t)+

x(t):[g(t)} o} m(

m(_% sin(ayt) + wsin(at))

cos (ayt) —cos(at))

— U, Sin (apt) + v, cos(ayt) +

(5.7.20)

This result shows that the harmonic motion consists of two components. One that oscillates with
the frequency @, and one with the forcing frequency @. Equation (5.7.20) also displays the

phenomena known as resonance. As the forcing frequency @ becomes close to the natural
frequency a,, the amplitude of the displacement grows large.

There is an interesting special case of (5.7.20) that we shall examine next. In this special
case, we select the initial conditions (5.7.13) to be u, =v, =0. These assumptions reduce the first

of (5.7.20) to

u(t):(a)zl_ifwg)(cos(wot)—cos(wt)) (5.7.21)

An equivalent form of (5.7.21) is

u(t)= ?*Z@M%;”ogm%‘”o) (5.7.22)
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., + @
0 and a

Thus, the solution is a combination of a high frequency component with frequency

Wy

low frequency component with frequency . In the case where we simplify the numeric’s

with the choices H =1, o, =1and »=0.9, (5.7.22) produces the figure

d2ufdt? +Hi=cos(ot)
13 T ! ! ;

215 | I 1 i
0 a0 100 150 200 250

This figure displays the classical “beats” phenomenon which is the result of superimposing two
frequencies that are close in value. The figure displays two distinct effects. The effects are a high
frequency oscillation contained within a slow oscillation.

Example 5.7.2: If we repeat the above example except adopt as the starting place the ordinary
differential equation

U(t) + 26w,U(t) + wy’u(t) = H cos(wt) (5.7.23)

we will be studying damped forced vibrations. Example 5.6.2 discussed the free vibration or
unforced vibration problem for this ordinary differential equation. The following figure applies to
this case.
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‘—U —>‘
C |

m f (t) = mH cos(wt)
 ———

A\

If we define, as with our earlier examples,

u(t)
t)= 5.7.24
00 72
The matrix form of (5.7.11); that we are trying to solve is

0 1 0

(1) =l , x(t)+ (5.7.25)
dt —w, —2lw, H cos(wt)
A 9(t)

Recall from Example 5.6.2 that the eigenvalues and the transition matrix for this problem are

A =—Cw, +iw\1-& (5.7.26)
A, =—Cw, — i, \/1_52

and
1 1

~Cay +iop\1-¢°  —Cw, — iy J1- &P

We shall continue to consider the under damped case. In other words, we are assuming that
J1-¢%>0.

The inverse of (5.7.27) is the matrix

T= (5.7.27)



468 Chap. 5 . EIGENVALUE PROBLEMS

i i 2 i
Tl_;l—gwo—iwoﬁ _1]_# i(-¢-ivi-¢7) -
2ieo1-¢" | Gy —ioL-¢" 1] 21-¢7 —i(_§+i\/1—7) i
Wy

(5.7.28)

Given (5.7.28), (5.7.27), (5.7.26) and the g(t) identified in (5.7.25), the solution (5.7.10) takes the
form

r=t

x(t) =Te"T 'x, +I O Te " "T7g(7)dr

1 1
X
| o, +ioA1-¢ (o, —imA1- gz}
H i gole 0
e’ X
2 174,2 = 0 em})\/:(ffl)

[ ° } (5.7.29)

cos(wr)
I i(—g—i 1—;2) L

0

—i(—§+i\/1—7) i

(2]

- 0

If the various square matrices in (5.7.29)are multiplied together, you obtain
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21- ¢ cos( 1= ¢'t) w2 sin (w1 £t 2 :
(1) o-int 2 ( \/17) ( ) ;Osin(a)ox/l—_g“t) }[j
B O e R (0 o et e
[[(241-¢7 cos(w,1-¢" (1)) |
~2¢sin(@\1-¢7 (e-1)
. L
L e (o)
2\/17 2cos(a)0\/1—7(r —t)) X
20,500 (0, 1- £ (1)) N
{MW <r—t>)] _

u\

—wism(“)o\/?(f —t))

(5.7.30)

If you keep expanding will eventually find, for the first row of (5.7.30)
u(t)=e** [uo cos(wo(wll— gz)t) + \/1}7 [Z—Z+ guojsin(a)o(\/l— - )t)}
woﬂj <ot sin(a)o(\/l—;2)(t—r))cos(a)r)dr

(5.7.31)

The integration formula

woﬁj_t —§w0 Siﬂ(a)o(\/l—7)(t—r))cos(a)r)dr
=— @ — " (cos(a)t)—eg“’otcos(a)o\/l—7t))

(a)o - a)z) +40 0t 0’

2 2
+ ZC: [Za)a)osin(a)t)—weg“’o‘sin(a)o 1—;’%)]

(a)o2 —a)z) +40 0t 0’ J1-¢72

(5.7.32)
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can be substituted into (5.7.31) to get the complicated formula 3

u(t)=e"*" u, cos(a)o(«/l— gz)t)+ﬁ[;—‘;+ (uojsin(wo(\/1—§2 )t)

+H( . %~ (cos(a)t)—eg%‘cos(a)o\/l—?t))

4 : ot + o’ ot o >
+H 20w, sin(wt) - ———e Sln(a) 1-¢ t)
(a)g —0)2)2 +40 0t 0’ ’ J1-¢72 ’
(5.7.33)

This formula reduces to the earlier result, (5.7.20), in the special case ¢ =0. Equation (5.7.33) can
be rearranged into the form of a transient solution plus a steady state solution.

2 2

u,—H G @ e ¢! cos(a)o (J1-¢2 )t)

2
2 2 2 2 2
(a)o—a)) +44 o

2 2
n 1 2[&+§UOJ_H é’ - - 02)02"'0) — e—g%tsin(a)o 1_4/21:)
1-¢% \ oy V- (- 0’) +4S° o

Goes to zero as t grows = Transient Solution

2 2
+H G P cos(mt) + Zé;wwo
(a)g — a)z) +40 0t o (a)g — a)z) +40 0t 0’

Steady State Solution

sin(wt)

(5.7.34)

Within the context of the examples we have been working, equation (5.7.34) is very

general. It contains, as special cases, Examples 5.6.1 and 5.6.2 discussed earlier: 1t is helpful to
list these cases more precisely.

Important Special Cases:
a) Undamped Free Vibrations with initial conditions u(0)=u, and u(0)=uv, (See (5.6.29))

13'You can find the integral above in a good table of integrals.
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U(t) = U, cos(ayt) +—2sin (gt (5.7.35)
Wy

With the numerical values

m=10kg, k =250kg /sec?
3 (5.7.36)

Uy :Em, U, :—%m/sec

equation (5.7.36) produces the plot

Plot of u(t):uncos[mntj+(vnfcoﬂ)sin(coﬂtjj

04 g T T '

04 | | |
0

b) Damped Free Vibrations with initial conditions u(0)=u, and u(0)=uv, (See (5.6.44))

u(t)=e* [uo cos(a)0 (V1-¢° )t) +ﬁ(z)—‘; + gqusin (a)o(\/l— - )t)}

(5.7.37)
With the numerical values
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m=10kg, k =250kg /sec?

3 1 (5.7.38)
=—m, v,=—-—m/sec
10 10

u0
and a family of values of the damping coefficient equation (5.7.37) produces the plots

Under Damped Free Vibrations
04 . .

L T T
@ o B

[ TN e Y s T

.04 ; i i 1

c) Damped Forced Vibrations with initial conditions u(0)=u, and u(0)=v, (See (5.7.34)).

With the numerical values

m=10kg, k =250kg/sec’, ¢ =20,
wo=4, H=1, (5.7.39)
3

UO :Em

. U, :—%m/sec

the resulting plot of (5.7.34) is
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Forced Vibrations

04

| O .................... .................... .....................

-04
0

10

This figure illustrates how the solution quickly evolves to the steady state solution.

Exercises

5.7.1 Find the solution of the initial value problem

Answer:

dt =2y, —-6y,+1

e'+9e"'-3t-8

= le“+—et—2t—5

(5.7.40)

(5.7.41)
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Chapter 6
ADDITIONAL TOPICS RELATING TO EIGENVALUE PROBLEMS

Section 6.1 Characteristic Polynomial and Fundamental Invariants

When the eigenvalue problem was introduced in Chapter 5, we introduced in Section 5.2
the characteristic polynomial and the associated idea of fundamental invariants. In this section, we
shall build upon the results in Section 5.2 and introduce a few new results that will be useful in this
chapter.

Our formulas are going to involve powers of the linear transformation A: 7 — ¥". As we
have utilized earlier with matrices, the n™ power of a linear transformation A:7 — ¥ is defined
by

A'=1, A"=AAA--A for n=12,.. (6.1.1)

n times

It follows from the definition (6.1.1) that the linear transformations A" and A™ commute. In other
words,

ATA" = A"A" = A™" (6.1.2)
Given (6.1.1), a polynomial in A:%¥ — ¥ is a linear transformation g(A):"//—>V of the form
9(A) =l + A+ a,A* +--+ o, A" (6.1.3)
where n is a positive integer and the coefficients «,, o, @,,..., ¢, are real numbers.

The characteristic polynomial of a linear transformation A:¥ — ¥ is given by equation
(5.2.14), repeated,

f(2)=det(A—-21)=(=2)" + 24 (=2)" "+ 4 a1y 4 (<2) + 2 (6.1.4)

The coefficients g, u,,..., ,, are the fundamental invariants of A:¥”— % . In Section 5.2, we
observed that

475
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=trA (6.1.5)
and

1, =det A (6.1.6)

For the case N =2, we gave the formula (5.2.20). for the invariant ,. The explicit formula for
the invariants in the general case turns out to be rather complicated. If {e,e,,...,e,} is a basis for
¥, then it is possible to show that the j™ fundamental invariant is given by

5}11 §Q1 . . . 5_‘11
5_(12 5_‘12 . . . 5_%
1 Q N : . o .
== oy A A AT (6.1.7)
J'qquz"“qul i By =1 ’
5_‘11 5_‘11 L. 5_qj

As an illustration of (6.1.7), the second invariant, y,, is given by

1 %

R D L s

0. 0p=1 i,ip=1 (618)

(AW - ARAY) = ((trA) —trAZ)

Ezi

QG2 =1 iy ip=1

5‘12 5(12

I\JII—\

By a much more complicated calculation,

Ay :%trAS—%(trA)trAz +%(trA)3 (6.1.9)

It is perhaps evident from (6.1.7) that the fundamental invariants will always be expressible as
linear combinations of products of powers of factors like tr A, tr A%,...,tr A’. Equations (6.1.8) and
(6.1.9) illustrate this point. Equation (6.1.7) is not always the most convenient formula to use.
Fortunately, equations (6.1.8) and (6.1.9) are special cases of formulas that can also be derived
from the so called Newton Identities.! The Newton Identities that yield (6.1.8) and (6.1.9) and
others are

k i )
ket =2 (1) gy tr A for k=12,.,N (6.1.10)

j=1

! See, for example, http://en.wikipedia.org/wiki/Newton%27s_identities. Proofs for the Newton Identities can be found
online.
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where the convention has been adopted that z, =1. It follows from (6.1.10) that

u=mrA
24, = p tr A—tr A?
ity = i, tr A— gy tr A? +tr A

(6.1.11)

(N =1) sty 4 = iy o T A= gy G tr A? e (1) 7 gy tr AN2 4 (1) r AN
Nty = iy 4 T A= gy, tr A4 (=1)" 7 tr AN (<) tr AV
Equation (6.1.9) can be seen to be a result of the substitution of (6.1.11); and (6.1.11), into (6.1.11)s.

Additional useful information about the fundamental invariants can be obtained if we look
again at the factored form of the characteristic equation (5.2.6), repeated,

f(4)=det(A-Al)=(4-2)(%—-2)(%-4) (2 - 1) (6.1.12)

N Factors

As illustrated in Section 5 for the special case N =3, we can equate (6.1.4) to (6.1.12), expand the
products in (6.1.12) and obtain formulas for the invariants in terms of the eigenvalues A, 4,,..., 4, .

The results of this multiplication can be written?

N

m= Y A A for j=12,,N (6.1.13)

ki Ko ook =1
1<k <kp <<kj<N

For given N =dim¥” and j, it turns out that there are ' terms in the sum (6.1.13). It

N1
(N=1)!]

follows from (6.1.13) that

2 Equation (6.1.13) defines what is known as an elementary symmetric polynomial. A brief, but good, discussion of
these polynomials can be found at http://en.wikipedia.org/wiki/Elementary symmetric_polynomial.



http://en.wikipedia.org/wiki/Elementary_symmetric_polynomial

478 Chap.6 - ADDITIONAL TOPICS EIGENVALUE PROBLEMS

w=4+4+ -+
Hy :Z‘lﬂ‘z+ﬂlﬂ3+"'+ﬂlﬂw +12}‘3+ﬂ“2/14+"'+/12ﬂw +"'+AN—lZ’N

Hy = A2 + A2y oot Mgy + Aol + Aol + oot Ay e+ Ay oAy Ay
: (6.1.14)

Hy = Ay Ay

It is useful to note in passing that equation (6.1.13) and the expanded version equation (6.1.14)
remain valid if the eigenvalues are not distinct.
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Section 6.2 The Cayley-Hamilton Theorem

In Section 6.2.1 the idea of a polynomial in A:¥" — ¥ was mentioned. One polynomial of
importance is the one that was mentioned in Exercise 5.2.1. This polynomial is the one formed
from the characteristic polynomial by formally replacing the scalar parameter A by the linear
transformation A and the introduction of the identity linear transformation in the constant term.
The resulting theorem of importance involving this polynomial is the Cayley-Hamilton Theorem.
This theorem was stated without proof in Exercise 5.2.1. Basically, the Cayley-Hamilton Theorem
states that a linear transformation A:¥  — ¥~ obeys its own characteristic equation. The formal
statement of the theorem was given in equation (5.2.33), repeated,®

(A" 4 24 (=A) 7  p (<A) + 1 =0 (6.2.1)

where the characteristic equation is given by (6.1.4), repeated,
f(2)=det(A—-A1)=(=2)" + 24 (=2)" "+ 4 a1y 4 (<2) + 2 (6.2.2)
In equations (6.2.1) and (6.2.2) N =dim¥". Note that the polynomial (6.2.1) is identically zero for

all A:¥ — ¥ . The polynomial (6.2.2) is zero for those A that are eigenvalues. The formal
theorem we shall prove is as follows:

Theorem 6.2.1: (Cayley-Hamilton). If f(A4) is the characteristic polynomial (6.2.2) for a linear
transformation A:¥ — ¥, then

F(A) = (A" + (A oty (FA) + 4,1 =0 (6.2.3)
where N =dimy".

Proof: The proof which we shall now present makes use of equation (1.10.50).* If adj(A—Al) is
the linear transformation whose matrix is adj[qu —/15;’], where [qu] =M (A,e;,e,), then by
(5.25) and (1.10.50)

@dji(A—AD)(A-21) = f ()] (6.2.4)

3 The polynomial f (A) = (—A)" + 14, (A" "+ + g1 _,(=A) + 21,1 = 0 is an example of an annihilating
polynomial. Another such polynomial that is important in linear algebra is the minimum polynomial m(A). Without

attempting a careful definition here, the minimum polynomial of a linear transformation is the lowest order polynomial

that annihilates a linear transformation A .
#In the case of a three dimensional vector space, equation (6.2.4) is a consequence of equation (4.10.37).

479
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By (1.10.48), it follows that adj(A — Al) is a polynomial of degree N —1 in A. Therefore, this
polynomial will always take the form

adj(A— A1) =B, (~A)"* +B,(~A)" 2 +---+B, ,(-4) +B,, (6.2.5)

where B,,...,B,_; are linear transformations determined by A. If we now substitute (6.2.5) and
(6.2.2) into (6.2.4), the result is
(Bo(-A)" 7+ B, (A" +--+ By ,(-4) + B, ) (A= Al)

:((_l)N +,U1(—/1)N_l+---+,uN71(—/1)+,uN)I (6.26)

The next step involves forcing (6.2.6) to hold as an identity for all values of 4. The results of this
requirement are

B, =|
B,A+B, =
B,A+B, =l

(6.2.7)
By A+By, =4l
ByaA =l

Now we multiply (6.2.7)1 by (-A)", (6.2.7)2 by (-A)"™, (6.2.7)3 by (-A)"72,...,(6.2.7) by
(-A)" ™ etc., and add the resulting N equations, to find
(_A)N +ﬂl(_A)N71+'..+/'lN—l(_A)+ILlNI =0 (6.2.8)

which is the desired result. Note that one can form the trace of (6.2.8) and obtain the earlier result
(6.1.11)n.

As a polynomial, (6.2.8) can be factored. In the case where we list the N roots as
Ay Ay Ay (6.2.8) factors into the expression

(A1 =A) (L1 =A) (Al -A)--(2,1 -A)=0 (6.2.9)

N Factors
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where the order of the factors is unimportant. Equation (6.2.9) is suggested by the characteristic
polynomial written as in equation (5.2.6). If we wish to recognize the possibility that the
eigenvalues are not distinct, we can express the factorization of (6.2.8) as®

(A=A (1 =A)* (A1 =A)" (2 1-A)" =0 (6.2.10)

where, as in equation (5.2.26), d,,d,,d,,...,d, are the algebraic multiplicities of each eigenvalue
and obey

>d;=N (6.2.11)
Again, the order of the factors in (6.2.10) is unimportant.
Equations (6.2.7) contain other results. For example, it follows from (6.2.5) that
B, , =adjA (6.2.12)
Given (6.2.12) and (6.2.7)a4, it follows that
adjA =, 1 -B, A (6.2.13)
Given (6.2.13) and the next equation in the sequence of equations (6.2.7), results in the formula
adjA = sy 1 —By ,A= 1y | —(py ,1 By ,A)A (6.2.14)
If this sequence of substitutions is continued through the set (6.2.7), the result is
adjA = (A" + 1 (A P+, (FA) + a1 (6.2.15)

Thus, the linear transformationadj A is expressed in terms of powers of A and the invariants
Moy [y seeey Hiy g -

5 For certain linear transformations there are lower order polynomials that are obeyed by A . The minimum
polynomial, for example, which was mentioned in the above footnote would take the form

(A1) (21 A)* (- A (2,1 - A) =0

where 1<r; < dj . While we shall not prove it here, when r; =1 for ]=1,2,...,L there exists a basis of ¥ that

makes the matrix of A diagonal.



482 Chap.6 - ADDITIONAL TOPICS EIGENVALUE PROBLEMS

Given (6.2.7), (6.2.12) and (6.2.15), it follows from (6.2.5) that

adj(A— A1) =B, (-A)" " +B,(-A)" ?+---+ B _,(-1) +B,
= (A" ) () +(-A))
+---+(—ﬂ)(yN72I + ity 5 (<A) + ity o (FA) + (A +(—A)N72)
AT+ AT 1, (CAVT e
= (A () + ) CAT (A H () + ) (<A)T
+---+((—2“)N’2 + ()P ety (-A) +,uN72)(—A)
(D + NP+, (AN ey (2) + a4 )
(6.2.16)

The complicated formula (6.2.16) simplifies considerably if the parameter A is selected to be an
eigenvalue of A. In this case, after (6.1.13) is used to express the fundamental invariants in terms
of the eigenvalues of A, the result from (6.2.16) is®

adj(A—ijI):ﬁ (H1-A

k;]

=(1=A) (A1 =A) (2 -A)-(21-A)

(6.2.17)

for the case where 1 =1, the j" eigenvalue inthe set 4, 4,,..., 4,

The steps from (6.2.16) to (6.2.17) can best be illustrated if we make the special choice
A=/, and use (6.1.13) or, equivalently, (6.1.14) to evaluate the coefficients in the polynomial of

linear transformations (6.2.16)>. The sequence of formulas that result are

& A different derivation of (6.2.17) can be found in Elementary Matrices by Frazer, Duncan and Collar, Cambridge
University Press, 1938, Section 3.8. In the case of repeated roots of the characteristic polynomial such as the case
(5.2.26), this reference also derives the identity

1 dPadj(A1-A) 4 pa ik X .
E d/’LP |ﬂ,:), _(A_AJI) ]I;!:(A_/lkl) for p_1’2’---,dj_1

i k=l

where dj is the algebraic multiplicity of the eigenvalue ij and dj >2.
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Attt A=Y,
A+ (A bt = (A) (1) 1
) B anc ¥ s

Ky k=2
15k <k, < 2<k; <k, <N

(_%)N_l +;Ul(_/11)N_2 + 1, (_/11)’\'_3 oottty o (A) +
= (_/11)((—/11),\‘72 T4 (_11)’\173 +"'+1uN—2)+:uN—1

N N
=(_ﬂl) z iklﬂkzﬂks .“ikN—Z + Z iklﬂkzﬂks ...lkN—ZﬂkN—l
kiKp kg ky_p=2 ki ko Ka Ky kg =1
2<ky <ky <kg<--<ky_p <N 1<ky <ky <kg<--<ky_p <Ky <N

N

Z }'k/'kzﬂk3 “'ﬂ’kN,zﬂ’kN,l = Ay Ay Ay

ky Kp kg ky_p k1 =2
2<ky <ky <ky<--<ky_p <Ky <N

(6.2.18)

If these formulas are used in (6.2.16)2, the result can be seen to factor into the form (6.2.17) for
A =4

In Exercise 4.10.5, a formula was asserted for the derivative of a linear transformation that
depends upon a parameter. This formula, equation (4.10.39), was stated in the context of three

dimensional vector spaces but it was asserted that it holds for vector spaces of arbitrary finite
dimension. If we accept this generalization, it follows from (6.2.2) that’

d
=———det(A-Al 6.2.19
ILIN—l dﬂ, ( ) ( )

A=0

If we utilize equation (4.10.39) to evaluate the derivative in (6.2.19), it follows that®

Ly, = tr(adjA) (6.2.20)

" Equation (6.2.19) is a special case of the formula which also follows from (6.2.2) that

()" a"

= —det(A— Al
/uj (N—j)!dﬂN_J € ( )

A=0

8 A special case of equation (6.2.20) was given in footnote 3 of Section 5.2.
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If the formula (6.2.14) is used to calculate the right side of (6.2.20), the result is

Ly = —ﬁ{tr(—A)N‘l +a tr(=A) 2 t p, t(=A)] (6.2.21)
which is the result obtained earlier in equation (6.1.11)n-1.
Exercises
6.2.1 Consider the linear transformation whose matrix is given by (5.6.65), repeated,
0 1 0
-2 0 1 0
A= (6.2.22)
0 0 1
1 0 -20
In Section 5, we showed that the eigenvalues of this matrix are given by (5.6.68), repeated,
Ay =—3i
%, =3 (6.2.23)
Ay =l
Ay =1
Show that
i3 1 i3 1]
-3 -iv3 3 iv3
adj(A-A4l)= V3 V3 (6.2.24)
i3 -1 -3 1
3 W3 -3 -3

Confirm (6.2.24) by direct calculation of the left hand side and, also, by use of the identity (6.2.17).

6.2.2 Consider the linear transformation whose matrix is given by (5.3.45), repeated,
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1 11
A=0 1 1 (6.2.25)
0 01
In Section 5, we showed that the eigenvalues of this matrix are given by (5.3.47), repeated,
A =1 (6.2.26)
and it has an algebraic multiplicity of 3. Show that
0 01
adj(A-41)=|0 0 O (6.2.27)
0 00O

Confirm (6.2.27) by direct calculation of the left hand side and, also, by use of the identity (6.2.17).
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Section 6.3. The Exponential Linear Transformation

The exponential linear transformation is one example of a function of a linear
transformation. In other words, given a linear transformation A:¥ — ¥, the exponential

function, which we shall define, is a function g that maps A e 3(1/;1/) into a linear

transformation g (A) The exponential linear transformation is an example of an analytical

function of a linear transformation A:¥ — ¥ . These are functions that can be expressed as the
series

g(A)=Y pA" (63.1)

Example 6.3.1: A special case of equation (6.3.1) is the polynomial of a linear transformation
A:¥ — v defined by

g(A)=21+A+3AT+ A’ (6.3.2)

The exponential linear transformation is a special case of (6.3.1) defined by

1 1 >
A _ il 2 el 3 e —
e _I+A+2!A+ A+ E

A" 6.3.3
3! 1 (63.3)

The motivation for this definition is the power series representation of the ordinary exponential
function e*. Recall that this series takes the form

el:1+i+%iz+%i3+---:z A" (6.3.4)

Equation (6.3.3) is formally obtained from (6.3.4) by replacing A with A and the constant term by
I . We shall often encounter the matrix exponential in the form

e™ :I+At+iA2t2+£A3t3+---=Z—A”t” (6.3.5)
2! 3! = n!

which you obtain from the definition by the substitution A — At

The definition (6.3.3) and its equivalent definition (6.3.5) yield the following properties of
the exponential linear transformation:

a)

487
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e =1 (6.3.6)
b)
=e’l (6.3.7)
The proof of (6.3.7) follows from (6.3.5) and (6.3.4).
c)
eAHs) — ghlghs (6.3.8)

The proof of (6.3.8) involves forming e****) from the definition (6.3.5) as follow

eA('[+S) =1 +A(t+s)+%A2(t+S)2+%A3(t+s)3+.,.:Z_'An(t+s)n (639)
! ! “~nl

Next, we can again use the definition (6.3.5) and form the product

ete :[I +At+%A2t2 +%A‘?’t3 +---j(l +As+%Azs2 +%A353 +j (6.3.10)

The algebra is not pretty, but if (6.3.10) is expended and compared to (6.3.8) the asserted result is

obtained.
d)
(e )71 =g (6.3.11)
This result follows from (6.3.6) and (6.3.8) by the choice s =-t in (6.3.8).
€)
eA*Bt —MeB jf  AB=BA (6.3.12)

The proof of (6.3.12) follows by use of the definition (6.3.5) to form both sides of (6.3.12). The
next step is to expand the result and utilize the given condition AB =BA

f) If A isgiven by the product
A=TBT™ (6.3.13)

then



Sec. 6.3 . The Exponential Linear Transformation 489

A"=TB"T" (6.3.14)
and it follows from (6.3.3) that
et =Te®T™ (6.3.15)

9) As introduced in Section 3.2, if {e, e,,....e, } is abasis for ¥, the matrix of

A ¥ — ¥ with respect to the basis is written M (A,ek,ej ) It follows from equation (3.4.19) and
the definition (6.3.3) that

M (e*.e.e;)= gV (Aesi) (6.3.16)

In words, (6.3.16) says simply that the matrix of the exponential linear transformation is the
exponential linear transformation of the matrix.

h) If, for example, the linear transformation A: ¥ — ¥, has N linearly independent
eigenvectors {v,,V,,..., vy }, then, as explained in Section 5.1, the matrix of A with respect to this

basis takes the diagonal form (5.19), repeated,

A4 0 O 0
0 4 O 0
0 0 0
D=M(A,v,,v,)= % (6.3.17)
|0 0 0 Ay |
It is elementary to see that
_21” 0 0 .
0 A4 0
o 0 A
D" = & (6.3.18)
0 0 0 - - Ay

As a result, the definitions (6.3.3) and (6.3.4) combine to yield
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nZ::; n!/11
o0 1 N
0o >Y=14 0 o 0
no !
=YD= 0 o Yiu 0
oo N! amo N!
o0 l n
0 0 0 > =A
L n=0 n! n
e 0 0 0]
0 e 0 0
|0 0 e 0
0 0 0 - . e (6.3.19)
i) If we return to the case where {e,,e,,...,e, } is an arbitrary basis for ¥~ and continue

to assume A has N linearly independent eigenvectors {v,,V,,...,V }, then the matrix of A with

respect to {v,,V,,...,V, } is connected to the matrix of A with respectto {e,.e,,....e,} by (5.1.10),
repeated,
M(A Vv )=T"'M(Ae,.e)T (6.3.20)

where T is the transition matrix. Given (6.3.13), (6.3.15), (6.3.16) and (6.3.19), it follows that

In the special case where A has N distinct eigenvalues and, thus, N linearly independent

M (e* e, e,)=e" o) —TeoT
" 0 0 0|
0 e 0 0
. 0 0 e~ 0 - (6.3.21)
0 0 © ™ |

eigenvectors, equation (6.3.21) provides a useful way to actually calculate the exponential linear

transformation. The disadvantage of (6.3.21) is that it requires the calculation of the N
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eigenvectors in order to construct the transition matrix T . In cases where the eigenvalues of A are
not distinct, the situation is more complicated. For this reason, it is useful to outline an alternate
way to determine the exponential linear transformation. This alternate method has the advantage,
when applied to the case where the eigenvalues are distinct, that it does not need an explicit
calculation of the eigenvectors.

The Cayley-Hamilton theorem, equation (6.2.8), offers a method to simplify the series
expansion (6.3.3). Given this simplification, we can then develop a method of calculating the
exponential linear transformation. As a first step, it is helpful to illustrate this simplification by an
example.

Example 6.3.2: Consider the polynomial defined by (6.3.2) and assume for the moment that we
are dealing with a vector space ¥~ such that N =dim¥ =2. In this case, the Cayley-Hamilton
Theorem (6.2.3) specializes to

A% — A+ 1,1 =0 (6.3.22)
This relationship reduces (6.3.2) to

g(A)=21+A+3A*+ A°
=2l +A+3(,ulA—,uz|)+A(,ulA—,uzl)
=21+ A+3( 1A= 1)) + 1 (1A — 11,1) = 11,A
=(2-3u, — 1)1 +(1+3y1—,u2+,u12>A

(6.3.23)

Because the degree of the polynomial was greater than N =dim¥ = 2, the terms explicit in A®
and A® can be eliminated by use of the Cayley-Hamilton result (6.3.22).

The point illustrated in Example 6.2.2 can be applied to (6.3.3). Equation (6.2.8), written in
the form

N-1

(_A)N =~k (_A) == gy (CA) = (6.3.24)
can be used to eliminate the term in (6.3.3) corresponding to n= N in terms of lower powers of A
. The next term in the series, the one with the factor A"*, can be eliminated in terms of lower

powers of A because we can write A" = AA" and again use (6.3.24). If we continue this
process, the series (6.3.3) always takes the form

N-1

e = o, (s o iy ) A" (6.3.25)

n=

where the coefficients «,, o, ,,...,a_, are complicated functions of the invariants. Given a linear
transformation A:¥ — 77, the problem of expressing its exponential as a function in the form
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(6.3.25) reduces to finding a method to determine the functions ¢, ,,,,...,a, ; in the polynomial
(6.3.25). It is this calculation that we shall now explain.

Because we do not have anything equivalent to the Cayley-Hamilton theorem for scalars,
i.e. for N =1, we have no obvious way to reduce (6.3.4) to a polynomial. We can, however,
establish such a result in an important special case. Given (6.2.2), by long division, (6.3.4) can
always be written

i%z" =Q(4) f(2)+R(A) (6.3.26)

The remainder from the division, R(}t) is a polynomial of degree N —-1=dim% —1. The quotient

Q(/I) is an infinite series in A obtained by dividing the series Z ! }L” by the characteristic

nO

polynomial f( ) Given the form of the series (6.3.4) for e* and the series (6.3.3) for e*, it is
also true from (6.3.26) that

0 1 -

anA =Q(A)f(A)+R(A) (6.3.27)
However, the Cayley-Hamilton Theorem (6.2.3) tells us that f (A) =0. Therefore (6.3.27)
reduces to

=1 N-1 i
=ZFA =R(A)=Z_;an(miuz,---,uN)A (6.3.28)

where (6.3.25) has been used. The explicit form of the remainder as a function of A given in
(6.3.28), the formal similarity of (6.3.3) and (6.3.4) and the result (6.3.26) combine to give an
explicit form of the remainder as a function of the scalar 4. This explicit form is

N-1

= o, (s tyeoes 1y ) A" (6.3.29)
This result allow us to write (6.3.26) as
B * 1 N-1
e' =2 A" =Q(A) f (A)+ 2, (4t st ) A" (6.3.30)
n=0 '%- n=0

The utility of (6.3.30) arises when the parameter A4 is an eigenvalue of the linear transformation
A:v — v . Inthis special case, A4 is aroot of the characteristic equation and (6.3.30) reduces to
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0 N-1
" = zm/ln = a,(th, ty, - sty ) A" for 2= an eigenvalue of A (6.3.31)
n=0 '!- n=0
If the linear transformation A:%¥ — ¥ has N =dim¥~ distinct eigenvalues 4, 4,,..., 4, , then we
can apply (6.3.31) N times and obtain the system of equations

N-1
&% = 3t (g e ) 2]

n=0

N-1
& =3 ar (o v bty ) 2
n=0

(6.3.32)
P N-1
e =D (s oo My ) A
n=0
This set of equations, when expressed as a matrix equation, takes the form
1A A A e | [et]
1 4, A YRl | e*
1 2 N-1 a %
1 A A A lona ] e™ ]

The matrix of coefficients is the transpose of the Vandermondian matrix that was introduced in
Section 1.10 and again in Section 5.4. Because the matrix and the transpose have the same
determinant, the determinant of the matrix of coefficients, as explained in Section 5.4, is

_l j—l 112 . . AlN—l_
1 4 4 .
2 N-1 N
dget|t B A & =T1(4-4) (6.3.34)
. . . :’>JJ:1
RN /15 /1,\’]"1_

In the case under discussion, we have assumed the eigenvalues are distinct, thus the determinant
(6.3.34) is nonzero, and the system (6.3.33) has a solution. This solution can then be used along
with (6.3.28) to determine the exponential solution.
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Example 6.3.3: If we examine the case where N =2 and the two eigenvalues are distinct, the
system (6.3.32) reduces to

(6.3.35)

and the solution is

(6.3.36)

/12 _/11
Given (6.3.36) and our assumption N =2, (6.3.28) reduces to

e* :ao(ﬂlvﬂz)l"'aﬁ(ﬂuﬂz)A
_ Ae" - A" |+eﬂ2 —eh
A=k A=k
_on AnAl s A A
A4 =4

(6.3.37)

Example 6.3.3 presumes the two eigenvalues are distinct. If this is not the case, i.e., if A, =4,, the
logic that led to (6.3.35) only produces a single equation that connects the two unknowns
oty (14, 11,) and o (14, 14,) . The key to how the argument above is modified in this case is

equation (6.3.26) and the characteristic equation in the case of multiple roots, equation (5.2.26). As
(5.2.26) illustrates, the polynomial f (/1) vanishes at, for example, A= 4. In addition, for the root

A=2,

d’'f(2)
dA’

-0 for j=12,...,d,-1 (6.3.38)
A

Equations (6.3.38) and (6.3.30) combine to yield

i /N1
eh d (Zan(yl,,uz,...,,uN)i”] for j=12,..,d, -1 (6.3.39)

- dij n=0

A=ty

with similar results for each of the other repeated roots.
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In order to be more explicit, consider the case where the linear transformation A: ¥ — ¥
has L distinct eigenvalues 4, 4,,...,4,,4,,...,4_, where d, is the algebraic multiplicity of the
d, N-d,
repeated root. For this case, equations (6.3.39) yield the d, —1 equations

% = oty (fys flyoes iy )+ 200 (11, gty ) 2+ -+ (N D)ty (pys plyseoes iy ) 42

& =201, (oo iy ) o0+ (N =1) (N = 2) 0ty (44, oo bty ) A

(6.3.40)
e =(N-1)(N=2)---(N=d, +1) oy, (1, ooty ) 4"
For the distinct roots 4, 4,,...,4, , we have the N —d, +1 equations
N—d,
N-1
e" =Zan (#ys by ooy iy ) A
n=0
N-1
€ = )ty (4, oo i ) 2
n=0
(6.3.41)

N-1
e =2, (th gy iy ) A
n=0

The N equations (6.3.40) and (6.3.41) yield the matrix equation for the N unknowns
Oy, Ay Oy
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1 4 X Za % e"
0 1 24 (N-1)4" o e
0 0 2 (N-1)(N-2)2"" a, e
. a,
0 0 (N=1)(N=2)-(N=d,+2) A" || - | |en (6.3.42)
VRS A e
: ay -,
RO A Jlawa] [e*]

The matrix of coefficients is the (transpose) of a matrix known as a confluent Vandermondian
matrix. It can be shown to be nonsingular, thus it determines the unknowns «,, ...,y ;. Asan

illustration of the repeated root case, consider the following example:

Example 6.3.4: We again examine the case where N =2 except in this case, the two eigenvalues
are not distinct. The system (6.3.32) yields the single equation

e =y (1) + o (p, 11, A (6.3.43)
The second equation follows from (6.3.39). In this case it yields
e =ay (1444, (6.3.44)
Therefore, from (6.3.43)
oy (1) =(1- 4, )€™ (6.3.45)

Given (6.3.44), (6.3.45) and our assumption N =2, (6.3.28) reduces to

e” =ao(yl,y2)l +0£1(,LL1,IL12)A
=(1-2)e" 1 +e*A (6.3.46)

=e* (1+(A-4]l))

Example 6.3.5: Consider the linear transformation defined in Example 5.3.1. Namely, the linear
transformation A:¥ — ¥ defined by
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Ae, =e +e, +4e,
Ae, =2e, —4e, (6.3.47)
Ae, =—e, +e, +5e,

where {el,ez,e3} Is a basis for 7. The eigenvalues are given by equation (5.3.4), repeated,

A =1
A,=2 (6.3.48)

=3

Because the three eigenvalues are distinct, the exponential linear transformation is given by
specializing (6.3.28). The result is

% = g (a4, 1y i)V 0ty (11, 115 ) At @y (141, 15, 115) A (6.3.49)

where the coefficients ¢,,a,,, are determined from (6.3.31). When (6.3.31) is specialized in this
case, the results are

" =y (s s p1) + 0y (py, 1y 115 ) Ao+ 0y (s py, 105) A
e” = a, (ﬂ17ﬂ27ﬂ3)+a1(/u’1’:u2’:u3)ﬂ’2 Ta, (ﬂuﬂz’ﬂs);tzz (6.3.50)
™ = ay (1, g t5)+ o (s phy, 11) 2+ 0ty (1 ph 105) 2

where the eigenvalues are given by (6.3.48). If (6.3.48) is used, the solution of (6.3.50) turns out to
be

ao(:uluuz,ﬂs) 11 17 [e 35 3 13 et
o (s ts i) |=|1 2 4] € =)= 4 =€
(o tms)| (103 9) €] | 4 &
> 3 9
- X - (6.3.51)
3e—-3e*+¢e° 6.0732
=|——e+4e*-=¢*|=| -7.3678
4.0129
—e—e’+=¢°

Therefore, (6.3.49) reduces to
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e” =6.07321 —7.3678A + 4.0129A° (6.3.52)

If we utilize (6.3.16) and the matrix representation of the linear transformation defined by (6.3.47),
equation (5.3.2), it follows from (6.3.52) that

Ffff 100 1 2 -1 1 2 4T
e * °1=6.0732/0 1 0]-73678/1 0 1 [+4.0129/1 0 1
1 4 -4 4 -4
00 ° ° (6.3.53)
-5.3078 9.3415 -8.6836
=112.6965 -1.9525 8.6836
50.7859 -18.6831 37.4528
Example 6.3.6: The linear transformation in Example 5.3.2 has the eigenvalues
=-3
4 (6.3.54)
A, =3
where the algebraic multiplicity for 4 is 1 and that for A, is 2. The exponential linear
transformation is given by
% = g (a4, 1y i) 1+ 0ty (11, 115 ) At @y (114, 15, 10) A (6.3.55)

where the coefficients «,, o, o, are determined from (6.3.31) and, because of the repeated root,
(6.3.39). When (6.3.31) is specialized in this case, the results are the two equations

" =y (s 1)+ 0y (1, g p13) Ay + 0ty (111, 1y 105 ) A

. , (6.3.56)
0% =ty (1) o 1) + 0 (14, 1y, 5) 2+ 0ty (4, 1, 115) 2
The third equation is our set follows from (6.3.39). The result is
€% = a, (4, by, 1t5) +200, (14 1o 1) 2 (6.3.57)

Given the numerical values in (6.3.54), the solution of (6.3.56) and (6.3.57) is given by
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13 3
(o 15)] 1 -3 97 [e? 41 i’ 2 e
a1(/"’1|.’ﬂ2’ﬂ3) =1 3 9 e3 = —g g 0 e3
0‘2(/”1!/12',”3) _0 1 6 e’ 1 1 1 e’
3% 36 6
- - (6.3.58)
39_3_§e3
4 4 ~15.052
_| Ler Lee || 33303
6 6 2.791
ERCIEIE
136 36
Therefore, (6.3.55) reduces to
e* = —15.0521 +3.3393A + 2.791A? (6.3.59)

If we utilize (6.3.16) and the matrix representation of the linear transformation defined by (5.3.25),
equation (5.3.26), it follows from (6.3.59) that

2

Fz ? % 10 0 1 -2 2 1 -2 2
et 2 U-_15052|0 1 0[+3.3393|-2 1 2|+2791|-2 1 2
0 01 2 2 1 2 2 1 (6.3.60)

13.4070 —6.6786 6.6786
=|—6.6786 13.4070 6.6786
6.6786 6.6786 13.4070

Exercises
6.3.1 Show that the determinant of the exponential linear transformation obeys

dete” =e"* (6.3.61)

6.3.2 Determine the exponential linear transformation of the linear transformation defined in
Example 5.3.3 of Section 5.3.

Answer:

e =1.3591(1+A?) (6.3.62)
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Section 6.4 More About the Exponential Linear Transformation

In the case when there the eigenvalues are distinct, embedded in the calculations utilizing
(6.3.28) and (6.3.32) is a somewhat more elegant way to calculate the exponential matrix. The
essential fact that allows this more elegant formula to be obtained is a result known as the Lagrange
Interpolation Formula. Lagrange interpolation was mentioned in Exercise 2.4.2 and, later, in
Example 2.6.3. The essentials of the derivation of this formula begins with a polynomial of degree
N —1 that we shall write simply

f(X)=ay+aX+a,X ++a XN (6.4.1)

The idea is to calculate the coefficients «,,,,a,,...,a_, from knowledge of the values
f(x), f(x,),... f(xy)at N distinct points x,X,,...,X, . If (6.4.1) is evaluated at these points, the
coefficients «,, o, @,, ..., ¢, _, are the solution of

. X -o a f(x)

X, X22 T XzN_l o f (Xz)

X, X5 oo Xl | | f (x,) (6.4.2)
_l XN Xl%l . . Xs_l_ _aN—l_ i f (XN )_

If we were actually to calculate the coefficients we are led again to the solution of an equation of
the form (6.3.33). In this case, however, the polynomial is formally rearranged such that the
polynomial (6.4.1) is written

N

f(X) =0 +ax+a) +-+ay XN =31 (x) F(x) (6.4.3)

=L

where the quantities |, (x), for j=12,..,N, are N -1 degree polynomials to be determined. One
obvious property that follows from (6.4.3) is

1 if j=k
I = 6.4.4

These functions are solutions of
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1 1 1 1)) [ 1]
XX, X X || L(X) X
XX xX X xa || (%) _ x? (6.45)
_XF_l Xy—l X?—l Xs_l__IN(X)_ _XN—l_
Equation (6.4.5) follows from the multiplication of (6.4.2) by the matrix
N
[L(X) L(x) L(x) - - 1y(x)] making use of (6.4.3) to eliminate >’ I, (x) f (x;) from the

j=1

result and forcing the result to hold as an identity in the coefficients «,,,,a,,...,ay ;. Given what
we know about the determinant of the Vandermondian matrix, equation (6.3.34), and Cremers rule,
equation (1.11.6), we can write the solution for |, (x) , for example, as

1 1 1 1
X X X Xy
x> x5 X X2
N-1 N-1 N-1 N-1
R XN X X\
1 1 1 - - 1 (6.4.6)
Xl X2 X3 XN
2 2 2 2
Xl XZ X3 XN
N-1 N-1 N-1 N-1
Xl XZ X3 XN

with similar formulas for the other functions |, (x) for j=2,..,N. The two determinants in
(6.4.6) can be evaluated by the formula (6.3.34) to yield

= (6.4.7)
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The general expression for the functions I, (x) for j=1,2,...,N follows by a similar argument and

IS

ﬁ(x—xk)

N T

[T0g-x) (5=%) 05=x) 3 =x) (=%,

1
j

#

Equations (6.4.8) and (6.4.3)> combine to yield the Lagrange Interpolation Formula
N
[1
B
F()=D0(x) F(x)=Df (%) — (6.4.9)
' ' I1

Equation (6.4.9) is an identity for the N —1 degree polynomial (6.4.1). Given the duality
between polynomials and polynomials of linear transformations, we can apply (6.4.9) to the
polynomial (6.3.28) and write

k=1
e* = ZN:e"' N (6.4.10)
- H(ﬂi - %)
k#j

Equation (6.4.10) is a special case of a result known as Sylvester’s Theorem.® Equation (6.3.37)3, a
result that was derived without the use of (6.4.10), is of the same form. The point is that the results

in Section 6.3 contain results like (6.4.10). They are simply not manipulated into the form (6.4.10)
10

9 See, for example, Elementary Matrices by Frazer, Duncan and Collar, Cambridge University Press, 1938, Section 3.9.
10 Sometimes equation (6.2.17) is used to write (6.4.10) in the equivalent form

eA :ZN:eﬂj a(ij(A_/lil)
j=1 El[(ﬁ'k_/l])
K+ j
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As explained, (6.4.10) assumes that the eigenvalues are distinct. We shall not give the
generalization of (6.4.10) to the multiple eigenvalue case.'! It is useful to note in passing that in the
special case where a linear transformation has a single eigenvalue A, the exponential matrix turns
out to be

1 1

eA=e’1£I+(A—/1I)+E(A—M)2+§(A—}LI)3+---+ !

(N-1)!

Equation (6.3.46) is a special case of (6.4.11). The Exercises below relate to the problem of
finding the exponential matrix in cases of multiple eigenvalues.

(A—M)'HJ (6.4.11)

Exercises

6.4.1 In this exercise, we shall develop the modification of Sylvester’s Theorem, equation (6.4.10),
in the case where N =3 that is appropriate for the case where the characteristic polynomial takes
the form

f(2)=det(A-a1)=(4—-2) (4 —2) (6.4.12)

In other words, the first eigenvalue has algebraic multiplicity of two and the other eigenvalue has
algebraic multiplicity of one. The first step is to find a generalization of the Lagrange interpolation

formula to replace (6.4.9). If f(x) is the quadratic
f(X)=a, + X+ a,X° (6.4.13)

and we are given two values f (x,) and f (x,) for distinct values of x, and x,. In order to

complete the interpolation based upon (6.4.13), we are also given the slope, f (xl) at x,. Aswith

the derivation of (6.3.42), these conditions and (6.4.13) yield the following three equations for the
unknown coefficients «;,a, and a,.

1 % X |[a f(x)
0 1 2x || |=|f'(x) (6.4.14)
1 %X X |la f(x,)

Equation (6.4.14) is an example of a confluent Vondermonde matrix (transposed). Show that

11 See, Elementary Matrices by Frazer, Duncan and Collar, Cambridge University Press, 1938, Section 3.10. Equation
(6.4.11) above coincides with the result on page 85 of Frazer, Duncan and Collar.
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1x k]
0 1 2x
1% X
X (2% —%,) XX, X,
2 2
(Xl_XZ) (Xl_XZ) (X1_X2)
2%, XX 2%,
(Xi_xz)z (Xl_XZ) (X:L_XZ)Z
1 1 1
L (Xl_xz)z (Xl_xz) (X:L_XZ)Z_
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As with the derivation of (6.4.9), we are interested in how the polynomial (6.4.13) can be

rearranged into the form

f(x)=N,(x)f(x)+M,(x)f"(x)+N,(x)f(x,)

(6.4.15)

(6.4.16)

where the quadratics N,(x), M, (x) and N, (x) need to be determined. Show that these three

quadratics are given by

N[ %
M, (x)|=||0 1
N, (x) 1 X

(6.4.17)

Finally, show that for the linear transformation A:¥ — ¥~ whose characteristic polynomial is
given by (6.4.12) the exponential linear transformation is given by

e’ :e‘i{l—w}

(21_’12)2

6.4.2 Adapt the results of Example 5.3.2 to the notation used in (6.4.18) and show that the

exponential matrix is given by

i (A=AN(A=A1) . (A=Al

(h=%)

(h=%)

(6.4.18)
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. e*+2e® e?-¢® e*-¢? 13.4070 -6.6786 6.6786
et = 3 e-e® e?+2e® e’-e? |=|-6.6786 13.4070 6.6786 (6.4.19)
e—e? e'-e? e?426° 6.6786 6.6786 13.4070

This exercise is essentially the same as Example 6.3.6 except that here a basis has been selected to
represent the linear transformation that was unspecified in Example 6.3.6. Also, the method of
solution was built around the method introduced in Section 6.4.

6.4.3 Repeat Exercise 6.4.1 for the case where all of the eigenvalues are identical. In particular,
show that

eAze‘i(n(A—zll)%(A—ﬂll)zj (6.4.20)

Equation (6.4.20) confirms (6.4.11) for the special case N =3.%2

12 The reference, Elementary Matrices by Frazer, Duncan and Collar, Cambridge University Press, 1938, in its Section
3.10 derives a generalization of Sylvester’s Theorem for the case of repeated eigenvalues. It is referred to as the
Confluent Form of Sylvester’s Theorem. In the notation used here (see Equation (5.2.26)), this formula is

1 di o adj(Al-A)

° Zz(dj—l)! a2 i)

=1
k=1
k=]

A=A
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Section 6.5 Application of the Exponential Linear Transformation

One important application of the exponential linear transformation is to the study of certain
types of systems of linear constant coefficient ordinary differential equations. Our discussion of
ordinary differential equations in Sections 5.5 and 5.7 was limited to the case where the matrix that
defined the system or ordinary differential equations has N distinct eigenvalues. As illustrated in
Section 6.3, the exponential linear transformation can be calculated in cases where the eigenvalues
are not distinct and, thus, the eigenvectors do not form a basis. Therefore, the exponential linear
transformation can be used to generate the solution of systems of linear constant coefficient
ordinary differential equations in those cases where the matrix that defines the system does not
have N distinct eigenvalues. Before we illustrate this generalization, we need to establish a few
additional properties of the exponential linear transformation.

We begin with the exponential linear transformation in the form (6.3.5). When studying
constant coefficient linear ordinary differential equations, one of the most important properties is

deAt

" = Ae™ =eMA (6.5.1)

The exponential linear transformation is exceptional in that it commutes under multiplication in the
special way the last formula shows. This feature of polynomials of linear transformations was
pointed out in Section 6.1. The result (6.5.1) follows by differentiation of the formula (6.3.5). The
result of this differentiation is

At
de :A+£A2t+3A3t2+iA4t3---
dt 21 3! 41
1 242 1 343
Al T+AL+ = A2+ =AY (6.5.2)
21 3!
=AeAt
Likewise,
At
9™ _arZansdans dave..
dt 21 3l 41
1 242 l 343
= l+At+—=At" +=At"--- |A (6.5.3)
21! 3!
:eAtA

The fact that e™ obeys the ordinary differential equation (6.5.1) turns out to make the exponential
linear transformation of great importance when one tries to find the solution to (5.5.1).
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In Section 5.5, our study of ordinary differential equations involved finding the solution of

%: Ax+g(t) (6.5.4)

where x(t) isa N x1 column matrix, A isan NxN matrixand g(t) isa N x1 column matrix.

The initial value problem associated with (6.5.4) is the problem of finding the function x = x(t)
such that

2—?: Ax+g(t) and x(0)=Xx, (6.5.5)

where X, is given. As discussed in Section 5.6, the solution of (6.5.5) will be of the form
x(t)=x, (t)+x,(t) (6.5.6)
where X, is the general solution , i.e., the solution of the homogeneous equation

ax,

F— AXh (657)

and x, is a particular solution of

d
%: Ax, +g(t) (6.5.8)

If (6.5.7) is multiplied by e and (6.5.3) is utilized, we find that x, (t) obeys

d(e™x,)

=0 6.5.9
” (6.5.9)

Therefore, after (6.3.11) is utilized, the general solution is
X, (t)=e"h (6.5.10)

where h is an arbitrary N x1 column matrix. The particular solution is obtained from (6.5.8), for
example, by the same kind of procedure used in Section 5.7. The result turns out to be

X, (t)= [ e g(r)de (6.5.11)
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and, from (6.5.6), (6.5.10) and (6.5.11),
x(t)=e"h +'[:; e " g(r)ds (6.5.12)

Finally, if the initial condition x(O) =X, Is applied to (6.5.12), the result is h =x, and (6.5.12)
becomes

X(t)=e"x,+[ e g(r)dz (6.5.13)

In the special case where the matrix A has N linearly independent eigenvectors, equation (6.3.21)
reduces (6.5.13) to our earlier result (5.7.10).

The method used in Chapter 5, in the special case where the matrix A has N distinct
eigenvalues and, thus, N linearly independent eigenvectors, is the preferred method to evaluate the

exponential matrix €™ . However, when the matrix A does not have N linearly independent
eigenvectors, we need a method based upon the discussion in Section 6.2. The fundamental
equations are (6.3.25), (6.3.31) and (6.3.39). Even when the matrix has N distinct eigenvalues,
equations (6.3.25), (6.3.31) and (6.3.39) or, in this case, (6.4.10) have the advantage of not
requiring that the eigenvectors be explicitly calculated. In certain numerical situations, this fact can
be beneficial.

Before we utilize (6.3.25), (6.3.31) and (6.3.39) we must adjust these equations to
accommodate the substitution A — At. We could rederive these equations for the linear

transformation e* . However, this approach is not necessary. We simply need to agree that the
symbols z, u,,..., uy, are the fundamental invariants of A and not those of At. Likewise, the

symbols 4,4,,...,4, arethe N, not necessarily distinct, eigenvalues of A rather than the

eigenvalues of At. With these understandings, the substitution A — At converts the fundamental
invariants by the rule y; —>tNyj and the eigenvalues by the rule 4; —t4;. Next, we redefine the

unknown coefficients in (6.3.25) to reflect a dependence on t. The result is

N-1

et :Zan (,ul,,uz,...,,uN ,'[)An (6.5.14)
n=0
Likewise, (6.3.31) transforms into
N-1
e =>"a, (s, ty, o sty 1) A" for 2= an eigenvalue of A (6.5.15)
n=0

and (6.3.39) transforms into
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dJ’
dﬂ,j (eit)

for j=12,..d,-1 (6.5.16)

) dj N-1
=tleMt = — oy 1y T A"
A= ¢ da’ (;an (luj- & i ) j/l—ﬂ,l

The transformation A — At converts Sylvester’s Theorem, equation (6.4.10), to

=

[(A-A1)

eM = ie“ i B (6.5.17)
. (4 -4)

x~x

*

=

i

~x

#

—

In the case of the repeated root example discussed in Exercise 6.4.1, the answer (6.4.18) becomes

e =eﬂﬂ[|—wl+te%t (A_A')(A_ﬂ?')w“zw (6.5.18)
(h=%) (h=2) (h=2)

Likewise, the result (6.4.11) becomes

e? :e‘[l +(A—}Ll)t+%(A—M)2t2+%(A—/1I)3t3+---+(

(A—M)N_lt“lJ

(6.5.19)

1
N -1)!

Example 6.5.1: In Example 5.6.1, we calculated the general solution of the second order ordinary
differential equation

i+ @ =0 (6.5.20)

where @, is a positive constant. The matrix A in this case is given by equation (5.6.19), repeated,

et o
A= (6.5.21)

-w} 0
The eigenvalues in this case are given by equation (5.6.21), repeated,

A =la,

T = —ioy (6.5.22)

The transition matrix, as follows from (5.6.24) and (5.6.25), is given by
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1 1
T=|. ) (6.5.23)
0, —iw,

Because this example is one where the eigenvalues are distinct, we have three equivalent ways to
calculate the exponential matrix e* .

Method 1: The first method is simply to use (6.3.21) which, in this case, yields

iy -1
eM —TePtT L = 1 1 ' 0 1 1
iw, —iwy || 0 e |iw, -,
11 1 e 0 (i, 1
2wy, |iw, -, | 0 e |liw, -1

~ 1 r 1 1 ar ia)oei(uot eia)ot :|

: H 1 - —impt —iapt
2w, |10, —lo, || iwe —€

_ %(ei%t +e—iwot) ra)o(eiwot _e—ia)ot)

_—%(e‘%‘ —e ) %(e“""t +e )

cos(myt) isin(a)ot)
- 0

-, sin(apt)  cos(awpt) (6.5.24)

Method 2: The second method utilizes (6.5.14) and (6.5.15). From (6.5.14), the exponential
matrix is given by

At

e™ =y (1, o )+ (14, 115,1) A (6.5.25)

Because the eigenvalues are distinct, the coefficients o, (£, 1,.t) and &, (14, 4,,t) are determined
by specializing (6.5.15). The results are

et = Oy (M’ﬂzvt)"'al(ﬂl’ﬂz’t)iwo

o ) (6.5.26)
e =aq (:ulHuZ't)_al (:uinuz’t)lwo

The solutions of (6.5.26) are
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o (14, t5,t) = %(ei“’Ot +e7) = cos(oyt)

o (6.5.27)
ozl(yl,yz,t)szo(e”’0 —g )=;Osm(a)ot)
If (6.5.27) and (6.5.21) are combined with (6.5.25), the result is again
e™ =y (1, o )|+ (14, 115,1) A
=cos(a)0t)[(1) ﬂeriosin(wot)[_S)g ﬂ (6.5.28)

cos(m,t) isin(a)ot)
= a)o

—w,Sin(wgt)  cos(mgt)

Method 3: If this problem is worked by use of Sylvester’s Theorem, equation (6.5.17), the result is
again

b=

(A-41)
e et b i AmAl i A=A
 l(y-4) AR AA

~x

_ gt A+im,l g A-iol
21, 21, (6.5.29)

B eia)ot ia)o 1 e—ia)ot _ia)o 1
2iw, | —@? i@y | 2iw, | @ i,

1 it —iawpt it —imgt

E(e% e ) 2iw, (e% ¢ UO) cos(wyt) isin(a)ot)

—%(e“""t —e ™) %(e""“t +e™) | [~opsin(at)  cos(apt)
[

Example 6.5.2: In Example 5.6.2, we calculated the general solution of the second order ordinary
differential equation

((t) + 26, (t) + @,2u(t) = 0 (6.5.30)

where @, is a positive constant and ¢ is a nonnegative constant. The matrix A in this case is
given by equation (5.6.35), repeated,
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.
A= (6.5.31)

-0} 2w,

The eigenvalues in this case are given by equation (5.6.21), repeated,

A =—Cw, tia, Vl_gz
A, ==L, —iwy\J1-¢?

As with Example 5.6.2, equations (6.5.32) are written to fit what is called the under damped case.

For this case, the damping is assumed to be such that \/1-¢? >0. We shall work this example
utilizing equations (6.5.14) and (6.5.15). From (6.5.14), the exponential matrix is given by

(6.5.32)

At

e™ =y (1, o )+ (14, 115,1) A (6.5.33)

Because the eigenvalues are distinct, the coefficients o, (14, 14,,t) and o, (14, 11,,t) are determined
by specializing (6.5.15). The results are

gegloni< = % (:Ll11ﬂ2’t)+a1(ﬁﬁvﬂ2’t)(_§wo +imy1-¢° )

o (6.5.34)
R :ao(M’ﬂzvt)"'al(ﬂpﬂz't)(_gwo —ia, \/1_4/2)
The solutions of (6.5.34) are
—Co, g : 2 2
oy (1, 1,,t) =€ “t[—sm @yJ1—- 7t |+ cos| a,1- &7t J
0 2 V1-¢* ( 0 ) ( 0 ) (6.5.35)

—Capt

AVYANE %1—\/?5in(% 1—§2t)

If (6.5.35) and (6.5.31) are combined with (6.5.33), the result is
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At

™ = o (44, 45, ) | + 0y (4, 115, t) A

_ g ¢t (Lsin(a)o 1—§2t)+COS(a)O ll_é,gt)J{l 0}
Vi-¢* 0 1
o dont _ : 0 1
+—w0\/1_73|n(a)0 1-¢ t)[—wg —2(@0}
(¢ cos w1 271) 1 (6530

isin(a)O 1—§2t)
o +{;sin(a)0 1—§2t) cy

1-¢* Jl—?cos(a)o 1—§2t)

_a,osin(a)o 1“:2t) _gsin(wo 1_52t)

The last two examples have the property that the eigenvalues are distinct, and the associated
eigenvectors are linearly independent. An example where this is not the case is one based upon
Examples 5.3.3 and 5.6.4. This example is as follows:

Example 6.5.3: In Example 5.6.4, we considered the system of first order ordinary differential
equations

dy(;t“) — O+, () + ¥
dy(;t“) —y,® + Y50 (6.5.37)
dy,(t)

pranial (t)

The matrix A in this case is given by equation (5.3.45), repeated,

1
A=|0
0

o K

1
1 (6.5.38)
1

The eigenvalue in this case are given by equation (5.3.47), repeated,
A =1 (6.5.39)

and it has an algebraic multiplicity of 3. As explained in the discussion of Example 5.3.3, one
cannot construct a basis of eigenvectors for this problem. Given this fact, we can never the less
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proceed with the calculation of e based upon equations (6.5.14) through (6.5.16). In this case,
equation (6.5.14) reduces to

At

™ = oty (4 115, V) |+ 0ty (4, 11, 115, 8) At @y (11, 11, 105, ) A? (6.5.40)

For the eigenvalue 4, =1, equation (6.5.15) reduces to

€' =y (t, 1y 11, 8) + 0ty (11, 1y, 115, 8) + @y (214, 115, 115, 1) (6.5.41)

Because the 4, =1 has a multiplicity of 3, equation (6.5.16) yields

te' = (14, iy, 13, 1) + 200, (113, 11y, 15, 1)

L (6.5.42)
t'e =20, (14, y, i3, t)
Equations (6.5.41) and (6.5.42) yield
1)
ao(,ul,,uz,,uS,t)=(1—t+Et je
ozl(lLLl,,uz,/13,t):(t—tz)et (6.5.43)
1
0ty (Hs g 1z, 1) = 1€
These results along with (6.5.38) and (6.5.40) yield
e = ag (p, o 1o, V) 0t (1, 11y, 115, 8) Aty (1, i, 5, 1) A?
. 1 0 0 1 1 1] 11 1)
:(1—t+§t2]et 0 1 0f+(t-t*)e'|0 1 1+Et2e‘ 011
001 0 0 1] 0 01
. 1.0 0 ‘111‘1'123
:(1—t+§t2] 0 1 0f+(t-t")e'|0 1 1|+>t%'|0 1 2 (6.5.44)
001 0 0 1] 0 0 1
1t t+=t?
=e'|0 1
0 1

Equation (6.5.44) also follows from (6.4.11) or from its special case, equation (6.4.20).
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Exercises

6.5.1 Calculate e™ for the matrix
1 6
A= (6.5.45)

that arose when we worked Exercise 5.6.3. Calculate e* twice, first utilizing the fact that the
eigenvalues are distinct and second utilizing the second method used with Examples 6.4.1, 6.4.2
and 6.4.3 above.

§e4t+§e_t Ee‘“—ﬁe
Answer: e* = 5 5 5 5
1w 1 o 34 2 4

—e"-Ze e +=e
5 5 5 5

~t

6.5.2 Calculate ™ for the matrix

Aol ® 6.5.46
-1 5 (6.5.46)

that arose when we worked Exercise 5.6.5. Calculate e* twice, first utilizing the fact that the
eigenvalues are distinct and second utilizing the second method used with Examples 6.4.1, 6.4.2
and 6.4.3 above.

Answer: e — e* (cost—2sint) 56 sint
' - —3e*sint e* (cost+2sint)

6.5.3 Calculate e for the matrix

1 -2 2
A=|-2 1 2 (6.5.47)
2 2 1

that arose when we worked Exercise 5.3.2. Calculate ™ utilizing the appropriate forms of
equations (6.5.14) through (6.5.16). The calculations in this problem are similar to those used in
Example 6.4.2.
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-3t 3t 3t -3t

e —e
3t

e +2e* e¥-e
e —e" e¥4+2" e¥-e
e _p ¥ g _gBt gt el

AL _ + -3t

Answer: 1 e

6.5.4. Use the formula (6.4.11), that was given without proof, and derive the result (6.5.44)

6.5.5 Utilize the result (6.5.44) and the general solution (6.5.10) and derive the solution (5.6.53)
that was given without proof in Section 5.6.

6.5.6 Rework Example 6.5.2 utilizing Sylvester’s Theorem, equation (6.5.17).

13 The answer to this problem can also be obtained from (6.5.18). In this case, it can be confirmed that
(A=Al)(A-%!)=0

This result is the minimum polynomial for this linear transformation.
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Section 6.6 Projections and Spectral Decompositions

In this section, we shall look deeper into the eigenvalue problem introduced in Chapter 5.
In particular, we shall introduce a special linear transformation called a projection and show how it
can be used to produce a decomposition, called a spectral decomposition, of certain linear
transformations A: ¥ — ¥ .

Definition: A projection is a linear transformation is a linear transformation P:¥ — ¥ that
satisfies the condition

PZ=p (6.6.1)
Theorem 6.6.1. If P:¥ — ¥  is a projection, then
7 =R(P)®K(P) (6.6.2)
Proof. Let v be an arbitrary vector in ¥". Let
wW=V-Pv (6.6.3)

Then, by (6.6.1), Pw =Pv—P(Pv)=Pv-Pv=0. Thus, we K(P). Since Pve R(P), (6.6.3)
implies that

¥ =R(P)+K(P) (6.6.4)
To show that R(P)n K (P)={0}, let ue R(P)nK(P). Then, since ue R(P) for some ve ¥,
u=Pv. But,since u isalsoin K(P),
0=Pu=P(Pv)=Pv=u (6.6.5)

which completes the proof.

The name projection arises from the geometric interpretation of (6.6.2). Givenany ve ¥,
then there are unique vectors u € R(P) and w e K (P) such that

V=U+W (6.6.6)
where

Pu=u and Pw=0 (6.6.7)
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Viewed as an eigenvalue problem, equation (6.6.7)1 shows that every nonzero vector u R(P) is

an eigenvector and the corresponding eigenvalue is 1. Likewise, (6.6.7)2 shows that every nonzero
vector w e K (P) is an eigenvector and the corresponding eigenvalue is 0.

Geometrically, the linear transformation P takes v and projects in onto the subspace R(P)
along the subspace K (P) . The following figure illustrates this point.

w=(I-P)w v

u=Pv

Given a projection P, the linear transformation I —P is also a projection. It is easily
shown that

¥ =R(1-P)®K(I-P) (6.6.8)
and
R(1-P)=K(P), K(I-P)=R(P) (6.6.9)

The matrix of a projection P:¥ — ¥ takes a simple form if a judicious choice of made for
the basis of . If N =dim¥ and R=dim R(P), the basis of ¥~ can always be written

€,,€,,..,€5 ,€ru1,Crupse-n €y ¢+ It fOllOws from the result (6.6.7) that

Basis for R(P) Basis for K(P)
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Pe, =

{ek for k=12,..,R (6.6.10)

0 for k=R+1,...,N

Therefore, the matrix of P:¥”— ¥ with respect to the basis {e,,e,,...,6z,€p,1,8x,1:- 8y } S

100 0
010 0
00 1
M(P.e;.e)=|0 0 1 . (6.6.11)
RxR
00 0 0
0
00 0]

NxN

Given the matrix (6.6.11), the characteristic polynomial of the projection is

det(P— A1) =det(M (P—Al.e e, ))=(-2)" " (1-4)" (6.6.12)

Theorem 6.6.1 is a special case of the following theorem.

Theorem 6.6.2. If P,, k=1,...,R, are projection operators with the properties that

P =P, k=1..R
(6.6.13)
PP, =0, k =q
and
R
=P, (6.6.14)
k=1
then
¥ =R(P,)®R(P,)®---®R(P;) (6.6.15)

The proof of this theorem is left as an exercise. It is a small generalization of the proof of Theorem
6.6.1. As a converse of Theorem 6.6.2, if ¥~ has the decomposition
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V=YD - DY (6.6.16)
then the R linear transformations P, : ¥ — ¥ defined by
PVv=v,, k=1..,R (6.6.17)
forall ve¥ , where
V=V, +V,+-+V, (6.6.18)
are projections and satisfy (6.6.14). Moreover, % =R(P,), k=1...,R.
If the vector space ¥ is an inner product space, the adjoint of a linear transformation
A:¥ — ¥ isalinear transformation A" :¥ — ¥ defined by the following special case of the
definition (4.9.1)
(v,,Av,) = <A*v2, v1> forall v,v,e? (6.6.19)
If we apply the definition (6.6.19) to the projection (6.6.1), the definition becomes

(v,,Pv,) = <P*v2,v1> forall v,,v,ev¥ (6.6.20)
If we form the inner product <(I -P)v,, Pv2>, the definition (6.6.20) allows the result to be written

(1=P)vy.Pv,) =(P"(1-P)v,,v, ) = <(P* - P*P)vl,v2> (6.6.21)

The conclusion from (6.6.21) and the definition (6.6.1) is that if the projection P is self adjoint,
i.e., if P=P" then the subspaces R(P)and K (P) are orthogonal. As explained in Section 4.11,

this geometric relationship between orthogonal subspaces is written
(6.6.22)

In this case, the projection is called an orthogonal or perpendicular projection.
In Section 5.4, it was pointed out that for eigenvalue problems for which the geometric

multiplicity is equal to the algebraic multiplicity for each eigenvalue of a linear transformation
A:¥ — ¥, then the vector space ¥ admits the direct sum representation

V=¥ (A) OV (L) D ®¥ (1) (6.6.23)
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where 4,,..., 4, are the distinct eigenvalues of A. Given the representation (6.6.23), then every
w e ¥ has the unique representation

L
W=W, +W, +-+W, =D W, (6.6.24)
j=1

The representation (6.6.24) allow us to define L projections P, : ¥ — ¥~ by
PwW=w, for k=1,..,L (6.6.25)

The L projections P, : ¥ — ¥ defined by (6.6.25) obey (6.6.13) and (6.6.14). Given (6.6.24), it
follows that

Aw=A(ijj=§L:Awk =ZL:/1kwk (6.6.26)

k=1 =

where the defining condition for the k" eigenvector, Aw, = 4w, , has been used. Given (6.6.25),
equation (6.6.26) yields

(A—iﬂkijw=O (6.6.27)

Equation (6.6.27) holds for all vectors w € ¥". Therefore, (6.6.27) yields the spectral
decomposition of A:¥ — ¥  in terms of its eigenvalues and projections into its characteristic
subspaces. The result is

A=> AP, (6.6.28)

The representation (6.6.28) holds for linear transformations for which the geometric multiplicity is
equal to the algebraic multiplicity for each eigenvalue. If this condition does not hold for each
eigenvalue, then (6.6.28) is not valid.

Given (6.6.28), it follows from (6.6.13) that
A" = AP, (6.6.29)

for a positive integer n. Equation (6.6.29) shows that the exponential matrix (6.3.3) takes the form
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e’ =iilAn =§L:(ii@jpk =ZL:eﬂ«Pk (6.6.30)

O

A" =>" AP, (6.6.31)
k=1
1
The quantity A" obeys
E | 1

[A”] =A"-..An = A (6.6.32)

n times

and gives an analytical expression for the n" root of a linear transformation that has the spectral
decomposition (6.6.28).

Example 6.6.1: In this example, we shall consider again Example 5.3.1. This example solved the
eigenvalue problem for the linear transformation A:¥ — ¥ defined by (5.3.1), repeated,

Ae, =e +e, +4e,

Ae, =2e, —4e, (6.6.33)
Ae, =€, +e, +5e,

where {e,,e,,e,} isabasis for ¥". The problem is to determine the spectral decomposition

(6.6.28) for this example. This particular example was one where the three eigenvalues were
distinct and the associated characteristic subspaces were one dimensional. In Example 5.3.1, we
wrote the three eigenvalues as in (5.3.4), repeated,

A =1
A,=2 (6.6.34)
A, =3

and the three eigenvectors as in (5.3.20), repeated,

1 1
Vl =—§el +Eez +e3
1 1
Vv, :—§e1+ze2 +e, (6.6.35)

1 1
V3 = —Zel +Zez +63
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The three projections P, P, and P, are defined by (6.6.25). With respect to the basis of
eigenvectors, {vl, v2,v3} , their components are given by

V, for j=k
PV, = i (6.6.36)
0 for j=k

Therefore, with respect to the basis of eigenvectors, {vl, vz,vs} , the projections have the following
matrices

100
M(P,v;,v,)=|0 0 0
000
0 0 0]
M (P, vj,v,)=|0 1 0 (6.6.37)
0 0 0]
0 0 0]
M (P, v;,v,)=|0 0 0
0 0 1]

The matrices of the three projections with respect to the basis {el,ez,es} are given by the usual
basis transformation formula (3.6.18). Therefore,

M(Ae;.e)=TM (A v, v, )T (6.6.38)

where A is any one of the matrices in (6.6.37) and T is the transition matrix based upon the basis
change (6.6.35). This matrix was given earlier in equation (5.3.22), repeated,

111

2 2 1
T+ 1 1 (6.6.39)

2 1 1

1 01 1

i |

Given (6.6.37), (6.6.38) and (6.6.39), it follows that
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111 111
121214100121214
— -1
M(P.e;.e )=TM (P v, v, )T "= > 1 3 888 > 1 3
1 1 1 1 1 1
111 0 2 1
12121410004—1 21
== = ZJ|loo0o0f4 -4 0|=0 2 -=
24 400004 0 2 2
1 1 1 B 0 4 -1
) ) ] _ (6.6.40)
Likewise,
2 2 0
M(P,.e;.e )=TM (P, v,,v,)T*=|-1 -1 0 (6.6.41)
4 -4 0
and
190 L
2
1
M (Ps.ej.e,)=TM (Py,v;,v, )T =| 1 0 > (6.6.42)
4 0 2

It is elementary to show that the relationships (6.6.13) and (6.6.14) are obeyed by the projections
whose matrices are given by (6.6.40), (6.6.41) and (6.6.42). In addition, these formulas along with
(6.6.34) can be used to confirm the spectral decomposition (6.6.28) in this case. Finally, one can
use (6.6.40), (6.6.41) and (6.6.42) along with (6.6.30) and rederive the result (6.3.53) that was
obtained earlier by a different method.

Example 6.6.2: In this next example, we shall consider again Example 5.3.2. This example solved
the eigenvalue problem for the linear transformation A:% — ¥ defined by (5.3.25), repeated,

Ai, =i, -2i, +2i,
Ai, =-2i, +1i, +2i, (6.6.43)
A, =2i, +2i, +i,
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where {i,,i,,i,} is an orthonormal basis for #". The problem is to determine the spectral

decomposition for the linear transformation defined by (6.6.43). This particular example was one

where there were only two distinct eigenvalues. The two eigenvalues are given by (5.3.28),
repeated,

4 =-3

)3 (6.6.44)

The algebraic multiplicity for A, is 1 and that for 4, is 2. The characteristic subspace V(ﬂl) is
one dimensional and is spanned by the vector, from (5.3.41), repeated,

v, =i, —i, +, (6.6.45)

The characteristic subspace #'(4,) is two dimensional and is spanned by vectors {—i, +i,,i, +i,} .
Without loss of generality, we can take the basis of ¥"(4,) to be the pair of vectors

V,=—i,+i, and v,=i +Ii, (6.6.46)

The two projections P, and P, are defined by (6.6.25). With respect to the basis, {v,,v,,v,}, their
components are given by

v, for j=1
Pv. = :
0 for j=2,3

0 for j=1
V. for j=2,3

(6.6.47)

Therefore, with respect to the basis of eigenvectors, {vl, vz,vs} , the projections have the following
matrices

M (Pl,vj,vk)z
(6.6.48)

M(Pz,vj,vk):

o oo O O -k
o r O O O O
m O O © o o
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The matrices of the two projections with respect to the basis {il, iz,i3} are given by the usual basis
transformation formula (3.6.18). Therefore,

M (A ii)=TM (A v, v, )T (6.6.49)

where A is any one of the matrices in (6.6.48) and T is the transition matrix based upon the basis
change (6.6.45) and (6.6.46). This matrix was given by,

-1 -11
T=|-1 1 0 (6.6.50)
1 0 1

Given (6.6.37), (6.6.38) and (6.6.39), it follows that

-1 -1 11 0 o][-1 -1 1]
M(P,ii,)=TM(P,v,,v,)T*=[-1 1 0fl0 0 0||-1 1 0
1 0 1][0 0 OJ|1 0 1
[ I S O
1 -11)1 00| 3 33 |3 3 3 -
aroleoald sl g
101000l 12|11
'3 3 3] [ 3 3 3,
Likewise,
(2 1 1]
3 33
. . 1 2 1
M (Py.iji ) =TM (P, v, v, )T = 3 3 3 (6.6.52)
112
|3 3 3]

It is again elementary to show that the relationships (6.6.13) and (6.6.14) are obeyed by the
projections whose matrices are given by (6.6.51) and (6.6.52). In addition, these formulas along
with (6.6.44) can be used to confirm the spectral decomposition (6.6.28) in this case. Note that the

matrices (6.6.51) and (6.6.52) are symmetric matrices. Because the basis {i,,i,,i,} is orthonormal,

the projection linear transformations are symmetric and, as mentioned above, the image spaces
¥ (4,) and ¥'(4,) are orthogonal. Finally, one can use (6.6.51) and (6.6.52) along with (6.6.30)

to rederive the result (6.3.60) that was derived earlier by a different method.
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Example 6.6.3: In Example 5.3.4 the eigenvalue problem was solved for the linear transformation
A ¥ — v defined by (5.3.53), repeated,

Ae, :ﬁel jtﬁe3

2 2
Ae, =¢, (6.6.53)
Ae, =—§61+%63

Of course, {el,ez,e3} is a basis for ¥". The eigenvalues for this problem are given by equation
(5.3.56), repeated,

A :g(lﬂ)
A, =1 (6.6.54)
A=)

and the three eigenvectors are given by (5.3.69), repeated,

v, =le, +¢e,
vV, =€ (6.6.55)
vV, =—ie +6,

The three projections P,,P, and P, are defined by (6.6.25). As with Example 6.6.1, with respect to
the basis of eigenvectors, {v,,v,,v,}, the projections have the following matrices

100
M(P,v;,v,)=|0 0 0
000
[0 0 0]
M (P, v;,v,)=|0 1 0 (6.6.56)
0 0 0]
[0 0 0]
M (P,.v;,v,)={0 0 0
0 0 1]




530 Chap.6 - ADDITIONAL TOPICS EIGENVALUE PROBLEMS

The matrices of the three projections with respect to the basis {el,ez,es} are given by
i 0 10 0][i 0 —i]"
M(P.e;.e)=TM(P,v,,v,)T*=/0 1 00 0 0[[0 1 0
10 10 0 0Ofl12 0 1
P I T (6.6.57)
i 0 —i||1 0 0} 2 2 2 2
=0 1 0|0 O Of|0 1 0|=|0 0O
101000L01 _Lol
i 2] L 2 2 ]
Likewise,
0 00O
M(P,.e;e )=TM (P, v, v )JT*=|0 1 0 (6.6.58)
0 00O
and
_i ; _l_
2 2
M(P,.e;.6)=TM (P, v,,v,)T*=/0 0 O (6.6.59)
[P
L2 2
Exercises

6.6.1 Consider the special case where the linear transformation A:¥ — % has N distinct
eigenvalues and show that the projections P; for j=1,2,...,N are given by the explicit formulas

=

(A=4l)

~x

ol

1
p = ki

J

for j=12,..,N (6.6.60)

=

(4-4)

~x
—

#]j

6.6.2 Example 6.6.2 involved the arbitrary choice (6.6.46) of the basis for the two dimensional
characteristic subspace 1/(/12). Other choices are possible. For example, rather than (6.6.46) one
could take
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V,=l,+i, and v,=-2i +i,—I, (6.6.61)

The two vectors (6.6.61) can be show to span ¥"(4,). Show that the two projections P, and P,

are again given by (6.6.51) and (6.6.52). The point of this exercise is to illustrate that when the
geometric multiplicity is greater than one the corresponding projection into the characteristic
subspace does not depend upon the basis selected for the characteristic subspace.

6.6.3 Show that the fundamental invariants of a projection P:¥ — ¥ are given by

I
L for j=12,..,R
M= (R— J)!j! (6.6.62)

0 for j=R+1,...,N
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Section 6.7 Tensor Product of Vectors

In this short section, we shall introduce a notation that is convenient in certain applications.
The notation is connected to an operation known as the tensor product of vectors. In rough terms,
if one is given a pair of vectors in an inner product space, the tensor product is an operation that
creates a linear transformation from the two vectors. The convenience of the notation is that it
allows a somewhat more convenient connection to be made between linear transformations and
components of linear transformations.

Definition: If f is a vector in an inner product space¥” and g is in an inner product space % ,
their tensor product, written g ®f , is a linear transformation in g ®f : 7 — % defined by

(g®f)w=g(w,f) (6.7.1)

forall win 7.

Because of the properties of an inner product, it should be evident that the quantity g®f as
defined by (6.7.1) is, in fact, a linear transformation as defined in Section 3.1. It is important to
note that g®f #f ®g.
The definition (6.7.1) and the properties of the inner product combine to show that

(A9, + ug,)®f =19, ®F + g, ®f (6.7.2)
and

g ® (Af, + uf,) = 1g ®f, + g ®f, (6.7.3)
for scalars A, ue & . Itisalso true that

(g®f) =f®g (6.7.4)

Equation (6.7.4) follows from the definition of adjoint, equation (4.9.1), and the definition of the

tensor product, equation (6.7.1). The following sequence of calculations establishes (6.7.4). From
the definition of the adjoint (g ®f)”

(@®f)u,v)=(u,(g®f)v) (6.7.5)

If the definition (6.7.1) is utilized, (6.7.5) can be written
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<(g ®f)u, v> = <u,(g ®f)v> = <u,g<v1f>>
(ug)(f.v)=(f(u.0).v)=((f ®g)u,V) 676)

Because (6.7.6) holds for all vectors ve ¥ and u e %, (6.7.4) is obtained. Another relationship

that holds is

(d®c)(g®f)=(g,c)(d®f)

(6.7.7)
for the product of two linear transformations g®f:7 - # and d®c: % > ¥ . If {e ,e,,...e,} is
a basis for ¥ and {b,,b,,...,b,, } is a basis for # , the matrix M (g ®f,ek,bj) is given by

B glf_l glf_z glf_S L glf_N 7
ng_l ng_z ng_s L ng_N
Sf_l
M(g®f.e.b;)= 9
M1 M2 L MFN
:9 - 9 g g i (6.7.8)
9
g2
o' re1 7 3
— ': fl f 2 f 3 f N ]
gM
The definition (6.7.1) allows the formula (3.2.3), repeated,
M .
Ae, => Alb, k=12.,N (6.7.9)
j=1

to be written in an alternate form which is sometimes convenient. If {el,e2

..... e"} is the reciprocal
basis to {e,,e

21 €y}, then it is true from (4.7.7), repeated,

<ek,eq>:5; for g,k=12,..,N (6.7.10)

Therefore, (6.7.9) can be rewritten
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M N

Ae =iAkaj iinJ bt =D > Alb;(e,.e%)

j=lg=1

(6.7.11)

Because an arbitrary vector v e ¥ has the representation v = ZU e, , it follows from (6.7.11) that
=1

M N
[A—ZZ Alb, ®eqjv=0 (6.7.12)
j=1 gq=1

for all vectors v e ¥ . Therefore,

N
> 2 Al ®ef (6.7.13)

q=1

Mz

A=

—
I
=

By the usual changes between basis and reciprocal bases, one can establish the following
equivalent forms of (6.7.13)

Alb, ®ef :ZZA‘qu ®e,

(6.7.14)

M= M=
M= iD=

A b’ ®e" =iiAﬂbi ®e,

j
=1 g=1

—
I

-
I

-

q

Example 6.7.1: If 1:%"— ¥ is the identity linear transformation and {e, e,,...,e, } , then equation
(6.7.13) yields
M N
=Y > 5le,®e’ =, ®e' +e,®e’ +---+e, ®e" (6.7.15)

qa~j
j=l g=1

Example 6.7.2: For the eigenvalue problem given in Example 5.3.1, we defined a linear
transformation A:¥ — ¥ by equation (5.3.1), repeated,

Ae, =e, +e, +4e,
Ae, =2e, —4e, (6.7.16)
Ae, =—-e, +e,+5¢,

If we apply the representation (6.7.13) to the linear transformation (6.7.16), the result is
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=i (6.7.17)

If we represent A: ¥ — ¥ with respect to its basis of eigenvectors defined by (5.3.20), repeated,
1 1
Vl = —Eel +Eez +e3

1 1

Vv, :—Eel+ze2+e3 (6.7.18)
1 1

V3 = —Zel +Ze2 +es

The representation of A:¥ — ¥  becomes

3 .
A=AV, OV =v, @V +2v,®V: +3v, ®V° (6.7.19)
=

where the components with respect to the basis {vl, v2,v3} are given by (5.3.21) and where
{vl,vz,v3} is the reciprocal basis to {v,,v,,v,}. Itis readily established that the three linear

transformations v, ® v, v, ® v* and v, ® v° are projections into the characteristic subspaces
¥ (4), ¥ (4,) and ¥ (4;), respectively.

Example 6.7.3: For the eigenvalue problem given in Example 5.3.2, we defined a linear
transformation A:¥ — ¥ by equation (5.3.25), repeated,

Ai, =i, -2i, +2i,
Ai, =-2i, +1i, +2i, (6.7.20)
Ai, =2, +2i, +1,

If we represent A: ¥ — ¥ with respect to its basis of eigenvectors defined by (5.3.40) and 5.3.41),
repeated,

vV, =—l,—1,+I,
v, =—i, +1i, (6.7.21)
V=1, +1,

The representation of A:¥ — ¥  becomes
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3 .
A=Y 2V, ®V =3V, ®V +3(v,®V: + v, ®V°) (6.7.22)
j=1

where the components with respect to the basis {vl, vz,v3} are given by (5.3.42) and where
{V!,v?,v*} is the reciprocal basis to {v,,v,,v,}. Itis readily established that the two linear

transformations v, ® v* and v, ® v’ + v, ® v* are projections into the characteristic subspaces
¥ (4) and ¥'(4,), respectively. From our earlier discussion of this example in Section 6.7, it
should be clear that the matrix of v, ® v* with respect to the orthonormal basis {i,,i,,i,} is given
by (6.6.51) and the matrix of v, ® v* + v, ® v* with respect to the same basis is given by (6.6.52).

Exercises:

6.7.1 If A:¥ — & has the representation (6.7.13), show that the adjoint A" :% — ¥ has the
representation

A =iZN:_iqeq ®b, (6.7.23)

i1 oL
6.7.2 If A:¥ > % and B:% — ¥ are linear transformations show that
A(v®u)B" =Av®BuU (6.7.24)
where ve? and ug % .
6.7.3 If f and g are vectors in an inner product space ¥, show that
tr(g®f)=(g,f) (6.7.25)

6.7.4 If f is a vector in an inner product space " g a vector in an inner product space % , and
B:% — v alinear transformation show that

(9®f)B=g®(Bf) (6.7.26)
and
B(g®f)=(Bg)®f (6.7.27)

6.7.5 In Section 4.3, the Gram Schmidt Orthogonalization process was introduced. The
fundamental equations that defined that process were equations (4.3.22), repeated,



538 Chap.6 - ADDITIONAL TOPICS EIGENVALUE PROBLEMS

ik
€,

k71 - -
e, —Z<ek, J

=

-3

for k=12,..K (6.7.28)
ek, J H

Use the definition of tensor product and show that these equations can be replaced by

=B o k12K (6.7.29)
[P
where P, :¥ — ¥, for k=1,2,...,K, are the orthogonal projections
k-1
=1-Yi; ®i, (6.7.30)
j=1

Also, show that the normalizations that appear in (6.7.29) can be evaluated with the formulas

”Pkek” = <ek’Pkek> (6.7.31)



Sec. 6.8 . Singular Value Decompositions 539

Section 6.8 Singular Value Decomposition

In this section, we shall discuss what is known as the singular value decomposition of a
matrix.** The discussion begins with a linear transformation A:¥ — %, where ¥ and % are
finite dimensional inner product spaces. The singular value decomposition of A:¥ — % isa
factorization of the matrix of A that is a generalization of the eigenvalue problem discussed in
Chapter 5. As we shall see, the factorization expresses the matrix of A as the product of a unitary
matrix, a diagonal matrix and another unitary matrix. In the following, we shall illustrate how this
decomposition is achieved.

As we have done before, we shall write N =dim¥” and M =dim% . Also, we shall write
R=dimR(A) for the dimension of the image space R(A). We know from our discussions in

Chapters 2 and 3 that

R<min(M,N) (6.8.1)

The singular value decomposition arises from the calculation of the so-called singular
values and the singular vectors of A:¥" — % . These quantities are defined as follows:

Definition: If x4 is anonzero scalarand ve ¥ and u e % are nonzero vectors such that

Av = uu (6.8.2)
and

A'u=puv (6.8.3)
then 4« is asingular value of A and v and u are a pair of singular vectors of A.
It follows from (6.8.2) and (6.8.3) that

A'Av = uA'u = u’v (6.8.4)

Likewise, it follows from (6.8.3) and (6.8.2) that

AA'U = LAV = 1fu (6.8.5)

14 The article, Professor DVD, on the MathWorks website gives an excellent summery of how Professor Gene Golub
has caused the singular value decomposition to be a widely used and important tool in modern matrix computation.
The link to this article is https://www.mathworks.com/company/newsletters/articles/professor-svd.html.



https://www.mathworks.com/company/newsletters/articles/professor-svd.html
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Equation (6.8.4) shows that £ is an eigenvalue corresponding to the eigenvector v of the linear
transformation A"A:¥ — ¥ . Likewise (6.8.5) shows that 4 is also an eigenvalue corresponding

to the eigenvector u of the linear transformation AA": % — % . If we utilize the identities (4.9.5)
and (4.9.9), it is readily established that

*

(AA) =A'A (6.8.6)

and

*

(AA") =AA (6.8.7)

Therefore, the two linear transformations A’A: % — ¥ and AA": % — % are Hermitian. They
are also positive semidefinite because

<v, A*Av> =(Av,Av) = ||Av||2 >0 (6.8.8)

and

<u,AA*u> = <A*u,A*u> = | Al

>0 (6.8.9)

These facts and the results summarized in Theorems 5.4.3 through 5.4.6 tell us that the
characteristic subspaces of A'A:¥ — ¥ and AA":% — % , respectively, are mutually orthogonal
and that the eigenvalue, 4 is greater than or equal to zero. The fact that z° >0 makes it
convenient to change notation slightly and write

A= (6.8.10)

and adopt the convention that we shall always use the positive square root of (6.8.10) and write the
singular values as

u=-1 (6.8.11)
It is a theoretical result that
K(A)=K(A'A) (6.8.12)
This result was established in Section 4.4 for the case when ¥~ and % are real inner product

spaces. The particular result is given in equation (4.4.13). That proof is easily modified to fit the
case where ¥~ and % are complex inner product spaces. If we apply the rank nullity theorem,

Theorem 3.3.5, to the two linear transformations A and A“A , we can conclude that
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dimR(A) = dimR(A'A) (6.8.13)

The kernel of A"A , by definition, consists of those vectors v e ¥ that obey A’/Av=0. The
dimension of the kernel, by the rank nullity theorem is N —R. Therefore, the linear transformation

A"A has zero for an eigenvalue and it has an algebraic multiplicity of N —R. From (6.8.12), the
vectors in the kernel of A"A are in the kernel of A and conversely.

In Section 5.2, we introduced the idea of the spectrum of a linear transformation as the set
of its eigenvalues. Given the fact that A"A:¥ — ¥ is Hermitian, positive semidefinite and has
N —R zero eigenvalues, the spectrum of A"A is the set of nonnegative real numbers

Spectrum (A'A) = {4,@,...,4 u} (6.8.14)

N-R

An entirely similar argument tells us that the spectrum of AA" is the set

Spectrum(AA*){ﬂi,/lz,...,/lR ,o,...,o} (6.8.15)
R

M-R
The convention we shall follow is to order the eigenvalues {4, 4,,..., 4} such that

202 Ay 22 Ny >0 (6.8.16)

Therefore, the singular values are ordered as follows:

Ja 2k 22> 2 >0 (6.8.17)

We have not assumed that the singular values are distinct. We have, however, ordered the singular
values so as to give a list of R =dim R(A) nonzero quantities.

In Section 5.4, it was established that Hermitian linear transformations possess an
orthonormal basis consisting entirely of eigenvectors. Given this fact, we can always construct an

orthonormal set {V,,V,,V;,..., Vg, Vg,y,..., vV } Of N eigenvectors of A"A and an orthonormal set

{U;,U,, Uy, Ug, Ugy,.o Uy} OF M eigenvectors of AA”™. Given this construction, it is true that

A;vy for j=1..,R

. (6.8.18)
0 for j=R+1,..,N

A*Avj :{

and
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Au; for j=1..,R

_ (6.8.19)
0 for j=R+1,..M

AA*uj ={

It is important when constructing singular values and singular vectors to build the orthonormal sets
{V1, V5 Ve Vi, Viygy oo Vg b @Nd {U;, U, Ug, oo, U, U,y Uy, o SUCh that the vectors obey (6.8.2)

and (6.8.3). These relationships are summarized by rewriting (6.8.2) and (6.8.3) as

A;u; for j=1,..,R
Av, = (6.8.20)
0 for j=R+1,...,N
and
. Av, for j=1..R
TR A A R (6.8.21)
0 for j=R+1,..,.M
The construction of the orthonormal basis {v,,V,,V;,...,Vg,Vg,,..., vV } of ¥ and
{U;,Up, Uy, Ug, Ugy, .o Uy | OF @ yields, among other facts,
K(A)=span(Vg,,...., Vy ) (6.8.22)
R(A)=span(u,,u,,us,...,uy) (6.8.23)
K(A")=R(A)" =span(Uq;,...Uy ) (6.8.24)
and
R(A")=K(A)" =span(V,,v,,Vy,.... Vg ) (6.8.25)

Example 6.8.1 Let ¥ and % be real vector spaces such that dim¥” =2and dim#% =4. We
define A: v > % by

Ai, =, +3],

PO (6.8.26)
A|2:3J1+J2

where {i,,i,} and {j;, ], J;. .} are orthonormal bases. The matrix of A is
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M (A b )=

o O w -
o Ok W

The transpose of A, is a linear transformation A" : % — ¥ defined by

ATj, =i, +3i,
ATj, =3i, +i,
ATj, =0
ATj, =0

The matrix of A" is

1300
M(AT’JK"‘*){3 10 0}

A straight forward series of calculations yields

M(ATA,i,i ):[1(? 1?)}

and
10 6 0 O
6 10 0 O
M(AAT . ,i. )=
(AATj.].) 0 0 0 0
0O 0 0O

543

Note that N =2 and M =4 in this example. The eigenvalue problem for ATA yields

2 =162, =4

1
Vv, =

ﬁ(i1+i2),v2:%(_il+i2)

(6.8.27)

(6.8.28)

(6.8.29)

(6.8.30)

(6.8.31)

(6.8.32)

As with all eigenvalue problems, the eigenvectors length is not determined. Our convention is to
normalize the eigenvectors to have unit length, which makes them unique up to a sign change. For

example, the choices
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v, = ——=(iy +i,),v, =— (6.8.33)

1 1 .
3( ﬁ("l""z)

are also eigenvectors. We shall continue to use the choices (6.8.32). Given (6.8.32), it follows
from (6.8.20) that the vectors u,and u, are given by

1 1 1. . 1 . . L 1 ,. .
u, :ﬁAw =ZA($(I1—H2)j =m(11+3jz +311+J2) =_2(11+Jz)
L L (6.8.34)

Av, =

EA(%(—il + iz)j Z%(—jl _3j2 +3j1 +j2) :%(J—l _jZ)

The full set of eigenvectors are obtained by solving the eigenvalue problem for AA™. The result of
this solution is

A =164, =44,=4,=0

1, . 1 .. . ] ) (6.8.35)
ulzﬁ(Jl_l—JZ)’uZ=$(Jl_12)’u3=J3'u4=J4

where the choices (6.8.34) have been made along with the choices u, = j,,u, = j,. Given the fact

that there are two nonzero eigenvalues, the rank of the linear transformation A: ¥ —> % is R=2,
and the characteristic subspace of the zero eigenvalue has dimension 2. It follows from the results
(6.8.32) and (6.8.35), that the singular values are

Ja =42, =2 (6.8.36)

and the singular vectors are

1 .. . 1, . .
v, _—2(|1+|2),v2 —ﬁ(—ll+ i,) (6.8.37)
and
U, = (343, Uy = (i ]y ) (6.8.38)
1—\5]1]2’2—\/5]1]2 0.

With respect to the orthonormal bases {v,,v,} and {u,,u,,u;,u,}, the matrix of A:# — % is



Sec. 6.8 . Singular Value Decompositions 545

M(Av;u, )= (6.8.39)

o O O b~
o O NN O

The matrix (6.8.27) and the matrix (6.8.39) are connected by the usual change of basis expression
(3.6.17). In the notation utilized here, (3.6.17) takes the form

M (A i j)=S"M(A v u)T (6.8.40)

where T is the (orthogonal) transition matrix for the basis change {v,,v,} — {i,,i,} and S isthe
(orthogonal) transition matrix for the basis change {u,,u,,u;,u,} = {j;.j,+s.Js} - It follows from
(6.8.37) that

1 1 11
T'= V2o 2 =>T= V2. V2 (6.8.41)
11 11 a
V2. 42 J2 2
and, from (6.8.35),
o 1 ;
— —= 00
7z N2
St= ENY 0 0 (6.8.42)
17 A 8.
0 0 1
0 0 0 1
If we combine (6.8.27), (6.8.39), (6.8.41), and (6.8.42) the result (6.8.40) becomes
1 1 9o
L322 dorL 1
- 31 1 1 0 2| J2 2
M(A ] )= == —f4= 00 6.8.43
(Ali)=ly 07|77 72 0 off 1 1 (68.43)
00/ |0 0 100 o] V2 2
| 0 0 0 1]

An equivalent version of (6.8.43) is
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11
1 3] (2 2 11
o311 1402 V2
M(ATLE)=| o o= 72 ﬁ{o 2}_LL (6844
o0/ |0 O V2 2
_0 O_

Equation (6.8.43) is an example of a singular value decomposition. It expresses the matrix (6.8.27)
as the product of an orthogonal matrix followed by a diagonal matrix followed by an orthogonal
matrix.

If we return to the general case characterized by (6.8.20), we can express the linear
transformation A:¥ — % in terms of its components with respect to the orthonormal bases

{V1, V5, Vg, Vi, Vs Vg @0 {U;, U, Uy, Ug Uy, Uy |- The result is the matrix

\/Z .. .0 - -0
0 \/]TZ .. .0 - -0
: \/Z . - 0| g

M (A, v,.u, )= | .0 (6.8.45)

k) q 1

If we adopt the notation of the tensor product introduced in Section 6.7, the linear transformation
A:¥ — 9 can, from (6.8.20), be written

A:ZR:\/Tpup®vp (6.8.46)
p=1

The matrix version of (6.8.46) arises from projecting (6.8.46) into a basis for ¥~ and % . Equation
(6.8.45), as explained, represents the matrix with respect to the orthonormal bases

{V1, V3 Vo Vi, Viygy oo Vg | @Nd {U;, U, U, ooy U, Uy, Uy, .1 With respect to an arbitrary

basis {e,.e,,....ey} for ¥ and {b,,b,,...,b,, } for %, the matrix is given by the change of basis

15 Equation (6.8.46) displays the fact that A does not depend upon the eigenvectors that span the characteristic
subspaces of A"A and AA”, respectively, for the zero eigenvalue.
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formula (6.8.40). Equivalently, the matrix can be derived by projecting the linear transformation in
the form (6.8.46) into the given bases. In the applications, the most useful form of (6.8.46) results

when orthonormal bases of ¥* and # are utilized. If we denote these bases by {i,i,,...,iy} for

¥ and {jl,jz,...,jM} for % . If we represent the matrix M (A,iq,jk) in components, as in Chapter

3, we can write

M (A j, )=

where, from (4.8.6)1,

I An A12 ’ v AiN
Ay Ay Aoy
Ay Ass
AMl AMZ ’ T AMN |
Aq =(Aig i)

it follows from (6.8.46) and the definition (6.7.1) that

Aq

p=1

<Aiq,jk>=pzz<( zpup®vp)iq,jk>
> s (v, ) (0,0

R

Equation (6.8.49) is equivalent to the matrix product

:;\/Tp<up,jk>m

(6.8.47)

(6.8.48)

(6.8.49)
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_Au A12 ' e AiN
Ay A, A
M(A,iq,jk)= A‘31 A33 ’
_AMl AMZ ' T AMN_
N 0 - 0
_<u1vj1> <U2,j1> <u3'j1> T <UM1j1>— 0 ﬂz 0 0
(Updo)  (uyndy)  (Usidy) (Uw.dp) || 0O :
_ <u1’j3> <U2,j3> <U3,j3> <UM’j3>
’ ’ 0 0 . 0
_<u1’jM> <u2’jM> <u3’jM> vl <uM’jM >_
MM 0 0 - - - 0 -0
I \2 |1> Vip 1, <V1'i3 <V1 |N>1
Vo) (Vy,i) (v, (V,,iy)
(Vo i) (Vaiy) (Vs (Vy,iy)
(Vindy) (Vaia) (Vi) (Viin)
o (6.8.50)

Because the bases {V,,V,,Vy, ..., Vg, Vg ..., Vi } @nd {iy,i,,...,iy } of ¥ are orthonormal, the
N x N matrix is [<vp,iq>] unitary. The proof, which is similar to that used to derive equation

(4.4.7), involves connecting the two sets of bases by the usual change of basis formulas we have
used many times. In this case, we shall write the change of basis as

N

V=D Vi (6.8.51)

q

As a result of (6.8.51), the components of the matrix [<vp, iq>] are given by

Vv :<v i> (6.8.52)

qp p’'q
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Given the labeling of the inner products as in (6.8.52), we can define the N x N unitary matrix

I <V1’i1> <V2' i1> <V3’i1> ' ’ <VN’i1>
(Vily) (Vais)  (Vady) (Vi)
(Voia)  (varia) (Ve Vet easy

V=V, |=

_<V1’.iN> (Varin) (Variy) | <VN.’iN>_

M
u, =D Uyl (6.8.54)
k
and define the M x M unitary matrix
| <u1’j1> <U2,j1> <u3’j1> ) ) <UM ’j1> |
(updz)  (Uuzdz)  (Usidy) (Uy J)
U :I:qu} — <u1’j3> <U2,j3> <U3,j3> <u|v| ’j3> (6.8.55)

i) () () (i)

With the notation (6.8.53) and (6.8.55), equation (6.8.50) becomes

_\/Z o .- - . 0 - 0]
ALA, A 0 \/ﬂ: 0 - 0
Ay Ay Ao 0 : :
Ay Ay Clul ' ‘ V" (6.8.56)
' ' 0 0 -0
_AMl Az ’ e AMN_
0 o - - - 0 - 0

Equation (6.8.56) is the singular value decomposition for the matrix M (A, iq,jk) . It expresses the

matrix M (A, iq,jk) as the product of a unitary matrix, a diagonal matrix and another unitary
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matrix. Equation (6.8.56) is illustrated in Example 6.8.1 by equation (6.8.43). As mentioned in
Example 6.8.1, it is implicit in eigenvalue problems that the eigenvectors are not unique. This fact
results in the matrices U and V not being unique in the decomposition (6.8.56).'® Because of the
convention (6.8.17), the matrix (6.8.45) is unique. The following example further illustrates the
construction leading to (6.8.56).

Example 6.8.2: The linear transformation in this case is defined by the matrix A:.#>* — #4**

R
8 9 8i
A= _ (6.8.57)
4 -9 15
7i 40

The first step is to determine the eigenvalues and eigenvectors of the Hermitian matrix

130 -8+71i -57+60i
A'A=| -8-T71i 179 —56i (6.8.58)
—57 - 60i 56i 338

The characteristic polynomial for (6.8.58) is

f(2)=det(A'A-21)=~2"+6474% ~112622A + 4106615

(6.8.59)
= (377.4466 - i)(220.1275—/1)(49.4258— /1)
Therefore,

J, =377.4466 = \[1, =19.4280
2, =220.1275 = \[1, =14.8367 (6.8.60)
J; =49.4258 = \[2, =7.0304

A set of eigenvectors corresponding to these eigenvalues turn out to be

—0.1539 +0.2593i —0.2663—-0.4758i —0.6573+0.4239i
v, =| 0.0990-0.2159i |,v, =| —0.7696+0.2415i |,v, =| —0.2728 - 0.4674i (6.8.61)
0.9234 0.2282 —0.3087

16 The notes at the site http://www.cs.toronto.edu/~jepson/csc420/notes/introSVD.pdf provide a good summary of the
kinds of uniqueness issues that arise when constructing singular value decompositions.
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The eigenvectors in (6.8.61) have been normalized to have unit length. Because the matrix A"A
Hermitian, the eigenvectors are orthogonal. Thus, {v,,v,,v,} isan orthonormal basis. Given
(6.8.61), the matrix V from (6.8.53) is given by

—0.1539+0.2593i -0.2663-0.4758i —0.6573+0.4239i
V =| 0.0990-0.21591 —0.7696+0.2415i —-0.2728—-0.4674i (6.8.62)
0.9234 0.2282 —0.3087

Choices of the eigenvectors u,,u, and u, are made by utilization of (6.8.20). Therefore,

1 4 7 [ 0.3137+0.0083i
_ {[-0.1539+0.2593i _
A R B9 8| o ey || 0-1562+0.3436i
YA VaTrases| 4 -9 1sif U || -0.0775+0.8664i
7i 4 0 ' —0.0490-0.0351i
(6.8.63)
1 4 7 _ [0.1060+0.0198i
.  [-0.2663—0.4758i _
AU S 89 8| T e || ~0-7234+0.4131
At V2201275 4 -9 15if| ozzsé ~| 0.3951-0.0441i
7i 4 0 ' 0.1594—0.331i
(6.8.64)
and
1 4 7 _ [-0.4673+0.0991i
_  I[-0.6573+0.4239i )
A S 89 8| o .|| 01331-0.2016i
A0 J49.4258| 4 -9 15i '_0308'7 ~ | —0.0247 +0.1810i
7i 4 0 ' —0.1561—0.8097i
(6.8.65)

The vectors u,,u, and u, are three of the four eigenvectors of the Hermitian matrix

51 57i  4-96i —4-Ti
. | 57 209  39-32i -56-36i
AN = , _ _ (6.8.66)
4496 39+32i 322 8i
—4+7i -56+35  -8i 65

The solution of this eigenvalue problem yields
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J, =377.4466
A, =220.1275
A, = 49.4258
4, =0

(6.8.67)

for the four eigenvalues and the four eigenvectors given by (6.8.63), (6.8.64) and (6.8.65) and*’

0.8134
. 0.1229 — 0.3021i (6.5.66)
* 1 -0.0655—0.2185i o

0.0155-0.4239i

for the normalized eigenvectors. Given (6.8.63), (6.8.64), (6.8.65) and (6.8.68) the matrix U in
(6.8.55) is given by!8

0.3137+0.0083i 0.1060+0.01981 —0.4673+0.0991i 0.8134

0.1562+0.34361 —0.7234+0.4131i 0.1331-0.2016i  0.1229-0.3021i
| -0.0775+0.8664i 0.3951-0.0441i —0.0247+0.1810i —0.0655-0.2185i

—0.0490-0.0351i  0.1594-0.33Li -0.1561-0.8097i 0.0155-0.4239i

(6.8.69)
Given (6.8.62) and (6.8.69), the singular value decomposition of (6.8.57) is
1 - 7 0.3137+0.0083i  0.1060+0.0198i —0.4673+0.0991i 0.8134
A -8i 9 8i 0.1562+0.3436i —0.7234+0.4131i 0.1331-0.2016i  0.1229-0.3021i
= = X
4 -9 15i —0.0775+0.8664i 0.3951-0.0441i -0.0247+0.1810i -0.0655-0.2185i
7 40 —0.0490-0.0351i  0.1594-0.33Li —0.1561-0.8097i 0.0155-0.4239i
19.4280 0 : , -+
0 14.8367 —0.1539+0.2593i -0.2663-0.4758i —0.6573+0.4239i
' 0.0990-0.2159i —0.7696+0.2415i —0.2728-0.4674i
0 0 7.0304
0 0 0 0.9234 0.2282 —-0.3087

(6.8.70)

An equivalent version of (6.8.70) is

17 Equation (6.8.68) follows from the solution of (6.8.5) for the the single zero eigenvalue.
'8 The normalization of Vv, V,and V,to be unit vectors and the definition (6.8.20) cause U,,U,and U, to also be unit
vectors.
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1 - 7 0.3137+0.00831 0.1060+0.0198i —0.4673+0.0991i
-8 9 8i 0.1562+0.34361 —0.7234+0.4131i  0.1331-0.2016i
A= 4 -9 15i| |-0.0775+0.8664i 0.3951-0.0441i —0.0247 +0.1810i *
7 40 —0.0490-0.0351  0.1594-0.33Li  —0.1561-0.8097i
19.4280 0 0 ~0.1539+0.2593i —0.2663-0.4758i —0.6573+0.4239i |
0 14.8367 0 0.0990-0.2159i —-0.7696+0.2415i -0.2728-0.4674i
0 0 7.0304 0.9234 0.2282 —-0.3087

(6.8.71)

The transformation from (6.8.70) to (6.8.71), which is similar to the transformation from (6.8.43) to
(6.8.44) simply reflects the result (6.8.46) which does not depend upon the vectors {VR+1, vN}

and {Ug,;,....,uy | . Inour Example 6.8.2, this observation means that the last column of the matrix
(6.8.69) does not contribute to the answer.*®

It was mentioned above that the U and V are not unique in the decomposition (6.8.56).
The matrix (6.8.45) is unique. The source of this lack of uniqueness is the fact we have observed,
namely, that an eigenvalue problem does not determine the length of an eigenvector. More
explicitly, if vis a unit eigenvector, —Vis also a unit eigenvector. In the singular value

decomposition the vectors {u,,u,,...,u;} are determined by the vectors {v,,V,,..., v} by (6.8.20).
It follows then that the indeterminacy in the vectors {v,,V,,..., v} is passed to the vectors
{ul, Uy, uR} . This fact is perhaps illustrated by rewriting (6.8.46) as

: O-DED
=Y A, | L |u, ®v, (6.8.72)

R o.u oV
=Z 1 PP ®{ P p}
Vi -

where o, for p=1,2,...,R are arbitrary nonzero complex numbers. The arrangement (6.8.72)4

preserves the orthonormal character of the sets {lel , T2V, GRVR} and
o]l ezl e

u u u - . : .
{Gl 1 9272 Ok } . The pairwise multiplications by a scalar with magnitude one of the

ol ozl fles

19 The version (6.8.71) is sometimes referred to as the economy size decomposition.
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vectors {V,,V,,...,Vg}and {u,,u,,...,u,} produce different matrices U and V in the singular
decomposition, but do not alter the equality (6.8.56). As an example, if we take

—1_-0.5105+0.8599i

||ca||

% —0.4884 +0.8726i (6.8.73)
||02 I

—3_-=0.8404+0.5419i

||03||

then, for Example 6.8.2, we can construct a new set of orthonormal vectors as follows:

~0.1539+0.2593i 03015
%Y1 _ (0.5105+0.8599i)| 0.0990—0.2159i |=| 0.2362—0.0251i
o] 0.9234 0.4714+0.7940i
—0.2663—0.4758i 0.5452
92Y2 _ (_0.4884-+0.8726i)| ~0.7696+0.2415i | =| 0.16510.7895i
] 0.2282 ~0.1114+0.1991]
_0.6573+0.4239i 07822
95%s _(0.8404+0.54191)| —0.2728 - 0.4674i { 0.0240—0.5407i
”63” 03087 —0.2594—0.1673i

ou 0.1562+0.3436i | |-0.2175+0.3066i
1= — (0.5105+0.8599i) -

0.3137+0.0083i { 0.1530+0.2739i

||0'l|| ~0.0775+0.8664i | | —0.7845+0.3756i
—0.0490-0.0351i 0.0052 —0.0600i
0.1060+0.0198i —0.0690 +0.0828i
o,u, _ (-0.4884+0.8726) —0.7234+0.4131i | | -0.0072-0.8330
||0'2|| 0.3951-0.0441i | |-0.1544+0.3663i
0.1594—0.331i 0.2129+0.3018i
—0.4673+0.0991i | [—0.4456—0.1700i (6.8.74)
o,U, _ (0.8404-0.5419i) 0.1331-0.2016i | | 0.2211-0.0974i
lo| —0.0247+0.1810i | | -0.1188+0.1387i

—0.1561-0.8097i 0.3076—-0.7651
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Given, the results (6.8.74), the singular decomposition (6.8.71) can be replaced by the equivalent
result?°

1 - 7 0.1530+0.27391 —0.0690+0.0828i —0.4456—0.1700i
A -8 9 8i _ —-0.2175+0.3066i —0.0072—-0.8330 0.2211-0.0974i y
4 -9 15i —0.7845+0.3756i —0.1544+0.3663i —0.1188+0.1387i
7 40 0.0052-0.0600i  0.2129+0.3018i  0.3076—0.7651i
19.4280 0 0 —0.3015 0.5452 —0.7822
0 14.8367 0 0.2362-0.0251i  0.1651-0.7895i  0.0240-0.5407i
0 0 7.0304 || 0.4714+0.7940i -0.1114+0.1991L -0.2594-0.1673i

(6.8.75)
An interesting application for the formula (6.8.46) is to derive a representation for the
solution of the equation we have discussed throughout this textbook, namely, given a vector b €
and a linear transformation A:¥ — %, find a vector x € ¥~ such that

Ax=D (6.8.76)

As we discussed in Section 1.8.1 with Theorem 1.8.1, (6.8.76) has a solution if and only if the
vector b e R(A). This result was again discussed in Section 2.7. If the representation (6.8.46) is

used, equation (6.8.76) can be written

R
(Z\/Zup@)vpjx:b (6.8.77)
p=1
The definition (6.7.1) can be used to rewrite (6.8.77) as

> 2 (xv,)u, =b (6.8.78)

This equation shows that the given b must be in the span of {u,,u,,...,u}, the image space R(A).

This result is simply a restatement of the earlier result mentioned above. An equivalent way to
assert this fact is to observe that (6.8.78) is equivalent to

<up,b>:0 for p=R+1LR+2,..,M (6.8.79)

20 Example 6.8.2 has been worked with the aid of MATLAB to carry out the calculations. The result (6.8.75) is the
form of the answer given by MATLAB’s built in singular value decomposition command.
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Equation (6.8.79) asserts that b e K (A*)L. Of course, equation (4.12.8) shows that the result

bekK (A*)L is simply a restatement of b e R(A). The result (6.8.79) was also established earlier

in the proof of Theorem 4.12.3, the first part of the Fredholm Alternative Theorem. If the given b
obeys b e R(A), it follows from (6.8.78) that

<b,up> for p=12,..,R (6.8.80)

<X’VP>:ﬁ

Because xisavectorin ¥ and {V,,V,,V;,...,Vg, Vg, Vy | IS @ basis for ¥, it has the
representation

x:i<x,vp>vp:i<x,vp>vp+ > <x,vp>vp (6.8.81)

If we now use (6.8.80), (6.8.81) can be used to write the solution of Ax=b as

xi[ﬁ@,upﬂv‘ﬁ ZN: <x,vp>vp (6.8.82)

p=R+1

InR(A")=K(A)" nK(A)

Equation (6.8.82) is a representation of the solution of (6.8.76) in the case where b e R(A) . ltis
of the form of the representation given in Theorem 2.7.5.

Example 6.8.3: In Example 2.7.6, we found the solution of equation (2.7.91), repeated,

X
1 1 -2 1 37x/| [1
2 -1 2 2 6| x|=[2 (6.8.83)
3 2 -4 -3 -9|x/| |3

L%

to be
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X, 0 0 1

X, 2 0 0
X=X [=%X|1|+X| O [+[0 (6.8.84)

X, 0 -3| |0

| Xs | 10| 1 1] (0]

It is instructive to generate (6.8.84) based upon the singular value decomposition of the matrix of
coefficients

11 2 1 3
A=l2 -1 2 2 6 (6.8.85)
3 2 -4 -3 -9

The eigenvalues of the matrix

(14 5 -10 -4 -12]
5 6 -12 -7 -21
ATA=|-10 -12 24 14 42 (6.8.86)
4 -7 14 14 42
12 -21 42 42 126

are the solution of the fifth order polynomial

f(1)=det(A"A-Al)=4%(-2°+1842° ~38451+16200)

(6.8.87)
= 2?(160.70-2)(17.56— 1) (5.74— A)
and the solution representation (6.8.82). Therefore,
J,=160.70= \[4, =12.6768
4, =17.56 = \[4, = 4.1902 (6.8.88)

Jy =5.74= [2, = 2.3962
A, =2 =0

Among other things, equation (6.8.88) tells us that the rank of the matrix (6.8.85) is 3. The
normalized eigenvalues of (6.8.86) are
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[-0.1074 | [ 0.7401 | [—0.6638 | 0 0
-0.1611 0.2654 0.3219 . 2 . 0
v,=| 0.3221 |,v,=|-0.5308 |,v, =|-0.5438 |,v,=—|1|, v, =——| O (6.8.89)
0.2930 0.1000 0.0641 V5 0 V10 -3
| 0.8791 | | 0.3001 | | 0.1942 | 10| |1
and the corresponding singular vectors are
0.1592 0.7320 0.6624
u, =| 0.5089 |,u, =|0.5141|,u, =| —0.6904 (6.8.90)
—-0.8460 0.4470 —-0.2907

The next formal step is to utilize (6.8.88), (6.8.89) and (6.8.90) to form the solution (6.8.82). This
calculation goes as follows:

[-0.1074 [ 0.7401 ]
. 0.1592 )| -0.1611 . 0.73207)| 0.2654
o [L 2 3] 05089 ||| 0.3221 |+ [L 2 3] 05141 -0.5308
x| 12.6768 4.1902
~0.8460 | )| 0.2930 0.4470 | ]| 0.1000
% 0.8791 0.3001
X= X3 = - - L i
3 ~0.6638
X“ . 0.6624 1)| 0.3219
=78 T [L 2 3] -0.6904 || -0.5438
' ~0.2907 | )| 0.0641
| 0.1942 |
pz;[\/%@,upﬂvp
07\ 0] ToN 0]
. 2112 . 01lllo
+E[X1 X, X X X][1||[1]+ E[x1 X, X X X][ 0[] 0
olllo —3| -3
0])lo 1)1
p:im<x,vp>vp
(6.8.91)

If this complicated numerical expression is evaluated, one finds
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X 1
X, 0
X=| X |= 0 +
X, 0
_X5_ _O_
| (b} v
é[ﬂfy_ﬁlp _ (6.8.92)
0 0
2 0
+2(2%,+%)| 1 [+=(-3%,+X;)| O
0 -3
_0_ L 1 .
i (v vy

This result is entirely equivalent to the earlier answer (6.8.84)

This brief introduction to the singular value decompositions does not do justice to a large
and complex topic that has great application. A few minutes searching the internet will reveal
many of these applications.?

Exercises

6.8.1 Let ¥ and # be real vector spaces such that dim¥ =2 and dim#% =4. We define
AV > % by

Al =3}, +]
Wbt (6.8.93)
Al, =35} +1],
where {i,,i,} and {j;. ], J;. .} are orthonormal bases. Determine the singular values and the
singular vectors for the linear transformation A .

6.8.2 In the case where you are given a matrix Ae .#"*" that has rank N, the singular value
decomposition (6.8.56) can be written

2L A couple of interesting articles that give insights to the singular value decomposition can be found at
http://www.ams.org/samplings/feature-column/fcarc-svd and https://www.mathworks.com/videos/the-singular-value-
decomposition-saves-the-universe-1481294462044.html The first article contains a link to a New York Times article
that discusses a challenge by Netflix that will award a million dollars to anyone that can improve in a specific way its
recommendation engine. The article explains how the singular value decomposition is being utilized by individuals
working to win the Netflix challenge. The second article is a video which, among other things, mentions the Netflix
challenge.



http://www.ams.org/samplings/feature-column/fcarc-svd
https://www.mathworks.com/videos/the-singular-value-decomposition-saves-the-universe-1481294462044.html
https://www.mathworks.com/videos/the-singular-value-decomposition-saves-the-universe-1481294462044.html
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N
0 A
A=U| 0 A (6.8.94)
- “ﬂ(N -
The matrix Ae .#™", by our assumptions is nonsingular. The inverse, from (6.8.94), is given by
Ly
JA
1
0 -
At=V 0 */Z u” (6.8.95)
1
- AN -
Given the matrix from Example 1.6.5, repeated,
1 3 1
A=12 1 1 (6.8.96)
-2 2 -1

and utilize (6.8.95) to calculate the inverse of (6.8.96). The answer was given earlier in equation
(1.6.35).

6.8.3 Show that a singular value decomposition of the matrix A:.#** — .#>* defined by

16 1 ~ 1 N
i G N ]
& L) Lo
1(1+i) 22 —Ei
5 5 5
A=l ; ”y (6.8.97)
~(1-i) =i ==
5 5 5
0 0 0
0 0 0
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_5 o O O 0_
o o o o
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—
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1
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([o

- _I _I o

(6.8.98)

Also, show that an equivalent form of (6.8.98) is

—~
Y - —
| |
N—
o /.\0 o
ljﬂ?_l
L __
1
o o m
o < o
n o o
 E— |
—
l_l
= o
—~
+

o

(6.8.99)
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Section 6.9 The Polar Decomposition Theorem

The polar decomposition is a decomposition of a linear transformation A:¥ — % into the
product of a Hermitian linear transformation and a unitary linear transformation. The Hermitian
linear transformation is positive semidefinite and, depending upon the properties of A, the unitary
linear transformation may not be unique. The details of this rough description will be made clear in
this section. One of the applications of the polar decomposition theorem is in the case where
A:¥ >4 isonetooneand N =dim¥ =dim#%. In other words, when A:% — % is one to one
and onto, thus invertible. This is the case that arises when one studies the kinematics of strain for
continuous materials. The formal statement of the polar decomposition theorem in the invertible
case is

Theorem 6.9.1: A one to one onto linear transformation A:¥ — % has a unique multiplicative
decomposition

A=RV (6.9.1)
where R:¥ — % isunitary and V:¥ — ¥ is Hermitian and positive definite.
Proof: The proof utilizes a construction similar to that used in Section 6.8 for the singular value

decomposition. Given a one to one onto linear transformation A:% — %, we can construct
Hermitian linear transformation C: % — ¥~ by the definition

C=A'A (6.9.2)
By the same argument that produced (6.8.8)

(v,cv)=(v,A’Av) =(Av,Av)=|Av[ =0 (6.9.3)

Because A:¥ — % is one to one and onto, K (A) only contains the zero vector. As a result,

2 .. . .
||Av|| >0 for all non zero vectors v e ¥ . Therefore, the Hermitian linear transformation

C:¥ — v is positive definite. As a positive definite Hermitian linear transformation, C: ¥ — ¥
has the spectral representation

N
C=> 4v,®v, (6.9.4)
j=1

where the positive numbers 1, 4,,..., 4, are the eigenvalues of C and {v,,v,,.., v} isan

orthonormal basis for ¥ consisting of eigenvectors of C . The representation (6.9.4) does not
assume the eigenvalues are distinct. If they are, the tensor products in (6.9.4) represent the
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projections into the characteristic subspaces of C. It is useful to note that we can apply (6.6.31) to
the expression (6.9.4) and obtain

N1
=) v, ®v, (6.9.5)
2;

j=1

We can also apply the definition (6.6.31) and define the linear transformation V:7 — ¥ by
}/ N
v=C?2=3% [iv,®v, (6.9.6)
j=1

where, by convention, we have used the positive square root of each eigenvalue. It follows from
(6.9.6) that

= —v ®V, (6.9.7)

2

Equation (6.9.6) provides one of the two linear transformations in the decomposition (6.9.1). The
next formal step is to define the linear transformation R :%¥" — % by the formula

R=AV" (6.9.8)
Because A is invertible, R as defined by (6.9.8) is also invertible. If we can establish that R is
unitary, we will have established (6.9.1). We shall establish that R is unitary by showing that it
obeys (4.10.14), repeated,
RR=1, (6.9.9)
The definition (6.9.8) yields
R'R=(AV') AV'=(V?) A'AV?
=VIA'AV=VvvViV?! (6.9.10)
=(VV)(wi)=1,

where (4.9.10) and (6.9.6) have been used. The uniqueness of the decomposition (6.9.1) is a
consequence of (6.9.2), (6.9.6) and (6.9.8).

A corollary to Theorem 6.9.1 is that A:¥" — % also has the decomposition

A=UR (6.9.11)



Sec. 6.9 . The Polar Decomposition Theorem 565

where U: % — % is a positive definite Hermitian linear transformation. Equation (6.9.11) results

if we simply define U by the formula
U=RVR’
It readily follows from this definition that
B=U’

where B:% — % is the positive definite Hermitian linear transformation defined by

It is possible to show that

where {u,,u,,...,uy} isan orthonormal basis of % consisting of eigenvectors of B. The

eigenvectors {u,,u,,..., U, | are related to the eigenvectors {v,,v,,.., v, } by the formula

T
:\//17] (\/)TJVJ) Rv,

(6.9.12)

(6.9.13)

(6.9.14)

(6.9.15)

(6.9.16)

where (6.9.1) and (6.9.6) have been used. Equation (6.9.16) can also be established from (6.9.12),

(6.9.6), (6.9.15) and (6.7.24).

Example 6.9.1: As an illustration of the polar decomposition theorem, consider the linear
transformation A:¥ — ¥ introduced in Example 5.3.1. The definition of this linear
transformation is given in equation (5.3.1), repeated,
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Ae, =e +e, +4e,
Ae, =2e, —4e, (6.9.17)
Ae, =—e, +e, +5e,

where {e, e,,e,} isabasis for ¥". As explained in Example 4.5.1, the matrix of A with respect to
this basis is

1 2 -1
A=M(Ae.e)=|1 0 1 (6.9.18)
4 -4 5

The linear transformation C defined by (6.9.2) has the matrix

T

1 2 11 2 -1
C=M(Ce;e)=l1 0 1|[1 0 1
4 -4 5|4 4 5

(6.9.19)
18 -14 20
=1-14 20 -22
20 -22 27
The eigenvalues and eigenvectors of the matrix (6.9.19) can be shown to be
2, =0.1207, 4, =0.4.9776, A, = 59.9017 (6.9.20)
and
Uiy Uy U | [-0.4164 07578  0.5024
T=|0%, V', V' |=| 05268 06515 -05459 (6.9.21)
3 3 3 0.7410 -0.0374 0.6705
Yo Ye Ve

where the notation introduced in equation (5.3.23) has been used to label the eigenvectors. The
spectral form of (6.9.19) which follows from (6.9.4) is
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18 -14 20
C=M(Ce;e)=|-14 20 -22
20 -22 27
1 1 T 1 1 T 1 1 T
Vo [||Yo Ve || Yo Ua ||| Ve
=410 [P0 || +2|V0 || [Ya || +4[Ye || Pe
3 3 3 3 3 3
Yo l\[Pw Yo |\|Y @ Yo [\[Ye
0.1734 -0.2194 —0.3085 0.5742 0.4937 -0.0283
—0.1207| —0.2194 0.2775 0.3904 |+4.9776| 0.4937 0.4244 —0.0243
~0.3085 0.3904 0.5491 ~0.0283 -0.0243 0.0014

0.2524 —0.2743 0.3369
+50.9017| -0.2743  0.2981 —0.3660
0.3369 -0.3660 0.4495

(6.9.22)

where (6.7.8) has been used to determine the matrix representation of the tensor products in (6.9.4).
From (6.9.6) and (6.9.22), it follows that

1 1 T 1 1 T 1 1 T
Yoll|%w Yo ll|Ye Yoll|Ye
V=M (Viepe)=ya | vy ||| 0% ||+ |V || [V || V|V |||V
0w [P O [P Ve (V)
[0.1734 -0.2194 —0.3085] 0.5742 0.4937 -0.0283
=0.3475-0.2194 0.2775 0.3904 |+2.311| 0.4937 0.4244 —0.0243
|-0.3085 0.3904  0.5491 | ~0.0283 -0.0243 0.0014

[0.2524 —0.2743 0.3369 |
+7.7396| —0.2743  0.2981 —0.3660
 0.3369 —-0.3660 0.4495 |
32950 -1.0978 2.4368
~|-1.0978 33501 -2.7516
24368 -2.7516 3.6730

(6.9.23)

Finally, the matrix of the orthogonal linear transformation R: %" — ¥ is, from (6.9.8)
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-1

R=M(R.e;.e)=M(Ae; e )M(V.ee)

-1

(1 2 -1][ 32950 -1.0978 2.4368
=1 0 1] -1.0978 33501 -2.7516 (6.9.24)
4 -4 5| 24368 -2.7516 3.6730

[ 0.7551 05442 -0.3656
=1-0.0682 0.6198 0.7818
| 0.6520 -0.5654 0.5051

Therefore, the polar decomposition (6.9.1) is given by (6.9.18), (6.9.24) and (6.9.23). If we utilize
(6.9.12) and (6.9.24) it follows that

M(U.e;.e )=M(R.e;.e )M (V.e;e )M(Re.e;) (6.9.25)

Equation (6.9.25) creates a small problem because the components of the linear transformation R’
with respect to the basis {el,ez,es} are given by (4.9.24) specialized to the case of a real vector

space ¥~ and a linear transformation ¥~ — ¥ . Equation (4.9.24) requires knowledge of the matrix
of inner products formed from the basis {e,,e,,e,} . Fortunately, we do not need to utilize (4.9.24)

in this case because R is orthogonal and, from (4.10.15),
R'=R™ (6.9.26)

and from (3.5.42)
M (R e.e)=M (R e.e;)=(M(Ree,)) (6.9.27)
Equation (6.9.27) allows (6.9.25) to be written
M(Ue.e)=M(Re.e)M(Ve.e)(M(Re,e,)) (6.9.28)

As a result of (6.9.28) and (6.9.24),
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[ 0.7551 0.5442 —0.3656|[ 3.2950 -1.0978 2.4368 |[ 0.7551 0.5442 —0.3656 |
M(U,ej,ek)= -0.0682 0.6198 0.7818 || -1.0978 3.3501 -2.7516|| —0.0682 0.6198 0.7818
| 0.6520 -0.5654 0.5051 || 2.4368 -2.7516 3.6730 || 0.6520 -0.5654 0.5051 |
[ 0.7551 0.5442 —0.3656|] 3.2950 -1.0978 2.4368 |[ 0.7551 —0.0682 0.6520 |
=|-0.0682 0.6198 0.7818 || -1.0978 3.3501 -2.7516|| 0.5442 0.6198 —0.5654
| 0.6520 -0.5654 0.5051 || 2.4368 -2.7516 3.6730 || -0.3656 0.7818  0.5051 |
[ 22091 0.3896 -0.9840
=| 0.3896 0.7136 1.1571
| —0.9840 1.1571 7.3955
(6.9.29)
Example 6.9.2: Consider the linear transformation A:¥ — ¥ whose matrix with respect to an
orthonormal basis {i,,i,,i,,i,} is
2 3 -2 4
3 -2 1 2
A=M(Ai i )=]| _ _ 6.9.30
(A7) 3i 2 3 4 ( )
-2 4 0 bi
The linear transformation C defined by (6.9.2) has the matrix
2 3 —2i 41[2 3 -2 4
3 2 1 2 3 -2 1 2
C=M(C,iji,)=
) 3i 2 3 4|3 2 3 4
-2i 4 0 b5i||-2i 4 0 65i
2 3 =3 2|2 3 -2 4 26 —6+8i 12-4i -2-6i
|8 -2 2 443 -2 1 2| |-6-8i 33 -8+6i 8+4i
121 -3 03 2 3 4| |12+4i -8-6i 14 -2i
4 -2i 4 -5i{-2i 4 0 G&i -2+6i 8-4i 2i 61
(6.9.31)
The eigenvalues and eigenvectors of the matrix (6.9.31) can be shown to be
A =2.8842, 4, = 23.1440, A, = 42.2155, 1, = 65.7563 (6.9.32)

and

569
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[ 0.0880+0.5008i 0.4924-0.3650i —0.5494-0.1283i -0.1498-0.1584i
—0.3202-0.0747i 0.5868-0.2064i 0.2852+0.56651  0.2463+0.2050i
—-0.1050-0.7851i 0.1570-0.4337i -0.1758-0.3270i —0.0368-0.1437i

0.0769 —0.1569 —0.3764 0.9098

(6.9.33)

where the notation introduced in equation (5.3.23) has been used to label the eigenvectors. The
spectral form of (6.9.33) is given by (6.9.4). From (6.9.6) and (6.9.33), it follows that

* * *

Yoo Yo ||Ye YoV
1)2 l)2 1)2 U2 02 U2
V - M (V’ij’ik):\/Z 03(1) 03(1) +\/j'_2 U3(2) 03(2) +\/Z 03(3) US(S)
& ® (2) 2) ® ®
Ol [\ [V ] o\ [V 0 )1V ]
—”1<4> Oy
A “2(4) Uzw
Y@l
O\ [P
4.6995 ~0.4113+0.9145i 1.5795-0.3682i —0.1218—0.5138i
~0.4113-0.9145i 5.4913 ~0.8112+0.8392i  0.6347 +0.2736i
| 1.5795+0.3682i —0.8112—0.8392i 3.1631 0.0264 — 0.0356i
—0.1218+0.5138i  0.6347-0.2736i  0.0264 +0.0356i 7.7615

(6.9.34)

Finally, the matrix of the orthogonal linear transformation R: %" — ¥ is, from (6.9.8)
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R=M(R,i i )=M (A i)M(V,i,i)"
(2 3 -2 4 4.6995 _0.4113+0.9145i 15795-0.3682i —0.1218—0.5138i "
3 -2 1 2il|l-0.4113-0.9145i 5.4913 0.8112+0.8392i  0.6347 +0.2736i
"3 2 3 4| 15795+0.3682i —0.8112—0.8392i 3.1631 0.0264— 0.0356i
2i 4 0 5i||-0.1218+0.5138 0.6347-0.2736i  0.0264+0.0356i 7.7615
[0.33i8+0.2091i  0.0859+0.4342i —0.0572-0.6152i 0.5180—0.0115i
|0.7544-0.15561 —0.4194-0.1684i -0.1913+0.2303i  0.0501+0.3321i
1 0.0466+0.4144i  0.2809+0.1589i  0.0386+0.7080i  0.4679—0.0155i
0.0943-0.26481  0.6970-0.0992i  0.1436-0.0720i  —0.0416 +0.6307i
(6.9.35)

Therefore, the polar decomposition (6.9.1) is given by (6.9.30), (6.9.34) and (6.9.35). If we utilize
(6.9.12) it follows that

M(u,ij,ik)=|\/|(R,ij,ik)M(v,ij,ik)M(R’”,ik,ij)=|\/|(R,ij,ik)M(v,ij,ik)M(R,ij,ik)’l
(6.9.36)

As a result of (6.9.34) and (6.9.35),
—0.1317-0.1896i

5.2688 0.7433-1.8926i  1.0255-0.0011i
M (u o )= 0.7433+1.8926i 3.5748 —0.4145-0.6976i  0.2939+0.5847i
B 1.0255+0.0011i —0.4145+0.6976i 5.8007 0.2171-1.6108i
—-0.1317+0.1896i 0.2939-0.5847i  0.2171+1.6108i 6.4712
(6.9.37)

The proof of the polar decomposition theorem, as shown by the above, involves a
construction that is very similar to that used for the singular value decomposition theorem of
Section 6.8. It is the singular value decomposition theorem that generalizes the polar
decomposition theorem given above. Our next discussion will return to the singular value
decomposition theorem, and it will be used to reprove and generalize the polar decomposition
theorem above. The generalization will be that we will not assume that the linear transformation
A:¥ — % isone to one and onto. The result will be a polar decomposition theorem similar in
form to the one above except that the linear transformation R : ¥ — % is not unique. We begin
this discussion by summarizing the results of Section 6.8. If we are given a linear transformation
A:¥ — %, it has the component representation (6.8.46)

A:ZR:\/TPUP®VP
=1

(6.9.38)
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where R=dimR(A), {Al,/lz,...,iR,O,O,...,O} are the eigenvalues of A'A: ¥ > 7,
N-R

{V1, Vs, Vg, Viaoos Vg | i @n orthonormal basis of %~ consisting of eigenvectors of A"A and

{Uy, Uy, Ug, Ug s, Uy | s @n orthonormal basis of % consisting of eigenvectors of AA™. The

sets of vectors {Vv,,V,,...,Vp} and {u,,u,,..., U} are connected by the relationships (6.8.18)1 and
(6.8.19);.

Given the above construction, we define linear transformations V:¥ - % and R: ¥ > %

by
R
V=Y [Av,®v, (6.9.39)
j=1
and
R
R=>u,®v, (6.9.40)
j=1

respectively. Because the eigenvalues {/11, Ayyny AR} are positive and, by convention, we are

utilizing their positive square roots, it easily follows that V is a positive semidefinite Hermitian
linear transformation. From the definitions (6.9.39) and (6.9.40) it follows that

RV:[ZRZUJ®vjj(gﬂvk®vkj:iiﬂ(u ®V, ) (Vi ®Vv,)

j=1 k=1
R

=ZR:ZR:\/Z< k>uj®vk=ZR:Z\/Zajkuj®vk (6.9.41)

j=1 k=1 j=1 k=1

where the fact the basis {V,,V,,..., Vg, Vg.s,..., Vi | is orthonormal has been used. If, as in (6.9.12),
we define a positive semidefinite Hermitian linear transformation U:% — % by

U=RVR’ (6.9.42)

it is possible to show that

uzi\/fjujcguj (6.9.43)
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and
UR=A (6.9.44)

Equations (6.9.41) and (6.9.44) represent the same kind of decomposition as we encountered for
the first version of the polar decomposition theorem. In this case, as was mentioned, we have not
had to assume that A:¥ — 4% is one to one and onto. If it is one to one and onto, then (6.9.41) and
(6.9.44) become the results (6.9.1) and (6.9.11) respectively. It should be evident that in the one to
one case, the above is an alternate proof of the polar decomposition theorem which starts from the
singular value decomposition.

If we return to the case where A: ¥ — % is not one to one and onto, it is interesting to ask
the question whether or not the linear transformation R: ¥ — % is unitary. An answer to this
question is obtained if we form the product

R*R:( 3 .®vjj (ZR:uk(@vkj:ZR:ZR:(vj®uj)(uk®vk)
| - = (6.9.45)

ZR:ZR:<uk,u >v Vv, _225kjvj®v _Zvj®vj
=1

j=1 ki j=1 ki

Because R:¥ — % does not obey (4.10.14), the conclusion is that it is not unitary. In the special
case where A:¥ — % isone to one and onto, it is true that R = N and, because of the result
(6.7.15), equation (6.9.45) establishes that R is unitary. Given (6.7.15), we can replace (6.9.45) by

R N
RR=Yv,®v,=1,-> v,®v, (6.9.46)
j=1

j=R+1

Essentially, one can establish that the restriction of R to the subspace spanned by {vl, Vo VR} is
a one to one onto linear transformation R, :Span(v,,V,,...,vy)— R(A) that is unitary.

If one simply defines the linear transformations V:¥ — ¥ and R:¥ — % by (6.9.39) and
(6.9.40), respectively, then the decomposition (6.9.41) is a consequence. If the problem is stated
differently, namely, given A:¥ — % and V:¥ — ¥ ,istherean R:¥ — % such that (6.9.41)
holds, then one encounters the problem that R is not necessarily given by (6.9.40). A similar
problem arises when one is givenan A:¥ — % and U:% — % and asks whether or not there is
an R:7 — % such that (6.9.44) holds. In order to be more precise, assume for the moment that
we are given A:¥ >, V¥ > and U:% — % and two linear transformations R: ¥ — %

and R:% — % such that
A=RV =RV (6.9.47)

and
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A=UR=UR (6.9.48)
Therefore, the two linear transformations R and R must obey

(FE—R)V:O (6.9.49)
and

U(R—R):O (6.9.50)

The question is what linear transformation Z=R — R is allowed by the requirements (6.9.49) and
(6.9.50) when V is given by (6.9.39) and U is given by (6.9.43). With respect to the bases

{V1:Vyeu Vg, Vi Vy | fOr 7 and {u,,U,,...,Ug, Ug.y,.. Uy | fOr 2, we can write

~

M N
Z=R-R=) > Z,u,®v, (6.9.51)
i 4

1 j=1

If we use (6.9.51) and (6.9.39), equation (6.9.49) takes the form

N M R
2 Zu ®(W,)=>"> [4,Z,u,®v, =0 (6.9.52)

<R_R)V: j=t k=1 j=1

M
k

aN

where the identity (6.7.26) has also been used. If we use (6.9.51) and (6.9.43), equation (6.9.50)
takes the form

N N
>.Z;(Vu)®v, =3 > J4Zu, ®v =0 (6.9.53)

~ M
U(R-R)=
k=1 j=1
where the identity (6.7.27) has also been used. Because the eigenvalues 4, 4,,..., 4, are nonzero,
equations (6.9.52) and (6.9.53) show that

0 for k=1,2,..,Randj=12,..,N
Zy= ) (6.9.54)
0 for k=R+LR+2,..M andj=12,..,R
Equivalently, (6.9.51) must be of the form
" M N
R-R=D> > Zu ®v, (6.9.55)

k=R+1 j=R+1
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where the coefficients Z,; for k=R+1,..,M and j=R+1,..,N are arbitrary. Equation (6.9.55)

shows to what extent the linear transformation R :¥” — % in the decompositions (6.9.41) and
(6.9.44) are determined by the linear transformation A:7 — % . More specifically, if we agree to
construct the decompositions (6.9.41) and (6.9.44) utilizing the definition (6.9.40), then any other

decompositions of the form A = RV = UR also hold where

~ R M N

R=YU,®v,+ > > Zu ®v, (6.9.56)
j=1 k=R+1 j=R+1

and where the coefficients Z,; for k=1,2,..,M and j=R+1,...,N are arbitrary. The construction

(6.9.56) shows the cases where the linear transformation R: 7 — % is unique. It is unique in
caseswhere R=M (A:¥ — % isonto) and/or R=N (A:¥ — % is one to one)

Example 6.9.3: The polar decomposition in the case where the linear transformation A: 7 —» ¥
is not one to one and onto can be illustrated by the linear transformation A:¥ — ¥~ whose matrix

with respect to an orthonormal basis {i,, i, i,i,} is

36 -9 18 9
- 42 -7 19 8
1 I ) =
48 -5 20 7
58 -25 35 22

(6.9.57)

Therefore, for this example M =N =4. The matrix of the linear transformation C = A" A is

36 -9 18 9|36 -9 18 9 8728 2308 4436 2272

c_ 42 -7 19 8| |42 -7 19 8| |-2308 780 -1270 -722 (6.9.58)
148 5 20 7|48 -5 20 7| | 4436 —1270 2310 1224

58 -25 35 22| |58 -25 35 22 2272 —722 1224 678
The eigenvalues of C turn out to be
A =12252, 1, =243.5946,4, = 4, =0 (6.9.59)

and, given (6.9.59), the following transition matrix gives four othonormal eigenvectors

Vo Yo PYe Ya 0.8416 -0.4506 0.1188 0.2730

T 02(1) 02(2) 1)2(3) 02(4) _ —-0.2314 -0.7131 -0.6346 -0.1876 (6960)
v’y V%, Ul U, | | 04328 02465 -0.1843 -0.8473
N T 0.2254 04771 -0.7411 0.4152
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The results (6.9.59) show that R =2. The singular vectors u, and u,corresponding to v, and v,
are given by (6.8.20)1. Therefore,

1 1

Uy Vo | [0.3812

w _ 1A Uy _| 04246 (6.9.61)
3 | T 3 |~ I
o | VA |V | | 04679
4 4 0.6749

Yo | V|

and

L -

U2 VUi | [-0.0688

ol 1 A vy | |-0.3482 (6.9.62)
3 | T, 3 |- I
o | A |0y | |-0.6276

4 4 0.6929

U V2 |

The eigenvectors of B = AA" corresponding to the two zero eigenvalues are not needed to
calculate R=M (R,ij,ik). The two-dimensional null space of the linear transformation C can be

shown to be spanned by an infinite number of vector pairs. One pair of the many choices is

U 0.9219

u? ~0.2012
3 :

i, | | -0.2606 (6.0.69)
4 ~0.2274

Yo

T
@ | [-0.0004

u? 0.8112
() :

i, || -0.5739 (6.5.64)
4 ~0.1122

RACH

Equations (6.9.59) through (6.9.62) combine with (6.9.39) to yield
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V=M(V,ii,)
T, 7" T r,e T
Yo% Yo |l|lYe
2 2 2 2
% 1 v 1 % 2 v 2
_ 3() 3() Ji 3() 3() (6.9.65)
Yol||Yw Vo [||Ywe
4 4 4 4
PolllY o] PolllY o]
81.5731 -16.5427 38.5862 17.6429
B -16.5427 13.8637 -13.8302 -11.0843
| 385862 —13.8302 21.6838 12.6349
17.6429 -11.0843 12.6349 9.1775
The same equations along with the definition (6.9.40) yield
M1 T 7Y e W, 7T
“(ﬂ Yy U || Yo
u? v° u? v*
. (@] @) (2 (2)
R:M(R’Ii’lk): us Us + us Us
1) @) (2 (2
4 4 4 4
YolllPe] | YolllY el (6.9.66)
0.3519 -0.0392 0.1480 0.0531
B 0.5142 0.1500 0.0979 -0.0704
0.6766 0.3392 0.0478 -0.1940
0.2557 -0.6503 0.4679 0.4828
Finally, the definition (6.9.42) along with (6.9.65) and (6.9.66) yield
U=M (Ui )=RVR
16.1624 18.2901 20.4179 27.7373
182901 21.6439 253976 27.9513 (6.9.67)
20.4179 25.3976 30.3774 28.1653
27.7373 27.9513 28.1653 57.9145

If, instead of (6.9.66), one uses a linear transformation R that obeys (6.9.56) it is readily shown

that again A = RV =UR where A, V and U are given by (6.9.57), (6.9.65) and (6.9.67),
respectively.
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Example 6.9.4: Another example of the polar decomposition in the case where the linear
transformation A:¥ — % is not one to one and onto can be illustrated by the linear transformation
introduced in Example 6.8.1. In this example ¥~ and % are real vector spaces with dim¥” =2and
dim# =4. We defined A:7 — % by (6.8.26), repeated,

Ai =], +3]
W=hrel (6.9.68)
Al, =3, +],
where {i,,i,} and {j;, ], J;. .} are orthonormal bases. In the solution of Example 6.8.1, we
showed that N =R =2 and M =4 in this example. In addition, we showed that

2,=16,1, =4
1. . 1, . . (6.9.69)
Vlzﬁ(ll—klz),vzzﬁ(—ll—klz)
and
1. . 1, . . .
=g ) e = (B =da) Uy = oot =y (6.9.70)

With respect to the orthonormal bases {v,,v,} and {u,,u,,u;,u,}, the matrix of A:# — % is
given by (6.9.38) which takes the form

R
A:Z\/}Tpup@)vp:4ul®vl+2u2®v2 (6.9.71)
p=1
The linear transformation V :¥ — ¥, defined by (6.9.39), is given by
R
V:Z\/}ijj@ﬁvj:4v1®v1+2v2®v2 (6.9.72)
=1
The linear transformation R: 7 — %, defined by (6.9.40), is given by
R
R=YU,®v,=u,®Vv,+u,®V, (6.9.73)
j=1

Finally, the linear transformation U: % — % , defined by (6.9.42), is given by

U=RVR =(U,®V,+U,®V,)(4v,®V,+2V, ®V,)(V,®U, +V, ®U,)

(6.9.74)
=4u, ®u, +2u, ®u,
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If we choose to represent the four linear transformations in (6.9.71), (6.9.72), (6.9.73) and (6.9.74)
as matrices with respect to the orthonormal bases {i,,i,} and {j;,J,,Js.j,} the results are

1 3
. 3 1
A=M(Ai,j )= -
00
11 1 1
. ) J2 2104 0] V2 2| [3 1
V:M(V"q"k):T1M(V’Vq'vk)T: 1 1 o 2 1 1| |13
V2 2 2 2
11 50
V2 2 oy S N L
o . 1 1 0 1| V2 2| |1 0
R=M (RiigJi)=5"M (R,v,.u, )T = Z 7 %00l 1 1070 o
0 0 1 0Jo ol v2 v2] |0 0
0 0 0 1]
11 ] 11 ]
— — 00 — — 00
V2 2 400 0]|v2 2
. i 1 1 020 0|1 1
UM (o) =S (Uugu)s= 5 =77 0 Ol 5 o om0 °
0 0 1 0llo o o o/l O 0 1
0 0 0 1] 0 0 0 1]
3100
11300
|0 00O
0000
(6.9.75)
Exercises

6.9.1 As an illustration of the polar decomposition theorem for a nonsingular matrix (a matrix
whose linear transformation is one to one and onto, consider the matrix of coefficients of the
problem introduced in Exercise 1.3.2. The matrix in this case is
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[EEN
[N

(6.9.76)

N P W O
w - O =
R W
|
NN

[EEN
w

Show that the polar decomposition theorem (6.9.1) and (6.9.11) are given by

~0.5892 0.4120 0.6884  0.0958
05395 0.0257 0.5367 —0.6482

R= (6.9.77)
0.3544 —0.4443 0.4758 0.6713

0.4859 0.7951 -0.1081 0.3464

29448 1.2229 1.8696 -0.5807
12229 23531 0.8398 1.8062

V = (6.9.78)
1.8696 0.8398 2.6661 —0.8312

-0.5807 1.8062 -0.8312 5.0705

and

11962 -0.0859 0.7028 1.0333
~0.0859 5.8216 0.1946 -0.2520

U= (6.9.79)
07028 0.1946 17285 1.8656

1.0333 -0.2520 1.8656 4.2881

6.9.2 Show that a polar decomposition of the matrix introduced in Exercise 6.8.3, i.e.,

16 1 o1 N
2 Z1-i) Z(2
& L) e
i) 23
A=) , 2 (6.9.80)
Ty 5 2
5 5 5
0 0 0
0 0 0
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16 1 o1 .
2 Z1-i) I
& L) e
1 . 22 3i
V==(1 — —— 6.9.81
5( +I) 5 ) ( )
1 . 3i 22
~(1- > e
_5( D 5 |
(1 0 O]
010
R=|0 0 1 (6.9.82)
0 0O
0 0 0
and
% La-i) i) o o
i) 2 -2 00
u=|, 5 ”s (6.9.83)
Z@-i) 2 2 00
5 5 5
0 0 0 0 0
0 0 0 0 0]
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