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____________________________________________________________________________ 
PREFACE 
 
To Part 1 
 
It is common for Departments of Mathematics to offer a junior-senior level course on Linear 
Algebra.  This book represents one possible course.  It evolved from my teaching a junior level 
course at Texas A&M University during the several years I taught after I served as President.  I am 
deeply grateful to the A&M Department of Mathematics for allowing this Mechanical Engineer to 
teach their students. 
 
 This book is influenced by my earlier textbook with C.-C Wang, Introductions to Vectors 
and Tensors, Linear and Multilinear Algebra.  This book is more elementary and is more applied 
than the earlier book.  However, my impression is that this book presents linear algebra in a form 
that is somewhat more advanced than one finds in contemporary undergraduate linear algebra 
courses.  In any case, my classroom experience with this book is that it was well received by most 
students.  As usual with the development of a textbook, the students that endured its evolution are 
due a statement of gratitude for their help. 
 
 This book is the first volume of a two volume work on Applied Mathematics.  Part 2 is on 
the topic of Numerical Analysis and builds on the results in this book.  The index for Part 2 is given 
below. 
 
 As has been my practice with earlier books, this book is available for free download at the 
site https://rbowen.engr.tamu.edu/ or, equivalently, from the Texas A&M University Digital 
Library’s faculty repository, https://oaktrust.library.tamu.edu/handle/1969.1/94772.  It is inevitable 
that the book will contain a variety of errors, typographical and otherwise.  Emails to 
rbowen@tamu.edu that identify errors will always be welcome.  For as long as mind and body will 
allow, this information will allow me to make corrections and post updated versions of the book. 
 
First Edition Update 
 
 The First Edition, which was last updated in January, 2017, has been updated again in June, 
2020.  The updates are generally minor.  A number of typos and small mistakes have been 
corrected.  A clarification has been addition for Sylvester’s Theorem for the case of repeated 
eigenvalues.  Also, the index has been more carefully constructed. 
 
 As with earlier updates of this textbook, I would greatly appreciate being told of errors and 
other improvements that can be made to the text. 
 
 
 
 
College Station, Texas R.M.B. 

Posted June, 2020 

https://rbowen.engr.tamu.edu/
https://oaktrust.library.tamu.edu/handle/1969.1/94772
mailto:rbowen@tamu.edu
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__________________________________________________________ 
Chapter 1 
 
 
ELEMENTARY MATRIX THEORY 
 
 

When we introduce the various types of structures essential to the study of linear algebra, it 
is convenient in many cases to illustrate these structures by examples involving matrices.  Also, 
many of the most important practical applications of linear algebra are applications focused on 
matrix algebra.  It is for this reason we are including a brief introduction to matrix theory here.  We 
shall not make any effort toward rigor in this chapter.  In later chapters, we shall return to the 
subject of matrices and augment, in a more careful fashion, the material presented here. 
 
 
Section 1.1. Basic Matrix Operations 
 
 We first need some notations that are convenient as we discuss our subject.  We shall use 
the symbol R  to denote the set of real numbers, and the symbol C  to denote the set of complex 
numbers.   The sets R  and C  are examples of what is known in mathematics as a field.  Each set is 
endowed with two operations, addition and multiplication such that 
 
For Addition: 

1. The numbers 1x  and 2x  obey (commutative) 
 
 1 2 2 1x x x x+ = +  
 

2. The numbers 1x , 2x , and 3x  obey (associative) 
 
 1 2 3 1 2 3( ) ( )x x x x x x+ + = + +  
 

3. The real (or complex) number 0  is unique (identity) and obeys 
 
 0 0x x+ = +  
 

4. The number x  has a unique “inverse” x−  such that. 
 
 ( ) 0x x+ − =  
For Multiplication 

5. The numbers 1x  and 2x  obey (commutative) 
 
 1 2 2 1x x x x=  
 

6. The numbers 1x , 2x , and 3x  obey (associative) 
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 1 2 3 1 2 3( ) ( )x x x x x x=  
 

7. The real (complex) number  1  is unique (identity) and obeys 
 
 (1) (1)x x x= =  
 

8. For every 0x ≠ , there exists a number 1
x

 (inverse under multiplication) such that 

 

 1 1 1x x
x x

   = =   
   

 

 
9. For every 1 2 3, ,x x x , (distribution axioms) 

 

 
1 2 3 1 2 1 3

1 2 3 1 2 1 3

( )

( )

x x x x x x x

x x x x x x x

± = ±

± = ±
 

 
While it is not especially important to this work, it is appropriate to note that the concept of a field 
is not limited to the set of real numbers or complex numbers. 
 

Given the notation R  for the set of real numbers and a positive integer N , we shall use the 
notation NR to denote the set whose elements are N-tuples of the form ( )1,..., Nx x  where each 
element is a real number.  A convenient way to write this definition is 
 
 ( ){ }1,...,

N
N jx x x= ∈R R  (1.1.1) 

 
The notation in (1.1.1) should be read as saying “ NR  equals the set of all N-tuples of real 
numbers.”  In a similar way, we define the N-tuple of complex numbers, NC , by the formula 
 
 ( ){ }1,...,

N
N jz z z= ∈C C  (1.1.2) 

 
An M  by N  matrix A  is a rectangular array of real or complex numbers ijA arranged in 

M rows and N  columns.  A matrix is usually written 
 

 

11 12 1

21 22 2

1 2

N

N

M M MN

A A A
A A A

A

A A A

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 

= ⋅ 
 ⋅ 
 ⋅ ⋅ ⋅ 

 (1.1.3) 
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and the numbers ijA  are called the elements or components of A .  The matrix A  is called a real 
matrix or a complex matrix according to whether the components of A  are real numbers or 
complex numbers.  Frequently these numbers are simply referred to as scalars. 
 

A matrix of M rows and N  columns is said to be of order M by N  or M N× .  The 
location of the indices is sometimes modified to the forms ijA , i

jA , or j
iA .  Throughout this 

chapter the placement of the indices is unimportant and shall always be written as in (1.1.3).  The 
elements 1 2, ,...,i i iNA A A are the elements of the ith row of A , and the elements 1 2, ,...,k k NkA A A  are the 
elements of the kth column. The convention is that the first index denotes the row and the second 
the column.  It is customary to assign a symbol to the set of matrices of order M N× .  We shall 
assign this set the symbol M N×M .  More formally, we can write this definition as 
 
 { } is an  matrixM N A A M N× = ×M  (1.1.4) 
 

A row matrix is a 1 N×  matrix, e.g.,1 
 
 [ ]11 12 1NA A A⋅ ⋅ ⋅  
 
while a column matrix is an 1M ×  matrix, e.g., 
 

 

11

21

1M

A
A

A

 
 
 
⋅ 

 ⋅ 
 ⋅
 
 

 

 
 

The matrix A  is often written simply 
 
 ijA A =    (1.1.5) 
 
A square matrix is an N N×  matrix.  In a square matrix A , the elements 11 22, ,..., NNA A A  are its 
diagonal elements.  The sum of the diagonal elements of a square matrix A  is called the trace and 
is written tr A .  In other words, 
 
 11 22tr NNA A A A= + + ⋅ ⋅ ⋅ +  (1.1.6) 

 
1 A row matrix as defined by [ ]11 12 1NA A A⋅ ⋅ ⋅  is mathematically equivalent to an N-tuple that we have 

previously written ( )11 12 1, ,..., NA A A .  For our purposes, we simply have two different notations for the same quantity.  
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Two matrices A  and B  are said to be equal if they are identical.  That is, A  and B have the same 
number of rows and the same number of columns and 
 
 , 1,..., , 1,...,ij ijA B i N j M= = =  (1.1.7) 
 
A matrix, every element of which is zero, is called the zero matrix and is written simply0 . 
 

If ijA A =    and ijB B =    are two M N×  matrices, their sum (difference) is an M N×  

matrix A B+  ( )A B−  whose elements are ij ijA B+  ( )ij ijA B− .  Thus 
 
 ij ijA B A B ± = ±   (1.1.8) 
 
Note that the symbol ±  on the right side of (1.1.8) refers to addition and subtraction of the 
complex or real numbers ijA  and ijB , while the symbol ±  on the left side is an operation defined 

by (1.1.8).  It is an operation defined on the set M N×M .  Two matrices of the same order are said to 
be conformable for addition and subtraction.  Addition and subtraction are not defined for matrices 
which are not conformable. 
 

If λ  is a number and A  is a matrix, then Aλ  is a matrix given by 
 
 ijA A Aλ λ λ = =   (1.1.9) 
 
Just as (1.1.8) defines addition and subtraction of matrices, equation (1.1.9) defines multiplication 
of a matrix by a real or complex number.  It is a consequence of the definitions (1.1.8) and (1.1.9) 
that 
 
 ( 1) ijA A A − = − = −   (1.1.10) 
 
These definitions of addition and subtraction and, multiplication by a number imply that 
 
 A B B A+ = +  (1.1.11) 
 
 ( ) ( )A B C A B C+ + = + +  (1.1.12) 
 
 0A A+ =  (1.1.13) 
 
 0A A− =  (1.1.14) 
 
 ( )A B A Bλ λ λ+ = +  (1.1.15) 
 
 ( )A A Aλ µ λ µ+ = +  (1.1.16) 
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and 
 
 1A A=  (1.1.17) 
 
where ,A B  and C are as assumed to be conformable. 
 

The applications require a method of multiplying two matrices to produce a third.  The 
formal definition of matrix multiplication is as follows:  If A  is an M N×  matrix, i.e. an element 
of M N×M , and B is an N K×  matrix, i.e. an element of N K×M , then the product of B by A  is 

written AB and is an element of M K×M  with components 
1

N

ij js
j

A B
=
∑ , 1,...,i M= , 1,...,s K= .  For 

example, if  
 

 
11 12

11 12
21 22

21 22
31 32 2 2

3 2

and
A A

B B
A A A B

B B
A A

×
×

 
  = =        



 (1.1.18) 

 
then AB is a 3 2×  matrix given by 
 

 

11 12
11 12

21 22
21 22

31 32

11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

31 11 32 21 32 12 32 22

A A
B B

AB A A
B B

A A

A B A B A B A B
A B A B A B A B
A B A B A B A B

 
  =       

+ + 
 = + + 

+ +  

 (1.1.19) 

 
The product AB  is defined only when the number of columns of A  is equal to the number 

of rows of B .  If this is the case, A  is said to be conformable to B  for multiplication.  If A  is 
conformable to B , then B is not necessarily conformable to A .  Even if BA  is defined, it is not 
necessarily equal to AB .  The following example illustrates this general point for particular 
matrices A  and B . 
 
Example 1.1.1:  If you are given matrices A  and B  defined by 
 

 
3 2

2 1 3
2 4 and

4 1 6
1 3

A B
− 

−  = =     −  

 (1.1.20) 

 
The multiplications, AB  and BA , yield 
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14 1 3

12 6 30
14 2 15

AB
− − 
 =  
− − −  

 (1.1.21) 

 
and 
 

 
1 1

20 22
BA

− − 
=  − 

 (1.1.22) 

 
On the assumption that A , B ,and C  are conformable for the indicated  

sums and products, it is possible to show that 
 
 ( )A B C AB AC+ = +  (1.1.23) 
 
 ( )A B C AC BC+ = +  (1.1.24) 
 
and 
 
 ( ) ( )A BC AB C=  (1.1.25) 
 
 
However, AB BA≠ in general, 0AB =  does not imply 0A =  or 0B = , and AB AC= does not 
necessarily imply B C= . 
 
 If A  is an M N×  matrix and B is an M N×  then the products AB  and BA  are defined but 
not equal.  It is a property of matrix multiplication and the trace operation that 
 
 ( ) ( )tr trAB BA=  (1.1.26) 
 

The square matrix I defined by 
 

 

1 0 0
0 1 0

0 0 1

I

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 
⋅ 

=  ⋅ 
 ⋅
 ⋅ ⋅ ⋅ 

 (1.1.27) 

 
is the identity matrix.  The identity matrix is a special case of a diagonal matrix.  In other words, a 
matrix which has all of its elements zero except the diagonal ones.  It is often convenient to display 
the components of the identity matrix in the form 
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 ijI δ =    (1.1.28) 
 
where 
 

 
1 for 
0 for ij

i j
i j

δ
=

=  ≠
 (1.1.29) 

 
The symbol ijδ , as defined by (1.1.29), is known as the Kronecker delta.2 
 

A matrix A  in M N×M  whose elements satisfy 0ijA = , i j> , is called an upper triangular 
matrix , i.e., 
 

 

11 12 13 1

22 23 2

33

0
0 0

0 0 0

N

N

MN

A A A A
A A A

A
A

A

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 

⋅ ⋅ ⋅ 
 = ⋅ 
 ⋅
 ⋅ 
 ⋅ ⋅ ⋅ 

 (1.1.30) 

 
A lower triangular matrix can be defined in a similar fashion.  A diagonal matrix is a square 
matrix that is both an upper triangular matrix and a lower triangular matrix. 
 

If A  and B  are square matrices of the same order such that AB BA I= = , then B  is called 
the inverse of A  and we write 1B A−= .  Also, A is the inverse of B , i.e. 1A B−= . 
 
Example 1.1.2:  If you are given a 2 2×  matrix 
 

 
1 2
3 4

A  
=  
 

 (1.1.31) 

 
then it is a simple exercise to show that the matrix B  defined by 
 

 
4 21
3 12

B
− 

= −  − 
 (1.1.32) 

 
obeys 
 

 
2 The Kronecker is named after the German mathematician Leopold Kronecker.  Information about Leopold Kronecker 
can be found, for example, at http://en.wikipedia.org/wiki/Leopold_Kronecker. 

http://en.wikipedia.org/wiki/Leopold_Kronecker
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1 2 4 2 2 0 1 01 1
3 4 3 1 0 2 0 12 2

− −        
− = − =        − −        

 (1.1.33) 

 
and 
 

 
4 2 1 2 2 0 1 01 1
3 1 3 4 0 2 0 12 2

− −        
− = − =        − −        

 (1.1.34) 

 
Therefore, 1B A−=  and 1A B−= . 
 
Example 1.1.3:  Not all square matrices have an inverse.  A matrix that does not have an inverse is 
 

 
1 0
0 0

A  
=  
 

 (1.1.35) 

 
If A  has an inverse it is said to be nonsingular.  If A  has an inverse, then it is possible to prove 
that it is unique.  If A  and B are square matrices of the same order with inverses 1A− and 

1B− respectively, we shall show that 
 
 1 1 1( )AB B A− − −=  (1.1.36) 
 
In order to prove (1.1.36), the definition of an inverse requires that we establish that 

1 1( )B A AB I− − =  and 1 1( )AB B A I− − = .  If we form, for example, the product 1 1( )B A AB− − , it 
follows that 
 
 ( ) ( )1 1 1 1 1 1 1 1( )B A AB B A AB B A A B B I B B B I− − − − − − − −= = = = =  (1.1.37) 
 
Likewise,  
 
 1 1 1 1 1 1( ) ( )AB B A A BB A AIA AA I− − − − − −= = = =  (1.1.38) 
 
Equations (1.1.37) and (1.1.38) confirm our assertion (1.1.36). 
 

The matrix of order N M×  obtained by interchanging the rows and columns of an M N×  
matrix A  is called the transpose of A  and is denoted by TA .  It is easily shown that 
 
 ( )T TA A=   (1.1.39) 
 
and 
 
 ( )T T TAB B A=   (1.1.40) 
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A more detailed discussion of the transpose is given in Section 1.9. 
 
 
Exercises 
 
1.1.1 Add the matrices 
 

 
1 5
2 6

−   
+   

   
 

 
1.1.2 Add the matrices 
 

 
2 3 7 2 2 5 4
5 4 3 4 3 3
i i i

i i i i i
+ −   

+   + − + −   
 

 
1.1.3 Add 
 

 
1 5

3
2 6

i
i

−   
+   

   
 

 
1.1.4 Multiply 
 

 
2 8

2 3 7 2
1 6

5 4 3
3 2

i
i i

i
i i

i

 
+   

   +    

 

 
1.1.5 Multiply 
 

 
1 2 1 1 0 2
3 3 5 2 1 1
2 4 1 5 4 1

   
   
   
      

 

 
and 
 

 
1 0 2 1 2 1
2 1 1 3 3 5
5 4 1 2 4 1

   
   
   
      

 

 
1.1.6 Show that the product of two upper (lower) triangular matrices is an upper lower triangular 

matrix.  Further, if 
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 ,ij ijA A B B   = =     
 

are upper (lower) triangular matrices of order N N× , then 
 
 ( ) ( )ii ii ii iiAB BA A B= =  
 

for all 1,...,i N= .  The off diagonal elements ( )ijAB and ( )ijBA , i j≠ , generally are not 
equal, however. 

 
1.1.7  If you are given a square matrix  
 

 11 12

21 22

A A
A

A A
 

=  
 

 

 

with the property that 11 22 12 21 0A A A A− ≠ , show that the matrix 22 12

21 1111 22 12 21

1 A A
A AA A A A

− 
 −−  

 is the 

inverse of A .  Use this formula to show that the inverse of 
 

 
2 4
3 1

A  
=  
 

 

 
is the matrix 
 

 1

1 2
10 5
3 1

10 5

A−

 − 
=  
 −
  

 

 
1.1.8  Confirm the identity (1.1.26) in the special case where A  and B  are given by (1.1.20). 
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Section 1.2.  Systems of Linear Equations 
 
 
 Matrix algebra methods have many applications.  Probably the most useful application 
arises in the study of systems of M linear algebraic equations in N  unknowns of the form 
 

 

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3

N N

N N

M M M MN N M

A x A x A x A x b
A x A x A x A x b

A x A x A x A x b

+ + + ⋅⋅ ⋅ + =
+ + + ⋅⋅ ⋅ + =

⋅
⋅
⋅

+ + + ⋅ ⋅ ⋅ + =

 (1.2.1) 

 
The system of equations (1.2.1) is overdetermined if there are more equations than unknowns, i.e., 
M N> .  Likewise, the system of equations (1.2.1) is underdetermined if there are more unknowns 
than equations, i.e., N M> . 
 

In matrix notation, this system can be written 
 

 

11 12 1 1 1

21 22 2 2 2

1 2

N

N

M M MN N M

A A A x b
A A A x b

A A A x b

⋅ ⋅ ⋅     
     
     
⋅ ⋅ ⋅     

=     ⋅ ⋅ ⋅     
     ⋅ ⋅ ⋅
     ⋅ ⋅ ⋅     

 (1.2.2) 

 
The above matrix equation can now be written in the compact notation 
 
 A =x b  (1.2.3) 
 
where x  is the 1N ×  column matrix 
 

 

1

2

N

x
x

x

 
 
 
⋅ 

=  ⋅ 
 ⋅
 
 

x  (1.2.4) 

 
and b is the 1M ×  column matrix  
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1

2

M

b
b

b

 
 
 
⋅ 

=  ⋅ 
 ⋅
 
 

b  (1.2.5) 

 
A solution to the M N×  system is a 1N ×  column matrix x  that obeys (1.2.3).  It is often 

the case that overdetermined systems do not have a solution.  Likewise, undetermined solutions 
usually do not have a unique solutions.  If there are an equal number of unknowns as equations, 
i.e., M N= , he system may or may not have a solution.  If it has a solution, it may not be unique. 
 

In the special case where A is a square matrix that is also nonsingular, the solution of 
(1.2.3)is formally 
 
 1A−=x b  (1.2.6) 
 
Unfortunately, the case where A  is square and also has an inverse is but one of many cases one 
must understand in order to fully understand how to characterize the solutions of (1.2.3). 
 
Example 1.2.1:  For 2M N= = , the system 
 

 1 2

1 2

2 5
2 3 8
x x

x x
+ =
+ =

 (1.2.7) 

 
can be written 
 

 1

2

1 2 5
2 3 8

x
x
    

=    
    

 (1.2.8) 

 
By substitution into (1.2.8), one can easily confirm that 
 

 1

2

1
2

x
x
   

=   
  

 (1.2.9) 

 
is the solution.  In this case, the solution can be written in the form (1.2.6) with 
 
 

 1 3 2
2 1

A− − 
=  − 

 (1.2.10) 
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In the case where 2M N= =  and 3M N= =  the system (1.2.2) can be view as defining 
the common point of intersection of straight lines in the case 2M N= =  and planes in the case 

3M N= = .  For example the two straight lines defined by (1.2.7) produce the plot 
 

 
Figure 1. Solution of (1.2.8) 

 
which displays the solution (1.2.9).  One can easily imagine a system with 2M N= =  where the 
resulting two lines are parallel and, as a consequence, there is no solution.  
 
Example 1.2.2:  For 3M N= = , the system 
 

 
1 2 3

1 2 3

1 2 3

2 6 38
3 7 34
8 2 20

x x x
x x x
x x x

− − = −
− − + = −
− + − = −

 (1.2.11) 

 
defines three planes.  If this system has a unique solution then the three planes will intersect in a 
point.  As one can confirm by direct substation, the system (1.2.11) does have a unique solution 
given by 
 

 
1

2

3

4
8
2

x
x
x

   
   = =   
      

x  (1.2.12) 
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The point of intersection (1.2.12) is displayed by plotting the three planes (1.2.11) on a common 
axis.  The result is illustrated by the following figure. 
 

 
Figure 2. Solution of (1.2.11) 

 
It is perhaps evident that planes associated with three linear algebraic equations can intersect in a 
point, as with (1.2.11), or as a line or, perhaps, they will not intersect.  This geometric observation 
reveals the fact that systems of linear equations can have unique solutions, solutions that are not 
unique and no solution.  An example where there is not a unique solution is provided by the 
following: 
 
Example 1.2.3:   
 

 
1 2 3

1 2 3

1 2 3

2 3 1
3

3 4 2 4

x x x
x x x
x x x

+ + =
+ + =
+ + =

 (1.2.13) 

 
By direct substitution into (1.2.13) one can establish that 
 

 
1 3

2 3 3

3 3

8 2 8 2
5 5 5

0 1

x x
x x x
x x

− −       
       = = − = − + −       
              

x  (1.2.14) 
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obeys (1.2.13) for all values of 3x .  Thus, there are an infinite number of solutions of (1.2.13).  
Basically, the system (1.2.13) is one where the planes intersect in a line, the line defined by 
(1.2.14)3.  The following figure displays this fact. 

 
Figure 3. Solution of (1.2.13) 

 
 
An example for which there is no solution is provided by 
 
Example 1.2.4: 
 

 
1 2 3

1 2 3

1 2 3

2 3 1
3 4 2 80

10

x x x
x x x

x x x

+ + =
+ + = −
+ + =

 (1.2.15) 

 
The plot of these three equations yields 
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Figure 4. Plot of (1.2.15) 

 
A solution does not exist in this case because the three planes do not intersect. 
 
Example 1.2.5:  Consider the undetermined system 
 

 1 2 3

1 2 3

2
2 4

x x x
x x x
− + =
+ − =

 (1.2.16) 

 
By direct substitution into (1.2.16) one can establish that 
 

 
1

2 3

3 3

2x
x x
x x

   
   = =   
      

x  (1.2.17) 

 
is a solution for all values 3x .  Thus, there are an infinite number of solutions of (1.2.16).   
 
Example 1.2.6:  Consider the overdetermined system 
 

 
1 2

1 2

1

2
1
4

x x
x x

x

+ =
− =

=
 (1.2.18) 
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If (1.2.18)3 is substituted into (1.2.18)1 and (1.2.18)2 the inconsistent results 2 2x = −  and 2 3x =  are 
obtained.  Thus, this overdetermined system does not have a solution. 
 
 The above six examples illustrate the range of possibilities for the solution of (1.2.3) for 
various choices of M  and N .  The graphical arguments used for Examples 1.2.1, 1.2.2, 1.2.3 and 
1.2.4 are especially useful when trying to understand the range of possible solutions.  
Unfortunately, for larger systems, i.e., for systems where 3M N= > , we cannot utilize graphical 
representations to illustrate the range of solutions.  We need solution procedures that will yield 
numerical values for the solution developed within a theoretical framework that allows one to 
characterize the solution properties in advance of the attempted solution.  Our goal, in this 
introductory phase of this linear algebra course is to develop components of this theoretical 
framework and to illustrate it with various numerical examples. 
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Section 1.3.  Systems of Linear Equations: Gaussian Elimination 
 
 
 Elimination methods, which represent methods learned in high school algebra, form the 
basis for the most powerful methods of solving systems of linear algebraic equations.  We begin 
this discussion by introducing the idea of an equivalent system to the given system (1.2.1).  An 
equivalent system to (1.2.1) is a system of M linear algebraic equations in N  unknowns obtained 
from (1.2.1) by 
 

a) switching two rows, 
b) multiplying one of the rows by a nonzero constant  
c) multiply one row by a nonzero constant and adding it to another row, or 
d) combinations of a),b) and c). 

 
Equivalent systems have the same solution as the original system.  The point that is embedded in 
this concept is that given the problem of solving (1.2.1), one can convert it to an equivalent system 
which will be easier to solve.  Virtually all of the solution techniques utilized for large systems 
involve this kind of approach. 
 

Given the system of M linear algebraic equations in N  unknowns (1.2.1), repeated, 
 

 

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3

N N

N N

M M M MN N M

A x A x A x A x b
A x A x A x A x b

A x A x A x A x b

+ + + ⋅⋅ ⋅ + =
+ + + ⋅⋅ ⋅ + =

⋅
⋅
⋅

+ + + ⋅ ⋅ ⋅ + =

 (1.3.1) 

 
the elimination method consists of the following steps: 
 

• Solve the first equation for one of the unknowns, say, 1x  if 11 0A ≠  
• Substitute the result into the remaining 1M −  equations to obtain 1M −  equations in 1N −  

unknowns, 2 3, ,..., Nx x x . 
• Repeat the process with these 1M − equations to obtain an equation for one of the 

unknowns. 
• This solution is then back substituted into the previous equations to obtain the answers for 

the other two variables. 
 
If the original system of equations does not have a solution, the elimination process will yield an 
inconsistency which will not allow you to proceed.  This elimination method described by the 
above steps is called Gauss Elimination or Gaussian Elimination.  The following example 
illustrates how this elimination can be implemented. 
 



22 Chap. 1 • ELEMENTARY MATRIX THEORY 

Example 1.3.1:  Given 
 

 
1 2 3

1 2 3

1 2 3

2 1
2 3

2 3 7

x x x
x x x

x x x

+ − =
− + =

− + + =

 (1.3.2) 

 
Step 1:  The object is to use the first equation to eliminate 1x  from the second.  This can be 
achieved if we multiple the first equation by 2 and subtract it from the second.  The result is 
 

 
1 2 3

2 3

1 2 3

2 1
5 3 1
2 3 7

x x x
x x

x x x

+ − =
− + =

− + + =

 (1.3.3) 

 
Step 2:  This step eliminates  1x  from (1.3.3)3 by adding (1.3.3)1 to (1.3.3)3.  The result is 
 

 
1 2 3

2 3

2 3

2 1
5 3 1
4 2 8

x x x
x x
x x

+ − =
− + =

+ =

 (1.3.4) 

 
Step 3: The second and third equations in (1.3.4) involve the unknowns 2x  and 3x .  The 
elimination method utilizes these two equations to eliminate 2x .  This elimination is achieved if we 

multiply (1.3.4)2 by 4
5

 and add it to (1.3.4)3.  The result is 

 

 
1 2 3

2 3

3

2 1
5 3 1

22 44
5 5

x x x
x x

x

+ − =
− + =

=

 (1.3.5) 

 
Step 4:  The next step starts a back substitution process.  First, we recognize that (1.3.5)3 yields 
 
 3 2x =  (1.3.6) 
 
This result is substituted into (1.3.5)2 to yield 
 
 25 6 1x− + =  (1.3.7) 
and, as a result, 
 
 2 1x =  (1.3.8) 
 



Sec. 1.3 • Systems of Linear Equations: Gaussian Elimination 23 

Step 5:  We continue the back substitution process and use (1.3.6) and (1.3.8) to derive from (1.3.5)1 
 
 1 1x =  (1.3.9) 
 
Therefore, the solution is  
 

 
1
1
2

 
 =  
  

x  (1.3.10) 

 
It should be evident that the above steps are not unique.  We could have reached the same endpoint 
with a different sequence of rearrangements.  Also, it should be evident that one could generalize 
the above process to very large systems.   
 
Example 1.3.2: 
 

 
1 2 3

1 2 3

1 2 3

3 1
2 5

2 2 8

x x x
x x x

x x x

+ + =
+ + =

− + − = −

 (1.3.11) 

 
We shall use Gaussian elimination to show that 

 

 
1

2

3

2
1

2

x
x
x

   
   = −   
      

 (1.3.12) 

 
Unlike the last example, we shall not directly manipulate the actual equations (1.3.11).  We shall 
simply do matrix manipulations on the coefficients.  This is done by first writing the system 
(1.3.11) as a matrix equation.  The result is 
 

 
1

2

3

1 3 1 1
2 1 1 5
2 2 1 8

x
x
x

     
     =     
     − − −     

 (1.3.13) 

 
The next formal step is to form what is called the augmented matrix.  It is simply the matrix 

1 3 1
2 1 1
2 2 1

A
 
 =  
 − − 

 augmented by the column matrix 
1
5
8

 
 
 
−  

.  It is customarily given the notation 

( )A b .  In our example, the augmented matrix is 
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 ( )
1 3 1 1
2 1 1 5
2 2 1 8

A
 
 ≡  
 − − − 

b  (1.3.14) 

 
Next, we shall do the Gaussian elimination procedure directly on the augmented matrix. 
 
Step 1:  Multiply the first row by 2  (the 21A  element), divide it by 1 (the 11A  element) and subtract 
the first row from the second.  The result is 
 

 2 row 1
subtracted
from row 2

1 3 1 1 1 3 1 1
2 1 1 5 0 5 1 3
2 2 1 8 2 2 1 8

×

   
   → − −   
   − − − − − −   

 (1.3.15) 

 
Repeating this process, which is called pivoting, 
 

 

2 row 1
subtracted
from row 2

2 row 1 added
to row 3

8 row 2
5
added
to row 3

1 3 1 1 1 3 1 1
2 1 1 5 0 5 1 3
2 2 1 8 2 2 1 8

1 3 1 1
0 5 1 3
0 8 1 6

1 3 1 1
0 5 1 3

3 60 0
5 5

×

×

×

   
   → − −   
   − − − − − −   

 
 → − − 
 − 

 
 
 

→ − − 
 
 − −
 

 (1.3.16) 

 
The last augmented matrix coincides with the system 
 

 
1 2 3

2 3

3

3 1
5 3

3 6
5 5

x x x
x x

x

+ + =
− − =

− = −

 (1.3.17) 

 
The next step starts the back substitution part of the process.  Equation (1.3.17)3 yields 
 
 3 2x =  (1.3.18) 
 
Therefore, from equations (1.3.17)2 and (1.3.17)1, 
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3

2 3 2

1 2 3 1 3 2

35 3 1
5

3 1 1 3 2

xx x x

x x x x x x

− −
− − = ⇒ = = −

+ + = ⇒ = − − =
 (1.3.19) 

 
Therefore, we have found the result (1.3.12) 
 

The above steps can be generalized without difficulty.  For simplicity, we shall give the 
generalization for the case where M N= .  The other cases will eventually be discussed but the 
details can get too involved if we allow those cases at this point in our discussions.  For a system of 
N  equations and N  unknowns, we have the equivalence between the system of equations (1.3.1) 
and its representation by the augmented matrix as follows: 
 

 ( )

11 12 13 1 1
11 1 12 2 13 3 1 1

21 22 23 2 2
21 1 22 2 23 3 2 2

31 32 33 3

1 1 2 2 3 3
1 2 3

A

N
N N

N
N N

N N N NN N N
N N N NN N

A A A A b
A x A x A x A x b

A A A A b
A x A x A x A x b

A A A b
A

A x A x A x A x b
A A A A b

⋅ ⋅ ⋅ 
+ + + ⋅ ⋅ ⋅ + =   ⋅ ⋅ ⋅  + + + ⋅ ⋅ ⋅ + =   ⋅ ⋅ ⋅

⋅  ⇔ ≡ ⋅ ⋅  ⋅   ⋅ ⋅
⋅  

⋅ ⋅  + + + ⋅ ⋅ ⋅ + =   ⋅ ⋅ ⋅ 

b

ugmented Matrix


(1.3.20) 

 
We then, as the above example illustrate, can perform the operations on the rows of the augmented 
matrix, rather than on the equations themselves. 
 
Note:  In matrix algebra, we are using what is known as row operations when we manipulate the 
augmented matrix. 
 
Step 1: Forward Elimination of Unknowns: 
 
 If 11 0A ≠ , our first step is to multiply the first row of the augmented matrix equation by 

21

11

A
A

 and subtract the result from the second row.  The result is the augmented matrix 
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11 12 13 1 1

21 21 21 21
22 12 23 13 2 1 2 1

11 11 11 11

31 32 33 3

1 2 3

0

N

N N

N N N NN N

A A A A b
A A A AA A A A A A b b
A A A A

A A A b

A A A A b

⋅ ⋅ ⋅ 
 
 − − ⋅ ⋅ ⋅ − −
 
 ⋅ ⋅ ⋅ 
 ⋅ ⋅
 ⋅ ⋅ 
 ⋅ ⋅
 

⋅ ⋅ ⋅  

 (1.3.21) 

 
In order to keep the notation from becoming unwieldy, we shall assign different symbols to the 
second row and write (1.3.21) as 
 

 

( ) ( ) ( ) ( )
11 12 13 1 1

1 1 1 1
22 23 2 2

31 32 33 3

1 2 3

0
N

N

N N N NN N

A A A A b

A A A b
A A A b

A A A A b

⋅ ⋅ ⋅ 
 

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅
 
⋅ ⋅ 

 ⋅ ⋅ 
⋅ ⋅ 

 ⋅ ⋅ ⋅ 

 (1.3.22) 

 

Next, we repeat the last procedure for the third row by multiply the first row by 31

11

A
A

 and subtract 

the result from the third equation.  The result can be written 
 

 

( ) ( ) ( )

( ) ( )

( )

( )

11 12 13 1 1

1 1 1 1
22 23 2 2

1 1 1
32 33 3

1 2 3

0

0

N

N

N N N NN N

A A A A b

A A A b

A A b

A A A A b

⋅ ⋅ ⋅ 
 

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 
 ⋅ ⋅
 ⋅ ⋅ 
 ⋅ ⋅
 

⋅ ⋅ ⋅  

 (1.3.23) 

 
This process is continued until the all of the entries below 11A  are zero in the augmented matrix.  
The result is the augmented matrix 
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( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

( )

( )

11 12 13 1 1

1 1 1 1
22 23 2 2

1 1 1
32 33 3

1 1 1 1
2 3

0

0

0

N

N

N N NN N

A A A A b

A A A b

A A b

A A A b

⋅ ⋅ ⋅ 
 

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 
 ⋅ ⋅
 ⋅ ⋅ 
 ⋅ ⋅
 

⋅ ⋅ ⋅  

 (1.3.24) 

 
The augmented result (1.3.24) corresponds to the system of equations 
The result is that the original N  equations are replaced by  
 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 1 12 2 13 3 1 1

1 1 1 1
22 2 23 3 2 2

1 1 1 1
32 2 33 3 3 3

1 1 1 1
2 2 3 3

N N

N N

N N

N N NN N N

A x A x A x A x b

A x A x A x b

A x A x A x b

A x A x A x b

+ + + ⋅⋅ ⋅ + =

+ + ⋅⋅ ⋅ + =

+ + ⋅⋅ ⋅ + =
⋅
⋅
⋅

+ + ⋅ ⋅ ⋅ + =

 (1.3.25) 

 
Note:  In the above sequence, the first row is the pivot row and its coefficient 11A  is called the pivot 
coefficient or pivot element. 
 
 The next step is to apply the same process to the set of 1N −  equations with 1N −  
unknowns 
 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1
22 2 23 3 2 2

1 1 1 1
32 2 33 3 3 3

1 1 1 1
2 2 3 3

N N

N N

N N NN N N

A x A x A x b

A x A x A x b

A x A x A x b

+ + ⋅⋅ ⋅ + =

+ + ⋅⋅ ⋅ + =
⋅
⋅
⋅

+ + ⋅ ⋅ ⋅ + =

 (1.3.26) 

 
to eliminate the second unknown, 2x .  This process begins by multiplying the second row of 

(1.3.24) by 
( )

( )

1
32
1

22

A
A

 (this step assumes ( )1
22 0A ≠ ) and subtracting the result from the third row of 

(1.3.24).  This step is repeated for the remaining rows until the augmented matrix is transformed 
into the following: 
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( ) ( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

11 12 13 1 1

1 1 1 1
22 23 2 2

2 2 2
33 2 3

2 2 2
3

0

0 0

0 0

N

N

N

N NN N

A A A A b

A A A b

A A b

A A b

⋅ ⋅ ⋅ 
 

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅
 

⋅ ⋅ ⋅  

 (1.3.27) 

 
 You should now have the idea.  You continue this process until the augmented matrix 
(1.3.20)2 is replaced by the upper triangular form 
 

 

( ) ( ) ( )

( ) ( )

( )

( )

11 12 13 1 1

1 1 1 1
22 23 2 2

2 2 2
33 2 3

( 2) ( 2) ( 2)
1, 1 1, 1

( 1) ( 1)

0

0 0

0 0 0 0

N

N

N

N N N
N N N N N

N N
NN N

A A A A b

A A A b

A A b

A A b
A b

− − −
− − − −

− −

⋅ ⋅ ⋅ 
 

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅
 

⋅ ⋅  

 (1.3.28) 

 
Each step in the process leading to (1.3.28) has assumed we have not encountered the situation 
where the lead coefficient in the pivot row was zero.  The augmented matrix (1.3.28) corresponds 
to the system of equations 
 

 

( ) ( )

11 1 12 2 13 3 1 1

22 2 23 3 2 2

33 3 3 3

1 1

N N

N N

N N

N N
NN N N

A x A x A x A x b
A x A x A x b

A x A x b

A x b− −

+ + + ⋅ ⋅ ⋅ + =
′ ′ ′ ′+ + ⋅ ⋅ ⋅ + =

′′ ′′ ′′+ ⋅ ⋅ ⋅ + =
⋅
⋅
⋅

=

 (1.3.29) 

 
Step 2: Back Substitution 
 
 If ( 1) 0N

NNA − ≠ , the last equation can be solved as follows: 
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( 1)

( 1)

N
N

N N
NN

bx
A

−

−=  (1.3.30) 

 
This answer can then be back substituted into the previous equations to solve for 1 2 1, ,...,N Nx x x− − .  
The formula for these unknowns, should it ever prove useful, is 
 

 

( 1) ( 1)

1
( 1)    for    1, 2,...,1

N
i i

i ij j
j i

i i
ii

b A x
x i N N

A

− −

= +
−

−
= = − −

∑
 (1.3.31) 

 
The process just described make repeated use of the assumption that certain coefficients 

were nonzero in order for the process to proceed.  If one cannot find a coefficient with this 
property, then the system is degenerate in some way and may not have a unique solution or any 
solution.  Frequently one avoids this problem by utilizing a procedure by what is called partial 
pivoting.  The following example illustrates this procedure. 
 
Example 1.3.3:  Consider the system of equations 
 

 
2 3

1 2 3

1 2 3

2 3 8
4 6 7 3
2 3 6 5

x x
x x x
x x x

+ =
+ + = −
− + =

 (1.3.32) 

 
The procedure we described above would first create the auxiliary matrix representation of this 
system.  The result is 
 

 ( )
0 2 3 8
4 6 7 3
2 3 6 5

A
 
 = − 
 − 

b  (1.3.33) 

 
Because 11 0A = , we immediately encounter a problem with our method.  The partial pivoting 
procedure simply reorders the equations such that the new 11 0A ≠ .  For example, we can begin the 
elimination process with the auxiliary matrix 
 

 ( )
4 6 7 3
2 3 6 5
0 2 3 8

A
− 

 = − 
  

b  (1.3.34) 

 
The usual practice is to switch the order of the equations so as to make the 11A  the largest, in 
absolute value, of the elements in the first column. 
 
Example 1.3.4:  In Section 1.2 we discussed Example 1.2.3 which was the system 
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1 2 3

1 2 3

1 2 3

2 3 1
3

3 4 2 4

x x x
x x x
x x x

+ + =
+ + =
+ + =

 (1.3.35) 

 
This system has the solution (1.2.14), repeated, 
 

 
1 3

2 3

3 3

8 2
5

x x
x x
x x

−   
   = = −   
      

x  (1.3.36) 

 
It is helpful to utilize the Gaussian Elimination procedure to see this solution.  The first step is to 
form the augmented matrix 
 

 ( )
2 3 1 1
1 1 1 3
3 4 2 4

A
 
 =  
  

b  (1.3.37) 

 
The sequence of steps described above, applied to this example, is 
 

 1 row 1
2
subtracted
from row 2

2 3 1 12 3 1 1
1 1 51 1 1 3 0
2 2 2

3 4 2 4 3 4 2 4
×

 
   
   → −   
    

 

 (1.3.38) 

 
Repeating this process, 
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1 row 1
2
subtracted
from row 2

3 row 1 subtracted
2
from row 3

subtract row 2
from row 3

2 3 1 12 3 1 1
1 1 51 1 1 3 0
2 2 2

3 4 2 4 3 4 2 4

2 3 1 1
1 1 50
2 2 2
1 1 50
2 2 2

2 3 1 1
1 1 50
2 2 2

0 0 0

×

×

 
   
   → −   
    

 
 
 
 
 → −
 
 

− 
 

→ −

0

 
 
 
 
 
 

 (1.3.39) 

 
The occurrence of the zero in the 33  position of the last matrix means that we cannot proceed with 
the back substitution process as it was described above.  The modified back substitution process 
proceeds as follows:  The last augmented matrix coincides with the system 
 

 
1 2 3

2 3

2 3 1
1 1 5
2 2 2

x x x

x x

+ + =

− + =
 (1.3.40) 

 
The occurrence of the row of zeros in the third row, results in only two equations for the three 
unknowns 1 2,x x  and 3x .  The next step starts the back substitution part of the process.  Equation 
(1.3.40)2 yields 
 
 2 3 5x x= −  (1.3.41) 
 
Therefore, from equation (1.3.40)1, 
 

 ( )1 2 3 3
1 1 3 8 2
2

x x x x= − − = −  (1.3.42) 

 
Therefore, we have found the result (1.3.36) 
 
Example 1.3.5:  In Section 1.2 we discussed Example 1.2.4 which was the system 
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1 2 3

1 2 3

1 2 3

2 3 1
3 4 2 80

10

x x x
x x x

x x x

+ + =
+ + = −
+ + =

 (1.3.43) 

 
It was explained in Section 1.2 that this system does not have a solution.  This conclusion arises 
from the Gaussian Elimination procedure by the following steps.  As usual, the first step is to form 
the augmented matrix 
 

 ( )
2 3 1 1
3 4 2 80
1 1 1 10

A
 
 = − 
  

b  (1.3.44) 

 
The sequence of steps described above, applied to this example, is 
 

 3 row 1
2
subtracted
from row 2

2 3 1 12 3 1 1
1 1 1633 4 2 80 0
2 2 2

1 1 1 10 1 1 1 10
×

 
   
   − → − −   
    

 

 (1.3.45) 

 
Repeating this process, 
 

 

3 row 1
2
subtracted
from row 2

1 row 1 subtracted
2
from row 3

subtract row 2
from row 3

2 3 1 12 3 1 1
1 1 1633 4 2 80 0
2 2 2

1 1 1 10 1 1 1 10

2 3 1 1
1 1 1630
2 2 2
1 1 190
2 2 2

2 3 1

0

×

×

 
   
   − → − −   
    

 
 
 
 
 → − −
 
 

− 
 

→

1
1 1 163
2 2 2

0 0 0 91

 
 
 − −
 
 
 

 (1.3.46) 

 
The last augmented matrix coincides with the system 
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1 2 3

2 3

3

2 3 1
1 1 163
2 2 2

0 91

x x x

x x

x

+ + =

− + = −

=

 (1.3.47) 

 
Of course, the last equation is inconsistent.  The only conclusion is that there is no solution to the 
system (1.3.43).  This is the analytical conclusion that is reflective of the graphical solution 
attempted with Figure 4 of Section 1.2. 
 
Example 1.3.6:  All of examples in this section are examples where 3M N= = .  The assumption 
M N=  was made when we went through the detailed development of the Gaussian Elimination 
process.  The method also works for cases where the number of equations and the number of 
unknowns are not the same.  The following undetermined system is an illustration of this case. 
 

 
1 2 3 4 5

1 2 3 4 5

1 2 3

2 4 3 9 1
4 5 10 6 18 4

7 8 16 7

x x x x x
x x x x x

x x x

+ − + + =
+ − + + =

+ − =
 (1.3.48) 

 
As usual, the first step is to form the augmented matrix 
 

 ( )
1 2 4 3 9 1
4 5 10 6 18 4
7 8 16 0 0 7

A
− 

 = − 
 − 

b  (1.3.49) 

 
The sequence of steps that implement the Gaussian Elimination is 
 

 

Subtract 4 row1
from row2

Subtract 7 row1 Subtract 2 row2
from row3 from row3

1 2 4 3 9 1 1 2 4 3 9 1
4 5 10 6 18 4 0 3 6 6 18 0
7 8 16 0 0 7 7 8 16 0 0 7

1 2 4 3 9 1 1 2
0 3 6 6 18 0
0 6 12 21 63 0

×

× ×

− −   
   − → − − −   
   − −   

− 
 → − − − → 
 − − − 

Divide row 2 by -3
and row 3 by -9

4 3 9 1
0 3 6 6 18 0
0 0 0 9 27 0

1 2 4 3 9 1
0 1 2 2 6 0
0 0 0 1 3 0

− 
 − − − 
 − − 

− 
 → − 
  

(1.3.50) 

 
The last augmented matrix coincides with the system 
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1 2 3 4 5

2 3 4 5

4 5

2 4 3 9 1
2 2 6 0

3 0

x x x x x
x x x x

x x

+ − + + =
− + + =

+ =
 (1.3.51) 

 
The back substitution process takes the third equation of the set (1.3.51) and eliminates 4x  or 5x  
from the first two.  In this case, the result turns out to be  
 

 
1

2 3

4 5

1
2 0
3 0

x
x x
x x

=
− =
+ =

 (1.3.52) 

 
 The Gaussian Elimination process applied to the augmented matrix produces attempts to 
produce a triangular form as illustrated with (1.3.28).  Example 1.3.2, which involved a system 
(1.3.11) that had a unique solution produced a final augmented matrix of the form (see equation 
(1.3.16)) 
 

 
1 3 1 1
0 5 1 3

3 60 0
5 5

 
 
 

− − 
 
 − − 
 

 (1.3.53) 

 
Example 1.3.4, which involved a system (1.3.35) that did not have a unique solution produced a 
final augmented matrix of the form (see equation (1.3.39)) 
 

 

2 3 1 1
1 1 50
2 2 2

0 0 0 0

 
 
 −
 
 
 

 (1.3.54) 

 
Example 1.3.5, which involved a system (1.3.43) that did not have a solution produced a final 
augmented matrix of the form (see equation (1.3.46)) 
 

 

2 3 1 1
1 1 1630
2 2 2

0 0 0 91

 
 
 − −
 
 
 

 (1.3.55) 

 
Our last example, Example 1.3.6, which involved an undetermined system (1.3.51) produced a 
final augmented matrix of the form (see equation (1.3.50)) 
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1 2 4 3 9 1
0 1 2 2 6 0
0 0 0 1 3 0

− 
 − 
  

 (1.3.56) 

 
These examples illustrate that we might not reach the triangular form if the equations are 
inconsistent or if the solution is not unique.  The final step in the Gaussian elimination process, 
regardless of where it ends, is known as the row echelon form.  This upper triangular matrix can be 
given a more formal definition as follows: 
 
Definition:  A M N×  matrix A  is in is in row echelon form if 

1) Rows with at least one nonzero element are above any rows of all zero. 
2) The first nonzero element from the left (the pivot element) of a nonzero row is always 

strictly to the right of the leading coefficient of the row above it. 
3) The leading coefficient of each nonzero row is 1 . 

 
 

The above examples, with minor rearrangement in the first three cases, are row echelon 
matrices.  The minor rearrangement involve insuring 3) is obeyed by simply normalizing the row 
by division.  It should be evident that the results are 
 

1) Example 1.3.2 
 

 

1 3 1 1
1 30 1
5 5

0 0 1 2

 
 
 −
 
 
 

 (1.3.57) 

 
2) Example 1.3.4 

 

 

3 1 11
2 2 2

0 1 1 5
0 0 0 0

 
 
 

− − 
 
 
 

 (1.3.58) 

 
3) Example 1.3.5 

 

 

3 1 11
2 2 2

0 1 1163
0 0 0 1

 
 
 

− 
 
 
 

 (1.3.59) 
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4) Example 1.3.6 

 

 
1 2 4 3 9 1
0 1 2 2 6 0
0 0 0 1 3 0

− 
 − 
  

 (1.3.60) 

 
 The row echelon form is one step away from another upper triangular matrix we shall 
identify in later sections called a reduced row echelon form.  These concepts, which are important, 
will be discussed in the following sections of this chapter. 
 
 
Exercises 
 
1.3.1 Complete the solution of (1.3.32).  The answer is 
 

 
1

2

3

499
23 5.4239
1 0.0217
46

2.652261
23

x
x
x

 − 
−    

    = = =    
       

 
 

x  (1.3.61) 

 
1.3.2 Solve the system 
 

 

2 3 4

1 3 4

1 2 3 4

1 2 3 4

0
3 3 4 7

2 6
2 3 3 6

x x x
x x x

x x x x
x x x x

+ + =
+ − =

+ + + =
+ + + =

 (1.3.62) 

 

The answer is 

1

2

3

4

4
3

1
2

x
x
x
x

   
   −   = =
   
   

  

x  

 
1.3.3 Solve the system 
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2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

0
6

2 4 2 1
3 2 2 3

x x x
x x x x

x x x x
x x x x

− − + =
+ + + =

+ + − = −
+ − + =

 (1.3.63) 

 

The answer is 

1

2

3

4

2
1

3
2

x
x
x
x

   
   −   = =
   
   

  

x  

 
1.3.4 Solve the system 
 

 

1 2 3 4 5

1 2 5

1 2 5

3 4 5

1 2 3 4 5

1
1

2 2 3 1
3 1

2 2 4 1

x x x x x
x x x

x x x
x x x

x x x x x

+ − + + =
− − + = −

− − + =
+ + = −

+ + + + =

 (1.3.64) 

 
The answer is that this system is inconsistent and, thus, has no solution. 
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Section 1.4.  Elementary Row Operations, Elementary Matrices 
 
 
 The last section illustrated the Gauss method of elimination for finding the solution to 
systems of linear equations.  The basic method that is implemented with the method is to perform 
row operations that are designed to build a row echelon matrix at the end of the process.  If the 
system allows it, one builds an upper triangular matrix that allows the solution to be found by back 
substitution.  As summarized at the start of Section 1.3, the row operations are simply creating 
equivalent systems of linear equations that, at the end of the process, are easier to solve than the 
original equations.  The row operations utilized in the Gaussian Elimination method are 
 

a) switching two rows, 
b) multiplying one of the rows by a nonzero constant  
c) multiply one row by a nonzero constant and adding it to another row, or 
d) combinations of a),b) and c). 

 
The first three of these row operations are call elementary row operations.  They are the building 
blocks for the fourth operation.  It is useful for theoretical and other purposes to implement the 
elementary row operations by a matrix multiplication operation utilizing so called elementary 
matrices. 
 
 Elementary matrices are square matrices.  We shall introduce these matrices in the special 
case of a system of 3M =  equations in 4N =  unknowns.  The generalization to different size 
systems should be evident.  The augmented matrix for a 3 4×  a system is 
 

 ( )
11 12 13 14 1

21 22 23 24 2

31 32 33 34 3

A A A A b
A A A A A b

A A A A b

 
 ≡  
  

b  (1.4.1) 

 
If we wish to implement a row operation, for example, that switches the first and second row, we 
can form the product 
 

 
11 12 13 14 1

21 22 23 24 2

31 32 33 34 3

0 1 0
1 0 0
0 0 1

A A A A b
A A A A b
A A A A b

  
  
  
     

 (1.4.2) 

 
When the multiplication in (1.4.2) is performed, the result is  
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11 12 13 14 1

21 22 23 24 2

31 32 33 34 3

21 22 23 24 2

11 12 13 14 1

31 32 33 34 3

0 1 0
1 0 0
0 0 1

A A A A b
A A A A b
A A A A b

A A A A b
A A A A b
A A A A b

  
  
  
     
 
 =  
  

 (1.4.3) 

 
The result of the multiplication is the original augmented matrix except that its first two rows are 

switched.  The matrix that achieved this row operation, 
0 1 0
1 0 0
0 0 1

 
 
 
  

, is an example of an elementary 

matrix.  Note that the elementary matrix that switches rows is no more than the identity matrix with 
its two rows switched.  This is a general property of elementary matrices.  If we were wished to 
multiply the second row of ( )A b  by a constant, say λ , we would multiply it by the matrix 

1 0 0
0 0
0 0 1

λ
 
 
 
  

.  If we wish to define an elementary matrix that adds the second row to the and third 

row of a matrix we would multiply ( )A b by the matrix 
1 0 0
0 1 0
0 1 1

 
 
 
  

.  The conclusion is that row 

operations can be implemented by multiplications by elementary matrices. 
 
Example 1.4.1:  In Example 1.3.4, we looked at the system (1.3.35), repeated, 
 

 
1 2 3

1 2 3

1 2 3

2 3 1
3

3 4 2 4

x x x
x x x
x x x

+ + =
+ + =
+ + =

 (1.4.4) 

 
This example was worked with a set of three elementary row operations.  These operations can be 
displayed in terms of elementary matrices by the formula 
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Subtracts row 2
from row 3

Subtracts row 2
from row 3

3 row 1 
2

2 3 1 1 2 3 1 11 0 0
1 1 5 1 1 50 0 1 0 0
2 2 2 2 2 2

0 1 10 0 0 0 1 1 50
2 2 2

1 0 0 1 0 0
0 1 0 0 1 0
0 1 1 3 0 1

2
×

 
  

    
    − = −    

−     
  − 

 
 
  
  =   
 −   −  





subtracted
from row 3

Subtracts row 2
from row 3 1 row 13 2row 1 subtracted su2

from row 3

2 3 1 1
1 1 50
2 2 2

3 4 2 4

1 0 01 0 0 1 0 0
10 1 0 0 1 0 1 0
2

0 1 1 3 0 0 10 1
2

×
×

 
 
 −
 
 
 

           = −     −    −    







btracted
from row 2

2 3 1 1
1 1 1 3
3 4 2 4

 
 
 
  



 (1.4.5) 

 

The final step in creating the row echelon form from 

2 3 1 1
1 1 50
2 2 2

0 0 0 0

 
 
 −
 
 
 

 is to normalize the first row 

by a division by 2 and the second row by a division by 1
2

− .  The result is 

 



42 Chap. 1 • ELEMENTARY MATRIX THEORY 

 

Divide row 2
Divide row 11by by 22

Subtracts row 2
from row 3

3 1 1 11 0 01 0 0
2 2 2 210 1 1 5 0 0 0 1 0

2
0 0 0 0 0 0 10 0 1

1 0 0 1 0 0
0 1 0 0 1 0
0 1 1 3 0 1

2

−

            − − = − ×               

 
  
  
  
 −   − 







1 row 13 2row 1 subtracted subtracted2
from row 3 from row 2

1 0 0 2 3 1 1
1 1 0 1 1 1 3
2

3 4 2 40 0 1

×
×

       −         




 (1.4.6) 

 
 From a computational standpoint, the method of solution utilized in Section 1.3 is preferred.  
It achieves the final row echelon form without the necessity of identifying the elementary matrices.  
However, as indicated above, it is a useful theoretical result that 
 

A M N×  matrix A  can be converted to a M N×  matrix in row echelon form by 
multiplication of A  by a finite number of M M×  elementary matrices. 

 
Equation (1.4.6) illustrates this assertion in the particular case where the matrix A  is an augmented 
matrix associated with finding the solution of a system of M N×  equations. 
 
Example 1.4.2:  In Example 1.3.6, we looked at the system (1.3.48), repeated, 
 

 
1 2 3 4 5

1 2 3 4 5

1 2 3

2 4 3 9 1
4 5 10 6 18 4

7 8 16 7

x x x x x
x x x x x

x x x

+ − + + =
+ − + + =

+ − =
 (1.4.7) 

 
This example was worked with a set of five elementary row operations.  These operations can be 
displayed in terms of elementary matrices by the formula 
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Subtract 2 row2Row echelon form
from row3Divide row 2 by -3

Divide row 3 by -9

1 0 01 2 4 3 9 1 1 0 0 1 0 0
10 1 2 2 6 0 0 1 0 0 0 0 1 0
3

0 0 0 1 3 0 1 0 2 10 0 10 0
9 ×

     −         − = −         −    −    
 







Subtract 7 row1 Subtract 4 row1 Given augmented matrix
from row3 from row2

1 0 0 1 0 0 1 2 4 3 9 1
0 1 0 4 1 0 4 5 10 6 18 4
7 0 1 0 0 1 7 8 16 0 0 7

× ×

 −    
    × − −    
    − −     

 





 (1.4.8) 

 
 
Exercises:  
 
1.4.1 Find the row echelon form of the matrix 
 

 ( )

0 1 1 1 0
3 0 3 4 7
1 1 1 2 6
2 3 1 3 6

A b

 
 − =
 
 
 

 (1.4.9) 

 
Express the result in terms of elementary matrices. 
 
1.4.2 Find the row echelon form of the matrix 
 

 ( )

0 1 1 1 0
1 1 1 1 6
2 4 1 2 1
3 1 2 2 3

A b

− − 
 
 =
 − −
 − 

 (1.4.10) 

 
Express the result in terms of elementary matrices 
 
1.4.3 Find the row echelon form of the matrix 
 

 ( )

1 1 1 1 1 1
1 1 0 0 1 1
2 2 0 0 3 1

0 0 1 1 3 1
1 1 2 2 4 1

A b

− 
 − − − 
 = − −
 − 
  

 (1.4.11) 
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Express the result in terms of elementary matrices 
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Section 1.5.  Gauss-Jordan Elimination, Reduced Row Echelon Form 
 
 
 In Section 1.3, we introduced the Gaussian Elimination method and identified the row 
echelon form as the final form of the elimination method that one reaches by the method.  In this 
section, we shall extend the method by what is known as the Gauss-Jordan elimination method and 
identify the so called reduced row echelon form of the augmented matrix. 
 
 We shall continue to discuss the problem that led to (1.3.28), namely, a system of M N=  
equations and N  unknowns.  Equation (1.3.28), repeated, is 
 

 

( ) ( ) ( )

( ) ( )

( )

( )

11 12 13 1 1

1 1 1 1
22 23 2 2

2 2 2
33 2 3

( 2) ( 2) ( 2)
1, 1 1, 1

( 1) ( 1)

0

0 0

0 0 0 0

N

N

N

N N N
N N N N N

N N
NN N

A A A A b

A A A b

A A b

A A b
A b

− − −
− − − −

− −

⋅ ⋅ ⋅ 
 

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅
 

⋅ ⋅  

 (1.5.1) 

 
In order to reach this result, we have assumed that the pivot process did not yield zeros as the lead 
element in any row.  If this had been the case, the elimination scheme would have not reached the 
triangular form shown in (1.5.1).  The next step in the Gaussian Elimination method is to utilize 
back substitution to find the solution.  The Gauss-Jordan elimination scheme is a refinement of the 
Gaussian elimination method.  It avoids back substitution by implementing additional row 
operations which zero the elements in the upper triangular part of the matrix.  This scheme is best 
illustrated by an example. 
 
Example 1.5.1:  In Section 1.3, we worked Example 1.3.2.  This example involved finding the 
solution of 
 

 
1 2 3

1 2 3

1 2 3

3 1
2 5

2 2 8

x x x
x x x

x x x

+ + =
+ + =

− + − = −

 (1.5.2) 

 
The augmented matrix is given by (1.3.14) and the row echelon form, which in this case, was an 
upper triangular matrix is given by (1.3.57).  This row echelon form is 
 

 Series of
Row Operations

1 3 1 11 3 1 1
1 32 1 1 5 0 1
5 5

2 2 1 8 0 0 1 2

 
   
   → −   
 − − −   

 

 (1.5.3) 
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The Gauss-Jordan process begins with (1.5.3) and proceeds as follows 
 

 

1 Subtract row 3Subtract row 3 from row 15
from row 2

Subtract 3 row 2
from row 1

1 3 1 1 1 3 1 1 1 3 0 1
1 30 1 0 1 0 1 0 1 0 1
5 5

0 0 1 2 0 0 1 20 0 1 2

1 0 0 2
0 1 0 1
0 0 1 2

×

×

 
   −  
    − → − → −    
        

 
 
 → − 
  

 (1.5.4) 

 
The final matrix in (1.5.4) shows that the solution is 
 

 
1

2

3

2
1

2

x
x
x

   
   = = −   
      

x  (1.5.5) 

 

which is the result (1.3.12).  The matrix 
1 0 0 2
0 1 0 1
0 0 1 2

 
 − 
  

 in (1.5.4), as the end result of the Gauss-

Jordan elimination process, is the reduced row echelon matrix in this example. 
 
Example 1.5.2:  In Section 1.3, we considered Example 1.3.3.  The augmented matrix in this 
example is given by (1.3.34), repeated, 
 

 ( )
4 6 7 3
2 3 6 5
0 2 3 8

A
− 

 = − 
  

b  (1.5.6) 

 
The Gaussian elimination portion of this solution is 
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2 2Subtract row 1 Add row 2
4 6

from row 2 to row 3

Divide row 2
by -6 and

23row 3 by 
6

4 6 7 3 4 6 7 34 6 7 3
5 13 5 132 3 6 5 0 6 0 6
2 2 2 2

0 2 3 8 0 2 3 8 23 610 0
6 6

4 6 7
50 1

12
0 0 1

× ×

 
 − − −    

    − → − → −    
     

   
 

−

→ −

3
13
12

61
23

 
 
 
 −
 
 
 
 

 (1.5.7) 

 
The Gauss-Jordan portion of the solution picks up from (1.5.7) with the steps 
 

 

5Add row 3
12

to row 2

Subtract 7 row 3 Subtract 6 row 2
from row 1 from row 1

4 6 7 3 34 6 7
5 13 10 1 0 1 0

12 12 46
0 0 10 0 1 61 61

23 23
496
234 6 0
10 1 0
46

0 0 1 61
23

×

× ×

  
 − − 
  
  − − →
  
  
  

   
 − 
 
 →  →
 
 
 
 

Divide row 1
by 4

499
234 0 0
10 1 0
46

0 0 1 61
23

499
921 0 0
10 1 0
46

0 0 1 61
23

 − 
 
 
 
 
 
 

 − 
 
 →
 
 
 
 

 (1.5.8) 

 
Therefore, the reduced row echelon form of the augmented matrix is the last matrix in (1.5.8) and 
the solution is 
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1

2

3

499
92
1
46
61
23

x
x
x

 − 
   
   = =   
    

 
 

x  (1.5.9) 

 
 The Gauss-Jordan elimination method illustrated above is easily applied to cases of 
underdetermined systems and overdetermined systems.  The following illustrates the method for an 
underdetermined system. 
 
Example 1.5.3:  In Section 1.3, we considered Example 1.3.6.  We looked at the same example in 
Section 1.4 when we worked Example 1.4.2.  The end of the Gaussian Elimination process 
produced the augmented matrix(1.3.60), repeated, 
 

 
1 2 4 3 9 1
0 1 2 2 6 0
0 0 0 1 3 0

− 
 − 
  

 (1.5.10) 

 
The special form of (1.5.10) makes the Gauss-Jordan part of the elimination simply from a 
numerical standpoint.  Consider the following steps 
 

 

2 row 3 
subtracted from
row 2

3 row 3 2 row 2 
subtracted from subtracted from
row 1 row 1

1 2 4 3 9 1 1 2 4 3 9 1
0 1 2 2 6 0 0 1 2 0 0 0
0 0 0 1 3 0 0 0 0 1 3 0

1 2 4 0 0 1 1 0 0 0 0
0 1 2 0 0 0 0 1
0 0 0 1 3 0

×

× ×

− −   
   − → −   
      

− 
 → − → − 
  

1
2 0 0 0

0 0 0 1 3 0

 
 
 
  

 (1.5.11) 

 
The final result, which is in reduced row echelon form, displays the solution (1.3.52), repeated, 
 

 
1

2 3

4 5

1
2 0
3 0

x
x x
x x

=
− =
+ =

 (1.5.12) 

 
 The reduced row echelon matrix, that is determined after completion of the Gauss-Jordan 
elimination method, is defined formally as follows: 
 
Definition:  A M N×  matrix A  is in is in reduced row echelon form if 

1) Rows with at least one nonzero element are above any rows of all zero. 
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2) The first nonzero element from the left (the pivot element) of a nonzero row is always 
strictly to the right of the leading coefficient of the row above it. 

3) The leading coefficient of each nonzero row is 1  and is the only nonzero entry in its 
column. 

 
If this definition is compared to that of the row echelon form of a matrix given in Section 1.3, then 
a reduced row echelon form of a matrix is a row echelon form with the property that the entries 
above and below the leading coefficient are all zero.  In Section 1.4 it was explained how the row 
echelon form of a matrix can be found by a series of multiplications by elementary matrices.  If the 
additional row operations that implement the Gauss-Jordan elimination are represented by 
multiplications by row operations, we have the equivalent result 
 

A M N×  matrix A  can be converted to a M N×  matrix in reduced row echelon 
form by multiplication of A  by a finite number of M M×  elementary matrices. 

 
 
Exercises:  
 
1.5.1 Use row operations to find the reduced row echelon form of the matrix 
 

 ( )

0 1 1 1 0
3 0 3 4 7
1 1 1 2 6
2 3 1 3 6

A b

 
 − =
 
 
 

 (1.5.13) 

 

This augmented matrix arose earlier in Exercise 1.3.2.  The answer is 

1 0 0 0 4
0 1 0 0 3
0 0 1 0 1
0 0 0 1 2

 
 − 
 
 
 

. 

 
1.5.2 Use row operations to find the reduced row echelon form of the matrix 
 

 ( )
1 2 3 4 6
1 3 1 2 4  
2 5 2 5 10

A
− − 

 = − 
 − − 

b  (1.5.14) 

 

The answer is 
1 0 11 0 10
0 1 4 0 2
0 0 0 1 0

− 
 − 
  

. 

1.5.3 Use row operations to find the reduced row echelon form of the matrix 
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 ( )

0 1 1 1 0
1 1 1 1 6
2 4 1 2 1
3 1 2 2 3

A b

− − 
 
 =
 − −
 − 

 (1.5.15) 

 

This augmented matrix arose in Exercise 1.3.3.  The answer is 

1 0 0 0 2
0 1 0 0 1
0 0 1 0 3
0 0 0 1 2

 
 − 
 
 
 

. 

 
1.5.4 Use row operations to find the reduced row echelon form of the matrix 
 

 ( )

1 1 1 1 1 1
1 1 0 0 1 1
2 2 0 0 3 1

0 0 1 1 3 1
1 1 2 2 4 1

A b

− 
 − − − 
 = − −
 − 
  

 (1.5.16) 

 

This augmented matrix arose in Exercise 1.3.4.  The answer is 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 
 
 
 
 
 
  

. 

 
1.5.5  Find the solution or solutions of the following system of equations 
 

 
1 2 3

2 3

1 2 3

2 4
2 2

2 2 5 2

x x x
x x

x x x

− + = −
− =

− − + = −

 (1.5.17) 

 
1.5.6:  Find the solution or solutions of the following system of equations 
 

 
1 2 3

1 2 3

1 2 3

6
2 5 2 6

7 7 6

x x x
x x x

x x x

+ + =
+ − =
+ − = −

 (1.5.18) 

 
1.5.7:  Find the solution or solutions of the following system of equations 
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1 2 3 4

1 2 3 4

1 2 3 4

2 3 4 6
3 2 4

2 5 2 5 10

x x x x
x x x x

x x x x

+ − − =
+ + − =
+ − − =

 (1.5.19) 
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Section 1.6.  Elementary Matrices-More Properties 
 
 
 In this section we shall look deeper into the idea of an elementary matrix.  This concept was 
introduced in Section 1.4.  In that section, we explained that an elementary matrix is a M M×  
matrix that when it multiplies a M N×  matrix A  will achieve one of the following operations on 
A : 
 

a) switch two rows, 
b) multiply one of the rows by a nonzero constant,  
c) multiply one row by a nonzero constant and add it to another row. 

 
The objective of the elementary matrices is to cause row operations which can transform a matrix, 
first, into its row echelon form and, second, to its reduced row echelon form.  In Sections 1.4 and 
Sections 1.5, this fact was summarized with the statement 
 

A M N×  matrix A  can be converted to a M N×  in row echelon form and its 
reduced row echelon form by multiplication of A  by a finite number of M M×  
elementary matrices. 

 
The row echelon form as the result of multiplication by elementary matrices was illustrated with 
examples in Section 1.4.  The additional multiplications by elementary matrices that convert a 
matrix from its row echelon form to its reduced row echelon form are illustrated by the following 
example. 
 
Example 1.6.1:  Example 1.4.2, which originated from a desire to solve the system of equations, 
 

 
1 2 3 4 5

1 2 3 4 5

1 2 3

2 4 3 9 1
4 5 10 6 18 4

7 8 16 7

x x x x x
x x x x x

x x x

+ − + + =
+ − + + =

+ − =
 (1.6.1) 

 
The solution process produced (1.4.8), repeated,  
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Subtract 2 row2Row echelon form
from row3Divide row 2 by -3

Divide row 3 by -9

1 0 01 2 4 3 9 1 1 0 0 1 0 0
10 1 2 2 6 0 0 1 0 0 0 0 1 0
3

0 0 0 1 3 0 1 0 2 10 0 10 0
9 ×

     −         − = −         −    −    
 







Subtract 7 row1 Subtract 4 row1 Given augmented matrix
from row3 from row2

1 0 0 1 0 0 1 2 4 3 9 1
0 1 0 4 1 0 4 5 10 6 18 4
7 0 1 0 0 1 7 8 16 0 0 7

× ×

 −    
    × − −    
    − −     

 





 (1.6.2) 

 

The problem is to find the elementary matrices that will convert the matrix  

Row echelon form

1 2 4 3 9 1
0 1 2 2 6 0
0 0 0 1 3 0

− 
 − 
  


 

into is reduced row echelon form.  As explained in Section 1.4, the elementary matrices are derived 
from the identity matrix by applying the desired row operation to the identity matrix.  The three 
row operations that achieve this step are shown in equation (1.5.11).  Therefore the elementary 
matrices that achieve these steps are as follows: 
 

1) 2 row 3 subtracted from row 2×  
 

 2 row 3 subtracted
from row 2

1 0 0 1 0 0
0 1 0 0 1 2
0 0 1 0 0 1

×

   
   → −   
      

 (1.6.3) 

 
2)  3 row 3 subtracted from row 1×  

 

 3 row 3 subtracted
from row 1

1 0 0 1 0 3
0 1 0 0 1 0
0 0 1 0 0 1

×

−   
   →   
      

 (1.6.4) 

 
3)  2 row 2 subtracted from row 1×  

 

 2 row 2 subtracted
from row 1

1 0 0 1 2 0
0 1 0 0 1 0
0 0 1 0 0 1

×

−   
   →   
      

 (1.6.5) 

 
Therefore, the reduced row echelon form is given by 
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2 row 2 subtracted 3 row 3 subtracted 2 row 3 subtracted
from row 1 from row 1 from row 2

Calculates 

1 0 0 0 0 1 1 2 0 1 0 3 1 0 0
0 1 2 0 0 0 0 1 0 0 1 0 0 1 2
0 0 0 1 3 0 0 0 1 0 0 1 0 1 1

× × ×

− −       
       − = −       
             



reduced row echelon form
from row echelon form

Subtract 2 row2
from rDivide row 2 by -3

Divide row 3 by -9

1 0 01 0 0 1 0 0
10 1 0 0 0 0 1 0
3

1 0 2 10 0 10 0
9 ×

×

           −      −   −    







Subtract 7 row1 Subtract 4 row1 Given augmented matrix
ow3 from row3 from row2

Calculates row echelon form

1 0 0 1 0 0 1 2 4 3 9 1
0 1 0 4 1 0 4 5 10 6 18 4
7 0 1 0 0 1 7 8 16 0 0 7

× ×

−    
    − −    
 − −        







 (1.6.6) 

 
It is a property of elementary matrices that they are nonsingular.  We shall illustrate this 

assertion by consideration of three examples. 
 
Example 1.6.2:  If you are given the elementary matrix that corresponds to switching the first and 
second row, i.e., 
 

 1

0 1 0
1 0 0
0 0 1

E
 
 =  
  

 (1.6.7) 

 
Then the inverse of 1E  must obey 
 

 1 1
1 1

0 1 0 0 1 0 1 0 0
1 0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1

E E− −

     
     = =     
          

 (1.6.8) 

 
The matrix 
 

 1
1

0 1 0
1 0 0
0 0 1

E −

 
 =  
  

 (1.6.9) 

 
can be substituted into (1.6.8) and verify that it is the inverse.  Just as (1.6.7) corresponds to 
switching the first and second row, its inverse, (1.6.8), corresponds to switching them again to 
return to the original matrix. 
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Example 1.6.3:  If you are given the elementary matrix that corresponds to multiplying the second 
row by a nonzero constant, i.e., 
 

 2

1 0 0
0 0
0 0 1

E λ
 
 =  
  

 (1.6.10) 

 
Then the inverse of 2E  must obey 
 

 1 1
2 2

1 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 1

E Eλ λ− −

     
     = =     
          

 (1.6.11) 

 
The matrix 
 

 1
2

1 0 0
10 0

0 0 1

E
λ

−

 
 
 =
 
  

 (1.6.12) 

 
can be substituted into (1.6.11) and verify that it is the inverse.  Just as (1.6.10) corresponds to 
multiplying the second row by the nonzero constant λ , its inverse, (1.6.12), corresponds to 
dividing the second row by the nonzero constant λ . 
 
Example 1.6.4:  If you are given the elementary matrix that corresponds to multiplying the third 
row by a constant and adding the result to the first, i.e., 
 

 3

1 0
0 1 0
0 0 1

E
λ 

 =  
  

 (1.6.13) 

 
Then the inverse of 2E  must obey 
 

 1 1
3 3

1 0 1 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

E E
λ λ

− −

     
     = =     
          

 (1.6.14) 

 
The matrix 
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 1
3

1 0
0 1 0
0 0 1

E
λ

−

− 
 =  
  

 (1.6.15) 

 
can be substituted into (1.6.14) and verify that it is the inverse.  Just as (1.6.13) corresponds to 
multiplying the third row by a nonzero constant and adding the result to the first, (1.6.15)
corresponds to multiplying the third row by a nonzero constant and subtracting the result from the 
first row. 
 
In summary, we have the following two facts about elementary matrices: 

1) An elementary matrix is a M M×  matrix obtained from the M M×  identity matrix by an 
elementary row operation. 

2)  If E  is an elementary matrix, then E  is nonsingular and, its inverse, 1E −  is an elementary 
matrix of the same type. 

 
Definition:  A M N×  matrix B  is row equivalent to a M N×  matrix A  if there exist a finite 
number of elementary matrices 1 2, ,..., kE E E  such that 
 
 2 1kB E E E A= ⋅⋅ ⋅  (1.6.16) 
 
This definition is an adoption of the idea of equivalence to matrices which we introduced in Section 
1.3 for systems of equations.  It is possible to use the definition (1.6.16) to establish the following 
two important properties of row equivalence: 
 

1) If B  is equivalent to A , then A  is equivalent to B . 
2) If B  is equivalent to A  and A  equivalent to C , then B  is equivalent to C . 

 
The proof of the first property follows directly from the definition (1.6.16).  The details are as 
follows.  Because each elementary matrix is nonsingular, we can repeatedly use the identity 
(1.1.36) and establish from (1.6.16) that 
 

 

( )
( )
( )

1
2 1

1 1
1 2 1

1 1 1
2 2 1 1

1 1 1
1 2

k

k k

k k k

k

A E E E B

E E E E B

E E E E E B

E E E B

−

− −
−

− − −
− −

− − −

= ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅

⋅
⋅
⋅

= ⋅ ⋅ ⋅

 (1.6.17) 

 
Since the inverse elementary matrices are themselves elementary matrices, this result establishes 
property 1).  The proof of the second property follows from a similar line of reasoning. 
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 If we are given that A  is a square matrix, we can identify three properties of A  that relate 
to whether or not it is nonsingular. 
 
Theorem 1.6.1: The following three conditions are equivalent for a square matrix A . 
 

a) A  is nonsingular. 
b) The equation A =x 0  only has the solution =x 0 . 
c) A  is row equivalent to the identity matrix I . 

 
Proof:  The proof requires that we accept any one of the propositions as true and, from that 
proposition, prove that the other two are also true.  We begin by accepting a) and showing that a) 
implies b). 
 
 a)⇒b): If A is nonsingular, the equation A =x 0  can be multiplied by its inverse to obtain 

1A A I− = = =x x x 0 .  Thus b) is established. 
 
Given b), we shall next show that it implies c). 
 
 b)⇒c): We are given that the system A =x 0  only has the solution =x 0 .  Let 1 2, ,..., kE E E  
be elementary matrices selected such that 
 
 2 1kU E E E A= ⋅⋅ ⋅  (1.6.18) 
 
is in reduced row echelon form.  It follows from A =x 0  and (1.6.18) that 
 
 2 1kU E E E A= ⋅⋅ ⋅ =x x 0  
 
Because =x 0  is the only solution allowed by the equation U =x 0 , the matrix U cannot have a 
zero on its diagonal.  If it did, for example, in the NN  position, this would allow 0Nx ≠  which 
would violate the condition that =x 0 .  Because the reduced row echelon form of the matrix which 
has nonzero diagonal elements has the identity I  for its reduced row echelon form, the result is 
established. 
 
Given c), we shall next show that it implies a). 
 
 c) ⇒a): We are given that A  is row equivalent to the identity matrix I .  Therefore, there 
exists elementary matrices 1 2, ,..., kE E E  such that 
 
 2 1kI E E E A= ⋅⋅ ⋅  (1.6.19) 
 
Because each elementary matrix is nonsingular, this last result implies that the matrix A  is given 
by 
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 ( ) 1 1 1 1
2 1 1 2k kA E E E E E E− − − −= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅  (1.6.20) 

 
where the identity (1.1.36) has been used.  Given (1.6.20), it follows that 1A−  is given by 
 

 

( )
( ) ( ) ( )

11 1 1 1
1 2

1 1 11 1 1
2 1

2 1

k

k

k

A E E E

E E E

E E E

−− − − −

− − −− − −

= ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅

 (1.6.21) 

 
where we have again used the identity (1.1.36).  Equation (1.6.21) establishes that A  is 
nonsingular. 
 

It is a corollary to the last result that the system of N  equations with N  unknowns A =x b  
has a unique solution if and only if A  is nonsingular.  The argument to prove this corollary is as 
follows:  First, assume the square matrix A  is nonsingular, it then follows from A =x b  that the 
solution exists and is uniquely given by 1A−=x b .  Conversely, we need to prove that if only 
unique solutions exist, the square matrix A  must be nonsingular.  The proof of this part of the 
corollary, like virtually all uniqueness proofs, begins with the assumption that the solution is not 
unique and then establishes condition that will force uniqueness.  We begin with the assumption 
that there exist two solutions, 1x  and 2x , that obey 
 
 1A =x b  (1.6.22) 
 
and 
 
 2A =x b  (1.6.23) 
 
Given (1.6.22) and (1.6.23), it is true that 
 
 ( )1 2 1A A A− = − = − =2x x x x b b 0  (1.6.24) 
 
Equation (1.6.24) and part b) of Theorem 1.6.1 tell us that 1 2− =x x 0  if and only if A  is 
nonsingular,  
 

Theorem 1.6.1 tells us that in those cases where A  is nonsingular we can construct the 
inverse 1A−  by finding the elementary matrices 1 2, ,..., kE E E  which satisfy (1.6.19).  When these 
elementary matrices are known, we can calculate 1A−  from (1.6.21). 
 
Example 1.6.5:  As an example, consider the matrix  
 



60 Chap. 1 • ELEMENTARY MATRIX THEORY 

 
1 3 1
2 1 1
2 2 1

A
 
 =  
− −  

 (1.6.25) 

 
which is the coefficient matrix in Example 1.3.2.  This is also the matrix utilized in Example 1.5.1.  
Consider the following sequence of elementary matrices: 
 
Step 1: 
 

 1

2 row 1
subtracted
from row 2

1 0 0 1 3 1 1 3 1
2 1 0 2 1 1 0 5 1

0 0 1 2 2 1 2 2 1
E A

×

     
     = − = − −     

− − − −          


 (1.6.26) 

 
Step 2: 
 

 ( )2 1

2 row 1 added
to row 3

1 0 0 1 3 1 1 3 1
0 1 0 0 5 1 0 5 1
2 0 1 2 2 1 0 8 1

E E A

×

     
     = − − = − −     

− −          


 (1.6.27) 

 
Step 3: 
 

 ( )3 2 1

8 row 2
5
added
to row 3

1 0 0 1 3 1 1 3 1
0 1 0 0 5 1 0 5 1

8 0 8 1 30 1 0 0
5 5

E E E A

×

   
    
    = − − = − −    
      −   
   


 (1.6.28) 

 
Step 4 
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 ( )4 3 2 1

multiple row
53 by 
3

1 0 0 1 3 1 1 3 1
0 1 0 0 5 1 0 5 1

5 3 0 0 10 0 0 0
3 5

E E E E A

−

   
     
     = − − = − −     
      − −   
   


 (1.6.29) 

 
Step 5 
 

 ( )5 4 3 2 1

Add row 3
to row 2

1 0 0 1 3 1 1 3 1
0 1 1 0 5 1 0 5 0
0 0 1 0 0 1 0 0 1

E E E E E A
     
     = − − = −     
          


 (1.6.30) 

 
Step 6 
 

 ( )6 5 4 3 2 1

Subtract row 3
from row 1

1 0 1 1 3 1 1 3 0
0 1 0 0 5 0 0 5 0
0 0 1 0 0 1 0 0 1

E E E E E E A
−     

     = − = −     
          


 (1.6.31) 

 
Step 7 
 

 ( )7 6 5 4 3 2 1

Divide row 5 
by -5

1 0 0 1 3 0 1 3 0
10 0 0 5 0 0 1 0
5

0 0 1 0 0 10 0 1

E E E E E E E A

 
    
    = − − =    
        



 (1.6.32) 

 
Step 8 
 

 ( )8 7 6 5 4 3 2 1

Subtract 3 row 2
from row 1

1 3 0 1 3 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

E E E E E E E E A I

×

−     
     = = =     
          


 (1.6.33) 

 
Given equation (1.6.33), it follows from (1.6.21) that 
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8 6 5
7

4 3

1
8 7 6 5 4 3 2 1

1 0 01 3 0 1 0 1 1 0 0
10 1 0 0 0 0 1 0 0 1 1
5

0 0 1 0 0 1 0 0 10 0 1

1 0 0 1 0 0 1
0 1 0 0 1 0

5 80 0 0 1
3 5

E E E
E

E E

A E E E E E E E E− =

 − −      
      = − ×      
            

   
   
   
   
   

−   
   

 





2 1

0 0 1 0 0
0 1 0 2 1 0
2 0 1 0 0 1

E E

   
   −   
      


 (1.6.34) 

 
If the multiplications shown in (1.6.34) are carried out, the result is 
 

 1

5 21
3 3
1 10
3 3
8 52
3 3

A−

 − 
 
 =
 
 
 − −
 

 (1.6.35) 

 
Example 1.6.6:  As an additional example, consider the following matrix A  and the following 
sequence of elementary matrices: 
 

 
1 4 3
1 2 0

2 2 3
A

 
 = − − 
  

 (1.6.36) 

 
Step 1: 
 

 1

Add row 1
to row two

1 0 0 1 4 3 1 4 3
1 1 0 1 2 0 0 2 3
0 0 1 2 2 3 2 2 3

E A
     
     = − − =     
          


 (1.6.37) 

 
Step 2: 
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 ( )2 1

Multiply row 1
by -2 and add
to row 3

1 0 0 1 4 3 1 4 3
0 1 0 0 2 3 0 2 3
2 0 1 2 2 3 0 6 3

E E A
     
     = =     
     − − −     


 (1.6.38) 

 
Step 3 
 

 ( )3 2 1

Multiply row 2 by 1 2 

1 0 0 1 4 31 4 3
1 30 0 0 2 3 0 1
2 2

0 6 30 0 1 0 6 3

E E E A

   
    
    = =    
 − −    − −   



 (1.6.39) 

 
Step 4 
 

 ( )4 3 2 1

Multiply row 3
1by -  
6

1 4 3 1 4 31 0 0
3 30 1 0 0 1 0 1
2 2

1 0 6 3 10 0 0 16 2

E E E E A

             = =        − −−        

 (1.6.40) 

 
Step 5: 
 

 ( )5 4 3 2 1

Subtract row 2
from row 3 

1 4 3 1 4 31 0 0
3 30 1 0 0 1 0 1
2 2

0 1 1 1 0 0 10 1
2

E E E E E A

 
   

     
     = =     
 −     −  

 


 (1.6.41) 

 
Step 6: 
 

 ( )6 5 4 3 2 1

Multiply row 3 by -1

1 4 3 1 4 31 0 0
3 30 1 0 0 1 0 1
2 2

0 0 1 0 0 1 0 0 1

E E E E E E A

   
     
     = =     
 −     −   

 (1.6.42) 
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Step 7 
 

 ( )7 6 5 4 3 2 1

Multiply row 2 by 4
and subtract from
row 1 

1 4 3 1 0 31 4 0
3 30 1 0 0 1 0 1
2 2

0 0 1 0 0 1 0 0 1

E E E E E E E A

−   −     
     = =     
      

   

 (1.6.43) 

 
Step 8: 
 

 ( )8 7 6 5 4 3 2 1

Multiply row 3
by 3 2 and
add to row 2 

1 0 0 1 0 3 1 0 3
3 30 1 0 1 0 1 0
2 2

0 0 10 0 1 0 0 1

E E E E E E E E A

−

−    −    
    = − =     
     

   


 (1.6.44) 

 
Step 9: 
 

 ( )9 8 7 6 5 4 3 2 1

Multiply row 3
by 3 and
add to row 1 

1 0 3 1 0 3 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

E E E E E E E E E A I
−     

     = = =     
          


 (1.6.45) 

 
Therefore, 
 

 

9 7 6
8

5

4

1
9 8 7 6 5 4 3 2 1

1 0 01 0 3 1 4 0 1 0 0
30 1 0 0 1 0 1 0 0 1 0
2

0 0 1 0 0 1 0 0 10 0 1

1 0 01 0 0 1 0 0
0 1 0 0 1 0
0 1 0 10 0

6

E E E
E

E

E

A E E E E E E E E E− =

  −      
      = − ×      
     −      

 

 
  
  
  
  −  − 
 

 







2 1
3

1 0 0 1 0 0
10 0 0 1 0 1 1 0
2

2 0 1 0 0 10 0 1
E E

E

 
    
    
    
   −    

 

  (1.6.46) 
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If this multiplication is performed, the following result is obtained for 1A−  
 

 1

1 1 1
2 2 2

1 1 1
4 4 4
1 1 1
6 2 6

A−

 − − 
 
 = − − 
 
 
  

 (1.6.47) 

 
The above two examples illustrates how the elementary matrices generate the inverse for a 

nonsingular matrix.  These examples are illustrations of the theoretical formula (1.6.21).  As a 
practical matter, we are typically only interested in the inverse and not the recording of the 
individual elementary matrices.  A computational algorithm based upon the augmented matrix 
approach gives the answer more directly.  We shall illustrate this algorithm for the matrix in the 
second example above, i.e. the matrix defined by (1.6.36).  The procedure is as follows: 
 
First, form the augmented matrix ( )A I : 
 

 ( )
1 4 3 1 0 0
1 2 0 0 1 0

2 2 3 0 0 1
A I

A I

 
 
 = − − 
 
  
 

 (1.6.48) 

 
We next perform row operations on this auxiliary matrix until an identity appears in the left slot.  
The step by step process is the following: 
 
Step 1(Add row 1 to row 2.) 
 

 

1 1

1 4 3 1 0 0
0 2 3 1 1 0
2 2 3 0 0 1

E A E

 
 
 
 
 
 
 
 

 (1.6.49) 

 
Step 2:(Multiply row 1 by -2 and add to row 3.) 
 

 

2 1 2 1

1 4 3 1 0 0
0 2 3 1 1 0
0 6 3 2 0 1

E E A E E

 
 
 
 
 − − −
 
 
 

 (1.6.50) 
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Step 3(Multiply row 2 by 1/2.) 
 

 

3 2 1 3 2 1

1 4 3 1 0 0
3 1 10 1 0
2 2 2

0 6 3 2 0 1
E E E A E E E

 
 
 
 
 
 − − − 
  
 

 (1.6.51) 

 
Step 4(Multiply row 3 by – 1/6.) 
 

 

4 3 2 1 4 3 2 1

1 4 3 1 0 0
3 1 10 1 0
2 2 2
1 1 10 1 0
2 3 6

E E E E A E E E E

 
 
 
 
 
 
 
 − 
  
 

 (1.6.52) 

 
Step 5:(Subtract row 2 from row 3) 
 

 

5 4 3 2 1

5 4 3 2 1

1 0 3 1 0 0
3 1 10 1 0
2 2 2

0 0 1 1 1 1
6 2 6E E E E E A

E E E E E

 
 
 −
 
 
 
 

− − − −
 
  





 (1.6.53) 

 
Step 6:(Multiply row 3 by -1.) 
 

 

6 5 4 3 2 1

6 5 4 3 2 1

1 4 3 1 0 0
3 1 10 1 0
2 2 2

0 0 1 1 1 1
6 2 6E E E E E E A

E E E E E E

 
 
 
 
 
 
 
 
 
  





 (1.6.54) 
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Step 7:(Multiply row 2 by 4 and subtract from row 1.) 
 

 

7 6 5 4 3 2 1

7 6 5 4 3 2 1

1 0 3 1 0 0
3 1 10 1 0
2 2 2

0 0 1 1 1 1
6 2 6E E E E E E E A

E E E E E E E

 
 
 − −
 
 
 
 
 
 
  





 (1.6.55) 

 
 
Step 8:(Multiply row 3 by – 3/2 and add to row 2.) 
 

 

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

1 2 01 0 3
1 1 10 1 0
4 4 4

0 0 1 1 1 1
6 2 6

E E E E E E E E A

E E E E E E E E

 
 
 − −

− 
 − − 
 
 
 
  





 (1.6.56) 

 
Step 9:(Multiply row 3 by 3 and add to row 1.) 
 

 

9 8 7 6 5 4 3 2 1

1
9 7 6 5 4 3 2 1

1 1 1
2 2 21 0 0

1 1 10 1 0
4 4 4

0 0 1 1 1 1
6 2 6

I E E E E E E E E E A

A E E E E E E E E−

=

=

 
 

− − 
 
 

− − 
 
 
 
 
 





 (1.6.57) 

 
If the matrix A  is singular, the above calculation process will not reduce to the identity 

matrix in the left slot.  In the singular case, of course, the formula (1.6.21), i.e., 1
2 1kA E E E− = ⋅ ⋅ ⋅ , is 

not valid. 
 
 
Exercises: 
 
1.6.1 You are given the matrix 
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1 3 3
1 4 3
1 3 4

A
 
 =  
  

 (1.6.58) 

 

and its inverse 1

7 3 3
1 1 0
1 0 1

A−

− − 
 = − 
−  

.  Express 1A−  as the product of a finite number of elementary 

matrices. 
 
1.6.2 Use the computational algorithm illustrated above to determine the inverse of 
 

 
2 1 0
2 2 0

0 1 1
A

 
 = − 
  

 (1.6.59) 

 
1.6.3 Use the computational algorithm illustrated above to determine the inverse of 
 

 

0 1 1 1
3 0 3 4
1 1 1 2
2 3 1 3

A

 
 − =
 
 
 

 (1.6.60) 

 
The answer is 
 

 1

17 2 8 3
10 0 20 101
13 2 8 720
3 2 12 3

A−

− − − 
 − − = −
− − − 
 − 

 (1.6.61) 
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Section 1.7.  LU  Decomposition 
 
 
 At this point in our understanding of Matrix Algebra, we have two closely related 
approaches for solving systems of linear algebraic equations.  One is based upon Gaussian 
Elimination, and the other method is based upon Gauss-Jordan Elimination.  There is another class 
of solution methods based upon decompositions of the matrix A .  Decomposition is the ability to 
start with an M N×  matrix A , and derive from A  two or more matrices which allow A  to be 
decomposed into the product 
 
 1 2 kA A A A= ⋅⋅ ⋅  (1.7.1) 
 
Decomposition methods are useful because the factors in the decomposition have properties which 
make the subsequent solution of 
 
 A =x b  (1.7.2) 
 
easier.  One such method is called the LU  Decomposition.  For our purposes, there are two kinds 
of LU  decompositions.  For our purposes here, we shall call the first kind the elementary LU  
decomposition.  After we discuss this calculation, we shall discuss the second kind, which we shall 
call the generalized LU  decomposition.   
 
The Elementary LU  Decomposition 
 

The question is under what circumstance can an M N×  matrix A , can be decomposed in 
the form 
 
 A LU=  (1.7.3) 
 
where 
 
   U =  An upper triangular M N×  matrix 
 
and 
 

L =  A lower triangular nonsingular M M×  matrix with 1s down the 
diagonal.3 

 
While not sufficient, it is certainly going to be necessary for the number of unknown 

elements of L  and U  to be equal to the given number of elements of A , namely MN .  It is 
helpful to do a little counting of these various elements in order to characterize the cases where this 
necessary condition is obeyed.  For the square M M×  matrix L : 
 

 
3 In some discussions of the LU  decomposition, the diagonal elements of L  are not required to be unity.  It can be 
shown that this requirement ensures that when the decomposition exists, it is unique. 



70 Chap. 1 • ELEMENTARY MATRIX THEORY 

 ( )1Number of Unknown Elements of 1
2

L M M= −  

 
For the M N×  matrix U , there are two cases 
 

 
( ) ( )

( )

1 1 for   
2Number of Unknown Elements of 
1 1 for   
2

M M N M M N M
U

N N N M

 + + − ≥= 
 + <


 

 
The total number of unknown elements in L  and U  is, therefore,4 
 

 
( ) ( ) ( )

( ) ( )

1 11 1 for   
2 2Total Number of Unknown Elements=
1 11 1 for   
2 2

M M M M N M M N M

M M N N N M

 − + + + − ≥

 − + + <


 

 
These totals can be rearranged to yield 
 

 
( )( )( )

for   
Total Number of Unknown Elements= 1 1 for   

2

MN N M

MN M N M N N M

≥



+ − + − <

 

 
In the case N M≥ , the necessary condition is clearly satisfied.  In the case N M<  it is generally 
not satisfied unless 1M N= + .  These two pieces of information mean that we shall base our 
following discussion on the cases where N , the number of columns of A , obeys 1N M≥ − .  In 
other words, the number of columns can be one less than the number of rows or it can be equal to 
or greater than the number of rows.  Most, but not all, of our examples will be for square matrices.  
We shall briefly discuss later in this section the issues that arise when 1N M< − . 
 
Example 1.7.1:  If A  is the matrix we have used before 
 

 
2 4 2
1 5 2
4 1 9

A
 
 =  

−  

 (1.7.4) 

 
then the following is an elementary LU  Decomposition 
 

 
4 It is also possible to conclude that the number of known elements in U , the zeros, equals the number of unknown 

elements in L , namely ( )1 1
2

M M − .  Because L  is square, ( )1 1
2

M M − , is also the number of zeros in L . 
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1 0 02 4 2 2 4 2
11 5 2 1 0 0 3 1
2

4 1 9 0 0 82 3 1
A U

L

 
    
    =    

−       −  



 (1.7.5) 

 
Later in this section, we shall develop the computational procedure that constructs the 
decomposition (1.7.3). 
 

The example (1.7.5) shows that elementary LU  Decompositions do exist.  However, one of 
the many questions about LU  decompositions is whether or not they always exist.  If it does not 
always exist for every M N×  matrix with 1N M≥ − , then can we characterize those situations 
when it does?  The answer is that it does not always exist.  It is this fact that will cause us to look at 
the generalized LU  decomposition mentioned earlier.  Returning to the elementary LU  
decomposition, it turns out that the factorization (1.7.3) always exists if the following is true: 
 

If the M N×  matrix A , with 1N M≥ − , can be reduced to upper triangular form without 
using partial pivoting (i.e. row switching) then A  has an elementary LU  decomposition. 

 
We shall give an example below where the elementary LU  decomposition does not exist.  For the 
moment, we shall proceed and see what problems arises as we attempt the construction. 
 
 It is useful to note at this point one of the reasons the LU  decomposition is useful.  If we 
have the decomposition, (1.7.3), then the system of linear equations A =x b  can be written 
 
 LU =x b  (1.7.6) 
 
Because L , is nonsingular, we can multiply on the left by 1L−  and obtain 
 
 1 1L LU IU U L− −= = =x x x b  (1.7.7) 
 
Thus, our problem is reduced to solving  
 
 1U L−=x b  (1.7.8) 
 
Because U  is an upper triangular matrix, (1.7.8) can be solved, for example, by back substitution 
or Gauss-Jordan elimination.  Another benefit of the LU Decomposition  is that it depends only on 
the properties of A .  In other words, the decomposition does not depend upon b .  This means that 
we can perform the decomposition and then solve for x  for a variety of choices of b .  The 
methods we have used to date, Gaussian Elimination and Gauss-Jordan Elimination, involved 
manipulations of the augmented matrix, ( )A b , and, as a consequence, the intermediate 
calculations depended upon the specific b . 
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 The source of the method to create the elementary LU  Decomposition is actually Gaussian 
Elimination.  When the decomposition can be achieved, Gaussian Elimination will give us the 
matrix U .  Our challenge is to discover how to find L  such that A LU= .  The construction of U  
begins with certain row operations on A .  As these operations are conducted, either with 
elementary matrices or by row operations, we shall see that we build the matrix L . 
 
 As a motivation of how Gaussian Elimination plays a role in the derivation of A LU= , it is 
instructive to try what is essentially a brute force method.  We shall briefly illustrate this method in 
the case where A  is a 4 3×  matrix.  In this case, the equation we hope to derive, namely (1.7.3), 
can be written in components as 
 

 

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

41 42 43 41 42 43

1 0 0 0
1 0 0 0

1 0 0 0
1 0 0 0

UL

A A A U U U
A A A L U U

A
A A A L L U
A A A L L L

     
     
     = =
     
     

    


 (1.7.9) 

 
Equation (1.7.9) connects the given twelve components of A  on the left side to the unknown six 
components of L  and the six components of U  on the right side.  If we expand the product on the 
right-hand side, the result is 
 

 

11 12 13 11 12 13

21 22 23 21 11 21 12 22 21 13 23

31 32 33 31 11 31 12 32 22 31 13 32 23 33

41 42 43 41 11 41 12 42 22 41 13 42 23 43 33

A A A U U U
A A A L U L U U L U U
A A A L U L U L U L U L U U
A A A L U L U L U L U L U L U

   
   + +   =

+ + +   
   + + +   

 (1.7.10) 

 
Our goal is to calculate the twelve unknown quantities that appear on the right side of (1.7.10).  As 
we proceed with this calculation, we shall see explicitly how the calculation might fail and give 
some motivation for the generalized LU  decomposition to be discussed later. 
 

Our first step in the determination of L  and U  from (1.7.10) is to equate like elements on 
both sides of (1.7.10), the first row yields 
 

 
11 11

12 12

13 13

U A
U A
U A

=
=
=

 (1.7.11) 

 
Given (1.7.11)1, we can equate the remaining elements in the first column of the two matrices and 
conclude 
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21 21 11

31 31 11

41 41 11

A L U
A L U
A L U

=
=
=

 (1.7.12) 

 
If we assume 11A , which by (1.7.11)1 equals 11U , is nonzero, it follows from (1.7.12) that 
 

 

21 21
21

11 11

31 31
31

11 11

41 41
41

11 11

A AL
U A
A AL
U A
A AL
U A

= =

= =

= =

 (1.7.13) 

 
The fact that we have committed to the special case 11 11 0U A= ≠  represents one way that our 
calculation is special.  Next, we equate the remaining unknown elements in the second row of the 
two matrices and obtain 
 

 
22 21 12 22 21 12 22

22 2323 21 13 23 21 13 23

2 Eqs and 2 Unknowns
(  and )

 

A L U U L A U
U UA L U U L A U

= + = + 
= + = +   (1.7.14) 

 
Because we have assumed 11 0A ≠ , the two unknowns in (1.7.14) are given by 
 

 

21
22 22 21 12 22 12

11

21
23 23 21 13 23 13

11

AU A L A A A
A
AU A L A A A
A

= − = −

= − = −
 (1.7.15) 

 
Equating the remaining unknown elements in the second column yields 
 

 32 31 12 32 22

42 41 12 42 22

A L U L U
A L U L U

= +
= +

 (1.7.16) 

 
If we assume 22 0U ≠ , which is a further specialization of this calculation, equations (1.7.16) yield 
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31
32 12

1132 31 12
32

2122
22 12

11

41
42 12

1142 41 12
42

2122
22 12

11

AA A
AA L UL AU A A
A

AA A
AA L UL AU A A
A

 
−  −  = =
−

 
−  −  = =
−

 (1.7.17) 

 
Equating the remaining unknown element in the third row yields 
 
 33 31 13 32 23 33A L U L U U= + +  (1.7.18) 
 

 

31
32 12

1131 21
33 33 31 13 32 23 33 13 23 13

2111 11
22 12

11

AA A
AA AU A L A L U A A A AAA AA A
A

 
−      = − − = − − −   

   −
 (1.7.19) 

 
Next, we assume 33 0U ≠  in this special case and equate the 43 elements of (1.7.10) to obtain 
 

 

41
42 12

1141 21
43 12 23 13

2111 11
22 12

1143 41 13 42 23
43

33 31
32 12

1131 21
33 13 23 13

2111 11
22 12

11

AA A
AA AA A A AAA AA A
AA L U L UL

U AA A
AA AA A A AAA AA A
A

  
−      − − −   − 

− −  = =
 

−      − − −   
   −

 (1.7.20) 

 

In summary, if we assume 11 0A ≠ , 21
22 22 21 12 22 12

11

0AU A L A A A
A

= − = − ≠  and 

31
32 12

1131 21
33 33 31 13 32 23 33 13 23 13

2111 11
22 12

11

0

AA A
AA AU A L A L U A A A AAA AA A
A

 
−      = − − = − − − ≠   

   −
, then the 

elementary LU  decomposition (1.7.9) is given by5 

 
5 In the case of an arbitrary M N×  matrix with 1N M≥ − , the above results generalize to 
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21

11

31
32 12

31 11

2111
22 1211 12 13

11
21 22 23

41
42 1231 32 33

1141 2
43 12 2341 42 43

211141 22 1242 12
111141

2111
22 12

11

1 0 0 0

1 0 0

1 0

A
A

AA A
A A

AA A AA A A A
A A A

A AA AA A A
AA AA A AA A A AAA A AA A AAA

AA A A
A

−

− 
 
   = =  

−    
    − − −     −−   

   

−

1
13

11

31
32 12

1131 21
33 13 23 13

2111 11
22 12

11

11 12 13

21 21
22 12 23

11 11

1

0

L

A
A

AA A
AA AA A A AAA AA A
A

A A A
A AA A A A
A A

 
 
 
 
 
 
 
 
 
 
  × 
  

  
  

 
 

  −       − − −    
    −

  

− −



13

31
32 12

1131 21
33 13 23 13

2111 11
22 12

11

0 0

0 0 0
U

AA A
AA AA A A AAA AA A
A

 
 
 
 
 

  −       − − −    
    −

 
 
 


  (1.7.21) 
 

 
1

1
for   1,2,...,   and   

j

jk jk jq qk
q

U A L U k N j k
−

=

= − = ≤∑  

for the unknown components of U , and 
 

1

1 for   1,2,...,  and  

k

jk jq qk
q

jk
kk

A L U
L k N k j M

U

−

=

−
= = < ≤

∑
 

for the unknown components of L  
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It is a simple calculation to specialize the above to the case of a 3 3×  matrix and use the resulting 
formulas to produce the result (1.7.5) shown in Example 1.7.1.  This derivation also shows that not 
all matrices have an elementary LU  decomposition like (1.7.3).  An example where the above 
formulas cannot be used is the following: 
 
Example 1.7.2:   
 

 
1 0 0
0 0 2
0 1 1

A
 
 =  

−  

 (1.7.22) 

 
Because of the two zeros in the second column of the matrix (1.7.22), (1.7.15)3 shows that 22 0U =  
which invalidates the derivation of (1.7.17).  Thus, the elementary LU  decomposition as defined by 
(1.7.3) does not exist for (1.7.22).  When we discuss the generalized LU decomposition, we shall 
see how it avoids the problems that cause this example to fail. 
 

In those cases where  11 0A ≠ , 22 0U ≠  and 33 0U ≠  are valid, it should be noted that the 
steps dictated by the above formulas implement the following rearrangements of 

11 12 13

21 22 23

31 32 33

41 42 43

A A A
A A A

A
A A A
A A A

 
 
 =
 
 
 

 to reach 

11 12 13

22 23

33

0
0 0
0 0 0

U U U
U U

U

 
 
 
 
 
 

: 

 

 

11 12 13

21 22 23

31 32 33

41 42 43

11 12 13

21 21
22 12 23 13

11 12 13 11 11

22 23 31
32 12

33 1131 21
33 13 23 13

2111 11
22 12

11

0

0
0 0

0 00 0 0

0 0 0

A A A
A A A
A A A
A A A

A A A
A AA A A A

U U U A A
U U AA AU AA AA A A AAA AA A

A

 
 
 →
 
 
 

− −
 
 

   = −        − − −     
     −

U

 
 
 
 
 
 
 
 
 
 
 
 


(1.7.23) 

 
This result shows that the second row of U  is simply the second row of the matrix equivalent to A  
obtained by Gaussian elimination.  If one studies the above formulas one can also conclude that the 
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third row is also what one would obtain by Gaussian Elimination.  These facts reveal an alternate 
way of generating the LU  Decomposition. 
 

Recall that we implemented Gaussian Elimination by performing row operations. 
 

a) switching two rows, 
b) multiplying one of the rows by a nonzero constant  
c) multiply one row by a nonzero constant and adding it to another row. 

 
We mainly used c).  The operation b) was used when we chose to normalize a row such as occurs 
when finding the row echelon form of a matrix.  The operation a) was used when the occurrence of 
a zero made it necessary to change the pivot row.  An important fact is that the method of finding 
building the LU  Decomposition will only make use of c).  It will not proceed with row operations 
that produce the row echelon form or the reduced row echelon.  It will proceed to the point where 
the coefficient matrix is an upper triangular form as with the Gaussian Elimination examples 
discussed in Section 1.3.  Of course, we can view these row operations in the equivalent way as 
elementary matrix operations.  
 
 The key to finding the matrix L  with the specified properties is to simply set up a tracking 
system as the matrix U  is derived.  The key to the tracking system is equation (1.7.8).  It is a 
feature of the calculation that we shall actually construct 1L− .  After it is calculated, it can be 
inverted to yield the L  in the decomposition A LU= . 
 

We begin the calculation with the equation A =x b .  We shall perform row operations of 
the type c) above (or elementary matrix multiplications).  These row operations, providing we do 
not confront a division by zero, will transform the matrix A  into an upper triangular matrix we 
shall call U .  It turns out that when we introduced the augmented matrix ( )A b  and did row 

operations, we were, implicitly building the matrix 1L− .  The construction was masked because we, 
in effect, multiplied each step by b .  To make this step explicit, we shall first write the equation 
A =x b  as 
 
 A I=x b  (1.7.24) 
 
where I  is the M M×  identity matrix. 
 

As we do row operations on A , we shall perform the exact same row operation on I .  At 
the end of the set of operations which convert A  to U , I  will be converted to 1L− .  Just as we 
facilitated the calculation of U , by use of the augmented matrix ( )A b , we shall facilitate the 

calculation of U  and L  by starting the calculation with the ( )M N M× +  matrix ( )A I  defined by 
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 ( )

11 12 1

21 22 2

1 2

 an  matrix an  matrix

1 0 0
0 1 0

0 0 1

N

N

M M MN

I M MA M N

A A A
A A A

A I

A A A
××

 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

=  
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

  


 (1.7.25) 

 
We shall perform row operations of the type c) on ( )A I  until we achieve the conversion 
 
 ( ) ( )1

Row
Operations

A I U L−→  (1.7.26) 

 
The following example will help illustrate the process just described. 
 
Example 1.7.3:  An example of the LU  Decomposition for a matrix where it does exist is the 
following.  We are given the matrix  
 

 
2 1 3
6 4 10
4 1 5

A
 
 =  
  

 (1.7.27) 

 
The first step is to form the augmented matrix ( )A I .  Therefore, 
 

 ( )
2 1 3 1 0 0
6 4 10 0 1 0
4 1 5 0 0 1

A I

A I

 
 
 =  
 
  
 

 (1.7.28) 

 
Next, we wish to perform row operations of the type c) that convert A  to the upper triangular 
matrix that we shall call U .  It is important to stress again that we shall only use row operations of 
the type c).  Therefore, we will not reach the row echelon form of A .  Because, we are interested in 
the elementary matrices that are equivalent to these row operations, they will be tracked during the 
step by step operations on (1.7.28). 
 
Step 1:  
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1 1 1

3 row 1
subtracted
from row 2

2 1 3 1 0 0 2 1 3 1 0 0
6 4 10 0 1 0 0 1 1 3 1 0
4 1 5 0 0 1 4 1 5 0 0 1

A I E A E I E

×

=

  
  
   → −  
  
     

   

 (1.7.29) 

where 
 

 1

1 0 0
3 1 0

0 0 1
E

 
 = − 
  

 (1.7.30) 

 
Step 2: 
 

 

1 1 2 1 2 1

2 row 1
subtracted
from row 3

2 1 3 1 0 0 2 1 3 1 0 0
0 1 1 3 1 0 0 1 1 3 1 0
4 1 5 0 0 1 0 1 1 2 0 1

E A E I E E A E E

×

   
   
   

− → −   
   − − −
   
   
   

 (1.7.31) 

 
where 
 

 2

1 0 0
0 1 0
2 0 1

E
 
 =  
 − 

 (1.7.32) 

 
Step 3: 
 

 

2 1 2 1 3 2 1 3 2 1

Add row 2
to row 3

2 1 3 1 0 0 2 1 3 1 0 0
0 1 1 3 1 0 0 1 1 3 1 0
0 1 1 2 0 1 0 0 0 5 1 1

E E A E E I E E E A E E E

  
  
  

− → −  
  − − − −
  

   
   

 (1.7.33) 

 
where 
 

 3

1 0 0
0 1 0
0 1 1

E
 
 =  
  

 (1.7.34) 

 
The result of the last row operation is the upper triangular matrix 
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 3 2 1

2 1 3
0 1 1
0 0 0

U E E E A
 
 = =  
  

 (1.7.35) 

 
and the matrix we shall denote by 1L−  given by 
 

 1
3 2 1

1 0 0
3 1 1
5 1 1

L E E E−

 
 = = − 
 − 

 (1.7.36) 

 
Because the matrix we have denoted by 1L−  is equal to the product of three elementary matrices, it 
is nonsingular as the notation suggests.  We can use (1.7.36)1 in (1.7.35)1 and obtain 
 
 1U L A−=  (1.7.37) 
 
or, equivalently, the decomposition 
 
 A LU=  (1.7.38) 
 
We can obtain the explicit formula for L  in this example by inverting the matrix (1.7.36).  With the 
tools we have developed thus far, the easiest way to find L  is to use (1.7.36)1 to write 
 

 

1 1 1

1 1 1
1 2 3

1 0 0 1 0 0 1 0 0
3 1 0 0 1 0 0 1 0

0 0 1 2 0 1 0 1 1

1 0 0 1 0 0 1 0 0 1 0 0
3 1 0 0 1 0 0 1 0 3 1 0
0 0 1 2 0 1 0 1 1 2 1 1

L E E E

− − −

− − −

     
     = = −     
     −     

       
       = =       
       − −       

 (1.7.39) 

 
where the formulas (1.7.30), (1.7.32) and (1.7.34) have been used.  We have also used equations 
like (1.6.15) to construct the inverses in (1.7.39)2.  Therefore, for this example, the LU  
Decomposition of (1.7.27) is 
 

 
2 1 3 1 0 0 2 1 3
6 4 10 3 1 0 0 1 1
4 1 5 2 1 1 0 0 0

A L U

     
     =     
     −     
 

 (1.7.40) 

 
 The general conclusion from the explanation above and the example just completed is that, 
providing we do not encounter the necessity to divide by zero, we can find a number of row 

operations of the type c) equal to the number of zeros in the lower diagonal, ( )1
2

M M −
, 



Sec. 1.7 • LU Decomposition   81 

represented by elementary matrices 1 2, ,..., GE E E , where ( )1
2

M M
G

−
= , such that a M N×  matrix 

A  has the decomposition6 
 
 A LU=  (1.7.41) 
 
where 
 
 2 1GU E E E A= ⋅⋅⋅  (1.7.42) 
 
and 
 
 ( ) 1 1 1 1

2 1 1 2G GL E E E E E E− − − −= ⋅⋅⋅ = ⋅⋅⋅  (1.7.43) 
 
As the example indicates, the row operations continue until U  is in upper triangular form.  The 
resulting L , as calculated from (1.7.43), is lower triangular with 1’s for diagonal elements because 
of the special forms of the elementary matrices 1 2, ,..., GE E E .  It should be noted that, depending on 
the particular matrix A , some of the elementary matrices can be identity matrices. 
 
 Our numerical examples thus far have been for the case where A  is square.  We have 
asserted that the calculation scheme works when 1N M≥ − .  A case where N M>  is the 
following example. 
 
Example 1.7.4:  In Example 1.3.6, we studied the solution of the system (1.3.48), repeated, 
 

 
1 2 3 4 5

1 2 3 4 5

1 2 3

2 4 3 9 1
4 5 10 6 18 4

7 8 16 7

x x x x x
x x x x x

x x x

+ − + + =
+ − + + =

+ − =

 (1.7.44) 

 
The matrix of coefficients in this case is 
 

 
1 2 4 3 9
4 5 10 6 18
7 8 16 0 0

A
− 

 = − 
 − 

 (1.7.45) 

 
The matrix ( )A I  is 
 

 

6 The indexing of elementary matrices can be confusing.  The number 
( )1

2
M M −

presumes that each elementary 

matrix operates on one row of A .  It is always possible, and sometimes convenient, to combine the elementary 
matrices such that one elementary matrix operates on all of the elements in a column below the diagonal.  Our 
examples will reveal the possible choices. 
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 ( )
1 2 4 3 9 1 0 0
4 5 10 6 18 0 1 0
7 8 16 0 0 0 0 1

A I
 − 
 = − 
 − 

 (1.7.46) 

 
The row operations sufficient to reduce A  to upper triangular form can be read off from equation 
(1.3.50).  Utilizing this previous calculation, it follows from (1.7.46) that 
 

 

1 1

Subtract 4 row1
from row2

Subtract 7 row1
from row3

1 2 4 3 9 1 0 0 1 2 4 3 9 1 0 0
4 5 10 6 18 0 1 0 0 3 6 6 18 4 1 0
7 8 16 0 0 0 0 1 7 8 16 0 0 0 0 1

1 2 4 3 9
0 3 6 6

A I E A E

×

×

  
  − −
  − → − − − −  
  − −
     

−
→ − − −

   

2 1 2 1

13 2 1 3 2 1

Subtract 2 row2
from row3

1 0 0
18 4 1 0

0 6 12 21 63 7 0 1

1 2 4 3 9 1 0 0
0 3 6 6 18 4 1 0
0 0 0 9 27 1 2 1

E E A E E

U E E E A L E E E−

×

= =

 
 
 

− 
 − − − −
 
 
 
 −
 

→ − − − − 
 − − −
 
 

 

 

 (1.7.47) 

 
where 
 

 1

1 0 0
4 1 0

0 0 1
E

 
 = − 
  

 (1.7.48) 

 
 

 2

1 0 0
0 1 0
7 0 1

E
 
 =  
−  

 (1.7.49) 

and 
 

 3

1 0 0
0 1 0
0 2 1

E
 
 =  

−  

 (1.7.50) 

 
Therefore, from (1.7.42) 
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 3 2 1

1 2 4 3 9
0 3 6 6 18
0 0 0 9 27

U E E E A
− 

 = = − − − 
− −  

 (1.7.51) 

 
and from (1.7.43) 
 

 

( )

1

1 1 1 1
3 2 1 1 2 3

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 4 1 0
0 2 1 7 0 1 0 0 1

1 0 0 1 0 0 1 0 0 1 0 0
4 1 0 0 1 0 0 1 0 4 1 0
0 0 1 7 0 1 0 2 1 7 2 1

L E E E E E E

−

− − − −

      
      = = = −      
      − −      

       
       = =       
              

 (1.7.52) 

 
Therefore, the LU Decomposition for this example is 
 

 
1 2 4 3 9 1 0 0 1 2 4 3 9
4 5 10 6 18 4 1 0 0 3 6 6 18
7 8 16 0 0 7 2 1 0 0 0 9 27

A L U

− −     
     − = − − −     

− − −          
 

 (1.7.53) 

 
 It is instructive to briefly discuss the case where 1N M< − .  An example is the 4 2×  
matrix 
 

 

11 12 11 1211 12

2121 22 21 11 21 12 2222

31 3231 32 31 11 31 12 32 22

41 42 4341 42 41 11 41 12 42 22

1 0 0 0
1 0 0 0

1 0 0 0
1 0 0

A A U UU U
LA A L U L U UU
L LA A L U L U L U
L L LA A L U L U L U

     
      +     = =

+     
      +     

 (1.7.54) 

 
There are eight given elements of the matrix A .  Unfortunately, there are nine unknown elements 
in the two matrices L  and U .  The element 43L  is simply not determined by A .  In other words, it 
does not appear in the product LU .  In this case, the convention seems to be to take 43L  to be zero, 
and the resulting decomposition is 
 

 

11 12 11 1211 12

21 22 21 21 11 21 12 2222

31 32 31 32 31 11 31 12 32 22

41 42 41 42 41 11 41 12 42 22

1 0 0 0
1 0 0 0

1 0 0 0
0 1 0 0

A A U UU U
A A L L U L U UU
A A L L L U L U L U
A A L L L U L U L U

      
       +      = =

+      
       +      

 (1.7.55) 

 
Because 
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11 1211 12

21 21 11 12 21 11 21 12 2222

31 32 31 32 22 31 11 31 12 32 22

41 42 41 42 41 11 41 12 42 22

1 0 0 0 1 0
1 0 0 10

1 0 00 0
0 1 0 0

U UU U
L L U U L U L U UU
L L L L U L U L U L U
L L L L L U L U L U

      
       +        = =  +        
       +      

 (1.7.56) 

 
for the kind of case being discussed, we could relax the requirement that L  be a square M M×  
and that U  be M M×  and generate a different kind of decomposition. 
 
The Generalized LU  Decomposition 
 
 The discussion of the elementary LU  revealed a couple of restrictions.  First, in order to 
satisfy the necessary condition that the number of unknown elements in L  and U equal the number 
of elements of A , we restricted our discussion to cases where 1N M≥ − .  We shall see that in the 
generalized case, this restriction is unchanged.  We also, in the elementary case, had to limit our 
discussion to cases where the Gaussian Elimination process would proceed to an upper triangular 
form for U  without row switching.  This was achieved by assuming certain coefficients that arise 
in the elimination process were not zero.  It is this restriction that we shall relax for the generalized 
case.  We shall begin with (1.7.25) and proceed with row operations of both types a) and c) until 
we reach an upper triangular M N×  matrix U  in the first slot.  In other words, we proceed with 
row operations of types a) and c), repeated, 
 
 ( ) ( )Row

Operations
A I U D→  (1.7.57) 

 
At this point the M M×  matrix D  is something the process will determine.  How it relates to a 
lower triangular nonsingular matrix L  is something we shall also determine. 
 
 We shall associate with each row operation of the type c) an elementary matrix of the type 
introduced in Example 1.6.4.  Likewise, the row operation of the type a), the row switching, can be 
associated with an elementary matrix of type introduced in Example 1.6.2.  In this discussion, we 
shall refer to row switching elementary matrices as permutation matrices.  Permutation matrices 
shall be given the symbol P .  In order to distinguish row operations of the type a) from those of 
type c), we shall denote the latter by the symbol E .  As we learned in Section 1.6, elementary 
matrices are nonsingular.  The inverse of a permutation matrix P  is the transpose TP .7  Given 
these preliminaries, then the upper triangular M N×  matrix U  can always be written 
 
 1 1 2 2 1 1M MU E P E P E P A− −= ⋅⋅⋅  (1.7.58) 
 
where our convention for the elementary matrices is as follows 
 
  Row switch that brings a non zero element into the  position, for 1, 2,...,jP jj j Q= =  
 

 
7 The transpose of a matrix is defined in Section 1.1 and discussed in detail in Section 1.9. 
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and 
 

 
 Elementary matrix resulting from type c) row operation to elements below  element

         for 1, 2,..., .
jE jj

j Q
=

=
 

 
If a zero is not encountered which forces row switching, the associated permutation is the trivial 
one represented by the M M×  identity matrix.  Equation (1.7.35) is an illustration of (1.7.58) in 
the case where every permutation matrix is the identity matrix.8 
 
 In the elementary LU  decomposition case, we obtained the M M×  matrix L  from 
equations like (1.7.35).  In the generalized case, we first define the overall permutation matrix P  
by 
 
 2 1QP P P P=   (1.7.59) 
 
The elementary matrices 1 2, ..., QE E E  and 1 2, ,..., QP P P  are known quantities.  We define a M M×  
nonsingular matrix L  by 
 
 ( ) ( )( )1

1 1 1 1 1 2
T T T T

Q Q Q Q QL E P E P P E P E P P P P− = ⋅⋅⋅ = ⋅⋅⋅   (1.7.60) 
 
where (1.1.40) has been used.  Given the definitions (1.7.60) and (1.7.59), it follows from (1.7.58) 
that 
 
 PA LU=  (1.7.61) 
 
Equation (1.7.61) is the generalized LU  decomposition.  We know that P  is an M M×  
permutation matrix, and we know that U  is an upper triangular M N×  matrix.  We also know that 
the M M×  matrix L , as defined by the inverse of (1.7.60) is nonsingular.  What we do not know 
as yet, but what is true, is that L  is a lower triangular and it has 1s down its diagonal.  These 
properties follow from the specialized properties of the elementary matrices that make up the 
definition (1.7.60). 
 

An elementary example of the property just described can be illustrated at this point by 
applying the above argument to the matrix that we considered in Example 1.7.2. 
 
Example 1.7.5:  Equation (1.7.22), repeated, is the matrix 
 

 
1 0 0
0 0 2
0 1 1

A
 
 =  

−  

 (1.7.62) 

 
8 The elementary matrices in Equation (1.7.58) and (1.7.35) are indexed differently.  The two elementary matrices that 
correspond to the (1.7.58) indexing would cause (1.7.35) to be written 



( )3 2 1
2 1

U E E E A=
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In Example 1.7.2, we explained why this A  does not have an elementary LU  decomposition.  Our 
first step in illustrating that it does have a generalized LU  decomposition is to construct (1.7.58) 
for this case.  First, there is not a need for a row switching in order to make 11A  nonzero.  Also, we 
already have zeros below 11A .  As a result, 
 

 1 1

1 0 0
0 1 0
0 0 1

P E
 
 = =  
  

 (1.7.63) 

 
We do need a row switch 
 

 2

1 0 0
0 0 1
0 1 0

P
 
 =  
  

 (1.7.64) 

 
in order to place a nonzero element in the 22 position.  The result is 
 

 2

1 0 0
0 1 1
0 0 2

P A
 
 = − 
  

 (1.7.65) 

 
which is in the desired upper triangular form.  As a result, 
 

 2

1 0 0
0 1 0
0 0 1

E
 
 =  
  

 (1.7.66) 

 
These results and the definition (1.7.60) yield 
 

 ( )( )1
2 2 1 1 1 2 2 2

1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 1 0
0 1 0 0 1 0 0 0 1

T T TL E P E P P P P P−

     
     = = = =     
          

 (1.7.67) 

 
Also, the permutation matrix P  is given by (1.7.59) which yields 
 

 2 1 2

1 0 0
0 0 1
0 1 0

P P P P
 
 = = =  
  

 (1.7.68) 

 
Thus, the generalized LU  decomposition in this case is 
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1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 2 0 1 0 0 1 1
0 1 0 0 1 1 0 0 1 0 0 2

       
       = −       

−              

 (1.7.69) 

 
An example that is more substantial is the following: 
 
Example 1.7.6:  We are given the matrix 
 

 
0 5 5
2 9 0
6 8 8

A
 
 =  
  

 (1.7.70) 

 
Because 11 0A = , this matrix will not have an elementary LU  decomposition.  We can built the 
matrix U  by identifying the row operations that give us (1.7.58).  We can switch the first and third 
rows with the permutation 1P  defined by 
 

 

1

1

0 0 1 0 5 5 6 8 8
0 1 0 2 9 0 2 9 0
1 0 0 6 8 8 0 5 5

P

P A
     
     = =     
          


 (1.7.71) 

 
The row operation that creates a zero in the 22  position is 1E  defined by 
 

 

1

1 1

1 0 0 6 8 86 8 8
1 19 81 0 2 9 0 0
3 3 3

0 5 50 0 1 0 5 5
E

E P A

   
    
    = − = −    
        



 (1.7.72) 

 
Because the 22  element of (1.7.72) is not zero, 2P  is the identify matrix.  The row operation that 
creates a zero in the 32  position is 2E  defined by 
 

 

2

2 2 1 1

6 8 8 6 8 81 0 0
19 8 19 80 1 0 0 0
3 3 3 3

15 0 5 5 1350 1 0 019 19
E

E P E P A

             = − = −        −        

 (1.7.73) 

 



88 Chap. 1 • ELEMENTARY MATRIX THEORY 

Therefore, from (1.7.58) and (1.7.73) 
 

 2 2 1 1

6 8 8
19 80
3 3

1350 0
19

U E P E P A

 
 
 
 = = −
 
 
 
 

 (1.7.74) 

 
It follows from (1.7.60) that 
 

 

( )( )

2 1 1 2
1

2

1
2 2 1 1 1 2

1 0 01 0 0 1 0 0 0 0 1 0 0 1 1 0 0
10 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0
3

15 0 0 1 1 0 0 1 0 0 0 0 10 0 10 1
19

1 0 0
1
3

T T

T T

P P P P
E

E

L E P E P P P− =

                       = −                           −    

= −

 





1 0

5 15 1
19 19

 
 
 
 
 
 
− 
 

 (1.7.75) 

 
The inverse of the matrix (1.7.75) yields 
 

 

1 0 0
1 1 0
3

150 1
19

L

 
 
 
 =
 
 
 
 

 (1.7.76) 

 
and the generalized LU  decomposition becomes 
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1 0 0 6 8 80 0 1 0 5 5
1 19 80 1 0 2 9 0 1 0 0
3 3 3

1 0 0 6 8 8 15 1350 1 0 0
19 19P A

L U

   
   

       
       = −       
          

   
   





 (1.7.77) 

In addition to illustrating that L  is a lower triangular matrix with 1s  down its diagonal, Example 
1.7.6 also illustrates that the generalized LU  decomposition is not unique.  A different permutation 
could have been used for 1P  in order to address the zero in the 11 position of the matrix (1.7.70).  
This would have started the calculation with 
 

 

1

1

0 1 0 0 5 5 2 9 0
1 0 0 2 9 0 0 5 5
0 0 1 6 8 8 6 8 8

P

P A
     
     = =     
          


 (1.7.78) 

 
which would have created a different set of row operations and a different U  and L . 
 
Exercises 
 
1.7.1 Show that the elementary LU Decomposition for the matrix 
 

 
1 3 1
2 1 1
2 2 1

A
 
 =  
− −  

 (1.7.79) 

is 
 

 
1 3 1 1 0 0 1 3 1
2 1 1 2 1 0 0 5 1
2 2 1 8 3-2 1 0 0

5 5A

L U

   
    
     = − −    
   − −   − −   
   





 (1.7.80) 

 
1.7.2 Show that the elementary LU Decomposition for the matrix 
 

 
2 3 1
1 1 1
3 4 2

A
 
 =  
  

 (1.7.81) 

is 
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1 0 0 2 3 12 3 1
1 1 11 1 1 1 0 0
2 2 2

3 4 2 3 0 0 01 1
2A

U

L

 
   

     
     = −     
        

 






 (1.7.82) 

 
1.7.3 Show that the elementary LU Decomposition for the matrix 
 

 

2 1 2 1
3 0 1 1
1 2 2 1
3 2 3 1

A

 
 
 =
− − 
 − 

 (1.7.83) 

is 
 

 

1 0 0 0 2 1 2 1
3 3 12 1 2 1 1 0 0 0 2
2 2 23 0 1 1
1 5 13 21 2 2 1 1 0 0 0
2 3 3 3

3 2 3 1 3 7 4 201 0 0 0
2 3 13 13A

L U

   
   

     − − −
     
     =
− −  − − −   
     −     − − −      




 (1.7.84) 

 
1.7.4 Start with the permutation shown in (1.7.78) for the matrix 
 

 
0 5 5
2 9 0
6 8 8

A
 
 =  
  

 (1.7.85) 

 
and illustrate that the generalized LU  decomposition that results is 
 

 
0 1 0 0 5 5 1 0 0 2 9 0
1 0 0 2 9 0 0 1 0 0 5 5
0 0 1 6 8 8 19 0 0 273 1

5P A U

L

 
      
      =       
           − 
 

 



 (1.7.86) 

rather than the result derived in Example 1.7.6.
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Section 1.8.  Consistency Theorem for Linear Systems 
 
 
 The various examples discussed in Sections 1.2, 1.3 and 1.5 reveal some of the possibilities 
when one attempts to construction of solutions to systems of linear equations of the form (1.2.1), 
repeated, 
 

 

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3

N N

N N

M M M MN N M

A x A x A x A x b
A x A x A x A x b

A x A x A x A x b

+ + + ⋅⋅ ⋅ + =
+ + + ⋅⋅ ⋅ + =

⋅
⋅
⋅

+ + + ⋅ ⋅ ⋅ + =

 (1.8.1) 

 
In the case where M N= , we encountered examples where the system had a unique solution, 
examples where the system had a solution that was not unique and a system where there was no 
solution.  The corollary to Theorem 1.6.1 told us that the system A =x b  has only unique solutions 
if and only if A  is nonsingular.  For the case of an over determined system, i.e., when M N> , we 
gave an example where the system did not have a solution.  Finally, for the case of an 
undetermined system, we gave an example where the system had a solution, but it was not unique. 
 

One of our objectives in the study of linear systems is to find general theorems that will 
allow one to have information about the solution before a solution is attempted.  In this short 
section, we shall look at one such theorem.  It is called, the Consistency Theorem. 
 
 As we have done in several sections, we shall often write (1.8.1) in the matrix form 
 
 A =x b  (1.8.2) 
 
In Section 1.1, we introduced the notation M N×M  for the set of M N×  matrices.  The matrix A  is 
an element of the set M N×M .  This fact is expressed symbolically by writing M NA ×∈M .  Viewed 
as a function, the matrix A  is a function that maps column matrices in 1N×M  into column matrices 
in 1M×M .  It is customary to express this functional relationship by writing 
 
 1 1: N MA × ×→M M  (1.8.3) 
 
The set 1N×M  is the domain of the function A .  The range of the function A  is the set of all values 
of the function.  In other words, the range is the set of possible values of Ax  generated for all 
possible values of x  in 1N×M .  It is customary to use the symbol ( )R A  for the range.  A more 
formal way to introduce this notation is to write 
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 ( ) { }1 NR A A ×= ∈x x M  (1.8.4) 
 
Note that ( )R A  is a subset of 1M×M .  As such, it is not necessarily true that all column matrices in 

1M×M  are also in the range.  The following figure should be helpful. 
 

 
 
The above definitions allow the statement of the following theorem: 
 
Theorem 1.8.1:  Given a matrix M NA ×∈M  and a vector 1M ×∈b M , the system A =x b  has a 
solution if and only if ( )R A∈b . 
 
Theorem 1.8.1 is known as the consistency theorem for linear systems.  A less formal way of 
stating the same result involves writing the product Ax  as 
 

1N×M  

A  

( )R A  

1M ×M  
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11 12 13 1 1

21 22 23 2 2

31 32 33 3

1 2 3

11 1 12 2 1

21 1 22 2 2

31 1 32 2 3

1 1 2 2

N

N

M M M MN N

N N

N N

N N

M M

A A A A x
A A A A x
A A A x

A

A A A A x

A x A x A x
A x A x A x
A x A x A x

A x A x

⋅ ⋅ ⋅   
   ⋅ ⋅ ⋅   

⋅ ⋅ ⋅   
   = ⋅ ⋅   
   ⋅ ⋅
   ⋅ ⋅   
   ⋅ ⋅ ⋅   

+ + ⋅ ⋅ ⋅ +
+ + ⋅ ⋅ ⋅ +
+ + ⋅ ⋅ ⋅ +

= ⋅
⋅
⋅

+ + ⋅ ⋅ ⋅

x

13 111 12

23 221 22

33 331 32

1 2 3

31 2

Linear C

MN N

N

N

N

N

M MNM M

A x

A AA A
A AA A
A AA A

x x x x

A AA A

 
 
 
 
 
 
 
 
 
 + 

      
      
      
      
      = + + ⋅ + ⋅ ⋅ ⋅ + ⋅⋅ ⋅       
       ⋅ ⋅⋅ ⋅
       ⋅ ⋅⋅ ⋅       
             

ombination of Column Vectors


 (1.8.5) 

 
As a further rearrangement, we shall use the symbol ja  for the thj  column of A .  Therefore, we 
are writing 
 

 

1

2

3

for   1,2,...,

j

j

j

j

Mj

A
A
A

j N

A

 
 
 
 
 ⋅= = 
 ⋅
 ⋅ 
  

a  (1.8.6) 

 
This definition allows (1.8.5) to be written 
 
 1 1 2 2 3 3 N NA x x x x= + + + ⋅⋅ ⋅ +x a a a a  (1.8.7) 
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Given (1.8.7) the linear system (1.8.2) is the equation 
 
 1 1 2 2 3 3 N Nx x x x+ + + ⋅⋅ ⋅ + =a a a a b  (1.8.8) 
 
Given (1.8.8), we can restate Theorem 1.8.1 as 
 
Theorem 1.8.1a:  The linear system A =x b  is consistent (has a solution) if and only if b  can be 
written as a linear combination of the column vectors of A . 
 
Example 1.8.1:  Example 1.2.4 is concerned with finding the solution of a system of linear 
equations given by (1.2.15), repeated, 
 

 
1 2 3

1 2 3

1 2 3

2 3 1
3 4 2 80

10

x x x
x x x

x x x

+ + =
+ + = −
+ + =

 (1.8.9) 

 
We discovered with this example that it did not have a solution.  The above theorem indicates why 
it does not.  It is not possible to find an 1 2,x x  and 3x  for which, forming (1.8.5), 

1 2 2

2 3 1
3 4 2
1 1 1

x x x
     
     + +     
          

 will add to obtain 
1
80

10

 
 − 
  

.  In the words of Theorem 1.8.1, the vector 
1
80

10

 
 − 
  

 

is not in the range of 
2 3 1
3 4 2
1 1 1

A
 
 =  
  

. 
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Section 1.9.  The Transpose of a Matrix 
 
 
 In this section, we shall return to a discussion of matrix algebra.  In particular, we shall 
briefly discuss the important operation of taking the transpose of a matrix.  This operation was 
introduced in Section 1.7.  It begins with a matrix M NA ×∈M  given by 

 

 

11 12 13 1

21 22 23 2

31 32 33

1 3 3

N

N

M M M MN

A A A A
A A A A
A A A

A

A A A A

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 

⋅ ⋅ ⋅ 
 = ⋅ 
 ⋅
 ⋅ 
 ⋅ ⋅ ⋅ 

 (1.9.1) 

 

and one constructs a matrix, called the transpose of A , in N M×M  obtained by interchanging the 
rows and columns of A .  The transpose of A  is denoted by TA .  It is easily shown that 
 
 ( )T TA A=  (1.9.2) 
 
 ( )T TA Aλ λ=  (1.9.3) 
 
 ( )T T TA B A B+ = +  (1.9.4) 
 
These properties are easily established from the definition of the transpose.  Another important 
property of the transpose is 
 
 ( )T T TAB B A=  (1.9.5) 
 
for matrices M NA ×∈M  and N LB ×∈M .  The proof of (1.9.5) is a little tedious but straight forward.  
It involves no more than constructing the left side and the right side of (1.9.5) followed by a 
comparison of the results.  Let 
 
 andij ijA A B B   = =     (1.9.6) 
 
where M NA ×∈M  and N LB ×∈M .  Then the definition of matrix multiplication introduced in 
Section 1.1 tells us that C AB= , a member of M L×M , has components 
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1

1,2,...,   and  1,2,...,
N

ij ik kj
k

C A B i M j L
=

= = =∑  (1.9.7) 

 
Therefore, 
 

 

11 21 1

12 22 2

1 2

1 1 2 1 1
1 1 1

2 1 2 2 2
1 1 1

1 2
1 1 1

( )

M

M

T T

L L ML

N N N

k k k k Mk k
k k k
N N N

k k k k Mk k
k k k

N N N

k kL k kL Mk kL
k k k

C C C
C C C

C AB

C C C

A B A B A B

A B A B A B

A B A B A B

= = =

= = =

= = =

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 
⋅ 

= =  ⋅ 
 ⋅
 
 

 ⋅ ⋅ ⋅ 
 
 ⋅ ⋅ ⋅ 
 

⋅=  
 ⋅ 
 ⋅
 
 
  

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑
 (1.9.8) 

 
Next, we shall form T TB A . 
 

 

11 21 1 11 21 1

12 22 2 12 22 2

1 2 1 2

N M

N M

T T

L L NL N N MN

B B B A A A
B B B A A A

B A

B B B A A A

⋅ ⋅ ⋅ ⋅ ⋅ ⋅   
   ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   
⋅ ⋅   

=    ⋅ ⋅   
   ⋅ ⋅
   
   

 (1.9.9) 

 
If this product is multiplied by use of the rule for multiplying matrices, we find 
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1 1 2 1 1
1 1 1

2 1 2 2 2
1 1 1

1 2
1 1 1

N N N

k k k k Mk k
k k k
N N N

k k k k Mk k
k k k

T T

N N N

k kL k kL Mk kL
k k k

A B A B A B

A B A B A B

B A

A B A B A B

= = =

= = =

= = =

 ⋅ ⋅ ⋅ 
 
 ⋅ ⋅ ⋅ 
 

⋅=  
 ⋅ 
 ⋅
 
 
  

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 (1.9.10) 

 
Equations (1.9.9) and (1.9.10) establish the result (1.9.5). 
 
Example 1.9.1:  It is perhaps useful to verify (1.9.5) with a specific example.  You are given 
 

 
1 2 1 1 0 3
3 3 5 and 2 1 1
2 4 1 5 4 1

A B
   
   = =   
      

 (1.9.11) 

 
Therefore 
 

 
1 3 2 1 2 5
2 3 4 and 0 1 4
1 5 1 3 1 1

T TA B
   
   = =   
      

 (1.9.12) 

 
and, as a result, 
 

 
1 2 1 1 0 3 10 6 6
3 3 5 2 1 1 34 23 17
2 4 1 5 4 1 15 8 11

AB
     
     = =     
          

 (1.9.13) 

and 
 

 ( )
10 6 6 10 34 15
34 23 17 6 23 8
15 8 11 6 17 11

T

TAB
   
   = =   
      

 (1.9.14) 

 
Next, evaluate the product 
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1 2 5 1 3 2 10 34 15
0 1 4 2 3 4 6 23 8
3 1 1 1 5 1 6 17 11

T TB A
     
     = =     
          

 (1.9.15) 

 
which confirms (1.9.5) in this example. 
  

Another important property of the transpose arises when N NA ×∈M  is nonsingular.  In this 
special case, it is true that TA  is also nonsingular and its inverse is given by 
 
 ( ) ( )1 1 TTA A

− −=  (1.9.16) 
 
The proof of (1.9.16) requires an application of the definition of inverse given in Section 1.1.  In 
order to establish (1.9.16), we need to establish that  
 
 ( ) ( )1 1T TT TA A A A I− −= =  (1.9.17) 
 
We start the proof of (1.9.17) with the definition of the inverse of A  which is 
 
 1 1AA A A I− −= =  (1.9.18) 
 
The transpose of (1.9.18), after (1.9.5) is used, is 
 
 ( ) ( )1 1T TT TA A A A I− −= =  (1.9.19) 
 
which confirms the result (1.9.17). 
 
 There are other definitions involving the transpose of square matrices that are useful to 
introduce at this point.  A square matrix N NA ×∈M  is symmetric if TA A= and skew symmetric if 

TA A= − .  Therefore, for a symmetric matrix 
 
 ij jiA A=  (1.9.20) 
 
and for a skew symmetric matrix 
 
 ij jiA A= −  (1.9.21) 
 
Equation (1.9.21) implies that diagonal elements of a skew symmetric matrix are all zero. 
 

It is an interesting fact that every square matrix A  can be written uniquely as the sum of a 
symmetric matrix and a skew symmetric matrix.  The proof of this assertion arises simply by 
writing the identity 
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 1 1( ) ( )
2 2

T TA A A A A= + + −  (1.9.22) 

 
The first term is symmetric because 
 
 

 1 1( ) ( )
2 2

T
T TA A A A + = + 

 
 (1.9.23) 

 
Likewise, the second term is skew symmetric because 
 

 1 1 1( ) ( ) ( )
2 2 2

T
T T TA A A A A A   − = − = − −   

   
 (1.9.24) 

 
There is another way to build a symmetric matrix.  In this case, the matrix A  need not be 

square.  In particular, given a matrix M NA ×∈M , it is straight forward to use the definition of 
symmetry to show that TAA  is a symmetric matrix in M M×M  and TA A  is a symmetric matrix in 

N N×M . 
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Section 1.10.  The Determinant of a Square Matrix 
 
 

The determinant of a matrix is a property of a square matrix.  The determinant of a square 
matrix A  shall be written det A .  On occasion, it will be convenient to use the alternate notation 
A .  The determinant has many uses in matrix algebra.  For our immediate purposes, the most 

important property of determinants is the fact that a square matrix A  is nonsingular if and only if it 
has a nonzero determinant.  We need to define a determinant of a square matrix and then establish 
this result. 
 

There are many equivalent definitions of a determinant of a square matrix.  Some depend 
upon more abstract ideas than we shall use in this introduction to matrix algebra.  For our first 
discussion, we shall simply use a direct method of stating the formula for various cases.  One of our 
goals later in this section is to provide a definition based upon more general linear algebraic 
concepts.  We shall begin the discussion of a determinant as a series of definitions. 
 
Definition:  If A  is a 1 1×  matrix, i.e. a number, its determinant, written det A , is defined by 
 
 det A A=  (1.10.1) 
 
Definition:  If A  is the 2 2×  matrix 
 

 11 12

21 22

A A
A

A A
 

=  
 

 (1.10.2) 

 
its determinant, written det A , is defined by 
 
 11 22 12 21det A A A A A= −  (1.10.3) 
 
It is customary to distinguish the matrix A  which we write as in (1.10.2) from its determinant by 
writing 
 

 11 12
11 22 12 21

21 22

det
A A

A A A A A
A A

= = −  (1.10.4) 

 
It is possible to show that the absolute value of the determinant (1.10.4) is the area of the 
parallelogram 
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A couple of features of the definition (1.10.4), that are general properties of determinants of all 
sizes, are 
 

a) The determinant is a linear function of each column. 
b) The determinant is skew symmetric in its columns.  Thus, if you switch the two columns 

you change the sign of the determinant. 
 

For a 3 3×  matrix, the definition of the determinant is given by 
 
Definition:  If A  is the 3 3×  matrix 
 

 
11 12 13

21 22 23

31 32 33

A A A
A A A A

A A A

 
 =  
  

 (1.10.5) 

 
its determinant is defined by 
 

 ( ) ( ) ( )

11 12 13
22 23 12 13 12 13

21 22 23 11 21 31
32 33 32 33 22 23

31 32 33

11 22 33 32 23 21 12 33 32 13 31 12 23 22 13

11 22 33 11 23 32 12 21 33 13 21 32 12 23 31 13 22 31

det
A A A

A A A A A A
A A A A A A A

A A A A A A
A A A

A A A A A A A A A A A A A A A
A A A A A A A A A A A A A A A A A A

= = − +

= − − − + −

= − − + + −

 (1.10.6) 

 
The absolute value of the determinant (1.10.6) is the volume of the parallelepiped formed from the 
three column vectors in (1.10.5). 
 
Example 1.10.1: The determinant of the matrix  
 

11 22 12 21Area= A A A A−  

( )11 21,A A  

( )12 22,A A  
( )11 2112 22,A AA A+ +  
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2 1 2
3 2 2
1 2 3

A
 
 =  
  

 (1.10.7) 

 
is, from the definition (1.10.6), 
 

 ( ) ( ) ( )
( ) ( )

2 1 2
2 2 1 2 1 2

det 3 2 2 2 3 1
2 3 2 3 2 2

1 2 3

2 2 3 2 2 3 1 3 2 2 1 1 2 2 2

2 2 3 1 1 2 4 3 2 5

A = = − +

= × − × − × − × + × − ×

= × − × − + × − = + − =

 (1.10.8) 

 
Example 1.10.2:  The determinants of the elementary matrices 1 2,E E  and 3E , given in equations 
(1.6.7), (1.6.10) and (1.6.13), can be showed from (1.10.6) to be 
 

 1

0 1 0
det 1 0 0 1

0 0 1
E = = −  (1.10.9) 

 

 2

1 0 0
det 0 0

0 0 1
E λ λ= =  (1.10.10) 

 
and 
 

 3

1 0
det 0 1 0 1

0 0 1
E

λ−
= =  (1.10.11) 

 
As with 2 2×  matrices, the definition (1.10.6) reveals a couple of general properties of 

determinants.  They are as follows: 
 

a) The determinant is a linear function of each column. 
b) The determinant is skew symmetric in its columns.  Thus, if you switch the two columns 

you change the sign of the determinant. 
 
A more formal display of the property a), utilizing the first column, is the formula 
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11 11 12 13 11 12 13 11 12 13

21 21 22 23 21 22 23 21 22 23

31 31 32 33 31 32 33 31 32 33

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

A B A A A A A B A A
A B A A A A A B A A
A B A A A A A B A A

A A A B A A
A A A B A A
A A A B A A

λ λ
λ λ
λ λ

λ

+
+ = +
+

= +

 (1.10.12) 

 
for all real numbers λ ∈R .  Likewise, b) is summarized by the formulas 
 

 
11 12 13 12 11 13 12 13 11

21 22 23 22 21 23 22 23 21

31 32 33 32 31 33 32 33 31

,  etc
A A A A A A A A A
A A A A A A A A A
A A A A A A A A A

= − =  (1.10.13) 

 
Relationships like (1.10.13) are often used to explain that a determinant is a completely skew 
symmetric linear function of the columns of A .  It is a consequence of this skew symmetry that if 
two columns of a matrix are identical the determinant is zero.  This simple fact follows if we form a 
matrix with two identical rows, switch the rows and obtain a determinant equal to minus itself.  The 
only conclusion is that the determinant is zero. 
 

It is useful to look at (1.10.6)4 as a source of a greater insight into a more general definition 
of the determinant.  The essential idea that one needs in order to interpret (1.10.6)4 is the idea of a 
permutation.  The idea of a permutation of the ordered set of the first three positive integers, 
( )1,2,3 , is as follows:  A permutation is a rearrangement of the three integers ( )1,2,3  into a 
reordered set of the same three integers.  Viewed as a function, which we shall denote by σ , the 
following are a list of possible permutations of ( )1,2,3 : 
 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

1,2,3 1,2,3

1,2,3 1,3,2

1,2,3 2,1,3

1,2,3 3,1,2

1,2,3 2,3,1

1,2,3 3,2,1

σ

σ

σ

σ

σ

σ

→

→

→

→

→

→

 (1.10.14) 

 
As this example reflects, there are 3! 6=  possible permutations of the ordered set ( )1,2,3 .  The list 
(1.10.14) includes the identity permutation (1.10.14)1.  A permutation is even if it takes an even 
number of transpositions of the values in the above list to return the starting ordered set ( )1,2,3 .  A 
permutation is odd if it takes an odd number of transpositions of the values in the above list to 
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return the starting ordered set ( )1,2,3 .  For example, the even and odd permutations in the list 
(1.10.14) are9 
 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

Even

Odd

Odd

Even

Even

Odd

1,2,3 1,2,3

1,2,3 1,3,2

1,2,3 2,1,3

1,2,3 3,1,2

1,2,3 2,3,1

1,2,3 3,2,1

σ

σ

σ

σ

σ

σ

→

→

→

→

→

→













 (1.10.15) 

 
The parity of a permutation is the even or odd designation of that permutation.  Given the idea of 
parity, it is customary to utilize the symbol σε  defined as follows: 
 

 
( )
( )

1 if    is an even permutation of 1,2,3

1 if    is an odd permutation of 1,2,3σ

σ
ε

σ

+= 
−

 (1.10.16) 

 
This definition tells us that for the permutations in (1.10.15) 
 

 
9 Sometimes the permutation σ  is displayed symbolically by the notation 
 

( ) ( ) ( )
1 2 3
1 2 3

σ
σ σ σ
 

=  
 

 

where ( ) ( )1 , 2σ σ and ( )3σ  are distinct elements from the set { }1,2,3 . 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

Even

Odd

Odd

Even

Even

Odd

1,2,3 1,2,3 1

1,2,3 1,3,2 1

1,2,3 2,1,3 1

1,2,3 3,1,2 1

1,2,3 2,3,1 1

1,2,3 3,2,1 1

σσ

σσ

σσ

σσ

σσ

σσ

ε

ε

ε

ε

ε

ε

→ ⇒ =

→ ⇒ = −

→ ⇒ = −

→ ⇒ =

→ ⇒ =

→ ⇒ = −













 (1.10.17) 

 
Given the idea of a permutation and the associated idea of its parity, the definition (1.10.16) 

allows us to write the definition of the determinant of a 3 3×  matrix, equation (1.10.6)4, as 
 
 ( ) ( ) ( )1 1 2 2 3 3det A A A Aσ σ σ σ

σ

ε= ∑  (1.10.18) 

 
where the sum is understood to be over all permutations of the ordered set ( )1,2,3 .  The formula 
(1.10.18) is often the starting place for the definition of the determinant of a 3 3×  matrix.  It should 
be evident that the idea of permutation generalizes to permutations of ordered sets of the type 
( )1,2,3,..., N  and, for example, the definition (1.10.3) can be expressed in a fashion entirely similar 
to (1.10.18). 
 

Returning to the result (1.10.6) or the more formal expression (1.10.18), there are important  
conclusions that can be reached about the determinant of a 3 3×  matrix.  The expression (1.10.6) 
for det A  can be rearranged to yield an expansion in terms of the first row rather than the first 
column.  The rearrangement takes the following form: 
 

 
( ) ( ) ( )

11 12 13

21 22 23

31 32 33

11 22 33 11 23 32 12 21 33 13 21 32 12 23 31 13 22 31

11 22 33 23 32 12 21 33 23 31 13 21 32 22 31

22 23 21 23 21 22
11 12 13

32 33 31 33 31 32

det
A A A

A A A A
A A A
A A A A A A A A A A A A A A A A A A
A A A A A A A A A A A A A A A

A A A A A A
A A A

A A A A A A

=

= − − + + −

= − − − + −

= − +

 (1.10.19) 

 
In a notation like that used in (1.10.18), (1.10.19) can be written 
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 ( ) ( ) ( )1 1 2 2 3 3det A A A Aσ σ σ σ
σ

ε= ∑  (1.10.20) 

 
The results (1.10.6) and (1.10.19) give us the interesting result that the determinant of a matrix and 
the determinant of its transpose are the same, i.e., 
 
 det det TA A=  (1.10.21) 
 

The form of (1.10.18) and (1.10.20) reveal an interesting characteristic of determinants that 
one can expand about any row or column to obtain the answer.  One simply must assign the proper 
sign to the column or row utilized.  As an example of an expansion of a 3 3×  expanded about its 
second column consider the following 
 

 

( ) ( ) ( )

( ) ( )

21 23 11 13 11 13
12 22 32

31 33 31 33 21 23

13 21 33 23 31 22 11 33 13 31 32 11 22 13 21

13 21 33 13 23 31 22 11 33 22 13 31 32 11 22 32 13 21

11 22 33 32 23 21 12 33 32 13 31 1(

A A A A A A
A A A

A A A A A A

A A A A A A A A A A A A A A A
A A A A A A A A A A A A A A A A A A

A A A A A A A A A A A A

− +

= − − − + −

= − − + + −

= − − + − − 2 23 22 13

22 23 12 13 12 13
11 21 31

32 33 32 33 22 23

11 12 13

21 22 23

31 32 33

)

det

A A A

A A A A A A
A A A

A A A A A A

A A A
A A A A
A A A

−

= − + −

= − = −

 (1.10.22) 

 
This result simply reflects the fact that the determinant is also a linear function of each row and, as 
a function of its rows, it is completely skew symmetric. 
 
 The definition (1.10.18) generalizes to higher order square matrices.  For example, for a 
4 4×  matrix, the definition is as follows: 
 
Definition:  If A  is the 4 4×  matrix 
 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

A A A A
A A A A

A
A A A A
A A A A

 
 
 =
 
 
 

 (1.10.23) 

 
its determinant is defined by 
 
 ( ) ( ) ( ) ( )1 1 2 2 3 3 4 4det A A A A Aσ σ σ σ σ

σ

ε= ∑  (1.10.24) 
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or, in expanded form 
 

 

11 12 13 14
22 23 24 12 13 14

21 22 23 24
11 32 33 34 21 32 33 34

31 32 33 34
42 43 44 42 43 44

41 42 43 44

12 13 14 12 13 14

31 22 23 24 41 22 23 24

42 43 44 32 33 34

det

A A A A
A A A A A A

A A A A
A A A A A A A A A

A A A A
A A A A A A

A A A A

A A A A A A
A A A A A A A A

A A A A A A

= = −

+ −

 (1.10.25) 

 
where the 3 3×  determinates are evaluated by (1.10.6).  Both of the formulas (1.10.24) and 
(1.10.25) reveal the feature identified above for 3 3×  matrices that the determinant is linear in each 
column and completely skew symmetric in its columns. 
 
The expansion in our definition (1.10.25) can be rearranged into an expansion by the first row of A  
just as was done for the 3 3×  matrix in (1.10.19) above.  The formula in this case looks like 
 

 

11 12 13 14
22 23 24 21 23 24

21 22 23 24
11 32 33 34 12 31 33 34

31 32 33 34
42 43 44 41 43 44

41 42 43 44

21 22 24 21 22 23

13 31 32 34 14 31 32 33

41 42 44 41 42 43

det

A A A A
A A A A A A

A A A A
A A A A A A A A A

A A A A
A A A A A A

A A A A

A A A A A A
A A A A A A A A

A A A A A A

= = −

+ −

 (1.10.26) 

 
As an alternate to (1.10.26) as an expansion by rows formula, one can establish the generalization 
of (1.10.20), namely, 
 
 ( ) ( ) ( ) ( )1 1 2 2 3 3 4 4det A A A A Aσ σ σ σ σ

σ

ε= ∑  (1.10.27) 

 
Just as (1.10.21) holds for 3 3× , the last result shows that it also holds for 4 4×  , indeed, for 
N N×  matrices. 
 

The pattern illustrated by (1.10.4) for 2 2×  matrices, by (1.10.6) for 3 3×  matrices and by 
(1.10.26) for 4 4×  matrices can be generalized to square matrices of arbitrary order.  More 
formally, the expressions (1.10.18) and (1.10.24) generalize to 
 
 ( ) ( ) ( ) ( )1 1 2 2 3 3det N NA A A A Aσ σ σ σ σ

σ

ε= ⋅ ⋅ ⋅∑  (1.10.28) 
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for the determinant of a N N×  matrix.  Again, we see that the determinant is linear in each column 
and it is completely skew symmetric in each column.  It is also true that an expansion by rows will 
yield the same result, i.e.,  
 
 ( ) ( ) ( ) ( )1 1 2 2 3 3det N NA A A A Aσ σ σ σ σ

σ

ε= ⋅ ⋅ ⋅∑  (1.10.29) 

 
and, thus, again it is displayed that 
 
 det det TA A=  (1.10.30) 
 
Example 1.10.3:  The identity matrix in N N×M  is given by (1.1.27), repeated, 
 

 

1 0 0
0 1 0

0 0 1

I

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 
⋅ 

=  ⋅ 
 ⋅
 ⋅ ⋅ ⋅ 

 (1.10.31) 

 
It follows from (1.10.28) or (1.10.29) that 
 
 det 1I =  (1.10.32) 
 
Example 1.10.4:  A matrix that arises in multiple applications is the Vandermonde matrix.10  It is a 
square matrix that takes the form 
 

 

1 2 3
2 2 2 2
1 2 3

1 1 1 1
1 2 3

1 1 1 1 1 1

N

N

N N N N
N

x x x x
x x x x

V

x x x x− − − −

 
 ⋅ ⋅ 

⋅ ⋅ 
=  ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅
 ⋅ ⋅ 

 (1.10.33) 

 
It turns out that the determinant of this matrix is 
 

 ( )
, 1

det
N

i j
i j
i j

V x x
=

>

= −∏  (1.10.34) 

 
10 The Vondermonde matrix is named after Alexandre-Theophile Vandermonde, a French musician and chemist.  
Information about Vandermonde can be found, for example, at http://en.wikipedia.org/wiki/Alexandre-
Th%C3%A9ophile_Vandermonde. 

http://en.wikipedia.org/wiki/Alexandre-Th%C3%A9ophile_Vandermonde
http://en.wikipedia.org/wiki/Alexandre-Th%C3%A9ophile_Vandermonde
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 ( ) ( ) ( )
( ) ( )( )
( )( )( )

2 3 2
1 2 3 1 12 2 2 2

2 3 2 3 2 32 2 2
1 2 3

2
2 3 1 12 2

2 3 2 3 2 3

2 2 2
2 3 3 2 1 3 2 1 3 2

2
3 2 2 3 1 3 2 1

3 2 3 1 2 1

1 1 1
1 1 1 1

det 1

1 1 1 1 1 1

x x
V x x x x x

x x x x x x
x x x

x x x x
x x x x x x

x x x x x x x x x x

x x x x x x x x

x x x x x x

= = − +

= − +

= − − − + −

= − − + +

= − − −

 (1.10.35) 

 
The same kind of straight forward expansion based upon (1.10.26) yields  
 

 ( )( )( )( )( )( )1 2 3 4
4 3 4 2 4 1 3 2 3 1 2 12 2 2 2

1 2 3 4
3 3 3 3
1 2 3 4

1 1 1 1

det
x x x x

V x x x x x x x x x x x x
x x x x
x x x x

= = − − − − − −  (1.10.36) 

 
Example 1.10.5:  One can continue the individual expansions, as with the derivations of (1.10.35) 
and (1.10.36), and infer the general result (1.10.34).  It is instructive to reach (1.10.34) by 
utilization of the property that a determinant is linear in each of its columns and derive a formula 
that works directly with the determinant 
 

 

1 2 3
2 2 2 2
1 2 3

1 1 1 1
1 2 3

1 1 1 1

det

N

N

N N N N
N

x x x x
x x x x

V

x x x x− − − −

⋅ ⋅
⋅ ⋅
⋅ ⋅

=
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅

 (1.10.37) 

 
The first step is to subtract from (1.10.37) a series of determinants, each having value zero, as 
follows: 
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1

1 2 3 1 2 3
2 2 2 2 2 2 2 2
1 2 3 1 2 3

1 1 1 1 1 2 2 2
1 2 3 1 1 2 1 3 1

The row is row 1  equal to 0

1 2 3 4

1 1 1 1 1 1 1 1

det

1 1 1 1

th

N N

N N

N N N N N N N N
N N

N x N

x x x x x x x x
x x x x x x x x

V

x x x x x x x x x x x

x x x x
x

− − − − − − − −

× − ⇒

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

= −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅
⋅ ⋅

−



( ) 1

2 2 2 2
1 2 3

2 3 3 3
1 1 2 1 3 1

2 1 2 1 2 1
1 2 1 1 3 1 1 1

The 1 row is row 2  equal to 0

1 1 1 1
2 2 2

1 2 1 1 3 1 1 1

0

1 1 1 1

0

st

N

N N N N
N

N N N N N N
N

N x N

N

x x x

x x x x x x x
x x x x x x x x x

x x x x
x x x x x x x x x

− − − −

− − − − − −

− × − ⇒

⋅ ⋅
⋅ ⋅ ⋅

⋅
− − ⋅ ⋅ −

⋅ ⋅
⋅ ⋅

− − ⋅ ⋅ −
− ⋅ ⋅ ⋅ −

⋅ ⋅ ⋅



1

3 2 3 2 3 2
1 2 1 1 3 1 1 1

2 1 2 1 2 1
1 2 1 1 3 1 1 1

The second row is  first row  equal to 0

0
0

N N N N N N
N

N N N N N N
N

x

x x x x x x x x x
x x x x x x x x x

− − − − − −

− − − − − −

× ⇒

−

− − ⋅ −
− − ⋅ ⋅ −



 (1.10.38) 

 
The linearity property illustrated with equation (1.10.12) allows (1.10.38) to be written 
 

 

( )

2 1 3 1 1
2 2 2
2 1 2 3 1 3 1

1 2 1 2 1 2
2 1 2 3 1 3 1

2 1 3 1 1
2 2 2
2 1 2 3 1 3 1

1 2 1 2 1 2
2 1 2 3 1 3 1

2 1

1 1 1 1
0
0

det

0

N

N N

N N N N N N
N N

N

N N

N N N N N N
N N

x x x x x x
x x x x x x x x x

V

x x x x x x x x x

x x x x x x
x x x x x x x x x

x x x x x x x x x

x x x

− − − − − −

− − − − − −

⋅ ⋅
− − ⋅ ⋅ −
− − ⋅ ⋅ −

=
⋅ ⋅ ⋅
⋅ ⋅ ⋅

− − ⋅ ⋅ −

− − ⋅ ⋅ −
− − ⋅ ⋅ −

= ⋅ ⋅
⋅ ⋅

− − ⋅ ⋅ −

= − ( ) ( )
2 3

3 1 1

2 2 2
2 3

-1 dimensional Vandermonde Determinant

1 1 1

N

N

N N N
N

N

x x x
x x x

x x x− − −

⋅ ⋅

− ⋅ ⋅ ⋅ − ⋅ ⋅
⋅ ⋅

⋅ ⋅


 (1.10.39) 
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If the above process is repeated on the 1N −  dimensional Vandermonde determinant, we obtain a 
product involving the 2N −  dimensional Vandermonde determinant and so forth.  This iterative 
scheme produces the result (1.10.34). 
 

Another, equivalent, way of defining the determinant of a N N×  matrix is to introduce the 
minor and the cofactor of a matrix. 
 
Definition:  Given a N N×  matrix A , where 1N > , the determinant of the ( 1) ( 1)N N− × −  matrix 
obtained from A  by omitting the thi  row and the thj  column is the minor of the ij  element of A . 
 
It is customary to denote the minor of the ij  element by ijM . 
 
Example 1.10.6:  For a 3 3×  matrix 
 

 
11 12 13

21 22 23

31 32 33

A A A
A A A A

A A A

 
 =  
  

 (1.10.40) 

 
 
it follows from the definition that 
 

 

22 23 21 23 21 22
11 12 13

32 33 31 33 31 32

12 13 11 13 11 12
21 22 23

32 33 31 33 31 32

12 13 11 13 11 12
31 32 33

22 23 21 23 21 22

A A A A A A
M M M

A A A A A A

A A A A A A
M M M

A A A A A A

A A A A A A
M M M

A A A A A A

= = =

= = =

= = =

 (1.10.41) 

 
Definition:  The ij  cofactor of the n n×  matrix A  is 
 
 ( )cof 1 i j

ij ijA M+= −  (1.10.42) 
 
For the 3 3×  example above the cofactors are 
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22 23 21 23
11 11 12 12

32 33 31 33

21 22 12 13
13 13 21 21

31 32 32 33

11 13 11 12
22 22 23 23

31 33 31 32

12 13 11 13
31 31 32 32

22 23 21 23

cof , cof ,

cof , cof ,

cof , cof ,

cof , cof ,

A A A A
A M A M

A A A A

A A A A
A M A M

A A A A

A A A A
A M A M

A A A A

A A A A
A M A M

A A A A

= = = − = −

= = = − = −

= = = − = −

= = = − = −

11 12
33 33

21 22

cof
A A

A M
A A

= =

 (1.10.43) 

 
The results (1.10.43) allow (1.10.6), the formula for the determinant of a 3 3×  matrix, to be 
rewritten 
 

 
22 23 12 13 12 13

11 21 31
32 33 32 33 22 23

11 11 21 21 31 31

det

cof cof cof

A A A A A A
A A A A

A A A A A A
A A A A A A

= − +

= + +

 (1.10.44) 

 
Likewise, the formula (1.10.19) yields 
 

 
22 23 21 23 21 22

11 12 13
32 33 31 33 31 32

11 11 12 12 13 13

det

cof cof cof

A A A A A A
A A A A

A A A A A A
A A A A A A

= − +

= + +

 (1.10.45) 

 
 We can generalize (1.10.44) and (1.10.45) for N N×  matrix A  by the formulas 
 

 1 1
1

det cof
N

k k
k

A A A
=

= ∑  (1.10.46) 

 
and 
 

 1 1
1

det cof
N

k k
k

A A A
=

= ∑  (1.10.47) 

 
As with the 3 3×  matrix discussed above, it is possible to write the determinant of a N N×  matrix 
A  as expansions about any column or any row.  As a practical matter, one chooses the row or 
column so as to capitalize on as many zeros as possible.  In any case, the formula which reflects 
this last assertion is 
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1

det cof 1,...,
N

ki ki
k

A A A i N
=

= =∑  (1.10.48) 

 
for an expansion about the thi  column and 
 

 
1

det cof 1,...,
N

jk jk
k

A A A j N
=

= =∑  (1.10.49) 

 
for an expansion about the thj  row.  The fact that a determinant vanishes when two of the columns 
or rows are the same tells us that 
 

 
1

0 cof
N

ki kj
k

A A i j
=

= ≠∑  (1.10.50) 

 
for an expansion about the thi  column and 
 

 
1

0 cof
N

jk ik
k

A A j i
=

= ≠∑  (1.10.51) 

 
for expansion about the thj  row.  Fortunately, the four formulas (1.10.48) through (1.10.51) can be 
written as two formulas if we utilize the Kronecker delta defined by (1.1.29), repeated, 
 

 
1 for 
0 for ij

i j
i j

δ
=

=  ≠
 (1.10.52) 

 
With this definition, equations (1.10.48) and (1.10.50) can be written 
 

 
1

det cof , 1,...,
N

ij ki kj
k

A A A i j Nδ
=

= =∑  (1.10.53) 

 
and equations (1.10.49) and (1.10.51) can be written 
 

 
1

det cof , 1,...,
N

ij ik jk
k

A A A i j Nδ
=

= =∑  (1.10.54) 

 
 The right sides of equations (1.10.53) and (1.10.54) are of the same general form as the 

formula, 
1

N

ij js
j

A B
=
∑ , 1,...,i M= , 1,...,s K= , introduced in Section 1.1 for the product of two 

matrices A  and B .  We shall next exploit this fact and rewrite (1.10.53) and (1.10.54) as the 
product of two matrices.  We have already introduced the symbols ijA A =    and ijI δ =    for the 

matrix whose components are ijA  and ijδ , respectively.  The matrix whose components are the 
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cofactors, cof jkA , is an N N×  matrix called the adjugate matrix of A .11  It is given the symbol 
adj A .  In order to accommodate the different order of the indices in (1.10.53) and (1.10.54), over 
that used in the definition of matrix multiplication, the definition of the adjugate involves the 
transpose of the matrix of cofactors is follows 
 

 

11 21 31 1

12 22 32 2

13 23 33

1

Transposed Matrix of cofactors of 

cof cof cof cof
cof cof cof cof
cof cof cof

adj

cof cof

N

N

N NN

A

A A A A
A A A A
A A A

A

A A

⋅ ⋅ 
 ⋅ ⋅ 
 ⋅

=  ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅
 

⋅ ⋅ ⋅ ⋅  


 (1.10.55) 

 
Thus, the adjugate matrix is simply the transposed matrix of cofactors. 
 
Example 1.10.7:  If A  is the matrix (1.10.7), then  
 

 

2 2 3 2 3 2
2 3 1 3 1 2

1 2 2 2 2 1
adj

2 3 1 3 1 2

1 2 2 2 2 1
2 2 3 2 3 2

2 2 1 2 1 2
2 3 2 3 2 2

3 2 2 2 2 2
1 3 1 3 3 2

3 2 2 1 2 1
1 2 1 2 3 2

2 1 2
7 4 2

4 3 1

T

A

 
− 

 
 
 = − −
 
 
 −
  
 

− 
 
 
 = − −
 
 
 −
  

− 
 = − 
 − 

 (1.10.56) 

 
 
The definition (1.10.55) allows us to write (1.10.53) as the matrix equation 

 
11 Many textbooks use the word adjoint for what we have called adjugate.  The adjoint name can be confused with 
another operation, which we shall see later, given the same name. 
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 ( ) ( )adj detA A A I=  (1.10.57) 
 
Likewise, we can write (1.10.54) as 
 
 ( ) ( )adj detA A A I=  (1.10.58) 
 

Thus, the adjugate matrix, adj A , has the interesting property that when it multiplies A  on 
the left or the right, one gets the diagonal matrix ( )det A I .  These last two results lead us to an 
important result in matrix algebra.  Namely, when the determinant of a matrix A  is nonzero, it is 
nonsingular.  This assertion follows by recalling from Section 1.1 that a matrix A  is nonsingular if 
there exists a matrix, which we wrote as 1A− , that obeys 
 
 1 1AA A A I− −= =  (1.10.59) 
 
If det 0A ≠ , the two equations (1.10.57) and (1.10.58) can be written 
 

 adj adj
det det

A AA A I
A A

   = =   
   

 (1.10.60) 

 
Thus, 1A−  not only exists when det 0A ≠ , it is given explicitly by 
 

 1 adj
det

AA
A

− =  (1.10.61) 

 
Example 1.10.8:  For the matrix (1.10.7) whose determinant is given by (1.10.8) and whose 
adjugate matrix is given by (1.10.56), its inverse is given by 
 

 1

2 1 2
5 5 5

adj 7 4 2
det 5 5 5

4 3 1
5 5 5

AA
A

−

 − 
 
 = = − 
 
 −
  

 (1.10.62) 

 
Example 1.10.9:  You are given the 2 2×  matrix 
 

 11 12

21 22

A A
A

A A
 

=  
 

 (1.10.63) 

 
The determinant of this matrix is given by (1.10.4).  When we assume that det A  is not zero, we are 
assuming that 



Sec. 1.10 • The Determinant of a Square Matrix  117 

 
 11 22 12 21 0A A A A− ≠  (1.10.64) 
 
From the definition of cofactor and the definition of the matrix adj A , it is given by 
 

 11 21 22 12

12 22 21 11

cof cof
adj

cof cof
A A A A

A
A A A A

−   
= =   −   

 (1.10.65) 

 
and, from (1.10.61) the inverse of A  is given by 
 

 22 121

21 1111 22 12 21

det Swap position of diagonals
Switch sign of off diagonals

1

A

A A
A

A AA A A A
− − 
=  −−  




 (1.10.66) 

 
The theoretical formula (1.10.66) was used in Example 1.1.2 to calculate the inverse given in 
equation (1.1.32).  This formula was given without proof in Exercise 1.1.7. 
 

 The equation 1 adj
det

AA
A

− =  is a valuable theoretical result which allows one to determine 

when a matrix is nonsingular and to calculate the inverse.  The converse result, namely, that if A  is 
nonsingular, then its determinant is nonzero is also true.  This is a result we shall develop as soon 
as we derive one more theoretical result. 
 
 The theoretical result we need concerns the determinant of the product of two matrices.  If   
A  and B  are in N N×M  matrices then the product AB  is also in N N×M .  The theoretical result we 
need is 
 
 det det detAB A B=  (1.10.67) 
 
This interesting and simple result is either easy or hard to prove depending upon how one 
introduces the idea of a determinant.  The essential features of the general proof are well illustrated 
in the special case where 2N = .  For this case, the product AB  is 
 

 11 12 11 12 11 11 12 21 11 12 12 22

21 22 21 22 21 11 22 21 21 12 22 22

A A B B A B A B A B A B
AB

A A B B A B A B A B A B
+ +     

= =     + +     
 (1.10.68) 

 
The determinant of this product requires that we expand 
 

 11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

det
A B A B A B A B

AB
A B A B A B A B

+ +
=

+ +
 (1.10.69) 
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The fact that the determinant of a matrix is linear in the column or row vectors allows us to write 
(1.10.69) as 
 

 

11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

Use linearity in first column

11 11 11 12 12 22 12 21 11 12 12 22

21 11 21 12 22 22 22 21 21 12 22 22

Use linearity in sec

det
A B A B A B A B

AB
A B A B A B A B

A B A B A B A B A B A B
A B A B A B A B A B A B

+ +
=

+ +

+ +
= +

+ +



ond column

11 11 11 12 11 11 12 22

21 11 21 12 21 11 22 22

Factor constants Factor constants
from columns from columns

12 21 11 12

22 21 21 12

Factor constants
from col

A B A B A B A B
A B A B A B A B

A B A B
A B A B

= +

+



 

12 21 12 22

22 21 22 22

Factor constants
umns from columns

11 11 11 12
11 12 11 22

21 21 21 22

Identical
columns

det  zero

12 11 12 12
21 12 21 22

22 21 22 22

Identical
columns

det  ze

A B A B
A B A B

A A A A
B B B B

A A A A

A A A A
B B B B

A A A A

⇒

⇒

+

= +

+ +

 



( )

ro

11 12 12 11
11 22 21 12

21 22 22 21

Switch colunns
change sign

11 12
11 22 21 12

21 22

0 0

det det

A A A A
B B B B

A A A A

A A
B B B B B A

A A

= + + +

= − =





 (1.10.70) 

 
The generalization of the above argument to N N×  matrices requires a little care, but follows the 
same type of argument just utilized for 2 2×  matrices. 
 
 Next, we shall utilize the formula (1.10.67) to prove that if a matrix is nonsingular, its 
determinant is nonzero.  We begin by assuming we are given a matrix A in N N×M .  Because, by 
assumption A  is nonsingular, there exists a matrix 1A− in N N×M  such that 
 
 1 1AA A A I− −= =  (1.10.71) 
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If we calculate the determinant of this equation and use (1.10.67) and (1.10.32), we obtain 
 
 1 1det det det det 1AA A A I− −= = =  (1.10.72) 
 
The equation 1det det 1A A− =  rules out the possibility that the determinant of a nonsingular matrix 
can be zero. 
 

In summary, we have learned that a nonsingular matrix A  in N N×M  is nonsingular if and 
only if its determinant is nonzero. 
 
 
Exercises 
 
1.10.1:  Show that the determinant of the matrix 
 

 
4 3 0
3 1 2
5 1 4

A
 
 =  
 − − 

 (1.10.73) 

 
is det 58A = . 
 
1.10.2:  Show that the inverse of the matrix (1.10.73) is 
 

 1

2 12 6
1 22 16 8
58

8 19 5
A−

− 
 = − − 
− −  

 (1.10.74) 

 
1.10.3:  Show that the determinant of the matrix 
 

 
2 1 2
1 3 2
5 1 6

A
− 

 =  
  

 (1.10.75) 

 
is det 0A = . 
 
1.10.4:  Show that the determinant of the matrix 
 

 
3 3 1
0 1 2
0 2 3

A
 
 =  
  

 (1.10.76) 

 
is det 3A = − . 
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1.10.5:  Show that the inverse of the matrix (1.10.76) is 
 

 1

1 7 5
1 0 9 6
3

0 6 3
A−

− − 
 = − − 

−  

 (1.10.77) 

 
1.10.6:  Show that the determinant of the matrix 
 

 
2 1 3
1 2 2

1 4 0
A

− 
 = − − 
  

 (1.10.78) 

 
is det 0A = . 
 
1.10.7:  Show that the determinant of the matrix 
 

 

1 1 1 1
2 1 3 2
0 1 2 1
0 0 7 3

A

 
 − =
 
 
 

 (1.10.79) 

 
is det 0A = . 
 
1.10.8:  Show that the determinant of the matrix 
 

 

2 1 2 1
3 0 1 1
1 2 2 1
3 2 3 1

A

 
 
 =
 − −
 − 

 (1.10.80) 

 
is det 20A = . 
 
1.10.9:  Show that the inverse of the matrix (1.10.80) is 
 

 1

10 5 0 5
26 23 4 71
4 2 4 220
34 37 4 13

A−

− − 
 − − =

− − 
 − 

 (1.10.81) 
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1.10.10:  If A  is in N N×M  and is an upper triangle matrix 
 

 

11 12 13 1

22 23 2

33

0
0

0
0 0 0

N

N

NN

A A A A
A A A

A
A

A

⋅ ⋅ 
 ⋅ ⋅ 
⋅ ⋅ 

=  ⋅ ⋅ ⋅ 
 ⋅ ⋅
 ⋅ ⋅ 

 (1.10.82) 

 
show that 
 
 11 22 33det NNA A A A A= ⋅⋅ ⋅  (1.10.83) 
 
Thus, the determinant of an upper triangular square matrix is simply the product of the diagonal 
elements.  A similar result holds for lower triangular matrices and, trivially, for diagonal matrices. 
 
1.10.11  If A  is in N N×M and has the LU  decomposition (1.7.3), show that 
 
 det detA U=  (1.10.84) 
 
In certain numerical applications, it is numerically better to evaluate the determinant with (1.10.84)
after a LU Decomposition. 
 
1.10.12  If A  and B  are in N N×M  show that 
 
 ( )adj adj adjAB B A=  (1.10.85) 
 
1.10.13  If A  is a nonsingular matrix, establish the following properties of the adjugate matrix: 
 

 

( ) ( )
( ) ( )

( )( ) ( )( )2

1

2

2

det adj det

adj adj det

det adj adj det

N

N

N

A A

A A A

A A

−

−

−

=

=

=

 (1.10.86) 

 
1.10.14  If A is nonsingular, show that adj A  is nonsingular and given by 
 
 ( ) 1 1adj adjA A− −=  (1.10.87) 
 
1.10.15  Show that adj TA  is given by 
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 ( )adj adj TTA A=  (1.10.88) 
 
1.10.16 Show that the adjugate and the inverse of the Vandermonde matrix 
 

 1 2 3
2 2 2
1 2 3

1 1 1
V x x x

x x x

 
 =  
  

 (1.10.89) 

 
are given by 
 

 
( )
( )
( )

2 2
2 3 3 2 2 3 3 2

2 2
1 3 1 3 3 1 1 3

2 2
1 2 2 1 1 2 2 1

adj
x x x x x x x x

V x x x x x x x x
x x x x x x x x

 − − −
 = − − − 
 − − − 

 (1.10.90) 

 
and 
 

 

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

2 3 2 3

1 2 1 3 1 2 1 3 1 2 1 3

1 1 3 1 3

1 2 2 3 1 2 2 3 1 2 2 3

1 2 1 2

1 3 2 3 1 3 2 3 1 3 2 3

1

1

1

x x x x
x x x x x x x x x x x x

x x x xV
x x x x x x x x x x x x

x x x x
x x x x x x x x x x x x

−

 +
− − − − − − − 

 +
= − − 

− − − − − − 
 +
 −

− − − − − −  

 (1.10.91) 

 
1.10.17  There are applications where the elements of a matrix depend upon a parameter and it is 
necessary to differentiate the determinant with respect to this parameter.  If, for example, 3N =  
and the matrix is written 
 

 ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

11 12 13

21 22 23

31 32 33

det
A t A t A t

A t A t A t A t
A t A t A t

=  (1.10.92) 

 
show that 
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( )( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )( ) ( )

11 12 13
12 13 11 13 11 12

21 22 23
22 23 21 23 21 22

31 32 33
32 33 31 33 31 32

det

tr adj

dA t dA t dA t
A t A t A t A t A t A t

dt dt dt
d A t dA t dA t dA t

A t A t A t A t A t A t
dt dt dt dt

dA t dA t dA t
A t A t A t A t A t A t

dt dt dt

dA t
A t

dt

= + +

 
=  

 

(1.10.93) 
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Section 1.11.  Systems of Linear Equations: Cramer’s Rule 
 
 The formula (1.10.61), repeated, 
 

 1 adj
det

AA
A

− =  (1.11.1) 

 
is useful when one wants to calculate the inverse.  While they are numerically more useful 
algorithms for large systems, (1.11.1) is a formula with a lot of applications.  One of these arises 
when one knows that a matrix N NA ×∈M  is nonsingular and the goal is to find the solution to the 
linear system 
 
 A =x b  (1.11.2) 
 
We know from Section 1.6 that this system has a unique solution when the matrix A  is 
nonsingular.  Equation (1.11.1) allows us to write that solution in the explicit form 
 

 ( )1 1 adj
det

A A
A

−= =x b b  (1.11.3) 

 
Example 1.11.1:  In the special case 2N = , we can use the formula (1.10.66) to express the 
solution (1.11.3) as 
 

 

1 22 2 12

11 22 12 211 22 12 1

2 21 11 2 1 21 2 1111 22 12 21

11 22 12 21

1
b A b A

A A A Ax A A b
x A A b b A b AA A A A

A A A A

− 
 −−       = =     − − +−       
 − 

 (1.11.4) 

 
One way the solution (1.11.4) is sometimes written is 
 

 

1 12 11 1

2 22 12 2
1 2

11 12 11 12

21 22 21 22

and

b A A b
b A A b

x x
A A A A
A A A A

= =  (1.11.5) 

 
Equation (1.11.5) is an example of Cramer’s Rule12.  One simply places in the numerator of each 
formula the determinant formed from the determinant of the matrix of coefficients except that the 
first column is replaced by the components of b  in the formula for 1x  and the second column is 
replaced by the components of b  in the formula for 2x . 

 
12 This rule is named after the Swiss mathematician Gabriel Cramer.  Information about Gabriel Cramer can be found, 
for example, at http://en.wikipedia.org/wiki/Gabriel_Cramer. 

http://en.wikipedia.org/wiki/Gabriel_Cramer
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 Just as (1.11.5) follows from (1.11.3), Cramer’s rule for systems of arbitrary order also 
follow from (1.11.3).  The first step is to express (1.11.3) in the component form 
 

 ( )
1

1 cof
det

N

j ij i
i

x A b
A =

= ∑  (1.11.6) 

 
Just as (1.10.53) expresses the determinant as a cofactor expansion, one can recognize the 
numerator of (1.11.6) as a determinant.  Except that it is a determinant with the thj  column of A  
replaced by the components of b .  For example, in the case 4N = , the four solutions are given by 
 

 

1 12 13 14 11 1 13 14

2 22 23 24 21 2 23 24

3 32 33 34 31 3 33 34

4 42 43 44 41 4 43 44
1 2

11 12 13 14 11 12 13 14

21 22 23 24 21 22 23 24

31 32 33 34 31 32 33 34

41 42 43 44 41 42 43 44

11 12

3

b A A A A b A A
b A A A A b A A
b A A A A b A A
b A A A A b A A

x x
A A A A A A A A
A A A A A A A A
A A A A A A A A
A A A A A A A A

A A b

x

= =

=

11 12 13 11 14

21 22 23 221 22 2 24

31 32 33 331 32 3 34

41 42 43 441 42 4 44
4

11 12 13 14 11 12 13 14

21 22 23 24 21 22 23 24

31 32 33 34 31 32 33 34

41 42 43 44 41 42 43 44

A A A bA
A A A bA A b A
A A A bA A b A
A A A bA A b A

x
A A A A A A A A
A A A A A A A A
A A A A A A A A
A A A A A A A A

=

 (1.11.7) 

 
Example 1.11.2:  In Example 1.3.1, we solved the system (1.3.2), repeated, 
 

 
1 2 3

1 2 3

1 2 3

2 1
2 3

2 3 7

x x x
x x x

x x x

+ − =
− + =

− + + =

 (1.11.8) 

 
Cremer’s rule tells us that if det 0A ≠  the solution is 
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( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1 12 13

2 22 23

3 32 33
1

11 12 13

21 22 23

31 32 33

11 1 13

21 2 23

31 3 33
2

11 12 13

21 22 23

31 32 33

1 2 1
3 1 1
7 2 3 1 5 3 8 7 1 22 1
1 2 1 1 5 2 8 1 1 22
2 1 1
1 2 3

1 1 1
2 3 1
1 7 3 1 2 2 10 1 4

1 2 1 1 5 2 8
2 1 1
1 2 3

b A A
b A A
b A A

x
A A A
A A A
A A A

A b A
A b A
A b A

x
A A A
A A A
A A A

−
−

− − + −
= = = = =

− − − − −
−

−

−

− − −
= = =

− − −
−

−

( )

( ) ( ) ( )
( ) ( ) ( )

11 12 1

21 22 2

31 32 3
3

11 12 13

21 22 23

31 32 33

22 1
1 1 22

1 2 1
2 1 3
1 2 7 1 13 2 12 1 7 44 2

1 2 1 1 5 2 8 1 1 22
2 1 1
1 2 3

A A b
A A b
A A b

x
A A A
A A A
A A A

−
= =

− −

−
− − − − −

= = = = =
− − − − −

−
−

 (1.11.9) 

 
which, of course, is the earlier result (1.3.10). 
 
 
Exercises 
 
1.11.1:  Utilize Cremer’s rule to find the solution of the system 
 

 1 2

1 2

2 4 9
2 6
x x

x x
+ =

− + =
 (1.11.10) 

 
1.11.2:  Utilize Cremer’s rule to find the solution of the system 
 

 
1 2 3

1 2 3

1 2 3

2 3 9
2 3 6

3 2 8

x x x
x x x
x x x

+ + =
+ + =
+ + =

 (1.11.11) 

 
1.11.3:  Utilize Cremer’s rule to find the solution of the system 
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1 2 3

1 2 3

1 2

3 2 6
2 6

3 6

x x x
x x x

x x

− + =
+ + =
− =

 (1.11.12) 

 
1.11.4:  Utilize Cremer’s rule to find the solution of the system introduced in Exercise 1.3.2, i.e., 
the system 
 

 
1 2 3

1 2 3

1 2 3

3 1
2 5

2 2 8

x x x
x x x

x x x

+ + =
+ + =

− + − = −
 (1.11.13) 

 
1.11.5:  Utilize Cremer’s rule to find the solution of the system introduced in Exercise 1.3.3, i.e., 
the system 
 

 
2 3

1 2 3

1 2 3

2 3 8
4 6 7 3
2 3 6 5

x x
x x x
x x x

+ =
+ + = −
− + =

 (1.11.14) 

 
1.11.6:  Utilize Cremer’s rule to show that the solution of the system 
 

 
1 2 3

1 2 3

1 2 3

2 1 5
2 2 1 6

2 3 9

x x x
x x x
x x x

+ + =
+ + =
+ + =

 (1.11.15) 

 

is 
1
1
2

 
 =  
  

x . 

 
1.11.7:  Utilize Cremer’s rule to show that the solution of the system 
 
 

 

2 3 4

1 3 4

1 2 3 4

1 2 3 4

0
3 3 4 7

2 6
2 3 3 6

x x x
x x x

x x x x
x x x x

+ + =
+ − =

+ + + =
+ + + =

 (1.11.16) 
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is 

4
3

1
2

 
 − =
 
 
 

x   
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__________________________________________________________ 
Chapter 2 
 
 
VECTOR SPACES 
 
 

Chapter 1 consisted of a quick summary of a lot of topics in matrix algebra.  Matrices 
represent an excellent introduction and example of a concept known as a vector space.  Another 
example is the geometric one in the form of a directed line segment.  This one is usually 
represented graphically as a straight line with an arrowhead.  The topics of this chapter involve 
abstracting and generalizing the matrix algebra concepts from Chapter 1 and the geometric 
concepts of a directed line segment.  The generalization leads to the study of Vector Spaces or, 
equivalently, Linear Spaces.  The concept of a vector space put forward in this chapter is purely 
algebraic.  It is a set with a prescribed list of properties.  After the abstract idea of a vector space is 
introduced, it will be illustrated with examples that should provide a good connection with the 
discussions in Chapter 1 plus a connection with that of a vector as a directed line segment.  Other 
connections will be made with examples of vector spaces that arise in other subjects. 
 
Section 2.1. The Axioms for a Vector Space 
 
 Before, we list the formal axioms that define a vector space, it is useful to introduce a few 
fundamental concepts.  One of the basic building blocks to assigning structure to a set is a function 
called a binary relation.  Prior to giving this definition, we need to be sure we understand the idea 
of the Cartesian product of two sets. 
 
Definition:  If A  and B  are two sets, their Cartesian product is a set denoted by ×A B  defined 
by 
 

 ( ){ },  and a b a b× = ∈ ∈A B A B  (2.1.1) 
 
In words, the Cartesian product is simply a set of ordered pairs, the first element from A  and the 
next element from B . 
 

It should be evident how to generalize the above definition to the Cartesian product of an 
arbitrary number of sets.  We have already seen this definition, for example, when we wrote NR  in 
equation (1.1.1) as short hand for what is really 

 timesN

× ×⋅ ⋅ ⋅×


R R R . 

Definition: A binary relation on a set V  is a function × →V V V . 
 
In words, a binary relation on a set V  is simply a function that takes a pair of elements of V  and 
produces an element of V . 
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 A vector space is a triple, i.e. a list of three quantities, written ( ), , fV F .  The first 
quantity, denoted by V , is a set known as an additive Abelian or commutative group.1  This is sort 
of a mouthful.  More importantly, it is a set with a property call “addition” which we shall note 
by+ .  This property, or function, is a rule which takes two members of V  and produces another 
member of V  according to a certain set of rules.  The rule is an example of the binary relation or 
binary operation just introduced.  In the notation above, the +  function is the rule 
 
 :+ × →V V V  (2.1.2) 
 
If , ∈u v V , we write the value of the +  function as +u v . 
 
This function has properties defined by the following four rules: 
 

(a) There exists a binary operation in V  called addition and denoted by +  such that 

(1) ( ) ( )+ + = + +u v w u v w  for all , , ∈u v w V . 
(2) + = +u v v u  for all , ∈u v V . 
(3) There exists an element ∈0 V  such that + =u 0 u  for all .∈u V  
(4) For every ∈u V there exists an element .− ∈u V such that ( )+ − =u u 0 . 

 
Rule (a1) is an associative rule, (a2) is a commutative rule, (a3) specifies the existence of an 

additive identity and (a4) specifies the existence of an additive inverse. .  In this definition the 
vector +u v  in V  is called the sum of u  and v and, when needed, the difference of u  and v  is 
written −u v and is defined by 
 

 ( )− = + −u v u v  (2.1.3) 
 

The second quantity, denoted by F  in the definition of a vector space, is an algebraic 
structure known as a field.  This structure was briefly introduced in Section 1.1.  For the sake of 
completeness, we shall repeat the definitions here. 
 

A field is a set of quantities F  which is equipped with two binary operations +  and ⋅  such 
that 
 
 (b1) The binary operation + is a commutative group whose binary operation is called 
addition and whose members, therefore, obey 
 
  (1) λ β β λ+ = +     (commutative) 
  (2) ( ) ( )λ β γ λ β γ+ + = + +   (associative) 
  (3) 0 α α+ =     (additive identity 0) 

 
1 Abelian groups are named for the Norwegian mathematician Niels Henrik Abel.  Information about Neils Henrik 
Able can be found at https://en.wikipedia.org/wiki/Niels_Henrik_Abel 

https://en.wikipedia.org/wiki/Niels_Henrik_Abel
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(4) For every α ∈F , there exists an element, written α− , such that 
( ) 0α α+ − = .    (inverse) 

 
 (b2) The binary operation ⋅  is a binary operation on F , called multiplication, whose 
members obey 
 
  (1) λ β β λ⋅ = ⋅     (commutative) 
  (2) ( ) ( )λ β γ λ β γ⋅ ⋅ = ⋅ ⋅    (associative) 
  (3) 1 λ λ⋅ =     (multiplicative identity) 1 

(4) For every element α ∈F , there exists an element, written 1α− , such that 
1 1( ) ( ) 1α α α α− −⋅ = ⋅ =   (inverse) 

 
 (b3) The multiplication operation distributes over addition such that 
 
  (1) ( )λ β γ λ β λ γ⋅ + = ⋅ + ⋅  
  (2) ( )λ β γ λ γ β γ+ ⋅ = ⋅ + ⋅  
 

It is conventional in the following not to indicate multiplication between elements of fields 
by a special symbol such as ⋅ .  In the following, our convention will be to write 
 
 λβ λ β≡ ⋅  (2.1.4) 
 
and the ⋅  will be understood. 
 
Example 2.1.1:  Examples of Fields 
 

a) The two most important examples of fields we shall confront in this course are the two 
introduced in Chapter 1.  Namely, set of real numbers R  and the set of complex numbers 
C . 

b) The set of rational numbers can be shown to form a field.  Recall that rational numbers are 
real numbers of the form α β  where α  and β  are integers ( 0β ≠ ). 

 
Example 2.1.2:  An example of a subset of R  that is not a field is the set of integers.  They are not 
a field when you use the usual definitions of addition and multiplication.  The problem is the 
inverse under multiplication.  The integers do have inverses that are real numbers, but they are not 
integers. 
 

The binary operations we have introduced thus far are examples of internal binary 
operations.  Addition in V  is an operation on elements of V .  Likewise, the two operations we 
have defined on F  are operations on elements of F .  The third element of the triple ( ), , fV F  is 
the function f  which takes an element of F  and an element of V  and, through a specific set of 
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rules, produces an element of V .  More formally, f  is a function :f × →F V V , called scalar 
multiplication, such that  
 (c) 
  (1) ( )( ) ( ), , ,f f fλ µ λµ=v v  

  (2) ( ) ( ) ( ), , ,f f fλ µ λ µ+ = +u u u  

  (3) ( ) ( ) ( ), , ,f f fλ λ λ+ = +u v u v  

  (4) ( )1,f =v v  
 
for all ,λ µ∈F  and all , ∈u v V . 
 
The operation :f × →F V V  is an example of an external operation.  It takes two elements from 
different sets in order to produce the result. 
 

The elements of V  are called vectors.  The elements of the field F  are called scalars.  The 
notation ( ), , fV F for a vector space will be shortened to simply V .  It is also customary to use a 
simplified notation for the scalar multiplication function f .  It is customary to write 

 
 ( ),f λ λ=v v  (2.1.5) 
 
and also regard λv  and λv  to be identical.  In this simplified notation we shall now list in detail 
the axioms of a vector space. 
 
Definition of Vector Space Restated: 
 
Definition.  Let V  be a set and F  a field.  V  is a vector space if it satisfies the following rules: 

(a) There exists a binary operation in V  called addition and denoted by +  such that 
 

(1) ( ) ( )+ + = + +u v w u v w  for all , , ∈u v w V . 
(2) + = +u v v u  for all , ∈u v V . 
(3) There exists an element ∈0 V  such that + =u 0 u  for all .∈u V  
(4) For every ∈u V there exists an element .− ∈u V such that ( )+ − =u u 0 . 

 
(b) There exists an operation called scalar multiplication in which every scalar λ∈F  

can be combined with every element ∈u V  to give an element λ ∈u V such that 
 

(1) ( ) ( )λ µ λµ=u u  

(2) ( )λ µ λ µ+ = +u u u  

(3) ( )λ λ λ+ = +u v u v  
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(4) 1 =u u  for all ,λ µ∈F and all , ∈u v V . 
 
If the field F employed in a vector space is actually the field of real numbers ,R  the space is 
called a real vector space.  A complex vector space is similarly defined.  For the most part, it is 
useful to think of the vector spaces being discussed here as complex.  Many of our examples will 
be for real vectors spaces as a special case. 
 

There are many and varied sets of objects that qualify as vector spaces.  The following is a 
partial list: 
 

a) A trivial example is the set consisting of the zero element 0  of any vector space.  This 
single element is a vector space. 

 
b) The set of complex numbers ,C with the usual definitions of addition and multiplication by 

an element of R  forms a real vector space. 
 

c) The vector space NC  is the set of all N-tuples of  the form  ( )1 2, ,..., Nλ λ λ=u , where N is a 

positive integer and 1 2, ,..., Nλ λ λ ∈C .  Since an N-tuple is an ordered set, if 

( )1 2, ,..., Nµ µ µ=v  is a second N-tuple, then andu v are equal if and only if 
 
   for all  1,2,...,k k k Nµ λ= =  (2.1.6) 
 

The zero N-tuple is ( )0,0,...,0=0  and the negative of the N-tuple u  is 

( )1 2, ,..., Nλ λ λ− = − − −u .  Addition and scalar multiplication of N-tuples are defined by the 
formulas 

 
 ( )1 1 2 2, ,..., N Nµ λ µ λ µ λ+ = + + +u v  (2.1.7) 
 

and 
 
 ( )1 2, ,...., Nµ µλ µλ µλ=u  (2.1.8) 
 

respectively.  The notation NC  is used for this vector space because it can be considered to 
be an thN  Cartesian product ofC . 

 
d) The set M N×=V M  of all N M×  complex matrices is a vector space with respect to the 

usual operation of matrix addition and multiplication by a complex number.  Of course, the 
zero matrix and the negative matrix (additive inverse) are defined as in Chapter 1. 
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e) Let H  be a vector space whose vectors are actually functions defined on a set A with 
values in C .  Thus, if ∈h H , x∈A then ( )x ∈h C  and : →h A C .  If k is another vector of 
H then equality of vectors (functions) is defined by  

 
 ( ) ( ) if and only if  for allx x x= = ∈h k h k A  (2.1.9) 
 

The zero vector (function) is given the symbol 0  and is defined as the function on A  
whose value is zero for all x .  Addition and scalar multiplication are defined by 

 
 ( )( ) ( ) ( ) for all  x x x x+ = + ∈h k h k A  (2.1.10) 

 
and 

 
 ( )( ) ( )( ) for all  x x xλ λ= ∈h h A  (2.1.11) 
 

respectively. 
 

f) Example 3 is frequently stated in a more elementary context.  Recall that  

{ }[ , ]a b x a x b= ≤ ≤  is a closed interval of the set of real numbers and { }( , )a b x a x b= < <  
is an open interval of the set of real numbers.  Let [ , ]C a b  be the set of real valued functions 
defined by 

 
 { }[ , ]  continuous on every open subinterval of [ , ]C a b f f a b=  (2.1.12) 
 

i.e., the set of all real valued functions defined on every closed interval [ , ]a b  and 
continuous on ( , )a b .  The set [ , ]C a b  is a vector space providing one defines addition and 
scalar multiplication as above with (2.1.10) and (2.1.11).  In particular, addition is defined 
by 

 

 ( )( ) ( ) ( ) [ ]for all  ,f g x f x g x x a b+ = + ∈  (2.1.13) 
 

and scalar multiplication by 
 
 ( )( ) ( )( ) [ ]for all  ,f x f x x a bλ λ= ∈  (2.1.14) 
 

g) Let 2[ , ]C a b  be the set of real valued functions defined by 
 

 { }2[ , ]  twice differentiable on every open subinterval of [ , ]C a b f f a b=  (2.1.15) 
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If the above definitions (2.1.13) and (2.1.14) of addition and scalar multiplication are 
adopted, it is easily shown that 2[ , ]C a b  is a vector space. 

 
h) Let NP denote the set of all polynomials p  of degree equal to or less than N defined, for all 

x∈C , by 
 
 ( ) 2

0 1 2
N

Np x x x xλ λ λ λ= + + + ⋅ ⋅ ⋅ +  (2.1.16) 
 

where 0 1 2, , ,..., Nλ λ λ λ ∈R .  The zero polynomial in NP  is given the symbol 0  and, formally, 
is defined by 

 

 20( ) 0 0 0 0 Nx x x x= + + + ⋅ ⋅ ⋅ +  (2.1.17) 
 

The set NP forms a vector space over the complex numbers C  if addition and scalar 
multiplication of polynomials are defined in the usual way, i.e., by 

 

 ( )( ) ( ) ( )1 2 1 2 for all  p p x p x p x x+ = + ∈R  (2.1.18) 
and 
 

 ( )( ) ( ) for all  p x p x xλ λ= ∈R  (2.1.19) 
 
 
Exercises 
 
2.1.1 Let V and U be vector spaces.  Show that the set ×V U  is a vector space with the 

definitions 
 

( ) ( ) ( ), , ,+ = + +u x v y u v x y  
and 

 
( ) ( ), ,λ λ λ=u x u x  

 
where , ∈u v V ; , ∈x y U ; and λ∈F  

 
2.1.2 Let V  be a vector space and consider the set .×V V   Define addition in ×V V by 
 

( ) ( ) ( ), , ,+ = + +u v x y u x v y  
 

and multiplication by complex numbers by 
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( )( ) ( ), ,iλ µ λ µ µ λ+ = − +u v u v u v  

 
where , .λ µ∈R   Show that ×V V  is a vector space over the field of complex numbers. 
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Section 2.2. Some Properties of a Vector Space 
 
 
 Next, we shall prove certain results which follow by a systematic application of the above 
properties of a vector space.  Aside from yielding important information, the proofs are excellent 
illustrations of how the axioms of a vector space are used to deduce additional conclusions.  First, 
we shall prove that the zero vector, 0 , and the additive inverse of an arbitrary vector u , which we 
call −u , are unique. 
 
Theorem 2.2.1: The zero vector, 0 , is unique. 
 
Proof: As mentioned in Section 1.6, uniqueness theorems usually begin by the assumption of a 
lack of uniqueness.  One then attempts to establish a contradiction.  By Axiom (a3), if the zero is 
not unique, we must have, for all ∈u V , 

 
 

(a3) (a3)

and ′+ = + =u 0 u u 0 u
 

 (2.2.1) 

 
where 0  and ′0  are the two zeros.  Because u  is arbitrary, in the first equation take ′=u 0  and in 
the second equation take =u 0 .  The results are 
 
     and    ′ ′ ′+ = + =0 0 0 0 0 0  (2.2.2) 
 
Because of (a2), ′ ′+ = +0 0 0 0 , and, as a result the only conclusion from (2.2.2) is 
 
 ′=0 0  (2.2.3) 
 
Next, we want to establish that the additive inverse is unique.  We shall approach this result by first 
establishing a more general result. 
 
Theorem 2.2.2:  For every pair of vectors ∈v, w V , there exists a unique u  such that + =u v w . 
 
Proof: As usual, assume a lack of uniqueness.  As a result, for given ∈v, w V , 
 
     and    ′+ = + =u v w u v w  (2.2.4) 
 
Our goal is to prove that ′ =u u .  It follows from (2.2.4) that 
 
 ′+ = +u v u v  (2.2.5) 
 
Next, let −v  be an additive inverse of the element v  and, in effect, add it to (2.2.5) to obtain 
 
 ( ) ( )′+ + − = + + −u v v u v v  (2.2.6) 
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Properties (a4) and (a3), reduce the last equation to 
 
 ′=u u  (2.2.7) 
 
which establishes the uniqueness of the solution to + =u v w . 
 
Corollary: The element (the additive inverse), for every ∈v V  is unique. 
 
Proof:  Make the choice =w 0  in equation (2.2.4) of the last theorem.  As a result, + =u v 0 .  The 
uniqueness of u  establishes the result. 
 
Theorem 2.2.2 established the uniqueness of solutions, u , to + =u v w .  A related question relates 
to whether or a solution actually exists.  The axioms of a Vector Space give us this existence.  The 
proof is simple, one just postulates a solution and shows that it satisfies the given equation, 
+ =u v w .  The postulated solution is 

 
 ( )= + −u w v  (2.2.8) 
 
and it is elementary to substitute this assumed solution into + =u v w  and use appropriate axioms 
to establish the validity of the solution.  Recall that earlier we defined the difference in two vectors 
w  and v  by the formula ( )− = + −w v w v  
 
 The next theorems relate to relationships between the zero scalar and the zero vector. 
 
Theorem 2.2.3: 
 
   if and only if   0     or     0λ λ= = =u 0 u  (2.2.9) 
 
Proof: The proof of this theorem requires the proof of the following three assertions: a) 0 =u 0 , b) 
λ =0 0  and c)  0 or λ λ= ⇒ = =u 0 u 0 .  We shall establish these results in the order listed. 
 
Part (a): We shall prove that 0 =u 0 . 
 
Proof: Take  0µ =  and 1λ =  in Axiom (b2) for a vector space; then 
 

 
(b2) and (b4)

0= +u u u


 (2.2.10) 

 
Therefore, after utilizing ( )− = + −u v u v ) 
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 ( ) ( )
(a1) and (a2)

0 0− = + − = − +u u u u u u u u


 (2.2.11) 

 
where Axioms (a1) and (a2) have been used.  Next, by Axiom (a4) the last result is 
 
 0= +0 0 u  (2.2.12) 
 
Next, we can use (a3) and conclude the result 0=0 u . 
 
Part (b):  We shall prove that λ =0 0 . 
 
Proof:  Set =v 0  in Axiom (b3), then 
 

 
 in (b3)

λ λ λ
=

= +
v 0

u u 0


 (2.2.13) 

 
Therefore 
 
 

(a1) and (a2)

λ λ λ λ λ λ λ λ− = + − = − +u u u 0 u u u 0


 (2.2.14) 

 
and by Axiom (a4) 
 
 

  

(a4) (a4) (a3)
λ λ= + =0 0 0 0  (2.2.15) 

 
Part (c):  We shall prove that 0 or λ λ= ⇒ = =u 0 u 0 . 
 
Proof:  We begin with the assumption that .λ =u 0   If 0,λ =  we know from (a) that the equation 
λ =u 0  is satisfied.  If 0,λ ≠  then we show that u  must be zero as follows: 

 

 ( ) ( )
(b4)

CommutativeMult inverse
property in property in
definition ofdefinition of Field
Field, and (b1)

1 1 11 λ λ
λ λ λ

 = = = = = 
 

u u u u 0 0






 (2.2.16) 

 
Theorem 2.2.4:  
 
 ( 1)− = −u u  (2.2.17) 
 
Proof: 
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Part (a)(b2) with 1 and 1 and (b4)

( 1) (1 1) 0
λ µ= =−

+ − = − = =u u u u 0




 (2.2.18) 

 
Because the negative vector is unique, equation (2.2.18) and (a4) yield the result (2.2.17). 
 
 Two other theorems of interest are the following: 
 
Theorem 2.2.5: 
 

 ( )


Negative of
Scalar multiplication vector 
of ( )  times  

λ
λ

λ λ

−

− = −
u

u

u u


 (2.2.19) 

 
Proof: Let 0µ = and replace λ  by λ−  in Axiom (b2) for a vector space and this result follows 
directly. 
 
Theorem 2.2.6: 
 

 


( )
Negative of Negative ofvector vector λ

λ λ− = −
u u

u u  (2.2.20) 

 
Proof: Take 1µ = −  in (b1) to obtain 
 
 ( ) ( )λ λ− = −u u  (2.2.21) 
 
and use (2.2.20). 
 

Finally, we note that the concepts of length and angle have not been introduced.  They are 
not part of the definition of a vector space.  However, they can be introduced as additional 
algebraic structure.  These ideas will be introduced later in Chapter 4. 
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Section 2.3. Subspace of a Vector Space 
 
 

In this section, we shall introduce the idea of a subspace of vector space.  The idea is 
elementary.  A subspace is simply a subset of a vector space that is itself a vector space.  A more 
precise definition is as follows: 
 
Definition:  A non empty subset U  of a vector space V  is a subspace if: 

(a) ,  implies for all , .∈ + ∈ ∈u w u w u wU U   U  
(b)  implies for all  λ λ∈ ∈ ∈u uU U   C  

 
Conditions (a) and (b) in this definition can be replaced by the equivalent condition: 

(a ' ) ,  implies for all , .λ µ λ µ∈ + ∈ ∈u w u wU U   C  
 
A few examples of subspaces of vector spaces are as follows: 
 
Example 2.3.1:  Trivially, any vector space V is a subspace of itself. 
 
Example 2.3.2:  Another trivial example is the set consisting of the zero vector { }0 is a subspace of 
V . 
 
As stated in these two examples, the vector spaces { }0  and V itself are considered to be trivial 
subspaces of the vector space V .  If U  is not a trivial subspace, it is said to be a proper subspace 
of V . 

 
Example 2.3.3:  The subset of the vector space NC  of all N-tuples of the form ( )2 30, , ,..., Nλ λ λ  is a 

subspace of NC . 
 
Example 2.3.4:  The set of real numbers R  can be viewed as a subspace of the vector space of 
complex numbers .C  
 
Example 2.3.5:  Consider the vector space N N×M  of square matrices with real elements.  Let S  be 
the subset of N N×M  defined by 
 

 { },N N TA A A A×= ∈ =S M  (2.3.1) 
 
The question is whether or not S  , the subset of symmetric matrices, is a subspace of N N×M .  
Because 
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 ( )TA B A Bλ µ λ µ+ = +  (2.3.2) 
 
for all ,λ µ∈R  and all ,A B∈S , then from the above definition S  is a subspace. 
 

An elementary property of subspaces is given in the following theorem: 
 
Theorem 2.3.1:  If U  is a subspace of ,V  then ∈0 U.  

 
Proof. The proof of this theorem follows easily from (b) in the definition of a subspace above by 
placing 0.λ =  
 
 If one is given a set of N  vectors { }1 2, ,..., N ⊂u u u V , then one can construct a subspace as 
by essentially constructing all possible linear combinations of the elements of the set.  More 
formally, this construction is as follows: 
 
Definition:  Let { }1 2, ,..., Nu u u  be a set of vectors in a vector space V .  A sum of the form 

1 1 2 2 N Nα α α+ + ⋅ ⋅ ⋅ +u u u  is a linear combination of 1 2, ,..., Nu u u  
 
Definition:  The set of all linear combinations of 1 2, ,..., Nu u u  is called the span of 1 2, ,..., Nu u u .  It 
is denoted by 1 2Span( , ,..., )Nu u u  
 
Theorem 2.3.2:  The 1 2Span( , ,..., )Nu u u  is a subspace of V . 
 
The proof follows directly from the definition of subspace. 
 
Definition:  The subset { }1 2, ,..., Nu u u  is a spanning set for V  if every vector in V  can be written 
as a linear combination of 1 2, ,..., Nu u u . 
 
Example 2.3.6:  Consider the vector space of 3-tuples, 3R .  A typical element of 3R  can be written 
 

 ( )1 2 3, ,u u u=u  (2.3.3) 
 
Consider the set of two vectors { }1 2,i i  in 3R  defined by 
 

 ( )1 1,0,0=i  (2.3.4) 
and 
 

 ( )2 0,1,0=i  (2.3.5) 
 



Sec. 2.3 • Subspace of a Vector Space 145 

 

The span of { }1 2,i i , written 1 2Span( , )i i , consists of all possible linear combinations of the form 

1 1 2 2α α+i i .  Given (2.3.4) and (2.3.5), a vector ( )1 2Span ,∈v i i  will necessarily be of the form 
 

 ( ) ( ) ( )1 1 2 2 1 2 1 21,0,0 0,1,0 , ,0υ υ υ υ υ υ= + = + =v i i  (2.3.6) 
 
Therefore, the subspace 1 2Span( , )i i  consists of all of those vectors in 3R  that have zero in their 
third position.  This simple example of a subspace in 3R  is usually illustrated by the simple figure 
 

 
 
Thus, 1 2Span( , )i i  is the horizontal plane through the point ( )0,0,0 . 

 
Example 2.3.7:  Consider the vector space  2P  of polynomials of degree less than or equal to 2 .  A 
typical element of  2P  can be written 
 

 ( ) 2
0 1 2p x x xλ λ λ= + +  (2.3.7) 

 
Next, consider the subset of  2P  defined by { }2 21 , 2,x x x− + .  The span of { }2 21 , 2,x x x− + , 

( )2 2Span 1 , 2,x x x− + , is the set of polynomials of the form 
 

 ( ) ( ) ( ) ( ) ( )2 2 2
1 2 3 1 2 2 3 11 2 2x x x x x xυ υ υ υ υ υ υ υ υ= − + + + = + + + −  (2.3.8) 

 
We wish to determine the is the relationship between the subspace, ( )2 2Span 1 , 2,x x x− + , and the 

vector space  2P .  They are the same because if we force 

2i  

1i  v  
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0 1 2

1 2

2 3 1

2λ υ υ
λ υ
λ υ υ

= +
=
= −

 (2.3.9) 

 
Then one can solve (2.3.9) and obtain 
 

 
1 0 1

2 1

3 2 0 1

2

2

υ λ λ
υ λ
υ λ λ λ

= −
=
= + −

 (2.3.10) 

 
Therefore ( )2 2

 2Span 1 , 2,x x x− + =P . 
 
Example 2.3.8:  Consider the vector space [ ]2 ,C a b  of twice differentiable functions on every 
open subset of [ ],a b .  This vector space was defined by equation (2.1.15).  The subset of functions 
in [ ]2 ,C a b  that obey the differential equation 
 

 ( ) ( )
2

2 0
d f x

f x
dx

+ =  (2.3.11) 

 
can be shown to be a subspace of [ ]2 ,C a b  
 
Example 2.3.9:  Consider the set of functions [ ],C a b∞ .  These functions are real valued functions 
defined on [ ],a b  that have derivatives of arbitrary order on every open subset of [ ],a b .  This set is 
a vector space when one defines addition and scalar multiplication by (2.1.13) and (2.1.14).  The 
vector space  NP  was introduced in Section 2.1.  Each element is also an element of [ ],C a b∞ .  It is 
elementary to show that  NP  is a subspace of [ ],C a b∞ . 
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Section 2.4. Linear Independence 
 
 

This section is concerned with the idea of a linearly independent set of vectors.  It arises 
from the desire to identify those vector spaces which have a minimal spanning set, i.e. a spanning 
set with no unnecessary elements.  If such a set can be found, then from the definition of spanning 
set, every vector in the vector space would have the representation as a linear combination of 
members of this minimum spanning set. 
 

It is helpful to consider the following example as motivation of the idea of linear 
independence and the related idea of linear dependence. 
 
Example 2.4.1:  Let 3 1×=V M , the vector space of column vectors of order 3.  You are given the 
following three vectors in V : 
 

 1 2 3

1 4 1
1 , 7 , 4

2 2 8

− −     
     = − = =     
          

u u u  (2.4.1) 

 
Let 1 2 3Span( , , )= u u uS  be the subspace of 3 1×=V M  spanned by 1 2 3, ,u u u .  The question is 
whether or not S  can be generated by less than the three vectors 1 2 3, ,u u u .  The answer is yes 
because 
 

 3 1 2

1 3 4 3 4 1 4
4 3 7 3 7 3 1 7 3
8 6 2 6 2 2 2

− − − −           
           = = − + = − + = − + = +           

+                      

u u u  (2.4.2) 

 
This equation is an example of what is known as linear dependence, i.e. one of the vectors can be 
written as a linear combination of the others.  On the basis of this dependence, any linear 
combination of the three vectors 1 2 3, ,u u u  can be expressed, by (2.4.2), as a linear combination of 

1 2,u u .  The conclusion is that 
 

 1 2 3 1 2Span( , , ) Span( , )= =u u u u uS  (2.4.3) 
 
The choice of the two vectors 1 2,u u  rather than, say, 1 3,u u  is arbitrary.  One can solve the 
equation 3 1 23= +u u u  for 2 3 13= −u u u  and formally eliminate 2u .  The bottom line is that 
 

 1 2 3 1 2 1 3 2 3Span( , , ) Span( , ) Span( , ) Span( , )= = = =u u u u u u u u uS  (2.4.4) 
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The question naturally arises whether or not, for example, one can express 2u  in terms of 1u  and 
further reduce the spanning set.  If one forces a relationship 
 

 1 1 2 2α α+ =u u 0  (2.4.5) 
 
Then (2.4.1) and (2.4.4) would require 
 

 1 2

1 4
1 7

2 2
α α

−   
   − + =   
      

0  (2.4.6) 

 
As a matrix equation, (2.4.6) requires 
 

 
1 2

1 2

1 2

4 0
7 0

2 2 0

α α
α α
α α

− =
− + =

+ =
 (2.4.7) 

 
which only has the solution 1 2 0α α= =  which renders the relationship (2.4.5) trivial.  The 
conclusion is that one cannot express 2u  in terms of 1u  and, as a consequence, { }1 2,u u  is the 
minimum spanning set for S . 
 

The concept of linear independence is introduced by first defining what is meant by linear 
dependence in a set of vectors, and then defining a set of vectors that is not linearly dependent to be 
linearly independent.  The general definition of linear dependence of a set of N vectors is an 
algebraic generalization and abstraction of the concepts of co-linearity from elementary geometry. 
 
Definition.  A finite set of ( )1N N ≥ vectors { }1, 2, ..., Nv v v in a vector space V  is said to be 

linearly dependent if there exists a set of scalars { }1 2, ,..., Nα α α , not all zero, such that 
 

 
1

N

j j
j
α

=

=∑ v 0  (2.4.8) 

 
It is a trivial consequence of this definition that every set of vectors which contain the zero vector is 
linearly dependent. 
 

The essential content of the definition of linear dependence is that at least one of the vectors 
in the set { }1, 2, ..., Nv v v  can be expressed as a linear combination of the other vectors. 
 
Example 2.4.2:  Consider the set of four vectors in 3 1×M  { }1 2 3, , ,i i i v  where 
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 1 2 3

1 0 0 1
0 , 1 , 0 , 2
0 0 1 3

       
       = = = =       
              

i i i v  (2.4.9) 

 
The question is whether or not we can find four scalars 1 2 3 4, ,  and α α α α  , not all zero, such that 
 

 1 1 2 2 3 3 4α α α α+ + + =i i i v 0  (2.4.10) 
 
If we use the explicit forms of the four vectors given in (2.4.9), then we need to find 

1 2 3 4, ,  and α α α α  such that 
 

 1 2 3 4

1 0 0 1 0
0 1 0 2 0
0 0 1 3 0

α α α α
         
         + + + =         
                  

 (2.4.11) 

 
These equations require that the 1 2 3 4, ,  and α α α α  obey 
 

 
1 4

2 4

3 4

0
2 0
3 0

α α
α α
α α

+ =
+ =
+ =

 (2.4.12) 

 
Therefore, 
 

 
1 4

2 4

3 4

2
3

α α
α α
α α

= −
= −
= −

 (2.4.13) 

 
If these equations are substituted back into (2.4.10), the result is 
 

 4 1 4 2 4 3 42 3α α α α− − − + =i i i v 0  (2.4.14) 
 
or, since 4α  is nonzero, 
 

 1 2 32 3= + +v i i i  (2.4.15) 
 
and the conclusion that the given set is linearly dependent. 
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 A more or less obvious consequence of the definition of linear dependence is the following 
theorem: 
 
Theorem 2.4.1:  If the set of vectors { }1, 2, , Nv v v  is linearly dependent, then every other finite 

set of vectors containing { }1, 2, , Nv v v is linearly dependent. 
 
Definition:  A finite set of ( )1N N ≥ vectors { }1, 2, ..., Nv v v in a vector space V  is said to be 
linearly independent if they are not linearly dependent. 
 
Equivalent Definition: A finite set of ( )1N N ≥ vectors { }1, 2, ..., Nv v v in a vector space V  is said 

to be linearly independent if the only scalars { }1 2, ,..., Nα α α  which obey 
 

 
1

N

j j
j
α

=

=∑ v 0  (2.4.16) 

 
are 1 2 0Nα α α= = ⋅ ⋅ ⋅ = =  
 
An evident consequence of this definition is the following theorem. 
 
Theorem 2.4.2:  Every nonempty subset of a linearly independent set is a linearly independent set. 
 
 There is a relationship between linearly independent column vectors and matrices that is 
useful to establish at this point.  Let { } 1

1 2, ,..., M
N

×⊂u u u M  be a set of N  column vectors in 1M ×M .  
The test for linear independence or dependence requires determining whether or not the equation 
 
 1 1 2 2 ... N Nα α α+ + ⋅ ⋅ ⋅ + + =u u u 0  (2.4.17) 
 
has nonzero solutions for some of the coefficients 1 2, ,..., Nα α α .  We can write (2.4.17) as a matrix 
equation, as follows: 
 

 

  

21

111 12

221 22

1 2

1 2

N

N

N

N

MNM M

uu u
uu u

uu u

α α α

    
    
    
⋅⋅ ⋅     

+ + ⋅ ⋅ ⋅ + =     ⋅⋅ ⋅     
     ⋅⋅ ⋅
    

     
u uu

0  (2.4.18) 
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or, 
 

 

 

11 12 1 1

21 22 2 2

1 2

11

0
0

0

N

N

M M MN N

MNM N

u u u
u u u

u u u

α
α

α
×××

⋅ ⋅ ⋅     
     ⋅ ⋅ ⋅     
⋅ ⋅ ⋅ ⋅ ⋅    ⋅ 

=     ⋅ ⋅ ⋅ ⋅ ⋅ ⋅     
     ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
     ⋅ ⋅ ⋅     


 (2.4.19) 

 
We know from the matrix algebra discussion in Chapter 1, that whether or not (2.4.19) has a 
nonzero solution depends upon the properties of the matrix of coefficients.  The next formal step in 
the calculation would be to reduce the augmented matrix to reduced row echelon form and see 
whether or not (2.4.19) allows a nonzero solution for some of the unknowns 1 2, ,..., Nα α α . 
 

If the number of vectors and the size of the column vectors agree, i.e., M N= , then the 
matrix of coefficients in (2.4.19) is square.  In this case, the system has nonzero solutions if and 
only if the matrix of coefficients is singular.  Thus, the set { }1 2, ,..., Nu u u  is linearly dependent if 
and only if the N N×  matrix of coefficients is singular. 
 
Example 2.4.3:  Consider the following three column matrices in 3 1×M  
 

 1 2 3

4 2 2
2 , 3 , 5
3 1 3

     
     = = = −     
          

u u u  (2.4.20) 

 
The next step is to form the sum (2.4.17) 
 
 1 1 2 2 3 3α α α+ + =u u u 0  (2.4.21) 
 
Given the definitions (2.4.20), the matrix form of (2.4.21) is 
 

 
1

2

3

4 2 2
2 3 5 0
3 1 3

α
α
α

   
   − =   
      

 (2.4.22) 

 
As explained above, the linear independence of the three column matrices (2.4.20) depends upon 
whether or not the coefficients 1 2 3, ,α α α  are all zero.  We know from the results of Theorem 1.6.1 
that (2.4.22) has the zero solution if and only if the matrix of coefficients is nonsingular.  We know 
from the results of Section 1.10 that the matrix is nonsingular if and only if its determinant is 
nonzero.  The determinant of the matrix of coefficients in (2.4.22) is 
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4 2 2
2 3 5 4(14) 2(4) 3( 16) 0
3 1 3

− = − + − =  (2.4.23) 

 
Therefore, the matrix is singular and the system (2.4.22) has a nonzero solution.  As a result, the 
three column matrices (2.4.20) form a linear dependent set.  More detailed information about this 
example is obtained if (2.4.22) is converted to reduced row echelon form.  The result turns out to 
be 
 

 
1

2

3

1 0 2
0 1 3 0
0 0 0

α
α
α

   
   − =   
      

 (2.4.24) 

 
Therefore, 
 
 1 32α α= −  (2.4.25) 
 
and 
 
 2 33α α=  (2.4.26) 
 
As a result of (2.4.25) and (2.4.26), the three vectors in (2.4.21) are related by 
 
 1 2 32 3− + + =u u u 0  (2.4.27) 
 
It is helpful to observe in passing that equation (2.4.27) not only defines the relationship between 
the three columns of the matrix of coefficients in (2.4.22).  It also defines the relationship between 
the three columns of the reduced row echelon form that appears in (2.4.24).  This is a general 
feature we shall see in our other examples.  Our theoretical results later will show the origin or this 
result. 
 

In Section 2.1 we introduced the vector space NP  consisting of the set of polynomials of 
degree less than or equal to N .  Given this vector space, it is useful to establish a procedure for 
whether or not a subset of polynomials in NP  is linear independent.  If we are given a subset 
{ }1,..., Kp p  of NP .  The check for linear independence, according to the above definition is whether 
or not the equation 
 

 1 1 2 2 0K Kp p pα α α+ + ⋅ ⋅ ⋅ + =  (2.4.28) 
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implies that the scalars 1 2, ,..., Kα α α  are necessarily zero.  Each polynomial in (2.4.28) has the 
representation 
 

 0 1( ) for 1,2,...,N
j j j Njp x x x j Kλ λ λ= + + ⋅ ⋅ ⋅ + =  (2.4.29) 

 
Therefore, (2.4.28) can be written 
 

 
( )

( )
( )

1 1 2 2

1 01 11 1

2 02 12 2

0 1 0

K K

N
N

N
N

N
K K K NK

p p p

x x

x x

x x

α α α

α λ λ λ

α λ λ λ

α λ λ λ

+ + ⋅ ⋅ ⋅ +

= + + ⋅ ⋅ ⋅ +

+ + + ⋅ ⋅ ⋅ +

+ ⋅ ⋅ ⋅ + + + ⋅ ⋅ ⋅ + =

 (2.4.30) 

 
The terms in (2.4.30) can be grouped in like powers of x  to yield 
 

 

( )
( )

( )
( )

1 01 2 02 0

1 11 2 12 1

2
1 21 2 22 2

1 1 2 2 0

K K

K K

K K

N
N N K NK

x

x

x

α λ α λ α λ

α λ α λ α λ

α λ α λ α λ

α λ α λ α λ

+ + ⋅ ⋅ ⋅ +

+ + + ⋅ ⋅ ⋅ +

+ + + ⋅ ⋅ ⋅ +

+ ⋅ ⋅ ⋅ + + + ⋅ ⋅ ⋅ + =

 (2.4.31) 

 
Because (2.4.31) must hold for all x , it implies the following 1N +  equations, written in matrix 
form, which the K  coefficients, 1,..., Kα α , must obey 
 

 



01 02 0 1

11 12 1 2

1

1( 1)

0

K

K

N NK K

KN K

λ λ λ α
λ λ λ α

λ λ α
×+ ×

⋅ ⋅ ⋅   
   ⋅ ⋅ ⋅   
⋅ ⋅ ⋅   

=   ⋅ ⋅ ⋅   
   ⋅ ⋅ ⋅
   

  


 (2.4.32) 

 
If this system only has the zero solution, then the set of polynomials are linearly independent.  
Otherwise, they are dependent. 
 
Example 2.4.4:  Consider the vector space  3P  and the subset of  3P  consisting of the following 
three polynomials: 
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2
1

2
2

2
3

( ) 3 2
( ) 8 2
( ) 7 8

p x x x
p x x x
p x x x

= − +

= + +

= + +

 (2.4.33) 

 
As with the discussion just completed, the test for linear dependence or independence of this subset 
requires that we look for implications of the following linear combination: 
 

 
( ) ( ) ( )

( ) ( ) ( )
1 1 2 2 3 3

2 2 2
1 2 33 2 8 2 7 8 0

p x p x p x

x x x x x x

α α α

α α α

+ +

= − + + + + + + + =
 (2.4.34) 

 
In order for (2.4.34) to hold for all x , like powers of x  must be placed to zero.  The results are 
 

 

0
1 2 3

1
1 2 3

2
1 2 3

3 8 7 0     for 
2 8 0     for 

2 0 for 

x
x
x

α α α

α α α

α α α

+ + =

− + + =

+ + =

 (2.4.35) 

 
As a matrix equation, these three equations can be written 
 

 
1

2

3

3 8 7
2 1 8 0

1 2 1

α
α
α

   
   − =   
      

 (2.4.36) 

 
If you calculate the determinant of the matrix of coefficient, you find it is zero.  The conclusion is 
that the matrix of coefficients is singular and, as a consequence, the coefficients 1 2 3, ,α α α  are not 
all necessarily zero.  As such, the set of three polynomials defined above are linearly dependent.  
More detailed information about this example is obtained if (2.4.36) is converted to reduced row 
echelon form.  The result turns out to be 
 

 
1

2

3

1 0 3
0 1 2 0
0 0 0

α
α
α

−   
    =   
      

 (2.4.37) 

 
Therefore, 1 3 2 33 , 2α α α α= = − .  These results when substituted into (2.4.34)1 yield the following 
relationship between the elements of the set { }1 2 3, ,p p p  
 

 1 2 33 2 0p p p− + =  (2.4.38) 
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Example 2.4.5:  Consider again the vector space  3P .  In this case, we are given the subset of  3P  
consisting of the following four polynomials: 
 

 

1

2
2

3
3

4

( ) 1
( )
( )
( )

p x
p x x
p x x
p x x

=
=

=

=

 (2.4.39) 

 
The test for linear dependence or independence of this subset requires that we look for implications 
of the following linear combination: 
 

 
( ) ( ) ( ) ( )1 1 2 2 3 3 4 4

2 3
1 2 3 4 0

p x p x p x p x

x x x

α α α α

α α α α

+ + +

= + + + =
 (2.4.40) 

 
In order for (2.4.34) to hold for all x , we quickly conclude that 1 2 3 4 0α α α α= = = =  and the set 

{ }1 2 3 4, , ,p p p p  is linearly independent. 
 
 The set NP  is an example of a set of functions.  In Section 2.1 this set was shown to be a 
vector space.  Also, in Section 2.1, we introduced other sets of real valued functions by symbols 
such as: 
 

{ }[ , ]  continuous on all open subsets of [a,b]C a b f f=  
 

{ }2[ , ]  continuous and with continuous second derivatives on all open subsets of [a,b]C a b f f=  
 
We explained that, with the usual definitions of addition of functions and multiplication by scalars, 
these sets are examples of vector spaces. 
 

In the next discussion, we are interested in finding a condition that characterizes when real 
valued functions in a vector space 1[ , ]NC a b− , i.e. the set of real valued functions that are 
continuous and have continuous 1N −  derivatives on every open subset of [ , ]a b , are linearly 
independent.  This question is one that arises, for example, in the study of the solutions of ordinary 
differential equations.  Let { } 1

1,..., [ , ]N
Nf f C a b−⊂ .  The question about linear independence or 

dependence, as with any vector space, requires that we determine the implication of a relationship 
of the form 
 

 1 1 2 2( ) ( ) ( ) 0    for all [ , ]N Nf x f x f x x a bα α α+ + ⋅ ⋅ ⋅ + = ∈  (2.4.41) 
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on the coefficients 1 2, ,..., Nα α α .  Given that these functions have 1N −  continuous derivatives, we 
can differentiate the above equation 1N −  times to obtain the following 1N −  equations: 
 

 

1 1 2 2

1 1 2 2

1 1 1
1 1 2 2

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

N N

N N

N N N
N N

f x f x f x

f x f x f x

f x f x f x

α α α

α α α

α α α− − −

′ ′′ + + ⋅ ⋅ ⋅ + =

′′ ′′ ′′+ + ⋅ ⋅ ⋅ + =
⋅
⋅
⋅

+ + ⋅ ⋅ ⋅ + =

 (2.4.42) 

 
Equations (2.4.41) and (2.4.42), like (2.4.31), must hold for all [ , ]x a b∈ .  Expressed as a matrix 
equation, (2.4.41) and (2.4.42) can be written 
 

 

1 2 1

1 2 2

1 2

1 1 1
1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) 0

( ) ( ) ( )

N

N

N

N N N NN

f x f x f x

f x f x f x

f x f x f x

f x f x f x

α
α

α− − −

⋅ ⋅ ⋅      ′ ′ ′     ⋅ ′′ ′′ ′′  = ⋅ ⋅ ⋅     ⋅⋅ ⋅      ⋅ ⋅ ⋅ 

 (2.4.43) 

 
This matrix equation must hold for all [ , ]x a b∈ .  Given what we know about the solution of 
systems of N N×  equations, we can conclude that if there exists an x , say 0x  in [ , ]a b , where 
 

 

1 0 2 0 0

1 0 2 0 0

1 0 2 0 0

1 1 1
1 0 2 0 0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )det 0

( ) ( ) ( )

N

N

N

N N N
N

f x f x f x

f x f x f x

f x f x f x

f x f x f x− − −

⋅ ⋅ ⋅ 
 ′ ′ ′ 
 ′′ ′′ ′′  ≠
 ⋅ ⋅
 

⋅ ⋅ 
 ⋅ ⋅ ⋅ 

 (2.4.44) 

 
then 1 2 0Nα α α= = ⋅ ⋅ ⋅ = =  and the given set of functions is linearly independent.  If no such 0x  
exists, the set of functions is linearly dependent.  The determinant above is called the Wronskian 
and is of fundamental importance when one tries to establish the linear independence of solutions 
to ordinary differential equations.2  It is usually given the symbol W  and written 

 
2 The Wronskian is named after the Polish mathematician Józef Hoëne-Wroński.  Information about Józef Hoëne-
Wroński can be found, for example, at http://en.wikipedia.org/wiki/J%C3%B3zef_Maria_Hoene-Wro%C5%84ski. 

http://en.wikipedia.org/wiki/J%C3%B3zef_Maria_Hoene-Wro%C5%84ski
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1 2

1 2

1 2
1 2

1 1 1
1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )[ , ,..., ]( )

( ) ( ) ( )

N

N

N
N

N N N
N

f x f x f x

f x f x f x

f x f x f xW f f f x

f x f x f x− − −

⋅ ⋅ ⋅

′ ′ ′

′′ ′′ ′′=
⋅ ⋅
⋅ ⋅

⋅ ⋅ ⋅

 (2.4.45) 

 
Example 2.4.6:  Consider three of the simplest kinds of functions on the interval [ ],π π− , namely 
 
 ( )1 1f x =  (2.4.46) 
 
 ( )2 cosf x x=  (2.4.47) 
 
and 
 
 ( )3 sinf x x=  (2.4.48) 
 
Because these functions have derivatives of all order, they are elements of the set [ , ]C π π∞ − .  The 
question is whether or not set of functions ( ) ( ){ }1,cos ,sinx x is linearly independent.  In this case, 
the Wronskian (2.4.45) is 
 

 

1 2 3

1 2 3 1 2 3

1 2 3

2 2

( ) ( ) ( ) 1 cos sin
[ , , ]( ) ( ) ( ) ( ) 0 sin cos

0 cos sin( ) ( ) ( )

sin cos 1

f x f x f x x x
W f f f x f x f x f x x x

x xf x f x f x

x x

′ ′ ′= = −
− −′′ ′′ ′′

= + =

 (2.4.49) 

 
Because the Wronskian is nonzero, the set of functions { }1,cos ,sinx x  is a linearly independent set. 
 
Example 2.4.7:  Consider the set { }1,cos ,sin ,cos2 ,sin 2x x x x  in [ , ]C π π∞ − .  The question of 

linear dependence or independence of { }1,cos ,sin ,cos2 ,sin 2x x x x  depends upon whether or not 
the Wronskian 
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( )1 2 3 4 5

1 cos sin cos2 sin 2
0 sin cos 2sin 2 2cos2

[ , , , , ] 0 cos sin 4cos2 4sin 2
0 sin cos 8sin 2 8cos2
0 cos sin 16cos2 16sin 2

sin cos 2sin 2 2cos2
cos sin 4cos2 4sin 2

sin cos 8sin 2 8cos2

x x x x
x x x x

W f f f f f x x x x x
x x x x
x x x x

x x x x
x x x x

x x x

− −
= − − − −

− −

− −
− − − −

=
− −

cos sin 16cos2 16sin 2
x

x x x x

 (2.4.50) 

 
is zero or not for some [ ]0 ,x π π∈ − .  Rather than try to expand this 4 4×  determinant, we can 
evaluate it at 0x =  to obtain 
 

 
( )1 2 3 4 5

0 1 0 2
1 0 2 1 0 2

1 0 4 0
[ , , , , ] 0 1 0 8 0 4 0

0 1 0 8
0 16 0 1 0 8

1 0 16 0

1 2 1 2
16 4 16(6) 4(6) 72

1 8 1 8

W f f f f f
− −

= = − − − −
− −

− −

= − + = − =
− − − −

 

 
The fact that the Wronskian is nonzero at 0x =  tells us that the functions in the set 
{ }1,cos ,sin ,cos2 ,sin 2x x x x  are linearly independent. 
 

Many more examples of the type just discussed can be generated by simply looking at sets 
S  in [ , ]C π π∞ −  of the type 
 
 { }1,cos ,sin ,cos2 ,sin 2 ,...,cos ,sinx x x x mx mx=S  (2.4.51) 
 
where m  is an arbitrary positive integer.  The bottom line is that that in [ , ]C π π∞ −  there are 
subsets of linearly independent vectors (functions) with an arbitrary number of elements.  By 
choice of m , one can constructs sets of linearly independent vectors of any size desired.  We shall 
have more to say about this example later.  However, if you happen to be familiar with the theory 
of what is called a Fourier Series you know that certain classes of functions can be represented as 
infinite series of the form 
 

 0

1 1
( ) cos sin

2 n n
n n

af x a nx b nx
∞ ∞

= =

= + +∑ ∑  (2.4.52) 

 
where 
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 1 ( )cos 0,1,2,3,...na f x xdx n
π

ππ −

= =∫  (2.4.53) 

 
and 
 

 1 ( )sin 1,2,3,...nb f x xdx n
π

ππ −

= =∫  (2.4.54) 

 
In some sense, the infinite set of vectors (functions) 
 
 { }1,cos ,sin ,cos2 ,sin 2 ,cos3 ,sin3 ,...x x x x x x=S  (2.4.55) 
 
span [ , ]C π π∞ − . 
 
 Next, we need to record a theorem which will prove useful later. 
 
Theorem 2.4.3: Let { }1 2, ,..., Nv v v  be a set of vectors in a vector space V .  Also, let 

( )1 2Span , ,..., Nv v v  be the span of the set { }1 2, ,..., Nv v v .  Then a vector ( )1 2Span , ,..., N∈v v v v  

has a unique representation as a linear combination of { }1 2, ,..., Nv v v  if and only if the set 

{ }1 2, ,..., Nv v v  is linearly independent. 
 
Proof: First, assume ( )1 2Span , ,..., N∈v v v v  is not unique, i.e., it has two different representations 
 
 1 1 2 2 N Nα α α= + + ⋅ ⋅ ⋅ +v v v v  (2.4.56) 
 
and 
 
 1 1 2 2 N Nβ β β= + + ⋅ ⋅ ⋅ +v v v v  (2.4.57) 
 
The difference of these two equations yields 
 
 ( ) ( ) ( )1 1 1 2 2 2 N N Nα β α β α β− + − + ⋅ ⋅ ⋅ + − =v v v 0  (2.4.58) 
 
If we add the given condition that the set { }1 2, ,..., Nv v v  is linearly independent, the definition of 
linear independence implies that (2.4.58) can only be satisfied if 
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1 1

2 2

N N

α β
α β

α β

=
=
⋅
⋅
⋅
=

 (2.4.59) 

 
Equation (2.4.59) establishes the uniqueness of the representation for ( )1 2Span , ,..., N∈v v v v .  If 

the set { }1 2, ,..., Nv v v  is linearly dependent, the definition of linear dependence asserts that not all 
of the coefficients of in the equation 
 
 ( ) ( ) ( )1 1 1 2 2 2 N N Nα β α β α β− + − + ⋅ ⋅ ⋅ + − =v v v 0  (2.4.60) 
 
can be zero.  Thus, the representation for ( )1 2Span , ,..., N∈v v v v  is not unique. 
 
 
Exercises: 
 
2.4.1  Given the vector space  4P  and the subset { }1 2 3 4 5, , , ,p p p p p=S  of  4P  defined by 
 

 

( )
( )
( ) ( )( )
( ) ( )( )( )
( ) ( )( )( )( )

1

2

3

4

5

1p x

p x x a

p x x a x b

p x x a x b x c

p x x a x b x c x d

=

= −

= − −

= − − −

= − − − −

 (2.4.61) 

 
where , , ,a b c d  are real numbers.  Show that the set S  is linearly independent.  Polynomials of the 
form (2.4.61) are the building blocks of a form of interpolation known as Newton Interpolation. 
 
2.4.2  Given the vector space  4P  and the subset { }1 2 3 4 5, , , ,p p p p p=S  of  4P  defined by 
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( ) ( )( )( )( )
( )( )( )( )

( ) ( )( )( )( )
( )( )( )( )

( ) ( )( )( )( )
( )( )( )( )

( ) ( )( )( )( )
( )( )( )( )

( ) ( )( )( )( )
( )( )( )( )

1

2

3

4

5

x b x c x d x e
p x

a b a c a d a e

x a x c x d x e
p x

b a b c b d b e

x a x b x d x e
p x

c a c b c d c e

x a x b x c x e
p x

d a d b d c d e

x a x b x c x d
p x

e a e b e c e d

− − − −
=

− − − −

− − − −
=

− − − −

− − − −
=

− − − −

− − − −
=

− − − −

− − − −
=

− − − −

 (2.4.62) 

 
where , , , ,a b c d e  are distinct real numbers.  Show that the set S  is linearly independent.  
Polynomials of the form (2.4.62) are the building blocks of a form of interpolation known as 
Lagrange Interpolation. 
 
2.4.3  Determine whether or not the vectors ,sinxe x  and xe−  are linearly independent in 

[ ],C π π∞ − . 
 
2.4.4   Use the more or less obvious generalization to 4 4×  determinants the formula for the 
derivative of a determinant given in Exercise 1.10.16 and show that the derivative of the 
Wronskian in equation (2.4.50)2 is zero.  The conclusion is that the determinant, in this case, does 
not actually depend upon x . 
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Section 2.5. Basis and Dimension 
 
 
 In this section, we introduce two important properties of vector spaces.  These properties 
are basis and dimension.  In rough terms, a basis is a set of vectors that form building elements for 
the other vectors in the vector space.  Also in rough terms, the dimension of a vector space is the 
number of vectors that form this basis.  A more formal approach to these concepts begins with the 
following definition: 
 
Definition:  A minimal spanning set is the set containing the smallest number of vectors of V  
whose span is V . 
 
A minimal spanning set has an important characteristic that might not be evident from this 
definition.  Elements of a minimal spanning set are necessarily linearly independent.  If they were 
not, some could be eliminated in favor of others in the set and, such elimination, would violate the 
idea of the spanning set being minimal. 
 
Definition:  A basis for a vector space V  is a minimal spanning set.  In other words, a basis for a 
vector space V  is a set of vectors { }1 2, ,..., Nv v v  such that 
 

a) The set { }1 2, ,..., Nv v v  is linearly independent. 

b) ( )1 2Span , ,..., N =v v v V  
 
Example 2.5.1:  Consider the vector space 4 1×=V M  consisting of the set of 4 1×  column vectors.  
An arbitrary vector ∈v V  has the representation 
 

 

1

2

3

4

υ
υ
υ
υ

 
 
 =
 
 
 

v  (2.5.1) 

 
By rearranging (2.5.1), we can write 
 

 

1

2
1 2 3 4

3

4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

υ
υ

υ υ υ υ
υ
υ

         
         
         = = + + +
         
         

        

v  (2.5.2) 

 
This equation shows that every vector ∈v V  is in the span of  
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 1 2 3 4

1 0 0 0
0 1 0 0

, ,  and 
0 0 1 0
0 0 0 1

       
       
       = = = =
       
       
       

i i i i  (2.5.3) 

 
Because these four column vectors (2.5.3) are linearly independent, the set { }1 2 3 4, , ,i i i i  is a basis 

for 4 1×=V M .  This particular basis is sometimes called the standard basis of 4 1×=V M . 
 
Example 2.5.2: Consider the vector space 2 2×=V M .  Since A∈V , it has the representation 
 

 11 12
11 12 21 22

21 22

1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1

A A
A A A A A

A A
         

= = + + +         
        

 (2.5.4) 

 
the 2 2×  matrices  
 

 11 12 21 22

1 0 0 1 0 0 0 0
, ,  and 

0 0 0 0 1 0 0 1
       

= = = =       
       

i i i i  (2.5.5) 

 
form a basis for 2 2×=V M .  Like the first example above, this basis is sometimes called the 
standard basis of 2 2×=V M . 
 
Theorem 2.5.1: If N  is a positive integer and { }1 2, ,..., Nv v v  is a basis for a vector space V , then 

any set of vectors { }1 2, ,..., Mu u u , where M  is a positive (finite) integer greater than N , is linearly 
dependent. 
 
Proof: Since { }1 2, ,..., Nv v v  is a basis of V , every vector in the set { }1 2, ,..., Mu u u  can be written 
 

 1 1 2 2
1

for 1,2,...,
N

i i i iN N ij j
j

A A A A i M
=

= + + ⋅ ⋅ ⋅ + = =∑u v v v v  (2.5.6) 

 
The theorem asserts the set { }1 2, ,..., Mu u u  is linear dependent when M N> .  The test for linear 
independence or dependence requires that we examine a linear relationship of the form 
 

 1 1 2 2
1

M

M M i i
i

α α α α
=

+ + ⋅ ⋅ ⋅ + = =∑u u u u 0  (2.5.7) 

 
If the vectors { }1 2, ,..., Mu u u  are linear dependent when M N> , as the theorem asserts, some of 
the coefficients 1 2, ,..., Mα α α  must be nonzero.  Equation (2.5.7) can be expressed in terms of the 
basis { }1 2, ,..., Nv v v  by use (2.5.6).  The result of utilizing (2.5.6) in (2.5.7) is 
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1 1 1 1 1

M M N N M

i i i ij j i ij j
i i j j i

A Aα α α
= = = = =

 = = = 
 

∑ ∑ ∑ ∑ ∑u v v 0  (2.5.8) 

 
We are given that the set { }1 2, ,..., Nv v v  is linearly independent.  As a result, the coefficients in 
(2.5.8) must be zero.  The resulting N  equations for the M N>  coefficients 1 2, ,..., Mα α α  are 
 

 
1

0 for 1,2,...,
M

i ij
i

A j Nα
=

= =∑  (2.5.9) 

 
The proof of the theorem comes down to asking whether or not (2.5.9) has nonzero solutions for 
some of the coefficients 1 2, ,..., Mα α α .  As an undetermined system, i.e., a system with more 
unknowns than equations, it is the case that the 1 2, ,..., Mα α α  are not all necessary zero and, as a 
result, the set { }1 2, ,..., Mu u u  is linearly dependent. 
 
Corollary:  If { }1 2, ,..., Nv v v  and { }1 2, ,..., Mu u u  are both bases of a vector space V , then M N= . 
 
Proof:  Theorem 1.5.1 says that if M N> , the set { }1 2, ,..., Mu u u  must be linearly dependent.  

Since we have postulated that { }1 2, ,..., Mu u u  is linearly independent, we must conclude that 

M N≤ .  If we now reverse the roles of { }1 2, ,..., Nv v v  and { }1 2, ,..., Nu u u , we are led to conclude 
that N M≤ .  These two conditions force the conclusion that M N= . 
 
 We have defined a basis as a minimal spanning set.  We have just established with Theorem 
2.5.1 that when a basis has a finite number of elements it is also a maximal set in the sense that it 
not a proper subset of any other linearly independent set.  The above corollary allows us to 
conclude, for the case where the basis has a finite number of elements, that number is a property of 
the vector space.  It is given a name. 
 
Definition:  Let V  be a vector space.  If V  has a basis of N  vectors, where N is a positive 
integer, then V  is said to have dimension dimN = V . 
 
Definition:  The subspace { }0  of V  has, by definition, the dimension 0 . 
 
Definition:  The vector space V  is finite dimensional if the basis has a finite number of members.  
If this is not finite dimensional, it is infinite dimensional. 
 
 Exclusive of a few examples, the vector spaces we shall study will be finite dimensional.  
The following two theorems are most useful in the applications that will follow later in this 
textbook; 
 
Theorem 2.5.2:  If U  is a subspace of a vector space V , then 
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 dim dim≤U V  (2.5.10) 
 
Proof:  This result is more or less obvious.  If { }1 2, ,..., Mu u u  is a basis for U  and { }1 2, ,..., Nv v v  is 
a basis for V , then we need to rule out the case M N> .  If M N> , the basis for 
V ,{ }1 2, ,..., Nv v v , would not be a minimum spanning set. 
 
Theorem 2.5.3:  If U  is a subspace of a vector space V , then dim dim=U V  if and only if 

=U V . 
 
Proof:  If =U V , then dim dim=U V .  Conversely, if dim dim=U V , a basis for the subspaceU  
is a basis for V  which implies =U V  
 
Example 2.5.3:  Examples 2.5.1 and 2.5.2 tell us that 3 1dim 3× =M  and 2 2dim 4× =M .  It is a fact 
that 
 
 dim M N MN× =M  (2.5.11) 
 
Example 2.5.4:  Every element of the set  NP  is a polynomial of the form (2.1.16), repeated, 
 
 ( ) 2

0 1 2
N

Np x x x xλ λ λ λ= + + + ⋅ ⋅ ⋅ +  (2.5.12) 
 
An elementary generalization of Example 2.4.5 shows that the set { }21, , ,..., Nx x x  is linearly 
independent.  It is perhaps evident that if this set is augmented by any other polynomial of order 
less than or equal to N  the resulting set will be linearly dependent.  The conclusion from this 
observation is that 
 
  dim 1N N= +P  (2.5.13) 
 
Example 2.5.5:  This example is a vector space that is not finite dimensional.  Let  ∞P  be the vector 
space of all polynomials.  We assume it is finite dimensional and look for confirmation or a 
contradiction.  If it is finite dimensional, say of dimension N , then we know from Theorem 2.5.1 
that a set of 1N +  polynomials in  ∞P  would be linearly dependent.  Consider the subset of  ∞P  
defined by 
 
 { }21, , ,..., Nx x x=S  (2.5.14) 
 
The subset S  of  ∞P  contains 1N +  polynomials.  Theorem 2.5.1 asserts that if  ∞P  has dimension 
N , then S  is a linearly dependent set.  A convenient test of this linear dependence is given by 
whether or not the Wronskian, equation (2.4.45), is zero for some x∈R .  It follows from (2.4.45) 
that the Wronskian of this set of functions in (2.5.14) is 
 



Sec. 2.5 • Basis and Dimension  167 

 

 ( )( ) ( )

2

1

2
2

1
0 1 2
0 0 2 ( 1)

[1, , ,..., ]( ) 2! 3! ! 0
0

0 0 0 !

N

N

N
N

x x x
x Nx

N N x
W x x x x N

N

−

−

⋅ ⋅

−
= = ⋅⋅⋅ >
⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅

 (2.5.15) 

 
Thus, the set S  must also be linearly independent.  This conclusion contradicts the assertion that 
the dimension of  ∞P  is N .  Because N  is arbitrary, we can only conclude that  ∞P  is not finite 
dimensional, i.e. it is infinite dimensional. 
 
Example 2.5.6: The set [ , ]C π π∞ −  is also infinite dimensional.  The proof is like the last one 
except that one starts with the set 
 
 { }1,cos ,sin ,cos2 ,sin 2 ,...,cos ,sinx x x x Nx Nx=S  (2.5.16) 
 
for some prescribed N .  On the presumption that the dimension of [ , ]C π π∞ −  is 2 1N +  (the 
number of members of S ), the next step is to consider the set 
 
 { }1 1,cos ,sin ,cos2 ,sin 2 ,...,cos ,sin ,cos( 1) ,sin( 1)x x x x Nx Nx N x N x= + +S  (2.5.17) 
 
and examine whether or not this set is linearly independent or independent.  It turns out that it is 
linearly independent for all N .  The fact that N  is arbitrary leads to the conclusion that [ , ]C π π∞ −  
is infinite dimensional. 
 
 Example 2.5.6 explains that [ , ]C π π∞ −  is an infinite dimensional subspace.  For given N , 
the set S  is linearly independent because its Wronskian is non zero at, for example, 0x = .  The 
span of S , SpanS , is a vector space of dimension N .  It is an example of a finite dimensional 
subspace of an infinite dimensional vector space.  The theory of Fourier Series is, in effect, an 
approximation of an arbitrary vector in [ , ]C π π∞ −  by a finite dimensional vector in S .  Our 
interest is primarily in the study of finite dimensional vector spaces, thus we will not pursue the 
mathematical ideas behind Fourier Series in this chapter. 
 
 
Exercises 
 
2.5.1  What is the dimension of the subspace spanned by the set { }1 2 3, ,v v v , where 
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 1 2 3

1 3 1
2 1 5

, ,
3 2 8

4 1 7

     
     − −     = = =
−     
     −     

v v v  
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Section 2.6. Change of Basis 
 
 
 In Theorem 2.5.1 we established that if { }1 2, ,..., Nv v v  is a basis for a vector space V , then 

any set of vectors { }1 2, ,..., Mu u u  in V , M N> , is linearly dependent.  We also established the 
Corollary to Theorem 2.5.1 that said that if two different sets of vectors were a basis for V , then 
each set had to have the same number of elements.  This number is the dimension of V  which we 
wrote dimV . 
 

Given Theorem 2.5.1, and a basis { }1 2, ,..., Ne e e for a finite dimensional vector space V , we 
can conclude that an arbitrary vector ∈v V  has the representation3 
 

 1 2
1 2

1

N
N j

N j
j

υ υ υ υ
=

= + + ⋅ ⋅ ⋅ + =∑v e e e e  (2.6.1) 

 
The scalars 1 2, ,..., Nυ υ υ  are called the components of v  with respect to the basis { }1 2, ,..., Ne e e .  If 
we apply the results of Theorem 2.4.3, we can conclude that the components of v  with respect to 
the basis { }1 2, ,..., Ne e e  are unique. 
 

While (2.6.1) holds in great generality for every vector space of finite dimension, it is 
important to connect it with geometric ideas that are a part of our experience with elementary 
mathematics.  For example, consider the two-dimensional vector space of geometric vectors in the 
plane.  We can visualize vectors in the plane with the following figure: 

 
 

 
3 The scalars are indexed with superscripts in order to follow a notation conventional in Linear Algebra.  For much of 
what we do, there is no loss of generality if one wanted to stick strictly with subscripts. 

2e  

1e  

v  

2
2υ e  

1 2
1 2υ υ= +v e e  

1
1υ e  
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If we choose a different basis { }1 2ˆ ˆ,e e , we can also expand the vector v  in the form 
 
 1 2

1 2ˆ ˆ ˆ ˆυ υ= +v e e  (2.6.2) 
 
The geometric representation of this equation can be displayed by superimposing it on the above 
figure.  The result is 

 
 
This figure is a geometric representation of a change of basis.  The fact that a finite dimensional 
vector space has multiple ways to represent the same vector gives rise to the idea of a change of 
basis in a vector space.  In the study of geometric vectors, this change is usually characterized as a 
change of coordinates.  In any case, we shall now formalize the transformation rules of vectors 
under a change of basis. 
 
 Let { }1 2, ,..., Ne e e  and { }1 2ˆ ˆ ˆ, ,..., Ne e e  be two bases for an N  dimensional vector space V .  

Because { }1 2, ,..., Ne e e  is a basis, we can express any vector in V , including those in 

{ }1 2ˆ ˆ ˆ, ,..., Ne e e , as an expansion in the vectors 1 2, ,..., Ne e e .  Therefore, for the thj  vector of 

{ }1 2ˆ ˆ ˆ, ,..., Ne e e , 
 

 
1

ˆ for  1,2,...,
N

k
j j k

k
T j N

=

= =∑e e  (2.6.3) 

 
One way to look at (2.6.3) is that the coefficient k

jT  is the thk  component of ˆ je with respect to the 

basis { }1 2, ,..., Ne e e . 

2e  

1e  

v  

2υ e  

2

2
2

1

1

1
1

2

ˆ ˆ ˆ ˆ
υ

υ υ

υ= +

+=

v e e
e e

 

1ê  
2ê  

1υ e  

1
1ˆ ˆυ e  

2
2ˆ ˆυ e  
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If we reverse the roles of { }1 2ˆ ˆ ˆ, ,..., Ne e e  and { }1 2, ,..., Ne e e , then we can also write 

 

 
1

ˆ ˆ for  1,2,...,
N

s
k k s

s
T k N

=

= =∑e e  (2.6.4) 

 
As one would suspect, the coefficients ˆ s

kT , , 1,...,s k N= , are related to the coefficients k
jT , 

, 1,...,k j N= .  To see this relationship, we can substitute (2.6.4) into (2.6.3) and obtain 
 

 
1 1 1 1 1

ˆ ˆˆ ˆ ˆ
N N N N N

k k s s k
j j k j k s k j s

k k s s k
T T T T T

= = = = =

 = = =  
 

∑ ∑ ∑ ∑ ∑e e e e  (2.6.5) 

 
Likewise, we can substitute (2.6.3) into (2.6.4) and obtain 
 

 
1 1 1 1 1

ˆ ˆ ˆˆ
N N N N N

s s q q s
k k s k s q s k q

s s q q s
T T T T T

= = = = =

 = = =  
 

∑ ∑ ∑ ∑ ∑e e e e  (2.6.6) 

 
These equations force the following relationships on the coefficients ˆ j

kT  and k
jT , , 1,...,k j N=  

 

 
1 1

ˆ ˆand   
N N

s k s q s q
k j j s k k

k s
T T T Tδ δ

= =

= =∑ ∑  (2.6.7) 

 
Where the Kronecker delta, defined by equation (1.1.28), has been redefined with the notation 
 

 
1 for 
0 for 

k
j

k j
k j

δ
=

=  ≠
 (2.6.8) 

 
It is helpful to write (2.6.7) in matrix notation by introduction of the notation4 
 
 ˆ ˆandk j

j kT T T T  = =     (2.6.9) 

 
These definitions allow the two equations (2.6.7) to be written as matrix equations 
 
 ˆ ˆand    TT I TT I= =  (2.6.10) 
 
These two equations tell us that the matrix T  is nonsingular and that 1T̂ T −= .  The matrix T  is 
called the transition matrix. 
 

 
4 When the superscript-subscript notation is used as with k

jT  the convention is that the superscript denotes the row of 
the matrix and the subscript the column. 
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Example 2.6.1:  Let V  be a vector space of dimension 3 with basis { }1 2 3, ,e e e .  You are given a 

second basis { }1 2 3ˆ ˆ ˆ, ,e e e defined by the formulas 
 

 
1 1 2 3

2 1 3

3 1 2 3

ˆ 2
ˆ
ˆ 4 6

= − −
= − +
= − +

e e e e
e e e
e e e e

 (2.6.11) 

 
If (2.6.11) and (2.6.3) are compared, we see that the transition matrix is 
 

 

1 1 1
1 2 3
2 2 2

1 2 3
3 3 3

1 2 3

2 1 4
1 0 1
1 1 6

j
k

T T T
T T T T T

T T T

  − 
    = = = − −     
  −   

 (2.6.12) 

 
The inverse of the transition matrix turns out to be 
 

 

1 1 1 1
1 2 3

2 2 2
1 2 3

3 3 3
1 2 3

1 10 1
ˆ ˆ ˆ 9 9 92 1 4

7 16 2ˆ ˆ ˆ ˆ ˆ 1 0 1
9 9 9ˆ ˆ ˆ 1 1 6 1 1 1

9 9 9

j
k

T T T

T T T T T

T T T

−

 − − −   −         = = = − − = − −        −        
  

 (2.6.13) 

 
Therefore, (2.6.4) takes the form 
 

 

1 2 3
1 1 1 1 1 2 1 3 1 2 2

1

1 2 3
2 2 2 1 2 2 2 3 1 2 2

1

1 2 3
3 3 3 1 3 2 3 3 1 2

1

1 7 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ
9 9 9
10 16 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ
9 9 9
1 2 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ
9 9 9

N
j

j
j

N
j

j
j

N
j

j
j

T T T T

T T T T

T T T T

=

=

=

= = + + = − − +

= = + + = − − +

= = + + = − + +

∑

∑

∑

e e e e e e e e

e e e e e e e e

e e e e e e e e

 (2.6.14) 

 
Example 2.6.2:  Consider the vector space of polynomials of degree less than or equal to 3, i.e., 

 3P .  Elements of  3P  consist of polynomials of degree 3 or less and from (2.1.16) are defined by 
 
 ( ) 2 3

0 1 2 3p x x x xλ λ λ λ= + + +  (2.6.15) 
 
Example 2.4.5 established that a basis for this four dimensional vector space are the polynomials 
(2.4.39), repeated, 
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1

2
2

3
3

4

( ) 1
( )
( )
( )

p x
p x x
p x x
p x x

=
=

=

=

 (2.6.16) 

 
If , ,a b c  are given real numbers, one can establish that the four polynomials 
 

 

( )
( )
( ) ( )( )
( ) ( )( )( )

1

2

3

4

ˆ 1
ˆ

ˆ

ˆ

p x

p x x a

p x x a x b

p x x a x b x c

=

= −

= − −

= − − −

 (2.6.17) 

 
are also linearly independent and thus a basis.  Polynomials of the form (2.6.17) are the building 
blocks of a form of interpolation known as Newton Interpolation.  The change of basis from 
{ }1 2 3 4, , ,p p p p  to { }1 2 3 4ˆ ˆ ˆ ˆ, , ,p p p p  is defined by (2.6.3).  In the notation being used for the basis 
elements, (2.6.3) is 
 

 
4

1

ˆ for  1,2,...,4k
j j k

k
p T p j

=

= =∑  (2.6.18) 

 
At each x∈R , (2.6.18) becomes 
 

 ( ) ( )
4

1

ˆ for  1,2,...,4k
j j k

k
p x T p x j

=

= =∑  (2.6.19) 

 
The components of the transition matrix, k

jT , for , 1,2,...,4j k =  are obtained by substitution of 
(2.6.16) and (2.6.17) into (2.6.19).  The resulting four equations are 
 

 
( )( )

( )( )( )

1 2 3 2 4 3
1 1 1 1
1 2 3 2 4 3

2 2 2 2
1 2 3 2 4 3

3 3 3 3

1 2 3 2 4 3
4 4 4 4

1 T T x T x T x
x a T T x T x T x

x a x b T T x T x T x

x a x b x c T T x T x T x

= + + +

− = + + +

− − = + + +

− − − = + + +

 (2.6.20) 

 
If these four equations are forced to hold for all x∈R , it readily follows that the transition matrix 
is given by 
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( )

( )

1 1 1 1
1 2 3 4
2 2 2 2

1 2 3 4
3 3 3 3

1 2 3 4
4 4 4 4

1 2 3 4

1
0 1
0 0 1
0 0 0 1

j
k

a ab abcT T T T
a b ab ac bcT T T T

T T
a b cT T T T

T T T T

− −   
   − + + +    = = =    − + + 
   

  

 (2.6.21) 

 
The inverse transition matrix turns out to be 
 
 

( )
( )

1 1 1 1 1 2 3
1 2 3 4

2 2 2 2 2 2
1 2 3 4

3 3 3 3
1 2 3 44

4 4 4 4
1 2 3 44

ˆ ˆ ˆ ˆ 1 1
ˆ ˆ ˆ ˆ 0 1 0 1ˆ ˆ
ˆ ˆ ˆ ˆ 0 0 1 0 0 1

0 0 0 1 0 0 0 1ˆ ˆ ˆ ˆ

j
k

T T T T a ab abc a a a
T T T T a b ab ac bc a b a ab b

T T
a b c a b cT T T T

T T T T

−  − −       − + + + + + +     = = = =    − + +  + +          
  (2.6.22) 
 
Example 2.6.3:  Consider again the vector space of polynomials of degree less than or equal to 3, 
i.e.,  3P .  If , , ,a b c d  are distinct real numbers, one can establish that the four polynomials 
 

 

( ) ( )( )( )
( )( )( )

( ) ( )( )( )
( )( )( )

( ) ( )( )( )
( )( )( )

( ) ( )( )( )
( )( )( )

1

2

3

4

ˆ

ˆ

ˆ

ˆ

x b x c x d
p x

a b a c a d

x a x c x d
p x

b a b c b d

x a x b x d
p x

c a c b c d

x a x b x c
p x

d a d b d c

− − −
=

− − −

− − −
=

− − −

− − −
=

− − −

− − −
=

− − −

 (2.6.23) 

 
are also linearly independent and thus a basis.  Polynomials of the form (2.6.23) are the building 
blocks of a form of interpolation known as Lagrange Interpolation.  In any case, the change of basis 
from { }1 2 3 4, , ,p p p p  to { }1 2 3 4ˆ ˆ ˆ ˆ, , ,p p p p  is again defined by(2.6.18).  The same kind of calculation 
used in Example 2.6.2 yields the transition matrix 
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( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )
1 1

bcd acd abd abc
a b a c a d b a b c b d c a c b c d d a d b d c

cd bd bc ad cd ac ab ad bd ab ac bc
a b a c a d b a b c b d c a c b c d d a d b d c

T
b c d a c d a b d a b c

a b a c a d b a b c b d c a c b c d d a d b d c

a b a c a d b a b c b

− − − −
− − − − − − − − − − − −

+ + + + + + + +
− − − − − − − − − − − −

=
+ + + + + + + +

− − − −
− − − − − − − − − − − −

− − − − − ( ) ( )( )( ) ( )( )( )
1 1

d c a c b c d d a d b d c

 
 
 
 
 
 
 
 
 
 
 

− − − − − − −  
  (2.6.24) 
 
The inverse transition matrix turns out to be 
 

 

2 3

2 3

2 3

2 3

1
1ˆ
1
1

a a a
b b b

T
c c c
d d d

 
 
 =
 
 
 

 (2.6.25) 

 
If (2.6.25) is compared to the Vandermonde matrix given in (1.10.33), we see that it is a 
Vandermonde matrix transposed. 
 
 The change of basis from { }1 2, ,..., Ne e e  to { }1 2ˆ ˆ ˆ, ,..., Ne e e  is characterized by the transition 
matrix through equations (2.6.3) and (2.6.4).  If we are given a vector ∈v V , it can be expanded in 
the basis { }1 2, ,..., Ne e e  or, equivalently, in the basis { }1 2ˆ ˆ ˆ, ,..., Ne e e .  The result is two equivalent 
representations of the same vector of the forms 
 

 
1

N
j

j
j
υ

=

=∑v e  (2.6.26) 

 
and 
 

 
1

ˆ ˆ
N

j
j

j
υ

=

=∑v e  (2.6.27) 

 
As explained at the start of this Section, the set of scalars { }1 2, ,..., Nυ υ υ  are the components of v  

with respect to the basis { }1 2, ,..., Ne e e .  Likewise, the set of scalars { }1 2ˆ ˆ ˆ, ,..., Nυ υ υ  are the 

components of v  with respect to the basis { }1 2ˆ ˆ ˆ, ,..., Ne e e .  The connection between the two bases as 
given by (2.6.3) and (2.6.4).  We shall now use these formulas to derive a transformation rule for 
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the components resulting from the basis change from { }1 2, ,..., Ne e e  to { }1 2ˆ ˆ ˆ, ,..., Ne e e .  The first step 

is to equate (2.6.26) and (2.6.27) and use (2.6.3) to eliminate the basis { }1 2ˆ ˆ ˆ, ,..., Ne e e .  Therefore, 
 

 
1 1 1 1 1 1

ˆ ˆ ˆ ˆ
N N N N N N

j j j k k j
j j j k j k

j j j k k j
T Tυ υ υ υ

= = = = = =

= = = =∑ ∑ ∑ ∑ ∑∑v e e e e  (2.6.28) 

 
In order to extract additional information from (2.6.28), it is rewritten 
 

 
1 1 1

ˆ
N N N

j k j
j j k

j k j
Tυ υ

= = =

=∑ ∑∑e e  (2.6.29) 

 
Next, we simply change the name of the summation index on the left side from j  to k  and rewrite 
the result as 
 

 
1 1

ˆ
N N

k k j
j k

k j
Tυ υ

= =

 
− = 

 
∑ ∑ e 0  (2.6.30) 

 
Because the basis { }1 2, ,..., Ne e e  is a linearly independent set, (2.6.30) yields the desired component 
transformation rule 
 

 
1

ˆ
N

k k j
j

j
Tυ υ

=

=∑  (2.6.31) 

 
If we were to have eliminated { }1 2, ,..., Ne e e  in favor of { }1 2ˆ ˆ ˆ, ,..., Ne e e , we would have obtained the 
transformation rule 
 

 
1

ˆˆ
N

k k j
j

j
Tυ υ

=

=∑  (2.6.32) 

 
which, of course, is just what one obtains when the system (2.6.31) is inverted.  Equations (2.6.31) 
and (2.6.32) represent the transformation rules for the components of vectors ∈v V . 
 
Example 2.6.4:  Given the basis { }1 2 3, ,e e e for a vector space V  and a vector ∈v V  defined by 
 
 1 2 32 3= + +v e e e  (2.6.33) 
 
The components with respect to { }1 2 3, ,e e e  are 
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1

2

3

1
2
3

υ

υ

υ

=

=

=

 (2.6.34) 

 
You are given a second basis { }1 2 3ˆ ˆ ˆ, ,e e e defined by (2.6.11) of Example 2.6.1.  It follows from 
(2.6.32) and (2.6.13) that 
 

 

1 1 11 1
1 2 3

2 2 2 2 2
1 2 3

3 33 3 3
1 2 3

1 10 1 8
ˆ ˆ ˆ 9 9 9 3ˆ 1

7 16 2 11ˆ ˆ ˆˆ 2
9 9 9 3ˆ ˆ ˆˆ 31 1 1 2

9 9 9 3

T T T

T T T

T T T

υ υ
υ υ
υ υ

   − − − −                     = = − − = −                            
      

 (2.6.35) 

Therefore, with respect to the basis { }1 2 3ˆ ˆ ˆ, ,e e e , 
 

 1 2 3
8 11 2ˆ ˆ ˆ
3 3 3

= − − +v e e e  (2.6.36) 

 
Example 2.6.5:  Given the basis { }1 2 3 4, , ,p p p p  of the vector space  3P  defined by (2.6.16) and a 
member of  3P , i.e., a third order polynomial given by  
 
 ( ) ( ) ( ) ( ) ( )1 2 3 4 2 3

1 2 3 4 4 3 2p x p x p x p x p x x x xυ υ υ υ= + + + = − − +  (2.6.37) 
 
Therefore, the components with respect to { }1 2 3 4, , ,p p p p  are 
 

 

1

2

3

4

4
3
2

1

υ

υ

υ

υ

=

= −

= −

=

 (2.6.38) 

 
You are given a second basis { }1 2 3 4ˆ ˆ ˆ ˆ, , ,p p p p defined by the following special case of (2.6.17) 
 

 

( )
( )
( ) ( )( )
( ) ( )( )( )

1

2

3

4

ˆ 1
ˆ 1
ˆ 1 2
ˆ 1 2 3

p x

p x x

p x x x

p x x x x

=

= −

= − −

= − − −

 (2.6.39) 
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It follows from (2.6.32), (2.6.38), the inverse transition matrix (2.6.22) and the choices 
1, 2, 3a b c= = =  that 

 

 

1 2 3 1

2 2 2 2

3 3

4 4

ˆ 1
ˆ 0 1
ˆ 0 0 1
ˆ 0 0 0 1

1 1 1 1 4 0
0 1 3 7 3 2
0 0 1 5 2 4
0 0 0 1 1 1

a a a
a b a ab b

a b c

υ υ
υ υ
υ υ
υ υ

     
     + + +     =
     + +
     
     

     
     − −     = =

−     
     
     

 (2.6.40) 

 
Therefore, with respect to the basis { }1 2 3 4ˆ ˆ ˆ ˆ, , ,p p p p , the polynomial p  is given by 
 

 
( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( )( )

1 2 3 4
1 2 3 4ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

2 1 4 1 2 1 2 3

p x p x p x p x p x

x x x x x x

υ υ υ υ= + + +

= − − + − − + − − −
 (2.6.41) 

 
 
Exercises: 
 
2.6.1  Given the following two bases of 2 1×M  
 

 1 2

1 0
,

0 1
   

= =   
   

e e  (2.6.42) 

 
and 
 

 1 2

5 3
ˆ ˆ,

3 2
   

= =   
   

e e  (2.6.43) 

 
Find the transition matrix. 
 
2.6.2 If v  is defined with respect to the basis (2.6.42) 
 
 1 210 7= +v e e  (2.6.44) 
 
determine the components of v  with respect to the basis { }1 2ˆ ˆ,e e  defined by (2.6.43). 
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2.6.3 The vectors { }1 2 3, ,e e e  are a basis for a three dimensional vector space V .  The set of 

vectors { }1 2 3ˆ ˆ ˆ, ,e e e , defined by, 
 

 
1 1 2 3

2 1 2 3

3 1 2 3

ˆ 2
ˆ 2
ˆ

= + +
= − +
= − −

e e e e
e e e e
e e e e

 (2.6.45) 

 
represent a change of basis.  Determine the transition matrix for the basis change 
{ } { }1 2 3 1 2 3ˆ ˆ ˆ, , , ,→e e e e e e .  Also, if 1 33 2= +v e e , determine the components of v  with respect to the 

basis { }1 2 3ˆ ˆ ˆ, ,e e e . 
 
2.6.4 Let V  be a vector space of dimension 3 with basis { }1 2 3, ,e e e .  You are given a second 

basis { }1 2 3ˆ ˆ ˆ, ,e e e defined by the formulas 
 

 

1 1 2

2 1 2

3 3

4 4ˆ
3 3
10 7ˆ
3 3

ˆ

= − +

= − +

=

e e e

e e e

e e

 (2.6.46) 

 
If a vector ∈v V  is defined by 
 
 1 2 32 3= + +v e e e  (2.6.47) 
 
determine the components of ∈v V  with respect to the basis { }1 2 3ˆ ˆ ˆ, ,e e e . 
 
2.6.5 Let V  be a vector space of dimension 3 with basis { }1 2 3, ,e e e .  You are given a second 

basis { }1 2 3ˆ ˆ ˆ, ,e e e defined by the formulas 
 

 

1 1 2

2 1 2

3 3

4 3ˆ
5 5
7 7ˆ
3 3

ˆ

i

i

= − +

= − +

=

e e e

e e e

e e

 (2.6.48) 

 
If a vector ∈v V  is defined by 
 
 1 2 32 2 5i i= + +v e e e  (2.6.49) 
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determine the components of ∈v V  with respect to the basis { }1 2 3ˆ ˆ ˆ, ,e e e . 
 
2.6.6 A four-dimensional vector space V   has a basis { }1 2 3 4, , ,e e e e .  A vector ∈v V  has the 
component representation 
 
 1 2 3 45 3 6 2= + + +v e e e e  (2.6.50) 
 
You are also given a change of basis to a new basis for V , defined by 
 

 

1 2 3 4

2 1 2 3 4

3 3 4

4 1

ˆ ˆ ˆ3
ˆ ˆ ˆ ˆ2
ˆ ˆ

ˆ

= + +
= + + +
= +
= −

e e e e
e e e e e
e e e
e e

 (2.6.51) 

 
Determine the transition matrix associated with this basis change.  Also, determine the components 
of the vector v with respect to the basis { }1 2 3 4ˆ ˆ ˆ ˆ, , ,e e e e of V . 
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Section 2.7. Image Space, Rank and Kernel of a Matrix 
 
 
 The ideas introduced in Sections 2.1 through 2.6 contain useful information relative to the 
problem of solving the matrix equation (1.2.1), repeated, 
 

 

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3

N N

N N

M M M MN N M

A x A x A x A x b
A x A x A x A x b

A x A x A x A x b

+ + + ⋅ ⋅ ⋅ + =
+ + + ⋅ ⋅ ⋅ + =

⋅
⋅
⋅

+ + + ⋅ ⋅ ⋅ + =

 (2.7.1) 

 
Equivalently, we can write (2.7.1) in its matrix form equation (1.2.2), repeated, 
 

 

11 12 1 1 1

21 22 2 2 2

1 2

N

N

M M MN N M

A A A x b
A A A x b

A A A x b

⋅ ⋅ ⋅     
     
     
⋅ ⋅ ⋅     

=     ⋅ ⋅ ⋅     
     ⋅ ⋅ ⋅
     ⋅ ⋅ ⋅     

 (2.7.2) 

 
or, equivalently, as (1.2.3), repeated, 
 
 A =x b  (2.7.3) 
 
where, as usual, A  is the matrix 
 

 

11 12 1

21 22

1 2

N

M M MN

A A A
A A

A

A A A

⋅ ⋅ ⋅ 
 
 
⋅ ⋅ 

=  ⋅ ⋅ 
 ⋅ ⋅
 
 

 (2.7.4) 

 
 The matrix A  is an element of the vector space M N×M , the column matrix x  is a member 
of the vector space 1N×M  and b  is a member of the vector space 1M ×M .  Recall from Section 2.5 
that dim M N MN× =M , 1dim N N× =M  and 1dim M M× =M .  In equation (1.8.3), we stressed the 
view of M NA ×∈M  as a function 
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 1 1: N MA × ×→M M  (2.7.5) 
 
As a function whose domain is the vector space 1N×M  and whose values lie in the vector space 

1M ×M , the usual matrix operations imply 
 
 1 2 1 2( )A A A+ = +v v v v  (2.7.6) 
 
for all vectors 1

1 2, N×∈v v M  and 
and 
 
 ( ) ( )A Aλ λ=v v  (2.7.7) 
 
for all vectors 1N×∈v M  and λ∈C .  Functions defined on vector spaces that obey rules like (2.7.6) 
and (2.7.7) are called linear transformations.  The matrix M NA ×∈M  is but one example of a linear 
transformation.  These functions will be studies in greater generality in Chapter 3.  In this section, 
we are interested in recording properties of this particular kind of linear transformation. 
 
 As explained in Section 1.8, the range of the function A  is the set of all values of the 
function.  In other words, the range is the set of possible values of Ax  generated for all possible 
values of x  in 1N×M .  In Section 1.8, we gave this quantity the symbol ( )R A .  It was defined 
formally in equation (1.8.4), repeated, 
 
 ( ) { }1 NR A A ×= ∈x x M  (2.7.8) 
 
The following figure should be helpful. 
 

 
 

1N×M  

A  

( )R A  

1M ×M  
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It is a fact that the set ( )R A  is a subspace of 1M ×M .  The proof of this assertion, like all such 
assertions about subspaces, simply requires that the definition of subspace be satisfied.  If 1v  and 

2v  are two members of 1N×M , then 1Av  and 2Av  are members of ( )R A .  We need to prove that 

their sum, 1 2A A+v v , is also in ( )R A .  The proof follows from (2.7.6), repeated, 
 
 ( )1 2 1 2A A A+ = +v v v v  (2.7.9) 
 
Since 1

1 2
N×+ ∈v v M , ( ) ( )1 2A R A+ ∈v v  and, by (2.7.9), ( )1 2A A R A+ ∈v v .  Thus, the first part 

of the definition of a subspace is established.  An entirely similar manipulation establishes that 
( ) ( )A R Aλ ∈v  for all λ , and, thus, ( )R A  is a subspace.  In order to stress the fact that the range is 

a subspace, we shall begin to refer to the range as the image space.  There are two other important 
concepts involving the matrix 1 1: N MA × ×→M M  that we will now introduce. 
 
Definition:  A matrix 1 1: N MA × ×→M M  is said to be onto if it has the property that ( ) 1MR A ×= M . 
 
Definition:  A matrix 1 1: N MA × ×→M M  is one to one if  
 
 1 2 1 2  implies  A A= =v v v v  (2.7.10) 
 
Onto and one to one matrices have special properties which we will characterize later in this 
section. 
 
 In Section 1.8, we assigned the columns of the matrix (2.7.4) the symbols , 1,2,...,j j N=a , 
by the formulas 
 

 

1

2

for 1,...,

j

j

j

Mj

A
A

j N

A

 
 
 
⋅ 

= = ⋅ 
 ⋅
 
  

a  (2.7.11) 

 
The set of column vectors { }1 2, ,..., Na a a  consists of vectors in the set 1M ×M .  As established in 

Section 1.8, for an arbitrary vector 1N×∈x M , equation (1.8.7), repeated, tells us that 
 
 1 1 2 2 3 3 N NA x x x x= + + + ⋅ ⋅ ⋅ +x a a a a  (2.7.12) 
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Equation (2.7.12) establishes that every vector in the image space ( )R A  has the representation as a 

linear combination of the vectors in the set { }1 2, ,..., Na a a .  This fact is summarized by the formula 
 
 ( ) ( )1 2Span , ,..., NR A = a a a  (2.7.13) 
 
Because of the result (2.7.13), the image space ( )R A  is also known as the column space.  We next 
defined the rank of the matrix A . 
 
Definition:  The rank of M NA ×∈M  is ( )dim R A . 
 
Given that the result (2.7.13), an equivalent definition of rank is as follows: 
 
Definition:  The rank of M NA ×∈M is the number of linearly independent columns of A .5 
 
An interesting and important result can be established about the rank of M NA ×∈M and that of any 
matrix M NB ×∈M  that is row equivalent to M NA ×∈M .  Recall from Section 1.6, a M N×  matrix 

M NB ×∈M  is row equivalent to a M N×  matrix M NA ×∈M  if there exist a finite number of 
elementary matrices 1 2, ,..., M M

kE E E ×∈M  such that 
 
 2 1kB E E E A= ⋅ ⋅ ⋅  (2.7.14) 
 
The image space of M NA ×∈M  is given by (2.7.13).  Likewise, the image space of M NB ×∈M  is 
given by 
 
 ( ) ( )1 2Span , ,..., NR B = b b b  (2.7.15) 
 
where 1 2, ,..., Nb b b  are the column vectors of the matrix B .  It follows from (2.7.14) that the two 
sets of column vectors { }1 2, ,..., Na a a  and { }1 2, ,..., Nb b b  are connected by the formulas 
 
 2 1 for  1,2,...,j k jE E E j N= ⋅ ⋅ ⋅ =b a  (2.7.16) 
 
Because the product of elementary matrices, 2 1kE E E⋅ ⋅ ⋅ , is a nonsingular matrix, it follows that 

M NA ×∈M  and the matrix row equivalent to A , M NB ×∈M , have the same number of linearly 
independent columns.  As a result, the matrix A  and its row equivalent B  have the same rank.  
The formal relationship that reflects this equality is 
 
 ( ) ( )dim dimR A R B=  (2.7.17) 
 

 
5 The rank as defined by the number of linearly independent columns is sometimes called the column rank. 
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for row equivalent matrices A  and B  in M N×M .  It is important to observe that we have not 
asserted that ( ) ( )R A R B= .  This equality is simply not true as we shall show with an example 
below. 
 

It is possible to give some general information about the rank of a matrix M NA ×∈M .  If we 
apply the results of Theorem 2.5.2, the theorem that says the dimension of a subspace is less than 
or equal to the dimension of the containing vector space, then 
 
 ( ) 1dim dim MR A M×≤ =M  (2.7.18) 
 
It also follows from (2.7.13) that the dimension of ( )R A  can never be larger than 1dim NN ×= M , 

the number of vectors in the set { }1 2, ,..., Na a a .  Therefore, the rank, ( )dim R A , is bounded by 
 
 ( ) ( ) ( )1 1dim min dim ,dim min ,M NR A M N× ×≤ =M M  (2.7.19) 
 
Therefore, the rank is less than or equal to the smallest of N and M . 
 
Example 2.7.1:  Determine the rank of the matrix of coefficients in Example 1.2.3 (also in 
Example 1.3.4).  From equation (1.2.13), the matrix is 
 

 
2 3 1
1 1 1
3 4 2

A
 
 =  
  

 (2.7.20) 

 
We immediately know from (2.7.19) that the rank is less than or equal to three.  Step one in finding 
the actual rank involves utilizing the definition to identify the three column vectors whose span 
generates the image space of A .  As (2.7.20) shows, these column vectors are 
 

 1 2 3

2 3 1
1 , 1 , 1
3 4 2

     
     = = =     
          

a a a  (2.7.21) 

 
From the definition, the rank of A  is the dimension of the span of the three column vectors (2.7.21).  
This dimension is equal to the number of linearly independent vectors in the set { }1 2 3, ,a a a .  In 
Section 2.4, we established a procedure for establishing whether or not a set of column vectors is 
linearly independent.  If we utilize (2.7.21), the test for linear independence or dependence, i.e., 
 
 1 1 2 2 3 3α α α+ + =a a a 0  (2.7.22) 
 
takes the form of finding whether or not  
 



186 Chap. 2 •   VECTOR SPACES 

 

 
1

2

3

2 3 1
1 1 1 0
3 4 2

α
α
α

   
    =   
      

 (2.7.23) 

 
has at least one nonzero solution for the coefficients 1 2 3, ,α α α .  We can quickly determine if 
(2.7.23) forces the coefficients 1 2 3, ,α α α  to be zero by calculating the determinant of the matrix of 
coefficients.  It is an elementary calculation to show that 
 

 

2 3 1 2 3 1
det 1 1 1 1 1 1

3 4 2 3 4 2

1 1 3 1 3 1
2 1 3 4 2 6 0

4 2 4 2 1 1

 
  = 
  

= − + = − − + =

 (2.7.24) 

 
Thus, one cannot conclude that all of the coefficients 1 2 3, ,α α α  are zero.  Therefore, the rank of 
(2.7.20) is less than 3.  The actual numerical value of the rank is obtained by first reducing the 
matrix (2.7.20) to reduced row echelon form by a series of row operations.  If one implements the 
row operations by the use of elementary matrices, the reduced row echelon form can be shown to 
be given by 
 

 

1 0 01 0 2 1 1 0 1 0 02
0 1 1 0 1 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1 0 1 1

1 0 01 0 0 1 0 0 2 3 1
10 2 0 0 1 0 1 0 1 1 1
2

0 0 2 3 3 4 20 0 10 1
2

 
      
      − = ×      
  −           
 

             − −      −       −    

 (2.7.25) 

 
Therefore, (2.7.23) can be replaced by 
 

 
1

2

3

1 0 2
0 1 1 0
0 0 0

α
α
α

   
   − =   
      

 (2.7.26) 
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Therefore, 
1

2 3

3

2
1
1

α
α α
α

−   
   =   
      

.  This result, combined with (2.7.22) and the fact that 3α  is arbitrary, 

yields, 
 
 1 2 32− + + =a a a 0  (2.7.27) 
 
and we concluded that, 
 
 ( ) ( ) ( )1 2 3 1 2Span , , Span ,R A = =a a a a a  (2.7.28) 
 
Therefore, the dimension of ( )R A  i.e. the rank of A  is 2. 
 

As with Example 2.4.3, equation (2.7.27) defines the relationship between the three 
columns of the matrix of coefficients in (2.7.23).  It again defines the relationship between the three 
columns of the reduced row echelon form that appears in (2.7.26).  This feature is a theoretical 
consequence of (2.7.16).  If there are linear relationships between the column vectors of a matrix A  
as, for example, with (2.7.27), it follows from (2.7.16) that the same relationships exist between the 
columns of matrices row equivalent to A .  In addition, we can reach the number for the rank of 
(2.7.20) rather quickly if we simply use (2.7.17).  For example, it follows from (2.7.26) that the 
reduced row echelon form of (2.7.20) is 
 

 
1 0 2
0 1 1
0 0 0

U
 
 = − 
  

 (2.7.29) 

 
Of course, the reduced row echelon form is row equivalent to the matrix A  (2.7.20).  The 
simplicity of the reduced row echelon form reveals the two linearly independent columns and, as a 
result, the rank of 2 . 
 

It mentioned above that we have not asserted that the image space ( )R A  and the image 

space of a row equivalent matrix, such as ( )R B  are the same.  In fact, they are not.  Example 2.7.1 
and the later examples illustrate this observation.  For example, if we look at the matrix studied in 
Example 2.7.1, namely, the matrix given in equation (2.7.20) 
 

 
2 3 1
1 1 1
3 4 2

A
 
 =  
  

 (2.7.30) 

 
We showed that the image space of A  is the two dimensional subspace spanned by the two vectors 
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 1 2

2 3
1 and 1
3 4

   
   = =   
      

a a  (2.7.31) 

 
given in equations (2.7.21)1 and (2.7.21)2.  The reduced row echelon form of A  is given by 
(2.7.29) 
 
It should be evident that the image space of the matrix (2.7.29) is the two dimensional subspace 
spanned by 
 

 1 2

1 0
0 and 1
0 0

   
   = =   
      

i i  (2.7.32) 

 
Because a vector in ( )R U  cannot have a nonzero element in its third position, a subspace spanned 
by (2.7.31) is necessarily not the same as one spanned by (2.7.32).  The following figure shows the 
plane that represents the image space ( )R U  and the vectors 1a  and 2a  that span ( )R A . 
 
 

 
 
Example 2.7.2:  Determine the rank of the matrix 
 

 
1 1 2 1 3
2 1 2 2 6
3 2 4 3 9

A
− 

 = − 
− − −  

 (2.7.33) 

 

2i  
1i  

2a  

1a  
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For this particular problem, equation (2.7.19) tells us that the rank of the matrix of coefficients 
obeys 
 
 ( ) ( ) ( )1 1dim min dim ,dim min 3,5 3M NR A × ×≤ = =M M  (2.7.34) 
 
If we utilize (2.7.33), the test for linear independence or dependence takes the form of finding 
whether or not  
 
 1 1 2 2 3 3 4 4 5 5 0α α α α α+ + + + =a a a a a  (2.7.35) 
 
where 
 

 1 2 3 4 5

1 1 2 1 3
2 , 1 , 2 , 2 , 6
3 2 4 3 9

−         
         = = − = = =         

− − −                  

a a a a a  (2.7.36) 

 
has nonzero solutions for the coefficients 1 2 3 4 5, , , ,α α α α α .  As usual, (2.7.36) can be written as a 
matrix equation of the form 
 

 

1

2

3

4

5

1 1 2 1 3
2 1 2 2 6 0
3 2 4 3 9

α
α
α
α
α

 
 −    − =    − − −    
  

 (2.7.37) 

 
As with Example 2.7.1, we can reduce (2.7.37) by row operations to obtain the reduced row 
echelon form 
 

 

1

2

3

4

5

1 0 0 0 0
0 1 2 0 0 0
0 0 0 1 3

α
α
α
α
α

 
     − =        
  

 (2.7.38) 

 
Thus, 1 2 3 4 50, 2 , 3α α α α α= = = −  and (2.7.35) reduces to 
 
 ( ) ( )3 2 3 5 4 52 3 0α α+ − − =a a a a  (2.7.39) 
 
It follows from (2.7.39) and the fact that 3α  and 4α  are arbitrary, that  
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 3 2 5 42    and   3= − =a a a a  (2.7.40) 
 
Equations (2.7.40), which are obvious from (2.7.36), show that there are three linearly independent 
vectors in the set { }1 2 3 4 5, , , ,a a a a a  and, thus, the rank of (2.7.33) is 3 .  If we were to use the 
theoretical result (2.7.17), the rank of 3  is evident from the reduced row echelon form displayed in 
equation (2.7.38).  As with our previous examples, the relationships between the column vectors of 
A , (2.7.40), are also obeyed for the columns of the reduced row echelon form of A  shown in 
(2.7.38). 
 
 A related concept to rank is the concept of row rank.  For our purposes, the most direct way 
to introduce this concept is to recall the definition of the transpose of a matrix discussed in Section 
1.9 and define the row rank by the following definition: 
 
Definition:  The row rank of M NA ×∈M  is ( )dim TR A . 
 
In other words, the row rank of M NA ×∈M  is the dimension of the span of the column vectors of 

T N MA ×∈M  Equivalently, the row rank is the dimension of the subspace of 1 N×M  spanned by the 
row vectors of M NA ×∈M .  The row space of M NA ×∈M  is that subspace.  The row space can also 
be thought of as the image space of the transpose of M NA ×∈M , ( )TR A .  Technically, ( )TR A is a 

subspace of 1N×M  and not 1 N×M .  However, these two different vector spaces are in one to one 
correspondence.  In any case, it is a theorem, that we shall establish later, that the rank and the row 
rank are the same.  The proof utilizes an interesting and useful result that connects the image space 
of the transpose, TA , to the image space of TB , where B  is a matrix row equivalent to A .  This 
result, which we shall now establish, is that 
 
 ( ) ( )T TR A R B=  (2.7.41) 
 
for any matrix M NB ×∈M  that is row equivalent to M NA ×∈M .  Recall from Section 1.6 and as was 
mentioned above, a M N×  matrix M NB ×∈M  is row equivalent to a M N×  matrix M NA ×∈M  if 
there exist a finite number of elementary matrices 1 2, ,..., M M

kE E E ×∈M  such that (2.7.14), 
repeated, 
 
 2 1kB E E E A= ⋅ ⋅ ⋅  (2.7.42) 
 
This definition and the rule for transposing matrix products, equation (1.9.5), yields 
 
 1 2

T T T T T
kB A E E E= ⋅ ⋅ ⋅  (2.7.43) 

 
The definition of image space, equation (2.7.8), applied to this case yields 
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( ) { } { }

{ } ( )

1 1
1 2

1

  

 

T T M T T T T M
k

T M T

R B B A E E E

A R A

× ×

×

= ∈ = ⋅ ⋅ ⋅ ∈

= ∈ =

x x x x

x x

M M

M
 (2.7.44) 

 
where the fact that the elementary matrices are nonsingular has been used.  The result (2.7.41) is 
usually most useful when B  is the reduced row echelon form of A .  One can easily illustrate the 
validity of (2.7.41) utilizing the results in Examples 2.7.1 and 2.7.2. 
 
 In the case where we are given a matrix M NA ×∈M  with a reduced row echelon form U , it 
follows from (2.7.17) that 
 
 ( ) ( )dim dimR A R U=  (2.7.45) 
 
and, from (2.7.41), 
 
 ( ) ( )dim dimT TR A R U=  (2.7.46) 
 
Equations (2.7.45) says that the rank of A  and that of U  are the same.  Likewise, (2.7.46) says that 
the row rank of A  and that of U  are the same.  Next, we shall prove that the rank and the row rank 
are the same.  This result follows from the form of the reduced row echelon form U .  From its 
definition, as given in Section 1.5, the reduced row echelon form of a matrix M NA ×∈M  will be of 
the form 
 

 

1, 1 1

2, 1 2

, 1

1 0 0
0 1 0

0 1
0 0 0

0 0 0

N RR

R N

R N

R R RN

D D
D D

U D D

−

+

+

+

 
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 
 = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 
 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
  

 

   

  

 (2.7.47) 

 
Equations that illustrate the generic row echelon form (2.7.47) are (2.4.24), (2.7.29) and (2.7.38).  
Several other examples can be found in Section 1.5 and in the Exercises at the end of Section 1.5.  
The row rank of (2.7.47) is the number of nonzero rows of U .  We have given this number the 
symbol R  in (2.7.47).  The first R  columns of U  are clearly linearly independent.  Thus, we have 
established that 
 
 ( ) ( )dim dim TR U R U≤  (2.7.48) 
 
This result and (2.7.45) and (2.7.46) yield 

R 

M-R 
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 ( ) ( )dim dim TR A R A≤  (2.7.49) 
 
If we repeat the above construction, but apply it to TA , the result is 
 
 ( ) ( )dim dimTR A R A≤  (2.7.50) 
 
The two results (2.7.49) and (2.7.50) combine to yield the asserted result 
 
 ( ) ( )dim dim TR A R A=  (2.7.51) 
 
 The next property of M NA ×∈M  we wish to introduce is the kernel. 
 
Definition:  The kernel of M NA ×∈M  is the subset of 1N×M  defined by 
 
 ( ) { }K A A= =v v 0  (2.7.52) 
 
It is easy to establish that ( )K A  is a subspace of 1N×M .  It consists of those vectors in 1N×M  

mapped to zero by the matrix M NA ×∈M .  The figure below should be helpful. 
 

 
 
Definition:  The nullity of M NA ×∈M  is ( )dim K A . 
 
Because ( )K A , is a subspace 
 
 ( ) 1dim dim NK A N×≤ =M  (2.7.53) 
 

1N×M  

A  

( )R A  

1M ×M  

( )K A  
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Example 2.7.3: The kernel of the matrix used above in Example 2.7.1 is, from (2.7.20), the set of 
vectors that obey 
 

 
1

2

3

2 3 1
1 1 1 0
3 4 2

A
υ
υ
υ

   
   = =   
      

v  (2.7.54) 

 
Equation (2.7.54) is equation (2.7.23) that we solved in Example 2.7.1.  The solution is again 
 

 
1

2 3

3

2
1
1

υ
υ υ
υ

−   
   = =   
      

v  (2.7.55) 

 

Therefore, for this example, the kernel is the one dimensional subspace of 3 1×M  spanned by 
2

1
1

− 
 
 
  

.  

This example reveals an important relationship between the calculation that was used with 
Examples 2.7.1 and 2.7.2 to determine the image space and rank and the calculation in Example 
2.7.3 to determine the kernel and nullity.  These examples illustrate that the scalars 1 2, ,..., Nα α α  
that appear in the test for linear independence of the column vectors 1 2, ,..., Na a a , i.e., in the 
formula 
 
 1 1 2 2 N Nα α α+ + ⋅ ⋅ ⋅ + =a a a 0  (2.7.56) 
 

are the components of a column vector 

1

2

3

N

α
α
α

α

 
 
 
 
 
 
 
 
 

 in ( )K A .  This relationship is also the origin or 

another feature illustrated by this example.  In this example, the rank of the matrix A  is two.  Thus, 
the rank plus the nullity equals the dimension of the domain of A .  This is a general result, a result 
we shall prove after the next example. 
 
Example 2.7.4: The objective is to find the kernel of the matrix 2 4A ×∈M  defined by 
 

 
1 1 1 0
2 1 0 1

A  
=  
 

 (2.7.57) 
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The kernel of (2.7.57) consists of those column vectors 4 2×∈v M  that obey 
 

 

1

2

3

4

1 1 1 0 0
2 1 0 1 0

A

υ
υ
υ
υ

 
     = =       
 
 

v  (2.7.58) 

 
The reduced row echelon form of (2.7.57) is obtained from 
 

 
1 0 1 1 1 0 1 1 1 0 1 1 1 0
0 1 2 1 0 1 0 1 2 1 2 1 0 1

−         
=         − − −         

 (2.7.59) 

 
It therefore follows from (2.7.58) that 
 

 

1 1

2 2

3 3

4 4

1 0 1 1 1 0 1 1 1 0 1 1 1 0 0
0 1 2 1 0 1 0 1 2 1 2 1 0 1 0

υ υ
υ υ
υ υ
υ υ

   
   −              = =           −   − −             
   
   

 (2.7.60) 

 
Therefore, 
 

 

1 3 4

2 3 4
3 4

3 3

4 4

1 1
2 2 1

1 0
0 1

υ υ υ
υ υ υ

υ υ
υ υ
υ υ

− −       
       − + −       = = = +
       
       

      

v  (2.7.61) 

 

The kernel of (2.7.57) is the subspace spanned by the two linearly independent vectors 

1
2

1
0

 
 − 
 
 
 

 and 

1
1
0
1

− 
 
 
 
 
 

.  Therefore, the nullity of (2.7.57) is 2.  Also, one can see from the reduced row echelon form 

shown in (2.7.60) that the rank of (2.7.57) is 2, so again we see the result we wish to prove below 
that the rank plus nullity equals the dimension of the domain of A , which is 4 in this case. 
 

The last example illustrates another general result that is important to mention.  We started 
with equation (2.7.58), repeated, 
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1

2

3

4

1 1 1 0 0
2 1 0 1 0

υ
υ
υ
υ

 
      =       
 
 

 (2.7.62) 

 
and replaced it with (2.7.60)1, repeated, 
 

 

1

2

3

4

1 0 1 1 0
0 1 2 1 0

υ
υ
υ
υ

 
 −     =   −     
 
 

 (2.7.63) 

 
which utilized the reduced row echelon form of the original matrix (2.7.57).  Explicit in the 
relationships (2.7.62) and (2.7.63) is that the kernel of a matrix and that of a matrix row equivalent 
to it are the same. 
 

The general result just stated is a consequence of the relationship between matrices and 
those it is row equivalent to, namely equation (1.6.16), and the definition of kernel.  As explained 
in Section 1.6 and utilized twice in this section, a M N×  matrix M NB ×∈M  is row equivalent to a 
M N×  matrix M NA ×∈M  if there exist a finite number of elementary matrices 

1 2, ,..., M M
kE E E ×∈M  such that (2.7.14) or, equivalently, (2.7.42) hold.  The kernel of B  equals the 

kernel of A  because 
 
 ( ) { } { } { } ( )1 1k kK B B E E E A A K A−= = = ⋅ ⋅ ⋅ = = = =v v 0 v v 0 v v 0  (2.7.64) 
 
where we have again made use of the fact that the elementary matrices are nonsingular. 
 
 In the examples above it was observed that the sum of rank plus nullity equaled the 
dimension of the domain.  The formal theorem, which we shall now prove, is as follows: 
 
Theorem 2.7.1:  Given M NA ×∈M , then 
 
 ( ) ( )1

Rank Nullity

dim dim dimN

N R P

R A K A×

= =

= +M


 

 (2.7.65) 

 
This theorem is usually referred to as the rank-nullity theorem. 
 
Proof:  Because of (2.7.17), applied in the case where the row equivalent matrix B  is the reduced 
row echelon form of A , it is true that  
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 ( ) ( )dim dimR A R U=  (2.7.66) 
 
Likewise, because of (2.7.64), it is true that  
 
 ( ) ( )dim dimK A K U=  (2.7.67) 
 
Therefore, because of (2.7.66) and (2.7.67), we can establish the result (2.7.65) if we can prove that 
 
 ( ) ( )1dim dim dimN R U K U× = +M  (2.7.68) 
 
The result (2.7.68) is a consequence of the form of the reduced row echelon form.  From its 
definition, as given in Section 1.5, the reduced row echelon form of a matrix M NA ×∈M  will be of 
the form 
 

 

1, 1 1

2, 1 2

, 1

1 0 0
0 1 0

0 1
0 0 0

0 0 0

N RR

R N

R N

R R RN

D D
D D

U D D

−

+

+

+

 
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 
 = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 
 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
  

 

   

  

 (2.7.69) 

 
The rank of the reduced row echelon form (2.7.69) is the number of linearly independent columns 
and, as shown above, the number of linearly independent rows.  As shown, the rank is 

( ) ( )dim dim TR R U R U= = .  The kernel of U , which by (2.7.64) is the kernel of A , consists of 

those column vectors 1N×∈v M  that obey 
 
 U =v 0  (2.7.70) 
 
The next step in the calculation is illustrated in Example 2.7.4.  The same argument that produced 
(2.7.61) will yield from (2.7.70) 
 

R 

M-R 
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1 1, 1 1 1, 1 1, 2

2 2, 1 2 2, 1 2

1
, 1 , 1

1 2
1 1 0 1

0 1 0

R N R R

R N R

R
R R R RN R R

R R
R

N

N

D D D D
D D D D

D D D

υ
υ

υ
υ

υ υ
υ

υ

υ

+ + +

+ +

+
+ +

+ +
+

− − − −     
     − − − −     
     

      − − −      = = = +      
       

     
     
     

    

v



   







   

   



1

, 2 2

, 2

0 0
1

0 1

N

R N

R R RN
N

D
D

D D
υ

+

+

−   
   −   
   
   − −   + +
   
   
   
   
   
   

 





 

(2.7.71) 

 
The N R−  column vectors on the right side of (2.7.71) are clearly linearly independent.  As a 
result, 
 
 ( ) ( )1dim dim dimNK U N R R U×= − = −M  (2.7.72) 
 
Equation (2.7.72) is the result (2.7.68) which, in turn, yields the asserted result (2.7.65) 
 
 Equation (2.7.65), written in the form 
 
 ( ) ( )1dim dim dimNR R A K A×= = −M  (2.7.73) 
 
improves on the inequality (2.7.19), repeated, 
 
 ( ) ( )1 1dim min dim ,dimM NR R A × ×= ≤ M M  (2.7.74) 
 
Example 2.7.5:  Given a matrix M NA ×∈M , we can associate with this matrix its reduced roe 
echelon form which we have denoted by U .  It follows from (2.7.17) that 
 
 ( ) ( )dim dimR A R U=  (2.7.75) 
 
but, as observed earlier in this section, 
 
 ( ) ( )R A R U≠  (2.7.76) 
 
In equation (2.7.41) we showed that 
 
 ( ) ( )T TR A R U=  (2.7.77) 
 
Finally, in equation (2.7.64) we showed that 
 
 ( ) ( )K A K U=  (2.7.78) 
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These theoretical formulas are illustrated by the examples given in this Section.  As an additional 
example, the matrix 
 

 
2 1 2 0 2
7 4 8 0 7

4 3 6 0 4
A

− 
 = − − − 
 − 

 (2.7.79) 

 
can be shown to have a reduced row echelon form of 
 

 
1 0 0 0 1
0 1 2 0 0
0 0 0 0 0

U
 
 = − 
  

 (2.7.80) 

 
Therefore, 
 
 ( ) ( )dim dim 2R A R U= =  (2.7.81) 
 

 ( ) ( )
2 1 1 0

span 7 , 4 span 0 , 1
4 3 0 0

R A R U
          
          = − ≠ =          
          −          

 (2.7.82) 

 

 ( ) ( )

2 7 1 0
1 4 0 1

span , span ,2 8 0 2
0 0 0 0
2 7 1 0

T TR A R U

 −          
          
          
          = = =− − −
          
          
          −          

 (2.7.83) 

 
and 
 

 ( ) ( )

0 0 1
2 0 0

span , ,1 0 0
0 1 0
0 0 1

K A K U

 −      
      
      
      = =
      
      
            

 (2.7.84) 

 
This example illustrates a possible point of confusion.  The matrix TU  is not the reduced row 
echelon form of TA .  This fact is evident from the formula 
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1 0 0
0 1 0
0 2 0
0 0 0
1 0 0

TU

 
 
 
 = −
 
 
  

 (2.7.85) 

 
which is not even in reduced row echelon form.  If one forms the matrix TA  and then reduces this 
matrix to its reduced row echelon form, the result turns out to be 
 

 

11 0
3
20 1
3

0 0 0
0 0 0
0 0 0

V

 − 
 
 − =
 
 
 
 
 

 (2.7.86) 

 
 We now return to the problem of finding solutions to (2.7.3).  In Section 1.8, we stated and 
proved the consistency theorem for linear systems.  This theorem repeated is 
 
Theorem 1.8.1 (Repeated):  Given a matrix M NA ×∈M  and a vector 1M ×∈b M , the system A =x b  
has a solution if and only if ( )R A∈b . 
 
If ( )R A∈b , then, by definition, it is expressible as a linear combination of the column vectors of 

A .  This fact, gives the following simple test to determine whether or not ( )R A∈b : 
 
Theorem 2.7.2:  Given a matrix M NA ×∈M , the vector 1M ×∈b M  is in ( )R A  if and only if the rank 

of A  and the augmented matrix ( )A b  are the same. 
 

Theorem 1.8.1 tells us that if ( )R A∈b , then the equation A =x b  has a solution.  It does 
not tell you that the solution is unique.  Next, we will look at conditions sufficient to insure that the 
solution is unique.  The first result we need is the following theorem. 
 
Theorem 2.7.3:  A matrix 1 1: N MA × ×→M M  is one to one, if and only if ( ) { }K A = 0 . 
Proof:  As The key to the proof is the relationship 1 2A A=v v , which by linearity can be written 
( )1 2A − =v v 0 .  Thus, if ( ) { }K A = 0 , then 1 2A A=v v  implies 1 2=v v .  Conversely, assume A  is 

one to one.  Since ( )K A  is a subspace it must contain the 1N×∈0 M .  Therefore, A =0 0 .  If ( )K A  
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contains any other element v , as an element of the kernel it would be true that A =v 0 .  This 
formula contradicts the fact that A  is one to one. 
 
Next we shall prove: 
 
Theorem 2.7.4:  If ( )R A∈b , then the solution to A =x b  is unique if and only if ( ) { }K A = 0 . 
 
Proof:  To prove this theorem, we follow the usual procedure and assume a lack of uniqueness.  
Given ( )R A∈b , then let 1v  and 2v  be solutions, i.e. 
 
 1 2andA A= =v b v b  (2.7.87) 
 
Therefore, 
 
 1 2A A=v v  (2.7.88) 
 
and, as a result, ( )1 2 K A− ∈v v .  If we take ( ) { }K A = 0 , it follows then that 1 2=v v  and thus the 

solution is unique.  If we assume the solution is unique, we need to prove that the subspace ( )K A  

only contains the 0 .  Let v   be the unique solution, i.e., A =v b  and assume ( )K A  contains, in 

addition to 0 , a vector w .  As an element of ( )K A , it would have to be true that A =w 0 .  This 

fact and A =v b  would yield ( )A + =v w b  which would mean +v w is also a solution in 

contradiction to the assumed uniqueness.  Thus, ( ) { }K A = 0 . 
 
 If ( )K A  contains more vectors than 0 , then the situation is more complicated.  There is a 
representation which is useful: 
 
Theorem 2.7.5:  If ( )R A∈b , and if 0x  is a particular solution of A =x b , i.e. a vector in 1N×M  
which obeys 0A =x b , then the solution to the matrix equation A =x b  has the representation 
 
 0h= +x x x  (2.7.89) 
 
where ( )h K A∈x , i.e., hA =x 0 . 
 
The proof of this theorem uses 0A =x b  to write the equation A =x b  as 0A A=x x , which, in turn, 
can be written 
 
 ( )0A − =x x 0  (2.7.90) 
 
which implies ( )0h K A≡ − ∈x x x .  Therefore, the representation (2.7.89) is valid. 
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The equation hA =x 0  is the homogeneous equation associated with the problem of solving A =x b . 
 
Example 2.7.6:  You are given the following system of three equations and five unknowns: 
 

 

1

2

3

4

5

1 1 2 1 3 1
2 1 2 2 6 2
3 2 4 3 9 3

x
x
x
x
x

 
 −       − =     − − −       
  

 (2.7.91) 

 
From Example 2.7.2, we learned that the rank of the matrix of coefficients in (2.7.91) is 3 .  We can 
conclude in advance whether or not the system (2.7.91) has a solution by application of Theorem 
2.7.2.  In particular, we need to determine whether or not the augmented matrix 
 

 ( )
1 1 2 1 3 1
2 1 2 2 6 2
3 2 4 3 9 3

A
− 

 = − 
 − − − 

b  (2.7.92) 

 
also has rank 3 .  By the usual method, the reduced row echelon form of (2.7.92) is 
 

 
1 1 2 1 3 1 1 0 0 0 0 1
2 1 2 2 6 2 0 1 2 0 0 0
3 2 4 3 9 3 0 0 0 1 3 0

−   
   − → −   
   − − −   

 (2.7.93) 

 
Equation (2.7.93)2 shows that the augmented matrix has three linearly independent columns and, 
thus, a rank of 3.  The equality of the rank of A  and ( )A b , from Theorem 2.7.2, tells us that  

( )R A∈b .  This result and Theorem 1.8.1 tell us that the system (2.7.91) has a solution. 
 

Of course, we are also interested in constructing the actual solution.  In particular, we are 
interested in showing that the solution has the representation prescribed by Theorem 2.7.4.  The 
manipulations required to show that the solution exists are, for this example, almost bring us to the 
solution.  If we use the reduced row echelon form of (2.7.91) given in (2.7.93)2, the system (2.7.91) 
is replaced by 
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1

2

3

4

5

1 0 0 0 0 1
0 1 2 0 0 0
0 0 0 1 3 0

x
x
x
x
x

 
        − =            
  

 (2.7.94) 

 
Therefore, the solution from (2.7.94) is 
 

 

( )


1

2 3 3

3 3 3 3 5

4 5 5

5 5 5

 

1 0 1 0 0 1
2 2 0 2 0 0

0 1 0 0
3 3 0 0 3 0

0 0 1 0
ph K A

x
x x x
x x x x x
x x x
x x x

∈

             
             
             

= = = + = + +             
             − − −             
                         

xx

x



 (2.7.95) 

 
The solution (2.7.95) reflects the decomposition asserted in Theorem 2.7.4.  The number of free 
parameters in the solution, 3x  and 5x , is the same as the dimension of the kernel of the matrix of 
coefficients. 
 
 The case where the matrix A  is square is of special importance.  When N NA ×∈M , we are 
talking about situations where the number of equations and the number of unknowns are the same.  
Equation (2.7.65), repeated, is 
 
 ( ) ( )1

Rank Nullity

dim dim dimN

N R P

R A K A×

= =

= +M


 

 (2.7.96) 

 
We also have (2.7.19), repeated, 
 
 ( ) ( ) ( )1 1dim min dim ,dim min ,M NR R A M N× ×= ≤ =M M  (2.7.97) 
 
Equations (2.7.96), (2.7.97) and the additional requirement M N=  allow us to reach the following 
conclusions: 
 
When the rank, ( )dimR R A= , equals N , 

a) the nullity, ( )dimP K A= , is zero which shows that ( ) { }K A = 0 .  As a result, the matrix A  
is one to one. 

b) the image space ( )R A  equals 1N×M .  As a result, the matrix A  is onto. 
 

The situation characterized by these two cases is illustrated in the following figure 
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Note that for a one to one matrix 1 1: N MA × ×→M M , Theorem 2.7.3 tells us that ( ) { }K A = 0 .  It 

follows, in this case, from (2.7.65), that ( )1dim dimN R A× =M .  If we require, in addition that 
1 1: N MA × ×→M M  be onto, the image space ( )R A  equals 1M ×M  and, of course, 

( )1dim dimM R A× =M .  Therefore, when the matrix 1 1: N MA × ×→M M  is both one to one and onto, 

it is necessary that 1 1dim dimM N× ×=M M .  Therefore, one to one onto matrices necessarily are 
functions that map column vectors between spaces of column vectors of the same size.  In more 
simple terms, it is necessary that M N= . 
 

If we continue to focus on the case where M N= , when 1 1: N NA × ×→M M  is onto, every 
member of 1N×M  is in ( )R A .  Theorem 1.8.1 tells us that the system A =x b  has a solution.  When 

1 1: N NA × ×→M M  is also one to one, Theorem 2.7.3 tells us the solution is unique.  The one to one 
correspondence of a one to one onto function 1 1: N NA × ×→M M , was reached by the two 
assumptions M N=  and ( )dim R A N= .  The one to one correspondence means that 

1 1: N NA × ×→M M has an inverse 1 1 1: N NA− × ×→M M .  The summary conclusion is that when 
M N=  and ( )dim R A N= , then A  is nonsingular. 
 

Because an equivalent definition of the rank is the number of linearly independent columns 
of A , another way to state the last result is that when M N=  and the N  columns of A  are 
linearly independent, then A  is nonsingular.  Conversely, if M N=  and A  is nonsingular, then the 
N  columns of A  are linearly independent. 
 
 
Exercises 
 

1N×M  

A  

( ) 1NR A ×= M  

( ) { }K A = 0  

1N×M  
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2.7.1  In Example 2.7.1, we started with the matrix 
 

 
2 3 1
1 1 1
3 4 2

A
 
 =  
  

 (2.7.98) 

 
and showed that its reduced row echelon form is 
 

 
1 0 2
0 1 1
0 0 0

U
 
 = − 
  

 (2.7.99) 

 
Confirm the theoretical result (2.7.41).  Namely, that 
 
 ( ) ( )T TR A R U=  (2.7.100) 
 
2.7.2  In Example 2.7.2, we started with the matrix 
 

 
1 1 2 1 3
2 1 2 2 6
3 2 4 3 9

A
− 

 = − 
− − −  

 (2.7.101) 

 
and showed that its reduced row echelon form is 
 

 
1 0 0 0 0
0 1 2 0 0
0 0 0 1 3

U
 
 = − 
  

 (2.7.102) 

 
Confirm the theoretical result (2.7.41).  Namely, that 
 
 ( ) ( )T TR A R U=  (2.7.103) 
 
2.7.3  For the matrix 
 

 
7 3 2
2 2 4
4 7 9

A
 
 =  
  

 (2.7.104) 

 
Find a basis for the column space, ( )R A , the row space, ( )TR A  and the kernel, ( )K A . 
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2.7.4  For the matrix 
 

 
3 2 3 1

1 4 1 3
3 7 4 2

A
− 
 = − − 
−  

 (2.7.105) 

 
Find a basis for the column space, ( )R A , the row space, ( )TR A  and the kernel, ( )K A . 
 
2.7.5  For the matrix 
 

 
1 1 2 1
2 3 1 2
4 5 3 0

A
 
 = − − 
  

 (2.7.106) 

 
Find a basis for the column space, ( )R A , the row space, ( )TR A  and the kernel, ( )K A . 
2.7.6  For the matrix 
 

 
1 0 0 0
4 0 2 1
2 5 1 2

A
 
 =  

−  

 (2.7.107) 

 
Find a basis for the column space, ( )R A , the row space, ( )TR A  and the kernel, ( )K A .  
 
2.7.7 For the matrix 
 

 
1 2 4 3 9
4 5 10 6 18
7 8 16 0 0

A
− 

 = − 
 − 

 (2.7.108) 

 
Find a basis for the column space, ( )R A , the row space, ( )TR A  and the kernel, ( )K A .  
 
2.7.8 For the matrix 
 

 

1 1 5
2 4 4
3 2 10
4 5 21

A

− 
 
 =
 
 − 

 (2.7.109) 
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Find a basis for the column space, ( )R A , the row space, ( )TR A  and the kernel, ( )K A . 
 
2.7.9  You are given the system of equations 
 

 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

36 9 18 9 36
42 7 19 8 53
48 5 20 7 70
58 25 35 22 25

x x x x
x x x x
x x x x
x x x x

− + + =
− + + =
− + + =
− + + =

 (2.7.110) 

 
a) Utilize Theorem 2.7.2 to determine whether or not the solution exists for the system 

(2.7.110). 
b) If the solution to the system (2.7.110) exists, express the solution in the form predicted by 

Theorem 2.7.5. 
 
2.7.10 You are given a matrix 3 5A ×∈M  defined by 
 

 
1 2 2 1 3
2 4 3 0 1
1 2 1 5 1

A
− 

 = − 
  

 (2.7.111) 

 
What is the rank of the matrix (2.7.111)?  Also, determine a basis for the kernel of the matrix 
(2.7.111). 
 
2.7.11 A certain matrix 3 5A ×∈M  has the reduced row echelon form 
 

 
1 2 0 0 1
0 0 1 0 2
0 0 0 1 1

U
− 

 = − 
  

 (2.7.112) 

 
Determine the rank of, the basis of the kernel and the basis of the row space of 3 5A ×∈M . 
 
2.7.12 Let 6 5A ×∈M be a matrix with three linearly independent column vectors 1 2 3, ,a a a .  The two 
remaining column vectors obey 
 

 4 1 2 3

5 1 3

3
2

= + +
= −

a a a a
a a a

 (2.7.113) 

 
Determine a basis for the kernel, ( )K A .  Also, determine the reduced row echelon form of . 

6 5A ×∈M . 
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__________________________________________________________ 
Chapter 3 
 
 
LINEAR TRANSFORMATIONS 
 
 
 In Section 2.7, we looked at a matrix M NA ×∈M  as a function 1 1: N MA × ×→M M .  Because 
of the usual rules for matrix addition and matrix multiplication, it was pointed out that  
 
 1 2 1 2( )A A A+ = +v v v v  
 
for all vectors 1

1 2, N×∈v v M  and 
 
 ( ) ( )A Aλ λ=v v  
 
for all vectors 1N×∈v M  and λ∈C .  In this Chapter, we shall study linear transformations.  As 
explained in Section 2.7, matrices such as M NA ×∈M  are examples of linear transformations.  It is 
important to observe that linear transformations are more general mathematical objects than are 
matrices.  While all matrices are linear transformations, not all linear transformations are matrices.  
It is this generality that we hope to capture in this chapter. 
 
Section 3.1. Definition of a Linear Transformation 
 

Linear transformations are functions defined on a vector space with values in a vector 
space.  Let V and U  be two vector spaces.  Most of our examples will be for finite dimensional 
vector spaces.  When we need to make explicit the dimensions, we shall use the convention that 
 
 dim and dimN M= =V U  (3.1.1) 
 
We shall continue to denote the scalar field by C , the set of complex numbers.  When we intend 
the scalar field to be the set of real numbers, we shall continue to denote this set by R . 
 

The formal definition of a linear transformation is as follows: 
 
Definition:  If V and U  are vector spaces, a linear transformation is a function : →A V U  such 
that 
 

1)  ( ) ( ) ( )A u + v = A u + A v  (3.1.2) 
 

2)  ( ) ( )λ λ=A u A u  (3.1.3) 
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for all ∈u, v V  and λ∈C . 
 
Observe that the +  symbol on the left side of (3.1.2) denotes addition inV , while on the right side 
it denotes addition in U .  Likewise the scalar multiplication on the left side of (3.1.3) is in V , 
while on the right side the scalar multiplication is in U .  It would be extremely cumbersome to 
adopt different symbols for these quantities.  Further, it is customary to omit the parentheses and 
write simply Au  for ( )A u  when A  is a linear transformation. 
 
 The two parts of the definition of a linear transformation can be combined as follows: 
 
Alternate Definition of a Linear Transformation:  If V and U  are vector spaces, a linear 
transformation is a function : →A V U  such that 
 

 ( )+ = +λ µ λ µA u v Au Av  (3.1.4) 
 
for all ∈u, v V and ,λ µ∈C . 
 
It is also possible to show that  
 

 ( )1 1 2 2 1 1 2 2R R R Rλ λ λ λ λ λ+ + ⋅ ⋅ ⋅ + = + + ⋅ ⋅ ⋅ +A v v v Av Av Av  (3.1.5) 
 
for all 1,..., R ∈v v V  and 1,..., Rλ λ ∈C .  From (3.1.3) of the definition, we can take 0λ =  and see 
that 
 
 A0 = 0  (3.1.6) 
 
Of course, we have used the same symbol for the zero in V  as for the zero in U .  When we need 
to distinguish these zeros, we will write 0V  and 0U , respectively.  If we make the choice 1λ = − , 
(3.1.3) yields 
 

 ( ) =− −A v Av  (3.1.7) 
 
 Linear transformations arise in virtually all areas of mathematics, pure and applied.  A few 
examples are as follows: 
 
Example 3.1.1:  Define a linear transformation : →I V V  by 
 
 for all  = ∈Iv v v V  (3.1.8) 
 
This linear transformation is the identity linear transformation. 
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Example 3.1.2:  Define a linear transformation : →A V V  by 
 
 for all  and for a given α α= ∈ ∈Av v v V C  (3.1.9) 
 
This linear transformation simply takes a ∈v V  and produces the same vector amplified by the 
scalar α . 
 
Example 3.1.3:  We select for V  the vector space [0, ]C∞ ∞ .  Next, we define a function 

: →A V V  by the formal rule 
 

 ( )( )
0

( )st

t

f s e f t dt
∞

−

=

= ∫A  (3.1.10) 

 
The fact that the function defined is a linear transformation should be evident.  Some of you will 
recognize this definition as that of the Laplace Transform of a function. 
 
Example 3.1.4:  We again select for V  to be the vector space [0, ]C∞ ∞ , and define a function 

: →A V V  by the formal rule 
 

 ( )( ) ( )
2

2

( ) ( ) ( )  for all 0,d f x df xf x f x x
dx dx

α β γ= + + ∈ ∞A  (3.1.11) 

 
where ,α β  and γ  are scalars.  The definition (3.1.11) shows that A  is a linear transformation.  It 
is the usual second order differential operator one encounters in elementary courses on ordinary 
differential equations. 
 

The next few examples arise in the study of various topics in theoretical mechanics. 
 
Example 3.1.5:  When one studies heat and mass transfer in solids, one of the models is based 
upon the so called Fourier’s Law.1  Basically, it proposes that the flow of heat is caused by 
temperature gradients in the solid.  The formal mathematic relationship for Fourier’s Law is 
 
 = −q Kg  (3.1.12) 
 
where q  is the heat flux vector, g  is the temperature gradient and K  is a linear transformation 
known as the conductivity.  The heat flux vector and the temperature gradient are vectors in a three 
dimensional vector space V  and the conductivity is a linear transformation : →K V V .  For the 
special kinds of heat conductors known as isentropic, the conductivity takes the special form 

k=K I  where k  is a positive number. 

 
1 Additional information about Jean Baptiste Joseph Fourier can be found at 
http://en.wikipedia.org/wiki/Joseph_Fourier. 

http://en.wikipedia.org/wiki/Joseph_Fourier
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Example 3.1.6:  When one studies rigid body dynamics like arises in the study of gyroscopes and 
the study of space vehicles, one encounters the concept of moment of inertia.  The moment of 
inertia is a linear transformation that connects the angular velocity to the angular momentum in 
certain special cases.  The formal relationship is 
 
 = ωIl  (3.1.13) 
 
where ω  is the angular velocity, l  is the angular momentum and I  is a linear transformation 
known as the moment of inertia.  The angular velocity and the angular momentum are vectors in a 
three dimensional vector space V  and the moment of inertia is a linear transformation : →V VI .   

 
Example 3.1.7:  In the study of the electrodynamics of magnets, electrical conductors and other 
electrical materials, one encounters a need to model a relationship between current and voltage.  
The relationship that is often used is known as Ohm’s law.2  It usually takes the form 
 
 =j Ce  (3.1.14) 
 
where e  is the electrical field strength, j  is the current density and C  is a linear transformation 
known as the electrical conductivity.  The electrical field strength and the current density are 
vectors in a three dimensional vector space V  and the electrical conductivity is a linear 
transformation : →C V V . 
 
Example 3.1.7:  In the study of continuum mechanics, one is concerned with the result of forces on 
deformable media.  One category of force is the so called contact force.  This force is characterized 
by a quantity known as a stress vector and it is calculated by a result known as Cauchy’s Theorem.3  
The mathematical form of this theorem is 
 
 =t Tn  (3.1.15) 
 
where t  is the stress vector representing the force per unit area on a surface with unit normal n .  
The linear transformation T  is usually called the stress tensor.  It represents a linear transformation 
that when multiplied by the unit normal yields the local force on the surface with that unit normal.   
 

 
2 Additional information about Georg Simond Ohm can be found at http://en.wikipedia.org/wiki/Georg_Ohm. 
3 Additional information about Augustin-Louis Cauchy can be found at http://en.wikipedia.org/wiki/Augustin-
Louis_Cauchy. 

http://en.wikipedia.org/wiki/Georg_Ohm
http://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
http://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
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Section 3.2. Matrix Representation of a Linear Transformation 
 
 
 We first encountered the idea of a linear transformation in Section 2.7 when we were 
discussing matrices.  Many of the examples of linear transformations given here involve matrices.  
In this section, we explore this relationship and try to establish to what extent a linear 
transformation is equivalent to a matrix.  The short version of the answer is that when we restrict 
ourselves to finite dimensional vector spaces there is a one to one correspondence between a linear 
transformation and a matrix.  The advantages of this fact and the disadvantages will be discussed. 
 
 The first idea we shall introduce is that of the components of a linear transformation.  This 
idea arises only in the case where V  and U  are finite dimensional.  Let { }1 2, ,..., Ne e e  be a basis 

for V  and { }1 2, ,..., Mb b b  be a basis for U .  Given a linear transformation, : →A V U ,  it is true 

that the set { }1 2, ,..., NAe Ae Ae  is a set of vectors in U .  As such, they can be expanded in the basis 

of U , i.e. in the set { }1 2, ,..., Mb b b .  Therefore, we can write 
 
 1 2

1 2 for 1,2,...,M
k k k k MA A A k N= + + ⋅ ⋅ ⋅ + =Ae b b b  (3.2.1) 

 
In this equation, j

kA  represents the thj  component of kAe  with respect to the basis for U .  We 
shall typically write (3.2.1) in the more compact form 
 

 
1

    1,2,...,
M

j
k k j

j
A k N

=

= =∑Ae b  (3.2.2) 

 
Definition:  The components of a linear transformation : →A V U  with respect to the bases 
{ }1 2, ,..., Ne e e  and { }1 2, ,..., Mb b b  are the MN  scalars j

kA , for 1,2,...,j M=  and 1,2,...,k N= . 
 
Example 3.2.1:  Let : →A V U , and { }1 2,e e  be a basis for V  and { }1 2 3, ,b b b  a basis for U .  
Define a linear transformation by the rule 
 
 ( )1 2 1 2

1 2 3υ υ υ υ= + + +Av b b b  (3.2.3) 
 
for all ∈v V .  We wish to find the components of A  with respect to the basis { }1 2,e e  and the 

basis { }1 2 3, ,b b b .  We need to apply the definition (3.2.1), which in this case reduces to 
 

 

1 2 3
1 1 1 1 2 1 3

1 2 3
2 2 1 2 2 2 3

A A A

A A A

= + +

= + +

Ae b b b

Ae b b b
 (3.2.4) 
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In order to find the coefficients , 1,2 and 1,2,3j
kA j k= = , we need to use the defining equation 

(3.2.3).  As a vector in V , v , it has the component representation 
 
 1 2

1 2υ υ= +v e e  (3.2.5) 
 
Therefore, the choice 1=v e  implies 1 1υ =  and 2 0υ = .  Therefore, 
 
 1 1 3= +Ae b b  (3.2.6) 
 
and the choice 2=v e  implies 1 0υ =  and 2 1υ = .  Therefore, 
 
 2 2 3= +Ae b b  (3.2.7) 
 
If these equations are compared to (3.2.4), we see that  
 

 

1 2 3
1 1 1

1 2 3
2 2 2

1, 0, 1

0, 1, 1

A A A

A A A

= = =

= = =

 (3.2.8) 

 
As one would anticipate, and as the notation suggests, it is convenient to arrange the components of 
a linear transformation in a matrix.  This idea results in the following definition: 
 
Definition:  If : →A V U , is a linear transformation, and if V  and U  are finite dimensional, the 
matrix of : →A V U  with respect to the basis { }1 2, ,..., Ne e e  of V  and { }1 2, ,..., Mb b b  of U  is the 
M N×  matrix 
 

 ( )

1 1 1
1 2

2 2 2
1 2

3 3
1 3

1 2

, ,

N

N

k j

M M M
N

A A A
A A A
A A

M

A A A

 ⋅ ⋅ ⋅
 
 
 ⋅

=  
⋅ ⋅ 

 ⋅ ⋅
 

⋅ ⋅ ⋅  

A e b  (3.2.9) 

 
It is customary to give the matrix of a linear transformation a different symbol than that of the 
linear transformation it represents.  Equation (3.2.9) shows the notation ( ), ,k jM A e b for the 
matrix.  This notation has the advantage of showing that the matrix depends upon the choice of the 
bases for the two vector spaces.  Later, we shall show how the components of a linear 
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transformation transform when the two bases are changed.  In those cases where the choices of 
bases do not need to be stressed, it is sometimes conventional to write [ ]A  for the matrix. 
 

The above construction shows a correspondence, for finite dimensional vector spaces, 
between a linear transformation and the matrix of a linear transformation.  The fact that one must 
select a basis for V  and a basis for U  in order to display the matrix means that the physical 
quantity represented by the linear transformation is now dependent upon the choice of basis.  
Physical quantities have intrinsic meaning and do not depend upon how one chooses to project 
them into a basis.  Thus, it is advantageous to study linear transformations as mathematical objects 
and not complicate the picture by the arbitrary selection of bases.  Of course, if we are not talking 
about infinite dimensional vector spaces.  For infinite dimensional vector spaces, the idea of a 
matrix is meaningless. 
 
Example 3.2.2:  A linear transformation : →A V U , is defined, for all vectors ∈v V , by 
 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 3 4 1 2 3 4
1 2

1 2 3 4 1 2 3 4
3 4

1 2
2 3 4 1 2 3 4

3 4
1 2 3 4 1 2 3 4

2 3 4

2 2 2

2 4 2 3 2 2

υ υ υ υ υ υ υ

υ υ υ υ υ υ υ υ

υ υ

υ υ

= + + + − + + +

+ − + + − + + − +

= − − + + + + +

+ + + − + + − +

Av b b

b b

b b b b b b b

b b b b b b b b

 (3.2.10) 

 
where { }1 2 3 4, , ,e e e e  is a basis for V  and { }1 2 3 4, , ,b b b b  is a basis for U .  It follows from this 
definition that 
 

 

1 2 3 4

2 1 2 3 4

3 1 2 3 4

4 1 2 3 4

2 4 2
3 2 2

= − − +
= + + +
= + + −
= + − +

Ae b b b
Ae b b b b
Ae b b b b
Ae b b b b

 (3.2.11) 

 
Next, we need to utilize (3.2.2) which for this case reduces to 
 

 

1 2 3 4
1 1 1 1 2 1 3 1 4

1 2 3 4
2 2 1 2 2 2 3 2 4

1 2 3 4
3 3 1 3 2 3 3 3 4

1 2 3 4
4 4 1 4 2 4 3 4 4

A A A A
A A A A
A A A A
A A A A

= + + +

= + + +

= + + +

= + + +

Ae b b b b
Ae b b b b
Ae b b b b
Ae b b b b

 (3.2.12) 

 
If (3.2.12) is compared to (3.2.11), we see that 
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 ( )

1 1 1 1
1 2 3 4

2 2 2 2
1 2 3 4

3 3 3 3
1 2 3 4

4 4 4 4
1 2 3 4

0 1 2 3
1 1 4 1

, ,
1 1 1 2

1 1 2 2

k j

A A A A
A A A A

M
A A A A
A A A A

   
   −   = =
  − − 
   −  

A e b  (3.2.13) 

 
 
Exercises 
 
3.2.1  You are given a linear transformation : →A V U  defined by 
 

 
( ) ( )
( ) ( )

1 2
1 2 3 1 2 3

3 4
1 2 3 2 3

2 4 2

2

υ υ

υ υ

= + + + + −

+ + + + +

Av b b b b b b

b b b b b
 (3.2.14) 

 
for all 1 2 3 4

1 2 3 4υ υ υ υ= + + + ∈v e e e e V .  Determine the matrix of : →A V U  with respect to the 
bases { }1 2 3 4, , ,e e e e  and { }1 2 3, ,b b b . 

 
3.2.2  You are given a linear transformation : →B U W  defined by 
 
 

 ( ) ( ) ( )1 2 3
1 2 3 1 3 1 2 35 2 3 2u u u= + + + − + − + +Bu d d d d d d d d  (3.2.15) 

 
for all 1 2 3

1 2 3u u u= + + ∈u b b b U .  Determine the matrix of : →B U W  with respect to the bases 

{ }1 2 3, ,b b b and { }1 2 3, ,d d d . 

 
3.3.3  A linear transformation : →A V U  is defined, for all vectors ∈v V , by 
 

 
( ) ( )
( ) ( )

1 2 3 1 2 3
1 2

1 2 3 1 2
3 4

7 8 9 8

4 9 15 7 4

i i i

i i i

υ υ υ υ υ υ

υ υ υ υ υ

= − + + − + +

+ − + + +

Av b b

b b
 (3.2.16) 

 
for all vectors 1 2 3

1 2 3υ υ υ= + + ∈v e e e V , where { }1 2 3, ,e e e  is a basis for V  and { }1 2 3 4, , ,b b b b  is 

a basis for U .  Determine the matrix of : →A V U  with respect to the bases { }1 2 3, ,e e e  and 

{ }1 2 3 4, , ,b b b b . 
 

3.3.4 A linear transformation 3: →A V P  is defined, for all vectors ∈v V , by 
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( ) ( )
( ) ( )

1 2 4 1 2 3 4
1 2

1 2 3 4 2 3 4
3 4

3 2 2 4

2 3

p p

p p

υ υ υ υ υ υ υ

υ υ υ υ υ υ υ

= − − + − − + +

+ − + + − + + +

Av
 (3.2.17) 

 
for all vectors 1 2 3 4

1 2 3 4υ υ υ υ= + + + ∈v e e e e V , where { }1 2 3 4, , ,e e e e  is a basis for V  and 

{ }1 2 3 4, , ,p p p p  is a basis for 3P .  Determine the matrix of 3: →A V P  with respect to the bases 

{ }1 2 3 4, , ,e e e e  and { }1 2 3 4, , ,p p p p . 



216  Chap. 3 •  LINEAR TRANSFORMATIONS 

 

 
 
 



Sec. 3.3 • Properties of a Linear Transformation 217 

 

Section 3.3.  Properties of a Linear Transformation. 

 
 
 As with matrices, the image space of a linear transformation is defined to be set of all 
values of the function.  More formally, the image space is the set 
 

 ( ) { } R = ∈A Ax x V  (3.3.1) 
 
Utilizing the usual kind of proof, it is easy to show that the subset ( )R A  of U  is actually a 
subspace of U .  As such, we know from Theorem 2.5.2 that 
 

 ( )dim dimR A ≤ U  (3.3.2) 
 
In Section 2.7, we introduced the rank of a matrix.  Likewise, the rank of a linear transformation is 

( )dim R A .  If, the linear transformation : →A V U  has the property that 
 

 ( )R =A U  (3.3.3) 
 
it is said to be onto.  If a linear transformation : →A V U  has the property that 
 

 1 2 1 2 1 2  implies    for every ,= = ∈Av Av v v v v V  (3.3.4) 
 
then it is one to one.  Linear transformations that are one to one are also called regular linear 
transformations. 
 

In Section 2.7, we introduced the kernel of a matrix.  For linear transformations, the related 
idea is also called the kernel.  The kernel of a linear transformation : →A V U  is the subset of V  
defined by 
 

 ( ) { }K = =A v Av 0  (3.3.5) 
 
As with matrices, the nullity of a linear transformation is the dimension of the kernel, i.e., 

( )dim K A .  It is not difficult to establish that ( )K A  is a subspace of V .  As such, it is true that 

 

 ( )dim dimK ≤A V  (3.3.6) 
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The following figure should be helpful as one tries to conceptualize the subspaces ( )K A  and 

( )R A . 
 

 
 
Theorem 3.3.1:  A linear transformation : →A V U  is one to one, i.e., regular, if and only if 
( ) { }K =A 0 . 

Proof:  As with the corresponding proof for matrices, the key to the proof is the relationship 
1 2=Av Av , which by linearity can be written ( )1 2− =A v v 0 .  Thus, if ( ) { }K =A 0 , then 

1 2=Av Av  implies 1 2=v v .  Conversely, assume A  is one to one.  Since ( )K A  is a subspace it 

must contain the ∈0 V .  Therefore, =A0 0 .  If ( )K A  contains any other element v , as an 
element of the kernel it would be true that =Av 0 .  This formula contradicts the fact that A  is one 
to one. 
 
In Section 2.7, when discussing matrix equations, we established a uniqueness theorem.  The linear 
transformation version of this theorem is 
 
Theorem 3.3.2:  If ( )R∈b A , then the solution to =Ax b  is unique if and only if ( ) { }K =A 0 . 
 
The proof of this theorem is formally the same as Theorem 2.7.4 for matrix equations.4 
 
 The special case where : →A V U  is both one to one and onto would correspond to the 
figure 
 

 
4 Theorem 3.3.2 is one part of what is known as the Fredholm Alternative Theorem.  Theorem 3.3.2 is actually the 
Second Alternative.  The First Alternative will be established in Section 4.12 with the proof of Theorem 4.12.3.  The 
Fredhollm Alternative Theorem occurs in the study of boundary value problems and integral equations in addition to 
the linear systems being discussed here. 

V  

A  

( )R A  

U  

( )K A  
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Theorem 3.3.3:  If { }1 2, , , Rv v v is a linearly dependent set in V and if : →A V U is a linear 

transformation, then { }1 2, , , RAv Av Av is a linearly dependent set inU . 
 
Proof  Since the vectors { }1 2, , , Rv v v  is a linearly dependent set, we can write  
 

 
1

R

j j
j
α

=

=∑ v 0  (3.3.7) 

 
where at least one coefficient is not zero. Therefore  
 

 
1 1

R R

j j j j
j j
α α

= =

 
= = 

 
∑ ∑A v Av 0  (3.3.8) 

 
Because the coefficients are not all zero, (3.3.8) establishes the result. 
 
If the set { }1 2, , , Rv v v is linearly independent, then their image set { }1 2, , , RAv Av Av  may or 
may not be linearly independent.  For example, A might be a linear transformation that maps all 
vectors into .0  
 
The following theorem gives another condition for such linear transformations. 
 
Theorem 3.3.4:  A linear transformation : →A V U is one to one, i.e., regular if and only if it 
maps linearly independent sets in V  to linearly independent sets in .U  
 

V  

A  

( )R =A U  

U  

( ) { }K =A 0  
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Proof.  We shall first prove that if : →A V U is one to one then it maps linearly independent sets 
in V  to linearly independent sets in .U   Let { }1 2, , , Rv v v  be a linearly independent set in V  and 

: →A V U  be a regular linear transformation.  Consider the sum 
 

 
1

R

j j
j
α

=

=∑ Av 0  (3.3.9) 

 
Equation (3.3.9) is equivalent to  
 
 

 
1

R

j j
j
α

=

 
= 

 
∑A v 0  (3.3.10) 

 
Theorem 3.1.1 tells us that ( ) { }K =A 0 , therefore (3.3.10) yields 
 

 
1

R

j j
j
α

=

=∑ v 0  (3.3.11) 

 
Because { }1 2, , , Rv v v  is a linearly independent set, (3.3.11) shows that 1 2 0Rα α α= = ⋅ ⋅ ⋅ = = , 

which, from (3.3.9) implies that the set { }1, , RAv Av  is linearly independent.  Next, we must 
prove that if : →A V U  maps linearly independent sets in V  to linearly independent sets in U , 
then it is one to one.  The assumption that A  preserves linear independence implies, in particular, 
that ≠Av 0  for every nonzero vector ∈v V since such a vector forms a linearly independent set.  
Therefore, ( )K A  consists of the zero vector only, and thus A  is one to one. 
 
Theorem 3.3.5:   
 
 ( ) ( )

Rank Nullity

dim dim dim
N R P

R K
= =

= +A AV


 

 (3.3.12) 

 
This theorem was proven for matrices in Section 2.7.  It is the rank-nullity theorem for linear 
transformations. 
Proof:  For notational convenience, we have written in (3.3.12) 
 
 ( ) ( )dim and dimR R P K= =A A  (3.3.13) 
 
We wish to show that N R P= + .  Let { }1 2 1 2, ,..., , , ,...,P P P N+ +e e e e e e  be a basis for V .  We shall 

select these vectors such that the subset { }1 2, ,..., Pe e e  is a basis for ( )K A .  Our task is to show that 
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N P−  is the rank of A .  Our first step in the proof is to form the set 
{ }1 2 1 2, ,..., , , ,...,P P P N+ +Ae Ae Ae Ae Ae Ae .  This set spans ( )R A  because 

{ }1 2 1 2, ,..., , , ,...,P P P N+ +e e e e e e  is a basis for V .  This fact is formally expressed by the equation, 
 
 ( ) ( )1 2 1 2Span , ,..., , , ,...,P P P NR + +=A Ae Ae Ae Ae Ae Ae  (3.3.14) 
 
The next step utilizes the fact that, as defined, that the set { }1 2, ,..., Pe e e  is a basis for ( )K A .  As 
such, it is true that 1 2 P= = ⋅ ⋅ ⋅ = =Ae Ae Ae 0 .  Therefore, 
 
 ( ) ( )1 2Span , ,...,P P NR + +=A Ae Ae Ae  (3.3.15) 
 
If we can conclude that the set of N P−  vectors are linearly independent, then we can conclude 
that ( )dimR R N P≡ = −A  and the proof is complete.  The test for linear independence, as is 
always, is to analyze the equation 
 
 1 1 2 2P P N P Nα α α+ + −+ + ⋅ ⋅ ⋅ + =Ae Ae Ae 0  (3.3.16) 
 
Our challenge is to establish that the coefficients 1 2, ,..., N Pα α α −  are zero.  The first step is to 
rewrite (3.3.16) as 
 
 ( )1 1 2 2P P N P Nα α α+ + −+ + ⋅ ⋅ ⋅ + =A e e e 0  (3.3.17) 
 
Therefore, ( )1 1 2 2P P N P N Kα α α+ + −+ + ⋅ ⋅ ⋅ + ∈e e e A .  However, we selected the vectors 

{ }1 2 1 2, ,..., , , ,...,P P P N+ +e e e e e e to be a basis for V  such that the subset { }1 2, ,..., Pe e e  is a basis for 

( )K A .  The only vector of the form 1 1 2 2P P N P Nα α α+ + −+ + ⋅ ⋅ ⋅ +e e e , i.e., a linear combination of 

vectors not in ( )K A  that is in ( )K A , is the zero vector, 0 .  As a result, 
 
 1 1 2 2P P N P Nα α α+ + −+ + ⋅ ⋅ ⋅ + =e e e 0  (3.3.18) 
 
The sum (3.3.18) forces 1 2 0N Pα α α −= = ⋅ ⋅ ⋅ = =  because of the linear independence of the set 

{ }1 2, ,...,P P N+ +e e e .  This completes the proof. 
 
 Other relationships involving the dimensions of ( ), , R AV U  and ( )K A  are 
 

 ( ) ( )dim dim dimR K= +A AV  (3.3.19) 
 
and 
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 ( ) ( )dim min dim ,dimR ≤A V U  (3.3.20) 
 
The proofs of these results are essentially the same as the proofs used in Section 2.7 for matrices.  
Theorem 2.5.2 told us that a subspace of a vector space equals the vector space if and only if the 
subspace and the vector space have the same dimension.  This theorem and the fact that ( )R A  is a 
subspace of U  gives the following result 
 
Theorem 3.3.6:  ( )dim dimR =A U  if and only if A  is onto. 
 
Another important result for one to one and onto linear transformations is the result 
 
Theorem 3.3.7:  If : →A V U  is one to one and onto, then 
 
 dim dim=V U  (3.3.21) 
 
Proof:  This result follows from Theorems 3.3.1, 3.3.4 and 3.3.5. 
 
 In the special case when dim dim ,=V U  it is possible to state the following important 
theorem: 
 
Theorem 3.3.8:  If : →A V U  is a linear transformation and if dim dim=V U , then A  is a linear 
transformation onto U  if and only if A  is one to one. 
 
Proof. Assume that : →A V U  is onto ,U  then ( )dim dim dimR= =AU V .  Therefore, the 

equation ( ) ( )dim dim dimR K= +A AV  forces ( )dim 0K =A  and thus ( ) { }K =A 0 and A  is one 

to one.  Next assume that A  is one-to-one.  By Theorem 3.1.1, ( ) { }K =A 0 and thus 

( )dim 0K =A .  As a result, the equation ( ) ( )dim dim dimR K= +A AV  shows that 
 

 ( )dim dim dim= =AV V U  (3.3.22) 
 
Therefore, by Theorem 3.3.4, 
 

 ( ) =A V U  (3.3.23) 
 
and A  is onto. 
 
 In the case where : →A V U  is onto and one to one, the two vector spaces V  and U  are in 
one to one correspondence.  As such, there is an inverse function 1 :− →A U V .  One of our 
objectives later will be to show that this inverse function, when it exists, is actually a linear 
transformation.  However, before we can properly introduce this linear transformation, we need to 



Sec. 3.3 • Properties of a Linear Transformation 223 

 

define what is meant by the product of two linear transformations.  This topic, among others, will 
be introduced in the next section. 
 
 In Section 1.8, we stated and proved Theorem 1.8.1, the consistency theorem for linear 
systems.  That discussion concerned solutions of the matrix equation A =x b , and said that the 
system has a solution if and only if ( )R A∈b .  When the problem to be solved is stated in terms of 
linear transformations instead of matrices, the theorem is readily generalized to be that the vector 
equation =Ax b has a solution if and only if ( )R∈b A . 
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Section 3.4.  Sums and Products of Linear Transformations 
 
 
 In this section, we shall assign meaning to the operations of addition and scalar 
multiplication for linear transformations.  In addition, we shall explain how one forms the product 
of two linear transformations.  For finite dimensional vector spaces, you will not be surprised to 
learn that these operations are generalizations of familiar matrix operations.  First, we shall define 
the operations of addition of two linear transformations and multiplication of a linear 
transformation by a scalar. 
 
Definition:  If A  and B  are linear transformations →V U , then their sum +A B  is a linear 
transformation →V U  defined by 
 

 ( )+ = +A B v Av Bv  (3.4.1) 
 
for all .∈v V   If ,λ∈C  then λA  is a linear transformation →V U defined by  
 

 ( ) ( )λ λ=A v Av  (3.4.2) 
 
for all .∈v V  
 
If we write ( );L V U  for the set of linear transformations from V  to U , then (3.4.1) and (3.4.2) 

make ( );L V U  a vector space.  The zero element in ( );L V U is the linear transformation 
0 defined by 
 
 0v = 0  (3.4.3) 
 
for all .∈v V   The negative of  ( );∈A L V U  is a linear transformation ( );− ∈A L V U defined by 
 
 1− = −A A  (3.4.4) 
 
It follows from (3.4.4) that −A  is the additive inverse of ( );∈A L V U .  This assertion follows 
from 
 

 ( ) ( ) ( ) ( )1 1 1 1 1 0− = + − = + − = − = =A + A A A A A A A 0  (3.4.5) 
 
where (3.4.1) and (3.4.2) have been used.  Consistent with our notation introduced in equation 
(2.1.3), we shall write −A B  for the sum ( )+ −A B  formed from the linear transformations A  

and B .  The formal proof that ( );L V U  is a vector space is left as an exercise. 
 



226  Chap. 3 •  LINEAR TRANSFORMATIONS 

 

Theorem 3.4.1. 
 
 ( )dim ; dim dim=L V U V U  (3.4.6) 

 
Proof. Let { }1,..., Ne e be a basis for V  and { }1,... Mb ,b  be a basis forU .  Define NM  linear 

transformations :k
j →E V U  by 

 

 
, 1, , ; 1, ,

,

k
j k j

k
j p

k N j M

k p

= = … = …

= ≠

E e b

E e 0
 (3.4.7) 

 
If A  is an arbitrary member of ( );L V U , then k ∈Ae U , and thus can be expanded in the basis 

{ }1,... Mb ,b .  We shall write this expansion as we did in equation (3.2.2) 
 

 
1

    1,2,...,   and  1,2,...,
M

j
k k j

j
A j M k N

=

= = =∑Ae b  (3.4.8) 

 
Based upon the properties of k

jE  in (3.4.7), we can write (3.4.8) as 
 

 
1 1 1

M M N
j k j s

k k j k s j k
j j s

A A
= = =

= =∑ ∑∑Ae E e E e  (3.4.9) 

 
A simple rearrangement of (3.4.9) yields 
 

 
1 1

M N
j s
s j k

j s
A

= =

 
− = 

 
∑∑A E e 0  (3.4.10) 

 
Since the set of vectors { }1,..., Ne e  form a basis of V , an arbitrary vector ∈v V  has the 
representation 
 

 
1

N
k

k
k
υ

=

=∑v e  (3.4.11) 

 
Equation (3.4.11) allows (3.4.10) to be written 
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1 1

M N
j s
s j

j s
A

= =

 
− = 

 
∑∑A E v 0  (3.4.12) 

 

for all vectors .∈v V   Thus, from (3.4.3), 
1 1

M N
j s
s j

j s
A

= =

−∑∑A E  is the zero liner transformation.  As a 

result 
 

 
1 1

M N
j s
k j

j s
A

= =

=∑∑A E  (3.4.13) 

 
Equation (3.4.13)means that the set of MN  linear transformations 
{ } for 1,...,  and 1,...,  s

j s N j M= =E  span ( );L V U .  If we can prove that this set is linearly 
independent, then the proof of the theorem is complete.  To this end, set 
 

 
1 1

M N
j s
s j

j s
A

= =

=∑∑ E 0  (3.4.14) 

 
Then, from (3.4.7), 
 

 ( )
1 1 1

M N M
j s j
s j p p j

j s j
A A

= = =

= =∑∑ ∑E e b 0  (3.4.15) 

 
Because the set { }1,... Mb ,b  is linearly independent in U , (3.4.15) yields 0j

pA = .  Hence the set 

{ }s
jE  is a basis of ( );L V U .  As a result, we have 

 

 ( )dim ; dim dimMN= =L V U U V  (3.4.16) 
 

At the end of Section 3.3, we mentioned the need to define the product of two linear 
transformations.  The formal definition is as follows: 
 
Definition:  If : →A V U  and : →B U W  are linear transformations, their product is a linear 
transformation →V W , written BA , defined by 
 

 ( )BAv = B Av  (3.4.17) 
 
for all .∈v V  
 
The properties of the product operation are summarized in the following theorem. 



228  Chap. 3 •  LINEAR TRANSFORMATIONS 

 

 
Theorem 3.4.2. 
 

 
( ) ( )

( )
( )
λ µ λ µ

λ µ λ µ

+ = +

+ = +

C BA = CB A

A B C AC BC

C A B CA CB

 (3.4.18) 

 
for all ,λ µ∈C  and where it is understood that , ,andA B C  are defined on the proper vector spaces 
so as to make the indicated products defined. 
 

The definition (3.4.17), which is given without the introduction of bases for the three vector 
spaces , ,V U W , actually implies the matrix multiplication formula 
 

 ( ) ( ) ( ), , , , , ,k q j q k jM M M=BA e d B b d A e b  (3.4.19) 
 
where { }1 2, ,..., Ne e e  is the basis of V , { }1 2, ,..., Mb b b  is the basis of U  and { }1 2, ,..., Pd d d  is the 
basis of W .  The proof of this formula involves utilizing the many definitions we have 
accumulated.  The connection between : →A V U  and its components is (3.2.2), repeated, 
 

 
1

for 1,2,...,
M

j
k k j

j
A k N

=

= =∑Ae b  (3.4.20) 

 
Likewise, the connection between : →B U W  and its components is 
 

 
1

for 1,2,...,
P

q
j j q

q
B j M

=

= =∑Bb d  (3.4.21) 

 
From the definition (3.4.17), 
 

 
( )

1 1

1 1 1 1

M M
j j

k k k j k j
j j

M P P M
j q q j
k j q j k q

j q q j

A A

A B B A

= =

= = = =

 
= = 

 
   

= =   
   

∑ ∑

∑ ∑ ∑ ∑

BAe = B Ae B b Bb

d d

 (3.4.22) 

 
If we now recognize that the relationship between : →BA V W  and its components is, from the 
definition, an equation like (3.4.22), we see that we have derived an expression for the components 
of the product BA .  If we write the product as 
 



Sec. 3.4 • Sums and Products of Linear Transformations 229 

 

 =C BA  (3.4.23) 
 
then, the components of C , by definition, are given by 
 

 
1

for 1,2,...,
P

q
k k q

q
C k N

=

=∑Ce = d  (3.4.24) 

 
Therefore, the three sets of components connect by the formula 
 

 
1

M
q q j

k j k
j

C B A
=

= ∑  (3.4.25) 

 
Equation (3.4.25)is precisely the matrix equation (3.4.19) given above. 
 
 
Exercises 
 
3.4.1  Show that 
 

 ( ) ( ) ( ), , , , , ,k j k j k jM M Mλ µ λ µ+ = +A B e b A e b B e b  (3.4.26) 
 
Viewed as a function ( ): ; M NM ×→L V U M , equation (3.4.26) shows that M  is a linear 
transformation.  It is easily shown to be one to one, and by virtue the result (3.4.16) and Theorem 
3.3.7,  ( ): ; M NM ×→L V U M  is an onto linear transformation.  The one to one correspondence 
between linear transformations between finite dimensional vector spaces and matrices is a 
fundamental and useful result in linear algebra.  The fact that this correspondence depends on the 
choices of bases is also a fundamental result that is important in the applications. 
 
3.4.2  You are given linear transformations : →A V U  and : →B U W  defined by 
 

 
( ) ( )
( ) ( )

1 2
1 2 3 1 2 3

3 4
1 2 3 2 3

2 4 2

2

υ υ

υ υ

= + + + + −

+ + + + +

Av b b b b b b

b b b b b
 (3.4.27) 

 
for all 1 2 3 4

1 2 3 4υ υ υ υ= + + + ∈v e e e e V , and 
 

 ( ) ( ) ( )1 2 3
1 2 3 1 3 1 2 35 2 3 2u u u= + + + − + − + +Bu d d d d d d d d  (3.4.28) 

 
for all 1 2 3

1 2 3u u u= + + ∈u b b b U .  Calculate the linear transformation : →BA V W . 
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Section 3.5.  One to One Onto Linear Transformations 
 
 
 In this section, we shall record some important properties of one to one and onto linear 
transformations : →A V U .  In Section 3.3, it was mentioned that when a linear transformation 

: →A V U  is both one to one and onto, the elements of V  are in one to one correspondence with 
the elements of U .  One to one onto linear transformations are sometimes called isomorphisms.  
The one to one correspondence between V  and U  means there exists a function : →f U V  such 
that 
 

 ( )   for all = ∈f Av v v V  (3.5.1) 
 
The next result we wish to establish is that f  is actually a linear transformation.  This means that if 
we are given 1 2, ∈v v V  and if we label the corresponding elements in U  by 
 
 1 1 2 2  and  = =u Av u Av  (3.5.2) 
 
then 
 

 ( ) ( ) ( )1 2 1 2λ µ λ µ+ = +f u u f u f u  (3.5.3) 
 
for all ,λ µ∈C  and all 1 2,u u  in U . 
 
 The proof of (3.5.3) goes as follows.  First, form the left side of (3.5.3) and use the 
properties of A  as a linear transformation.  The result is 
 

 

( ) ( )
( )( )

1 2 1 2

1 2

1 2

λ µ λ µ

λ µ

λ µ

+ = +

= +

= +

f u u f Av Av

f A v v

v v

 (3.5.4) 

 
where (3.5.1) has been used.  Next, it follows from (3.5.1) and (3.5.2) that 
 

 ( ) ( )1 1 1= =v f Av f u  (3.5.5) 
 
and 
 

 ( ) ( )2 2 2= =v f Av f u  (3.5.6) 
 
Equations (3.5.5) and (3.5.6), when utilized in (3.5.4) yield the result (3.5.3). 
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As with matrices, it is customary to denote the inverse linear transformation of a one to one 
onto linear transformation : →A V U  by 1−A .  Also, the linear transformation 1 :− →A U V  is one 
to one and onto whose inverse obeys 
 

 ( ) 11 −− =A A  (3.5.7) 
 
Theorem 3.5.1.  If : →A V U  and : →B U W are one to one linear transformations, then 

: →BA V W  is a one to one onto linear transformation whose inverse is computed by 

 

 ( ) 1 1 1− − −=BA A B  (3.5.8) 
 
Proof. The fact that BA  is a one to one and onto follows directly from the corresponding 
properties of A  and B .  The fact that the inverse of BA  is computed by (3.5.8) follows directly 
because if  
 
 andu = Av w = Bu  (3.5.9) 
 
then 
 
 and-1 -1v = A u u = B w  (3.5.10) 
 
It follows from (3.5.9) that 
 
 ( )= =w = Bu B Av BAv  (3.5.11) 
 
which implies that 
 
 ( ) 1−=v BA w  (3.5.12) 
 
It follows from (3.5.10) that 
 
 =-1 -1 -1v = A u A B w  (3.5.13) 
 
Therefore, 
 
 ( ) 1 1 1− − −= =v BA w A B w  (3.5.14) 
 
As a result of (3.5.14) 
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 ( )( )1 1 1   for all  − − −− ∈BA A B w = 0 w W  (3.5.15) 

 
which implies (3.5.8). 
 

The notation 1−A  for the inverse allows (3.5.1) to be written 
 

 ( )1   for all − = ∈A Av v v V  (3.5.16) 
 
The product definition (3.4.17) allows (3.5.16) to be written 
 

 1   for all − = ∈A Av v v V  (3.5.17) 
 
Likewise, for all ∈u U , we can write 
 

 1   for all − = ∈AA u u u U  (3.5.18) 
 
The identity linear transformation : →I V V  was introduced in Example 3.1.1.  Recall that it is 
defined by 
 
 Iv = v  (3.5.19) 
 
for all v  in .V   Often it is desirable to distinguish the identity linear transformations on different 
vector spaces.  In these cases we shall denote the identity linear transformation by IV .  It follows 
from (3.5.17), (3.5.18) and (3.5.19) that 
 

 1 1and− −= =AA I A A IU V  (3.5.20) 
 
Conversely, if A  is a linear transformation from V  toU , and if there exists a linear transformation 

: →B U V such that =AB IU  and =BA IV , then A  is one to one and onto and 1.−B = A   The 
proof of this assertion is left as an exercise.  As with matrices, linear transformations that have 
inverses, i.e., one to one onto linear transformations, are referred to as nonsingular. 
 
 
Exercises 
 
3.5.1  Show that 
 

 ( ) ( ) 11, , , ,j k k jM M
−− =A e e A e e  (3.5.21) 

 



234  Chap. 3 •  LINEAR TRANSFORMATIONS 

 

for a nonsingular linear transformation : →A V V . 
 
3.5.2  In Example 3.2.2, we were given the linear transformation : →A V U  defined by 
 

 
( ) ( )
( ) ( )

2 3 4 1 2 3 4
1 2

1 2 3 4 1 2 3 4
3 4

2 3 4

2 2 2

υ υ υ υ υ υ υ

υ υ υ υ υ υ υ υ

= + + + − + + +

+ − + + − + + − +

Av b b

b b
 (3.5.22) 

 

for all 1 2 3 4
1 2 3 4υ υ υ υ= + + + ∈v e e e e V .  Show that A  is nonsingular and that the inverse 

1 :− →A U V  is defined by 
 

 
( )
( )

1
1 2 3 4 1

1 2 4 2

1 2 3 4 3

1 2 3 4 4

19 107 4
3 3

2 2

5 22
3 3

u u u u

u u u

u u u u

u u u u

−  = − + − + 
 
+ − + +

+ − + − +

 + − + − 
 

A u e

e

e

e

 (3.5.23) 

 
for all 1 2 3 4

1 2 3 4u u u u= + + + ∈u b b b b U . 
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Section 3.6.  Change of Basis for Linear Transformations 
 
 
 In Section 2.6, we introduced the idea of a change of basis and were led to the idea of a 
transition matrix.  For a finite dimensional vector space V , we considered two bases { }1 2, ,..., Ne e e  

and { }1 2ˆ ˆ ˆ, ,..., Ne e e .  Because each basis element of the first set can be written as a linear 
combination of the elements of the second set, we were able to write equation (2.6.3), repeated, 
 

 
1

ˆ for  1,2,...,
N

k
j j k

k
T j N

=

= =∑e e  (3.6.1) 

 
and its inverse, equation (2.6.4), repeated, 
 

 
1

ˆ ˆ for  1,2,...,
N

j
k k j

j
T k N

=

= =∑e e  (3.6.2) 

 
We defined the transition matrix for the basis change { } { }1 2 1 2ˆ ˆ ˆ, ,..., , ,...,N N→e e e e e e to be the matrix 
(2.6.9)1,repeated, 
 

 

1 1 1 1
1 2 3
2 2 2 2

1 2 3
3 3 3

1 2 3

1 2

N

N

k
j

N N N
N

T T T T
T T T T
T T T

T T

T T T

 ⋅ ⋅
 
 
 ⋅

 = =    ⋅ ⋅ ⋅ 
 ⋅ ⋅
 

⋅ ⋅ ⋅  

 (3.6.3) 

 
 Also, in Section 2.6, we derived the transformation rules for the components of a vector 
∈v V .  This calculation began with equations (2.6.26) and (2.6.27), repeated, 

 

 
1 1

ˆ ˆ
N N

j j
j j

j j
υ υ

= =

= =∑ ∑v e e  (3.6.4) 

 
The two sets of components { }1 2, ,..., Nυ υ υ  and { }1 2ˆ ˆ ˆ, ,..., Nυ υ υ  are connected by the formulas 
(2.6.31) and (2.6.32), repeated, 
 
 

 
1

ˆ
N

k k j
j

j
Tυ υ

=

=∑  (3.6.5) 
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1

ˆˆ
N

k k j
j

j
Tυ υ

=

=∑  (3.6.6) 

 
In this section, out task is to derive the formula which connects the components of a linear 

transformation : →A V U  when one changes bases in V  and U .  The result, like the results 
(3.6.5) and (3.6.6), reveals the dependence of : →A V U  on the bases.  The dependence will be 
displayed as a matrix equation which connects the matrix of : →A V U  to two transition matrices, 
one for V  and one for U .  This formula, when it is derived, will allow us to define what is meant 
by similar matrices. 
 
 The derivation we are going to perform, like virtually all in a linear algebra course, simply 
follows by a consistent application of the definitions.  We are given : →A V U , bases 
{ }1 2, ,..., Ne e e  and { }1 2ˆ ˆ ˆ, ,..., Ne e e  for V  and bases { }1 2, ,..., Mb b b  and { }1 2

ˆ ˆ ˆ, ,..., Mb b b  for U .  The 

connection between the bases { }1 2, ,..., Ne e e  and { }1 2ˆ ˆ ˆ, ,..., Ne e e  is given by (3.6.1) and (3.6.2).  By 

exactly the same logic, the bases { }1 2, ,..., Mb b b  and { }1 2
ˆ ˆ ˆ, ,..., Mb b b are given by 

 

 
1

ˆ for  1,2,...,
M

k
j j k

k
U j M

=

= =∑b b  (3.6.7) 

 
and its inverse, 
 

 
1

ˆ ˆ for  1,2,...,
M

j
k k j

j
U k M

=

= =∑b b  (3.6.8) 

 
From (3.2.2), the components of : →A V U  are 
 

 
1

    1,2,...,
M

j
k k j

j
A k N

=

= =∑Ae b  (3.6.9) 

 
when one selects the basis { }1 2, ,..., Ne e e  for V  and the basis { }1 2, ,..., Mb b b  for U .  However, if 

we select the other bases { }1 2ˆ ˆ ˆ, ,..., Ne e e  and { }1 2
ˆ ˆ ˆ, ,..., Mb b b  , the components of : →A V U  are 

given by 
 

   
1

ˆˆ     1,2,...,
M

j
k k j

j
A k N

=

= =∑Ae b  (3.6.10) 

 
 The transformation rule we are trying to derive arises from the substitution of the equations 
which connect the bases for V  and the bases for U  into (3.6.9) and the result is written in the form 
of (3.6.10).  The result we are going to derive is 
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1 1

ˆ      1,...,    and   1,2,...,
N M

j j s q
k s q k

q s
A U A T j M k N

= =

= = =∑∑  (3.6.11) 

 
 The derivation of this result is as follows:  First, substitute (3.6.1) into (3.6.10).  The result 
of this substitution is 
 

   
1 1

ˆ ˆ  =      1,2,...,
M N

j q
k j k k q

j q
A T k N

= =

= =∑ ∑b Ae Ae  (3.6.12) 

 
We next substitute equation (3.6.9) into the right side of (3.6.12) to obtain 
 

   
1 1 1 1

ˆ =      1,2,...,
M N N M

j q s q
k j k q q k s

j q q s
A T A T k N

= = = =

= =∑ ∑ ∑∑b Ae b  (3.6.13) 

 
Finally, we use (3.6.8) to rewrite (3.6.13) as 
 

   
1 1 1 1 1 1

ˆ ˆ ˆ=      1,2,...,
M N M M N M

j s q s q j
k j q k s q k s j

j q s j q s
A A T A T U k N

= = = = = =

= =∑ ∑∑ ∑∑∑b b b  (3.6.14) 

 
 
A rearrangement of (3.6.14) yields 
 

   
1 1 1

ˆ ˆ =     1,2,...,
M N M

j j s q
k s q k j

j q s
A U A T k N

= = =

 
− = 

 
∑ ∑∑ b  (3.6.15) 

 
Because the set of vectors { }1 2

ˆ ˆ ˆ, ,..., Mb b b  is a basis and, thus, linearly independent, (3.6.15) yields 

 

   
1 1

ˆ      1,...,    and   1,2,...,
N M

j j s q
k s q k

q s
A U A T j M k N

= =

= = =∑∑  

 
As a matrix equation, this set of equations is equivalent to 
 
 1A U AT−=  (3.6.16) 
 
If we adopt the notation introduced in equation (3.2.9), equation (3.6.16) can be written in the 
slightly more informative notation 
 
 ( ) ( )1ˆˆ, , , ,k j q sM U M T−=A e b A e b  (3.6.17) 
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 An important special case is for the linear transformation : →A V V , a linear 
transformation on V  with values in the same vector space V .  In this case, the components of A  
are related by 
 
 ( ) ( )1ˆ ˆ, , , ,k j q sM T M T−=A e e A e e  (3.6.18) 
 
Equation (3.6.18) is an example of similar matrices.  More formally, similar matrices are defined 
by 
 
Definition: If two square matrices A  and B  are related by a nonsingular matrix S  by the formula 

1B S AS−= , then A  and B  are said to be similar. 
 
The derivation of (3.6.18) shows that the matrix ( )ˆ ˆ, ,k jM A e e  is similar to the matrix 

( ), ,q sM A e e .  It is the transition matrix which plays the role of S  in the definition. 
 

The fact that the linear transformation : →A V V  represents a quantity that does not 
depend upon the choice of basis for V  means we can represent it in components with respect to 
any basis.  The choice of basis which produces the result most amenable to finding a solution to a 
physical problem is always a desirable choice.  This choice usually results in the utilization of 
(3.6.18) to calculate the transition matrix from given information about ( )ˆ ˆ, ,k jM A e e  and 

( ), ,q sM A e e .  We shall see an example of this kind of calculation later in this textbook. 
 

Similar matrices arise in a lot of applications and are worthy of a short discussion.  Some of 
the easily established properties of similar matrices are as follows: 
 

a) If B  is similar to A , then A  is similar to B .  This is true because if 1B S AS−= , then 
1A SBS −=  

b) If B  is similar to A  and C  is similar to B , then C  is similar to A .  This is true because 
 
 1 1and    B S AS C W BW− −= =  (3.6.19) 
 
implies 
 
 ( ) 11 1C W S ASW SW ASW−− −= =  (3.6.20) 
 

c) If B  is similar to A , then TB  is similar to TA .  This is true because if 1B S AS−= , then 

( ) 1T T T TB S A S
−

= . 
d) If B  is similar to A , then det detB A= .  This is true because 

( ) ( )1 1 1det det det det det det det detB S AS S A S S S A A− − −= = = = . 
e) If B  is similar to A , and A  is nonsingular, then B  is nonsingular.  This follows from d) 

because det det 0B A= ≠ . 
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f) If B  is similar to A , and A  is nonsingular, then 1A−  is similar to 1B− .  This follows 
because 1B S AS−=  implies 1 1 1B S A S− − −=  when A  is nonsingular. 

 
An example of the use of (3.6.17) is provided by the following: 
 
Example 3.6.1:  You are given a linear transformation : →A V V  whose matrix with respect to a 
basis { }1 2 3, ,e e e  is 
 

 ( )
2 2 0

, , 1 1 2
1 1 2

j kM
 
 =  
  

A e e  (3.6.21) 

 
and a change of basis 
 

 
1 1 2

2 1 2 3

3 1 2 3

ˆ
ˆ 2
ˆ

= −
= − + +
= + +

e e e
e e e e
e e e e

 (3.6.22) 

 
It follows from (3.6.1) that the transition matrix is given by 
 

 

1 1 1
1 2 3

2 2 2
1 2 3

3 3 3
1 2 3

1 2 1
1 1 1

0 1 1

T T T
T T T T

T T T

  − 
   = = −   
     

 (3.6.23) 

 
The inverse of the matrix (3.6.23) is 
 

 1

0 1 1
1 1 2ˆ
3 3 3

1 1 1
3 3 3

T T −

 
 −
 
 = = − −
 
 
 
 

 (3.6.24) 

 
Therefore, 
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( ) ( )1

0 1 1 2 2 0 1 2 1
1 1 2ˆ ˆ, , , , 1 1 2 1 1 1
3 3 3

1 1 2 0 1 11 1 1
3 3 3

0 0 0
0 1 0
0 0 4

r s j kM T M T−

 
 −

−    
    = = − − −    
        

 
 

 
 =  
  

A e e A e e

 (3.6.25) 

 
Example 3.6.2:  You are given a linear transformation : →A V U  defined by 
 
 ( ) ( ) ( )1 2 3

1 2 3 4 1 2 3 1 2 3 49 6 5 4 8 5 4 5υ υ υ= + − + + − − + + + − +Av b b b b b b b b b b b  (3.6.26) 
 
For all vectors 1 2 3

1 2 3υ υ υ= + + ∈v e e e V .  The matrix of A  with respect to the bases { }1 2 3, ,e e e  

and { }1 2 3 4, , ,b b b b  is 
 

 ( )
9 1 8
6 1 5

, ,
5 1 4

4 0 5

q sM

− 
 − =
− − 
 
 

A e b  (3.6.27) 

 
You are given bases { }1 2 3ˆ ˆ ˆ, ,e e e  and { }1 2 3 4

ˆ ˆ ˆ ˆ, , ,b b b b  defined by 

 

 
1 1 2

2 1 2 3

3 1 2 3

ˆ
ˆ 2
ˆ

= −
= − + +
= + +

e e e
e e e e
e e e e

 (3.6.28) 

 
and 
 

 

1 1 2 3 4

2 1 2 3 4

3 1 2 3

4 1 2 3 4

ˆ 2 3 3 2
ˆ 3 2 2 4
ˆ 2 3
ˆ 4 2 4 5

= + + −

= − + +

= − + +

= + + +

b b b b b

b b b b b

b b b b

b b b b b

 (3.6.29) 

 
The problem is to find the matrix ( )ˆˆ, ,k jM A e b .  It follows from (3.6.28) that 
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1 1 1
1 2 3
2 2 2

1 2 3
3 3 3

1 2 3

1 2 1
1 1 1

0 1 1

T T T
T T T T

T T T

  − 
   = = −   
     

 (3.6.30) 

 
and from (3.6.29) that 
 

 

1 1 1 1
1 2 3 4
2 2 2 2
1 2 3 4
3 3 3 3
1 2 3 4
4 4 4 4
1 2 3 4

2 3 2 4
3 2 1 2
3 2 3 4
2 4 0 5

U U U U
U U U U

U
U U U U
U U U U

−   
   −   = =
   
   −  

 (3.6.31) 

 
Given (3.6.27), (3.6.30) and (3.6.31), we can use (3.6.17) and find 
 

 

( ) ( )

1

1

2 3 2 4 9 1 8
1 2 1

3 2 1 2 6 1 5ˆˆ, , , , 1 1 1
3 2 3 4 5 1 4

0 1 1
2 4 0 5 4 0 5

48 15 37 62 9 1 8
1 2 1

34 100 56 32 6 1 51 1 1 1
60 17 61 6 5 1 4286

0 1
8 74 30 58 4 0 5

k j q sM U M T

−

−

− −   
−    − −     = = − − −   

      −   
− − −   

−   − − −   = −
− − − −   
   − −   

A e b A e b

1

95 37 236 0.332 0.1294 0.8252
824 914 1192 2.8811 3.1958 4.1781
1061 1205 1564 3.7098 4.2133 5.4685286
850 888 1374 2.9720 3.2049 4.8042

 
 
 
  

− − − −   
   − − − −   = =
− − − −   
   − −   

(3.6.32) 

 
If A  is a linear transformation : →A V V , the transformation formula is again (3.6.18). 

We shall use (3.6.18) to motivate the concept of the determinant of : →A V V  and the trace of 
: →A V V .  First, we shall discuss the determinant.  The determinant of the square matrix 
( ), ,q sM A e e , written ( )det , ,q sM A e e , can be computed by the formulas in Section 1.10.  It 

follows from (3.6.18) and equation (1.10.60) that 
 

 
( ) ( ) ( )( )( )1ˆ ˆdet , , det , , det

ˆ ˆdet ( , , )
q s k j

k j

M T M T

M

−=

=

A e e A e e

A e e
 (3.6.33) 
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Thus, we obtain the important result that for a linear transformation : →A V V , det ( , , )q sM A e e  
is independent of the choice of basis for V .  With this fact in mind, we define the determinant of a 
linear transformation : →A V V , written det A , by 
 
 det det ( , , )k qM=A A e e  (3.6.34) 
 
By the above argument, we are assured that det A  is a property of A  alone. 
 
 The definition of the trace of a linear transformation : →A V V  is motivated by the same 
kind of argument that was just used for the determinant.  The trace of a matrix is defined by 
equation (1.1.6).  Therefore, the trace of the square matrix ( ), ,q sM A e e , written ( )tr , ,q sM A e e  is 
just the sum of the diagonal elements.  Because of the transformation formula (3.6.18) and the 
special property of the trace operation, equation (1.1.26), it follows that 
 

 

( ) ( )( )
( )( )

( )( )
( )( )

1

1

ˆ ˆtr , , tr , ,

tr , ,

tr , ,

tr , ,

k j q s

q s

q s

q s

M T M T

TT M

IM

M

−

−

=

=

=

=

A e e A e e

A e e

A e e

A e e

 (3.6.35) 

 
Therefore, the trace of a matrix is independent of the basis used to derive the matrix from the linear 
transformation.  As a result, we define the trace of a linear transformation by the formula 
 
 tr tr ( , , )k qM=A A e e  (3.6.36) 
 
Exercises: 
 
3.6.1  You are given a linear transformation : →A V V  defined by 
 
 ( ) ( )1 2 3

1 2 1 2 312 3 2 3 2 15υ υ υ= + + + +Av e e e e e  (3.6.37) 

 
for all vectors 1 2 3

1 2 3υ υ υ= + + ∈v e e e V  in a three-dimensional vector space V .  You are given a 
basis { }1 2 3ˆ ˆ ˆ, ,e e e  defined by 
 

 

1 1 2

2 1 2

3 3

1 2ˆ
3 3

2 1ˆ
3 3

ˆ

= +

= − +

=

e e e

e e e

e e

 (3.6.38) 
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Find the matrix ( )ˆ ˆ, ,k jM A e e .  You should obtain 
 

 ( )
18 0 0

ˆ ˆ, , 0 9 0
0 0 1

k jM
 
 =  
  

A e e  (3.6.39) 

 
3.6.2  You are given a linear transformation : →A V U  defined by 
 
 ( ) ( ) ( )1 2 3

1 2 1 2 1 28 2 6 5υ υ υ= − + − + − +Av b b b b b b  (3.6.40) 
 
for all vectors 1 2 3

1 2 3υ υ υ= + + ∈v e e e V .  You are given bases { }1 2 3ˆ ˆ ˆ, ,e e e  and { }1 2
ˆ ˆ,b b  defined by 

 

 
1 1 2 3

2 1 2 3

3 1 2 3

ˆ 3 2
ˆ 3 2
ˆ 3 2 3

= + −
= − +
= + +

e e e e
e e e e
e e e e

 (3.6.41) 

 
and 
 

 1 1 2

2 1 2

ˆ

ˆ 2

= +

= − +

b b b

b b b
 (3.6.42) 

 
Find the matrix ( )ˆˆ, ,j kM A e b .  You should obtain 

 

 ( ) 22 1 111ˆˆ, ,
43 10 263k jM  

=  − − − 
A e b  (3.6.43) 

 
3.6.3  A certain linear transformation : →A V V  has the matrix 
 

 ( )
1 0 2

, , 0 2 1
0 1 2

j kM
 
 =  
  

A e e  (3.6.44) 

 
with respect to a basis { }1 2 3, ,e e e .  You are given a change of basis defined by 
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1 1 2

2 1 2

3 3

3 1ˆ ˆ
2 2

1 3ˆ ˆ
2 2

ˆ

= +

= − +

=

e e e

e e e

e e

 (3.6.45) 

 
Calculate the matrix of : →A V V  with respect to the basis{ }1 2 3ˆ ˆ ˆ, ,e e e  .  You should obtain 
 

 ( )

11 3 5
10 10 2

3 19 5ˆ ˆ, ,
10 10 2
1 3 2
5 5

j kM

 − 
 
 = −
 
 
 −
  

A e e  (3.6.46) 

 
3.6.4  You are given a linear transformation : →A V U  defined by 
 
 ( ) ( ) ( )1 1 2 4 2 1 2 3 3 4 4 1 23 2 4 3υ υ υ υ= + + + − + + + −Av e e e e e e e e e  (3.6.47) 
 
for all vectors 1 2 3 4

1 2 3 4υ υ υ υ= + + + ∈v e e e e V .  You are given bases { }1 2 3 4ˆ ˆ ˆ ˆ, , ,e e e e  defined by 
 

 

1 2 3 4

2 1 2 3 4

3 3 4

4 1

ˆ ˆ ˆ3
ˆ ˆ ˆ ˆ2
ˆ ˆ

ˆ

= + +
= + + +
= +
= −

e e e e
e e e e e
e e e
e e

 (3.6.48) 

 
Find the matrix ( )ˆ ˆ, ,k jM A e e . 
 
3.6.5  You are given a linear transformation : →A V U  defined by 
 

 
( ) ( )
( ) ( )

1 2
2 3 4 1 2 3 4

3 4
1 2 3 4 1 2 3 42 4 2 3 2 2

υ υ

υ υ

= − − + + + + +

+ + + − + + − +

Av b b b b b b b

b b b b b b b b
 (3.6.49) 

 
for all vectors 1 2 3 4

1 2 3 4υ υ υ υ= + + + ∈v e e e e V .  You are given bases { }1 2 3 4ˆ ˆ ˆ ˆ, , ,e e e e  and 

{ }1 2 3 4
ˆ ˆ ˆ ˆ, , ,b b b b  defined by 
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1 1 2 4

2 1 2 3 4

3 1 2 3 4

4 1 2 3 4

ˆ
ˆ 2 2
ˆ
ˆ 2 3

= − +
= − + + +
= + + +
= + + +

e e e e
e e e e e
e e e e e
e e e e e

 (3.6.50) 

 
and 
 

 

1 1 2 3 4

2 1 2 3 4

3 1 2 3

4 1 2 3 4

ˆ 2 3 3 2
ˆ 3 2 2 4
ˆ 2 3
ˆ 4 2 4 5

= + + −

= − + +

= − + +

= + + +

b b b b b

b b b b b

b b b b

b b b b b

 (3.6.51) 

 
Find the matrix ( )ˆˆ, ,k jM A e b .  You should obtain 

 

 ( )
161 235 52 362 0.5629 0.8217 0.1818 1.2657
120 626 416 828 0.4196 2.1888 1.4545 2.89511ˆˆ, ,
335 687 494 810 1.1713 2.4021 1.7273 2.8322286

146 652 468 750 0.5105 2.2797 1.6364 2.6224

k jM

− −   
   − − − − − − − −   = =
   − − − − − − − −
  
   

A e b



(3.6.52) 

 
3.6.6  Given the linear transformation : →A V V  from Exercise 3.6.3, calculate the determinants 

( )det , ,k jM A e e  and ( )ˆ ˆdet , ,k jM A e e .  This calculation should illustrate the theoretical result 
(3.6.33) above. 
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__________________________________________________________ 
Chapter 4 
 
 
VECTOR SPACES WITH INNER PRODUCT 
 
 

There is no concept of length or magnitude in the definition of a vector space.  In this 
chapter, we first take a formal approach and add structure to that of a vector space so as to make it 
an inner product space.  We shall then illustrate by examples how one makes many of the vector 
spaces we have encountered thus far into inner product spaces.  From this discussion, we will be 
led naturally into ideas of length and angle that one can associate with inner product spaces.  This 
discussion will add a familiar geometric vocabulary to that we have been using for vector spaces. 
 
 In the application of mathematics to solve problems, it is often the case that one cannot 
obtain an exact solution.  One has to settle for an approximate solution of some type.  The ability to 
speak sensibly about an approximation requires ideas of distance and closely related ideas of length 
and angle.  The way one judges the validity of an approximation is to specify that it is close in 
some sense to the exact solution.  The ability of assign a mathematical meaning to “close” depends 
upon the structure of the mathematical model used to model the problem being solved.  For the vast 
majority of problems one encounters, the underlying mathematical model establishes relationships 
between elements of vector spaces.  If these elements have the additional structure which allows 
one to sensibly talk about distance, then the door is open to discussions of approximate solutions 
and their closeness to exact solutions.  It is the structure of an inner product space which will 
provide us the way to talk about concepts such as distance, length and angle.  These are the 
concepts that allow one to discuss the idea of an approximate solution to a problem being close to 
its exact solution. 
 
 
Section 4.1 Definition of an Inner Product Space 
 
 

In all of our discussions in Chapters 1, 2 and 3, we have allowed the scalar field to be the 
set of complex numbers C .  Most of our examples have utilized the special case of real numbers 
R .  In this chapter we shall discuss a so called eigenvalue problem that arises in many areas of the 
applications.  As we shall see, a discussion of this problems is best done in the context where the 
scalar field is allowed to be C .  It is for this reason, we shall continue to allow complex numbers 
for the scalar field.  Thus, we shall first define an inner product in this more general case.  We will 
often illustrate the concepts with examples where the scalar field is the set of real numbers. 
 

It is useful to briefly remind ourselves of certain arithmetic manipulations with complex 
numbers.  You will recall that complex numbers always have the representation 
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 a ibλ = +  (4.1.1) 
 
where a  and b are real numbers and the symbol i  obeys 2 1i = − .  The complex conjugate of a 
complex number λ  is the complex number 
 

 a ibλ = −  (4.1.2) 
 
It follows from (4.1.1) and (4.1.2) that 
 

 2 2Re( )a ib a ib aλ λ λ+ = + + − = =  (4.1.3) 
 
where Re( )λ  means the real part of the complex number λ .  Also, if a ibλ = + , then 
 

 2 2 2 2 2( )( )a ib a ib a iab iab i b a bλλ λλ= = + − = + − − = +  (4.1.4) 
 
is a real number.  If one refers to the absolute value of a complex number it is a real number 
denoted by λ  and it is defined by 
 

 2 2a bλ λλ= = +  (4.1.5) 
 
When dealing with complex numbers, it is convenient to useful to have a formal condition which 
reflects the special case when a complex number is, in fact, real.  This condition is the equation 
λ λ= .  In order to see that this condition does imply that λ  is real simply form the equality λ λ=
.  The result is 
 

 a ib a ibλ λ= + = = −  (4.1.6) 
 
Equation (4.1.6) implies that 0b = , and thus the complex number λ  is real. 
 
 If you are given a vector space with its long list of properties summarized in Section 2.1, an 
inner product space is a vector space with additional properties that we shall now summarize. 
 
Definition: An inner product on a complex vector space V  is a function :f × →V V C   with the 
following properties: 

(1)   ( ) ( ), ,f f=u v v u  

(2)   ( ) ( ), ,f fλ λ=u v u v  

(3)   ( ) ( ) ( ), , ,f f f+ = +u w v u v w v  

(4)   ( ) ( ), 0  and , 0  if and only if   f f≥ = =u u u u u 0  
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for all , , ∈u v w V  and .λ∈C   In Property 1 the bar denotes the complex conjugate.  Properties 2 
and 3 require that f  be linear in its first argument; i.e., 
 

 ( ) ( ) ( ), , ,f f fλ µ λ µ+ = +u v w u w v w  (4.1.7) 
 
for all , , ∈u v w V  and all ,λ µ∈C .  Property 1 and the linearity implied by Properties 2 and 3 
insure that f  is conjugate linear in its second argument; i.e., 
 

 ( ) ( ) ( ), , ,f f fλ µ λ µ+ = +u v w u v u w  (4.1.8) 
 
for all , , ∈u v w V  and all ,λ µ∈C .  Note that Property 1 shows that ( ),f u u  is real.  Property 4 
requires that f  be positive definite. 
 

There are many notations for the inner product.  In cases where the vector space is a real 
one, the notation of the “dot product” is used.  In this case, one would write the function 

:f × →V V R  as 
 

 ( ),f = ⋅u v u v  (4.1.9) 
 
In cases where the vector space is a complex one, it is useful to adopt the notation 
 
 ( ), ,f =u v u v  (4.1.10) 
 
for the function :f × →V V C .  In this work, we shall adopt the notation (4.1.10). 
 

An inner product space is simply a vector space with an inner product.  To emphasize the 
importance of this idea and to focus simultaneously all its details, we restate the definition as 
follows. 
 
Definition.  A complex inner product space, or simply an inner product space, is a set V  and a 
field C  such that: 

(a) There exists a binary operation in V called addition and denoted by +  such that: 
(1) ( ) ( )+ + = + +u v w u v w for all , , ∈u v w V  
(2) + = +u v v u  for all , ∈u v V  
(3) There exists an element ∈0 V  such that + =u 0 u  for all ∈u V  
(4) For every ∈u V  there exists an element − ∈u V  such that ( )+ − =u u 0  

(b) There exists an operation called scalar multiplication in which every scalar λ∈C  
can be combined with every element ∈u V  to give an element λ ∈u V  such that: 
(l) ( ) ( )λ µ λµ=u u  
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(2) ( )λ µ λ µ+ = +u u u  

(3) ( )λ λ λ+ = +u v u v  
(4) 1 =u u  

 for all , ,λ µ ∈C  and all , ∈u v V  

(c) There exists an operation called inner product by which any ordered pair of vectors 
u  and v  in V  determines an element of C  denoted by ,u v  such that 

(1) . , ,=u v v u . 
(2) , ,λ λ=u v u v  
(3) , , ,+ = +u w v u v w v  
(4) , ≥u u 0  and ,   if and only if  0= =u u 0 u  

for all , , ∈u v w V  and λ∈C  

 
A real inner product space is defined similarly.  One simple formally omits the appearance of 
complex conjugates in the definitions. 
 
Example 4.1.1:  The vector space NR  becomes an inner product space (a real inner product space) 
if, for any two vectors , N∈u v R ,where ( )1 2, ,..., Nu u u=u  and ( )1 2, ,..., Nυ υ υ=v , we define the 
inner product of u  and v  by 
 

 
1

,
N

j j
j

u υ
=

=∑u v  (4.1.11) 

 
Example 4.1.2:  The vector space NC  becomes an inner product space if, for any two vectors 

, .N∈u v C where ( )1 2, ,..., Nu u u=u  and ( )1 2, ,..., Nυ υ υ=v , we define the inner product of u  and v  
by 
 

 
1

,
N

j j
j

u υ
=

=∑u v  (4.1.12) 

 
 
Example 4.1.3:  The vector space 1N×M  becomes an inner product space if, for any two column 
vectors 1, N×∈u v M , we define the inner product of u  and v  by 
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 [ ]

1

2

3
1 2 3

1
,

N
T T

N j j
j

N

u u u u u

υ
υ
υ

υ

υ

=

 
 
 
 

= ⋅ ⋅ = = = ⋅ 
 ⋅
 
  

∑u v u v v u  (4.1.13) 

 
The next example shows how one assigns an inner product to the vector space of M N×  matrices, 

M N×M .  Before we state this definition, recall that in Section 1.2 we defined the trace of a square 
matrix.  In particular, if A  is a square matrix, say a matrix in N N×M , the trace of A , written tr A , 
is defined by equation (1.1.6), repeated, 
 

 11 22 33
1

tr
N

NN kk
k

A A A A A A
=

= + + + ⋅⋅⋅+ =∑  (4.1.14) 

 
If M NA ×∈M  and N MB ×∈M , then the rule for multiplying matrices and the definition (4.1.14) of 
the trace yield 
 

 ( ) ( )
1 1

tr tr
M N

jk kj
j k

AB A B BA
= =

= =∑∑  (4.1.15) 

 
Equation (4.1.15) is equation (1.1.26) repeated. 
 
Example 4.1.4:  The vector space M N×M  becomes an inner product space if, for any two M N×  
matrices , M NA B ×∈M , we define the inner product of A  and B  by 

 

 
( )

11 12 13 1 11 21 31 1

21 22 23 2 12 22 32 2

31 32 33 3 13 23 33 3

1 1

1 1

, tr tr

N M

N M

NT M

M MN N MN

M N

jk jk
j k

A A A A B B B B
A A A A B B B B
A A A A B B B B

A B AB

A A B B

A B
= =

 ⋅ ⋅  ⋅ ⋅ 
   
   
   
 = =   ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   
   ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅       

=∑∑
 (4.1.16) 
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Example 4.1.5:  Recall in Example 2.5.5 we introduced the symbol ∞P  for the infinite dimensional 
real vector space of all polynomials.  If we view these functions as defined over an interval [ ],a b  
and if [ ],w C a b∈  is a positive valued continuous function on [ ],a b , the real vector space ∞P  
becomes a real inner produce space if for any two polynomials ,p q ∞∈P , we define the inner 
produce of p  and q  by 
 
 ( ) ( ) ( ),

b

a
p q w x p x q x dx= ∫  (4.1.17) 

 
The positive valued function [ ],w C a b∈  is called a weighting function. 
 
Example 4.1.6:  Next consider the real vector space of polynomial of degree less than or equal to 
N .  In Section 2.1, we gave this vector space the symbol NP .  In Example 2.5.4 we showed that 
this vector space has dimension dim 1N N= +P .  An inner product of two polynomials in NP  is 
defined as follows.  If we are given K , where 1K N> + , distinct values of x  which we shall 
denote by 1 2, ,..., Kx x x , the inner product in NP  is defined by 
 

 ( ) ( )
1

,
K

p q p x q xα α
α=

=∑  (4.1.18) 

 
Example 4.1.7:  The vector space [ , ]C a b  becomes an inner produce space (a real inner product 
space) if for any two functions , [ , ]f g C a b∈ , we define the inner product of f  and g  by 
 

 , ( ) ( )
b

a
f g f x g x dx= ∫  (4.1.19) 

 
The actual proof that the inner product spaces introduced in the above seven examples requires that 
each definition be shown to obey the rules (c) above. 
 

The structure of an inner product space makes it possible to introduce the idea of length or 
norm of a vector. 
 
Definition:  Given an inner product space V , the length or norm of a vector is an operation, 
denoted by , that assigns to each nonzero vector ∈v V  a positive real number defined by: 
 

 ,=v v v  (4.1.20) 
 
Of course, it follows from rule (c)(4) above that the length of the zero vector is zero.  The definition 
represented by equation (4.1.20) is for an inner product space of N  dimensions.  It generalizes the 
concept of “length” or “magnitude” from elementary Euclidean plane geometry to N-dimensional 
spaces. 
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Example 4.1.8:  For the vector space NR , the length of a vector N∈v R is 
 

 
1

2
2

1
,

N

j
j
υ

=

 
= =  

 
∑v v v  (4.1.21) 

 
Example 4.1.9:  For the vector space NC , it follows from (4.1.13) and (4.1.20) that the length of a 
vector N∈v C is 
 

 
1 1

2 2
2

1 1
,

N N

j j j
j j
υ υ υ

= =

   
= = =   

   
∑ ∑v v v  (4.1.22) 

 
 
Example 4.1.10:  For the vector space 1N×M , the length of a column vector 1N×∈v M  is 
 

 
1 1

2 2
2

1 1
,

N N
T

j j j
j j
υ υ υ

= =

   
= = = =   

   
∑ ∑v v v v v  (4.1.23) 

 
Example 4.1.11:  For the vector space M N×M , the length of the matrix M NA ×∈M  is 
 

 ( )
1 1

2 2
2

1 1 1 1
, tr

M N M N
T

jk jk jk
j k j k

A A A AA A A A
= = = =

   
= = = =   

   
∑∑ ∑∑  (4.1.24) 

 
Example 4.1.12:  For the vector space ∞P , the length of the polynomial p ∞∈P  is 
 

 ( ) ( )( )
1

22,
b

a
p p p w x p x dx= = ∫  (4.1.25) 

 
Example 4.1.13:  For the vector space NP , the length of the polynomial Np∈P  is 
 

 ( )
1

2
2

1
,

K

p p p p xα
α=

 = =  
 
∑  (4.1.26) 

 
 
Example 4.1.14:  For the vector space [ , ]C a b , the length of the function [ , ]f C a b∈  is 
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 ( )( )
1

22, ( )
b

a
f f f f x dx= = ∫  (4.1.27) 

 
 
Exercises 
 
4.1.1  In Example 4.1.3 an inner product was defined on the vector space 1N×M .  It is possible for 
the same vector space to have more than one inner product.  Define an inner product different than 
the one in equation (4.1.13) by the rule 
 

 
[ ]

1 1

2 2

3 3
1 2 3

1

0 0 0
0 0 0
0 0 0

,

0 0 0

N

N N

N

j j j
j

g
g

g
u u u u

g

g u

υ
υ
υ

υ

υ
=

⋅ ⋅   
   ⋅ ⋅   
   ⋅ ⋅

= ⋅ ⋅    ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   
   ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
   

⋅ ⋅      

=∑

u v
 (4.1.28) 

 
where 0jg >  for 1, 2,...,j N= .  Show that the definition (4.1.28) makes 1N×M  an inner product 
space. 
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Section 4.2 Schwarz Inequality and Triangle Inequality 
 
 

As we build upon the properties of an inner product space, there are two fundamental 
inequalities that allow us to associate, with inner product spaces in general, certain concepts 
familiar from elementary geometry.  The first is an inequality called as the Schwarz Inequality and 
the second one is called the Triangle Inequality. 
 
Theorem 4.2.1:  The Schwarz inequality 
 

 , ≤u v u v  (4.2.1) 
 
is valid for any two vectors ,u v  in an inner product space. 
 
Proof:  The Schwarz inequality is easily seen to be trivially true when either u  or v  is the 0
vector, so we shall assume that neither u  nor v  is zero.  Next, consider the vector 

, ,−u u v v u u and employ Property (c4), which requires that every vector have a nonnegative 
length, hence 
 
 

2
, , , , , , , 0− = − − ≥u u v v u u u u v v u u u u v v u u  (4.2.2) 

 
We shall algebraically rearrange this equation and show that 
 
 ( )2 2 2 2, , , , 0− = − ≥u u v v u u u v u v u v u  (4.2.3) 

 
The algebra necessary to derive this result is 
 

 

2

Used linearity in the first argument of the inner product.

Factor the scalars from the f

, , , , , , ,

, , , , , , , ,

, , , , , , , ,

− = − −

= − − −

= − − −

u u v v u u u u v v u u u u v v u u

u u v u u v v u u v u u u u v v u u

u u v u u v v u u v u u u u v v u u



irst argument of the inner product.

These terms cancel each other.

Used conjugate linearity in the second argument of the 

, , , , , , , , , , , ,= − − +u u u u v v u u v u v u v u u u u v v u v u u u





( )
inner product

4 2 2 2 2 2, , , , 0= − = − ≥u v v u v u u u v u v u v u



 (4.2.4) 

 
Returning to the proof of the theorem, since u  must not be zero, it follows that 0>u  and, as a 
result, it follows from (4.2.4) that 
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22 2 , , ,≥ =u v u v u v u v  (4.2.5) 
 
where the equality , , ,=u v u v u v  has been used.  The positive square root of the last 
equation is Schwarz’s inequality. 
 
Theorem 4.2.2:  The triangle inequality 
 
 + ≤ +u v u v  (4.2.6) 
 
is valid for any two vectors ,u v  in an inner product space. 
 
Proof:  The squared length of +u v  can be written in the form 

 

 

( )

2 2 2

2 2

2 2

, , ,

, ,

2Re ,

+ = + + = + + +

= + + +

= + +

u v u v u v u v u v v u

u v u v u v

u v u v

 (4.2.7) 

 
where, as with (4.1.3), Re  signifies the real part.  The inequality ( )Re , ,≤u v u v  and (4.2.7)
show that 
 

 ( )2 2 2 2 22Re , 2 ,+ = + + ≤ + +u v u v u v u v u v  (4.2.8) 
 
The Schwarz inequality (4.2.1) allows this inequality to be written 
 

 ( )22 2 2 2 22 , 2+ ≤ + + ≤ + + = +u v u v u v u v u v u v  (4.2.9) 
 
The positive square root of (4.2.9) yields the triangle inequality (4.2.6). 
 

For a real inner product space V , the concept of angle is arises from the following 
definition: 
 
Definition:  The angle between two vectors u  and v  in V  is by θ  and is defined by 
 

 
,

cosθ =
u v
u v

 (4.2.10) 
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This definition angle between two vectors in a real vector space is meaningful because the Schwarz 
inequality (4.2.1) shows that 
 

 1 1⋅
− ≤ ≤ +

u v
u v

 (4.2.11) 

 
For a real inner product space, the definition (4.2.10) can be used to write  
 

 
2 2 2 2 2, 2 , 2 cosθ+ = + + = + + = + +u v u v u v u v u v u v u v  (4.2.12) 

 
In elementary geometry, (4.2.12) is known as the “Law of Cosines.” 
 
 As the material in this section shows, when the structure of an inner product is added to that 
of a vector space, we can define, in very general terms the geometric ideas of length and, in the real 
case, angle.  This structure, for example, when applied to the vector space M N×M , allows one to 
talk about the angle between two M N×  matrices. 
 
Example 4.2.1:  Consider the following 2 3×  matrices 
 

 
5 9 7 1 3 4

and
8 5 6 9 0 2

A B   
= =   
   

 (4.2.13) 

 
a) The length of A  and B  are  

 

 

( ) ( )

1
2

1
2 1 1

2 2

5 8
5 9 7

tr tr 9 5
8 5 6

7 6

155 127
tr 155 125 280 2 70

127 125

TA AA
   
    = =            

  
= = + = =  

  

 (4.2.14) 

 
and 
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( )

1
2

1
2

1
2

1 9
1 3 4

tr tr 3 0
9 0 2

4 2

26 17
tr 26 85 111

17 85

TB BB
   
    = =            

   
= = + =       

 (4.2.15) 

 
b) The cosine of the angle between A  and B  is 

 

 

( )

( )

1 9tr 5 9 7, 1cos tr 3 0
8 5 62 70(111) 4 2

60 591 1 72tr 60 84 .8168
47 842 70(111) 2 70(111) 70(111)

TABA B
A B A B

θ
  
   = = =         

  
= = + = =  

  

 (4.2.16) 

 
Therefore, the angle between  A  and B  is approximately 035 . 
 
 There is another idea which is familiar from elementary geometry that has a more general 
counterpart for inner product spaces.  It is the concept of distance.  The formal definition is as 
follows:  
 
Definition:  Given an inner product space V  the distance between vectors , ∈u v V  is −u v . 
 
In more abstract mathematical discussions, there is the idea of distance but it is not necessarily 
derived from the equation −u v .  Such structures are called metric spaces.  Also, one sometimes 
hears of normed linear spaces.  These are vector spaces for which the idea of length is defined 
without the necessity of the full structure of an inner product.1  In our discussion, these structures 
all collapse together when we introduce the idea of a vector space with inner product. 
 

The inner product as well as the expressions (4.1.20) for the length of a vector can be 
expressed in terms of any basis and the components of the vectors relative to that basis.  Let 
{ }1 2, ,..., Ne e e be a basis of V and denote the inner product of any two base vectors by jke , i.e., 

 

 , ,jk j k k j kje e= = =e e e e  (4.2.17) 
 

 
1 An example of a norm that is not derived from an inner product is the so called Manhattan or taxicab norm defined for 
two vectors in a finite dimensional vector space by the sum of the absolute differences in their coordinates.  A nice 
discussion of this norm can be found at http://en.wikipedia.org/wiki/Taxicab_geometry. 

http://en.wikipedia.org/wiki/Taxicab_geometry
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Thus, if the vectors u and v  have the representations 

 

 
1 1

,
N N

j k
j k

j k
u υ

= =

= =∑ ∑u e v e  (4.2.18) 

 

relative to the basis { }1 2, ,..., Ne e e  then the inner product of u  and v  is given by 

 

 
1 1 1 1 1 1

, , ,
N N N N N N

j k j k j k
j k j k jk

j k j k j k
u u e uυ υ υ

= = = = = =

= = =∑ ∑ ∑∑ ∑∑u v e e e e  (4.2.19) 

 
From the definition (4.1.20) for the length of a vector ,v  and from (4.2.17) and (4.2.18)2, we can 
write 
 

 
1/2

1 1

N N
j k

jk
j k

e υ υ
= =

 
=  
 
∑∑v  (4.2.20) 

 
Equations (4.2.19) and (4.2.20) give the component representations of the inner product and of the 
length for the basis { }1 2, ,..., Ne e e . 
 
 
Exercises 
 
4.2.1  Show that the length or norm  induced by an inner product according to the definition 
(4.1.20)  must satisfy the following parallelogram law; 
 
 

2 2 2 22 2+ + − = +u v u v v u  (4.2.21) 
 
for all vectors u and .v  
 
4.2.2  Show that in an inner product space 
 

 
2 22 , 2 ,+ = + − −u v v u u v u v   (4.2.22) 

 
4.2.3  Show that for a complex inner product space 
 

 
2 22 , 2 , i i i i− = + − −u v v u u v u v   (4.2.23) 
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4.2.4  Use (4.2.22) and (4.2.23) and show that 
 
 ( ) ( )2 2 2 22 , 1 1i i i i= + + + − + − +u v u v u v u v   (4.2.24) 
 
which expresses the inner product of two vectors in terms of the length or norm.  This formula is 
known as the polar identity.2 
 
4.2.5  Show that for real vector spaces the Schwarz and triangle inequalities become equalities if 
and only if the vectors concerned are linearly dependent. 
 
4.2.6  Show that − ≥ −u v u v  for all ,u v  in an inner product space .V  Hint:  Write 

-= +u v u v  and apply the triangle inequality. 
 
4.2.7  Prove that the N N×  matrix jke    defined by (4.2.17) is nonsingular.  Hint:  Utilize the fact 

that { }1 2, ,..., Ne e e is a basis of V  and prove that the rank of jke    is N . 
 
4.2.8  You are given a real inner product space V  of dimension 3.  You are also given two vectors 
v  and u  in V  that have the representations 
 

 1 2 3

1 2 3

ˆ ˆ ˆ2 2 4
ˆ ˆ ˆ5

= + −

= − − +

v e e e
u e e e

 (4.2.25) 

 
with respect to a basis { }1 2 3ˆ ˆ ˆ, ,e e e .  You are also given a basis { }1 2 3, ,i i i which is related to the 
basis { }1 2 3ˆ ˆ ˆ, ,e e e by the equations 
 

 
1 1 2 3

2 1 2 3

3 1 2 3

ˆ
ˆ
ˆ 2

= + +
= − −
= + −

e i i i
e i i i
e i i i

 (4.2.26) 

 
where the basis { }1 2 3, ,i i i has the special property 
 
 ,j k jkδ=i i  (4.2.27) 

 
2 In the case of a real vector space, equation (4.2.22) reduces to 
 

( )2 21,
4

= + − −u v u v u v  

This result is the polar identity for real inner product spaces.  This result and the similar result for a complex inner 
product space, equation (4.2.24) show that given an inner product space, there is a norm function defined and 
conversely.  However, there are other ways to define a norm on a vector space that is not derived from the inner 
product structure, i.e., from the definition (4.1.20). 
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Calculate cosθ , where θ  is the angle between the vector v  and the vector u .  The answer you 

should obtain is 
2

5 6
 

 
4.2.9  You given a real inner product space V  of dimension 3.  You are also given vectors v  and 
u  in V  that have the representations 
 

 1 2 3

1 2 3

2 4
5

= + −

= − +

v e e e
u e e e

 (4.2.28) 

 
with respect to a basis { }1 2 3, ,e e e .  You are also given the six inner products 
 

 
1 1 1 2 1 3

2 2 2 3 3 3

, 3, , 1, , 2

, 3, , 2, , 6

= = − =

= = =

e e e e e e

e e e e e e
 (4.2.29) 

 
Calculate cosθ , where θ  is the angle between the vector v  and the vector u .  The answer you 
should obtain is 0.2064  
 
4.2.10  Consider the inner product space 3 1×M  as defined in Example 4.1.2.  You are given a basis 
{ }1 2 3, ,e e e  defined by  
 

 1 2 3

4 7
5 3 0

3 7, , 0
5 3

10 0

i i   − −   
    
    = = =     
      

   
      

e e e  (4.2.30) 

 
Calculate the six quantities ,jk j ke = e e  for , 1, 2,3j k =  and the length of the vector  
 
 1 2 32 2 5i i= + +v e e e  (4.2.31) 
 
4.2.11  A three dimensional inner product space V  has a basis { }1 2 3, ,e e e .  A vector ∈v V   has 
the component representation 
 
 1 2 32 4i= + +v e e e  (4.2.32) 
 
You are also given a change of basis to a new basis for V , { }1 2 3ˆ ˆ ˆ, ,e e e , defined by 
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1 2 3

2 1 2 3

3 3

ˆ 3
ˆ
ˆ

i

i

= +
= + +
=

e e e
e e e e
e e

 (4.2.33) 

 
Determine the components of the vector ∈v V  with respect to the basis { }1 2 3ˆ ˆ ˆ, ,e e e of V .  If you 

are given the numbers for the inner products ,jk j ke = e e  as follows: 
 

 
1 0 0
0 1 0
0 0 1

jke
 
   =   
  

 (4.2.34) 

 
and a vector  
 
 1 2 32 6i i= + +u e e e  (4.2.35) 
 
Determine the distance between u  and v . 
 
4.2.12  You are given a complex inner product space V  of dimension 3.  v  and u  are two vectors 
in V  that have the representations 
 

 1 2 3

1 2 3

ˆ ˆ ˆ2 2 3
ˆ ˆ ˆ5
i= + −

= − − +

v e e e
u e e e

 (4.2.36) 

 
with respect to a basis { }1 2 3ˆ ˆ ˆ, ,e e e .  You are also given a basis { }1 2 3, ,i i i  which is related to the 
basis { }1 2 3ˆ ˆ ˆ, ,e e e by the equations 
 

 
1 1 2 3

2 1 2 3

3 1 2 3

ˆ
ˆ
ˆ 2

i= + +
= − −
= + −

e i i i
e i i i
e i i i

 (4.2.37) 

 
where the basis { }1 2 3, ,i i i has the special property 
 
 ,j k jkδ=i i  (4.2.38) 
 
Calculate the distance between the vector v  and the vector u .  The answer is 182  
 
4.2.13  Equation (4.2.19) arose from the choice of a basis { }1 2, ,..., Ne e e for the inner product space 
V .  Because the choice of basis was arbitrary, the resulting component expression is independent 



Sec. 4.2 • Schwarz Inequality and Triangle Inequality 263 

 

of the choice { }1 2, ,..., Ne e e .  However, it is instructive to start with (4.2.19) and show that its right 
hand side is unchanged when there is a basis transformation{ } { }1 2 1 2ˆ ˆ ˆ, ,..., , ,...,N N→e e e e e e . 
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Section 4.3. Orthogonal Vectors and Orthonormal Bases 
 
 
 The structure of an inner product space allows for a meaning to be assigned to the idea that 
a pair of vectors are orthogonal or perpendicular.  Motivated by the definition (4.2.10) for real 
inner product spaces, for inner product spaces in general, two vectors , ∈u v V  are orthogonal or, 
equivalently, perpendicular, if 
 

 , 0=u v  (4.3.1) 
 
A set of vectors in an inner product space V  is said to be an orthogonal set if all the vectors in the 
set are mutually orthogonal. 
 
Theorem 4.3.1:  If { }1 2, ,..., Nv v v  is an orthogonal set, then the set of vectors { }1 2, ,..., Nv v v  is 
linearly independent. 
 
Proof:  As with virtually all proofs of linear independence, we first form the sum 
 
 1 1 2 2 N Nα α α+ + ⋅⋅⋅+ =v v v 0  (4.3.2) 
 
Next, calculate the inner product of the vector 1 1 2 2 N Nα α α+ + ⋅⋅⋅+v v v  with one of the members of 
the set, say jv .  The result is 
 
 1 1 2 2 , 0N N jα α α+ + ⋅⋅⋅+ =v v v v  (4.3.3) 
 
By virtue of the fact that the inner product is linear in its first slot, this result becomes 
 
 1 1 2 2, , , 0j j N N jα α α+ + ⋅⋅⋅+ =v v v v v v  (4.3.4) 
 
Next, use the fact that the set { }1 2, ,..., Nv v v  is orthogonal and you find 
 
 0  for  1, 2,...,j j Nα = =  (4.3.5) 
 
The result (4.3.5) establishes the liner independence of the set { }1 2, ,..., Nv v v . 
 
 It is often beneficial to utilize bases that consist of mutually orthogonal elements.  In 
addition, it is convenient to normalize the basis vectors so that they have unit length.  Vectors with 
a length of 1 are called unit vectors or normalized vectors.  An orthonormal set is an orthogonal set 
with the property that all of its elements are unit vectors.  More formally, a set of vectors { }1,..., Mi i  
is an orthonormal set if 
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1 if

,
0 ifj k jk

j k
j k

δ
=

= =  ≠
i i  (4.3.6) 

 
for , 1, 2,...,j k M= .  Of course, the symbol jkδ  in (4.3.6) is the Kronecker delta introduced in 
Section 1.1. 
 
 If we are given a basis { }1 2, ,..., Ne e e for an inner product space V , we shall next outline a 
procedure that will construct an orthonormal basis { }1,..., Ni i .  This procedure is called the Gram-
Schmidt orthogonalization process.  More precisely, the Gram-Schmidt process is summarized in 
the following theorem: 
 
Theorem 4.3.2.  Given a basis { }1 2, , , Ne e e

of an inner product spaceV , then there exists an 

orthonormal basis { }1, , Ni i
 such that, for 1, 2,...,K N= , ( ) ( )1 1Span , Span , ,K K=e e i i 

. 
 
Proof:  The construction proceeds in two steps; first a set of orthogonal vectors is constructed, then 
this set is normalized.  Let { }1 2, ,..., Nd d d denote a set of orthogonal, but not unit, vectors.  This set 
is constructed from { }1 2, ,..., Ne e e  as follows:  Let 
 
 1 1=d e  (4.3.7) 
 
and define 2d  by the formula 
 
 2 2 1ξ= +d e d  (4.3.8) 
 
The unknown scalar ξ will be calculated from the requirement that 2d  is orthogonal to 1d .  This 
orthogonality requires that 
 
 2 1 2 1 1 1, , 0ξ= + ⋅ =d d e d d d  (4.3.9) 
 
Therefore, the scalar ξ  is determined by 
 

 2 1

1 1

,
,

ξ = −
e d
d d

 (4.3.10) 

 
Of course, 1 1 1 1 0⋅ = ⋅ ≠d d e e since 1 .≠e 0   Given (4.3.10), it follows from (4.3.8) that 
 

 2 1 1 1
2 2 1 2 2

1 1 1 1

,
,

,
= − = −

e d d dd e d e e
d d d d

 (4.3.11) 
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The vector 2d  is not zero, because 1 1=e d  and 2e are linearly independent.  The analytical 
expressions that define 1d  and 2d  are suggested by the following elementary figure: 
 

 
 
While (4.3.11) is a general result for any inner product space, this figure, drawn in two dimensional 
space, illustrates that the calculation of 2d  simply removes from 2e  the projection of 2e  in the 
direction of 1 1=d e .  The result is the vector 2d  which is perpendicular to 1 1=d e . 
 

The vector 3d  is defined by 
 
 2 1

3 3 2 1ξ ξ= + +d e d d  (4.3.12) 
 
The scalars 2ξ  and 1ξ  are determined by the requirement that 3d  be orthogonal to both 1d and 2d ; 
thus 
 
 1

3 1 3 1 1 1, , , 0ξ= + =d d e d d d  (4.3.13) 
 
 2

3 2 3 2 2 2, , , 0ξ= + =d d e d d d  (4.3.14) 
 
and, as a result, 
 

 3 11

1 1

,
,

ξ = −
e d
d d

 (4.3.15) 

 

 3 22

2 2

,
,

ξ = −
e d
d d

 (4.3.16) 

 
Therefore, equation (4.3.12) becomes 
 

 

1 1=d e  

2e  
2d  

1 1
2

1 1

, d de
d d
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 3 2 3 1
3 3 2 1

2 2 1 1

, ,
, ,

= − −
e d e d

d e d d
d d d d

 (4.3.17) 

 
The linear independence of 1 2, ,e e and 3e  requires that 3d  be nonzero.  Motivated by the discussion 
of the above figure, one can see that 3d  is the vector resulting from the removal from 3e  its 
projections in the two directions 1d  and 2d . 
 

It should now be clear that the schemes used to calculate 1 2,d d  and 3d can be repeated until 
a set of K  orthogonal vectors { }1 2, , , Kd d d

 has been obtained.  The orthonormal set is then 
obtained by defining 
 
 / , 1, 2, ,k k k k K= =i d d 

 (4.3.18) 
 
It is easy to see from the above construction that { } { }1 1, , , , ,K Ke e d d 

and, hence, { }1, , Ki i
 

generate the same subspace of V for each K . 
 
 It is convenient to collect the above formulas and eliminate the intermediate set of vectors 
{ }1 2, ,..., Kd d d .  It follows from (4.3.7) and (4.3.18) that 
 

 1
1

1

=
ei
e

 (4.3.19) 

 
It follows from (4.3.11), (4.3.18) and (4.3.7) that 
 

 2 2 1 12
2

2 2 2 1 1

,
,

−
= =

−
e e i idi

d e e i i
 (4.3.20) 

 
In a similar fashion 
 

 3 3 2 2 3 1 1
3

3 3 2 2 3 1 1

, ,
, ,

− −
=

− −
e e i i e i i

i
e e i i e i i

 (4.3.21) 

 
The pattern of these results reveals that 
 

 

1

1

1

1

,
   for   1, 2,...,

,

k

k k j j
j

k k

k k j j
j

k K

−

=

−

=

−
= =

−

∑

∑

e e i i
i

e e i i
 (4.3.22) 

 
is the formula for the thk  unit vector in the orthonormal set { }1, , Ki i

. 
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 The construction above leading to the result (4.3.22) is what one might call the classical or 
traditional Gram Schmidt process.3  Our examples in this section and later in an exercise in Section 
4.15, are a straight forward application of (4.3.22).  We shall discussin Chapter 7 a numerical 
problem that can surface with (4.3.22).  For certain problems, round off errors can produce vectors 
{ }1, , Ni i

 that fail to be orthogonal.  For these kinds of problems, a modified Gram Schmidt 
process is adopted.  We shall discuss the modification in Section 7.3.4 
 
Example 4.3.1:  Given the following three column vectors in 4 1×M .   
 

 1 2 3

2 1 4
2 4 2

, ,
2 4 2
2 1 0

−     
     −     = = =
     
     −     

e e e  (4.3.23) 

 
These vectors are linearly independent and span a certain subspace of 4 1×M .  The objective is to use 
the Gram-Schmidt process to find three orthonormal vectors that span the same subspace of 4 1×M .  
Recall that the inner product of the vector space 4 1×M  is given by (4.1.13), repeated, 
 
 , T T= =u v u v v u  (4.3.24) 
 
Step 1:  The unit vector 1i  is given by (4.3.19).  Therefore,  
 

 1
1 1

1 1 1

2 1
2 11 1 1
2 14 2
2 1

T

   
   
   = = = =
   
   
   

ei e
e e e

 (4.3.25) 

 
Step 2: The unit vector 2i  is given by (4.3.20).  It follows from (4.3.23) and (4.3.25) that 
 

 
3 Information about the Danish mathematician Jergen Pedersen Gram can be found at 
https://en.wikipedia.org/wiki/J%C3%B8rgen_Pedersen_Gram.  Information about the German mathematician Erhard 
Schmidt can be fournd at https://en.wikipedia.org/wiki/Erhard_Schmidt. 
4 A discussion of the modified Gram Schmidt process can be found in many references.  The textbook, Strang, Gilbert, 
Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, 1986, has a good discussion. 

 

https://en.wikipedia.org/wiki/J%C3%B8rgen_Pedersen_Gram
https://en.wikipedia.org/wiki/Erhard_Schmidt
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 ( )2 2 1 1

1 1 1 1 1 1 5
4 4 1 1 4 1 51 1 1 1, 3
4 4 1 1 4 1 52 2 2 2
1 1 1 1 1 1 5

T − − − −             
              
              − = − = − =              
               − − − −              

e e i i  (4.3.26) 

 
The norm of the column matrix (4.3.26) is 
 

 2 2 1 1

5 5
5 51 1 1, 100 5
5 52 2 2
5 5

T
 −   −    
      
      − = = =      
         − −      

e e i i  (4.3.27) 

 
Therefore, 
 

 2 2 1 1
2

2 2 1 1

1
1, 1
12,
1

− 
 −  = =
 −
 − 

e e i i
i

e e i i
 (4.3.28) 

 
Step 3:  The unit vector 3i  is defined by (4.3.21).  It follows from (4.3.23), (4.3.25) and (4.3.28) 
that 
 

 

3 3 2 2 3 1 1

4 4 1 1 4 1 1
2 2 1 1 2 1 11 1 1 1, ,

2 2 1 1 2 1 12 2 2 2
0 0 1 1 0 1 1

4
2 1

2 2
0

T T   − −             
                − − −                − − = − −                
                   − −                

 
 − = − −
 
 
 

e e i i e i i

( ) ( )

1 1 4 2 2
1 1 2 0 212 2
1 1 2 0 22
1 1 0 2 2

− −         
         − −         − = + =
         
         − − −         

 (4.3.29) 

 
The norm of the column matrix (4.3.29) is 
 

 3 3 2 2 3 1 1

2 2
2 2

, , 4
2 2
2 2

T
      
      − −      − − = =      
         − −      

e e i i e i i  (4.3.30) 
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Therefore, 
 

 3 3 2 2 3 1 1
3

3 3 2 2 3 1 1

2 1
2 1, , 1 1

2 14 2, ,
2 1

   
   − −− −    = = =
   − −
   − −   

e e i i e i i
i

e e i i e i i
 (4.3.31) 

 
 Given the Gram-Schmidt construction process as described, the result is a basis for the 
subspace spanned by { }1 2, ,..., Ke e e  and an orthonormal basis { }1 2, ,..., Ki i i  that spans the same 
subspace.  These two bases are necessarily connected by the usual change of basis formula as 
discussed in Section 2.6.  We shall write this formula as 
 

 
1

for    1,...,
K

q
k k q

q
R k K

=

= =∑e i  (4.3.32) 

 
Because the set { }1 2, ,..., Ki i i  is orthonormal and, thus, obeys (4.3.6), the coefficients 

, , 1, 2,...,q
kR q k K= , are given by 

 
 ,q

k k qR = e i  (4.3.33) 
 
Example 4.3.2:  For Example 4.3.1, it is possible to use 
 

 1 2 3 1 2 3

2 1 4 1 1 1
2 4 2 1 1 11 1 1, , , , ,
2 4 2 1 1 12 2 2
2 1 0 1 1 1

− −           
           − −           = = = = = =
           
           − − −           

e e e i i i  (4.3.34) 

 
and calculate the coefficients , , 1, 2,3q

kR q k = .  The results are 
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1 1 1
1 1 1 2 2 1 3 3 1

2
1 1 2

2 1 1 1 4 1
2 1 4 1 2 11 1 1, 4 , 3    , 2
2 1 4 1 2 12 2 2
2 1 1 1 0 1

2 1
2 11, 0   
2 12
2 1

T T T

T

R R R

R

−           
           −           = = = = = = = = =
           
           −           

−   
   
   = = =
   
   −   

e i e i e i

e i 2 2
2 2 2 3 3 2

3 3
1 1 3 2 2 3

1 1 4 1
4 1 2 11 1, 5   , 2
4 1 2 12 2
1 1 0 1

2 1 1 1
2 1 4 11 1, 0   ,
2 1 4 12 2
2 1 1 1

T T

T T

R R

R R

− − −       
       −       = = = = = = −
       
       − − −       

−      
      − −      = = = = =
      
      − − −      

e i e i

e i e i 3
3 3 3

4 1
2 110   , 4

2 12
0 1

T

R

    
    − −    = = = =
    
    −    

e i

 (4.3.35) 
 
Therefore, the matrix q

kR R =    is the upper triangle matrix 
 

 

1 1 1
1 2 3
2 2 2

1 2 3
3 3 3
1 2 3

4 3 2
0 5 2
0 0 4

R R R
R R R R

R R R

   
   = = −   
     

 (4.3.36) 

 
These results, reduce (4.3.32) to 
 

 
1 1

2 1 2

3 1 2 3

4
3 5
2 2 4

=
= +
= − +

e i
e i i
e i i i

 (4.3.37) 

 
 It is a general result that the Gram-Schmidt process yields an upper triangular matrix as 
illustrated by the example (4.3.36).  This result is contained in the formula (4.3.22) which can be 
solved for , 1, 2,...,k k K=e  to obtain 
 

 
1 1

1 1
, ,    for   1, 2,...,

k k

k k k j j k k j j
j j

k K
− −

= =

= − + =∑ ∑e e e i i i e i i  (4.3.38) 

 
Equations (4.3.38) and (4.3.32) identify the components of q

kR R =   .  The results are 
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1

1

,    for   1, 2,..., 1 

,    for   

0    for   

k q

k
q
k k k j j

j

q k

R q k

q k

−

=

 = −

= − =

 >

∑

e i

e e i i  (4.3.39) 

 
An equivalent but possibly more informative display of the matrix R  is 
 

 

1 2 1 3 1 1

2 2 1 1 3 2 2

3 3 2 2 3 1 1 3

1

1

, , ,
0 , , ,

0 0 , , ,

0

0 0 0 ,

K

K

K

K

K K j j
j

R

−

=

 ⋅ ⋅ 
 − ⋅ ⋅ 
 − − ⋅ ⋅
 

=  ⋅ ⋅ ⋅ ⋅
 
⋅ ⋅ ⋅ ⋅ ⋅ 

 
 ⋅ ⋅ −
  

∑

e e i e i e i
e e i i e i e i

e e i i e i i e i

e e i i

 (4.3.40) 

 
Example 4.3.3:  The Gram-Schmidt process is a good way to introduce the concept of a set of 
orthogonal polynomials.  The study of orthogonal polynomials is a large and somewhat 
complicated undertaking.  They arise as the solution to certain second order ordinary differential 
equations that occur in many applications.  The orthogonal polynomials introduced in this example 
are called Legendre Polynomials.5  In addition to arising during the study or ordinary differential 
equations, they have application in certain numerical integration applications known as the 
Newton-Cotes formulae.6  In any case, a Legendre polynomial of degree k , where 0,1,2,.....k = , 
is a polynomial of degree k  defined on the interval [ ]1,1− .  It is given the symbol kP .  The first six 
Legendre polynomials turn out to be 
 

 
5 Information about the French mathematician Adrien-Marie Legendre can be found at 
http://en.wikipedia.org/wiki/Adrien-Marie_Legendre. 
6 A good summary of the Newton-Cotes formulae can be found at 
http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas 
 

http://en.wikipedia.org/wiki/Adrien-Marie_Legendre
http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas
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( )
( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

1

2
2

3
3

4 2
4

5 3
5

6 4 2
6

1

1 3 1
2
1 5 3
2
1 35 30 3
8
1 63 70 15
8
1 231 315 105 5

16

P x

P x x

P x x

P x x x

P x x x

P x x x x

P x x x x

=

=

= −

= −

= − +

= − +

= − + −

 (4.3.41) 

 
They are normalized such that  
 
 ( )1 1kP =  (4.3.42) 
 
They also obey a recursion relationship 
 

 ( ) ( ) ( )1 1
2 1 for   1, 2,3,....

1 1k k k
k kP x xP x P x k

k k+ −

+   = − =   + +   
 (4.3.43) 

 
Finally, they obey the integral condition 
 

 ( )
1 2

1

2
2 1

x

kx
P x dx

k
=

=−
=

+∫  (4.3.44) 

 
In Example 4.1.5, we assigned an inner product to the 1N +  dimensional vector space of 
polynomials NP .  The inner product we wish to assign is the special case of (4.1.17) defined by 
 
 ( ) ( )

1

1
,

x

x
p q p x q x dx

=

=−
= ∫  (4.3.45) 

 
In Example 2.5.4, we showed that the set of polynomials { }21, , ,..., Nx x x  form a basis for NP .  

Next, we shall apply the Gram-Schmidt procedure to the set { }21, , ,..., Nx x x .  We shall utilize the 
inner product (4.3.45).  If, for the purposes of this example, we take 6N = , and use the symbol 
 
 ( ) 1 for   1, 2,3, 4,5,6k

kp x x k−= =  (4.3.46) 
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and { }1 2 3 4 5 6, , , , ,i i i i i i  to denote the orthonormal set that results from the Gram-Schmidt procedure.  

In order to implement the procedure, we need to adopt the general formula (4.3.22) for 1, 2,...,6k =
.  Of course, the inner product is the one defined by (4.3.45).  As a result, the first three elements of 
the set { }1 2 3 4 5 6, , , , ,i i i i i i  are 
 
for 1k = and ( )1 1p x =  
 

 ( ) 1
1 1

1 2
1 1

1

1 1
2, x

x

pi x
p p

dx
=

=−

= = =
 
 
 
∫

 (4.3.47) 

 
for 2k =  and ( )2p x x=  
 

 

( )

1

2 2 1 1 1
2 21 12 2 1 1

1 1

1
2

1

1 1
, 2 2
, 1 1

2 2

3
2

x

x

x

x

x xdx
p p i i

i x
p p i i

x xdx dx

x x

x dx

−

=

=− −

=

=−

 
−  

−  = =
−   

−     

= =

∫

∫ ∫

∫

 (4.3.48) 

 
for 3k = ,  and ( ) 2

3p x x=   
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( ) ( )

( ) ( )

( )

3 3 1 1 3 2 2
3

3 3 1 1 3 2 2

1 1
2 2 2

1 1

2
1 1 1

2 2 2

1 1 1

1
2 2

1

, ,
, ,

1 1 3 3
2 22 2

1 1 3 3
2 22 2

1 1
2 2

x

x

p p i i p i i
i

p p i i p i i

x x dx x x dx x

x x dx x x dx x dx

x x dx

x

− −

=

=− − −

−

− −
=

− −

    − −            =
     − −              

  −   
  =

∫ ∫

∫ ∫ ∫

∫

( )

( )

13
2

1
2 211 1 1 3

2 2 2

1 1 1 1

2 2 2

2

2 11
4 22

11

1
2 3

1 1 1
2 2 2 3

1 1 1
53 3 3 3 1
882 11

453 93

x

x

xx x

x x x

xx

xx

xx

xx dx dx x dx

x x x
x

x x dxx dx

=

=−

== =

=− − =− =−

==

=−=−

−
=

     −   −          

− − −
= = = = −

   − +−      

∫ ∫ ∫

∫∫  (4.3.49) 

 
Similar calculations yield 
 

 

( ) ( )

( ) ( )

( ) ( )

3
4

4 2
5

5 3
6

7 5 3
8
9 35 30 3

128
11 63 70 15

128

i x x x

i x x x

i x x x x

= −

= − +

= − +

 (4.3.50) 

 
Equations (4.3.47), (4.3.48), (4.3.49) and (4.3.50) show the relationships between the orthonormal 
polynomials produced by the Gram-Schmidt procedure and the Legendre polynomials defined by 
(4.3.41).  The Legendre polynomials are normalized to obey (4.3.42) and the polynomials in 
{ }1 2 3 4 5 6, , , , ,i i i i i i  are normalized to have unit length.  The point of this example is that one can begin 

with the polynomials in the set { }21, , ,..., Nx x x , adopt a definition of inner product as illustrated by 
(4.3.45) and generate a set of orthogonal polynomials that have importance in certain applications. 
 
 Other examples of orthogonal polynomials that arise in the applications go by the names of 
Chebyshev, Gegenbaur, Hermite, Jacobi and Leguerre. 
 
 
Exercises 
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4.3.1:  Determine an orthonormal basis for the basis { }1 2 3, ,e e e  of 3 1×M  defined by 
 

 1 2 3

1 1 4
1 , 3 , 2

1 1 1

     
     = − = = −     
     −     

e e e  (4.3.51) 

 
The correct answer is 
 

 1 2 3

1 11
3 62
1 1 1, ,
3 2 6

01 2
3 6

    
    
    
    = − = = −    
    
     −        

i i i  (4.3.52) 

 
4.3.2:  Determine an orthonormal basis for the basis { }1 2 3, ,e e e  of 3 1×M  defined by 
 

 1 2 3

0
3 , 2 , 3
3 2 0

i i
i

i

     
     = = − =     
          

e e e  (4.3.53) 

 
The correct answer is 
 

 1 2 3

0 1 3
1 1 1 1, 1 , 1

22 5 5 21 11
22

ii
i i

i
ii

   
   −
     
     = = − + = − +     
   +      +    

i i i  (4.3.54) 

 
 
4.3.3  Determine an orthonormal basis for the basis { }1 2 3 4, , ,e e e e  for the vector space 4 1×M  defined 
by 
 

 1 2 3 4

2 3 2 4
3 2 1 2

, , ,
3 2 3 4
2 4 0 5

i i
i

i i
i i

−       
       −       = = = =
       
       −       

e e e e  (4.3.55) 
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The correct answer is 
 

 1 2 3 4

0.3922 0.0855 0.4416 0.0660 0.6967 0.3925
0.5883 0.2422 0.1710 0.3899 0.3374

, , ,
0.5883 0.5414 0.1282 0.0684 0.3850
0.3922 0.6268 0.0855 0.2934 0.0733

i i
i i

i i i
i i i

+ − − +     
     − − − +     = = = =
     + +
     − − −     

i i i i

0.0016
0.1884 0.5144
0.4331 0.0618
0.1235 0.5824

i
i
i
i

 
 + 
 −
 − + 

  (4.3.56) 
 
4.3.4  You are given a matrix 3 2A ×∈M  defined by 
 

 
1 1
2 3
4 5

A
 
 =  
  

 (4.3.57) 

 
Find an orthonormal basis for the image space ( )R A  of A .  The correct answer is 
 

 1 2

1 2
21 14
2 3,
21 14
4 1
21 14

   
   
   
   = =   
   
   −      

i i   (4.3.58) 

 
4.3.5  You are given a matrix 3 2A ×∈M  defined by 
 

 
1 1
2 3

5
A

i

 
 =  
  

 (4.3.59) 

 
Find an orthonormal basis that spans ( )R A .  The correct answer is 
 

 

( )

( )

( )

1 2

1 51
4 516
2 52 ,

6 2 51
25 7

6 4 51

i

i

i i

− +  
  
  
 + = =   
  
   −
      

i i   (4.3.60) 
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Section 4.4. Orthonormal Bases in Three Dimensions 
 
 
 The real inner product space of dimension three is especially important in applied 
mathematics.  It arises as the underlying mathematical structure of almost all application of the 
broad area known as applied mechanics.  For this reason and others, in this section, we shall build 
upon the results of Section 4.3 and study this special case in greater detail.  We begin with the 
assumption that we have an orthonormal basis for this real inner product space V  that we will 
denote by { }1 2 3, ,i i i .  Given any basis for V , the Gram-Schmidt process discussed in Section 4.3 
allows this orthonormal basis to be constructed.  It is customary to illustrate this basis with a figure 
like the following 

 The first topic we wish to discuss is the basis change from the orthonormal basis { }1 2 3, ,i i i  

to a second orthonormal basis { }1 2 3
ˆ ˆ ˆ, ,i i i .  Geometrically, we can illustrate a possible second basis 

on the above figure as follows: 
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As follows from (4.3.6), the fact that the two bases are orthonormal is reflected in the requirements  
 
 ,    , 1, 2,3s k sk s kδ= =i i  (4.4.1) 
 
and 
 
 ˆ ˆ,    , 1, 2,3j q jq j kδ= =i i  (4.4.2) 

 
As we have discussed several times and discussed in detail in Section 2.6, the two sets of bases are 
related by an expression of the form 
 

 
3

1

ˆ    for   1, 2,3j kj k
k

Q j
=

= =∑i i  (4.4.3) 

 
It follows from (4.4.3) and (4.4.1) that the coefficients of the transition matrix are given by 
 

 
3 3

1 1

ˆ, , ,s j s kj k kj s k sj
k k

Q Q Q
= =

= = =∑ ∑i i i i i i  (4.4.4) 

 
Because we are dealing with a real vector space, the result (4.4.4) combined with the definition 
(4.2.10) tells us that ˆ,sj s jQ = i i  is the cosine of the angle between the vectors si  and ˆ

ji .  These 

cosines are the usual direction cosines that are familiar from elementary geometry. 
 

The coefficients of the transition matrix 
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11 12 13

21 22 23

31 32 33

kj

Q Q Q
Q Q Q Q Q

Q Q Q

 
  = =   
  

 (4.4.5) 

 
are restricted by the two requirements (4.4.1) and (4.4.2).  The nature of the restriction is revealed 
if we substitute (4.4.3) into (4.4.2) to obtain 
 

 
3 3 3 3

1 1 1 1

ˆ ˆ, , ,j q sj s kq k sj kq s k jq
s k s k

Q Q Q Q δ
= = = =

= = =∑ ∑ ∑∑i i i i i i  (4.4.6) 

 
If we now utilize (4.4.1), (4.4.6) reduces to 
 

 
3 3 3

1 1 1
sj kq sk kj kq jq

s k k
Q Q Q Qδ δ

= = =

= =∑∑ ∑  (4.4.7) 

 
The matrix form of (4.4.7)2 is 
 
 TQ Q I=  (4.4.8) 
 
Because the transition matrix is nonsingular, it follows from (4.4.8) that 
 
 1 TQ Q− =  (4.4.9) 
 
Therefore, the inverse of the transition matrix between two orthonormal bases is equal to its 
transpose.  The special result (4.4.9) also implies 
 
 TQQ I=  (4.4.10) 
 
in addition to (4.4.8).  Also, because of (1.10.21), it follows from (4.4.8) that 
 
 ( ) ( )2det det det det 1T TQQ Q Q Q= = =  (4.4.11) 
 
and, thus, 
 
 det 1Q = ±  (4.4.12) 
 
The transition matrix Q  is an example of what is known as an orthogonal matrix.  It has the 
property, as reflected in the construction above, of preserving lengths and angles. 
 
 If we view the transition matrix as consisting of 3 column vectors 1 2,q q  and 3q  defined by 
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1

2

3

for   1, 2,3
j

j j

j

Q
Q j
Q

 
 = = 
  

q  (4.4.13) 

 
then it is easy to restate the orthogonality condition (4.4.8) as a condition of orthogonality on the 
column vectors (4.4.13).  The formal condition that reflects this fact is 
 
 T

j k jkδ=q q  (4.4.14) 
 
Example 4.4.1:  An elementary example of the basis change described above is one where Q  takes 
the simple form 
 

 
11 12

21 22

0
0

0 0 1
kj

Q Q
Q Q Q Q

 
  = =   
  

 (4.4.15) 

 
With this choice for the transition matrix, the basis change defined by (4.4.3) reduces to 
 

 
1 11 1 21 2

2 12 1 22 2

3 3

ˆ

ˆ

ˆ

Q Q

Q Q

= +

= +

=

i i i

i i i

i i

 (4.4.16) 

 
where, from (4.4.8) 
 

 

( ) ( )
( ) ( )

2 2
11 21

2 2
12 22

11 12 21 22

1

1
0

Q Q

Q Q
Q Q Q Q

+ =

+ =

+ =
 (4.4.17) 

 
and, from(4.4.10), 
 

 

( ) ( )
( ) ( )

2 2
11 12

2 2
21 22

11 21 12 22

1

1
0

Q Q

Q Q
Q Q Q Q

+ =

+ =

+ =
 (4.4.18) 

 
For the basis change defined by (4.4.16), the above figure is replaced by 
 



Sec. 4.4 • Orthonormal Bases in Three Dimensions 283 

 

 
 
Thus, the choice (4.4.16) corresponds to some type of a rotation about the 3 axis.  If we view the 
above figure from the prospective of a rotation in the plane, the result is 
 

 
 
where the 3 axis can be viewed as pointing out of the page.  The six equations (4.4.17) and (4.4.18) 
have certain obvious implications.  First, (4.4.17)1 and (4.4.18)1 imply 
 
 21 12Q Q= ±  (4.4.19) 
 
The result (4.4.19) reduce (4.4.17)2 and (4.4.18)2 to the same equation.  Also, given (4.4.19), it 
follows from (4.4.17)1 and (4.4.17)2 that 
 
 22 11Q Q= ±  (4.4.20) 
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Given (4.4.19) and (4.4.20), equation (4.4.17)3 or, equivalently, (4.4.18)3 yield 
 
 ( ) ( )11 21 12 22 11 12 12 11 0Q Q Q Q Q Q Q Q+ = ± + ± =  (4.4.21) 
 
If we exclude the trivial case where 11Q  or 12Q  are zero, (4.4.21) says that the multiplicity reflected 
in (4.4.19) and (4.4.20) must be paired such that if 
 
 22 11Q Q= ±  (4.4.22) 
 
then 
 
 21 12Q Q=   (4.4.23) 
 
Given (4.4.22) and (4.4.23), we see that the first column of (4.4.15) determines the two possible 
choices for the second column of (4.4.15).  The remaining condition on the elements of the first 
column is (4.4.18)1, repeated, 
 
 ( ) ( )2 2

11 12 1Q Q+ =  (4.4.24) 
 
or, equivalently, 
 
 ( )2

12 111Q Q= ± −  (4.4.25) 
 
Equations (4.4.22) through (4.4.25) reduce the transition matrix (4.4.15) to eight possible choices.  
Four of these are as follows: 
 
Case 1: 
 

 

( )

( )

2
11 11

11 12
2

21 22 11 11

1 0
0
0 1 0

0 0 1 0 0 1
kj

Q Q
Q Q

Q Q Q Q Q Q

 − −  
   = = = −    
     
 

 (4.4.26) 

 
Case 2: 
 

 

( )

( )

2
11 11

11 12
2

21 22 11 11

1 0
0
0 1 0

0 0 1 0 0 1
kj

Q Q
Q Q

Q Q Q Q Q Q

 −  
   = = = − −    
     
 

 (4.4.27) 
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Case 3: 
 

 

( )

( )

2
11 11

11 12
2

21 22 11 11

1 0
0
0 1 0

0 0 1 0 0 1
kj

Q Q
Q Q

Q Q Q Q Q Q

 − −  
   = = = − − −    
     
 

 (4.4.28) 

 
and, finally, 
 
Case 4: 
 

 

( )

( )

2
11 11

11 12
2

21 22 11 11

1 0
0
0 1 0

0 0 1 0 0 1
kj

Q Q
Q Q

Q Q Q Q Q Q

 −  
   = = = − −    
     
 

 (4.4.29) 

 
The other four cases result from formally replacing 11Q  with 11Q−  in the above four.  Returning to 
the four cases listed, the details become a little more transparent if we introduce an angle θ  that 
makes cosθ  the direction cosine between 1i and 1̂i .  Given this interpretation, we can use (4.4.4) 
to write 
 
 11 1 1̂, cosQ θ= =i i  (4.4.30) 

 
which reduces the above four cases to 
 
Case 1: 
 

 
cos sin 0
sin cos 0

0 0 1
Q

θ θ
θ θ

− 
 =  
  

 (4.4.31) 

 
Case 2: 
 

 
cos sin 0
sin cos 0
0 0 1

Q
θ θ
θ θ

 
 = − 
  

 (4.4.32) 

 
Case 3: 
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cos sin 0
sin cos 0

0 0 1
Q

θ θ
θ θ

 
 = − 
  

 (4.4.33) 

 
and 
 
Case 4: 
 

 
cos sin 0
sin cos 0
0 0 1

Q
θ θ
θ θ

− 
 = − − 
  

 (4.4.34) 

 
The first two cases correspond to the situation where det 1Q =  and the second two cases 
correspond to the case where det 1Q = − .  Also, Case 2 differs from Case 1 and case 4 from case 3 
by the sign of the angle.  If Cases 1 and 3 represent some sort of rotation by an amount θ , then 
Cases 2 and 4 represent the same type of rotation by an amount θ− .  The following four figures 
display geometrically these four cases: 
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In a sense that we will describe, Case 1 is the fundamental case illustrated by this example.  
Cases 2 and 3 are similar to 1 and 4, respectively.  They simply represent rotations by a negative 
angle.  Case 3 can be thought of as being Case 2 followed by another basis change 1 1

ˆ ˆ→i i  and 

2 2
ˆ ˆ→−i i .  Likewise Case 4 can be thought of as being Case 1 followed by another basis change 

1 1
ˆ ˆ→i i  and 2 2

ˆ ˆ→−i i .  The bottom line of all of this is that Case 1 represents a basic rotation.  
Cases 2,3 and 4 represent a negative rotation in one case and a rotation followed by a second basis 
change which simply flips one of the axes.  Cases 3 and 4, as mentioned, have the property that 
det 1Q = − .  Rotations with this property involve the kind of axis inversion illustrated by Cases 3 
and 4.  They are sometimes called improper rotations.  If we rule out improper rotations and 
recognize that Case 2 is a special case of Case 1, the transition matrix that characterizes a rotation 
about the 3i  axis is (4.4.31), repeated, 
 

 
cos sin 0
sin cos 0

0 0 1
Q

θ θ
θ θ

− 
 =  
  

 (4.4.35) 

 
 

 

  

 

 

  

 

 

 

 

 

 

 

 

Case 1 

Case 4 Case 3 

Case 2 
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 It should be evident that the transition matrix for rotations about the other axes are 
 

 
cos 0 sin

0 1 0
sin 0 cos

Q
θ θ

θ θ

− 
 =  
  

 (4.4.36) 

 
for a rotation about the 2i  axis and 
 

 
1 0 0
0 cos sin
0 sin cos

Q θ θ
θ θ

 
 = − 
  

 (4.4.37) 

 
for a rotation about the 1i  axis. 
 
 
Exercises 
 
4.4.1  In the applications it is often the case where the angle θ  depends upon a parameter t  such as 
the time.  The result is, for example, that the orthogonal matrix Q  depends upon t .  Given Q ( )t  
defined by  
 

 ( )
( ) ( )
( ) ( )

cos sin 0
sin cos 0

0 0 1

t t
Q t t t

θ θ
θ θ

− 
 =  
  

 (4.4.38) 

 
Show that 
 

 
( ) ( )

( )

( )

0 0

0 0

0 0 0

d t
dt

dQ t d t
Q t

dt dt

θ

θ

 
− 

 
 

=  
 
 
 
 

 (4.4.39) 
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Therefore, the skew symmetric matrix 

( )

( )

0 0

0 0

0 0 0

d t
dt

d t
dt

θ

θ

 
− 

 
 
 
 
 
 
 

, which is determined by 
( )d t

dt
θ

, 

determines the angular velocity for the rotation (4.4.35)  
 
4.4.2  Generalize the results of Exercise 4.4.1 for an arbitrary orthogonal matrix and show that 
 

 
( ) ( ) ( )dQ t

Q t Z t
dt

=  (4.4.40) 

 
where ( )Z t  is a skew symmetric matrix, i.e., where ( ) ( )TZ t Z t= − .  The result (4.4.40) generalizes 

the special result (4.4.39) and shows that the angular velocity of the basis { }1 2 3
ˆ ˆ ˆ, ,i i i  with respect to 

the basis { }1 2 3, ,i i i  is determined by ( )Z t .  As a skew symmetric matrix in three dimensions, ( )Z t  
can have only three nonzero components.  It is customary to use these three components to define a 
three dimensional vector which is known as the angular velocity vector of the basis { }1 2 3

ˆ ˆ ˆ, ,i i i  with 

respect to the basis { }1 2 3, ,i i i .  If ( )tω  is the angular velocity vector, and its components with 

respect to the basis { }1 2 3
ˆ ˆ ˆ, ,i i i  are related to the components of ( )Z t  by the simple relationship 

 

 ( )
12 13 3 2

12 23 3 1

13 23 2 1

0 0
0 0

0 0

Z Z
Z t Z Z

Z Z

ω ω
ω ω
ω ω

−   
   = − = −   
   − − −   

  (4.4.41) 

 
where 
 
 ( ) ( ) ( ) ( )1 1 2 2 3 3

ˆ ˆ ˆt t t tω ω ω= + +ω i i i   (4.4.42) 
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Section 4.5 Euler Angles7 
 
 

Geometric constructions like the one discussed in Section 4.4 arise in a lot of applications.  
There is an entire branch of mechanics where one studies the motion of rigid bodies like, for 
example, gyroscopes, where the basis { }1 2 3, ,i i i  is a reference or fixed orientation in space and the 

basis { }1 2 3
ˆ ˆ ˆ, ,i i i  is fixed to the rigid body and, thus, defines the position of the rigid body relative to 

the fixed orientation.  Another application is when one thinks of the basis { }1 2 3
ˆ ˆ ˆ, ,i i i  as fixed to the 

body of an aircraft and its orientation relative to { }1 2 3, ,i i i  gives the orientation of the aircraft.  
These applications get rather complicated as one tries to characterize the position of, for example, a 
rigid body as a consequence of a general rotation.  The usual approach is to view the final position 
as the result of a sequence of three rotations of the form of (4.4.35) through (4.4.37).  In 
aerodynamics the three rotations are known by the names of roll, pitch and yaw.  In a more general 
context of rigid body dynamics they are known as the Euler angles.8 

 
The usual way these three rotations are represented is shown in the following figure: 

ϕ ψ

θ

1i

2i

3i

1̂i

2î

3î

 
 
The sequence of rotations are: 
 

1. Rotate about the 3i  axis by an angle ϕ . 

 
7 Information about Leonhard Paul Euler can be found at http://en.wikipedia.org/wiki/Leonhard_Euler. 
8 There is an excellent discussion of Euler angles at http://en.wikipedia.org/wiki/Euler_angles. 
 

http://en.wikipedia.org/wiki/Leonhard_Euler
http://en.wikipedia.org/wiki/Euler_angles
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2. Rotate about the “rotated” 1i  axis by an angle θ  which aligns the “rotated” 3i  with 3î . 
3. Rotate about the 3î  axis by an angle ψ  to align with 1̂i  and 2î  

 
The details to construct these bases changes are complicated.  We really need four bases to fully 
characterize the three rotations listed.  Two of them are the first basis, { }1 2 3, ,i i i , and the final 

basis, { }1 2 3
ˆ ˆ ˆ, ,i i i .  Unfortunately, we need to introduce more symbols.  The four bases are labeled as 

follows: 
 

{ } { } { } { }1 2 3 1 2 3 1 2 3 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , ,ψϕ θ→ → →i i i j j j j j j i i i  

 
The basis change from { }1 2 3, ,i i i  to { }1 2 3, ,j j j  is shown in the following figure: 

ϕ ψ

θ

1i

2i

33 =i j

1̂i

2î

3î

1j

2j

 
 

The basis change from { }1 2 3, ,i i i  to { }1 2 3, ,j j j  from { }1 2 3, ,j j j  to { }1 2 3
ˆ ˆ ˆ, ,j j j  and { }1 2 3

ˆ ˆ ˆ, ,j j j  to 

{ }1 2 3
ˆ ˆ ˆ, ,i i i are shown in the following figure: 
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ϕ ψ

θ

1i

2i

33 =i j

1̂i

2î

3 3
ˆ ˆ=i j

11
ˆ=j j

2j2ĵ

 
The three transition matrices that characterize the three rotations just described are 
 
{ } { }1 2 3 1 2 3, , , ,ϕ→i i i j j j  

 

 
cos sin 0
sin cos 0

0 0 1
Qϕ

ϕ ϕ
ϕ ϕ

− 
 =  
  

 (4.5.1) 

 
{ } { }1 2 3 1 2 3

ˆ ˆ ˆ, , , ,θ→j j j j j j  

 

 
1 0 0
0 cos sin
0 sin cos

Qθ θ θ
θ θ

 
 = − 
  

 (4.5.2) 

 
and 
 
.{ } { }1 2 3 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ, , , ,ψ→j j j i i i . 

 

 
cos sin 0
sin cos 0

0 0 1
Qψ

ψ ψ
ψ ψ

− 
 =  
  

 (4.5.3) 
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The transition matrix for the rotation { } { }1 2 3 1 2 3
ˆ ˆ ˆ, , , ,→i i i i i i  is the product9 

 
 Q Q Q Qϕ θ ψ=  (4.5.4) 
 

Equation (4.5.4) gives the transition matrix for a complicated rotation in three dimensions 
in terms of three elementary rotations.  The utility of the Euler angles is the ability to break down 
complicated rotations in this fashion.  The mathematical feature that makes a representation like 
(4.5.4) possible is a special property of the set of orthogonal matrices.  The set of orthogonal 
matrices is an example of what is known as a group.  For our purposes, we do not need to examine 
this concept in any detail.  It suffices to point out that the identity matrix is orthogonal and for each 
orthogonal matrix, its inverse is also orthogonal.  In addition, orthogonal matrices have the features 
that if two orthogonal matrices are multiplied together, the result is an orthogonal matrix and they 
obey the usual matrix multiplication property of associativity. 
 
 
Exercises: 
 
4.5.1  Carry out the multiplication in (4.5.4) and show that 
 

 
cos cos sin cos sin sin cos cos cos sin sin sin
cos sin sin cos cos cos cos cos sin sin sin cos

sin sin cos sin cos
Q

ϕ ψ ϕ θ ψ ψ ϕ ψ θ ϕ θ ϕ
ψ ϕ ψ θ ϕ ϕ θ ψ ϕ ψ θ ϕ

θ ψ ψ θ θ

− − − 
 = + − − 
  

 (4.5.5) 

 
If one were given the components of the orthogonal matrix Q , equation (4.5.5) can be used to 
calculate the three angles . ,ϕ θ . and ψ .  This information then determines the three elementary 
rotations represented by the matrices (4.5.1), (4.5.2) and (4.5.3).  The key formulas that follow 
from (4.5.5) are 
 
 33 cosQ θ=  (4.5.6) 
 

 
31 31

32 32

sin sin
tan if    sin 0

sin cos
Q Q
Q Q

θ ψ
ψ θ

θ ψ
= 

⇒ = ≠=   (4.5.7) 

 
and 
 

 13 13

23 23

sin sin
tan if    sin 0

sin cos
Q Q
Q Q

θ ϕ
ϕ θ

θ ϕ
= 

⇒ = − ≠= − 
 (4.5.8) 

 
 

9 Equation (4.5.4) follows from the application of (3.6.18) to each of the three basis transformations represented by 
Qϕ , Qθ  and Qψ  
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Because of the multiplicity of the inverse trigometric functions, the solution obtained from (4.5.6), 
(4.5.7) and (4.5.8) will not be unique. 
 
4.5.2  Recall from Exercise 4.4.2 that the angular velocity associated with an orthogonal matrix 
( )Q t  is determined by a skew symmetric matrix ( )Z t  defined by 

 

 ( ) ( ) ( )T dQ t
Z t Q t

dt
=  (4.5.9) 

 
Utilize (4.5.4) and show that the skew symmetric matrix ( )Z t  can be expressed in terms of the 
corresponding angular velocities of the rotations ,Q Qψ θ  and Qϕ  by the formula 
 
 ( ) ( ) T T TZ t Z t Q Z Q Q Q Z Q Qψ ψ θ ψ ψ θ ϕ θ ψ= + +  (4.5.10) 
 
The components of equation (4.5.10) give the angular velocity of the basis { }1 2 3

ˆ ˆ ˆ, ,i i i  with respect 

to the basis { }1 2 3, ,i i i .  Its components are the components of a linear transformation projected into 

the basis { }1 2 3
ˆ ˆ ˆ, ,i i i . 

 
4.5.3  Utilize the formulas for the various matrices in (4.5.10) and show that 
 

 ( )
( )

( )
0 0

0 0
0 0 0

t
Z t tϕ

ϕ
ϕ

− 
 =  
  



  (4.5.11) 

 

 ( ) ( )
( )

0 0 0
0 0
0 0

Z t t
t

θ θ
θ

 
 = − 
  





  (4.5.12) 

 

 ( )
( )

( )
0 0

0 0
0 0 0

t
Z t tψ

ψ
ψ

− 
 =  
  



   (4.5.13) 

 
and 
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 .

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 cos cos sin sin
cos 0 cos sin sin

cos sin sin cos sin sin 0

t t t t
Z t t t t t

t t t t

ψ ϕ θ ϕ ψ θ θ ψ
ψ ϕ θ θ ψ ϕ ψ θ

ϕ ψ θ θ ψ θ ψ ϕ ψ θ

 − − −
 = + − − 
 − + + 



  



  

 

 

.   (4.5.14) 
 
The components of the matrix (4.5.14) define the components of the angular velocity vector with 
respect to the basis { }1 2 3

ˆ ˆ ˆ, ,i i i  according to the correspondence (4.4.41).  Therefore, 

 

 
( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1 2 3ˆ ˆ ˆ1 2 3

1 2 3

ˆ ˆ ˆ

ˆ ˆ ˆcos sin sin cos sin sin cos
x x xt

t t t t t t

ω ω ω

θ ψ ϕ ψ θ ϕ ψ θ θ ψ ψ ϕ θ

= + +

= + + − + +

ω i i i

i i i 

   

 

 
  (4.5.15) 
 
4.5.4  As explained above, equation (4.5.14) represents the components of a linear transformation 
project into the basis { }1 2 3

ˆ ˆ ˆ, ,i i i .  That same linear transformation projected into the basis { }1 2 3, ,i i i  

is related to the matrix (4.5.14) by the change of basis formula (3.6.18).  In this case, the transition 
matrix is (4.5.4).  Show that the resulting matrix is 
 
 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

0 cos sin cos sin
cos 0 cos sin sin

sin cos sin cos sin sin 0

T

t t t t
QZ t Q t t t t

t t t

ϕ ψ θ θ ϕ ψ ϕ θ
ϕ ψ θ θ ϕ ψ ϕ θ

θ ϕ ψ ϕ θ θ ϕ ψ ϕ θ

 − − −
 = + − − 
 − + + 



  



  

 

 

  (4.5.16) 
 
The components of the matrix (4.5.16) define the components of the angular velocity vector with 
respect to the basis { }1 2 3, ,i i i  according to the correspondence (4.4.41).  Therefore, 
 

 
( )

( )( ) ( )( ) ( ) ( )( )
1 2 31 2 3

1 2 3cos sin sin sin cos sin cos
x x xt

t t t t

ω ω ω

θ ϕ ψ ϕ θ θ ϕ ψ ϕ θ ϕ ψ θ

= + +

= + + − + +

ω i i i

i i i 

   

 

  (4.5.17) 
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Section 4.6. Cross Products on Three Dimensional Inner Product Spaces 
 
 

In Sections 4.4 and 4.5 involved certain ideas that are special to three dimensional real inner 
product spaces.  This section concerns another topic that is also special to these spaces.  While 
portions of the topics in Sections 4.4 and 4.5 can be generalized to inner product spaces of arbitrary 
dimension, the topic of this section is for all practical purposes a unique one for three dimensional 
vector spaces.  The topic we shall briefly discuss is how to assign the operation of a cross product 
to a real inner product space of dimension three. 
 
Definition:  A cross product in a three dimensional real inner product space V is a function, 
written ×u v , from × →V V V such that 
 

(1)      × = − ×u v v u  
 

(2)      ( )× + = × + ×w u v w u w v  
 

(3)      ( ) ( )µ µ× = ×u v u v     for all , , ∈u v w V  and µ∈R  
 

(4)      , × =u u v 0  
 

(5)      sinθ× =u v u v  where 
,

cosθ =
u v
u v

 and 0 180oθ≤ ≤ . 

 
Geometrically, ×u v  is the area of the parallelogram with sides u  and v  intersecting at an 
angle θ . 
 

 
 

It follows from properties (1) and (2) that 
 
 ( )+ × = × + ×u v w u w v w  (4.6.1) 
 
and from properties (1) and (3) 
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 ( ) ( )µ µ× = ×u v u v  (4.6.2) 
 
Also, from property (1) that 
 
 × =u u 0  (4.6.3) 
 
The scalar triple product of three vectors ,u v  and w  in V is , ×w u v .  Geometrically, 

, ×w u v  is the volume of the parallelepiped formed by the co-terminus sides ,u v  and w . 
 

 
 

If { }1 2 3, ,i i i  is an orthonormal basis for V .  Then the cross product connects the basis 
members by the formulas 
 

 
1 2 3

3 1 2

2 3 1

× = ±
× = ±
× = ±

i i i
i i i
i i i

 (4.6.4) 

 
The proof of (4.6.4) involves the kinds of arguments we have used many times.  Since 1 2× ∈i i V , 
this vector can be expanded in the basis { }1 2 3, ,i i i  and written 
 
 1 2 1 2 3µ λ ξ× = + +i i i i i  (4.6.5) 
 
According property (4), 1 1 2, 0× =i i i  and 2 1 2, 0× =i i i .  Therefore, 0µ λ= =  and (4.6.5) 
reduces to 
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 1 2 3ξ× =i i i  (4.6.6) 
 
It follows from property (5) that 1 2 1× =i i .  This fact and (4.6.6) yield 1ξ = ±  and the result 
(4.6.4)1 is obtained.  The other two results follow by an identical argument. 
 

Given the choices (4.6.4), the component formula for the cross product for vectors 
 

 
3

1
j j

j
u

=

=∑u i  (4.6.7) 

 
and 
 

 
3

1
k k

k
υ

=

=∑v i  (4.6.8) 

 
can be written 
 

 

3 3 3 3

1 1 1 1

2 3 3 2 1 3 1 1 3 2 1 2 2 1 3( ) ( ) ( )

j j k k j k j k
j k j k

u u

u u u u u u

υ υ

υ υ υ υ υ υ
= = = =

× = × = ×

= ± − ± − ± −

∑ ∑ ∑∑u v i i i i

i i i
 (4.6.9) 

 
Equation (4.6.9), which has its origin in (4.6.4) shows that there are two cross products in the three 
dimensional inner product space V .  These two cases are characterized as follows: 
 
Definition:  A vector space V  with the cross product 
 
 2 3 3 2 1 3 1 1 3 2 1 2 2 1 3( ) ( ) ( )u u u u u uυ υ υ υ υ υ× = − + − + −u v i i i  (4.6.10) 
 
is said to have positive orientation. 
 
Definition:  A vector space V  with the cross product 
 
 2 3 3 2 1 3 1 1 3 2 1 2 2 1 3( ) ( ) ( )u u u u u uυ υ υ υ υ υ× = − − − − − −u v i i i  (4.6.11) 
 
is said to have negative orientation. 
 
Vector spaces with positive orientation are sometimes called right-handed, and vector spaces with 
negative orientation are sometimes call left-handed. 
 
 The following two figures illustrate the bases for positive oriented and negative oriented 
vector spaces: 
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 Given the component formula (4.6.9), the scalar triple product , ×w u v  of three vectors 

,u v  and w in V is 
 

 

3 3

1 1

2 3 3 2 1 3 1 1 3 2 1 2 2 1 3

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1

, ,

( ) , ( ) , ( ) ,
( ) ( ) ( )

j k j k
j k

u

u u u u u u
w u u w u u w u u

υ

υ υ υ υ υ υ
υ υ υ υ υ υ

= =

× = ×

= ± − ± − ± −

= ± − ± − ± −

∑∑w u v w i i

w i w i w i  (4.6.12) 

 
Often the result (4.6.12) is written 
 

 
1 2 3

1 2 3

1 2 3

,
w w w
u u u
υ υ υ

× = ±w u v  (4.6.13) 

 
One of the results illustrated by (4.6.12) or, equivalently, (4.6.13) is 
 

 

, , , ,

,

,

× = × = × = − ×

= − ×

= − ×

w u v v w u u v w w v u

v u w

u w v

 (4.6.14) 

 
The results (4.6.14) also follow from a geometric argument based upon the interpretation of 

, ×w u v  as the volume shown above. 
 
 
Exercises 

 

 

 
 

 

 

Positive Orientation Negative Orientation 
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4.6.1   Derive the vector identity 
 
 ( ) ( ) , ,× × = × × = −u v w w v u v u w w u v  (4.6.15) 
 
4.6.2  Derive the vector identity 
 
 , , , , ,× × = −s u v w s v u w s w u v  (4.6.16) 
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Section 4.7. Reciprocal Bases 
 
 
 The results of Sections 4.4, 4.5 and 4.6 are based upon the convenience of orthonormal 
bases.  The results of these sections were also restricted to the special case of a real inner product 
space of three dimensions.  These results are useful in a large variety of applications of linear 
algebra.  Unfortunately, there are important physical problems for which an orthonormal basis is 
not the best choice and, in addition, there are important applications where the vector space is not 
real and it is not of dimension three.  Therefore, in this section, we shall look at bases that capture 
some but not all of the convenience of orthonormal bases called reciprocal bases.  In addition, we 
shall not assume the vector space is real or that it is three dimensional. 
 
 Let { }1 2, ,..., Ne e e  be a basis for an N  dimensional vector space V .  In equation (4.2.17) of 
Section 4.2, we defined the symbols jke , for , 1, 2,...,j k N= , by 
 
 , ,jk j k k j kje e= = =e e e e  (4.7.1) 
 
Because { }1 2, ,..., Ne e e  is a basis, the N N×  matrix 
 

 

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 1 3 1

1 1

, , , ,
, , , ,
, , ,

, , ,

N

N

jk

N N N N

e

 ⋅ ⋅ 
 
 
 ⋅

  =    ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅
 

⋅ ⋅ ⋅  

e e e e e e e e
e e e e e e e e
e e e e e e

e e e e e e

 (4.7.2) 

 
has rank N  and is thus nonsingular.  To confirm this assertion about the rank, we can examine the 
linear independence of the columns by the usual test, namely, examine whether or not the equation 
 

 

1 1 1 2 1

2 1 2 2 2

3 1 3 2 3
1 2

1 2

, , ,
, , ,
, , ,

0

, , ,

N

N

N
N

N N N N

α α α

     
     
     
     

+ + ⋅⋅⋅ + =     
⋅ ⋅ ⋅     

     ⋅ ⋅ ⋅
     
          

e e e e e e
e e e e e e
e e e e e e

e e e e e e

 (4.7.3) 

 
forces the coefficients 1 2, ,..., Nα α α  to be zero.  If we use the linearity of the inner product in its 
second slot, (4.7.3) can be rewritten 
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 1 1 2 2, 0 for     1, 2,...,j N N j Nα α α+ + ⋅⋅⋅+ = =e e e e  (4.7.4) 
 
Because { }1 2, ,..., Ne e e  is a basis, (4.7.4) implies 
 
 1 1 2 2, 0 for all     N Nα α α+ + ⋅⋅⋅+ = ∈v e e e v V  (4.7.5) 
 
Property (4) of the defining properties of an inner product space listed in Section 4.1 tells us that 
(4.7.5) implies 
 
 1 1 2 2 N Nα α α+ + ⋅⋅⋅+ =e e e 0  (4.7.6) 
 
If we again use the fact that { }1 2, ,..., Ne e e  is a basis, we can conclude that 1 2 0Nα α α= = ⋅⋅⋅ = = . 
 
 Given the basis { }1 2, ,..., Ne e e  of V , we shall next define what is known as the reciprocal 
basis as follows: 
 
Definition:  The reciprocal basis to a basis { }1 2, ,..., Ne e e  of V  is a basis { }1 2, ,..., Ne e e  of V  
defined by 
 
 , for    , 1, 2,...,k k

j j j k Nδ= =e e  (4.7.7) 
 
Geometrically, the definition (4.7.7) says that the reciprocal basis vector ke  is a vector 
perpendicular to the 1N −  basis vectors 1 1 1,..., , ,...,k k N− +e e e e .   
 

An obvious example of a reciprocal basis is the orthonormal basis { }1 2, ,..., Ni i i  which by 
(4.3.6) is its own reciprocal basis.  Thus, the distinction between basis and reciprocal basis vanishes 
when one begins with an orthonormal basis. 
 

Given the two basis { }1 2, ,..., Ne e e  and { }1 2, ,..., Ne e e  for V , they must be connected by the 
usual formulas like (2.6.3).  If we rewrite (2.6.3) to fit the notation used in this section, the two 
bases { }1 2, ,..., Ne e e  and { }1 2, ,..., Ne e e  must be related, for example, by 
 

 
1

N
q

j qj
q

T
=

=∑e e  (4.7.8) 

 
It immediately follows from (4.7.1) and (4.7.7) that the components of the transition matrix are 

kj jkT e= , and, as a result, the basis change (4.7.8) is 
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1

for    1, 2,...,
N

q
j jq

q
e j N

=

= =∑e e  (4.7.9) 

 
The basis change { } { }1 2

1 2, ,..., , ,..., N
N →e e e e e e  is 

 

 
1

for    1, 2,...,
N

j jq
q

q
e j N

=

= =∑e e  (4.7.10) 

 
where the matrix jqe    is the inverse matrix to the matrix jke   .  It is useful to note that (4.7.7) 
and (4.7.10) show that 
 
 , ,jk j k j k kje e= = =e e e e  (4.7.11) 
 
Example 4.7.1:  Consider the following elementary construction for the two dimensional inner 
product space 2R .  The base vectors { }1 2,e e  consist of two vectors 45o  apart, the first one, 1e , two 
units long and the second one, 2e , one unit long.  If we calculate the inner products in (4.7.1), the 
given information yields 
 

 1 1 1 2

2 1 2 2

, , 4 2
, , 2 1

jke
  

  = =    
    

e e e e
e e e e

 (4.7.12) 

 
The inverse of this matrix is easily seen to be 
 

 

1 1
2 2
1 2
2

jke

 − 
   =   −  

 (4.7.13) 

 
Therefore, from (4.7.10), 
 

 

1 11 21
1 2 1 2

2 21 22
1 2 1 2

1 1
2 2

1 2
2

e e

e e

= + = −

= + = − +

e e e e e

e e e e e
 (4.7.14) 

 
The following figure shows the basis { }1 2,e e , its reciprocal { }1 2,e e  and the graphical 
representation of (4.7.14). 
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2 12 22
1 2

1 2
1 2
2

e e=

=

+

− +

e e e

e e

11 21
1 2

1 2

1

1 1
2 2

e e=

=

+

−

e e

e e

e

1e

2e

2e

1e

11
1e e

21
2e e

22
2e e

12
1e e

 
Example 4.7.2:  You are given a basis { }1 2 3, ,e e e  of 3 1×M  defined by 
 

 1 2 3

0.9659 0.2588 0.2500
0.2588 , 0.9659 , 0.0670

0 0 0.9659

     
     = = =     
          

e e e  (4.7.15) 

 
The problem is to find its reciprocal basis { }1 2 3, ,e e e .  The inner product for 3 1×M  is, of course, 
given by (4.1.13), repeated, 
 
 , T T= =u v u v v u  (4.7.16) 
 
This definition allows us to utilize (4.7.15) and (4.7.2) to obtain 
 

 
1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

, , , 1.0000 0.5000 0.2588
, , , 0.5000 1.0000 0.1294
, , , 0.2588 0.1294 1.0000

jke
   
     = =     
     

e e e e e e
e e e e e e
e e e e e e

 (4.7.17) 

 
The inverse of this matrix can be shown to be 
 

 
1.4051 0.6667 0.2774
0.6667 1.333 0
0.2774 0 1.0718

jqe
− − 

   = −   
 − 

 (4.7.18) 
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Therefore, from (4.7.10), 
 

 

1 11 12 13
1 2 3

0.9659 0.2588 0.2500 1.1154
1.4051 0.2588 0.667 0.9659 0.2774 0.0670 0.2989

0 0 0.9659 0.2679

e e e= + +

       
       = − − = −       
       −       

e e e e

 (4.7.19) 

 

 2 21 22 23
1 2 3

0.9659 0.2588 0.2989
0.667 0.2588 1.333 0.9659 1.1154

0 0 0
e e e

−     
     = + + = − + =     
          

e e e e  (4.7.20) 

 
and 
 

 3 31 32 33
1 2 3

0.9659 0.2500 0
0.2774 0.2588 1.0718 0.0670 0

0 0.9659 1.0353
e e e

     
     = + + = − + =     
          

e e e e  (4.7.21) 

 
The following figure illustrates these vectors for this example: 
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 If one has constructed a reciprocal basis { }1 2, ,..., Ne e e , it is possible to expand a vector 
∈v V  in that basis as follows: 

 

 
1

N
j

j
j
υ

=

=∑v e  (4.7.22) 

 
Equation (2.6.26), repeated, is 
 

 
1

N
k

k
k
υ

=

=∑v e  (4.7.23) 

 
which represents ∈v V  with respect to the basis { }1 2, ,..., Ne e e .  The two sets of components 

{ }1 2, ,..., Nυ υ υ  and { }1 2, ,..., Nυ υ υ  are connected by the usual change of basis formulas discussed in 
Section 2.6.  Given the special notation being used in this section, it is convenient to rewrite these 
formulas in this notation.  Two important formulas that follow from (4.7.22) and (4.7.23) are 
 

 
1 1 1

, , ,
N N N

j j j
k j k j k j k k

j j j
υ υ υ δ υ

= = =

= = = =∑ ∑ ∑v e e e e e  (4.7.24) 

 
and 
 

 
1 1 1

, , ,
N N N

j k j k j k j j
k k k

k k j
υ υ υ δ υ

= = =

= = = =∑ ∑ ∑v e e e e e  (4.7.25) 

 
where the defining condition (4.7.7) has been used.  These formulas simply say that the 
components { }1 2, ,..., Nυ υ υ  are the projections of the vector ∈v V  in the directions of the 

reciprocal basis { }1 2, ,..., Ne e e , and the components { }1 2, ,..., Nυ υ υ  are the projects of the vector 

∈v V  in the directions of the basis { }1 2, ,..., Ne e e .  It follows from (4.7.1), (4.7.23) (4.7.24) that the 
two sets of components are connected by 
 

 
1 1 1

, , ,
N N N

j j j
k k j k j k jk

j j j
eυ υ υ υ

= = =

= = = =∑ ∑ ∑v e e e e e  (4.7.26) 

 
or, by the reciprocal relationship, utilizing (4.7.11), (4.7.22) and (4.7.25) 
 

 
1 1 1

, , ,
N N N

j j k j k j kj
k k k

k k k
eυ υ υ υ

= = =

= = = =∑ ∑ ∑v e e e e e  (4.7.27) 
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It is customary to refer to the components { }1 2, ,..., Nυ υ υ  as the contravariant components of 

∈v V  and the components { }1 2, ,..., Nυ υ υ  as the covariant components of ∈v V . 
 
 As an example of the covariant and the contravarient components of a vector, consider the 
geometric construction introduced in Example 4.7.1 above. 
 
Example 4.7.3:  In this example the base vectors { }1 2,e e  consist of two vectors 45o  apart, the first 
one, 1e , two units long and the second one, 2e , one unit long.  You are given a vector v  defined by 
 

 1 2
1 2
2

= +v e e  (4.7.28) 

 
Therefore, for this example, the contravariant components of v  are 
 

 1 21    and   2
2

υ υ= =  (4.7.29) 

 
Equations (4.7.12), (4.7.26) and (4.7.29) yield the following covariant components: 
 

 
( )

( )

1 2
1 11 21

1 2
2 12 22

14 2 2 2 2 2
2

1 12 2 1 2
2 2

e e

e e

υ υ υ

υ υ υ

 = + = + = + 
 
 = + = + = + 
 

 (4.7.30) 

 
The figure below shows the reciprocal basis and the covariant and contravarient components of v . 
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1e
2e

2e

1e

2
2υ e

1
1υ e

2
2υ e

1
1υ e

v

 
 
Example 4.7.4:  You are given the basis and reciprocal basis calculated in Example 4.7.2 above.  
You are also given a 3 1×∈v M  defined with respect to the basis { }1 2 3, ,e e e  by 
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1 2 3
1 2 3

1 2 30.3167 0.4714 0.5799

1
3

1
3

1
3

υ υ υ= + +
= + +

 
 
 
 =  
 
 
  

v e e e
e e e  (4.7.31) 

 
The covariant components of 3 1×∈v M  are given by equation (4.7.27) where the numerical values 
of the kje  for , 1, 2,3k j =  are given by (4.7.17).  Therefore, 
 

 

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

1 2 3
1 11 12 13

1 2 3
2 21 22 23

1 2 3
3 31 32 33

1.0000 0.3167 0.5000 0.4714 0.2588 0.5799 0.7071

0.5000 0.3167 1.0000 0.4714 0.1294 0.5799 0.7071

0.2588 0.3167 0.1294 0.4714 1.000 0.5799 0.7407

e e e

e e e

e e e

υ υ υ υ

υ υ υ υ

υ υ υ υ

= + +

= + + =

= + +

= + + =

= + +

= + + =

 (4.7.32) 

 
and, with respect to { }1 2 3, ,e e e , the vector 3 1×∈v M  is given by 
 

 

1 2 3
1 2 3

1 2 30.7071 0.7071 0.7407
1
3

1
3

1
3

υ υ υ= + +

= + +

 
 
 
 =  
 
 
  

v e e e
e e e  (4.7.33) 

 
 
Exercises 
 
4.7.1  You are given a basis { }1 2 3, ,e e e  of 3 1×M  defined by 
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 1 2 3

1 1 4
1 , 3 , 2

1 1 1

     
     = − = = −     
     −     

e e e  (4.7.34) 

 
Find the reciprocal basis { }1 2 3, ,e e e .  The answer is 
 

 1 2 3

1 1 1
8 8 4

5 3 1, ,
8 8 4

17 1
24 4

     −     
     
     = = = −     
     
     −

         

e e e  (4.7.35) 

 
4.7.2  If we are given the basis { }1 2 3 4, , ,e e e e  for the vector space 4 1×M  defined by 
 

 1 2 3 4

2 3 2 4
3 2 1 2

, , ,
3 2 3 4
2 4 0 5

i i
i

i i
i i

−       
       −       = = = =
       
       −       

e e e e  (4.7.36) 

 
Find the reciprocal basis to { }1 2 3 4, , ,e e e e .  The answer is 
 

 

1 2

3

0.0631 0.1516 0.0756 + 0.0362i
0.2733  0.1085i  0.1430  0.1042i 

, ,
0.0059 + 0.0100i 0.0157 + 0.0718i
0.0200  0.0119i 0.1436  0.0313i

 0.0387 - 0.2743i
0.2481 + 0.1691i

i+   
   − − −   = =
   
   − −   
−
−

=

e e

e 4

0.0542 + 0.0002i
0.0260 + 0.0710i

,
0.0305 + 0.2332i 0.0598  0.0085i

 0.0664  0.0611i 0.0171 + 0.0804i

   
   
   =
   −
   − −   

e

 (4.7.37) 
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Section 4.8. Reciprocal Bases and Linear Transformations 
 
 
 In Section 3.2, we introduced the components of a linear transformation : →A V U  with 
respect to a basis { }1 2, ,..., Ne e e  for V and a basis { }1 2, ,..., Mb b b  for U .  The fundamental formula 
that defined the components is equation (3.2.2), repeated, 
 

 
1

    1, 2,...,
M

j
k k j

j
A k N

=

= =∑Ae b  (4.8.1) 

 
The matrix of the linear transformation was defined by : →A V U  by equation (3.2.9), repeated, 
 

 ( )

1 1 1
1 2

2 2 2
1 2

3 3
1 3

1 2

, ,

N

N

j
k j k

M M M
N

A A A
A A A
A A

M A

A A A

 ⋅ ⋅ ⋅
 
 
 ⋅

 = =   ⋅ ⋅ 
 ⋅ ⋅
 

⋅ ⋅ ⋅  

A e b  (4.8.2) 

 
In Section 3.6, we examined how the matrix (4.8.2) is altered when there are basis changes 
{ } { }1 2 1 2ˆ ˆ ˆ, ,..., , ,...,N N→e e e e e e  and { } { }1 2 1 2

ˆ ˆ ˆ, ,..., , ,...,M M→b b b b b b .  The result was equation 

(3.6.17), repeated, 
 
 ( ) ( )1ˆˆ, , , ,k j q sM U M T−=A e b A e b  (4.8.3) 

 
where T  is the transition matrix for { } { }1 2 1 2ˆ ˆ ˆ, ,..., , ,...,N N→e e e e e e  and U  is the transition matrix 

for { } { }1 2 1 2
ˆ ˆ ˆ, ,..., , ,...,M M→b b b b b b . 

 
Now that we have complicated the discussion by the introduction of the reciprocal basis 

{ }1 2, ,..., Ne e e  and { }1 2, ,..., Mb b b , and introduced the basis change { } { }1 2
1 2, ,..., , ,..., N

N →e e e e e e  

and { } { }1 2
1 2, ,..., , ,..., M

M →b b b b b b , we have three other ways to create matrices from : →A V U

.  Repeating (4.8.1) and adding the other three, the four sets of components of : →A V U  are 
defined by 
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1

1

1

1

M
j

k k j
j

M
j

k jk
j

M
k jk

j
j

M
k k j

j
j

A

A

A

A

=

=

=

=

=

=

=

=

∑

∑

∑

∑

Ae b

Ae b

Ae b

Ae b

 (4.8.4) 

 
for 1, 2,...,k N= .  The corresponding matrices are 
 

 

( )
( )
( )
( )

, ,

, ,

, ,

, ,

j
k j k

j
k jk

k jk
j

k j k
j

M A

M A

M A

M A

 =  
 =  
 =  
 =  

A e b

A e b

A e b

A e b

 (4.8.5) 

 
Consistent with (4.8.1), the convention in building the various matrices is that the first index, 
whether a subscript or a subscript, denotes the row of the matrix and the second index the column.  
Now that our vector spaces are inner product spaces, we can derive from (4.8.4) the following 
formulas for the components. 
 

 

,

,

,

,

j j
k k

jk k j

jk k j

k k
j j

A

A

A

A

=

=

=

=

Ae b

Ae b

Ae b

Ae b

 (4.8.6) 

 
These formulas arise by forming the respective right hand sides, substituting from (4.8.4) in terms 
of the components and then making use of the definition of the reciprocal basis, equation (4.7.7).  
The four sets of components of : →A V U  in (4.8.6) are the mixed contravariant-covariant 
components, the covariant components, the contravariant components and the mixed covariant-
contravariant components, respectively. 
 
 As with any basis change, the various sets of components are connected by a basis change 
formula identical to (4.8.3).  The problem is that an already complicated notation gets even more 
complicated.  It is probably more direct to derive the formulas that connect the components in 
(4.8.6) in each case rather than try to adapt (4.8.3).  The bases { }1 2, ,..., Ne e e  and { }1 2, ,..., Ne e e are 
connected by(4.7.9) and (4.7.10), repeated. 
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1

for    1, 2,...,
N

q
j jq

q
e j N

=

= =∑e e  (4.8.7) 

 

 
1

for    1, 2,...,
N

j jq
q

q
e j N

=

= =∑e e  (4.8.8) 

 
Likewise, the bases { }1 2, ,..., Mb b b  and { }1 2, ,..., Mb b b  are connected by 
 

 
1

for    1, 2,...,
M

q
j jq

q
b j M

=

= =∑b b  (4.8.9) 

 

 
1

for    1, 2,...,
M

j jq
q

q
b j M

=

= =∑b b  (4.8.10) 

 
The approach we shall take is to derive formulas that relate the components in (4.8.6)1  to each set 
of components in the remaining three equations.  Given (4.8.6)1, it follows from (4.8.6)2 that 
 

 
1

, , ,
M M M

q q q
jk k j k jq jq k jq k

q q q
A b b b A

=

= = = =∑ ∑ ∑Ae b Ae b Ae b  (4.8.11) 

 
where (4.8.10) and (4.8.6)1 have been used.  If we next use (4.7.1) applied to the basis 
{ }1 2, ,..., Mb b b , the transformation formula (4.8.11) simplifies to 
 

 
M

q
jk qj k

q
A b A=∑  (4.8.12) 

 
Identical calculations starting from (4.8.6)3 yields 
 

 
1

,
N

jk k j j kp
p

p
A A e

=

= =∑Ae b  (4.8.13) 

 
Likewise, when one starts from (4.8.6) it follows that 
 

 
1 1

,
N M

k k q kp
j j qj p

p q
A b A e

= =

= =∑∑Ae b  (4.8.14) 

 
 At the risk of introducing more notation, if we introduce the matrices 
 
 jqE e =    (4.8.15) 
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and 
 
 jqB b =    (4.8.16) 
 
Then the matrix versions of (4.8.12), (4.8.13) and (4.8.14) are, respectively, 
 
 ( ) ( )1, , , ,j

k k jM B M−=A e b A e b  (4.8.17) 
 
 ( ) ( ), , , ,k

j k jM M E=A e b A e b  (4.8.18) 
 
and 
 
 ( ) ( )1, , , ,k j

k jM B M E−=A e b A e b  (4.8.19) 
 
Equation (4.8.19) can also be read off from (4.8.3).  The transition matrix for the transformation 
{ } { }1 2

1 2, ,..., , ,..., N
N →e e e e e e turns out to be the complex conjugate of the matrix (4.8.15), and the 

transition matrix for the transformation { } { }1 2
1 2, ,..., , ,..., M

M →b b b b b b  the transition matrix is the 
complex conjugate of the matrix (4.8.16). 
 
 In the special case where the linear transformation is one from the vector space V  to itself, 
i.e., when : →A V V , the transition matrices E  and B  become the same.  Also, operations like 
the determinant and trace of a linear transformation can be performed on : →A V V .  In Section 
3.6, we defined the determinant of a linear transformation : →A V V  by equation (3.6.34), 
repeated, 
 
 det det ( , , )k jM=A A e e  (4.8.20) 
 
It is important to recall that the matrix det ( , , )j kM A e e  consists of elements defined by the 
equation 
 

 
1

N
j

k k j
j

A
=

=∑Ae e  (4.8.21) 

 
Equation (4.8.21) is equation (4.8.4)1 specialized to the case of a linear transformation : →A V V . 
 

In Section 3.6, we also illustrated how the determinant does not depend upon the choice of 
basis.  The proof of this result, as shown in Section 3.6, arose from the fact that the matrix 
det ( , , )k jM A e e  is similar to the matrix ( )ˆ ˆ, ,k jM A e e  resulting from a basis change 

{ } { }1 2 1 2ˆ ˆ ˆ, ,..., , ,...,N N→e e e e e e .  The question naturally arises as to what is the relationship between 

the determinant of A  defined by (4.8.20) and the three matrices ( ) ( ), , , , ,j k
k jM MA e e A e e  and 
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( ), ,k jM A e e .  The answer is provided by the transformation formulas (4.8.17), (4.8.18) and 
(4.8.19) applied in the case B E= .  The results are summarized as follows: 
 

 
( )

( )( ) ( )( )1

det det ( , , ) det , ,

det , , det , ,

k j
k j

k j
j k

M M

M E EM−

= =

= =

A A e e A e e

A e e A e e
 (4.8.22) 

 
For the case under discussion, equation (4.8.19) shows that the matrix ( , , )k jM A e e  is similar to the 

matrix ( ), ,k jM A e e .  Equation (4.8.22)2 reflects the result mentioned in Section 3.6 that similar 
matrices have the same determinant. 
 

A similar calculation as that leading to (4.8.22) shows that the trace of : →A V V  is 
related to the trace of the four matrices by 
 

 
( )

( )( ) ( )( )1

tr tr ( , , ) tr , ,

tr , , tr , ,

k j
k j

j k
k j

M M

EM M E−

= =

= =

A A e e A e e

A e e A e e
 (4.8.23) 

 
 
Exercises 
 
4.8.1  You are given a linear transformation : →A V U  defined by 
 
 ( ) ( ) ( )1 2 3

1 2 3 4 1 2 3 1 2 3 49 6 5 4 8 5 4 5υ υ υ= + − + + − − + + + − +Av b b b b b b b b b b b  (4.8.24) 
 
For all vectors 1 2 3

1 2 3υ υ υ= + + ∈v e e e V , where V  is a real inner product space.  The matrix of A  
with respect to the bases { }1 2 3, ,e e e  and { }1 2 3 4, , ,b b b b  is 
 

 ( )
9 1 8
6 1 5

, ,
5 1 4

4 0 5

k jM

− 
 − =
 − −
 
 

A e b  (4.8.25) 

 
You are given that the matrix of inner products (4.7.1) is 
 

 
3 3 7
3 11 3

7 3 21
jke

− 
   = − −   
 − 

 (4.8.26) 
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1 1 3 1
1 3 2 4
3 2 2 2

1 4 2 1

jkb

− − 
 − −   =   − −
 − − 

 (4.8.27) 

 
Calculate the three sets of components for the linear transformation, : →A V V , 

( ) ( ), , , , ,j k
k jM MA e b A e b  and ( )*, ,k

jM A e e .  The answers are 
 

 ( )
8 3 4

17 0 21
, ,

33 3 33
1 1 1

j
k jkM A

− − 
 − −  = =   − −
 − 

A e b  (4.8.28) 

 

 ( )
706 134 204
475 89 1381, ,
398 74 11632

274 54 76

k jk
jM A

− 
 −  = =   − −
 − 

A e b  (4.8.29) 

 
and 
 

 ( )
689 123 206
1173 231 3261, ,
2512 480 72032
124 20 40

k j k
jM A

− − 
 − −  = =   − −
 − − 

A e b  (4.8.30) 
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Section 4.9. The Adjoint Linear Transformation 
 
 
 In this section, we shall briefly examine certain special concepts involving linear 
transformations defined on inner product spaces.  In particular, we shall introduce what is known as 
the adjoint linear transformation.  This linear transformation generalizes the transpose of a linear 
transpose in those cases where the inner product space is not real.  As we shall learn, with the 
proper choice of bases, the adjoint of a linear transformation or the transpose of a linear 
transformation is directly related to the corresponding concept for matrices. 
 
 We begin our discussion by consideration of a linear transformation : →A V U  defined on 
two inner product spaces V  and U .  At this point in the discussion, we shall allow V  and U  to 
be complex inner product spaces.  The adjoint linear transformation to : →A V U  is defined as 
follows: 
 
Definition:  Given a linear transformation : →A V U , the adjoint linear transformation to A  is a 
linear transformation * : →A U V  defined by 
 
 *, , for all       and   = ∈ ∈u Av A u v v uV U  (4.9.1) 
 
Note that the inner product on the left side of (4.9.1) is the one in U  and the one on the right side 
of (4.9.1) is the one in V .  Also, note that the property , ,=u v v u  of an inner product allows us 
to replace the definition (4.9.1) by the equivalent definition 
 
 *, , for all       and   = ∈ ∈Av u v A u v uV U  (4.9.2) 
 
In the special case where the inner produce spaces V  and U  are real, the adjoint is called the 
transpose and the definition (4.9.1) is written 
 
 , , for all       and   T= ∈ ∈u Av A u v v uV U  (4.9.3) 
 
Equation (4.9.1) and the special case (4.9.3) are component free definitions of the adjoint and the 
transpose, respectively.  This is an important feature of the definition.  Physical quantities 
represented by geometric objects like vectors and linear transformations do not depend upon the 
special basis that might be selected in a particular application.  Thus, it is important to understand 
when a quantity does or does not depend upon the basis. 
 

Properties of the adjoint that follow from the definition (4.9.1) are summarized in the 
following theorem. 

 

Theorem 4.9.1: 
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 ( )∗ ∗ ∗+ = +A B A B  (4.9.4) 
 
 ( )∗ ∗ ∗=AB B A  (4.9.5) 
 
 ( )λ λ∗ ∗=A A  (4.9.6) 
 
 ∗ =I I  (4.9.7) 
 
 ∗ =0 0  (4.9.8) 
 
 ( )∗∗ =A A  (4.9.9) 
 
and, if A  is nonsingular, so is *A and, in addition, 
 
 ( ) ( )1 ** 1− −=A A  (4.9.10) 
 
The proof of the above theorem is straightforward and is left as an exercise. 
 

Equation (4.9.2) defines the adjoint in a component free or basis free fashion.  In other 
words, the definition does not involve choices of the bases in V  or U .  Some of our operations on 
linear transformations, such as the determinant and trace operations introduced in Section 3.6, were 
introduced by defining certain operations on the components with respect to specific basis choices.  
We then showed that the results, in this case the determinant and the trace, were actually 
independent of the choice of bases.  The important conclusion was that the determinant and the 
trace of the matrix was a basis free quantity.  We could have followed a similar approach with the 
definition of the adjoint but the component free definition is preferred when possible.  Component 
free definitions of the determinant and trace are possible but not without a diversion into topics we 
do not wish to discuss at this point. 
 

Having stressed the benefits of a component free definition of the adjoint, it is useful and 
important to select bases for V  and U  and examine how the adjoint and, for the real case, the 
transpose are related to their matrix.   First, we shall select bases for V  and U .  As in Section 4.8, 
the situation is complicated by the number of choices.  If we denote the basis for V  by 
{ }1 2, ,..., Ne e e , we have a reciprocal basis { }1 2, ,..., Ne e e .  If we denote the basis for U  by 

{ }1 2, ,..., Mb b b , we have a reciprocal basis { }1 2, ,..., Mb b b .  The four sets of components 
corresponding to these choices are listed in equation (4.8.4).  A similar set of formulas hold for the 
components of the adjoint linear transformation * : →A U V .  We shall write these formulas as 
 



Sec. 4.9 • The Adjoint Linear Transformation 321 

 

 

* *

1

* *

1

* *

1

* *

1

  

N
k

j j k
k
N

k
j kj

k
N

j kj
k

k
N

j j k
k

k

A

A

A

A

=

=

=

=

=

=

=

=

∑

∑

∑

∑

A b e

A b e

A b e

A b e

 (4.9.11) 

 
for 1,2,...,j M= . 
 

The basic question is how are the coefficients *k
jA , *

kjA , *kjA  and * j
kA  in (4.9.11) related 

to the components of the linear transformation A  in (4.8.4).  Unfortunately, the relationships can 
be complicated.  Equations (4.8.6) give the various components of A  in terms of A  and the inner 
product with the basis vectors.  For the adjoint, *A ,similar formulas are 
 

 

* *

* *

* *

* *

,

,

,

,

k k
j j

kj j k

kj j k

j j
k k

A

A

A

A

=

=

=

=

A b e

A b e

A b e

A b e

 (4.9.12) 

 
The four sets of components of * : →A U V  in (4.9.12) are the mixed contravariant-covariant 
components, the covariant components, the contravariant and the mixed covariant-contravariant 
components, respectively. 
 
 Our goal is to determine how the various sets of components are related.  The four results 
we do wish to record are 
 
 *k k

j jA A=  (4.9.13) 
 
 *

kj jkA A=  (4.9.14) 
 
 *kj jkA A=  (4.9.15) 
 
and 
 
 * j j

k kA A=  (4.9.16) 
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Equations (4.9.13) through (4.9.16) simply state that the components of the adjoint are obtained by 
transposing and forming the complex conjugates of the appropriate components of the linear 
transformation : →A V U . 
 

The derivation, for example, of (4.9.13) begins with the result (4.9.12)1 
 and the definition (4.9.1). The sequence of calculations is 
 
 * * , , ,k k k k

j j j jA = = =A b e b Ae Ae b  (4.9.17) 
 
The result (4.9.13) follows by application of the result (4.8.6)4 to (4.9.17).  The results (4.9.14), 
(4.9.15) and (4.9.16) follow by identical arguments. 
  

If we were to decide, for example, to derive a formula that connected the components *k
jA , 

for 1, 2,...,k N=  and 1,2,...,j M=  to the components j
kA , for 1, 2,...,j M=  and 1,2,...,k N= , the 

results are much more complicated.  The derivation of the kind of formula is not difficult but the 
details are more involved.  The starting place is the formula (4.9.17).  This formula, (4.8.4)3 and 
(4.8.13) combine to yield 
 

 *

1 1 1 1
,

N M N M
k k q kp q pk

j j qj p jq p
p q p q

A b A e b A e
= = = =

= = =∑∑ ∑∑Ae b  (4.9.18) 

 
The complexity of the relationship between the coefficients q

pA , for 1, 2,...,p N=  and 

1,2,...,q M=  and *k
jA for 1, 2,...,k N=  and  1, 2,...,j M=  in equation (4.9.18) obscures the more 

elementary result (4.9.13). 
 

It is instructive to write the results (4.9.13) through (4.9.16) as matrix equations.  From the 
definition of the matrix of a linear transformation given in Section 3.2, it is true that 
 

 

( )
( )
( )
( )

* *

* *

* *

* *

, ,

, ,

, ,

, ,

k
j k j

k
j kj

j kj
k

j k j
k

M A

M A

M A

M A

 =  
 =  
 =  
 =  

A b e

A b e

A b e

A b e

 (4.9.19) 

 
With these expressions and the corresponding definitions for the various matrices of A  given in 
(4.8.5), equations (4.9.13) through (4.9.16) can be written 
 

 ( ) ( )*, , , ,
Tk j

j kM M=A b e A e b  (4.9.20) 
 

 ( ) ( )*, , , ,
Tk j

j kM M=A b e A e b  (4.9.21) 
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 ( ) ( )*, , , ,
Tj k

k jM M=A b e A e b  (4.9.22) 
 
and 
 

 ( ) ( )*, , , ,
Tj k

k jM M=A b e A e b  (4.9.23) 
 
The more complicated formula (4.9.18) is equivalent to the matrix equation 
 

 ( ) ( )* 1, , , ,
T

j k k jM EM B−=A b e A e b  (4.9.24) 
 
where the transition matrices are defined by (4.8.15) and (4.8.16).  One way to derive (4.9.24) is to 
substitute (4.8.19) into (4.9.20). 
 

The results (4.9.20) through (4.9.23) reveal the fact that, with the proper choice of basis, the 
matrix of *A  is the transposed complex conjugate of the matrix of A .  The phrase “proper choice 
of basis” is fundamental.  Equation (4.9.24) shows that the matrix ( )*, ,j kM A b e  is not the 

transposed complex conjugate of the matrix ( ), ,k jM A e b . 
 

For the special case where the adjoint linear transformation is one from the vector space V  
to itself, i.e., when * : →A V V , an application of the definition of the determinant, equation 
(3.6.34) yields the result 
 
 * *det det ( , , )j kM=A A e e  (4.9.25) 
 
where the matrix *det ( , , )j kM A e e  consists of elements defined by the equation 
 

 * *

1

N
k

j j k
k

A
=

=∑A e e  (4.9.26) 

 
Equation (4.9.26) is equation (4.9.11)1 specialized to the case of a linear transformation 

* : →A V V .  Our interest is the relationship between the determinant of : →A V V  and the 
determinant of * : →A V V .  The answer is given by the definition (4.9.25) and equation (4.9.24) 
in the special case we are discussing, namely, where B E= .  These two equations yield 
 



324 Chap. 4 •  INNER PRODUCT SPACES 

 

 

( )

( )

( )( ) ( )( )

* * 1

1

det det ( , , ) det , ,

det det det , ,

det , , det , ,

T

j k k j

T

k j

T

k j k j

M E M E

E E M

M M

−

−

 = =  
 

 =  
 

= =

A A e e A e e

A e e

A e e A e e

 (4.9.27) 

 
The definition of the determinant of A , equation (3.6.34), reduces (4.9.27) to the simple result 
 
 *det det=A A  (4.9.28) 
 
Also in Section 3.6, we defined the trace of a linear transformation : →A V V  by (3.6.36), 
repeated, 
 
 tr tr ( , , )k jM=A A e e  (4.9.29) 
 
Likewise, the trace of the adjoint is defined by 
 
 * *tr tr ( , , )k jM=A A e e  (4.9.30) 
 
If one starts with (4.9.24), of course with B E= , it is easily shown that  
 
 *tr tr=A A  (4.9.31) 
 

The point of this discussion that needs to be seen through the equations and their many 
subscripts and superscripts is that the matrix of the adjoint linear transformation is not simply the 
matrix created by transposing and taking the complex conjugate of the matrix of the original linear 
transformation.  It takes a special choice of the bases for simple formulas such as (4.9.20) through 
(4.9.23) to be valid.  The basis dependence of these relationships stands in contrast to relationships 
like (3.5.18), repeated, 
 
 ( ) ( ) 11, , , ,j k k jM M

−− =A e e A e e  (4.9.32) 
 
In this case, one starts with a basis, creates the matrix, inverts the matrix and then, utilizing the 
same basis, creates the linear transformation that is the inverse.  In the case of the adjoint, the 
matrix operation, i.e., transposing and forming the complex conjugate, does not produce the adjoint 
linear transformation unless the proper bases are adopted. 
 
 Another important result to extract from the above detail is that if { }1 2, ,..., Ni i i  is an 

orthonormal basis for V  and { }1 2, ,..., Mj j j  is the orthonormal basis for U , the matrix relationships 
between a linear transformation and its adjoint take the simple form 
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 ( ) ( )*, , , ,
T

q k k qM M=A j i A i j  (4.9.33) 
 
Most of our discussions that require that we utilize the components of a linear transformation will 
allow the use of orthonormal bases.  Thus, the complexity of the component representations of the 
adjoint will not create difficulties.  The fact that most of our fundamental discussions can be 
conducted in a component free fashion is also a benefit as we try to keep our discussions simple 
from a notation standpoint. 
 
 As we have seen in this section, the inner product structure on the vector spaces V  and U  
allows for the introduction of the adjoint linear transformation to a linear transformation 

: →A V U .  Given the idea of an adjoint linear transformation, we can define an inner product 
structure for the set of linear transformations ( );L V U  in a fashion that generalizes the inner 

product we introduced on M N×M  in Example 4.1.4.  The formal definition is 
 
 ( )*, tr=A C AC   (4.9.34) 
 
for all linear transformations ( ), ;∈A C L V U .  It is elementary to show that the definition (4.9.34) 
obeys the four properties of an inner product given in Section 4.1.  The first three of these 
properties are more or less obvious.  The fourth one, namely, that , 0≥A A  and , 0=A A  if and 
only if A = 0  can be seen to be true by simply adopting an orthonormal basis for V  and U  and 
utilize the matrix result (4.1.16).  The fact that the definition (4.9.34) does not depend upon the 
choice of the bases for  V  and U  insures that the fourth property of an inner product space is 
obeyed. 
 
 If desired, one can express (4.9.34) in terms of the various components introduced in this 
section and obtain the following component representions of the inner product defined by (4.9.34): 
 

 ( )*

1 1 1 1 1 1
, tr

N M N N M M
j k pk j q
k j jq k p

k j k p j q
A C b e A C

= = = = = =

= = =∑∑ ∑∑∑∑A C AC   (4.9.35) 

 
The matrix form of the complicated result (4.9.35) is 
 

 
( ) ( ) ( )( )

( ) ( )

* *

1

, tr tr , , , ,

tr , , , ,

k j j k

T

k j k j

M M

M EM B−

= =

 =  
 

A C AC A e b C b e

A e b C e b
  (4.9.36) 

 
where (4.9.19)1 and (4.9.24) have been used. 
 
 In closing this section, it is important to call attention to the case where the inner product 
space is real.  In this case, the adjoint reduces to the transpose, that we shall write TA .  The above 
equations all remain valid with a simple elimination of the various complex conjugates that appear. 
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Exercises 
 
4.9.1  Confirm the formula (4.9.10).  This problem, as one would expect, uses the definition (4.9.1) 
and the defining property 1 1− −= =AA A A I  for the inverse. 
 
4.9.2  You are given a linear transformation : →A V V , defined by 
 
 ( ) ( ) ( )1 2 3 1 2 3 1 2 3

1 2 34 2 3 2υ υ υ υ υ υ υ υ υ= + + + + − + − +Av e e e  (4.9.37) 
 
for all 1 2 3

1 2 2υ υ υ= + + ∈v e e e V , where V  is a real inner product space. It follows from (4.9.37) 
that the matrix of A  with respect to the basis { }1 2 3, ,e e e  is 
 

 ( )
1 4 1

, , 1 1 2
1 3 2

j
k k jA M

 
   = = −   
 − 

A e e  (4.9.38) 

 
You are given that the matrix of inner products (4.7.1) is 
 

 
3 3 7
3 11 3

7 3 21
jke

− 
   = − −   
 − 

 (4.9.39) 

 
Calculate the four sets of components for the adjoint linear transformation, * : →A V V , 

( ) ( ) ( )* * * * * *, , , , , , , ,k k j kj
j k j j kj kM A M A M A     = = =     A e e A e e A e e  and ( )* *, ,j k j

kM A =  A e e .  
The answers are 
 

 ( ) ( )* *

257 1777 107
32 32 32
75 347 71, , , ,
32 32 32

110 590 38
32 32 32

Tk k j
j j kA M M

 − 
 
   = = = − −   
 
 −
  

A e e A e e  (4.9.40) 

 

 ( ) ( )* *

7 5 25
, , , , 12 8 38

23 31 55

Tk j
kj j kA M M

 
   = = = − −   
 − 

A e e A e e  (4.9.41) 
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 ( ) ( )* *

161 25 5
32 4 8
43 5 3, , , ,
32 4 8
23 12
16 4

Tkj j k
k jA M M

 − 
 
   = = = −   
 
 − −
  

A e e A e e  (4.9.42) 

 
and 
 

 ( ) ( )* *

1 1 1
, , , , 4 1 3

1 2 2

Tj k j
k k jM A M

 
  = = = −   
 − 

A e e A e e  (4.9.43) 

 
4.9.3  Utilize the results in Exercise 4.9.2 and calculate ,A A .  The answer is 
 

 ( )*

1 1

257 1777 107
32 32 321 4 1
75 347 71 3253, tr tr 1 1 2
32 32 32 32

1 3 2 110 590 38
32 32 32

N M
j k
k j

k j
A A

= =

  −  
    
    = = = − − − =    
  −   
  −    

∑∑A A AA  

  (4.9.44) 
 
4.9.4  You are given a linear transformation :A →V U  defined, for all vectors ∈v V , by 
 

 
( ) ( )
( ) ( )

1 2 3 1 2 3
1 2

1 2 3 1 2
3 4

7 8 9 8

4 9 15 7 4

i i i

i i i

υ υ υ υ υ υ

υ υ υ υ υ

= − + + − + +

+ − + + +

Av b b

b b
 (4.9.45) 

 
 
for all vectors 1 2 3

1 2 3υ υ υ= + + ∈v e e e V , where { }1 2 3, ,e e e  is a basis for V  and { }1 2 3 4, , ,b b b b  is a 
basis for U .  The linear transformation defined by (4.9.45) was introduced earlier in Exercise 
3.3.3.  It follows from (4.9.45) that the matrix of A  with respect to the basis { }1 2 3, ,e e e  is 
 

 ( )
1 7
8 9 8

, ,
4 9 15
7 4 0

j
k j k

i
i i

A M
i

i i

− 
 −   = =   −
 
 

A e b  (4.9.46) 

 
You are given that the matrix of inner products (4.7.1) is 
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3 1 2 1 2

1 2 11 6 5
1 2 6 5 21

jk

i i
e i i

i i

+ + 
   = − − +   
 − − − 

 (4.9.47) 

 
Likewise, for the basis { }1 2 3 4, , ,b b b b , the matrix of inner products (4.7.1) is 
 

 

26 6 8 12 4 2 6
6 8 33 8 6 8 4

12 4 8 6 14 2
2 6 8 4 2 61

jk

i i i
i i i

b
i i i
i i i

− + − − − 
 − − − + +   =   + − − −
 − + − 

 (4.9.48) 

 
Calculate the four sets of components for the adjoint linear transformation, * : →A V U , 

( ) ( ) ( )* * * * * *, , , , , , , ,k k j kj
j k j j kj kM A M A M A     = = =     A b e A b e A b e  and ( )* *, ,j k j

kM A =  A b e
.  The answers are 
 

 

( ) ( )* *, , , ,

1185 1293 1551 69623 12919 8823 11374 25103
29 290 145 145

3468 5364 20142 6217 7428 4804 17311 13983
145 145 145 290

1237 2319 15769 19369 4473 1299 14361 47
145 290 145 290

Tk k j
j j kA M M

i i i i

i i i i

i i i i

  = = 
− + − −



− + − − − − −
=

+ − − − − +


A b e A e b




 
 
 
 
 
 

 

  (4.9.49) 
 

 

( ) ( )* *, , , ,

32 50 10 224 102 60 30 349
186 142 393 92 210 42 66 300

186 132 48 200 36 118 16 22

Tk j
kj j kA M M

i i i i
i i i i

i i i i

  = = 
− − − + − − 

 = − + − − − − 
 − − − − − 

A b e A e b

 

  (4.9.50) 
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( ) ( )* *, , , ,

39 93 79 2170 634 63 118 561
145 290 145 145

72 52 557 32 73 581 413 113
145 145 29 58 290 290

92 3 439 115 63 401 263 97
145 290 58 58 290 290

Tkj j k
k jA M M

i i i i

i i i i

i i i i

  = = 
− + + − − 
 
 

+ − − = − − − 
 − − + − − −
  

A b e A e b

 

  (4.9.51) 
 
and 
 

 ( ) ( )* *

1 8 4 7
, , , , 9 9 4

7 8 15 0

Tj j k
k k j

i i
A M M i i

i i

− 
   = = = − −   
 − − 

A b e A e b  (4.9.52) 

 
4.9.5  Utilize the results in Exercise 4.9.4 and calculate ,A A .  The answer is 
 

 

( )*

1 1
, tr

1185 1293 1551 69623 12919 8823 11374 25103
1 7 29 290 145 145
8 9 8 3468 5364 20142 6217 7428 4804 17311 13983tr
4 9 15 145 145 145 290

1237 2319 15769 193697 4 0
145

N M
j k
k j

k j
A A

i i i i
i

i i i i i i
i

i ii i

= =

= =

− + − −
− 

 − − + − − − − − =
 −
  + − 

∑∑A A AA

4473 1299 14361 47
290 145 290

885994
145

i i

  
  
  
  
  
  − − − +      

=

 

  (4.9.53) 
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Section 4.10. Norm of a Linear Transformation 
 
 
 In Section 4.1, with equation (4.1.20), we introduced the idea of length or norm of a vector.  
While vector spaces can have norms that are not defined in terms of an inner product, thus far all of 
our examples have this property.  In particular, we gave several examples in Section 4.1 for 
different types of vector spaces.  In Section 4.9, we introduced the idea of an inner product in the 
vector space of linear transformations ( );L V U  by the definition (4.9.34).  Given this definition, 
we can continue to calculate the norm from the inner product by the formula 
 
 ( )*, tr= =A A A AA   (4.10.1) 

 
for a linear transformation : →A V U .  The component representation of (4.10.1) can be read off 
from (4.9.35). 
 
 If we are given a linear transformation : →A V U , then for every vector ∈v V , the vector 

∈Av U  is defined and has the component representation  
 

 
1 1

M N
j k
k j

j k
A υ

= =

=∑∑Av b   (4.10.2) 

 
Therefore, from the definition of the norm of vectors in U , 
 

 1 1 1 1

1 1 1 1

, ,
M N M N

j k q s
k j s q

j k q s

M N M N
j q k s
k s jq

q s j k

A A

A A b

υ υ

υ υ

= = = =

= = = =

= =

=

∑∑ ∑∑

∑∑∑∑

Av Av Av b b
  (4.10.3) 

 
Because of the special rules for multiplying linear transformations in finite dimensional vector 
spaces, i.e., the matrix rules, equation (4.10.3) can be used to establish a relationship between the 
norm of a vector and the norm of a linear transformation.  The particular result is 
 
 ≤Av A v   (4.10.4) 
 
For norms in general, the special relationship (4.10.4) is not necessarily true.  In our case it is true.  
When it is true, the various norms involved are sometimes referred to as being compatible. 
 
 The derivation of (4.10.4) follows from (4.10.3) and the component version of (4.10.1).  
Because our equations are basis independent, there is no loss of generality to simply take all bases 
to be orthonormal.  In this case, the component version of (4.10.1), as follows from (4.9.35), is 
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2

1 1 1 1

M N M N

jk jk jk
j k j k

A A A
= = = =

= =∑∑ ∑∑A   (4.10.5) 

 
Likewise, (4.10.3) reduces to 
 

 
1 1 1

M N N

jk js k s
j s k

A A υ υ
= = =

= ∑∑∑Av   (4.10.6) 

 
Because each component of the vector v  obeys ,k kυ = v e , equation (4.10.6) can be written 
 

 
1 1 1 1 1 1

2

1 1 1 1 1

, ,

, , ,

M N N M N N

jk js k s jk k js s
j s k j s k

M N N M N

jk k js s jk k
j k s j k

A A A A

A A A

υ υ
= = = = = =

= = = = =

= =

= =

∑∑∑ ∑∑∑

∑ ∑ ∑ ∑ ∑

Av v e v e

v e v e v e

  (4.10.7) 

 
Next, we apply the Schwartz Inequality to each term in the sum in (4.10.7) to obtain 
 

 
2 2 2

2

1 1 1 1 1 1
,

M N M N M N

jk k jk k jk k
j k j k j k

A A A
= = = = = =

= ≤ =∑ ∑ ∑ ∑ ∑ ∑Av v e v e v e   (4.10.8) 

 

The final manipulation involves rewriting the term 
2

1

N

jk k
k

A
=
∑ e  as 

 

 
2

2

1 1 1 1 1 1 1
, ,

N N N N N N N

jk k jk k js s jk js k s jk jk jk
k k s k s k k

A A A A A A A A
= = = = = = =

= = = =∑ ∑ ∑ ∑∑ ∑ ∑e e e e e   (4.10.9) 

 
where we have used our assumption that the basis { }1 2, ,..., Ne e e  is orthonormal.  When we 
substitute (4.10.9) into (4.10.8) and use (4.10.5) we obtain the result (4.10.4).10 
 
 
Exercises 
 
4.10.1  Utilize the results of Exercises 4.9.2 and 4.9.3 and illustrate the validity of (4.10.4) for the 
linear transformation defined by (4.9.37) and the particular vector 
 

 
10 An important and interesting result that we shall not pursue here is a theorem that establishes that in a finite 
dimensional vector space all norms are equivalent.  The equivalence is based upon a formal definition.  It is such that 
the various norms produce the same topological structure.  
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 1 2 32 3= + +v e e e   (4.10.10) 
 
The results for the factors in (4.10.4) turn out to be 
 

 
3 106 30.89

1 374095 152.91
4

= =

= =

Av

A v
  (4.10.11) 

 
4.10.2  Utilize the results of Exercises 4.9.4 and 4.9.5 and illustrate the validity of (4.10.4) for the 
linear transformation defined by (4.9.45) and the particular vector 
 
 1 2 32 3= + +v e e e   (4.10.12) 
 
The results for the factors in (4.10.4) turn out to be 
 

 
3 5471 221.90

2 6644955 1031.11
5

= =

= =

Av

A v
  (4.10.13) 
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Section 4.11. More About Linear Transformations on Inner Product Spaces 
 
 
 In this section, we shall briefly add to the information provided in Section 4.8 by studying 
certain other properties of linear transformations defined on complex inner product spaces.  In 
Section 1.9, while discussing the idea of the transpose of a matrix, we introduced the idea of a 
matrix being symmetric and a matrix being skew-symmetric.  The corresponding ideas for linear 
transformations defined on complex inner product spaces are Hermitian and skew-Hermitian.  The 
formal definition is as follows: 
 
Definition:  A linear transformation : →A V V  is called Hermitian if ∗A = A and skew-Hermitian 
if ∗= −A A . 
 
If the underlying inner product space is real, the designations symmetric and skew-symmetric are 
often used instead of Hermitian and skew-Hermitian.  The following theorem, which follows 
directly from the definition (4.9.1), characterizes Hermitian and skew-Hermitian linear 
transformations. 
 
Theorem 4.11.1:  A linear transformation A is Hermitian if and only if  
 
 1 2 1 2, ,=v Av Av v  (4.11.1) 
 
for all 1 2, ,∈v v V  and it is skew-Hermitian if and only if 
 
 1 2 1 2, ,= −v Av Av v  (4.11.2) 
 
for all 1 2, ∈v v V . 
 

As with matrices, see equation (1.9.22), a linear transformation : →A V V  can always be 
written 
 

 ( ) ( )* *1 1
2 2

= + + −A A A A A  (4.11.3) 

 
which decomposes A  into a Hermitian part and a skew-Hermitian part.  In Section 3.4, we 
introduced the notation ( ; )L V U  for the vector space of linear transformations from V  to U .  In 
the current circumstance, where we are looking at a linear transformation : →A V V , we shall 
denote by ( );S V V and ( );A V V  the subsets of ( );L V V  defined by 
 
 ( ) ( ){ }; ;  and ∗= ∈ =A A A AS V V L V V  (4.11.4) 

 
and 
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 ( ) ( ){ }; ;  and ∗= ∈ = −A A A AA V V L V V  (4.11.5) 

 
In the special case of a real inner product space, it is easy to show that the subsets ( );S V V  and 

( );A V V  are both subspaces of ( );L V V .11  In particular, ( );L V V  has the following 
decomposition: 
 
Theorem 4.11.2:  For a real inner product space V , every linear transformation ( );∈A L V V  
has the unique decomposition  
 
 = +A D W  (4.11.6) 
 
where ( );∈D S V V  and ( );∈W A V V . 
 
Proof. If we utilize (4.11.3) in the case of a real vector space, the decomposition (4.11.6) follows 
from the definitions 
 

 ( )1
2

T= +D A A  (4.11.7) 

 
and 
 

 ( )1
2

T= −W A A  (4.11.8) 

 
Equations (4.11.7) and (4.11.8) establish the existence of the representation (4.11.6).  The 
uniqueness of this representation follows by the following argument.  We shall assume the 
representation (4.11.6) is not unique and write 
 
 1 1 2 2= + = +A D W D W  (4.11.9) 
 
It follows from (4.11.9) that  
 
 1 2 2 1− = −D D W W  (4.11.10) 
 
Equation (4.11.10) forces the symmetric linear transformation 1 2−D D  to equal the skew-
symmetric linear transformation 2 1−W W .  Because the only linear transformation that is both 
symmetric and skew-symmetric is the zero linear transformation, 1 2=D D  and 2 1=W W  which 
establishes uniqueness. 
 

 
11 In the case of complex inner product spaces the subsets ( );S V V and ( );A V V are not subspaces. 
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In Section 4.4, we encountered the idea of an orthogonal matrix in 3 3×M .  A generalization 
of this concept to linear transformations : →A V U  defined on complex inner product spaces is the 
idea of a unitary linear transformation. 
 
Definition:  A linear transformation : →Q V U  is unitary if  
 
 2 1 2 1, ,=Qv Qv v v  (4.11.11) 
 
for all 1 2, ∈v v V . 
 
For a real inner product space V , equation (4.11.11) defines an orthogonal linear transformation.  
In the definition (4.11.11), the inner product on the left side of the equation is the one in U  while 
the one on the right side of the equation is the inner product in V .  Geometrically, the definition 
(4.11.11) asserts that unitary (or orthogonal) linear transformations preserve the inner products.  In 
geometric terms, they preserve lengths and angles. 
 
Theorem 4.11.3:  If Q  is unitary, then it is one to one. 
 
Proof. Take 1 2= =v v v  in (4.11.11), and use the definition of norm (4.1.20).  The result is 
 
 =Qv v  (4.11.12) 
 
Thus, if Qv = 0 , then v = 0 .  Therefore, the kernel of Q , ( )K Q  only contains the zero vector.  If 
we now use Theorem 3.3.1, this theorem is proven. 
 
 If we combine the definition of a unitary linear transformation (4.11.11), with the definition 
of an adjoint linear transformation, equation (4.9.1), then 
 
 *

2 1 2 1 2 1, , ,= =Qv Qv v Q Qv v v  (4.11.13) 
 
Therefore, a unitary linear transformation : →Q V U  obeys 
 
 * =Q Q IV  (4.11.14) 
 

If we require V  and U  to have the same dimension, then Theorems 4.11.3 and 3.3.5 
ensure that a unitary transformation Q  is a one to one and onto, thus, a nonsingular linear 
transformation.  In this case we can use (4.11.14) and conclude 
 
 1− ∗=Q Q  (4.11.15) 
 
Equation (4.11.15), in turn, implies 
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 * =QQ IU  (4.11.16) 
 
 

Recall from Theorem 3.3.4 that a one to one linear transformation maps linearly 
independent vectors into linearly independent vectors.  Therefore if { }1, , Ne e  is a basis for V  

and : →A V U  is one to one, then { }1, , NAe Ae  is basis for ( )R A  which is a subspace in U .  If, 

in addition, { }1, , Ne e  is orthonormal and A  is unitary, it easily follows from the definition 

(4.11.11)that { }1, , NAe Ae  is also orthonormal.  Thus the image of an orthonormal basis under a 
unitary transformation is also an orthonormal basis.  Conversely, one can show that a linear 
transformation which sends an orthonormal basis of V  into an orthonormal basis of ( )R A  must 
be unitary.   
 
 If we specialize our discussion to a three dimensional real inner product space V  as 
discussed in Sections 4.4 and 4.5, we can quickly extract some interesting results that have 
application in Mechanics.  Among the topics we discussed in Section 4.4 was a change of basis 
from an orthonormal basis { }1 2 3, ,i i i  to a second orthonormal basis { }1 2 3

ˆ ˆ ˆ, ,i i i .  Recall from 

equation (4.4.3), repeated, 
 

 
3

1

ˆ    for   1, 2,3j kj k
k

Q j
=

= =∑i i  (4.11.17) 

 
that the two bases are connected by an orthogonal matrix 
 

 
11 12 13

21 22 23

31 32 33

Q Q Q
Q Q Q Q

Q Q Q

 
 =  
  

 (4.11.18) 

 
If we define an orthogonal linear transformation : →Q V V , by 
 

 
3 3

1 1
kj j k

j k
Q υ

= =

=∑∑Qv i  (4.11.19) 

 

for all vectors 
3

1
j j

j
υ

=

= ∈∑v i V , then 

 

 
3

1

ˆ    for   1, 2,3j j kj k
k

Q j
=

= = =∑i Qi i  (4.11.20) 

 
In the special case where the rotation caused by (4.11.17) is in the plane, the result of the 

orthogonal linear transformation Q  is such that it takes an arbitrary vector v  and creates another 
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one with the same components as v  has with respect to the basis { }1 2,i i  but points in the direction 

defined by { }1 2
ˆ ˆ,i i .  It is perhaps easier to see the effect of Q  by an examination of the following 

figure: 
 
 

 
 
As displayed in the figure, the orthogonal linear transformation Q  takes a vector v  and rotates it 
by the angle θ  while preserving its length.  It also preserves the relative position of Qv  to { }1 2

ˆ ˆ,i i  

as that of v  to { }1 2,i i . 
 
 The study of the dynamics of systems of particles or the dynamics of rigid bodies 
necessitates a discussion of the so-called kinematics of motion.  This subject involves such things 
as viewing the motion of a particle from a basis that is rotating relative to one fixed in space.  This 
view is modeled by allowing the orthogonal linear transformation Q  to depend upon the time t .  A 
time dependent vector v  can be viewed instantaneously from the fixed basis or the rotating basis.  
The two component representations are given by 
 

 ( ) ( ) ( ) ( )
3 3

1 1

ˆˆj j j j
j j

t t t tυ υ
= =

= =∑ ∑v i i  (4.11.21) 

 
It follows from (4.11.21) that 
 

 ( ) ( ) ( ) ( ) ( ) ( )3 3 3

1 1 1

ˆˆ ˆ ˆj j j
j j j

j j j

d t d t d td t
t t

dt dt dt dt
υ υ

υ
= = =

= = +∑ ∑ ∑
iv

i i  (4.11.22) 
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The term ( )3

1

j
j

j

d t
dt
υ

=
∑ i  represents the time rate of change of ( )tv  seen by an observer fixed in the 

{ }1 2 3, ,i i i  basis.  The term ( ) ( )
3

1

ˆ ˆj
j

j

d t
t

dt
υ

=
∑ i  represents the time rate of change of ( )tv  seen by an 

observer fixed in the { }1 2 3
ˆ ˆ ˆ, ,i i i  basis.  The term ( ) ( )3

1

ˆ
ˆ j

j
j

d t
t

dt
υ

=
∑

i
 is the time rate of change of ( )tv  

caused by the rotation of the second basis relative to the first.  It is this term that we shall now 
examine.  It follows from (4.11.20) that 
 

 
( ) ( )ˆ

j
j

d t d t
dt dt

=
i Q

i  (4.11.23) 

 

The derivative 
( )d t

dt
Q

 is constrained by the formula 

 
 ( ) ( )Tt t =Q Q I  (4.11.24) 
 
Equation (4.11.24) is (4.11.16) applied to the case of a real vector space.  The derivative of 
(4.11.24) is 
 

 ( ) ( ) ( ) ( ) T
Td t d t

t t
dt dt

 
+ = 

 

Q Q
Q Q 0  (4.11.25) 

 
Next, we observe that if we define a linear transformation Z  by 
 

 ( ) ( ) ( )Td t
t t

dt
=

Q
Z Q  (4.11.26) 

 
then, by (4.11.25), 
 
 ( ) ( )Tt t= −Z Z  (4.11.27) 
 
In other words, the linear transformation defined by (4.11.26) is skew symmetric.  Given the 
definition (4.11.26) and the equation (4.11.15), it follows that 
 

 ( ) ( ) ( )d t
t t

dt
=

Q
Z Q  (4.11.28) 

 
This formula and (4.11.20) allow (4.11.23) to be written 
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( ) ( ) ( ) ( ) ( ) ( )

ˆ
ˆj

j j j

d t d t
t t t t

dt dt
= = =

i Q
i Z Q i Z i  (4.11.29) 

 
Equation (4.11.29) shows that ( )tZ  measures the angular velocity of the basis { }1 2 3

ˆ ˆ ˆ, ,i i i  with 

respect to the basis { }1 2 3, ,i i i .  Since ( )tZ  is skew symmetric, its matrix with respect to, for 

example, the basis { }1 2 3, ,i i i  will be of the form  
 

 ( )( )
( ) ( )

( ) ( )
( ) ( )

12 13

12 23

13 23

0
, , 0

0
j k

Z t Z t
M t Z t Z t

Z t Z t

 
 = − 
 − − 

Z i i  (4.11.30) 

 
Thus, the nine components of ( )tZ  are actually determined by three quantities.  It is common 
practice to identify a three dimensional vector that has these components and write (4.11.29) in 
terms of that vector.  The formal step is to define a vector ( )tω  by the requirement 
 
 ( ) ( ) for all   t t= × ∈Z v ω v v V  (4.11.31) 
 
where the cross product is defined in Section 4.6.  While we do not need to introduce components, 
it is perhaps useful to point out that (4.11.31) can be used to write (4.11.30) as 
 

 ( )( )
( ) ( )

( ) ( )
( ) ( )

3 2

3 1

2 1

0
, , 0

0
j k

t t
M t t t

t t

ω ω
ω ω
ω ω

− 
 = − 
 − 

Z i i  (4.11.32) 

 
for the cross product associated with a positively oriented system.  In dynamics, the vector ( )tω  is 
the angular velocity.  The definition (4.11.31) allows (4.11.29) to be written in the possibly more 
familiar form 
 

 
( ) ( ) ( )

ˆ
ˆj

j

d t
t t

dt
= ×

i
ω i  (4.11.33) 

 
and (4.11.22) to be written 
 

 ( ) ( ) ( ) ( ) ( )
3

1

ˆ ˆj
j

j

d td t
t t t

dt dt
υ

=

= + ×∑
v

i ω v  (4.11.34) 
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It is customary to give the first term on the right side of (4.11.34) a different symbol such as ( )t
t

δ
δ
v

 

to signify that it represents the rate of change as seen from the rotating basis. 
 
 
Exercises: 
 
4.11.1  If you are given a linear transformation : →A V U   show that the linear transformation 

* : →AA U U  and the linear transformation * : →A A V V  are Hermitian. 
 
4.11.2  Use the definition of the scalar triple product introduced in Section 4.6 and show that the 
determinant of a linear transformation : →A V V , where V  is a three dimensional real inner 
product space, is given by the component free expression 
 
 det , , for all   , ,× = × ∈A u v w Au Av Aw u v w V  (4.11.35) 
 
Equation (4.11.35) defines the determinant of a linear transformation in a completely component 
free fashion.  It is limited to the case of three dimensions but, perhaps, gives some insight in how 
the determinant of a linear transformation could be defined when the vector space has dimension 
greater than three. 
 
4.11.3  Given a linear transformation : →A V V , where V  is a three dimensional real inner 
product space, define a linear transformation : →AK V V  by 
 
 , , for all   , ,× = × ∈AK u v w u Av Aw u v w V  (4.11.36) 
 
Show that 
 
 ( )det= =A AK A AK A I  (4.11.37) 
 
Therefore, from (1.10.50) and (1.10.51), AK  is the linear transformation whose matrix is the 
adjugate matrix of the matrix of A .  In the following we shall write adjA  to denote the linear 
transformation defined by (4.11.36). 
 
4.11.4  Show that the trace of a linear transformation : →A V V , where V  is a real three 
dimensional inner product space, is given by the component free expression 
 
 tr , , , , for all   , ,× = × + × + × ∈A u v w Au v w u Av w u v Aw u v w V  (4.11.38) 
 
Equation (4.11.38) defines the trace of a linear transformation in a component free fashion.  Like 
the definition of the determinant given in Exercise 4.9.1, the definition (4.11.38) is limited to the 
three dimensional case. 
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4.11.5  Certain applications require that a determinant be differentiated.  If ( )t=A A  is a 
differentiable linear transformation, use the results of Exercises 4.11.1 and 4.11.2 and show that 
 

 
( )( )( )

( )( ) ( )det
tr adj

d t d t
t

dt dt
 

=  
 

A A
A  (4.11.39) 

 
where adjA  is the linear transformation denoted by AK  in Exercise 4.11.3.  While we have not 
proven it here, equation (4.11.39) holds for linear transformations defined on real inner product 
spaces of arbitrary finite dimension. 
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Section 4.12. Fundamental Subspaces Theorem 
 
 

In this section, we shall return to the discussion of linear transformations given in Section 
3.3 and augment those concepts in the case where the underlying vector spaces are inner product 
spaces.  We shall show how to interpret some of our earlier results in an interesting geometric 
fashion.  The main result of this section is known as the Fundamental Subspaces Theorem. 
 
 We begin this discussion by again looking at a linear transformation : →A V U .  Unlike 
the discussion in Section 3.3, we now allow V  and U  to be inner product spaces.  We shall allow 
them to be complex inner product spaces.  In Section 3.3, we defined the subspace of V  known as 
the kernel of : →A V U .  This subspace was defined by equation (3.3.5), repeated, 
 
 ( ) { }K = =A v Av 0  (4.12.1) 
 
We also defined the subspace of U  known as the range.  This subspace was defined by equation 
(3.3.1), repeated, 
 
 ( ) { } R = ∈A Av v V  (4.12.2) 
 
For the inner product spaces we are considering, the corresponding concepts for the adjoint 

* : →A U V  are 
 
 ( ) { }* *K = =A u A u 0  (4.12.3) 
 
for the kernel and 
 
 ( ) { }* *  R = ∈A A u u U  (4.12.4) 

 
for the range. 
 

The subspace ( )K A  of V  and the subspace ( )*R A  also of V  have a special geometric 
relationship that we now wish to characterize.  In order to characterize this relationship, we make 
the following definitions: 
 
Definition:  A subspace 1V  and a subspace 2V  of the inner product space V  are orthogonal if 

1 2, 0=v v  for every 1 1∈v V  and 2 2∈v V . 
 
If a subspace 1V  and a subspace 2V  of the inner product space V  are orthogonal it is customary to 
write 1 2 ⊥V V .  If 1 2 ⊥V V   the only element the two subspaces have in common is the zero vector, 
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i.e. { }1 2 ∩ = 0V V .  A related geometric concept is the orthogonal complement of a subspace.  This 
definition is as follows: 
 
Definition:  Let 1V  be a subspace of an inner product space V , the orthogonal complement of 1V , 
written 1

⊥V , is a subspace defined by 
 
 { }1 1 1 1, 0   for all  ⊥ = ∈ = ∈v v v vV V V  (4.12.5) 
 
In simple geometric terms the orthogonal complement consists of all of those vectors in the inner 
product space V  that are perpendicular to those in 1V . 
 
 The first part of the fundamental subspaces theorem is that the subspace ( )K A is the 

orthogonal compliment of ( )*R A .  In the notation we have just introduced, the assertion is 
 
 ( ) ( )*K R

⊥
=A A  (4.12.6) 

 
The proof of this result follows from the definition of the adjoint linear transformation, equation 
(4.9.1), repeated, 
 
 *, ,=u Av A u v  (4.12.7) 
 
For a vector ( )K∈v A , since 0=Av , equation (4.12.7) yields * , 0=A u v .  Thus, the vector 

( )* *R∈A u A  is orthogonal to ( )K∈v A .  The second part of the fundamental subspaces theorem 
is 
 
 ( ) ( )*K R ⊥=A A  (4.12.8) 
 
The proof of this result is essentially the same as the proof of (4.12.6).  One simply interchanges 
the roles of A  and *A . 
 
Example 4.12.1:  You are given a matrix 4 3A M ×∈  defined by 
 

 

1 3 1
2 4 0
2 4 0
1 3 1

A

 
 
 =
 
 
 

 (4.12.9) 

 
Viewed as a linear transformation 3 1 4 1:A × ×→M M , one can easily show that 
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 ( )

0 1
1 0

span ,
1 0
0 1

R A

    
    
    =     
         

 (4.12.10) 

 
and 
 

 ( )
2

span 1
1

K A
  
  = −  
    

 (4.12.11) 

 
Since, 
 

 
1 2 2 1
3 4 4 3
1 0 0 1

TA
 
 =  
  

 (4.12.12) 

 
a simple calculation shows that 
 

 ( )
1 2

span 3 , 4
1 0

TR A
    
    =     
        

 (4.12.13) 

 

 ( )
0 1
1 0

span ,
1 0
0 1

TK A

 −    
    −    =     
         

 (4.12.14) 

 
The fundamental subspaces theorem asserts that ( ) ( )TK A R A

⊥
=  and ( ) ( )TK A R A ⊥= .  These 

results are validated for this example because 
 
For ( ) ( )TK A R A

⊥
=  

 

 
2 1 2 2
1 3 1 4 0

1 1 1 0

T T
       
       − = − =       
              

 (4.12.15) 
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and, for ( ) ( )TK A R A ⊥=  
 

 

0 0 0 1
1 1 1 0

0
1 1 1 0
0 0 0 1

1 0 1 1
0 1 0 0

0
0 1 0 0
1 0 1 1

T T

T T

       
       − −       = =
       
       
       

− −       
       
       = =
       
       
       

 (4.12.16) 

 
 Next, we shall introduce the ideas of the sum and the direct sum of two subspaces.  The idea 
is useful in the context of the results (4.12.6) and (4.12.7). 
 
Definition:  If 1V  and 2V  are subspaces of a vector space V , the sum of 1V  and 2V  is written 

1 2+V V  and is the subspace of V  defined by 
 
 { }1 2 1 2 1 1 2 2 where  and  + = = + ∈ ∈v v v v v vV V V V  (4.12.17) 
 
If every vector in V  can be expressed in the form 1 2= +v v v  where 1 1∈v V  and 2 2∈v V , then 

1 2= +V V V . 
 
Definition:  If 1V  and 2V  are subspaces of a vector space V  such that the only vector they have in 
common is the zero vector, i.e., if { }1 2∩ = 0V V , them the sum 1 2+V V  is called the direct sum and 
is written 1 2⊕V V . 
 
Theorem 4.12.1:  If 1V  and 2V  are subspaces of a vector space V , the representation 1 2= +v v v  
of a vector 1 2∈ +v V V  is unique if and only if { }1 2∩ = 0V V . 
 
Proof:  Every vector in 1 2∈ +v V V  has the representation 
 
 

 

1 2
In In 1 2

= +v v v
V V

 (4.12.18) 

 
If { }1 2∩ = 0V V , we need to prove that the representation (4.12.18) is unique.  As with all 
uniqueness proofs, we assume the representation is not unique.  In particular assume 1 2∈ +v V V  has 
two representations 
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1 2 1 2

1 2 1 2
In In In In 

′ ′= + = +v v v v v
V V V V

 (4.12.19) 

 
Rearrangement yields 
 
 

   

1 1 2 2

1 1 2 2
In In In In 

′ ′− = −v v v v
V V V V

 (4.12.20) 

 
Because the only vector in 1V  that is also in 2V  is 0 , equation (4.12.20) yields 1 1′=v v  and 2 2′ =v v
.  Therefore, the representation is unique. 
 
Conversely, if we have uniqueness, it must be true that { }1 2∩ = 0V V .  Because, if this were not the 
case, any nonzero vector 1 2∈ ∩w V V  could violate the assumed uniqueness by writing 

1 2

1 2 1 2

In In 

= + = + + −v v v v w v w
V V

 

. 

 
Theorem 4.12.2:  If 1V  is a subspace of V , then 
 
 1 1

⊥= ⊕V V V  (4.12.21) 
 
Proof:  Let 1v  be an arbitrary vector in 1V .  Without loss of generality, we can select 1v  such that 

1 1=v .  For example, if one selected a 1v  which did not have unit length, the vector 1

1

v
v  would 

have unit length.  For any vector ∈v V , we can write the identity 
 
 

11

1 1 1 1

In In 

, ,
⊥

= − +v v v v v v v v
VV

 

 (4.12.22) 

 
The first term, 1 1,−v v v v , is in 1

⊥V  because, 
 

 
1 1 1 1 1 1 1

2
1 1 1 1 1

, , , , ,

, , , , 0

− = −

= − = − =

v v v v v v v v v v v

v v v v v v v v v
 (4.12.23) 

 
We have established that any vector in ∈v V  has the decomposition 
 

 

1 2
In In 1 1

⊥

= +v v v
V V

 (4.12.24) 

 
To complete the proof of the theorem, we need to prove that this decomposition is unique.  Because 
the only vector in 1 1

⊥∩V V  is 0 , Theorem 4.8.1 tells us the decomposition is unique. 
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Corollary: 
 
 1 1dim dim dim ⊥= +V V V  (4.12.25) 
 
Proof:  One simply writes 1 2= +v v v , and expresses each vector in terms of a basis for each 
subspace.  The union of these two bases is a basis for V . 
 
 Given : →A V U , we know that the kernel, ( )K A , is a subspace of V .  Theorem 4.8.1 
applied to this subspace yields 
 
 ( ) ( )K K ⊥= ⊕A AV  (4.12.26) 
 
Equation (4.12.6) allows (4.12.26) to be written 
 
 ( ) ( )*K R= ⊕A AV  (4.12.27) 
 
In a similar fashion, the fact that ( )R A  is a subspace of U  allows us to write 
 
 ( ) ( )R R ⊥= ⊕A AU  (4.12.28) 
 
which by (4.12.8) 
 
 ( ) ( )*R K= ⊕A AU  (4.12.29) 
 
The following figure summarizes the various geometric relationships reflected in equations (4.12.6)
, (4.12.8), (4.12.27) and (4.12.29). 
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 The Fredholm Alternative Theorem was mentioned in Section 3.3.  It was mentioned that 
this theorem has two parts and our Theorem 3.3.2 was the second part of the Alternative Theorem.  
The first part is the theorem12 
 
Theorem 4.12.3:  Given : →A V U  and ∈b U , the equation =Av b has a solution if and only if 
 
 , 0=u b  (4.12.30) 
 
for all ( )*K∈u A . 
Proof:  If ∈v V  is the solution of =Av b , then for arbitrary ∈u U  
 
 *, , ,= =u b u Av A u v   (4.12.31) 
 
It follows from (4.12.31) that if ( )*K∈u A , which implies * =A u 0 , equation (4.12.30) holds.  

Conversely, if (4.12.30) holds for all ( )*K∈u A , then ( ) ( )*K R
⊥

∈ =b A A , where (4.12.8) or, 

equivalently, (4.12.29) has been used.  Given ( )R∈b A , the consistency theorem discussed in 
Section 3.3 tells us that there exists a ∈v V  such that =Av b . 
 

A final result that can be identified from the above geometric construction is that  
 
 ( ) ( )*dim dimR R=A A  (4.12.32) 
 
This result is a direct consequence of (3.3.13) and (4.12.25) applied to equation (4.12.27).  In the 
case of a matrix 1 1: N MA × ×→M M  with real elements, equation (4.12.32) reduces to equation  
(2.8.3).  It was this earlier result that gave us the important fact that the row rank and the column 
rank of a matrix are the same. 
 
 
Exercises 
 
4.12.1  You were given the following system of equations: 
 

 
1 2 3 4

1 2 3 4

1 2 3

2 5
2 3 2 2
4 5 3 7

x x x x
x x x x
x x x

+ + + =
+ − − =
+ + =

 (4.12.33) 

 
a) Show that the kernel of the matrix of coefficients is 

 

 
12 Information about the Swedish mathematician Erik Ivar Fredholm can be found at 
https://en.wikipedia.org/wiki/Erik_Ivar_Fredholm. 

https://en.wikipedia.org/wiki/Erik_Ivar_Fredholm
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 ( )

7 5
5 4

span ,
1 0
0 1

K A

 − −    
    
    =     
         

 (4.12.34) 

 
b)  Utilize (4.12.6) and show that 

 

 ( )
1 2
1 3

span ,
2 1
1 2

TR A

    
    
    =     −
     −    

 (4.12.35) 
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Section 4.13. Least Squares Problem 
 
 
 In the introduction to this Chapter, it was explained that the inner product structure makes it 
possible to construct approximations based upon the idea of elements of vector spaces being close 
in some sense.  In this section, we shall illustrate an approximation procedure that occurs in many 
applications.  It is based upon the idea of minimizing the distance between two vectors.  The 
resulting idea is known as a least squares problem.  The details of this idea will be presented in this 
section.  In the next section, we shall apply the idea to the problem of fitting a curve to a set of 
data. 
 

We begin by the assumption that we are given a real vector space V  of dimension N .  The 
problem we shall investigate is how to approximate a vector ∈v V  by a vector u  in a subspace of 
V , we shall call 1V .  In a way to be described next, we shall define a quantity that measures the 
approximation. 
 

Given ∈v V , the approximation to v , which we have called 1∈u V , is measured by the 
distance between v  and u .  The structure of the inner product space provides a measure of this 
distance.  Our first step is to define the residual by  
 
 ( ) = −r u v u  (4.13.1) 
 
and measure the departure of v  from u  by the squared norm 
 
 ( ) 2 2= −r u v u  (4.13.2) 
 
The problem we are examining is, given ∈v V , how do we calculate u  in order to minimize the 
squared norm ( ) 2 2= −r u v u . 
 

As a function of the u , we shall minimize the squared norm (4.13.2).  The result of this 
minimization problem is straight forward if we remember how the derivative of a function with 
respect to a vector is defined.  If 1:f →V R  is a real valued function defined on an open set 1V of a 
vector space V , then the gradient of f  is a vector valued function on 1V  defined by 
 

 ( ) ( )
0

grad ,
df

f
d

λ

λ
λ

=

+
=

x c
x c  (4.13.3) 

 
for all vectors 1∈c V .  The minimum state we seek is the vector 1∈u V  which satisfies the 
condition 
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 ( )( ) ( )2 2

0

grad , 0d
d λ

λ
λ =

+ = =r u c r u c  (4.13.4) 

 
for all vectors 1∈c V .  From (4.13.2) and (4.13.4)1, at the point of minimum, it is necessary that  
 

 ( )( )2
1

0

0 for all   d
d λ

λ
λ =

− + = ∈v u c c V  (4.13.5) 

 
Equation (4.13.4)2 is equivalent to the M  equations 
 
 2

1grad , 0 for all   − = ∈v u c c V  (4.13.6) 

 
The manipulations are slightly easier if we perform the calculation based upon (4.13.5).  The result 
is 
 

 

( )( ) ( ) ( )( )2

0 0

1

,

, ,

2 , 0 for all   

d d
d dλ λ

λ λ λ
λ λ= =

− + = − + − +

= − − − −

= − − = ∈

v u c v u c v u c

v u c c v u

v u c c V

 (4.13.7) 

 
If (4.13.7) is rewritten, the minimization condition is defined by 
 
 1, 0 for all   − = ∈v u c c V  (4.13.8) 
 
Thus, we obtain the elementary result that the residual, as defined by (4.13.1) must be orthogonal to 
every vector in the subspace 1V .  Another way of stating this result is that the minimum residual is 
a vector in the orthogonal complement of the subspace 1V . 
 
 Thus, in its most elementary form, if we wish to approximate a given vector ∈v V  by a 
vector u  in the subspace 1V , we simply calculate the vector u  that obeys (4.13.8).  If we select a 
basis { }1 2, ,..., Me e e  for 1V , and express u  in components by the usual formula 
 

 
1

M
j

j
j

u
=

=∑u e  (4.13.9) 

 
it follows from (4.13.8) that  
 
 , , for   1, 2,...,j j ju j M= = =u e v e  (4.13.10) 
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where { }1 2, ,..., Me e e  is the reciprocal basis to { }1 2, ,..., Me e e .  If (4.13.10)2 is substituted into 
(4.13.9), the answer to our least squares problem is 
 

 
1

,
M

j
j

j=
=∑u v e e  (4.13.11) 

 
Equation (4.13.11) says we simply calculate the reciprocal basis to { }1 2, ,..., Me e e , project the given 
vector ∈v V  in these M  directions and substitute the result into (4.13.11). 
 
Example 4.13.1  In Section 2.1 we gave a number of examples of vector spaces.  One of these was 
the vector space [ ],C a b  consisting of those continuous functions defined on every open 

subinterval of [ ],a b .  In this example, we shall select the interval to be [ ]0,b  and the associated 

vector space is written [ ]0,C b .  A subspace of this vector space is the subspace created by the span 

of the set { }1 2 3 4 5, , , ,f f f f f  where 
 

 
( )

( ) ( )

1
1

12 cos for    2,3, 4,5j

f x
b

j x
f x j

b b
π

=

−
= =

 (4.13.12) 

 
In the notation used in this section, V  is the vector space [ ]0,C b  and ( )1 1 2 3 4 5span , , , ,f f f f f=V .  
The vector space becomes an inner product space with the definition (4.1.19), repeated, 
 
 

0
, ( ) ( )

b
f g f x g x dx= ∫  (4.13.13) 

 
for all vectors [ ], 0,f g C b∈ .  You are given that the set { }1 2 3 4 5, , , ,f f f f f  is orthonormal.  This 
assertion can be established by utilization of (4.13.12) and the definition (4.13.13) to confirm that 
 
 , for   , 1, 2,3, 4,5j k jkf f j kδ= =  (4.13.14) 
 
In order to illustrate the approximation (4.13.11), we shall make the choice  
 

 ( ) 1 xg x
b

= −  (4.13.15) 

 
In the notation being utilized in this example, (4.13.11) takes the form 
 

 ( )
5

1
1 , j j

j

xg x g f f
b =

= − =∑  (4.13.16) 
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where the fact that { }1 2 3 4 5, , , ,f f f f f  is orthonormal has been used.  The next step is to make 
explicit the approximation by evaluating the inner products in (4.13.16).  The results turn out to be 
 

 ( )

( )
( )( )

1 0

0

1
2 2

1, 1
2

12, 1 cos

2 1 1 for   2,3, 4,5
1

b

b

j

j

x bg f dx
b b

j xxg f dx
b b b

b j
b j

π

π
−

  = − =    
 − = −      

 
= − − = 

 − 

∫

∫  (4.13.17) 

 
More explicitly, 
 

 

2 2

3

4 2

5

8,

, 0

8,
9

, 0

bg f

g f

bg f

g f

π

π

=

=

=

=

 (4.13.18) 

 
If these results are utilized in (4.13.16), the resulting approximation is 
 

 ( ) 2 2

1 4 4 31 cos cos
2 9

x x xg x
b b b

π π
π π

= − ≅ + +  (4.13.19) 

 
The quality of the approximation (4.13.19) is illustrated in the following plot 
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Example 4.13.1 is an example of a Fourier Cosine series expansion for the function ( ) 1 xg x
b

= − . 
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Section 4.14. Least Squares Problems and Overdetermined Systems 
 
 
 In this section, we shall formulate another solution procedure based upon the concept of 
least squares.  Essentially, we shall examine a problem that does not have a solution and attempt to 
find an approximate solution that is close in some sense to the original problem.  It will turn out 
that the approximate solution found is equivalent to the results in Section 4.13 above. 
 

The basic idea leading to the approximate solution is as follows.  Recall that when we are 
given a linear transformation : →A V U  and a vector ∈b U , the consistency theorem for linear 
systems says that the system 
 
 =Ax b  (4.14.1) 
 
has a solution if and only if ( )R∈b A .  This theorem was discussed in Sections 1.8 and 2.7 for 
matrix systems.  It was mentioned again in Section 3.3. 
 

Interestingly, there are problems which arise in the applications that lead to systems like 
(4.14.1) for which ( )R∉b A .  Our theory tells us that these problems do not have a solution.  The 
question still remains whether or not there is an approximate solution that is useful.  A major 
application of this kind of problem is curve fitting.  This is when one is trying to fit a curve to a set 
of data.  A typical problem in the applications is when you are given a discrete table of data 
 

1y  2y  3y  ⋅  ⋅  ⋅  Ky  

1x  2x  3x  ⋅  ⋅  ⋅  Kx  
 

 
and your application requires that you have values of y  for values of x  intermediate to values in 
the table.  There are two curve fitting approaches to this problem that we shall be discussing. 
 

1. The data exhibits a significant degree of error or scatter as shown in the following figure. 
 

a. The approach is to derive a single curve that represents general trend of the data. 
b. You make no effort to find a curve that intersects the given points. 
c. The curve is designed to follow the pattern of points taken as a group. 
d. The approach is to try pass a curve through the data that minimizes error in some 

fashion. 
e. This kind of problem is known as a regression problem. 
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2. The data is known to be precise. 
 

a. The approach is to fit a curve or series of curves that pass directly through each of 
the points. 

b. The estimation of values between well known discrete points is called interpolation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Consider the following problem as an example regression example.  The example is an 
application involving spring constants.  It is derived from an elementary idea in mechanics known  
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as Hooke’s Law.  It is named after the 17th century British physicists Robert Hooke.13  This so 
called law is an effort to model, in a crude way, the elongation of a spring resulting from an applied 
force: 
 

 
 
You are given a force-elongation table, in some consistent set of units, is as follows: 
 

Force Elongation 
0 0 
2 2 
4 3 
7 4 
11 5 

 
A table such as this would arise from a series of experiments involving loading different weights to 
a spring.  The problem is that Hooke’s Law says that 
 
 F kx=  (4.14.2) 
 
where k  is a property of the spring, a constant known as the spring constant.  The model presumes 
that there is one spring contant that defines the spring.  Unfortunately, the experiment yields four 

different spring constants!  They are 4 7 111. , ,
3 4 5

!  Viewed as a system of equations in the matrix 

form A =x b , we have a system 
 

 
13 http://en.wikipedia.org/wiki/Robert_Hooke 

 

 

 

http://en.wikipedia.org/wiki/Robert_Hooke
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[ ]




1 1

4 1 4 1

2 2
3 4
4 7
5 11

k
×

× ×

   
   
   =
   
   
   

 (4.14.3) 

 
This is an overdetermined system of four equations in one unknown.  It should be clear that the 
rank of the matrix of coefficients is one and the rank of the augmented matrix is two.  Thus, when 
Theorem 2.7.2 is utilized, we see that the system (4.14.3) does not have a solution.  In the language 
we have used when discussing systems of equations, our example is one where the column matrix 
 

 

2
4
7

11

 
 
 =
 
 
 

b  (4.14.4) 

 
is not in the image space of the matrix 
 

 

2
3
4
5

A

 
 
 =
 
 
 

 (4.14.5) 

 
The matrix A  is one to one but it is not onto.  For this problem there are a couple of approaches 
one might utilize in an effort to build a model based upon the given data.  One approach is simply 
to stop and declare that the physical problem is not modeled by Hooke’s Law.  In other words, 
there is a more complex physical model governing the spring.  This is sometimes the best approach.  
However, you lose the benefit of simple (linear) mathematical equations that are more readily 
solved.  The second approach is to find a value of k  that produces a spring constant corresponding 
to a “best approximation” or “best fit” of the experimental data to the hypothetical physical law, i.e. 
Hookes Law. 
 

An approach which has proven effective is to define an error or residual for each 
experiment and to minimize the error in some fashion.  The residuals are as follows: 
 

 

1

2

3

3

2 2
4 3
7 4
11 5

r k
r k
r k
r k

= −
= −
= −
= −

 (4.14.6) 

 
The least squares method is a method to find the value of k  which causes the sum of the squared 
residuals to be a minimum.  This means that we want to find k  such that  
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 ( ) ( ) ( ) ( )2 2 2 22 2 2 2

1 2 3 4 2 2 4 3 7 4 11 5r r r r k k k k+ + + = − + − + − + −  (4.14.7) 
 
is a minimum.  The plot of this equation is 
 

 
 
Therefore, the squared residual is never zero, but it can be minimized.  At the minimum point, it 
would necessarily be true that 
 

 
( )2 2 2 2

1 2 3 4 0
d r r r r

dk
+ + +

=  (4.14.8) 

 
If this derivative is calculated and placed to zero, we get 
 
 ( ) ( ) ( ) ( )4 2 2 6 4 3 8 7 3 10 11 5 0k k k k− − − − − − − − =  (4.14.9) 
 
or, after simplification, 
 

 99 1.8333
54

k = =  (4.14.10) 

 
This number represents an approximation, derived from the set of four experiments, built around 
the decision to accept the least squares of the residuals as the definition of an approximate solution.  
The figure illustrates the result of the above calculation. 
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Example 4.14.1  It is instructive to cast the calculation leading to (4.14.10) in the notation used in 
Section 4.13.  The vector space V  corresponds to the four dimensional vector space 4 1×M .  The 
given vector we denoted by v  in Section 4.13 is the column matrix b  in (4.14.4), repeated, 
 

 

2
4
7
11

 
 
 = =
 
 
 

v b  (4.14.11) 

 
The subspace of V  we have denoted by 1V  is the one dimensional subspace spanned by (4.14.5), 
repeated, 
 

 

2
3
4
5

A

 
 
 =
 
 
 

 (4.14.12) 

 
This problem is an application of the ideas in Section 4.13 but it is special in the sense that the 
subspace 1V  is defined by the problem, i.e., by the matrix (4.14.12) rather than the result of a 
choice made in advance.  In the notation of Section 4.13, we would write the vector (4.14.12) as 
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 1

2
3
4
5

 
 
 =
 
 
 

e  (4.14.13) 

 
and 1V  is spanned by the set containing the single vector 1e .  Given the above identifications, the 
general solution in the form (4.13.11) specializes to 
 
 1

1,=u v e e  (4.14.14) 
 
In order to utilize (4.14.14) we need the vector 1

1∈e V  that is reciprocal to 1e  as is defined by 
(4.14.13).  As with all reciprocal bases, we need to utilize (4.7.1) and (4.7.10).  Because the 
subspace 1V  one dimensional, the calculations are elementary.  It follows from (4.14.13) that 
 

 [ ]11 1 1

2
3

, 2 3 4 5 54
4
5

e

 
 
 = = =
 
 
 

e e  (4.14.15) 

 
and 
 

 1 11
1 1

11

2
31 1
454
5

e
e

 
 
 = = =
 
 
 

e e e  (4.14.16) 

 
Given (4.14.11), (4.14.16) and (4.14.13), the answer (4.14.14) is 
 

 [ ]1
1

2 2 2
3 3 31 99, 2 4 7 11
4 4 454 54
5 5 5

      
      
      = = =      
             

u v e e  (4.14.17) 

 
Therefore, the contravariant component of the approximate solution in the one dimensional 

direction 1

2
3
4
5

 
 
 =
 
 
 

e  is 99
44

.  Of course, the answer 99
44

is the result (4.14.10) obtained earlier. 
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 Given the motivation provided by the example leading to (4.14.10) and the same example 
worked in Example 4.14.1, we now turn to the following more general problem.  We are given a 
linear transformation : →A V U  and a vector ∈b U , where V  and U  are real inner product 
spaces.  We are also given that ( )R∉b A .  Therefore, a system =Ax b  does not have a solution.  
At this point in the discussion, : →A V U  is perfectly general.  We have said it is not onto and we 
do not require that it be one to one.  For a single three dimensional vector space, the following 
figure suggests the geometric arrangement we are discussing 
 

 
 
The plane shown is the image space of the linear transformation.  The given vector b  is not in the 
image space.  The vector −b Ax  in some sense measures the inconsistency in the system.  If we fit 
the notation used in the above figure with that used in Section 4.13, the vector space U  which 
contains the vector b  corresponds to the V  of Section 4.13.  The image space ( )R A , as a 
subspace of U , corresponds to the subspace 1V  of V .  The product Ax  corresponds to what we 
called u  in Section 4.13.  As with Example 4.14.1, the subspace ( )R A  is not arbitrary.  It is 
determined from the properties of : →A V U . 
 

As with the general discussion in Section 4.13, the least squared method defines, for each 
vector ∈x V , the residual to be the vector 
 
 ( ) = −r x b Ax  (4.14.18) 
 
Because our vector spaces have inner products, we can again measure the error by the length or 
norm squared of the residual (4.14.18).  The length squared of this residual is 
 
 ( ) 2

,= − −r x b Ax b Ax  (4.14.19) 
 
where the inner product is the one for U .  The fact that it is a dependence on ∈x V  rather than a 
depence on ( )R∈Ax A  that makes the formulation in this section slightly different than the one in 
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Section 4.13.  However, they are entirely equivalent.  In any case, our problem is to find the ∈x V , 
which makes the squared residual, ( ) 2

r x , a minimum.  As with the case in Section 4.13 and as 
with the elementary example above, we will differentiate (4.14.19) and place the result to zero. 
 

The result of this minimization will be an equation which will determine the particular 
∈x V  which minimizes the squared residual.  The equation that we shall obtain is known as the 

normal equation.  It says that x  must obey the system of dimN = V  equations 
 
 T T=A Ax A b  (4.14.20) 
 
The minimization process follows the same procedure used in Section 4.13.  The minimum state 
we seek is the vector ∈x V  which satisfies the condition 
 

 
( ) ( )

2
2

0

grad , 0
d

d
λ

λ
λ

=

+
= =

r x a
r x a  (4.14.21) 

 
for all vectors ∈a V .  It is easier, for the simple function ( ) 2

r x , to form the derivative on the left 
side of (4.14.21) than it is to worry about how one calculates the gradient on the right.  From the 
definition of the function ( ) 2

r x , equation (4.14.19), it follows that 
 
 ( ) ( ) ( )2

,λ λ λ+ = − + − +r x a b A x a b A x a  (4.14.22) 
 
Therefore, 
 

 
( ) 2

0

, , 2 , 0
d

d
λ

λ
λ

=

+
= − − + − − = − − =

r x a
b Ax Aa Aa b Ax b Ax Aa  (4.14.23) 

 
Equation (4.14.23) corresponds to (4.13.7) in the formulation of Section 4.13.  The next step is 
slightly different than used in Section 4.13.  The inner product in (4.14.23) is the one in U .  The 
inner product in (4.14.23) vanishes for all vectors in ( )R A , a subspace of U  defined by A .  A 
more useful result is obtained if we use the definition of the transpose, equation (4.9.3).  This 
definition allows (4.14.23) to be written 
 
 ( ) , 0 for all vectors T − = ∈A b Ax a a V  (4.14.24) 
 
where the inner product in (4.14.24) is the one in V .  Geometrically, (4.14.23) says that the 
residual −b Ax  is orthogonal to the subspace ( )R A .  The equivalent result, equation (4.14.24) 

says that ( )T −A b Ax  is orthogonal to all vectors in V .  Therefore, 
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 ( )T − =A b Ax 0  (4.14.25) 
 
which is the result (4.14.20).  As mentioned above, equation (4.14.20) is called the normal 
equation.  A geometric interpretation of (4.14.25) is that −b Ax  is in ( )TK A , which from (4.12.8) 

equals ( )R A ⊥ .  Therefore it is a consequence of (4.14.25) that 
 
 ( ) ( )TK R ⊥− ∈ =Ax b A A  (4.14.26) 
 
Equation (4.14.20) and the earlier result, (4.13.11) are entirely equivalent.  If we apply (4.13.11) to 
the case at hand, then it yields 
 

 
1

,
M

j
j

j=
= =∑u Ax v e e  (4.14.27) 

 
As a practical matter, (4.14.20) is more convenient.  With (4.14.27), one must analyze the linear 
transformation A to determine a basis and reciprocal basis for its range.  With (4.14.20), this 
calculation need not be performed.  It is implicit in the normal equation (4.14.20). 
 

It is helpful when trying to understand solutions to the normal equation to utilize the figure 
above augmented with the geometric result (4.14.26).  If we adopt the notation minx  for any 
solution to the normal equation (4.14.20), and display how it arises as a special choice of all 
possible vectors ∈x V .  The following figure is the result. 
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As the figure suggests, a solution minx  is the one that produces a residual vector ( )min min= −r x b Ax  

orthogonal to the image space ( )R A .  In other words, ( )minr x  is the projection of ( )r x  into the 

orthogonal compliment of ( )R A . 
 

The last figure is a good motivation for the inequality 
 
 min− ≥ −b Ax b Ax  (4.14.28) 
 
Another way to write this inequality is ( ) ( )min≥r x r x .  This fact, while obvious from the simple 
geometric construction above, needs to be established in general in order to be sure that we have 
actually found a minimum point when we find solutions of the normal equation.  The derivation of 
(4.14.28) follows by the calculation 
 

 

( )
( ) ( )

( )
( )

( ) ( ) ( ) ( )

2

2
min min

In In 

min min min min

2 2
min min min min

Equal to 0 because 

2 2
min min

2
min

,

2 ,

T RK R ⊥=

⊥

− = − + −

= − + − − + −

= − + − + − −

= − + −

≥ −

AA A

b Ax b Ax Ax Ax

b Ax Ax Ax b Ax Ax Ax

b Ax Ax Ax b Ax Ax Ax

b Ax Ax Ax

b Ax

 



 (4.14.29) 

 
The positive square root of the last inequality gives the result asserted. 
 
 Further properties of the normal equation (4.14.20) are as follows: 
 

1. The normal equation (4.14.20) was derived to be useful for cases where ( )R∉b A .  If b  is 

, in fact, in ( )R A , then (4.14.20) written in the form (4.14.25) shows that −b Ax , which is 

a vector in ( )R A , is also in ( )TK A .  Because from (4.12.8), ( ) ( )TK R ⊥=A A .  It is 
necessarily true that 

 
 =Ax b  (4.14.30) 
 
The conclusion is that when ( )R∈b A , the normal equation (4.14.20) and (4.14.30) have the same 
solution. 

2. The linear transformation :T →A A V V  is symmetric.  This result simply follows from the 
calculation ( ) ( )T TT T T T= =A A A A A A . 
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3. The kernel of :T →A A V V  equals the kernel of : →A V U .  In equation form this 
assertion is 

 
 ( ) ( )TK K=A A A  (4.14.31) 
 
The proof of (4.14.31) goes as follows:  Let v  be a vector in ( )K A .  By the definition of the 

kernel, it is true that =Av 0 .  Thus, it is true that T =A Av 0  and, as a result, ( )TK∈v A A .  

Conversely, let v  be a vector in ( )TK A A .  It follows that T =A Av 0  and, as a result, the vector 

Av  which is in ( )R A , is in ( )TK A .  Because from (4.12.8), ( ) ( )TK R ⊥=A A  and that the only 

vector that is both in ( )R A  and ( ) ( )TK R ⊥=A A  is the zero vector, we can conclude that =Av 0  

which forces ( )K∈v A  

4. The rank of the symmetric linear transformation :T →A A V V  and the linear 
transformation : →A V U  are the same.  In other words 

 
 ( ) ( )dim dimTR R=A A A  (4.14.32) 
 
This result follows from (4.14.31) and the rank-nullity theorem, equation (3.3.12), applied to the 
linear transformations TA A  and A . 

5. The solution of the normal equation (4.14.20) is unique if and only if ( ) { }K =A 0 .  This 
assertion follows from (4.14.31) and Theorem 3.3.2. 

6. In the case where the solution of the normal equation (4.14.20) is not unique, the residuals 
for the solutions are the same.  More explicitly, if 1x  and 2x  are two solutions of the 
normal equation (4.14.20), then 

 
 1 2A A=x x  (4.14.33) 
 
This equation follows from (4.14.31) which shows that when the solution is not unique 1 2−x x  

must be in ( ) ( )TK K=A A A .  Since the least squares solution minimizes −b Ax , the two 

solutions 1x  and 2x  yield the same vector in ( )R A  and that vector is the closest in the least 
squared sense to the vector b . 
 

In the special case where ( ) { }K =A 0 , i.e., when : →A V U  is one to one, we know from 

(3.3.12) that the rank of A  and TA A  is equal to dimV .  As a result, the symmetric linear 
transformation :T →A A V V  is nonsingular even though the linear transformation : →A V U  is 
not.  The unique solution of the normal equation (4.14.20) is then 
 
 ( ) 1T T−

=x A A A b  (4.14.34) 
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In general, when one is given a linear transformation : →A V U  with the property that 
( )dim dimR =A V , the combination ( ) 1T T−

A A A  is known as the left pseudo inverse of A .  It is 
the left pseudo inverse that gives the solution to the least squared problem.  If the linear 
transformation A is nonsingular, it is evident that ( ) ( )1 11 1T T T T− −− −= =A A A A A A A . 
 

While it is not important to us here, it is worth noting in passing that the combination 

( ) 1T T −
A AA  arises in some applications and it is known as the right pseudo inverse of A . 
 
 
Exercises 
 
4.14.1  Find the least squares solution to the following system 
 

 

1 2 3

1 2 3

1 2 3

1 2 3

2 2
3 2 1
4 3 3
2 4 2 4

x x x
x x x
x x x
x x x

+ + =
+ − =
− − =
+ + =

 (4.14.35) 

 

The answer you should obtain is 
1

2

3

1
0
1

x
x
x

   
   =   
      

. 

 
4.14.2  Find the least squares solution to the following system  
 

 

2 3

1 3

1 2 3

1 2 3

3 1
3 12 3

1
2 3 1

x x
x x

x x x
x x x

− =
+ =
+ + =
+ − =

 (4.14.36) 

 

The answer you should obtain is 
1

2 3

3

97
1054

23
15

1 0

x
x x
x

 
 

−     
     = +     
        

 
  

. 

4.14.3  You are given the matrix equation A =x b , where 
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1 1 3
2 3     and    1
0 0 2

A
   
   = − =   
      

b  (4.14.37) 

 
If it exists, determine the solution to the matrix equation A =x b .  If it does not exist, determine an 
approximate solution based upon the least squared approximation. 
 
4.14.4  As mentioned above, when ( ) { }K =A 0 , the the rank of : →A V U  and :T →A A V V  is 
equal to dimV .  In this case, the solution (4.14.34) is sometimes expressed in terms of a so called 
QR decomposition or factorization.  The purpose of this exercise is to show how this factorization 
is constructed and to show how it simplifies the solution (4.14.34).  The argument begins with 
selecting a basis { }1 2, ,..., Ne e e  for V and a basis { }1 2, ,..., Mb b b  for U .  The fundamental formula 
that defined the components is equation (4.8.1), repeated, 
 

 
1

    1, 2,...,
M

j
k k j

j
A k N

=

= =∑Ae b  (4.14.38) 

 
The matrix of this linear transformation was defined by equation (4.8.2), repeated, 
 

 ( )

1 1 1
1 2

2 2 2
1 2

3 3
1 3

1 2

, ,

N

N

j
k j k

M M M
N

A A A
A A A
A A

M A

A A A

 ⋅ ⋅ ⋅
 
 
 ⋅

 = =    ⋅ ⋅ 
 ⋅ ⋅
 

⋅ ⋅ ⋅  

A e b  (4.14.39) 

 
The matrix ( ), ,k jM A e b , under the assumptions we have made, has rank dimN = V .  If we 

denote the N  linearly independent columns of ( ), ,k jM A e b  by 
 

 

1

2

3

for   1, 2,...,

k

k

k
k

M
k

A
A
A

k N

A

 
 
 
 

= = 
⋅ 

 ⋅
 
  

f  (4.14.40) 

 
The next formal step is to apply the Gram-Schmidt process explained in Section 4.3 and derive an 
orthonormal set of column vectors { }1,..., Ni i .  Because the column vectors kf , 1, 2,...,k N=  are in 
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1M×M , the orthogonal column vectors ki , 1, 2,...,k N=  are also in 1M×M .  In component form, we 
shall write these vectors as 
 

 

1

2

3

for   1, 2,...,

k

k

k
k

M
k

Q
Q
Q

k N

Q

 
 
 
 

= = 
⋅ 

 ⋅
 
  

i  (4.14.41) 

 
The inner product that is used to construct the orthonormal set { }1,..., Ni i  is the one defined by 
equation (4.1.13) except that in this section the vector spaces V  and U  are real.  As explained in 
Section 4.3, the two sets of column vectors, { }1,..., Nf f  and { }1,..., Ni i , are connected by the 
formula (4.3.32), repeated, 
 

 
1

for    1,...,
N

q
k k q

q
R k N

=

= =∑f i  (4.14.42) 

 
where the coefficients q

kR , for , 1, 2,...,k q N= , are determined by (4.3.33).  As (4.3.40) illustrates, 

the transition matrix q N N
kR R × = ∈  M  is upper triangular.  Given (4.14.40), (4.14.41) and 

(4.14.42), the various components are connected by the formula 
 

 
1

for  1, 2,...,   and  1, 2,...,
N

s s q
k q k

q
A Q R s M k N

=

= = =∑  (4.14.43) 

 
Equation (4.14.43) is a decomposition of the matrix ( ), ,k jM A e b  into the product of an orthogonal 
matrix 
 

 

1 1 1
1 2

2 2 2
1 2

3 3
1 3

1 2

N

N

M M M
N

Q Q Q
Q Q Q
Q Q

Q

Q Q Q

 ⋅ ⋅ ⋅
 
 
 

=  
⋅ 

 ⋅
 

⋅ ⋅ ⋅  

 (4.14.44) 

 
and the upper triangular matrix R .  For matrices, equation (4.14.43) is the QR  factorization 
mentioned above.  Given the usual connection between matrices and linear transformations, 
equation (4.14.43) establishes a corresponding factorization of the linear transformation 

: →A V U .  The result, which can naturally be written 
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 =A QR  (4.14.45) 
 
Because : →Q V U , is orthogonal, equation (4.11.14), repeated 
 
 T =Q Q IV  (4.14.46) 
 
holds for Q .  The linear transformation : →R V V , which was constructed from the transition 
matrix q N N

kR R × = ∈  M  is nonsingular.  Given this long preamble to this exercise, use the QR  
factorization and show that the solution (4.14.34) can be written 
 
 1 T−=x R Q b  (4.14.47) 
 
Equation (4.14.47) can have some computational advantages when one is trying to generate the 
solution of (4.14.34). 
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Section 4.15. A Curve Fit Example 
 
 
 As the Hooke’s Law example showed, a good illustration of the least square method of 
finding an approximate solution is when one wishes to fit a curve to the data that captures the data 
trend.  In this section, we shall look at another curve fit example.  In this example, we shall fit the 
data to a polynomial of degree of degree S .  Polynomials were first discussed in Secion 2.1.  In 
this section, we shall write the polynomial as 
 
 ( ) 2 3

0 1 2 3
S

Sy x a a x a x a x a x= + + + + ⋅⋅⋅+  (4.15.1) 
 
Viewed as a member of a real vector space, the polynomial (4.15.1) is in the vector space SP  
introduced in Section 2.1.  Our objective is to utilize the least squares procedure to determine the 

1S +  unknown real numbers that are coefficients in (4.15.1).  The regression we shall formulate 
will be built upon the assumption that we have a data set of K  distinct points, where 1K S> + .  
The data set is displayed in the table 
 

1y  2y  3y  ⋅  ⋅  ⋅  Ky  

1x  2x  3x  ⋅  ⋅  ⋅  Kx  
 
As with the Hooke’s Law example, we can evaluate the polynomial (4.15.1) at each data pair and 
obtain the system of K equations for the 1S +  unknowns 
 

 

2 3
0 1 1 2 1 3 1 1 1

2 3
0 1 2 2 2 3 2 2 2

2 3
0 1 3 2 3 3 3 3 3

2 3
0 1 4 2 4 3 4 4 4

2 3
0 1 2 3

S
S

S
S

S
S

S
S

S
K K K S K K

a a x a x a x a x y
a a x a x a x a x y
a a x a x a x a x y
a a x a x a x a x y

a a x a x a x a x y

+ + + + ⋅⋅⋅+ =

+ + + + ⋅⋅⋅+ =

+ + + + ⋅⋅⋅+ =

+ + + + ⋅⋅⋅+ =

⋅
⋅
⋅

+ + + + ⋅⋅⋅+ =

 (4.15.2) 

 
This result can be written as the matrix equation 
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2
11 1 1

02
22 2 2

12
33 3 3

2

2

( 1) 1
1( 1)

1
1
1

1

S

S

N

SS
KK K K S

KK S

yx x x
a

yx x x
a

yx x x
a

a
yx x x

+ ×
×× +

 ⋅ ⋅  
    ⋅ ⋅     
    ⋅ ⋅
    = ⋅⋅ ⋅ ⋅ ⋅     ⋅    ⋅⋅ ⋅ ⋅ ⋅    ⋅  

⋅ ⋅ ⋅ ⋅ ⋅        ⋅ ⋅   


 (4.15.3) 

 
As an over determined system of K  equations in 1S +  unknowns, (4.15.3) is usually 

inconsistent and, as such, does not have a solution.  Following the formalism of Section 4.14, we 
can define the residuals as a column vector r  defined by 
 
 A= −r y a  (4.15.4) 
 
where 
 

 

1

2

3

K

y
y
y

y

 
 
 
 
 = ⋅ 
 ⋅
 
⋅ 

  

y  (4.15.5) 

 

 

0

1

2

S

a
a
a

a

 
 
 
 

=  ⋅ 
 ⋅
 
  

a  (4.15.6) 

 
and 
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2
1 1 1

2
2 2 2

2
3 3 3

2

1
1
1

1

S

S

S

S
K K K

x x x
x x x
x x x

A

x x x

 ⋅ ⋅
 ⋅ ⋅ 
 ⋅ ⋅
 

= ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅
 
⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ 

 (4.15.7) 

 
Note that the ( )1S K+ ×  matrix A  is similar in form to the transpose of the square Vandermonde 
matrix introduced in Section (1.10).  Because the points 1 2, ,..., Kx x x  are distinct, it is possible to 
conclude that the rank of A  is 1S +  and, thus, A  is one to one. 
 

The normal equation (4.14.20), rewritten in the above notation is 
 
 

( ) ( )


( )


( )




1 1 11 1 1
Symmetric

T T

S S S KS K

A A A
+ × + + ×+ × ×

=

 

a y  (4.15.8) 

 
Example 4.15.1:  Given the data set 
 

x 5 10 15 20 25 30 35 40 45 50 
y 49 50 46 43 39 36 33 30 22 19 

 
we will try to fit a cubic to the given data.  Therefore, you are asked to determine coefficients 
 

 

0

1

2

3

a
a
a
a

 
 
 =
 
 
 

a  (4.15.9) 

 
in the cubic equation 
 
 2 3

0 1 2 3y a a x a x a x= + + +  (4.15.10) 
 
The matrix A  in the normal equation is 
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2 3
1 1 1

2 3
2 2 2

2 3
3 3 3

2 3
4 4 4

2 3
5 5 5

2 3
6 6 6

2 3
7 7 7

2 3
8 8 8

2 3
9 9 9

2 3
10 10 10

1 5 25 1251
1 10 100 10001
1 15 225 33751
1 20 400 80001
1 25 625 156251
1 30 900 270001
1 35 1225 428751
11

1
1

x x x
x x x
x x x
x x x
x x x

A
x x x
x x x
x x x
x x x
x x x

 
 
 
 
 
 
 
 = =
 
 
 
 
 
 
  

40 1600 64000
1 45 2025 91125
1 50 2500 125000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (4.15.11) 

 
and, because the points 1 2 10, ,...,x x x are distinct has rank 4 .  The matrix y  , which is not in ( )R A , 
is 
 

 

49
50
46
43
39
36
33
30
22
19

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
  

y  (4.15.12) 

 
The symmetric matrix TA A in the normal equation (4.15.8) turns out to be 
 

 

10 275 9625 378125
275 9625 378125 15833125

9625 378125 15833125 690078125
378125 15833125 690078125 30912578125

TA A

 
 
 =
 
 
 

 (4.15.13) 

 
The inverse of the matrix (4.15.13) can be shown to be 
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( ) 1

113 19 1 1
30 36 50 4500
19 13073 2 761
36 154440 585 19305000
1 2 103 1
50 585 715000 585000

1 761 1 1
4500 19305000 585000 48262500

3.7667 0.5278 0.0200 0.0002
0.5278 0.0846 0.0034 0.0000

0.0200 0.

TA A
−

 − − 
 
 − − 

=  
 − −
 
 
 − −
 

− −
− −

=
− 0034 0.0001 0.0000

0.0002 0.0000 0.0000 0.0000

 
 
 
 
 − 

 (4.15.14) 

 
Given (4.15.11), (4.15.12), and (4.15.14), the solution of (4.15.8) can be shown to be 
 

 

1531
30

51.03334019
0.156125740

547 0.0128
42900 0.0001
19

321750

 
 
    −  −   = =   − −     
 
 
 

a  (4.15.15) 

 
Therefore, from (4.15.10) and (4.15.15) the least squares approximation to the given data is 
 
 2 351.0333 0.1561 0.0128 0.0001y x x x= − − +  (4.15.16) 
 
The plot of the data and this polynomial is as follows: 
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 Example 4.15.1 provides an example that shows how one could use (4.13.11), repeated, 
 

 
1

,
M

j
j

j=
=∑u v e e  (4.15.17) 

 
to work least squares problems.  If we adapt (4.15.17) to the last example above, then v  represents 
the vector 10 1×∈y M  defined by (4.15.12).  The vector u  defined by (4.15.17) is the vector in 
( )R A  that is the least squared approximation to 10 1×= ∈y v M .  The basis { }1 2, ,..., Me e e  and its 

reciprocal basis { }1 2, ,..., Me e e  represent bases of the image space, ( )R A , defined by the matrix 

(4.15.11).  The first step is to determine ( )dimM R A= , the rank of A .  If the reduced row echelon 
form of A  is calculated by the usual method, the result is  
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1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

U

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
  

 (4.15.18) 

 
Thus, the rank of A  is 4M = .  Thus, as observed earlier, A  is one to one.  A basis for ( )R A  
consists of the four columns of A .  Therefore,  
 

 1 1 3 4

1 5 25 125
1 10 100 1000
1 15 225 3375
1 20 400 8000
1 25 625 15625

, , ,
1 30 900 27000
1 35 1225 42
1 40 1600
1 45 2025
1 50 2500

     
     
     
     
     
     
     

= = = =     
     
     
     
     
     
     
          

e e e e

875
64000
91125

125000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (4.15.19) 

 
The inner products ,jk j ke = e e  are given by 
 

 

10 275 9625 378125
275 9625 378125 15833125

9625 378125 15833125 690078125
378125 15833125 690078125 30912578125

jke

 
 
   =   
 
 

 (4.15.20) 

 
and the resulting reciprocal basis is given by 
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1 2

8 397
5 2145
4 19

15 1170
2 1361
5 12870

17 2909
30 25740
2 29
5 429,
1 2

15 2145
4 811

15 12870
13 2293
30 25740
4 29

15 585
2 73
5 858

   −   
  
  
  
  
  −
  
  
  −
  
  
−  

  = =
  − −  
  
  −  
  
  −
  
  
   −
  
  
−  

   

e e 3 4

9 7
1430 107250

16 7
10725 321759
199 7

42900 128700
19 31

4290 643500
23 1

10725 53625, ,
2 1

2145 53625
151

42900
31

7150
3

1430
16

3575

  − 
  
  −  
  
  −
  
  
  −
  
  

−  
  = =
   −  
  
  
  
  
  
  
  
  
  
  

−  
 

e e

31
643500

7
128700

7
321759

7
107250

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − 
 
 −
 
 
 −
 
 
 
 

 (4.15.21) 

 
Given (4.15.12), (4.15.19) and (4.15.21), equation (4.15.17) becomes 
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4

1

35708
715

34503
715

65811
1430

185683
4290

85979
2145,

78224
2145

139343
4290

120833
4290

50554
2145

13393
715

j
j

j=

 
 
 
 
 
 
 
 
 
 
 
 
 
 = =
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∑u y e e

 (4.15.22) 

 
Again, u  in (4.15.22) is the vector in ( )R A  that is the least squared approximation to y  defined 

by (4.15.12).  Given (4.15.22) and the fact that ( )R A∈u , insures that there is a vector 4 1×∈a M  
that is mapped by A  into u  , i.e., obeys A =a u .  In order to determina a  we must solve 
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35708
715

34503
715

658111 5 25 125
1430

1 10 100 1000 185683
1 15 225 3375 4290
1 20 400 8000 85979
1 25 625 15625 2145
1 30 900 27000 78224

21451 35 1225 42875
131 40 1600 64000

1 45 2025 91125
1 50 2500 125000

A

 
 
 
 
 
 
 

= = 
 
 
 
 
 
 
  

a a

9343
4290

120833
4290

50554
2145

13393
715

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.15.23) 

 
Repeating our earlier observations, equation (4.15.23) has a solution because we know that its right 
hand side is in the range of A .  Because A  is one to one, we know (4.15.23) has a unique solution.  
This solution is obtained by the method we have used extensively.  Namely, construct the 
augmented matrix and reduce it to row echelon form.  The details are tedius at best, but the 
resulting augmented matrix allows us to replace (4.15.23) with  
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1531
30

1 0 0 0 4019
0 1 0 0 25740
0 0 1 0 547

429000 0 0 1
190 0 0 0

3217500 0 0 0
00 0 0 0
00 0 0 0
00 0 0 0
00 0 0 0
0
0

 
 
    −         −         =                         
 
  

a  (4.15.24) 

 
Thus, we again obtain the result (4.15.15).  This calculation, perhaps, gives insight into the direct 
use of the normal equation (4.14.20).  It certainly displays the convenience of utilizing (4.14.20) 
directly rather than the somewhat round about method based upon the use of (4.15.17). 
 
 
Exercises 
 
4.15.1  You are given a table of data containing K  pairs of data: 
 

1y  2y  3y  ⋅  ⋅  ⋅  Ky  

1x  2x  3x  ⋅  ⋅  ⋅  Kx  
 

 
a) Show that if you fit the straight line 

 
 0 1y a a x= +  (4.15.25) 
 
to this data, the coefficients 0a  and 1a  are the solution of 
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1 1

2 2

3 3
0

1 2 3 1 2 31

1
1
1

1 1 1 1 1 1 1 1

1

K K

K K

x y
x y
x y

a
x x x x x x x xa

x y

   
   
   
   

⋅ ⋅ ⋅ ⋅ ⋅ ⋅       =⋅ ⋅ ⋅       ⋅ ⋅ ⋅ ⋅ ⋅ ⋅       ⋅ ⋅ ⋅
   
⋅ ⋅ ⋅   
      

 (4.15.26) 

 
b) Show that the solution of (4.15.26) is 

 

 

2

1 1 10
2

1 2

1 11 1

1

K K K

i i i
i i i

K KK K

i i ii i
i ii i

x x y
a
a

x K x yK x x

= = =

= == =

   −        =        −−          

∑ ∑ ∑

∑ ∑∑ ∑
 (4.15.27) 

 
4.15.2  The numerical example in Section 4.15 provides the opportunity to illustrate the QR  
decomposition discussed in Exercise 4.14.3.  Perform the Gram-Schmidt orthogonalization process 
on the matrix (4.15.11) and show that 
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1 9 3 21
10 330 33 2145
1 7 1 7
10 330 33 2145
1 5 1 35
10 330 2 33 2 2145
1 3 3 31
10 330 2 33 2 2145
1 1 2 6
10 330 33 2145
1 1 2 6
10 330 33 2145
1 3 3 31
10 330 2 33 2 2145
1 5 1 35
10 330 2 33 2 2145
1 7 1 7
10 330 33 2145
1 9 3 21
10 330 33 2145

Q

 − −

 −

 − −

 − −

 − −

= 
 − −

− −

− −

−





















 
 
 
 
 
 
 
 
 
 
 
 

 (4.15.28) 

 
4.15.3  Use the matrix (4.15.11) and the matrix (4.15.28) and show that the matrix R  in the QR  
decomposition is given by 
 

 

55 10 1925 10 75625 1010
2 2 2

5 330 275 330 13175 3300
2 2 2

0 0 100 33 8250 33

0 0 0 150 2145

R

 
 
 
 

=  
 
 
 
  

 (4.15.29) 
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__________________________________________________________ 
Chapter 5 
 
 
EIGENVALUE PROBLEMS 
 
 
Section 5.1 Eigenvalue Problem Definition and Examples 
 
 
 There is a special problem that arises in a large variety of physical circumstances that we 
shall now study.  It is called the eigenvalue or proper value problem.  In its most basic form, it is a 
problem that arises when one is given a linear transformation : →A V V , where V  is an inner 
product space, and you are asked to fine certain intrinsic directions for that linear transformation.  
In particular, directions defined by a vector ∈v V  such that such that when Av  is calculated, you 
get back a vector proportional to v , i.e., a vector that is parallel to the vector v .  This geometric 
statement is equivalent to the algebraic condition of finding a nonzero vector v  
 
 λ=Av v  (5.1.1) 
 
 Eigenvalue problems arise in a wide variety of circumstances.  A partial list is as follows:  
 
Finite Dimensional:  Eigenvalue problems defined on finite dimensional vector spaces. 

a) Mechanical Vibrations 
a. These problems typically involve finding the solution to systems of linear constant 

coefficient ordinary differential equations.  We shall look at this kind of application. 
b) Rigid Body Dynamics 

a. The application usually involves finding the solution to Euler’s rigid body equations 
when studying, for example, the motion of gyroscopes.  As explained in Chapter 3, 
the angular momentum of a rigid body is given in terms of a linear transformation, 
known as the moment of inertia, and the angular velocity by equation (3.1.13), 
repeated, 

 
 = ωl I  (5.1.2) 
 
The eigenvalue problem (5.1.1) seeks to find those directions in the rigid body where the angular 
momentum vector is parallel to the angular velocity.  The directions defined by (5.1.1) are the 
called the principal directions and the proportional coefficients are called the principal moments of 
inertia.  

c) Material Behavior: 
a. Applications that involve modeling material behavior with formulas such as 

Fourier’s Law, equation (3.1.12), and Ohm’s Law, equation (3.1.14) often require a 
calculation of the directions where, for example, the heat flux is parallel to the 
temperature gradient.  
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d) Strain Kinematics:  In the mechanics of deformable solids, the strain of the body is 
characterized by a linear transformation.  The eigenvalue problem is a way of finding the 
intrinsic directions where the strains are pure elongations or compressions.  In other words, 
the shear strains are zero.  These strains are called the principal strains. 

e) Stress Tensor:  In Example 3.1.7 of Chapter 3, Cauchy’s Theorem, equation (3.1.15) was 
stated as follows: 

 
 =t Tn  (5.1.3) 
 
The eigenvalue problem arises when one wishes to find the directions where the stress vector t  is 
parallel to the unit normal n .  In such directions, the stresses are pure compressions or tensions.  
They are called the principal stresses. 
 
Infinite Dimensional:  Eigenvalue problems defined on infinite dimensional vector spaces. 

a) The study of liner partial differential equations is the study of linear transformations defined 
on infinite dimensional vector spaces.  For a certain category of problems, the problem of 
solving these equations comes down to finding the eigenvalues to these linear 
transformations. 

 
Our interests here continue to be finite dimensional vector spaces. 
 
 A more formal statement of the eigenvalue problem is as follows: 
 
Eigenvalue Problem:  Given a linear transformation : →A V V , where V  is an dimN = V  
dimensional inner product space, find a nonzero vector v  such that 
 
 λ=Av v  (5.1.4) 
 
The vector v  which satisfies (5.1.4) is called an eigenvector of A .  The scalar λ  is called the 
eigenvalue of A  
 
Some observations about the eigenvalue problem: 

a) The eigenvalue problem may not have a solution.  This circumstance arises when one 
restricts the discussion to real vector spaces.  If the vector space is complex, as is the case 
here, it is a theorem that every linear transformation : →A V V  has at least one solution to 
its eigenvalue problem.1 

b) If there are solutions to the eigenvalue problem, there is no guarantee or requirement that 
the components of v  be real numbers or that the associated eigenvalues be real numbers.  
For example, a linear transformation can have the property that its matrix  consists of real 
numbers and still have eigenvectors with complex components and eigenvalues that are 
complex numbers. 

c) The length of an eigenvector, if it exists, is not determined by the defining equation (5.1.4), 
i.e., by λ=Av v .  It is the direction that is determined by λ=Av v .  This fact allows us to 

 
1 The proof of this theorem can be found in most linear algebra books.  For example, the textbook, Vector Spaces of 
Finite Dimension, by G. C. Shephard has this proof. 

A
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normalize the eigenvectors to suit the particular application.  Often, they are normalized to 
be unit vectors. 

 
If { }1 2, ,..., Ne e e  is a basis for the inner product space V , the matrix equivalent of (5.1.4) is  

 
 A λ=v v  (5.1.5) 
 
where 
 
 ( ), ,j kA M= A e e  (5.1.6) 
 
and 
 

 

1

2

N

υ
υ

υ

 
 
 
 ⋅

=  
⋅ 

 ⋅
 
  

v  (5.1.7) 

 
 As pointed out, there is no assurance that the eigenvalue problem has a solution.  However 
if one is fortunate enough such that a linear transformation (or its matrix) has N  such vectors, say 
{ }1 2, ,..., Nv v v , and one has the additional good fortune that these vectors are linearly independent, 

then { }1 2, ,..., Nv v v  is a basis for V .  It is a basis with the property that 
 

 

1 1 1

1 2 1

N N N

λ
λ

λ

=
=
⋅
⋅
⋅
=

Av v
Av v

Av v

 (5.1.8) 

 
Our definition of the matrix of a linear transformation, equation (3.2.9), tells us that, in this case, 
the matrix of A  with respect to the basis { }1 2, ,..., Nv v v  takes the diagonal form 
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 ( )

1

2

3

 Diagonal Matrix

0 0 0
0 0 0
0 0 0

, ,

0 0 0

j j

N

N N

M

λ
λ

λ

λ
×

⋅ ⋅ 
 ⋅ ⋅ 
 

=  ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅
 

⋅ ⋅  

A v v



 (5.1.9) 

 
If { }1 2, ,..., Ne e e  is an arbitrary basis for V  and we are fortunate enough to have a basis 

{ }1 2, ,..., Nv v v  of vectors with the property j j jλ=Av v , then, by our usual change of basis 
arguments, i.e., by equation (3.6.18), 
 
 ( ) ( )1, , , ,j k j kM T M T−=A v v A e e  (5.1.10) 
 
where, as usual, T  is the transition matrix defined by 
 

 
1

N
k

j j k
k

T
=

= ∑v e  (5.1.11) 

 
Equation (5.1.10), in the cases where the above construction exists, tells us that the matrix of A  
with respect to { }1 2, ,..., Ne e e  is similar to a diagonal matrix.  The construction of this diagonal 
matrix through a similar transformation is usually referred to as diagonalizing the matrix. 
 
Example 5.1.1:  A very simple example that illustrates some of the features of the eigenvalue 
problem is the following.  We are given a linear transformation : →A V V , where V  is a two 
dimensional inner product space, defined by 
 

 
1 1 2

2 1 2

3 1
2 2

1 3
2 2

= −

= − +

Ai i i

Ai i i
 (5.1.12) 

 
where { }1 2,i i  is an orthonormal basis.  The question is whether or not there are any vectors v  for 
which Av  is parallel to v .  This problem is one where we can display the effect of A  on a vector 
geometrically.  The following figure is a consequence of the above definition (5.1.12) of A : 
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The linear transformation defined by (5.1.12) deforms the unit square into the parallelogram as the 
figure shows.  The eigenvalue problem is the question whether or not there are vectors v  for which 
Av  is parallel to v .  For this simple example, the answer is yes.  If one takes 
 

 ( ) ( )1 1 2 2 1 2
1 1and
2 2

= + = − +v i i v i i  (5.1.13) 

 
Then, 
 

 
( ) ( ) ( )( )

( )

1 1 1 1 2

1 2 1 2 1 2 1

1 1
2 2

1 3 1 1 3 1
2 2 2 22 2

    = + = +    
    

       = − + − + = + =              

Av A i i A i A i

i i i i i ie v
 (5.1.14) 

 
and 
 

 
( ) ( ) ( )( )

( )

2 1 2 1 2

1 2 1 2 1 2 2

1 1
2 2

1 3 1 1 3 1 2 2 2
2 2 2 22 2

    = − + = − +    
    

       = − − + − + = − + =              

Av A i i A i A i

i i i i i i v
 (5.1.15) 

 
If the vectors 1v  and 2v  are added to the figure above we get 
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Another way to geometrically look at what one is doing when the vectors 1v  and 2v  are plotted is 
to look at the following figure. 
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One can think of the unit vectors 1i  and 2i  as defining a unit circle.  The linear transformation A  
distorts this circle into an ellipse that is rotated relative to the axes defined by 1i  and 2i .  In this 
case the angle of rotation is 045  and the major axis of the ellipse is 2  and the minor axis is 1.  
Notice that in the above example the vectors 1v  and 2v  are unit vectors.  However, any vectors 
parallel to these will also satisfy the equation λ=Av v . 
 
 The matrix of the linear transformation defined by (5.1.12) with respect to the basis { }1 2,i i  
is 
 

 ( )
3 1
2 2, ,
1 3
2 2

j kA M

 − 
= =  

 −  

A i i  (5.1.16) 

 
while the matrix of the linear transformation with respect to the basis of eigenvectors { }1 2,v v  is 
 

 ( ) 1 0
, ,

0 2j kM  
=  
 

A v v  (5.1.17) 

 
The transition matrix that connects the two orthonormal bases is given by (5.1.13) and is the 
orthogonal matrix 
 

 

1 1
2 2

1 1
2 2

T

 − 
 =
 
  

 (5.1.18) 

 
Another example, but one without the simple geometric interpretation above is as follows: 
 
Example 5.1.2:  We are given a linear transformation : →A V V , where V  is a two dimensional 
inner product space, defined by 
 

 
1 1 2

2 1 2

1 1
2 2
1 1
2 2

= +

= − +

Ai i i

Ai i i
 (5.1.19) 

 
where { }1 2,i i  is an orthonormal basis.  One can show that the linear transformation defined by 
(5.1.19) is orthogonal.  The eigenvectors for this example turn out to be 
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 ( ) ( )1 1 2 2 1 2
1 1and
2 2

i i= − + = +v i i v i i  (5.1.20) 

 
and the corresponding eigenvalues are 
 

 ( ) ( )1 2
1 11    and    1
2 2

i iλ λ= − = +  (5.1.21) 

 
Of course, the matrix of the linear transformation (5.1.19) with respect to the basis (5.1.20) is the 
diagonal matrix 
 

 ( )
( )

( )

1 1 0
2, ,

10 1
2

j k

i
M

i

 − 
 =
 +  

A v v  (5.1.22) 

 
and, from (5.1.20), the transition matrix is 
 

 2 2
1 1
2 2

i i

T

 − 
 =
 
  

 (5.1.23) 

 
This example, because the eigenvalues are complex numbers and the eigenvectors have complex 
components, does not lend itself to the simple geometric construction used with Example 5.1.2.  
Nevertheless, there are important applications for which the linear transformation occurring in the 
eigenvalue problem is orthogonal. 
 

The fundamental question is now does one find the vectors 1v  and 2v ?  Also, in Example 
5.1.1 the eigenvectors 1v  and 2v  turned out to be orthogonal.  This raises the question as to what 
were the special properties of the linear transformations (5.1.12) that caused the eigenvectors to be 
linear independent and, in addition, to be orthogonal.  In the following Sections we shall examine 
these questions, among others. 
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Section 5.2. The Characteristic Polynomial 
 
 
 In this section, we shall discuss a polynomial, called the characteristic polynomial, and its 
role in the eigenvalue problem.  As we shall see, this polynomial plays a fundamental role in the 
calculation of the eigenvalues and the eigenvectors.  Before defining this polynomial, we need a 
few preliminary definitions and results. 
 
Definition:  The spectrum of : →A V V  is the set of all eigenvalues of A . 
 
Definition:  If λ  is an eigenvalue of : →A V V , the eigenspace or characteristic subspace 
associated with λ  is denoted by ( )λV  and is defined by 
 
 ( ) { }λ λ= ∈ =v Av vV V  (5.2.1) 
 
In words, the characteristic subspace of λ  is the subspace of V  consisting of vectors that are 
eigenvectors associated with the eigenvalue λ .  There is nothing in this general discussion that 
would say that there is only one eigenvector associated with an eigenvalue.  In other words, we are 
not presuming that the dimension of the characteristic subspace of a particular eigenvalue is one. 
 
Definition:  The geometric multiplicity of an eigenvalue λ  is the dimension of its characteristic 
subspace, i.e. ( )dim λV . 
 
Theorem 5.2.1:  The characteristic subspace of an eigenvalue λ  is the kernel of the linear 
transformation :λ− →A I V V , i.e. 
 
 ( ) ( )Kλ λ= −A IV  (5.2.2) 
 
To see this result, just write the defining equation (5.1.4) as 
 
 ( )λ− =A I v 0  (5.2.3) 
 
It follows from the equation ( ) ( )Kλ λ= −A IV  that if λ  is an eigenvalue of : →A V V , then 

λ−A I  must be singular and conversely.  The condition that λ−A I  is singular is equivalent to the 
condition 
 
 ( )det 0λ− =A I  (5.2.4) 
 
Definition:  The thN  order polynomial in λ  defined by 
 
 ( ) ( )detf λ λ= −A I  (5.2.5) 
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is the characteristic polynomial of : →A V V . 
 
 The important result we have obtained is that the eigenvalues of a linear transformation 

: →A V V  are the roots of the characteristic equation.  There are a couple of ways one can write 
this polynomial.  As an thN  order polynomial, it will have N  roots.  They need not be distinct 
roots and they need not be real numbers.  If we list these N  roots as 1 2, ,..., Nλ λ λ , then the 
characteristic polynomial can always be written as 
 
 ( ) ( ) ( )( )( ) ( )1 2 3

  Factors

det N

N

f λ λ λ λ λ λ λ λ λ λ= − = − − − ⋅⋅⋅ −A I


 (5.2.6) 

 
Example 5.2.1:  For Example 5.1.1, the characteristic polynomial is 
 

 
( ) ( ) ( )( )

( )( )
2

2

3 1
2 2det det , , det

1 3
2 2

3 1 3 2 1 2
2 4

j kf M
λ

λ λ λ
λ

λ λ λ λ λ

 − − 
= − = − =  

 − −  

 = − − = − + = − − 
 

A I A I e e
 (5.2.7) 

 
Therefore, the roots of the characteristic polynomial are 1 21, 2λ λ= = . Note, in passing, that for this 
example: 
 

 1 2 1 2

3 1
2 2det 2 and   tr 3
1 3
2 2

λ λ λ λ
−

= = = = = +
−

A A  (5.2.8) 

 
Example 5.2.2:  For Example 5.1.2, the characteristic polynomial is 
 

 
( ) ( ) ( )( )

( ) ( )
2

2

1 1
2 2det det , , det
1 1
2 2

1 1 1 12 1 1 1
22 2 2

j kf M

i i

λ
λ λ λ

λ

λ λ λ λ λ

 − − 
 = − = − =
 −  

    = − + = − + = − − − +    
    

A I A I e e
 (5.2.9) 
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Therefore, the roots of the characteristic polynomial are ( ) ( )1 2
1 11 , 1
2 2

i iλ λ= − = + .  As is a 

general feature for the roots of polynomials with real coefficients, complex roots occur in complex 
conjugate pairs.  Also note, as with Example 5.2.1, for this example: 
 

 1 2 1 2

1 1
2 2det det 1 and   tr 2

1 1
2 2

λ λ λ λ

 − 
 = = = = = +
 
  

A A  (5.2.10) 

 
The results (5.2.8) and (5.2.10) are special cases of a general feature for polynomials, in this 

case for the characteristic polynomial.  It is a fact that for a linear transformation : →A V V  with 
eigenvalues 1 2, ,..., Nλ λ λ  that 
 
 1 2tr Nλ λ λ= + + ⋅⋅⋅+A  (5.2.11) 
 
and 
 
 1 2det Nλ λ λ= ⋅⋅⋅A  (5.2.12) 
 
The details of the derivations of (5.2.11) and (5.2.12) are complicated because of the complications 
associated with writing down a general expansion of the determinant 
 

 

( ) ( ) ( )( )
1 1 1 1
1 2 3

2 2 2 2
1 2 3

3 3 3
1 2 3

1 2

det det , ,j k

N

N

N N N
N

f M

A A A A
A A A A
A A A

A A A

λ λ λ

λ
λ

λ

λ

= − = −

− ⋅ ⋅
− ⋅ ⋅

= −
⋅

⋅ ⋅ ⋅ −

A I A I e e

 (5.2.13) 

 
and forcing the result, by (5.2.6), to equal ( )( )( ) ( )1 2 3 Nλ λ λ λ λ λ λ λ− − − ⋅⋅⋅ − .  The expansion of 
(5.2.13) will always turn out to be on the form 
 
 ( ) ( ) ( ) ( ) ( )1

1 1det N N
N Nf λ λ λ µ λ µ λ µ−
−= − = − + − + ⋅ ⋅ ⋅ + − +A I  (5.2.14) 

 
The algebraic problem is to find formulas for the N  coefficients 1 2, ,..., Nµ µ µ  in terms of the linear 
transformation A .  While it is perhaps evident from (5.2.14) that 
 
 detNµ = A  (5.2.15) 
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the complications of the algebra make it not so obvious that 
 
 1 trµ = A  (5.2.16) 
 

The algebraic details are not excessively complicated if we temporarily restrict the 
discussion to the case dim 3N = =V .  The algebraic problem above is to extract information by 
forcing the equality 
 

 ( )( )( )

1 1 1
1 2 3

2 2 2
1 2 3 1 2 3

3 3 3
1 2 3

A A A
A A A
A A A

λ
λ λ λ λ λ λ λ

λ

−
− = − − −

−
 (5.2.17) 

 
If both sides of this equation are expanded, the result, after some labor, is 
 
 ( ) ( )3 2 3 2

1 2 3 1 2 3 1 2 2 3 1 3 1 2 3λ µ λ µ λ µ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ− + − + = − + + + − + + +  (5.2.18) 
 
where the three coefficients 1 2 3, ,µ µ µ  are given by2 
 

 ( ) ( ){ }
1

2
2

3

tr
1 tr tr
2
det

µ

µ

µ

=

= −

=

A

A AA

A

 (5.2.19) 

 
As an identity in the parameter λ , (5.2.18) forces the coefficients of the like powers of λ  to be the 
same.  As a result, 
 

 ( ) ( ){ }
1 1 2 3

2
2 1 2 2 3 1 3

3 1 2 3

tr
1 tr tr
2
det

µ λ λ λ

µ λ λ λ λ λ λ

µ λ λ λ

= = + +

= − = + +

= =

A

A AA

A

 (5.2.20) 

 

 
2 There is another formula for the second fundamental invariant 2µ  that one sometimes finds.  It is 

( )( )2 tr adj , ,j kMµ = A e e  

where ( )adj , ,j kM A e e  is the adjugate matrix defined in Section 1.10.  In terms of the components of the matrix 

( ), ,j kM A e e , this formula is 

 

( )( )
2 2 1 1 1 1

2 3 1 3 1 2
2 3 3 3 3 2 2

2 3 1 3 1 2

tr adj , ,j k
A A A A A A

M
A A A A A A

µ = = + +A e e  
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The three coefficients 1 2 3, ,µ µ µ  defined by the above formulas are called the fundamental 
invariants of the linear transformation : →A V V  (remember in the case under discussion 
dim 3=V ).  The first and third are defined in terms of operations that we have used throughout 
this textbook.  In Section 3.6, we showed that these two operations do not depend upon the choice 
of basis.  A similar proof can be given for 2µ , since it is defined in terms of the trace operation.  
The word “invariant” arises because the three quantities do not depend upon the choice of basis 
used to represent : →A V V .  In the case of a linear transformation : →A V V , where 

dimN = V , then one can show that the N  coefficients 1 2, ,..., Nµ µ µ  do not depend upon the 
choice of basis.  These N  quantities are the fundamental invariants of : →A V V .   
 
Example 5.2.3:  Consider a matrix 3 3A ×∈M  defined by 
 

 
3 8 0
2 3 0
0 0 1

A
− 

 =  
  

 (5.2.21) 

 
The eigenvalues are the roots of 
 

 
( ) ( ) ( )( )

( )( ) ( )( )( )

2

2

3 8 0
det 2 3 0 1 3 16

0 0 1

1 6 25 1 3 4 3 4

A I

i i

λ
λ λ λ λ

λ

λ λ λ λ λ λ

− −
− = − = − − +

−

= − − + = − − − − +

 (5.2.22) 

 
Therefore, the eigenvalues are given by 
 

 
1

2

3

1
3 4
3 4

i
i

λ
λ
λ

=
= +
= −

 (5.2.23) 

 
If we calculate the fundamental invariants using the matrix A  and the definitions (5.2.19), we 
obtain 
 



402  Chap. 5 •  EIGENVALUE PROBLEMS 

 

( ) ( ){ }

( )

( )

{ }

1

2
2

2

2

3

tr 7
1 tr tr
2

3 8 0 3 8 0
1 7 tr 2 3 0 2 3 0
2

0 0 1 0 0 1

7 48 0
1 7 tr 12 7 0
2

0 0 1

1 49 13 31
2

3 8 0
det 2 3 0 25

0 0 1

A

A AA

A

µ

µ

µ

= =

= −

  − −    
     = −     
          
  − −  
   = − −   
      

= + =

−
= = =

 (5.2.24) 

 
If we use the formulas for the invariants in terms of the eigenvalues, i.e. equation (5.2.20)2 we 
obtain 
 

 
( )( ) ( )( ) ( )( )

( )( )( )

1 1 2 3

2 1 2 2 3 1 3

3 1 2 3

1 3 4 3 4 7
1 3 4 3 4 3 4 1 3 4

6 9 16 31
det 1 3 4 3 4 25

i i
i i i i

i i

µ λ λ λ
µ λ λ λ λ λ λ

µ λ λ λ

= + + = + + + − =

= + + = + + + − + −

= + + =

= = = + − =A

 (5.2.25) 

 
This example illustrates a feature observed with Example 5.2.2.  Namely, a linear transformation 
whose matrix has real components can have complex eigenvalues.  Because the characteristic 
polynomial in these examples has real coefficients, the complex roots occur in complex conjugate 
pairs.  If we had stated in advance that our inner product space was a real inner product space, we 
would have to conclude that not all linear transformations on real inner product spaces have 
eigenvectors.  However, if we allow complex scalars, then we are assured that all linear 
transformations have a least one eigenvector.3  We shall see examples where the occurrence of 
complex eigenvalues is an essential feature of the application. 
 

There is nothing in our discussion that requires the eigenvalues, the roots of the 
characteristic equation (5.2.5) to be unique.  Because of this, the factored characteristic equation 
(5.2.6) will sometimes need to be written to display the multiplicity of its roots.  If, for example, 
the characteristic polynomial has L  distinct roots and the thj  of these roots is repeated jd  times, 
then the characteristic polynomial, when factored, looks like 
 

 
3 See footnote 1 above. 
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 ( ) ( ) ( ) ( ) ( ) ( )1 2 3

1 2 3det Ld d d d
Lf λ λ λ λ λ λ λ λ λ λ= − = − − − ⋅⋅⋅ −A I  (5.2.26) 

 
where 1 2 3, , ,..., Ld d d d  are positive integers which obey 
 

 
1

L

j
j

d N
=

=∑  (5.2.27) 

 
The positive integer jd  is the algebraic multiplicity of the eigenvalue jλ .  It is a theoretical result, 
which we shall not pursue, that 
 
 ( )dim j jdλ ≤V  (5.2.28) 
 
 i.e. the geometric multiplicity of a particular eigenvalue is less than or equal to its algebraic 
multiplicity.4 
 
Example 5.2.4:  Consider the matrix 3 3A ×∈M  defined by 
 

 
4 6 2
2 4 2
2 6 4

A
− 

 = − 
−  

 (5.2.29) 

 
Then, the characteristic equation is 
 

 ( )2
4 6 2

det 2 4 2 2
2 6 4

λ
λ λ λ

λ

− − 
 − − = − − 

− −  

 (5.2.30) 

 
Therefore, the factorization shown in (5.2.26) corresponds to 
 

 1 1

2 2

0, 1
2, 2

d
d

λ
λ
= =
= =

 (5.2.31) 

 
where 1 2 3d d+ = . 
 
It is helpful to summarize what we have illustrated for the characteristic polynomial of a linear 
transformation : →A V V , where dimN = V , 

 
4 A proof that the geometric multiplicity is always less than or equal to the algebraic multiplicity can be found, for 
example, on page 157 of Stakgold, I., BOUNDARY VALUE PROBLEMS OF MATHEMATICAL PHYSICS, 
Volume I, The MacMillan Company, 1-333, 1967 
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a) There are N  roots to the characteristic polynomial. 
b) The roots are both real and complex numbers. 
c) When the coefficients of the characteristic polynomial are real numbers, the complex roots 

occur in complex conjugate pairs. 
d) The roots need not be distinct. 

 
 
Exercises 
 
5.2.1  You are given the linear transformation : →A V V  defined by 
 

 
1 1 2 3

2 1 2 3

3 1 2 3

7 2
2 10 2

2 7

= − +
= − + −
= − +

Ai i i i
Ai i i i
Ai i i i

 (5.2.32) 

 
where { }1 2 3, ,i i i  is an orthonormal basis for V .  Calculate the fundamental invariants of the linear 
transformation : →A V V . 
 
5.2.2  Given the polynomial (5.2.14) where the invariants are assumed to be real numbers, show 
that 
 
 ( ) ( )det detλ λ− = −A I A I  (5.2.33) 
 
Use (5.2.33) to prove that the roots, for the situation stated, occur in complex conjugate pairs. 
 
5.2.3  The Cayley-Hamilton Theorem says that a linear transformation satisfies its own 
characteristic equation.  Thus, if the characteristic equation of a linear transformation : →A V V  
is given by equation (5.2.14).  The Cayley-Hamilton asserts that 
 
 ( ) ( ) ( )1

1 1
N N

N Nµ µ µ−
−− + − + ⋅⋅⋅+ − + =A A A I 0  (5.2.34) 

 
where the powers of A  are defined by 0

 times

,     for  1,2,...n

n

n= = ⋅⋅ =A I A AAA A


 

Confirm (5.2.34) for the matrix (5.2.29). 
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Section 5.3. Numerical Examples 
 
 
 In this section, we shall illustrate the procedure for solving eigenvalue problems and use 
these examples to illustrate some general features of the solution we will examine in detail in later 
sections. 
 
Example 5.3.1:  (A distinct eigenvalue example.) The problem is to solve the eigenvalue problem 
for the linear transformation : →A V V  defined by 
 

 
1 1 2 3

2 1 3

3 1 2 3

4
2 4

5

= + +
= −
= − + +

Ae e e e
Ae e e
Ae e e e

 (5.3.1) 

 
where { }1 2 3, ,e e e  is a basis for V .  By the usual procedure the matrix of A  with respect to this 
basis is 
 

 ( )
1 2 1

, , 1 0 1
4 4 5

j kA M
− 

 = =  
 − 

A e e  (5.3.2) 

 
Step 1:  Form the characteristic equation:  The characteristic equation is defined by (5.2.5).  Given 
the matrix (5.3.2), we find 
 

 
( ) ( ) ( )( )

( )( )( )3 2

1 2 1
det det 1 1

4 4 5

6 11 6 1 2 3

f M
λ

λ λ λ λ
λ

λ λ λ λ λ λ

− −
= − = − = −

− −

= − + − + = − − − −

A I A I
 (5.3.3) 

 
Therefore, the three eigenvalues are 
 

 
1

2

3

1
2
3

λ
λ
λ

=
=
=

 (5.3.4) 

 
Because the eigenvalues are distinct, the algebraic multiplicity is 1 for each eigenvalue.  Also, the 
ordering of the eigenvalues is arbitrary.  As a quick check of the answer (5.3.4) it is good practice, 
for complicated problems, to check the calculated eigenvalues against the formulas (5.2.20).  If this 
check is made, one will confirm that (5.2.20) is obeyed. 
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Step 2:  Determine the characteristic subspaces.  In other words, determine the eigenvectors.  This 
calculation involves solving the defining equation (5.1.5), written 
 
 ( )λ− =A I v 0  (5.3.5) 
 
for the three different eigenvalues.  Of course, we shall solve (5.3.5) as the matrix equation 
 

 

1

2

3

1 2 1
1 1 0
4 4 5

λ υ
λ υ

λ υ

 − − 
  − =  
  − −   

 (5.3.6) 

 
Case 1: 1λ = .  This choice reduces (5.3.6) to 
 

 
( )

( )

( )

1
1

2
1

3
1

0 2 1
1 1 1 0
4 4 4

υ

υ

υ

 −    −   =    −    

 (5.3.7) 

 
The reduced row echelon form of this equation is 
 

 
( )

( )

( )

1
1

2
1

3
1

11 0
2
10 1 0
2

0 0 0

υ

υ

υ

 
       −   =        
  

 (5.3.8) 

 
Equation (5.3.8) yields 
 

 ( )
3

1 1 2 31
1 1
2 2

υ  = − + + 
 

v e e e  (5.3.9) 

 
Therefore, the characteristic subspace associated with the first eigenvalue is the one dimensional 

subspace spanned by 1 2 3
1 1
2 2

− + +e e e .  We can write this result as 

 

 ( ) ( )1 1 1 2 3
1 1span
2 2

Kλ λ  = − = − + + 
 

A I e e eV  (5.3.10) 

 
For this eigenvalue, the geometric multiplicity is one as is the algebraic multiplicity. 
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Case 2: 2λ = .  This choice reduces (5.3.6) to 
 

 
( )

( )

( )

1
2

2
2

3
2

1 2 1
1 2 1 0
4 4 3

υ

υ

υ

 − −    −   =    −    

 (5.3.11) 

 
The reduced row echelon form of this equation is 
 

 
( )

( )

( )

1
2

2
2

3
2

11 0
2
10 1 0
4

0 0 0

υ

υ

υ

 
       −   =        
  

 (5.3.12) 

 
Equation (5.3.12) yields 
 

 ( )
3

2 1 2 32
1 1
2 4

υ  = − + + 
 

v e e e  (5.3.13) 

 
Therefore, the characteristic subspace associated with the second eigenvalue is the one dimensional 

subspace spanned by 1 2 3
1 1
2 4

− + +e e e .  We can write this result as 

 

 ( ) ( )2 2 1 2 3
1 1span
2 4

Kλ λ  = − = − + + 
 

A I e e eV  (5.3.14) 

 
For this eigenvalue, the geometric multiplicity is one as is again equal to the algebraic multiplicity. 
 
Case 3: 3λ = .  This choice reduces (5.3.6) to 
 

 
( )

( )

( )

1
3

2
3

3
3

2 2 1
1 3 1 0
4 4 2

υ

υ

υ

 − −    −   =    −    

 (5.3.15) 

 
The reduced row echelon form of this equation is 
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( )

( )

( )

1
3

2
3

3
3

11 0
4
10 1 0
4

0 0 0

υ

υ

υ

 
       −   =        
  

 (5.3.16) 

 
Equation (5.3.16) yields 
 

 ( )
3

3 1 2 33
1 1
4 4

υ  = − + + 
 

v e e e  (5.3.17) 

 
Therefore, the characteristic subspace associated with the third eigenvalue is the one dimensional 

subspace spanned by 1 2 3
1 1
4 4

− + +e e e .  We can write this result as 

 

 ( ) ( )3 3 1 2 3
1 1span
4 4

Kλ λ  = − = − + + 
 

A I e e eV  (5.3.18) 

 
For this eigenvalue, the geometric multiplicity is one as is also the algebraic multiplicity. 
 

This example, which has distinct eigenvalues, yields three linearly independent 
eigenvectors.  We shall prove a theorem later that shows that distinct eigenvalues produce linearly 
independent eigenvectors.  Thus, our example illustrates a general result.  Another way to display 
that the eigenvectors are linearly independent is to use the idea of a direct sum introduced in 
Section 4.11 and write 
 
 ( ) ( ) ( )1 2 3λ λ λ= ⊕ ⊕V V V V  (5.3.19) 
 
 As has been explained, the eigenvalue problem does not determine the lengths of the 
eigenvectors.  If we make an arbitrary choice of the lengths by defining the three eigenvectors to be 
 

 

1 1 2 3

2 1 2 3

3 1 2 3

1 1
2 2
1 1
2 4
1 1
4 4

= − + +

= − + +

= − + +

v e e e

v e e e

v e e e

 (5.3.20) 

 
Then the matrix of : →A V V  with respect to this basis is 
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 ( )
1 0 0

, , 0 2 0
0 0 3

j kM
 
 =  
  

A v v  (5.3.21) 

 
and the transition matrix is 
 

 

1 1 1
2 2 4

1 1 1
2 4 4
1 1 1

T

 − − − 
 
 =  
 
 
  

 (5.3.22) 

 
Note that with our normalization leading to (5.3.20), the transition matrix is the square matrix made 
from the column matrices of the components of the eigenvectors.  The formula is 
 

 
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1
1 2 3

2 2 2
1 2 3

3 3 3
1 2 3

T

υ υ υ

υ υ υ

υ υ υ

 
 

=  
 
  

 (5.3.23) 

 
The matrices (5.3.2) and (5.3.21) are connected by (5.1.10), repeated, 
 
 ( ) ( )1, , , ,j k j kM T M T−=A v v A e e  (5.3.24) 
 
where the transition matrix is given by (5.3.22). 
 
Example 5.3.2: ( A repeated eigenvalues example.) The problem is to solve the eigenvalue 
problem for the linear transformation : →A V V  defined by 
 

 
1 1 2 3

2 1 2 3

3 1 2 3

2 2
2 2

2 2

= − +
= − + +
= + +

Ai i i i
Ai i i i
Ai i i i

 (5.3.25) 

 
where { }1 2 3, ,i i i  is an orthonormal basis for V .  By the usual procedure, the matrix of A  with 
respect to this basis is 
 

 ( )
1 2 2

, , 2 1 2
2 2 1

j kA M
− 

 = = − 
  

A i i  (5.3.26) 
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The fact that the matrix (5.3.26) is symmetric will turn out to be an important feature of this 
example.  Based upon our discussion in Section 4.9, in particular equation (4.9.39), because we are 
using an orthonormal basis, symmetry of the matrix implies symmetry of the linear transformation 
(5.3.25). 
 
Step 1:  Form the characteristic equation:  The characteristic equation is defined by (5.2.5).  Given 
the matrix (5.3.26), we find 
 

 
( ) ( ) ( )( )

( )( )23 2

1 2 2
det det 2 1 2

2 2 1

3 9 27 3 3

f M
λ

λ λ λ λ
λ

λ λ λ λ λ

− −
= − = − = − −

−

= − + + − = − + −

A I A I
 (5.3.27) 

 
Therefore, the three eigenvalues are 
 

 1

2

3
3

λ
λ
= −
=

 (5.3.28) 

 
The algebraic multiplicity for 1λ  is 1 and that for 2λ  is 2 . 
 
Step2:  Determine the characteristic subspaces.  This calculation involves solving the defining 
equation (5.1.5), written 
 
 ( )λ− =A I v 0  (5.3.29) 
 
for the two different eigenvalues.  Of course, we shall solve (5.3.5) as the matrix equation 
 

 

1

2

3

1 2 2
2 1 2 0

2 2 1

λ υ
λ υ

λ υ

 − − 
  − − =  
  −   

 (5.3.30) 

 
Case 1: 3λ = − .  This choice reduces (5.3.6) to 
 

 
( )

( )

( )

1
1

2
1

3
1

4 2 2
2 4 2 0

2 2 4

υ

υ

υ

 −    −   =        

 (5.3.31) 

 
The reduced row echelon form of this equation is 
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( )

( )

( )

1
1

2
1

3
1

1 0 1
0 1 1 0
0 0 0

υ

υ

υ

        =        

 (5.3.32) 

 
Therefore, (5.3.32) yields 
 
 ( ) ( )3

1 1 2 31υ= − − +v i i i  (5.3.33) 
 
Therefore, the characteristic subspace associated with the first eigenvalue is the one dimensional 
subspace spanned by 1 2 3− − +i i i .  We can write this result as 
 
 ( ) ( ) ( )1 1 1 2 3spanKλ λ= − = − − +A I i i iV  (5.3.34) 
 
For this eigenvalue, the geometric multiplicity is one as is the algebraic multiplicity. 
 
Case 2: 3λ = .  This choice reduces (5.3.6) to 
 

 
( )

( )

( )

1
2

2
2

3
2

2 2 2
2 2 1 0

2 2 2

υ

υ

υ

 − −    − −   =    −    

 (5.3.35) 

 
The reduced row echelon form of this equation is 
 

 
( )

( )

( )

1
2

2
2

3
2

1 1 1
0 0 0 0
0 0 0

υ

υ

υ

 −       =        

 (5.3.36) 

 
Therefore, (5.3.36) yields 
 
 ( ) ( ) ( ) ( )2 3

2 1 2 1 32 2υ υ= − + + +v i i i i  (5.3.37) 
 
Therefore, the characteristic subspace associated with the second eigenvalue is the two dimensional 
subspace spanned by 1 2− +i i  and 1 3+i i .  We can write this result as 
 
 ( ) ( ) ( )2 2 1 2 1 3span ,Kλ λ= − = − + +A I i i i iV  (5.3.38) 
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For this eigenvalue, the geometric multiplicity is two as is the algebraic multiplicity.  Because 
( )2λV  is two dimensional, an eigenvector associated with the repeated eigenvalue is necessarily of 

the form 
 
 ( ) ( )2 1 2 1 3α β= − + + +v i i i i  (5.3.39) 
 
where α  and β  are arbitrary.  We know that the defining equation for the eigenvalue problem, 
equation (5.1.4), will never determine the length of the eigenvector.  In the repeated root case, 
equation (5.3.39) has an even greater indeterminacy.  Any vector in the two dimensional subspace 
spanned by { }1 2 1 3,− + +i i i i  is an eigenvector.  Because the subspace is two dimensional, only two 
of these eigenvectors can be linearly independent.  What is done for problems of this type is to 
select two of these eigenvectors which, when joined with the one for the distinct eigenvalue, form a 
basis for V .  Without loss of generality, one can simply take the eigenvectors associated with the 
repeated eigenvalue to be 
 
 2 1 2 3 1 3and   = − + = +v i i v i i  (5.3.40) 
 
With the choice (5.3.40), and the choice 
 
 1 1 2 3= − − +v i i i  (5.3.41) 
 
the set { }1 2 3, ,v v v  is a basis for V .  With respect to this basis, the matrix of the linear 
transformation defined by (5.3.25) is 
 

 ( )
3 0 0

, , 0 3 0
0 0 3

j kM
− 
 =  
  

A v v  (5.3.42) 

 
This example, which has two distinct eigenvalues, yields three linearly independent eigenvectors.  
However, unlike Example 5.3.1, the directions of two of the eigenvectors are not unique.  A way to 
display that two of the eigenvectors are not unique is to write V  as the direct sum of two 
subspaces, one of dimension 1 and one of dimension 2.  The result is 
 
 ( ) ( )1 2λ λ= ⊕V V V  (5.3.43) 
 

Another feature of Example 5.2.2 is that the subspaces ( )1λV  and ( )2λV  are orthogonal.  

In other words ( ) ( )2 1λ λ ⊥=V V .  This interesting result follows by calculating the inner products 

1 2,v v  and 1 3,v v .  It is a theorem that, for a self adjoint linear transformation, the characteristic 
subspaces of distinct eigenvalues are orthogonal.  It is also a theorem that the eigenvalues of self 
adjoint linear transformations are necessarily real.  We shall prove these results later.  Given that 
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the subspaces are orthogonal and that within ( )2λV  the eigenvectors are not unique, it is often the 

practice to select a basis for ( )2λV  that is mutually orthogonal.  In other words, instead of the 

choices (5.3.40), select 2v  and 3v  such that 2 3, 0=v v . 
 

Finally, it is a feature of Example 5.3.2 that the algebraic multiplicity of both roots equals 
their geometric multiplicity.  This fact lies at the root of why it was possible to find a basis of 
eigenvectors.  The next example is one where it is not possible to find such a basis. 
 
Example 5.3.3:  The problem is to solve the eigenvalue problem for the linear transformation 

: →A V V  defined by 
 

 
1 1

2 1 2

3 1 2 3

=
= +
= + +

Ae e
Ae e e
Ae e e e

 (5.3.44) 

 
where { }1 2 3, ,e e e  is a basis for V .  By the usual procedure the matrix of A  with respect to this 
basis is 
 

 ( )
1 1 1

, , 0 1 1
0 0 1

j kA M
 
 = =  
  

A e e  (5.3.45) 

 
Step 1:  Form the characteristic equation:  The characteristic equation is defined by (5.2.5).  Given 
the matrix (5.3.2), we find 
 

 
( ) ( ) ( )( )

( )3

1 1 1
det det 0 1 1

0 0 1

1

f M
λ

λ λ λ λ
λ

λ

−
= − = − = −

−

= − −

A I A I
 (5.3.46) 

 
Therefore, the eigenvalue is  
 
 1 1λ =  (5.3.47) 
 
and it has an algebraic multiplicity of 3. 
 
Step2:  Determine the characteristic subspaces.  This calculation involves solving the defining 
equation (5.1.5), written 
 
 ( )λ− =A I v 0  (5.3.48) 
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for the eigenvalue 1λ = .  The matrix equation we must solve is 
 

 

1

2

3

1 1 1
0 1 1 0
0 0 1

λ υ
λ υ

λ υ

 − 
  − =  
  −   

 (5.3.49) 

 
Case 1: 1λ = .  This choice reduces (5.3.49) to 
 

 
( )

( )

( )

1
1

2
1

3
1

0 1 1
0 0 1 0
0 0 0

υ

υ

υ

        =        

 (5.3.50) 

 
The reduced row echelon form of this equation is 
 

 
( )

( )

( )

1
1

2
1

3
1

0 1 0
0 0 1 0
0 0 0

υ

υ

υ

        =        

 (5.3.51) 

 
Therefore, the characteristic subspace associated with the eigenvalue 1λ =  is the one dimensional 
subspace spanned by 1e .  We can write this result as 
 
 ( ) ( ) ( )1 1 1spanKλ λ= − =A I eV  (5.3.52) 
 
Unlike the two previous examples, Example 5.3.3 is a case where the geometric multiplicity of a 
characteristic subspace (1 in this case) is not the same as the algebraic multiplicity (3  in this case).  
Therefore, we are unable to construct a basis of eigenvectors.  Thus, there is not a basis for the 
linear transformation that makes its matrix diagonal.  As we shall see when we examine in greater 
detail the theoretical foundations of the eigenvalue problem, the condition that the geometric 
multiplicity and the algebraic multiplicity agree is a fundamental property of linear transformations 
that have a basis of eigenvectors.  In circumstances where basis of eigenvectors does not exist, one 
can formulate a procedure for constructing what is known as the Jordan Normal Form of the 
matrix.  This procedure will not be covered here. 
 
Example 5.3.4: (Complex eigenvalues example.) The problem is to solve the eigenvalue problem 
for the linear transformation : →A V V  defined by 
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1 1 3

2 2

3 1 3

2 2
2 2

2 2
2 2

= +

=

= − +

Ae e e

Ae e

Ae e e

 (5.3.53) 

 
where { }1 2 3, ,e e e  is a basis for V .  By the usual procedure the matrix of A  with respect to this 
basis is 
 

 ( )

2 20
2 2

, , 0 1 0

2 20
2 2

j kA M

 
− 

 
= =  

 
 
  

A e e  (5.3.54) 

 
Step 1:  Form the characteristic equation:  The characteristic equation is defined by (5.2.5).  Given 
the matrix (5.3.2), we find 
 

 

( ) ( ) ( )( )

( ) ( ) ( ) ( )
2

2 20
2 2

det det 0 1 0

2 20
2 2

2 1 2 21 1 1 1
2 2 2 2

f M

i i

λ

λ λ λ λ

λ

λ λ λ λ λ

− −

= − = − = −

−

     
 = − − + = − + − − −              

A I A I

 (5.3.55) 

 
Therefore, the three eigenvalues are 
 

 

( )

( )

1

2

3

2 1
2

1

2 1
2

i

i

λ

λ

λ

= +

=

= −

 (5.3.56) 

 
Because the eigenvalues are distinct, the algebraic multiplicity is 1 for each eigenvalue. 
 
Step2:  Determine the characteristic subspaces.  This calculation again involves solving the 
defining equation (5.1.5), written 
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 ( )λ− =A I v 0  (5.3.57) 
 
for the three different eigenvalues.  Of course, we shall solve (5.3.5) as the matrix equation 
 

 

1

2

3

2 20
2 2

0 1 0 0

2 20
2 2

λ υ
λ υ

υ
λ

 
− −   

   − =   
     −  

 (5.3.58) 

 
Case 1: 2 1λ = .  This choice reduces (5.3.58) to 
 

 
( )

( )

( )

1
2

2
2

3
2

2 21 0
2 2

0 0 0 0

2 20 1
2 2

υ

υ

υ

 
− −   

  
  = 
  
    −  

 (5.3.59) 

 
The reduced row echelon form of this equation is 
 

 
( )

( )

( )

1
2

2
2

3
2

1 0 0
0 0 1 0
0 0 0

υ

υ

υ

        =        

 (5.3.60) 

 
Therefore, the characteristic subspace associated with the second eigenvalue is the one dimensional 
subspace spanned by 2e .  We can write this result as 
 
 ( ) ( ) ( )2 2 2spanKλ λ= − =A I eV  (5.3.61) 
 
For this eigenvalue, the geometric multiplicity is one as is the algebraic multiplicity. 
 

Case 2: ( )1
2 1

2
iλ = + .  This choice reduces (5.3.58) to 
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 ( )
( )

( )

( )

1
1

2
1

3
1

2 20
2 2

20 1 1 0 0
2

2 20
2 2

i

i

i

υ

υ

υ

 
− − 

  
  

− +   = 
  
    

− 
  

 (5.3.62) 

 
The reduced row echelon form of this equation is 
 

 
( )

( )

( )

1
1

2
1

3
1

1 0
0 1 0 0
0 0 0

i υ

υ

υ

 −       =        

 (5.3.63) 

 
Therefore, the characteristic subspace associated with the second eigenvalue is the one dimensional 
subspace spanned by 1 3i +e e .  We can write this result as 
 
 ( ) ( ) ( )1 1 1 3spanK iλ λ= − = +A I e eV  (5.3.64) 
 
For this eigenvalue, the geometric multiplicity is again one as is the algebraic multiplicity. 
 

Case 3: ( )3
2 1

2
iλ = − .  This choice reduces (5.3.58) to 

 

 ( )
( )

( )

( )

1
3

2
3

3
3

2 20
2 2

20 1 1 0 0
2

2 20
2 2

i

i

i

υ

υ

υ

 
− 

  
  

− −   = 
  
    

 
  

 (5.3.65) 

 
The reduced row echelon form of this equation is 
 

 
( )

( )

( )

1
3

2
3

3
3

1 0
0 1 0 0
0 0 0

i υ

υ

υ

        =        

 (5.3.66) 
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Therefore, the characteristic subspace associated with the third eigenvalue is the one dimensional 
subspace spanned by 1 3i− +e e .  We can write this result as 
 
 ( ) ( ) ( )3 3 1 3spanK iλ λ= − = − +A I e eV  (5.3.67) 
 
For this eigenvalue, the geometric multiplicity is again one as is the algebraic multiplicity. 
 

As with Example 5.3.1, each characteristic subspace is one dimensional and the three 
dimensional vector space V  has the direct sum decomposition 
 
 ( ) ( ) ( )1 2 3λ λ λ= ⊕ ⊕V V V V  (5.3.68) 
 
If we select the three eigenvectors to be the spanning vectors introduced above, i.e. 
 

 
1 1 3

2 1

3 1 3

i

i

= +
=
= − +

v e e
v e
v e e

 (5.3.69) 

 
The matrix of A  with respect to the matrix of eigenvectors is 
 

 ( )
( )

( )

2 1 0 0
2

, , 0 1 0

20 0 1
2

j k

i

M

i

 
+ 

 
=  
 
 −  

A v v  (5.3.70) 

 
The transition matrix for this problem is given by (5.3.23) which becomes 
 

 
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1
1 2 3

2 2 2
1 2 3

3 3 3
1 2 3

0
0 1 0
1 0 1

i i
T

υ υ υ

υ υ υ

υ υ υ

  −    =   =        

 (5.3.71) 

 
The inverse of this matrix is 
 

 1

1 10
2 2
0 1 0
1 10
2 2

i

T

i

−

 − 
 

=  
 
 
 

 (5.3.72) 
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Given (5.3.54), (5.3.70), (5.3.71) and (5.3.72), equation (5.1.10) takes the explicit form 
 

 

( )

( )

( ) ( )1
, , , ,

2 1 1 2 21 0 0 0 0 02 2 2 2 2
0 1 0 0 1 0 0 1 0 0 1 0

1 1 1 0 12 2 200 0 1 02 22 2 2
j k j k

T

TM M

i i i i

ii
−

    + − −     −       =                 −       
A v v A e v





 

  (5.3.73) 

 
Example 5.3.5: (A complicated numerical example.) The problem is to solve the eigenvalue 
problem for the matrix 6 1 6 1:A × ×→M M  defined by 
 

 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
2 1 0 .76 .4 .06

1 2 1 .4 .82 .4
0 .5 1.5 .03 .2 .26

A

 
 
 
 

=  − − 
 − −
 − − 

 (5.3.74) 

 
This particular matrix has its origins in the study of a three degree of freedom vibrations problem.  
The characteristic polynomial turns out to be 
 
 ( ) 6 5 4 3 2det 1.8400 6.2922 5.4186 9.2928 3.0800 3.5000A Iλ λ λ λ λ λ λ− = + + + + + +  
  (5.3.75) 
 
The roots of this sixth order polynomial turn out to be 
 

 

1

2

3

4

5

6

0.6072 1.6652

0.2474 1.2611

0.0654 0.8187

i

i

i

λ
λ

λ
λ

λ
λ


= − ±



= − ±



= − ±



 (5.3.76) 

 
Because the roots are distinct, the algebraic multiplicity of each root is one and, because of (5.2.28)
, the geometric multiplicity of each eigenvalue is one.  The eigenvectors associated with these 
eigenvalues turn out to be 
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 1 2

0.1130 0.2939 0.1130 0.2939
0.1252 0.3433 0.1252 0.3433
0.0599 0.0717 0.0599 0.0717

,
0.5581 0.0097 0.5581 0.0097

0.6478 0.6478
0.1557 0.0563 0.1557 0.0563

i i
i i
i i

i i

i i

− − − +   
   + −   
− − − +   

= =   − +   
   − −
  − +   

v v



 (5.3.77) 

 

 3 4

0.0834 0.4253 0.0834 0.4253
0.0517 0.2001 0.0517 0.2001
0.1491 0.3526 0.1491 0.3526

,
0.5570 0.5570

0.2396 0.1147 0.2396 0.1147
0.4815 0.1009 0.4815 0.1009

i i
i i
i i

i i
i i

+ −   
   − + − −   
− − − +   

= =   − −  
  − − − +
  − +   

v v




 (5.3.78) 

 
and 
 

 5 6

0.4112 0.0111 0.4112 0.0111
0.5535 0.5535

0.3395 0.0793 0.3395 0.0793
,

0.0178 0.3374 0.0178 0.3374
0.0362 0.4532 0.0362 0.4532
0.0872 0.2728 0.0872 0.2728

i i

i i
i i
i i
i i

− +   
   
   

+ −   
= =   − + − −   
   − + − −
  − + − −   

v v



 (5.3.79) 

 
where the six eigenvectors have been normalized to each have a unit length. 
 
 If we return to the characteristic polynomial (5.3.75) and compare that formula with the 
general result (5.2.14), we can identify the six fundamental invariants for this problem.  The results 
are 
 

 

1

2

3

4

5

6

1.8400
6.2922

5.4186
9.2928

3.0800
3.5000

µ
µ
µ
µ
µ
µ

= −
=
= −
=
= −
=

 (5.3.80) 

 
Because (5.2.16) holds for linear transformations of arbitrary finite dimension, it can be used to 
confirm (5.3.80)1.  This same number can be calculated from the formula 
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 1 1 2 3 4 5 6µ λ λ λ λ λ λ= + + + + +  (5.3.81) 
 
The last invariant, 6µ  can be checked against the general formula  
 
 6 1 2 3 4 5 6det Aµ λ λ λ λ λ λ= =  (5.3.82) 
 
 
Exercises 
 
5.3.1  Determine the eigenvalues and the characteristic subspaces of the linear transformation 

: →A V V  defined by 
 

 1 1 2

2 1 2

6 2
2 6

= −
= − +

Ai i i
Ai i i

 (5.3.83) 

 
where { }1 2 3, ,i i i  is an orthonormal basis for V . 
 
5.3.2  Determine the eigenvalues and the characteristic subspaces of the linear transformation 

: →A V V  defined by 
 

 
1 1 2

2 1 2

3 1
2 2

1 3
2 2

= −

= +

Ai i i

Ai i i
 (5.3.84) 

 
where { }1 2,i i  is an orthonormal basis for V . 
 
5.3.3 Determine the eigenvalues and the characteristic subspaces of the linear transformation 

: →A V V  defined by 
 

 1 2 3
1 2 3 1 2 3 1 2 3

5 1 1 1 5 1 1 1 5
3 3 3 3 3 3 3 3 3

υ υ υ     = − + + − + + + + +     
     

Av i i i i i i i i i  (5.3.85) 

 
for all vectors 1 2 3

1 2 3υ υ υ= + +v i i i , where V  is an inner product space and { }1 2 3, ,i i i is an 
orthonormal basis of V . 
 
5.3.4 Determine the eigenvalues and the characteristic subspaces of the linear transformation 

: →A V V  defined by 
 
 ( ) ( ) ( )1 2 3

1 2 3 1 2 32 6 3 2υ υ υ= − + + − − −Av i i i i i i  (5.3.86) 
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for all vectors 1 2 3
1 2 3υ υ υ= + +v i i i , where V  is an inner product space and { }1 2 3, ,i i i is an 

orthonormal basis of V . 
 
5.3.5 Determine the eigenvalues and the characteristic subspaces of the linear transformation 

: →A V V  defined by 
 
 ( ) ( ) ( )1 2 3

1 2 1 3 1 2 34 5υ υ υ= + + − + + − −Av i i i i i i i  (5.3.87) 
 
for all vectors 1 2 3

1 2 3υ υ υ= + +v i i i , where V  is an inner product space and { }1 2 3, ,i i i is an 
orthonormal basis of V . 
 
5.3.6 Define a N N×  matrix C  by 
 

 

( )
( )
( )

( )

1

1
1

2

2
1

0 0 0 0 1

1 0 0 0 1

0 1 0 0 1
0 0 1

0 1
0

0 0 0 1 1

n
n

n
n

n
n

C

µ

µ

µ

µ

+

−

−
−

 ⋅ ⋅ −
 
 ⋅ ⋅ −
 

⋅ ⋅ − 
 = ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ − 

  (5.3.88) 

Show that 
 

 ( ) ( ) ( )det detC I f A Iλ λ λ− = = −   (5.3.89) 
 
The matrix C  is called the companion matrix to the matrix A .  Equation (5.3.89) shows that the 
companion matrix and the matrix A  have the same eigenvalues. 
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Section 5.4. Some General Theorems for the Eigenvalue Problem 
 
 
 The five examples in Section 5.3 illustrated certain features of the eigenvalue problem that 
are more general than the examples might indicate.  In this section, we shall collect some of these 
general results.  The first is the important one discussed after Example 5.3.1.  Namely, that distinct 
eigenvalues imply linearly independent eigenvectors.  The formal statement is the following 
theorem. 
 
Theorem 5.4.1:  If 1,..., Lλ λ  are distinct eigenvalues of : →A V V  and if 1,..., Lv v  are the 
corresponding eigenvectors, then { }1,..., Lv v  is a linearly independent set. 
 
Proof: Let 1v  be an eigenvector associated with the eigenvalue 1λ  and, so forth.  As with any 
question of linear independence, we need to examine the implication of the equation 
 
 1 1 2 2 3 3 L Lα α α α+ + + ⋅⋅⋅+ =v v v v 0  (5.4.1) 
 
If we can establish that this equation implies 1 2 3 0Lα α α α= = = ⋅⋅⋅ = = , then the theorem will be 
established.  Given that 1 1 1 2 2 2 3 3 3, , ,..., L L Lλ λ λ λ= = = =Av v Av v Av v Av v , we can multiply (5.4.1) 
by A  and obtain 
 
 1 1 1 2 2 2 3 3 3 L L Lλα λ α λ α λ α+ + + ⋅⋅⋅+ =v v v v 0  (5.4.2) 
 
We can repeat this process 2L −  more times until we obtain the following L  equations ( including 
the two above): 
 

 

1 1 2 2 3 3

1 1 1 2 2 2 3 3 3
2 2 2 2

1 1 1 2 2 2 3 3 3
3 3 3 3

1 1 1 2 2 2 3 3 3

1 1 1 1
1 1 1 2 2 2 3 3 3

L L

L L L

L L L

L L L

L L L L
L L L

α α α α
λα λ α λ α λ α

λ α λ α λ α λ α

λ α λ α λ α λ α

λ α λ α λ α λ α− − − −

+ + + ⋅⋅⋅ + =
+ + + ⋅⋅⋅+ =

+ + + ⋅⋅⋅+ =

+ + + ⋅⋅⋅+ =
⋅
⋅
⋅

+ + + ⋅⋅⋅ + =

v v v v 0
v v v v 0

v v v v 0
v v v v 0

v v v v 0

 (5.4.3) 

 
If we select a basis for V , equations (5.4.3) can be rewritten as the matrix equation 
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1 1 1 1
1 (1) 2 (2) 3 (3) ( )

2 2 2 2
1 2 3 1 (1) 2 (2) 3 (3) ( )
2 2 2 2 3 3 2 3

1 2 3 1 (1) 2 (2) 3 (3) ( )

1 1 1 1
1 2 3 1 (1) 2 (2) 3 (3) (

1 1 1 1 L L

L L L

L L L

L L L L L L L L
L L

α υ α υ α υ α υ
λ λ λ λ α υ α υ α υ α υ
λ λ λ λ α υ α υ α υ α υ

λ λ λ λ α υ α υ α υ α υ− − − −

⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ 
 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅  )

0

L

 
 
 
 

= 
 
 
 
  

 (5.4.4) 

 
The coefficient matrix in (5.4.4) is the Vandermonde matrix introduced in equation (1.10.33).  This 
matrix is nonsingular because, as shown with equation (1.10.34), 
 

 ( )
1 2 3
2 2 2 2

1 2 3

, 1

1 1 1 1
1 2 3

1 1 1 1

det

L

L
L

i j
i j
i j

L L L L
L

λ λ λ λ
λ λ λ λ

λ λ

λ λ λ λ

=
>

− − − −

⋅ ⋅ 
 ⋅ ⋅ 
 

= − ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅
 

⋅ ⋅  

∏  (5.4.5) 

 
and we have postulated that the eigenvalues are distinct.  Given that the coefficient matrix in 
nonsingular, we can multiply (5.4.4) by its inverse and obtain 
 

 

1 1 1 1
1 (1) 2 (2) 3 (3) ( )

2 2 2 2
1 (1) 2 (2) 3 (3) ( )

3 3 2 3
1 (1) 2 (2) 3 (3) ( )

1 (1) 2 (2) 3 (3) ( )

0

L L

L L

L L

L L L L
L L

α υ α υ α υ α υ
α υ α υ α υ α υ
α υ α υ α υ α υ

α υ α υ α υ α υ

 ⋅ ⋅
 ⋅ ⋅ 
 

= 
⋅ ⋅ ⋅ ⋅ 

 ⋅ ⋅ ⋅ ⋅
 

⋅ ⋅  

 (5.4.6) 

 
In order for this L L×  matrix to be zero, each of its 2L  elements must be zero.  The L  equations in 
the first column are 
 

 

1
(1)

2
(1)

3
(1)

1

(1)

0

L

υ
υ
υ

α

υ

 
 
 
 

= 
⋅ 

 ⋅
 
  

 (5.4.7) 
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Because the eigenvector is nonzero, the column matrix of its components is nonzero.  Thus, we 
conclude that 1 0α = .  Identical arguments applied to each column yield 1 2 0Lα α α= = ⋅⋅⋅ = =  and 
the theorem is proven. 
 
 This theorem explains why in Example 5.3.1, the eigenvectors were linearly independent.  
It also explains why the characteristic spaces were all one dimensional.  If one of the characteristic 
subspaces has a dimension greater than one, we would be able to construct a set of linearly 
independent vectors with more than N  members in an N  dimensional vector space.  Such a 
construction would be a contradiction.  Recall that it was explained, without proof, in Section 5.2 
that geometric multiplicity is always less than or equal to the algebraic multiplicity.  In Example 
5.2.1, the algebraic multiplicity of each eigenvalue is one and, consequently, the geometric 
multiplicity had to be equal to one. 
 

As a corollary to the preceding theorem, we see that if the geometric multiplicity is equal to 
the algebraic multiplicity for each eigenvalue of A , then the vector space V  admits the direct sum 
representation 
 
 1 2( ) ( ) ( )Lλ λ λ= ⊕ ⊕⋅⋅⋅⊕V V V V  (5.4.8) 
 
where 1,..., Lλ λ  are the distinct eigenvalues of A .  The reason for this representation is obvious, 
since the right-hand side of the above equation is a subspace having the same dimension as V ;  
thus that subspace is equal to V .  Whenever the representation holds, we can always choose a 
basis of V  formed by bases of the subspaces 1( ),..., ( )Lλ λV V .  Then this basis consists entirely of 
eigenvectors of A becomes a diagonal matrix, namely, 
 

 

1

1

2

2

0

( , , )

0

j k

L

L

M

λ

λ
λ

λ

λ

λ

 
 ⋅ 
 ⋅
 
 
 
 

⋅ 
 ⋅
 =
 
 ⋅ 
 ⋅
 
 
 ⋅
 

⋅ 
  

A v v  (5.4.9) 
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where each Kλ  is repeated kd  times, kd  being the algebraic as well as the geometric multiplicity of 

Kλ .  Of course, the representation of V  by direct sum of eigenspaces of A  is possible if A  has 
dimN = V  distinct eigenvalues.  In this case the matrix of A  taken with respect to a basis of 

eigenvectors has the diagonal form 
 

 

1

2

3

0

( , , )

0

j k

N

M

λ
λ

λ

λ

 
 
 
 
 = ⋅ 
 ⋅
 

⋅ 
  

A v v  (5.4.10) 

 
If the eigenvalues of v  are not all distinct, then in general the geometric multiplicity of an 
eigenvalue may be less than the algebraic multiplicity.  Whenever the two multiplicities are 
different for at least one eigenvalue of A , it is no longer possible to find any basis in which the    
matrix of A  is diagonal.  However, if V  is an inner product space and if A  is Hermitian, then a 
diagonal matrix of A  can always be found; we shall now investigate this problem. 
 

Recall from Section 4.9 that if u  and v  are arbitrary vectors in V , the adjoint *A  of 
: →A V V  is a linear transformation * : →A V V  defined by 

 
 *, ,=u Av A u v  (5.4.11) 
 
 From Theorem 4.9.1, if A  Hermitian, i.e., if *=A A , then (5.4.11) reduces to 
 
 , ,=u Av Au v  (5.4.12) 
 
for all , ∈u v V . 
 
Theorem 5.4.2.  The eigenvalues of a Hermitian linear transformation : →A V V  are real. 
 
Proof. Let : →A V V  be Hermitian.  Since λ=Av v  for every eigenvalue λ , we have 
 

 
,

,
λ =

Av v
v v

 (5.4.13) 

 
Therefore we must show that ,Av v  is real or, equivalently, we must show , ,=Av v Av v .  
This result follows from the definition of a Hermitian linear transformation (5.4.12) and the 
rearrangement 
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 , , ,= =Av v v Av Av v  (5.4.14) 
 
where the rule , ,=u v v u  in the definition of an inner product has been used.  Equation (5.4.14) 
yields the desired result. 
 
Theorem 5.4.3.  If A  is Hermitian, the characteristic subspaces corresponding to distinct 
eigenvalues 1λ  and 2λ  are orthogonal. 
 
Proof. Let 1 1 1λ=Av v  and 2 2 2λ=Av v .  Then 
 
 1 1 2 1 2 1 2 2 1 2, , , ,λ λ= = =v v Av v v Av v v  (5.4.15) 
 
Therefore, 
 
 ( )1 2 1 2, 0λ λ− =v v  (5.4.16) 
 
Since 1 2λ λ≠ , 1 2 0⋅ =v v , which proves the theorem. 
 
Another important property of Hermitian linear transformations is that the algebraic multiplicity of 
each eigenvalue equa1s the geometric multiplicity.  We shall use this result here, however, we shall 
not give its proof.5 
 
The main theorem regarding Hermitian linear transformations : →A V V  is the following. 
 
Theorem 5.4.4.  If : →A V V  is a Hermitian linear transformation with distinct eigenvalues 

1 2, ,..., Lλ λ λ , then V  has the representation 
 
 1 1 2( ) ( ) ( )Lλ λ λ= ⊕ ⊕⋅⋅⋅⊕V V V V  (5.4.17) 
 
where the eigenspaces ( )kλV  are mutually orthogonal. 
 
The proof of this theorem follows from (5.4.8) which holds when the geometric multiplicity and 
the algebraic multiplicity are the same and from Theorem 5.4.3. 
 
Another Corollary of Theorem 5.4.3 is that if A  is Hermitian, there exists an orthogonal basis for 
V  consisting entirely of eigenvectors of A .  This feature was observed in our solution to Example 
5.3.2.  This corollary is clear because each characteristic subspace is orthogonal to the others and 
within each characteristic subspace an orthogonal basis can be constructed by the Gram-Schmidt 
procedure discussed in Section 4.3.  With respect to this basis of eigenvectors, the matrix of A is 

 
5 The proof can be found in Introduction to Vectors and Tensors, Vol. 1, by Ray M. Bowen and C.-C. Wang.  This 
textbook can be found at https://rbowen.engr.tamu.edu/. 

https://rbowen.engr.tamu.edu/


428  Chap. 5 •  EIGENVALUE PROBLEMS 

 

diagonal.  Thus the problem of finding a basis for V  such that ( , , )j kM A v v  is diagonal is solved 
for Hermitian linear transformations. 
 

The Hermitian property causes the eigenvalues to be real and the characteristic subspaces 
for distinct eigenvalues to be orthogonal.  Often in the applications, Hermitian linear 
transformations have additional properties that are important to define.  In particular, a Hermitian 
linear transformation : →A V V  is defined to be 
 

 

positive definite 0
positive semidefinite 0

  if   ,
negative semidefinite 0
negative definite 0

>   
   ≥   
   ≤   
   <   

v Av  (5.4.18) 

 
all nonzero v ,  Equation (5.4.18) places conditions on the eigenvalues of a Hermitian linear 
transformations : →A V V  that are important to understand.  We shall next derive these 
conditions.  Because (5.4.18) holds for all nonzero vectors in V , we can select v  to be an 
eigenvector of A  and use (5.4.13) to conclude 
 

 

positive definite 0
positive semidefinite 0

  implies   
negative semidefinite 0
negative definite 0

λ

>   
   ≥   
   ≤   
   <   

 (5.4.19) 

 
In addition, it follows from (5.4.17) and the definition of direct sum that any vector ∈v V  can be 
uniquely written 
 

 
1

L

j
j=

=∑v v  (5.4.20) 

 
where each j j∈v V .  Given j j jλ=Av v , it follows that 
 

 
2

1 1 , 1 1
, , ,

L L L L

j k j j k j j
j k j k j

λ λ
= = = =

= = =∑ ∑ ∑ ∑v Av v Av v v v  (5.4.21) 

 
Equation (5.4.21) allows the definition (5.4.18) to be replaced by 
 

 
2

1

positive definite 0
positive semidefinite 0

  if   
negative semidefinite 0
negative definite 0

L

j j
j
λ

=

>   
   ≥   
   ≤   
   <   

∑ v  (5.4.22) 
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Equation (5.4.22) shows that if all of the eigenvalues obey 

0
0
0
0

λ

> 
 ≥ 
 ≤ 
 < 

, then : →A V V  is 

positive definite
positive semidefinite
negative semidefinite
negative definite

 
  
 
 
  

.  Therefore, we have established the following theorem 

Theorem 5.4.5  A Hermitian linear transformation : →A V V  is 

positive definite
positive semidefinite
negative semidefinite
negative definite

 
 
 
 
 
  

if and 

only if every eigenvalue of A  is 

0
0
0
0

> 
 ≥ 
 ≤ 
 < 

 

 
As corollaries to Theorem 5.4.5 it follows that positive-definite and negative-definite Hermitian 
linear transformations are one to one and, as a consequence, nonsingular. 
 
 Positive definite linear transformations occur frequently in the applications.  It is often that 
case that one need the ability to confirm the definiteness property but without going to the trouble 
of actually calculating the eigenvalues.  For this reason, it is important to have criteria that establish 
when a Hermitian linear transformation is positive definite without actually solving the associated 
eigenvalue problem.  There are tests that can be applied to the linear transformation that achieve 
this purpose.  One of these is as follows: 
 
Theorem 5.4.6:  A Hermitian liner transformation : →A V V  is positive definite if and only if its 
fundamental invariants 1 2, ,..., Nµ µ µ  are greater than zero. 
 
Proof:  The proof of this result follows from Theorem 5.4.5, the characteristic polynomial (5.2.14), 
repeated,  
 
 ( ) ( ) ( ) ( )1

1 1det N N
N Nλ λ µ λ µ λ µ−
−− = − + − + ⋅ ⋅ ⋅ + − +A I  (5.4.23) 

 
and the formulas that connect the eigenvalues to the fundamental invariants like (5.2.20) (for the 

3N =  case).  These formulas prove one part of the theorem.  Namely, if the eigenvalues are greater 
than to zero, the fundamental invariants are greater than to zero. 
 

The reverse implication follows from (5.4.23).  The eigenvalues are the roots of the 
characteristic equation, i.e., the roots of 
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 ( ) ( ) ( )1

1 1 0N N
N Nλ µ λ µ λ µ−
−− + − + ⋅ ⋅ ⋅ + − + =  (5.4.24) 

 
If the fundamental invariants are greater than zero, roots less than or equal to zero are not allowed 
by (5.4.24) because in such a case the left side cannot add to zero.  If the roots cannot be negative 
or zero, they must be positive. 
 
Theorem 5.4.6 is also valid is you replace positive definite with positive semidefinite and replace 
the condition on the fundamental invariants with the requirement that they be nonnegative. 
 

If we adopt an orthonormal basis { }1 2, ,..., Ni i i , we can display the matrix of the Hermitian 
linear transformation : →A V V  by the formula 
 

 ( )

11 12 13 1

12 22 23 2

13 23 33 3

1 2 3

, ,

N

N

N
j k

N N N NN

A A A A

A A A A

A A A AM

A A A A

⋅ ⋅ 
 
 
 
 =
⋅ ⋅ ⋅ 

 ⋅ ⋅ ⋅ 
 ⋅ ⋅ 

A i i  (5.4.25) 

 
The second characterization of positive definiteness is a criterion known as Sylvester’s criterion.  
This criterion says that a Hermitian liner transformation : →A V V  is positive definite if and only 
if its matrix with respect to an orthonormal basis is such that its N  leading principal minors are 
positive.  The leading principal minors of the matrix (5.4.25) are the N  determinants formed from 
the upper left 1 1×  corner, the upper left 2 2×  corner, the upper left 3 3×  corner and so forth.  
More explicitly, the Hermitian linear transformation : →A V V  is positive definite if and only if  
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11

11 12

12 22

12 12 13

12 22 23

13 23 33

11 12 13 1

12 22 23 2

13 23 33 3

1 2 3

0

det 0

det 0

det 0

N

N

N

N N N NN

A
A A

A A

A A A

A A A

A A A

A A A A

A A A A

A A A A

A A A A

>

>

>

⋅
⋅
⋅

⋅ ⋅

>
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅

 (5.4.26) 

 
The proof of Sylvester’s criteria will not be given here.6  However, its essential features will be 
outlined in the exercises below. 
 
 
Exercises 
 
5.4.1  In Exercise 4.11.1 it was pointed out that when we are given a linear transformation 

: →A V U , the linear transformations * : →AA U U  and the linear transformation * : →A A V V  
are Hermitian.  Show that they are also positive semidefinite.  As positive semidefinite linear 
transformations, their invariants are greater than or equal to zero.  This fact provides an alternate 
proof that the definition (4.9.34) does obey the fourth property of an inner product. 
 
5.4.2  Show that for a positive definite Hermitian linear transformation : →A V V  displayed as 
the matrix 
 

 
6 An elementary proof for symmetric matrices can be found on pages 72-74 of Introduction to Matrix Analysis by 
Richard Bellman, McGraw-Hill, New York, 1960.  A more advanced proof plus additional references can be found at 
http://en.wikipedia.org/wiki/Sylvester's_criterion. 

http://en.wikipedia.org/wiki/Sylvester's_criterion
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 ( )

11 12 13 1

12 22 23 2

13 23 33 3

1 2 3

, ,

N

N

N
j k

N N N NN

A A A A

A A A A

A A A AM

A A A A

⋅ ⋅ 
 
 
 
 =
⋅ ⋅ ⋅ 

 ⋅ ⋅ ⋅ 
 ⋅ ⋅ 

A i i  (5.4.27) 

 

the leading submatrices [ ]

11 12 13 1

12 22 23 2
11 12 13

11 12 13 23 33 3
11 12 22 23

12 22
13 23 33

1 2 3

, , ,...,

N

N

N

N N N NN

A A A A

A A A AA A A
A A A A A AA A A A
A A

A A A

A A A A

⋅ ⋅ 
 
             ⋅ ⋅ ⋅        ⋅ ⋅ ⋅ 
 ⋅ ⋅ 

 are 

all positive definite.  As positive definite matrices, their fundamental invariants must be positive.  
Each matrix has the number of fundamental invariants equal to its dimension.  Included in the list 
of invariants for each matrix is its determinant.  Thus, we have established that if the matrix 
(5.4.27) is positive definite, Sylvester’s criterion holds.  The converse, namely if Sylvester’s 
criterion holds then the matrix (5.4.27) is positive definite is not established by the arguments given 
in this problem.  A proof of the converse can be constructed a number of ways.  A convenient one 
involves what is known as a Cholesky decomposition.7  Some of the details of this decomposition 
are developed in the next exercise. 
 
5.4.3  A Cholesky decomposition  is a decomposition of a positive definite Hermitian N N×  
matrix N NA ×∈M  into the product8 
 
 *

1 1A L L=   (5.4.28) 
 
where 1

N NL ×∈M  is a lower triangular matrix.  It is a theorem that every Hermitian positive 
definite matrix M NA ×∈M has a unique Cholesky decomposition.  The purpose of this exercise is to 
establish this result. 
 

a) You are given a positive definite Hermitian matrix N NA ×∈M .  If you apply the results in 
Section 1.7, the matrix A  has the LU  decomposition 

 

 
7 Information about Andre-Louis Cholesky can be found at http://en.wikipedia.org/wiki/Andr%C3%A9-
Louis_Cholesky. 
8 Like the LU  decomposition, the Cholesky decomposition is useful when finding the solution of A =u b  in the 

case where A  is positive definite and Hermitian.  The system A =u b is replaced by ( )*
1 1L L =u b .  This equation is 

solved by forward substitution and that result is solved by back substitution for u . 

http://en.wikipedia.org/wiki/Andr%C3%A9-Louis_Cholesky
http://en.wikipedia.org/wiki/Andr%C3%A9-Louis_Cholesky
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 A LU=   (5.4.29) 
 
where U  is an upper triangle N N× matrix and L  is a lower triangle nonsingular N N× matrix 
with 1s  down the diagonal.  The fact that A  is positive definite Hermitian shows that the 
elementary LU decomposition exists.  It also shows that the matrix U  is nonsingular.  Given the 
fact that A  is Hermitian, show that 
 
 1 * 1*L U UL− −=   (5.4.30) 
 

b) Show that the matrix 1 *L U−  is a lower triangular matrix and that 1*UL− is an upper triangular 
matrix.  These two facts and (5.4.30) combine to show that there exists a diagonal matrix 

N ND ×∈M  such that 
 
 *U DL=   (5.4.31) 
 
Show that 
 
 *A LDL=   (5.4.32) 
 
and that D  is a positive definite Hermitian matrix. 

c) Explain why the diagonal matrix D   can always be written as the square of a diagonal 
matrix 1

N ND ×∈M  and that (5.4.32) can then be written9 
 
 ( )( )** 2 * *

1 1 1 1 1A LDL LD L LD LD L L= = = =   (5.4.33) 
 
which is the Cholesky decomposition.  The uniqueness of this decomposition follows from the 
uniqueness of the LU  decomposition in this case. 
 
5.4.4  You are given the positive definite Hermitian matrix 3 3A ×∈M  
 

 

4 14 10
814 53
17

8 1329710
17 289

i i
iA i

ii

 
 − −
 
 =
 
 

− 
 

  (5.4.34) 

 
You are also given that A  has the LU  decomposition 

 
9 The Cholesky decomposition can be implemented in other ways.  For example, because A  is Hermitian, there is a 
unitry matrix T  and a diagonal matrix D  of eigenvalues of A  such that *A TDT= .  Next apply the QR  

decomposition, discussed in Section 4.1, to the matrix 
1 *2D T QR= .  Then it is readily shown that *A R R=  which 

is a Cholesky decomposition.  
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1 0 0 4 14 10
7 140 81 0 0 4
2 17
5 35 2 0 0 41
2 17

i i
i iA

i i

 
  − − 
   +   =
   
   −   
 

  (5.4.35) 

 
Show that, from (5.4.30), that 
 

 1 * 1*

4 0 0
0 4 0
0 0 4

D L U UL− −

 
 = = =  
  

  (5.4.36) 

 
Also, determine the Cholesky decomposition of A  and show that 
 

 *
1 1

2 7 52 0 0
70 47 2 0 0 2

17
70 4 0 0 25 2

17

i i
iA L L i

ii

  − −      + = =     −      

  (5.4.37) 

 
Note the general feature displayed by (5.4.35) and (5.4.36) that the diagonal matrix D  and the 
upper triangular matrix U  have the same diagonal elements.  This fact is readily confirmed from 
(5.4.30) and the properties of the LU  decomposition. 
 
5.4.5  Exercise 5.4.4 established that if the Hermitian matrix (5.4.27) is positive definite, its 
principal minors are positive, i.e. obey (5.4.26).  The converse, namely, that if (5.4.26) is true, the 
Hermitian matrix (5.4.27) is positive definite.  The key to this result is actually the result (5.4.32), 
repeated, 
 
 *A LDL=   (5.4.38) 
 
Show that the elements of the diagonal matrix N ND ×∈M  are related to the principal minors of 

N NA ×∈M  by the formulas 
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11 12
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11 12 22

11 12 13

12 22 23

13 23 33
33

11 12

12 22

11 12 13 1

12 22 23 2

13 23 33 3

1 2 3

11 12 13 1 1

12 22 23 2 1

13 23 33 3 1

1 det

det

det

det

det

N

N

N

N N N NN
NN

N

N

N

D A
A A

D
A A A

A A A

A A A

A A A
D

A A

A A

A A A A

A A A A

A A A A

A A A A
D

A A A A

A A A A

A A A A

−

−

−

=

=

=

⋅
⋅
⋅

⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅
=

⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅

1 1 2 1 3 1 1, 1N N N N NA A A A− − − − −⋅ ⋅
  (5.4.39) 

 
These results, when established, show that if the principal minors are positive the matrix 

N ND ×∈M is positive definite and, because of (5.4.38), the Hermitian matrix N NA ×∈M is positive 
definite. 
 
Hint:  In order to establish (5.4.39), recall that the diagonal elements of D  and those of U , in the 
LU  decomposition, are the same.  Given this fact, the result (1.7.71) gives the elements of U  in 
terms of those of A . 
 
5.4.6  Show that the eigenvalues of a unitary linear transformation have unit magnitude. 
 
5.4.7  Show that a linear transformation :A →V V  is nonsingular if and only if zero is not an 
eigenvalue. 
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5.4.8  You are given a nonsingular linear transformation :A →V V  and a vector ∈b V .  Because 
A  is nonsingular, the equation =Au b  has the solution  
 
 1−=u A b   (5.4.40) 
 
Show that when A  has N  distinct eigenvalues the solution (5.4.40) can be written 
 

 
1

1N
j

j
j j

b
λ=

=∑u v   (5.4.41) 

 
where { }1 2, , , N⋅ ⋅ ⋅v v v  are the eigenvectors of A  and ,j jb = b v  where { }1 2, , , N⋅ ⋅ ⋅v v v is the basis 

reciprocal to { }1 2, , , N⋅ ⋅ ⋅v v v .10 
 

 
10 The result (5.4.41) is generalized in Section 6.8 for the case where the linear transformation A  is singular. 
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Section 5.5. Constant Coefficient Linear Ordinary Differential Equations 
 
 
 In Section 5.1, it was mentioned that eigenvalue problems arise in problems involving the 
solution of systems of ordinary differential equations.  In particular, they arise when solving 
systems of constant coefficient linear ordinary differential equation.  In this section, we shall see 
how this particular eigenvalue problem arises. 
 
 It is important when studying ordinary differential equations to classify the kinds of systems 
of ordinary differential equations being considered.  We are interested in problems for which the 
system can be written 
 

 ( )d A t
dt

= +
x x g  (5.5.1) 

 
where ( )tx  is a 1N ×  column matrix, A  is an N N×  matrix and ( )tg  is a 1N ×  column matrix.  

As the notation suggests, ( )tx  and ( )tg  are functions of a parameter t , which for simplicity we 
shall regard as the time.  Also note that the matrix A  does not depend upon t .  The initial value 
problem associated with (5.5.1) is the problem of finding the function ( )t=x x  such that 
 

 ( ) ( ) 0   and    0d A t
dt

= + =
x x g x x  (5.5.2) 

 
where 0x is given. 
 
 It is typically the case that applications lead to systems of ordinary differential equations of 
order higher than one.  Equation (5.5.1) was selected as the starting place for our discussion 
because almost all systems of linear constant coefficient ordinary differential equations can be 
written in the form (5.5.1).  Equation (5.5.1) is sometimes referred to as the normal form of a 
system.  This designation is probably more common when discussing the more complicated 
problem of numerical solutions of systems of nonlinear equations.  The following example 
illustrates how a system of two second order linear constant coefficient equations can be put into 
the form (5.5.1). 
 
Example 5.5.1:  Consider the two degree of freedom vibration problem: 
 

 
 

1u

1m
1c

1k
2m

2k

2c
2u  
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where 1m  and 2m  are masses, 1k  and 2k  are spring constants, 1c  and 2c  are damping constants and 

1u  and 2u  are displacements.  Finally, the functions ( )1f t  and ( )2f t  are forcing functions.  The 
constants 1 2 1 2 1, , , ,m m k k c  and 2c  are positive constants.  The ordinary differential equations which 
govern the motion of this system are11 
 

 
( )

( )

1 1 1 1 1 1 2 2 1 2 2 1 1

2 2 2 2 1 2 2 1 2

( ) ( )

( ) ( )

m u c u k u c u u k u u f t

m u c u u k u u f t

= − − + − + − +

= − − − − +

   

  

 (5.5.3) 

 

where, for example, 1
1

duu
dt

= .  This second order coupled system of ordinary differential equations 

can be written in the form (5.5.1) if we define the 4 1×  matrix ( )tx  by 
 

 ( )

( )
( )
( )
( )

1

2

1

2

u t
u t

t
u t
u t

 
 
 =
 
 
 

x




 (5.5.4) 

 
The first derivative of (5.5.4) is 
 

 ( )
( )
( )
( )
( )

1

2

1

2

u t
u td t
u tdt
u t

 
 
 =
 
 
 

x








 (5.5.5) 

 
We now use (5.5.3) to eliminate ( )1u t  and ( )2u t .  The result of this elimination is 

 
11 Equations (5.5.3) and (5.5.6) illustrate a general feature of systems of linear equations governing forced vibration 
problems.  These equations always take the general form 
 

( ) ( ) ( ) ( )M t C t K t t+ + =u u u f   
 
where M  is a symmetric positive definite matrix of masses, C  is a symmetric positive semidefinite matrix of 
damping coefficients and K  is a symmetric positive definite matrix of spring constants.  The normal form of this 
equation is 
 

( )
( )

( )
( ) ( )11 1

t td
M tt tM K M Cdt −− −

      
= +      − −      

0u u0 I
fu u 
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( ) ( )

( )

( ) ( )
( )
( )
( )
( )

1

2

1 1 2 2
1 1 2 1 2 1 1

1 1 1 1 1

2 2
2 1 2 1 2

2 2 2

1
1 2 1 22 2 2

1 1 1 1 1

2 2 2 2 2

2 2 2 2

1( ) ( )

1( ) ( )

0 0 1 0
0 0 0 1

u
u

c k c kd t u u u u u u f t
m m m m mdt

c ku u u u f t
m m m

u t
k k c ck c u t

m m m m u t
k k c c u t
m m m m

 
 
 
− − + − + − +=  
 
 − − − − +
  

=
 
   
 + +  
− − = 
  
   − −
  

x





  

 





( )

( )

( )

1

1

2

2

0
0

t

f t
m

f t
m

 
 
 
 +
 
 
  x



 (5.5.6) 

 
which fits the form of (5.5.1) with the choices 
 

 
( ) ( )1 2 1 22 2

1 1 1 1

2 2 2 2

2 2 2 2

0 0 1 0
0 0 0 1

k k c ck c
A m m m m

k k c c
m m m m

 
 
 + +
− − =
 
 − −
  

 (5.5.7) 

 
and 
 

 ( )
( )

( )

1

1

2

2

0
0

f t
t m

f t
m

 
 
 
 =
 
 
  

g  (5.5.8) 
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Section 5.6. General Solution 
 
 
 Given the fact, as illustrated by Example 5.5.1, one can write systems of ordinary 
differential equations in the common form (5.5.1), in this section we shall examine how the 
solution of these systems involve the solution of an eigenvalue problem.  Before we display the 
eigenvalue problem, we need to recall a result from the first course on ordinary differential 
equations.  The result is that linear inhomogeneous ordinary differential equations always have 
solutions that can be written as the sum of a solution of the homogeneous equation plus a particular 
solution.  In our case, the ordinary differential equation is the system (5.5.1).  Therefore, the 
solution of (5.5.1) will be of the form 
 
 ( ) ( ) ( )h pt t t= +x x x  (5.6.1) 
 
where hx  is the general solution , i.e., the solution of the homogeneous equation 
 

 h
h

d A
dt

=
x x  (5.6.2) 

 
and px  is a particular solution of 
 

 ( )p
p

d
A t

dt
= +

x
x g  (5.6.3) 

 
This theoretical result is reminiscent of a similar result for systems of linear algebraic equations 
that we discussed in Section 2.7. 
 

The eigenvalue problem that arises when solving systems of linear ordinary differential 
equations is when one is solving for the homogeneous solution.  For simplicity, we shall assume for 
the moment that our task is to solve a homogeneous equation and we shall delay the problem of 
finding the particular solution.  In other words, we are temporarily restricting our discussion to the 
case 
 
 ( )t =g 0  (5.6.4) 
 

We know from our experience with ordinary differential equations that the solution of 
 

 d A
dt

=
x x  (5.6.5) 

 
is often an equation of the form 
 
 ( ) tt eλ=x v  (5.6.6) 
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where v  is a column matrix to be determined and λ  is a scalar, real or complex, which is to be 
determined.  You will recall that the general solution is a linear combination of solutions of the 
form (5.6.6).  For an thN  order system one needs N  linearly independent solutions of the form 
(5.6.6) in order to generate the general solution. 
 

If the assumed solution (5.6.6) is substituted into the ordinary differential equation (5.6.5), 
we see that v  and λ  must obey 
 
 t te A eλ λλ =v v  (5.6.7) 
 
Because (5.6.7) must hold for all t , (5.6.7) reduces to the eigenvalue problem 
 
 A λ=v v  (5.6.8) 
 
If (5.6.8) yields N  linearly independent eigenvectors, the general solution is 
 
 ( ) 31 2

1 1 2 2 3 3
Nt tt t

N Nt c e c e c e c eλ λλ λ= + + + ⋅ ⋅ ⋅ +x v v v v  (5.6.9) 
 
where 1 2, ,..., Nc c c  are arbitrary constants.  The constants are determined by imposing initial 
conditions.  Equation (5.6.9), which does not utilize the initial conditions, is usually called the 
general solution to the homogenous problem.  The form of the solution (5.6.9) shows that the 
vector ( )tx  is the linear combination of vectors pointing in the direction of the eigenvectors.  The 

individual terms, 31 2
1 2 3, , ,..., Nt tt t

Ne e e eλ λλ λv v v v , each pointing in the direction of an eigenvector, 
representing the building blocks for the full solution ( )tx .  If the solution to the eigenvalue 
problem does not yield N  linearly independent eigenvectors, then the mathematics is telling us that 
the solution is not of the form (5.6.6). 
 
 It helps our later manipulations if we rewrite (5.6.9) in a slightly different form.  As with 
our examples in Section 5.3, we can arrange the eigenvectors as columns of a N N×  matrix T .  
The notation we shall use is 
 

 [ ]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )


( )


( )


( )


1 2 3

1 1 1 1
1 2 3

2 2 2 2
1 2 3

3 3 3 3
1 2 3

1 2

1 2 3

, ,...,

N

N

N

N

N

N N N N
N

T

υ υ υ υ

υ υ υ υ

υ υ υ υ

υ υ υ υ

 ⋅ ⋅ ⋅
 
 
 
 
 ⋅ ⋅ ⋅ ⋅= =  
 ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅
 
 v v v v

v v v  (5.6.10) 

 



Sec. 5.6 • General Solution  443 

 

This definition, allows us to write (5.6.9) as 
 

 ( )

1

2

3

1

2

3

0 0 0
0 0 0
0 0 0

0 0 0 N

t

t

t

t
N

ce
ce
ce

t T

ce

λ

λ

λ

λ

 ⋅ ⋅ ⋅  
   ⋅ ⋅ ⋅   
   ⋅ ⋅ ⋅
   = ⋅⋅ ⋅ ⋅ ⋅ ⋅   
   ⋅⋅ ⋅ ⋅ ⋅ ⋅
   ⋅⋅ ⋅ ⋅ ⋅ ⋅   
   ⋅ ⋅ ⋅   

x  (5.6.11) 

 
Also, given (5.6.10), the solution to eigenvalue problem (5.6.8) is equivalent to the matrix equation 
 
 AT TD=  (5.6.12) 
 
where D  is the diagonal matrix of the eigenvalues defined by 
 

 

1

2

3

0 0 0
0 0 0
0 0 0

0 0 0 N

D

λ
λ

λ

λ

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 

⋅ ⋅ ⋅ 
 = ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 

 (5.6.13) 

 
Of course, equation (5.6.12) is equation (5.1.10) given earlier.  It simplifies our notation later if we 
adopt the symbol Dte  for the diagonal matrix that appears in (5.6.11).  Therefore, 
 

 

1

2

3

0 0 0
0 0 0
0 0 0

0 0 0 N

t

t

t

Dt

t

e
e

e
e

e

λ

λ

λ

λ

 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅
 = ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅
 
⋅ ⋅ ⋅ ⋅ ⋅ 

 ⋅ ⋅ ⋅ 

 (5.6.14) 

 
and the solution (5.6.11) can be written in the more compact form 
 
 ( ) Dtt Te=x c  (5.6.15) 
 



444  Chap. 5 •  EIGENVALUE PROBLEMS 

 

where c  is the column matrix 
 

 

1

2

3

N

c
c
c

c

 
 
 
 
 = ⋅ 
 ⋅
 ⋅ 
  

c  (5.6.16) 

 
Example 5.6.1:  You are given the familiar second order ordinary differential equation governing 
harmonic motion.  Namely, 
 
 2

0 0u uω+ =  (5.6.17) 
 
where 0ω  is a positive constant.  If we define 
 

 ( ) ( )
( )

u t
t

u t
 

=  
 

x


 (5.6.18) 

 
The equation to solve takes the form (5.6.5) with 
 

 2
0

0 1
0

A
ω

 
=  − 

 (5.6.19) 

 
The eigenvalues of A  are the roots of 
 

 ( ) ( )( )2 2
0 0 02

0

0 1
det

0
A I i i

λ
λ λ ω ω λ ω λ

ω λ
−

− = = + = − − −
− −

 (5.6.20) 

 
We shall order the eigenvalues as follows: 
 

 1 0

2 0

i
i

λ ω
λ ω
=
= −

 (5.6.21) 

 
The eigenvector associated with the first eigenvalue is the solution of 
 

 ( )

( )

1
10

2 2
0 0 1

0 1
0

0
i

i

υω
ω ω υ

 − 
  = − −     

 (5.6.22) 
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The reduced row echelon form of (5.6.22) is 
 

 ( )

( )

1
10

2
1

1
0

0 0
i υω

υ

 − 
  = 
    

 (5.6.23) 

 
Therefore, 
 

 ( )

( )
( ) ( )

1
1 1

112
0 01

1 1
span

i i

υ
υ λ

ω ωυ

      
  = ⇒ =     
       

V  (5.6.24) 

 
Likewise, the characteristic subspace associated with the second eigenvector is  
 

 ( )2
0

1
span

i
λ

ω
  

=   −  
V  (5.6.25) 

 
These two eigenvectors give the solution to the system of two ordinary differential equations in the 
form of a superposition of the two possibilities of solutions of the form teλ=x v .  The result, as 
follows from (5.6.9), is 
 

 ( ) 0 0
1 2

0 0

1 1i t i tt c e c e
i i

ω ω

ω ω
−   

= +   −   
x  (5.6.26) 

 
Or, in the equivalent form (5.6.11) 
 

 ( )
0

0

1

0 0 2

1 1 0
0

i t

i t

ce
t

i i ce

ω

ωω ω −

    
=     −     

x  (5.6.27) 

 
This solution can be written in a more familiar form if we utilize the Euler identity 
 
 ( ) ( )0

0 0cos sini te t i tω ω ω= +  (5.6.28) 
 
These equations allow the general solution (5.6.9) to be written 
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( )

( ) ( )( ) ( ) ( )( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

0 0
1 2

0 0

1 0 0 2 0 0
0 0

1 2 1 2
0 0

0 1 2 0 1 2

1 2 0 1 2 0

0 1 2 0 0 1 2

1 1

1 1
cos sin cos sin

cos sin

cos sin
sin cos

i t i tt c e c e
i i

c t i t c t i t
i i

c c i c c
t t

i c c c c

c c t i c c t
c c t i c c

ω ω

ω ω

ω ω ω ω
ω ω

ω ω
ω ω

ω ω
ω ω ω ω

−   
= +   −   

   
= + + −   −   

+ −  
= +   − − −   

+ + −
=

− − + −

x

( )
( ) ( )
( ) ( )

( )
( )

0

1 0 2 0

0 1 0 0 2 0

cos sin
sin cos

t

d t d t u t
d t d t u t

ω ω
ω ω ω ω

 
 
 

+   
= =   − +   

 (5.6.29) 

 
where the complex coefficients 1c  and 2c  are related to the real coefficients 1d  and 2d  by the 
formulas 
 

 ( ) ( )1 1 2 2 1 2
1 1and
2 2

c d id c d id= − = +  (5.6.30) 

 
Example 5.6.2:  As a generalization of Example 5.6.1, you are given the problem of damped 
harmonic motion governed by the ordinary differential equation 
 
 0mu cu ku+ + =   (5.6.31) 
 
where ,m c  and k  are positive constants representing the mass, the damping coefficient and the 
spring constant, respectively.  The figure that is often associated with the ordinary differential 
equation (5.6.31) is 
 

 

 
 

 
It is customary to introduce the symbols 
 

u

m

c

k
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 2
0

02
k c
m m

ω ς
ω

= =  (5.6.32) 

 
and write the differential equation (5.6.31) as 
 
 2

0 0( ) 2 ( ) ( ) 0u t u t u tςω ω+ + =   (5.6.33) 
 
Equation (5.6.33) modifies the ordinary differential defining harmonic motion, equation (5.6.17), 
by the inclusion of the first derivative proportional to the dimensionless damping coefficient 
(5.6.32)2.  If we define, as with Example 5.6.1, 
 

 ( ) ( )
( )

u t
t

u t
 

=  
 

x


 (5.6.34) 

 
The equation to solve takes the form (5.6.5) with 
 

 2
0 0

0 1
2

A
ω ζω

 
=  − − 

 (5.6.35) 

 
The eigenvalues of A  are the roots of 
 

 
( )

( )( )

2 2
0 02

0 0

2 2
0 0 0 0

0 1
det 2

2

1 1

A I

i i

λ
λ λ ςω λ ω

ω ζω λ

ςω ω ζ λ ςω ω ζ λ

−
− = = + +

− − −

= − + − − − − − −

 (5.6.36) 

 
We shall order the eigenvalues as follows: 
 

 
2

1 0 0

2
2 0 0

1

1

i

i

λ ζω ω ζ

λ ζω ω ζ

= − + −

= − − −
 (5.6.37) 

 
Equations (5.6.37) are written to fit what is called the under damped case.  For this case, the 
damping is assumed to be such that 21 0ζ− > . 
 

The eigenvector associated with the first eigenvalue is the solution of 
 

 ( )

( )

12
10 0

22 2
10 0 0

0 1 1
0

0 1

i

i

υζω ω ζ
υω ζω ω ζ

   + − −
    =
   − − − −   

 (5.6.38) 

 
The reduced row echelon form of (5.6.22) is 
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 ( )

( )

12 10 0
2

1

1 1 0
0 0

i υζω ω ζ
υ

  − −   = 
     

 (5.6.39) 

 
Therefore, 
 

 ( )

( )
( ) ( )

1
1 1

112 2 2
1 0 0 0 0

1 1
span

1 1i i

υ
υ λ

υ ζω ω ζ ζω ω ζ

      
= ⇒ =       − + − − + −          

V  (5.6.40) 

 
Likewise, the characteristic subspace associated with the second eigenvector is  
 

 ( )2 2
0 0

1
span

1i
λ

ζω ω ζ

  
=    − − −   

V  (5.6.41) 

 
These two eigenvectors give the solution to the system of two ordinary differential equations in the 
form of a superposition of the two possibilities of solutions of the form teλ=x v .  The result, as 
follows from (5.6.9), is 
 

 ( ) ( ) ( )2 2
0 01 1

1 22 2
0 0 0 0

1 1

1 1

i t i t
t c e c e

i i

ζ ζ ω ζ ζ ω

ζω ω ζ ζω ω ζ

− + − − − −   
= +   

− + − − − −      
x  (5.6.42) 

 
As with Example 5.6.1, this solution can be written in a more familiar form if we utilize the Euler 
identity 
 
 ( ) ( )2

0 1 2 2
0 0cos 1 sin 1i te t i tω ζ ω ζ ω ζ− = − + −  (5.6.43) 

 
These equations allow the general solution (5.6.9) to be written 
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( )

( ) ( )( )

( ) ( )( )

( )

2 2
0 00 0

0

0

1 1
1 22 2

0 0 0 0

2 2
1 0 02

0 0

2 2
2 0 02

0 0

1 2

0 1 2

1 1

1 1

1
cos 1 sin 1

1

1
cos 1 sin 1

1

i t i tt t

t

t

t c e e c e e
i i

c e t i t
i

c e t i t
i

c c

c c

ω ζ ω ζζω ζω

ζω

ζω

ζω ω ζ ζω ω ζ

ω ζ ω ζ
ζω ω ζ

ω ζ ω ζ
ζω ω ζ

ζω

− − −− −

−

−

   
= +   

− + − − − −      
 

= − + − 
− + −  
 

+ − − − 
− − −  

+
=

− +

x

( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )

0

0

0

0

0

2
02

0 1 2

1 2 2
02

0 1 2 0 1 2

2 2
1 2 0 1 2 0

2 2 2
0 1 2 0 1 2 0

2
0 1 2 0

cos 1
1

sin 1
1

cos 1 sin 1

1 sin 1 cos 1

cos 1

t

t

t

t

t

e t
i c c

i c c
e t

i c c c c

e c c t i c c t

e c c t i c c t

e c c t

ζω

ζω

ζω

ζω

ζω

ω ζ
ω ζ

ω ζ
ζω ω ζ

ω ζ ω ζ

ω ζ ω ζ ω ζ

ζω ω ζ

−

−

−

−

−

 
− 

+ − −  
− 

+ − 
− − + − − −  

+ − + − −

= − − − − + − −

− + − ( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

( )
( )

0

0

0

2
1 2 0

2 2
1 0 2 0

2 2 2
0 1 0 2 0

2 2
0 1 0 2 0

sin 1

cos 1 sin 1

1 sin 1 cos 1

cos 1 sin 1

t

t

t

i c c t

e d t d t

u t
e d t d t

u t

e d t d t

ζω

ζω

ζω

ω ζ

ω ζ ω ζ

ω ζ ω ζ ω ζ

ζω ω ζ ω ζ

−

−

−

 
 
 
       + − −   
 − + − 
     = − − − + − =         − − + −   



 (5.6.44) 
 
where the complex coefficients 1c  and 2c  are related to the real coefficients 1d  and 2d  by the same 
formulas used with Example 5.6.2, namely, 
 

 ( ) ( )1 1 2 2 1 2
1 1and
2 2

c d id c d id= − = +  (5.6.45) 

 
Example 5.6.3:  
 

 

( ) ( ) ( )

( ) ( ) ( )

1
1 2

2
1 2

6

2

dy t
y t y t

dt
dy t

y t y t
dt

= +

= +

 (5.6.46) 
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The eigenvalues for the matrix 
1 6
1 2

A  
=  
 

 are 

 
 1 21 and     4λ λ= − =  (5.6.47) 
 
The two characteristic subspaces turn out to be 
 

 ( ) ( )1 2

3 2
span  and      span

1 1
λ λ

−      
= =      

      
V V  (5.6.48) 

 
Therefore, from (5.6.9) the general solution of (5.6.46) is, 
 

 ( ) 4
1 2

3 2
1 1

t tt c e c e−−   
= +   

   
x  (5.6.49) 

 
 The three examples above are typical of the solution procedure for finding the 
homogeneous solution to systems of first order constant ordinary differential equations.  The 
solution procedure works because the geometric multiplicity of each eigenvalue has equaled its 
algebraic multiplicity.  In cases where this is not true, the solution is not as simple as the above.  
The following example illustrates the problems that can arise. 
 
Example 5.6.4 
 

 

1
1 2 3

2
2 3

3
3

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

dy t y t y t y t
dt

dy t y t y t
dt

dy t y t
dt

= + +

= +

=

 (5.6.50) 

 
This system can be rewritten as the matrix equation 
 

 ( )( )d t A t
dt

=
x x  (5.6.51) 

 
where 
 

 
1 1 1
0 1 1
0 0 1

A
 
 =  
  

 (5.6.52) 
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Equation (5.6.51) is the matrix that we considered in Example 5.3.3.  The results of that example 
are that (5.6.52) has a single eigenvalue 1λ =  of algebraic multiplicity 3.  The characteristic 
subspace associated with this example has dimension 1.  As a result, we cannot represent the 
solution of (5.6.50) in the form (5.6.9).  The general solution in this case turns out to be 
 

 ( )

22
1 2 3

1 2 3 2 3

3

11
1 22
0 1
0 0 1

t t t

t t t t t

t

c e c te c t t et tt
t c e c e c t e c e c te

c e

    + + ++              = + + = +                 
    

x  (5.6.53) 

 
which is not a solution of the form teλ=x v . 
 
Example 5.6.5:  (Complex Eigenvalues)  The system or ordinary differential equations is 
 

 

1
1 2

2
1 2

( ) ( ) 5 ( )

( ) ( ) 5 ( )

dy t y t y t
dt

dy t y t y t
dt

= +

= − +
 (5.6.54) 

 
In this case, the matrix is given by 
 

 
1 5
1 5

A  
=  − 

 (5.6.55) 

 
and the eigenvalues are easily shown to be given by 
 

 1

2

3
3

i
i

λ
λ
= −
= +

 (5.6.56) 

 
The characteristic subspaces can be shown to be 
 

 ( ) ( )1 2

2 2
span    and      span

1 1
i i

λ λ
+ −      

= =      
      

V V  (5.6.57) 

 
Therefore, from (5.6.9) the general solution is 
 

 ( ) ( ) ( )3 3
1 2

2 2
1 1

i t i ti i
t c e c e− ++ −   
= +   

   
x  (5.6.58) 

 
The solution is usually written in terms of real coefficients, as with Example 5.5.1, by using 
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 ( ) ( )3 3 3 cos sini t t it te e e e t i t− −= = −  (5.6.59) 
 
and 
 
 ( ) ( )3 3 3 cos sini t t it te e e e t i t+ = = +  (5.6.60) 
 
Therefore, 
 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )
( )

3 3
1 2

3 3
1 2

1 2 1 21 2 1 2 3 3

1 21 2

1 2 1 23 3

1 2

2 2
1 1

2 2
cos sin cos sin

1 1

22
cos sin

2 2
cos sin

i t i t

t t

t t

t t

i i
t c e c e

i i
c e t i t c e t i t

c c i c cc c i c c
e t e t

i c cc c

d d d d
e t e

d d

− ++ −   
= +   

   
+ −   

= − + +   
   

+ − − + + − 
= +    − −+   

+ −   
= +   −   

x

( ) ( )3 3
1 2 1 2

3 3
1 2

2 cos 2 sin
cos sin

t t

t t

t

d d e t d d e t
d e t d e t

 + + −
=  − 

 (5.6.61) 

 
Example 5.6.6: (Two Degree of Freedom Free Vibrations) Consider a generalization of the the 
coupled spring-mass-damper system introduced in Example 5.5.1 shown in the following figure: 
 
 
 
 
 
 
 
 
 
The equations of motion for this system are a generalization of (5.5.3) 
 

 
1 1 1 1 1 1 2 2 1 2 2 1

2 2 2 2 1 3 2 2 2 1 3 2

( ) ( )

( ) ( )

m u c u k u c u u k u u

m u c u u c u k u u k u

= − − + − + −

= − − − − − −

   

   

  (5.6.62) 

 
The designation “free vibrations” refers to the fact that this example does not have external applied 
forces.  In other words ( ) ( )1 2 0f t f t= = .  In order to express the governing equations in normal 
form define 
 

1u 2u

1m
1c

1k
2m

2k

2c

3k

3c
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 ( )

( )
( )
( )
( )

1

2

1

2

u t
u t

t
u t
u t

 
 
 =
 
 
 

x




 (5.6.63) 

 
and, as a result, 
 

 

( )
( )
( )
( )
( )

( )
( )
( )
( )

( )
( )

1

1 1 2

2 2 1 1 2 2
1 1 2 1 2 1

1 1 1 1 1 1

2 2 3 32 2
2 1 2 2 1 2

2 2 2 2

1 2 2 1

1 1

( ) ( )

( ) ( )

0 0 1 0
0 0 0 1

u t
u t u t u t
u t u td t c k c kd u u u u u u
u t u t m m m mdt dt
u t u t c kc ku u u u u u

m m m m

k k k c
m m

 
               − − + − + −= = =                − − − − − − 
 

+ +
− −=

x









  

 

 

  

( )
( )
( )
( )

( )

1

22 2

1 1 1

22 3 2 32 2

2 2 2 2

u t
u tc c

m m u t
u tk k c ck c

m m m m

A t

 
                + +  − − 
 

= y





 

 
Next, we shall illustrate the solution in the special case where 
 

 
31 2

1 2 3

1 2 3

1

0

kk k
m m m
c c c

= = =

= = =
 (5.6.64) 

 
Therefore, 
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1 2 2 1 2 2

1 1 1 1

2 3 2 32 2

2 2 2 2

0 0 1 0
0 0 0 1

0 0 1 0
0 0 0 1
2 1 0 0

1 2 0 0

k k k c c c
A

m m m m
k k c ck c

m m m m

 
 
 

+ + 
− −=  
 
 + +

− − 
 
 
 
 =
− 
 − 

 (5.6.65) 

 
The eigenvalues associated with the matrix (5.6.65) are given by 
 

 ( ) ( )( )
( )( )

( )( )( )( )

3 2

4 2 2 2

0 0 1 0
0 1 0 1

0 0 0 1
0 1 2 1 0

2 1 0 0
2 0 1 2

1 2 0 0

1 0 1 1 1
2 2

0 1 2 1 0

2 2 2 1

4 3 1 3

3 3 0i i i i

λ
λ λ

λ
λ λ

λ
λ λ

λ

λ λ λ
λ λ

λ λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

−
− −

−
= − − + −

− −
− − − −

− −

− − −   
= − − − + +   − − − −   

= − − − + + −

= + + = + +

= − − − − − − =

 (5.6.66) 
 
Therefore, we can arbitrarily order the eigenvalues as 
 

 

1

2

3

4

3

3

i

i
i

i

λ

λ
λ
λ

= −

=
= −
=

 (5.6.67) 

 
The characteristic subspaces turn out to be 
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( ) ( )

( ) ( )

1 2

3 4

3 3
3 3
3 3span , span ,

3 3
1 1

1 1

span , span
1 1
1 1

i i

i i

i i
i i

λ λ

λ λ

      
−      

      
      

= = −      
      
   − −   
      
      

−      
      −      = =
      
      
      

V V

V V

 (5.6.68) 

 
Therefore, from (5.6.9) the general solution is 
 

 ( ) 3 3
1 2 3 4

3 3
3 3
3 3

1 13 3
1 1 1 1

1 1

it it it it

i i i i
i i

t c e c e c e c ei i− −

   
−    −          −       = + + +−              − −       
   
   

x  (5.6.69) 

 
As usual, we can eliminate the complex exponentials by the formulas 
 

 
3

3

cos sin
cos sin

cos 3 sin 3

cos 3 sin 3

it

it

it

it

e t i t
e t i t

e t i t

e t i t

−

−

= +

= −

= +

= −

 (5.6.70) 

 
The result of this elimination is 
 

 ( )

( )
( )
( )
( )

1 2 3 41

2 1 2 3 4

1 1 2 3 4

2
1 2 3 4

cos sin cos 3 sin 3

cos sin cos 3 sin 3

sin cos 3 sin 3 3 cos 3

sin cos 3 sin 3 3 cos 3

d t d t d t d tu t
u t d t d t d t d t

t
u t d t d t d t d t
u t d t d t d t d t

 + + +     + − −  = =    − + − +      − + + − 

x




 (5.6.71) 

 
Example 5.6.7:  The following figure shows a possible configuration of a three degree of freedom 
system with linear springs, linear damping and forcing functions. 
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This example is too complicated to work without the aid of MatLab or something equivalent.  In 
matrix form, the equations of motion for this damped three degree of freedom system are12 
 

 
( )
( )
( )

1 1 1 2 5 2 5 1

2 2 2 2 3 6 3 2

3 3 5 3 3 4 5 3

1 2 2 1 1

2 2 3 3 2 2

3 3 4 3 3

0 0
0 0
0 0

0

0

m u c c c c c u
m u c c c c c u

m u c c c c c u

k k k u f t
k k k k u f t

k k k u f t

+ + − −       
       + − + + −       

− − + +              
+ −     

    + − + − =     
 − +        

 

 

 

 (5.6.72) 

 
If we define 
 

 

1 1

2 2

3 3

4 1

5 2

6 3

x u
x u
x u
x u
x u
x u

   
   
   
   

= =   
   
   
   
   

x






 (5.6.73) 

 
The matrix A  in the standard form (5.5.1) is given by 
 

 
12 Note that (5.6.72) is in the form mentioned in footnote 6 of Section 5.5. 

1u

1m

1k
2m

2k

2u

3k 4k

3u    
 

 

   

3m
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1 2 5 51 2 2 2

1 1 1 1 1

2 3 3 2 3 6 32 2

2 2 2 2 2 2

3 3 4 5 3 3 4 5

3 3 3 3 3

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0

0

c c c ck k k c
A m m m m m

k k k c c c ck c
m m m m m m

k k k c c c c c
m m m m m

 
 
 
 
 + ++ − −

=  
 + + + − −
 
 + + + − −
  

 (5.6.74) 

 
and the matrix ( )tg  is given by 
 

 ( )
( )

( )

( )

1

1

2

2

3

3

0
0
0

f t
mt

f t
m

f t
m

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

g  (5.6.75) 

 
If, for the purposes of this example, we adopt the numerical values 
 
 1 2 31, 2m m m= = =  (5.6.76) 
 
 1 2 3 41, 2,k k k k= = = =  (5.6.77) 
 
 1 2 3 4 5 6.3, .4, .4, .06, .06, .02c c c c c c= = = = = =  (5.6.78) 
 
The matrix (5.6.74) reduces to  
 

 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
2 1 0 .76 .4 .06

1 2 1 .4 .82 .4
0 .5 1.5 .03 .2 .26

A

 
 
 
 

=  − − 
 − −
 − − 

 (5.6.79) 
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This is the matrix that was adopted when we worked Example 5.3.5.  The eigenvalues for this 
problem were given by equation (5.3.76), repeated, 
 

 

1

2

3

4

5

6

0.6072 1.6652

0.2474 1.2611

0.0654 0.8187

i

i

i

λ
λ

λ
λ

λ
λ


= − ±



= − ±



= − ±



 (5.6.80) 

 
and the eigenvectors were given by equations (5.3.77), (5.3.78) and (5.3.79).  With this 
information, one could utilize our solution (5.6.15) and analyze this complicated problem.  As 
indicated above, the problem is too complicated to attempt without the aid of a computer.  For our 
purposes here, we simply want to note that the three degree of freedom system shown in the above 
figure has six eigenvalues.  These six, which occur in complex conjugate pairs, represent three 
modes of vibration.  In each case, the eigenvalues take the general form 
 
    for   1,2,3j j ji jλ ζ ω= − ± =  (5.6.81) 
 
The positive numbers 
 

 
1

2

3

0.6072
0.2474
0.0654

ζ
ζ
ζ

 
 = 
 

 (5.6.82) 

 
are the damping coefficients, and the three positive numbers 
 

 
1

2

2

1.6652
1.2611
.8187

ω
ω
ω

 
 = 
 

 (5.6.83) 

 
are the natural frequencies. 
 
 
Exercises 
 
5.6.1  Find the general solution of the system 
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1
1 3

2
1 3

3
2 3

2 6

3

2

dy y y
dt
dy y y
dt

dy y y
dt

= −

= −

= −

 (5.6.84) 

 
5.6.2  Solve the initial value problem 
 

 

( ) ( )

1
1 2

2
1 2 1 2

3 1
2 2
1 3 0 1, 0 1
2 2

dy y y
dt
dy y y y y
dt

= +

= − + = = −

 (5.6.85) 
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Section 5.7. Particular Solution 
 
 
 Given the solution to the homogenous equation as generated in Section 5.6, the next 
question is how to generate the particular solution.  This solution, combined with the results of 
Section 5.6, can then be used along with initial conditions to yield the solution to the initial value 
problem (5.5.2). 
 

There are various ways to generate the particular solution.  The method of variation of 
parameters is probably the best to use at the present point in our understanding of eigenvalue 
problems.  This method builds the particular solution from the solution to the homogeneous 
equation by a procedure we shall describe.  For our purposes, the solution to the homogeneous 
equation is equation (5.6.15), repeated, 
 
 ( ) Dt

h t Te=x c  (5.7.1) 
 
The variation of parameters method seeks a particular solution of the general form of (5.7.1) except 
that the constants in the matrix c  are replaced by a function that must be determined.  The form of 
the particular solution we shall adopt is 
 
 ( ) ( )Dt

p t Te t=x w  (5.7.2) 
 
where the 1N ×  column matrix of functions ( )tw  is the quantity to be determined.  If (5.7.2) is 
substituted into the ordinary differential equation (5.5.1), the result is 
 

 ( ) ( ) ( ) ( )Dt Dtd t
Te AT TD e t t

dt
= − +

w
w g  (5.7.3) 

 
Equation (5.6.12) tells us that the first on the right side of (5.7.3) is zero, and, as a result, the 
column vector ( )tw  is determined by 
 

 ( ) ( )1Dtd t
e T t

dt
− −=

w
g  (5.7.4) 

 
where the notation Dte−  stands for the square matrix 
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1

2

3

0 0 0
0 0 0
0 0 0

0 0 0 N

t

t

t

Dt

t

e
e

e
e

e

λ

λ

λ

λ

−

−

−

−

−

 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅
 = ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅
 

⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 

 (5.7.5) 

 
It is elementary to show that the square matrix Dte−  is the inverse of the matrix Dte  defined by 
equation (5.6.14).  It follows from (5.7.4) that the solution for ( )tw  is given by the integral 
 
 ( ) ( )1

0

t Dt e T d
τ τ

τ
τ τ

= − −

=
= ∫w g  (5.7.6) 

 
where, without loss of generality, we have taken selected the constant of integration such that 
( )0 =w 0 . 

 
Equation (5.7.6) when combined with (5.7.2) gives the particular solution 

 

 
( ) ( ) ( )

( ) ( )

1

0

1

0

tDt Dt D
p

t D t

t Te t Te e T d

Te T d

τ τ

τ

τ τ

τ

τ τ

τ τ

= − −

=

= − − −

=

= =

=

∫
∫

x w g

g
 (5.7.7) 

 
Given (5.7.1) and (5.7.7) the solution (5.6.1) is 
 

 
( ) ( ) ( )

( ) ( )1

0

h p

t D tDt

t t t

Te Te T d
τ τ

τ
τ τ

= − − −

=

= +

= + ∫

x x x

c g
 (5.7.8) 

 
Given (5.7.8), the solution to the initial value problem (5.5.2) is obtained by evaluating (5.7.8) at 

0t =  which yields 
 
 1

0T −=c x  (5.7.9) 
 
and allows the solution (5.7.8) to be written in terms of the initial condition as follows: 
 
 ( ) ( ) ( )1 1

0 0

t D tDtt Te T Te T d
τ τ

τ
τ τ

= − −− −

=
= + ∫x x g  (5.7.10) 

 
Equation (5.7.10) is extremely general.  Other than presuming the matrix A  in (5.5.1) can be 
diagonalized, i.e. has a basis of N  linearly independent eigenvectors, it provides the solution to a 
wide class of systems of inhomogeneous linear constant coefficient ordinary differential equations 
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that occur in the applications.  When A  cannot be diagonalized, there is a generalization of (5.7.10) 
that provides the solution.  This generalization will be discussed in Chapter 6.  In this section, we 
shall restrict our discussions to cases where (5.7.10) is valid. 
 
Example 5.7.1:  As an illustration of how to use (5.7.10), consider the following initial value 
problem 
 
 ( ) ( ) ( )2

0 0 0cos 0 ,  0u u H t u u uω ω υ+ = = =   (5.7.11) 
 
We generated the solution for the homogeneous version of this equation in Example 5.6.1.  In this 
example, the forcing function ( )cosH tω  is included in the ordinary differential equation.  The 
frequency ω  is sometimes called the forcing frequency.  The frequency 0ω  is called the natural 
frequency.  The figure that is associated with this ordinary differential equation is 
 

 

 
 

 
The matrix form of (5.7.11)1 that we are trying to solve is 
 

 ( ) ( ) ( )
( )

2
0

00 1
cos0

A

d t
t

H tdt ωω
  

= +   −   
g t

x
x




 (5.7.12) 

 
where ( )tx  is again defined by (5.6.18).  It follows from (5.7.11)2 that the initial condition on 
(5.7.12) is 
 

 ( ) 0
0

0

0
u
υ
 

= =  
 

x x  (5.7.13) 

 
In Example 5.6.1, we looked at the homogeneous version of this problem and derived its general 
solution.  Among the results from Example 5.6.1 that apply to this example is the solution to the 
homogeneous equation written in the form (5.6.27), repeated, 
 

u

m

k

( )( ) cosf t mH tω=
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 ( )
0

0

1

0 0 2

1 1 0
0

i t

h i t

ce
t

i i ce

ω

ωω ω −

    
=     −     

x  (5.7.14) 

 
It follows from (5.7.14) and (5.7.1) that the transition matrix in this case is 
 

 
0 0

1 1
T

i iω ω
 

=  − 
 (5.7.15) 

 
The inverse of (5.7.15) is the matrix 
 

 001

00

0

1
11 1

12 2 1

i
i

T
i ii

ωω
ωω

ω

−

 − − −   = − = −   
 
 

 (5.7.16) 

 
Given (5.7.16), (5.7.15), (5.7.13) and the ( )tg  identified in (5.7.12), the solution (5.7.10) takes the 
form 
 

 

( ) ( ) ( )

( )

( ) ( )

0

0

0

0

1 1
0 0

0 0

0 0 0

0

0

0
0 0

0

1
1 1 01

2 0 1

1
01 1 01

cos2 0 1

t D tDt

i t

i t

i t
t

i t

t Te T Te T d

i
ue

i i ie

i
e

d
i i ie

τ τ

τ

ω

ω

ω τ
τ

ω ττ

τ τ

ω
ω ω υ

ω

ω
τ

ωτω ω
ω

= − −− −

=

−

− −
=

−=

= +

 −      =     −      
 
 

 −       +     −          
 

∫

∫

x x g

 (5.7.17) 

 
If the various square matrices are multiplied together, (5.7.17) can be written 
 

 

( )
( ) ( )

( ) ( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( )

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

00

00

0
0

0

1 1
2 2

1
2 2

1 1
02 2

cos1
2 2

i t i t i t i t

i t i t i t i t

i t i t i t i t

t

i t i t i t i t

e e e e
uit

i e e e e

e e e e
i d

i e e e e

ω ω ω ω

ω ω ω ω

ω τ ω τ ω τ ω τ

τ

τ
ω τ ω τ ω τ ω τ

ω
υω

ω τ
ωτω

− −

− −

− − − − − −

=

=
− − − − − −

 + −   
 =  
   − +  

 + −   
 +  
   − +  

∫

x

 (5.7.18) 
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If trigometric functions are introduced in place of the complex exponentials, (5.7.18) simplifies 
further to 
 

 

( )
( ) ( )

( ) ( )

( )( ) ( )( )

( )( ) ( )( ) ( )

( ) ( )

( ) ( )

( )( ) ( )

0 0 0
0

0
0 0 0

0 0
0

0

0 0 0

0
00 0 0

00

00 0 0 0 0

1cos sin

sin cos

1cos sin 0
cos

sin cos

1 sin coscos sin

cossin cos

t

t t u
t

t t

t t
H d

t t

tu t t
H

u t t

τ

τ

ω ω
ω

υ
ω ω ω

ω τ ω τ
ω τ

ωτ
ω ω τ ω τ

υ ω τ ωτω ω
ωω

ω τω ω υ ω

=

=

 
  =     −  

 − − −   +     − −  

  − −+ = + 
−− +  

∫

x

( )( ) ( )
0

cos

t
d

t

τ

τ
τ

ωτ

=

=

 
 
 
  

∫

 (5.7.19) 

 
If the integrations in (5.7.19)are carried out, the results are 
 

 ( ) ( )
( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

0
0 0 0 02 2

0 0

0 0 0 0 0 0 02 2
0

cos sin cos cos

sin cos sin sin

Hu t t t t
u t

t
u t Hu t t t t

υ
ω ω ω ω

ω ω ω

ω ω υ ω ω ω ω ω
ω ω

 + + − −   = =     − + + − + 
−  

x


 

            (5.7.20) 
 
This result shows that the harmonic motion consists of two components.  One that oscillates with 
the frequency 0ω  and one with the forcing frequency ω .  Equation (5.7.20) also displays the 
phenomena known as resonance.  As the forcing frequency ω  becomes close to the natural 
frequency 0ω , the amplitude of the displacement grows large. 
 

There is an interesting special case of (5.7.20) that we shall examine next.  In this special 
case, we select the initial conditions (5.7.13) to be 0 0 0u υ= = .  These assumptions reduce the first 
of (5.7.20) to 
 

 ( ) ( ) ( ) ( )( )02 2
0

cos cosHu t t tω ω
ω ω

= −
−

 (5.7.21) 

 
An equivalent form of (5.7.21) is 
 

 ( ) 0 0
2 2
0

2 (sin( )sin( ))
2 2

Hu t t tω ω ω ω
ω ω

+ −
=

−
 (5.7.22) 
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Thus, the solution is a combination of a high frequency component with frequency 0

2
ω ω+

 and a 

low frequency component with frequency 0

2
ω ω−

.  In the case where we simplify the numeric’s 

with the choices 1H = , 0 1ω = and 0.9ω = , (5.7.22) produces the figure 
 

 
 
This figure displays the classical “beats” phenomenon which is the result of superimposing two 
frequencies that are close in value.  The figure displays two distinct effects.  The effects are a high 
frequency oscillation contained within a slow oscillation. 
 
Example 5.7.2:  If we repeat the above example except adopt as the starting place the ordinary 
differential equation  
 
 ( )2

0 0( ) 2 ( ) ( ) cosu t u t u t H tςω ω ω+ + =   (5.7.23) 
 
we will be studying damped forced vibrations.  Example 5.6.2 discussed the free vibration or 
unforced vibration problem for this ordinary differential equation.  The following figure applies to 
this case. 
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If we define, as with our earlier examples, 
 

 ( ) ( )
( )

u t
t

u t
 

=  
 

x


 (5.7.24) 

 
The matrix form of (5.7.11)1 that we are trying to solve is 
 

 ( ) ( ) ( )
( )

2
0 0

00 1
cos2

A

d t
t

H tdt ωω ζω
  

= +   − −   
g t

x
x




 (5.7.25) 

 
Recall from Example 5.6.2 that the eigenvalues and the transition matrix for this problem are 
 

 
2

1 0 0

2
2 0 0

1

1

i

i

λ ζω ω ζ

λ ζω ω ζ

= − + −

= − − −
 (5.7.26) 

 
and 
 

 
2 2

0 0 0 0

1 1

1 1
T

i iζω ω ζ ζω ω ζ

 
=  

− + − − − −  
 (5.7.27) 

 
We shall continue to consider the under damped case.  In other words, we are assuming that 

21 0ζ− > . 
 

The inverse of (5.7.27) is the matrix 
 

u

m

c

k

( )( ) cosf t mH tω=
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( )
( )

2
2

0 0 01

2 22 20 0 0

0

1
1 11 1

2 1 2 11 1 1

ii i
i

T
ii i i i

ζ ζ
ζω ω ζ ω

ω ζ ζζω ω ζ ζ ζ
ω

−

 − − − −  − − − −
  = − =
  − −− −  − − + − 
 

  (5.7.28) 
 
Given (5.7.28), (5.7.27), (5.7.26) and the ( )tg  identified in (5.7.25), the solution (5.7.10) takes the 
form 
 

 

( ) ( ) ( )

( )

( )

( )

2

00

2

0

0

1 1

0 0

1

2 22 1
0 0 0 0

2

0 0

2 0

0

2 2

0 0 0 0

2

1 1 0

1 12 1 0

1

1

1 1

1 1

2 1

tDt D t

i tt

i t

t

t Te T Te T d

ee

i i e

i
i i

u

i
i i

i i

H
e

τ τ

τ

ω ζζω

ω ζ

ζω τ

τ τ

ζω ω ζ ζω ω ζζ

ζ ζ
ω

υ
ζ ζ

ω

ζω ω ζ ζω ω ζ

ζ

=− − − −

=

−−

− −

−

= +

= ×
− + − − − −−

− − − −

− − + −

− + − − − −

+
−

  
  
    

 
        
  

 



∫x x g

( )

( )

( )

( )

( )

2

0

2

0

1

0
1

2

0

2

0

0 0

cos0

1

1

i t

t

i t

e

e

i
i i

i
i i

ω ζ τ

τ

τ
ω ζ τ ωτ

ζ ζ
ω

ζ ζ
ω

− − −

=

=
− −

×

×

− − − −

− − + −

 
 
 
   
            
 
  
  
  
  
     

∫  (5.7.29) 

 
If the various square matrices in (5.7.29)are multiplied together, you obtain 
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( )
( ) ( ) ( )

( ) ( ) ( )( )

( )

( )( )
( )( )

0

0

2 2 2

0 0
2

0 02
0

2
0

2 2 2 2

0 0 0 0

0

0

2

2 2

0

2

0

2

2 1 cos 1 2 sin 1 2
sin 1

1
2 1

2 sin 1 2 cos 1 1 2 sin 1

2
sin

2 1

2 1 cos 1

2 sin 1

1

t

t

t t
t u

t t t

H

e

t

t

e

t
ζω

ζω τ

ζ ω ζ ζ ω ζ
ω ζ

ωζ
υζ

ω ω ζ ω ζ ζ ζ ω ζ

ω
ω

ζ

ζ ω ζ τ

ζ ω ζ τ

ζ

−

−

− − + −
−

= −
−

− − − − − −

−

+
−

− − −

− − −

−

 
        
  

 
 
 
 
 
 
 
 
 

x

( )( )

( )( )
( )( )

( )( )

( )

2

0

2

0 0

2

0

2

2

0

1

2 sin 1

0

cos

2 cos 1

1

2 sin 1

t

t

t

t

t

τ

τ

ζ τ

ω ω ζ τ

ωτ

ω ζ τ

ζ

ζ ω ζ τ

=

=

− −

− −

− − ×

−

+ − −

 
 
 
 
 
 
   
     

  
  
   
   
      

∫

  (5.7.30) 
 
If you keep expanding will eventually find, for the first row of (5.7.30) 
 

 

( ) ( ) ( )
( ) ( )( ) ( )

0 2 20
0 0 0 02

0

20
02 0

0

1cos ( 1 ) sin ( 1 )
1

sin ( 1 ) cos
1

t

t

u t e u t u t

tH e t d

ζω

τ

τ

υω ζ ζ ω ζ
ωζ

ζω τ ω ζ τ ωτ τ
ω ζ

−

=

=

  
= − + + −   −   

− −
+ − −

−
∫

  (5.7.31) 
 
The integration formula 
 

 

( ) ( )( ) ( )

( )
( ) ( )( )

( )
( ) ( )

0

0

20
02 0

0

2 2
20

022 2 2 2 2
0 0

2 2
20

0 02 22 2 2 2 2
0 0

1 sin ( 1 ) cos
1

cos cos 1
4

2 sin sin 1
14

t

t

t

te t d

t e t

t e t

τ

τ

ζω

ζω

ζω τ ω ζ τ ωτ τ
ω ζ

ω ω ω ω ζ
ω ω ζ ω ω

ω ωζ ωω ω ω ζ
ζω ω ζ ω ω

=

=

−

−

− −
− −

−

−
= − −

− +

 +
+ − −  −− +  

∫

  (5.7.32) 
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can be substituted into (5.7.31) to get the complicated formula 13 
 

 

( ) ( ) ( )

( )
( ) ( )( )

( )
( ) ( )

0

0

0

2 20
0 0 0 02

0

2 2
20

022 2 2 2 2
0 0

2 2
20

0 02 22 2 2 2 2
0 0

1cos ( 1 ) sin ( 1 )
1

cos cos 1
4

2 sin sin 1
14

t

t

t

u t e u t u t

H t e t

H t e t

ζω

ζω

ζω

υω ζ ζ ω ζ
ωζ

ω ω ω ω ζ
ω ω ζ ω ω

ω ωζ ωω ω ω ζ
ζω ω ζ ω ω

−

−

−

  
= − + + −   −   

−
+ − −

− +

 +
+ − −  −− +  

  (5.7.33) 
 
This formula reduces to the earlier result, (5.7.20), in the special case 0ζ = .  Equation (5.7.33) can 
be rearranged into the form of a transient solution plus a steady state solution. 
 
 

( )
( ) ( )

( ) ( )

0

0

2 2
20

0 022 2 2 2 2
0 0

2 2
20 0

0 022 2 2 2 2 2 2
0 0 0

Goes to zero as  grows = Transient Solution

cos ( 1 )
4

1 sin 1
1 1 4

t

t

t

u H e t

u t

u H e t

ζω

ζω

ω ω ω ζ
ω ω ζ ω ω

υ ω ωζζ ω ζ
ωζ ζ ω ω ζ ω ω

−

−

 − − −
 − + =
   + + + − −  − − − +  
 

( )
( )

( )
( )

2 2
0 0

2 22 2 2 2 2 2 2 2 2 2
0 0 0 0

Steady State Solution

2cos sin
4 4

H t tω ω ζωωω ω
ω ω ζ ω ω ω ω ζ ω ω

 − + +
 − + − + 





  (5.7.34) 
 
 Within the context of the examples we have been working, equation (5.7.34) is very 
general.  It contains, as special cases, Examples 5.6.1 and 5.6.2 discussed earlier:  It is helpful to 
list these cases more precisely. 
 
Important Special Cases: 

a) Undamped Free Vibrations with initial conditions ( ) 00u u=  and ( ) 00u υ=  (See (5.6.29)) 
 

 
13 You can find the integral above in a good table of integrals. 
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 ( ) ( ) ( )0
0 0 0

0

cos sinu t u t tυω ω
ω

= +  (5.7.35) 

 
With the numerical values 
 

 

2

0 0

10 ,    250 / sec
3 1,    / sec

10 10

m kg k kg

u m mυ

= =

= = −
 (5.7.36) 

 
equation (5.7.36) produces the plot 
 
 

 
 

b) Damped Free Vibrations with initial conditions ( ) 00u u=  and ( ) 00u υ=  (See (5.6.44)) 
 

 ( ) ( ) ( )0 2 20
0 0 0 02

0

1cos ( 1 ) sin ( 1 )
1

tu t e u t u tζω υω ζ ζ ω ζ
ωζ

−
  

= − + + −   −   
  (5.7.37) 
With the numerical values  
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2

0 0

10 ,    250 / sec
3 1,    / sec

10 10

m kg k kg

u m mυ

= =

= = −
 (5.7.38) 

 
and a family of values of the damping coefficient equation (5.7.37) produces the plots 
 

 
 

c) Damped Forced Vibrations with initial conditions ( ) 00u u=  and ( ) 00u υ=  (See (5.7.34)). 
 
With the numerical values  
 

 

2

0 0

10 ,    250 / sec ,    20,
4,    1,
3 1,    / sec

10 10

m kg k kg c
H

u m m

ω

υ

= = =
= =

= = −

 (5.7.39) 

 
the resulting plot of (5.7.34) is 
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This figure illustrates how the solution quickly evolves to the steady state solution. 
 
 
Exercises 
 
5.7.1  Find the solution of the initial value problem 
 

 ( ) ( ) ( )

1
1 3

2
1 3 1 2 3

3
2 3

2 6 1

3 0 2,  0 0 0

2

dy y y
dt
dy y y y y y
dt

dy y y
dt

= − +

= − = = =

= −

 (5.7.40) 

 
Answer:  
 

 
( )
( )
( )

1

2

3

9 3 8
1 9 2 5
2 2
1 3 2
2 2

t t

t t

t t

e e ty t
y t e e t
y t

e e t

−

−

−

 
 + − −

   
   = + − −   
    

 + − −
 

 (5.7.41) 
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__________________________________________________________ 
Chapter 6 
 
 
ADDITIONAL TOPICS RELATING TO EIGENVALUE PROBLEMS 
 
 
Section 6.1  Characteristic Polynomial and Fundamental Invariants 
 
 
 When the eigenvalue problem was introduced in Chapter 5, we introduced in Section 5.2 
the characteristic polynomial and the associated idea of fundamental invariants.  In this section, we 
shall build upon the results in Section 5.2 and introduce a few new results that will be useful in this 
chapter.  
 

Our formulas are going to involve powers of the linear transformation : →A V V .  As we 
have utilized earlier with matrices, the thn  power of a linear transformation : →A V V  is defined 
by 
 
 0

 times

,     for  1, 2,...n

n

n= = ⋅⋅ =A I A AAA A


 (6.1.1) 

 
It follows from the definition (6.1.1) that the linear transformations nA  and mA  commute.  In other 
words, 
 
 m n n m m n+= =A A A A A  (6.1.2) 
 
Given (6.1.1), a polynomial in : →A V V  is a linear transformation ( ) :g →A V V  of the form 
 
 ( ) 2

0 1 2
n

ng α α α α= + + + ⋅⋅⋅+A I A A A  (6.1.3) 
 
where n  is a positive integer and the coefficients 0 1 2, , ,..., nα α α α  are real numbers. 
 

The characteristic polynomial of a linear transformation : →A V V  is given by equation 
(5.2.14), repeated, 
 
 ( ) ( ) ( ) ( ) ( )1

1 1det N N
N Nf λ λ λ µ λ µ λ µ−
−= − = − + − + ⋅⋅⋅+ − +A I  (6.1.4) 

 
The coefficients 1 2, ,..., Nµ µ µ  are the fundamental invariants of : →A V V .  In Section 5.2, we 
observed that 
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 1 trµ = A  (6.1.5) 
and 
 
 detNµ = A  (6.1.6) 
 
For the case 2N = , we gave the formula (5.2.20)2 for the invariant 2µ .  The explicit formula for 
the invariants in the general case turns out to be rather complicated.  If { }1 2, ,..., Ne e e  is a basis for 

V , then it is possible to show that the thj  fundamental invariant is given by 
 

 

1 1 1

1 2

2 2 2

1 2

1 2

1 2
1 2 1 2

1 2

, ,... 1  , ,... 1

1
!

j

j

j

j
j j

j j j

j

q q q
i i i

q q q
i i i

N N
ii i

j q q q
q q q i i i

q q q
i i i

A A A
j

δ δ δ

δ δ δ

µ

δ δ δ

= =

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅
= ⋅⋅⋅

⋅ ⋅
⋅ ⋅

⋅ ⋅ ⋅

∑ ∑  (6.1.7) 

 
As an illustration of (6.1.7), the second invariant, 2µ , is given by 
 

 
( )

( ) ( )( )

1 1

1 2 1 2 1 2 2 1 1 2

1 2 1 2 1 2 1 22 2
1 2 1 2 1 2 1 21 2

1 2 2 1

1 2 1 2
1 2

2
, 1  , 1 , 1  , 1

2 2

, 1

1 1
2 2

1 1 tr tr
2 2

q qN N N N
i i i i q q q q i i

q q i i i i q qq q
q q i i q q i ii i

N
q q q q
q q q q

q q

A A A A

A A A A

δ δ
µ δ δ δ δ

δ δ= = = =

=

= = −

= − = −

∑ ∑ ∑ ∑

∑ A A

 (6.1.8) 

 
By a much more complicated calculation,  
 

 ( ) ( )33 2
3

1 1 1tr tr tr tr
3 2 6

µ = − +A A A A  (6.1.9) 

 
It is perhaps evident from (6.1.7) that the fundamental invariants will always be expressible as 
linear combinations of products of powers of factors like 2tr , tr ,..., tr jA A A .  Equations (6.1.8) and 
(6.1.9) illustrate this point.  Equation (6.1.7) is not always the most convenient formula to use.  
Fortunately, equations (6.1.8) and (6.1.9) are special cases of formulas that can also be derived 
from the so called Newton Identities.1  The Newton Identities that yield (6.1.8) and (6.1.9) and 
others are 

 ( ) 1

1
1 tr for   1, 2,...,

k
j j

k k j
j

k k Nµ µ−
−

=

= − =∑ A  (6.1.10) 

 
1 See, for example, http://en.wikipedia.org/wiki/Newton%27s_identities.  Proofs for the Newton Identities can be found 
online. 

http://en.wikipedia.org/wiki/Newton%27s_identities
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where the convention has been adopted that 0 1µ = .  It follows from (6.1.10) that 
 

 

( ) ( ) ( )
( ) ( )

1
2

2 1
2 3

3 2 1

3 22 2 1
1 2 3 1

2 12 1
1 2 1

tr
2 tr tr
3 tr tr tr

1 tr tr 1 tr 1 tr

tr tr 1 tr 1 tr

N NN N
N N N

N NN N
N N N

N

N

µ

µ µ

µ µ µ

µ µ µ µ

µ µ µ µ

− −− −
− − −

− −−
− −

=

= −

= − +
⋅
⋅
⋅

− = − + ⋅⋅⋅+ − + −

= − + ⋅⋅⋅+ − + −

A
A A
A A A

A A A A

A A A A

 (6.1.11) 

 
Equation (6.1.9) can be seen to be a result of the substitution of (6.1.11)1 and (6.1.11)2 into (6.1.11)3. 
 
 Additional useful information about the fundamental invariants can be obtained if we look 
again at the factored form of the characteristic equation (5.2.6), repeated, 
 
 ( ) ( ) ( )( )( ) ( )1 2 3

  Factors

det N

N

f λ λ λ λ λ λ λ λ λ λ= − = − − − ⋅⋅⋅ −A I


 (6.1.12) 

 
As illustrated in Section 5 for the special case 3N = , we can equate (6.1.4) to (6.1.12), expand the 
products in (6.1.12) and obtain formulas for the invariants in terms of the eigenvalues 1 2, ,..., Nλ λ λ .  
The results of this multiplication can be written2 
 

 
1 2

1 2
1 2

, ,..., 1
1

for   1, 2,...,
j

j
j

N

j k k k
k k k
k k k N

j Nµ λ λ λ
=

≤ < <⋅⋅⋅< ≤

= ⋅⋅⋅ =∑  (6.1.13) 

 

For given dimN = V  and j , it turns out that there are 
( )

!
! !

N
N j j−

 terms in the sum (6.1.13).  It 

follows from (6.1.13) that 
 

 
2 Equation (6.1.13) defines what is known as an elementary symmetric polynomial.  A brief, but good, discussion of 
these polynomials can be found at http://en.wikipedia.org/wiki/Elementary_symmetric_polynomial. 

http://en.wikipedia.org/wiki/Elementary_symmetric_polynomial
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1 1 2

2 1 2 1 3 1 2 3 2 4 2 1

3 1 2 3 1 2 4 1 2 1 3 4 1 3 5 1 3 2 1

1 2

N

N N N N

N N N N N

N N

µ λ λ λ
µ λ λ λ λ λ λ λ λ λ λ λ λ λ λ
µ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

µ λ λ λ

−

− −

= + + ⋅⋅⋅ +
= + + ⋅⋅⋅+ + + + ⋅⋅⋅+ + ⋅⋅⋅ +
= + + ⋅⋅⋅+ + + + ⋅⋅⋅+ + ⋅⋅⋅ +
⋅
⋅
⋅
= ⋅⋅⋅

 (6.1.14) 

 
It is useful to note in passing that equation (6.1.13) and the expanded version equation (6.1.14) 
remain valid if the eigenvalues are not distinct. 
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Section 6.2 The Cayley-Hamilton Theorem 
 
 
 In Section 6.2.1 the idea of a polynomial in : →A V V  was mentioned.  One polynomial of 
importance is the one that was mentioned in Exercise 5.2.1.  This polynomial is the one formed 
from the characteristic polynomial by formally replacing the scalar parameter λ  by the linear 
transformation A  and the introduction of the identity linear transformation in the constant term.  
The resulting theorem of importance involving this polynomial is the Cayley-Hamilton Theorem.  
This theorem was stated without proof in Exercise 5.2.1.  Basically, the Cayley-Hamilton Theorem 
states that a linear transformation : →A V V  obeys its own characteristic equation.  The formal 
statement of the theorem was given in equation (5.2.33), repeated,3 
 
 ( ) ( ) ( )1

1 1
N N

N Nµ µ µ−
−− + − + ⋅⋅⋅+ − + =A A A I 0  (6.2.1) 

 
where the characteristic equation is given by (6.1.4), repeated, 
 
 ( ) ( ) ( ) ( ) ( )1

1 1det N N
N Nf λ λ λ µ λ µ λ µ−
−= − = − + − + ⋅⋅⋅+ − +A I  (6.2.2) 

 
In equations (6.2.1) and (6.2.2) dimN = V .  Note that the polynomial (6.2.1) is identically zero for 
all : →A V V .  The polynomial (6.2.2) is zero for those λ  that are eigenvalues.  The formal 
theorem we shall prove is as follows: 
 
Theorem 6.2.1:  (Cayley-Hamilton). If ( )f λ  is the characteristic polynomial (6.2.2) for a linear 
transformation : →A V V , then 
 

 1
1 1( ) ( ) ( ) ( )N N

N Nf µ µ µ−
−= − + − + ⋅⋅⋅+ − + =A A A A I 0  (6.2.3) 

 
where dimN = V . 
 
Proof:  The proof which we shall now present makes use of equation (1.10.50).4  If adj( )λ−A I  is 
the linear transformation whose matrix is adj p p

q qA λδ −  , where ( , , )p
q j kA M  =  A e e , then by 

(5.25) and (1.10.50) 
 

 (adj( ))( ) ( )fλ λ λ− − =A I A I I  (6.2.4) 

 
3 The polynomial 1

1 1( ) ( ) ( ) ( )N N
N Nf µ µ µ−
−= − + − + ⋅⋅⋅+ − + =A A A A I 0  is an example of an annihilating 

polynomial.  Another such polynomial that is important in linear algebra is the minimum polynomial ( )m A .  Without 
attempting a careful definition here, the minimum polynomial of a linear transformation is the lowest order polynomial 
that annihilates a linear transformation A . 
4 In the case of a three dimensional vector space, equation (6.2.4) is a consequence of equation (4.10.37). 
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By (1.10.48), it follows that adj( )λ−A I  is a polynomial of degree 1N −  in λ .  Therefore, this 
polynomial will always take the form 
 

 1 2
0 1 2 1adj( ) ( ) ( ) ( )N N

N Nλ λ λ λ− −
− −− = − + − + ⋅⋅⋅+ − +A I B B B B  (6.2.5) 

 
where 0 1,..., N−B B  are linear transformations determined by A .  If we now substitute (6.2.5) and 
(6.2.2) into (6.2.4), the result is 
 

 
( )

( ) ( ) ( )( )
1 2

0 1 2 1

1
1 1

( ) ( ) ( ) ( )N N
N N

N N
N N

λ λ λ λ

λ µ λ µ λ µ

− −
− −

−
−

− + − + ⋅⋅⋅+ − + −

= − + − + ⋅⋅⋅+ − +

B B B B A I

I
 (6.2.6) 

 
The next step involves forcing (6.2.6) to hold as an identity for all values of λ .  The results of this 
requirement are 
 

 

0

0 1 1

1 2 2

2 1 1

1

N N N

N N

µ
µ

µ
µ

− − −

−

=
+ =
+ =

⋅
⋅
⋅

+ =

=

B I
B A B I
B A B I

B A B I
B A I

 (6.2.7) 

 
Now we multiply (6.2.7)1 by ( )N−A , (6.2.7)2 by 1( )N−−A , (6.2.7)3 by 2( )N−−A ,…,(6.2.7)k by 

1( )N k− +−A , etc., and add the resulting N  equations, to find 
 

 1
1 1( ) ( ) ( )N N

N Nµ µ µ−
−− + − + ⋅⋅⋅+ − + =A A A I 0  (6.2.8) 

 
which is the desired result.  Note that one can form the trace of (6.2.8) and obtain the earlier result 
(6.1.11)N. 
 
 As a polynomial, (6.2.8) can be factored.  In the case where we list the N  roots as 

1 2, ,..., Nλ λ λ , (6.2.8) factors into the expression 
 

 ( )( )( ) ( )1 2 3

  Factors

N

N

λ λ λ λ− − − ⋅⋅⋅ − =I A I A I A I A 0


 (6.2.9) 
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where the order of the factors is unimportant.  Equation (6.2.9) is suggested by the characteristic 
polynomial written as in equation (5.2.6).  If we wish to recognize the possibility that the 
eigenvalues are not distinct, we can express the factorization of (6.2.8) as5 
 

 ( ) ( ) ( ) ( )1 2 3

1 2 3
Ld d d d

Lλ λ λ λ− − − ⋅⋅⋅ − =I A I A I A I A 0  (6.2.10) 
 

where, as in equation (5.2.26), 1 2 3, , ,..., Ld d d d  are the algebraic multiplicities of each eigenvalue 
and obey 
 

 
1

L

j
j

d N
=

=∑  (6.2.11) 

 
Again, the order of the factors in (6.2.10) is unimportant. 
 

Equations (6.2.7) contain other results.  For example, it follows from (6.2.5) that 
 

 1 adjN− =B A  (6.2.12) 
 
Given (6.2.12) and (6.2.7)4, it follows that 
 

 1 2adj N Nµ − −= −A I B A  (6.2.13) 
 
Given (6.2.13) and the next equation in the sequence of equations (6.2.7), results in the formula 
 

 ( )1 2 1 2 3adj N N N N Nµ µ µ− − − − −= − = − −A I B A I I B A A  (6.2.14) 
 
If this sequence of substitutions is continued through the set (6.2.7), the result is 
 

 1 2
1 2 1adj ( ) ( ) ( )N N

N Nµ µ µ− −
− −= − + − + ⋅⋅⋅+ − +A A A A I  (6.2.15) 

 
Thus, the linear transformation adjA  is expressed in terms of powers of A  and the invariants 

1 2 1, ,..., Nµ µ µ − . 

 
5 For certain linear transformations there are lower order polynomials that are obeyed by A .  The minimum 
polynomial, for example, which was mentioned in the above footnote would take the form  
 

( ) ( ) ( ) ( )1 2 3

1 2 3
Lr r r r

Lλ λ λ λ− − − ⋅⋅⋅ − =I A I A I A I A 0  
 
where 1 j jr d≤ ≤ .  While we shall not prove it here, when 1jr =  for 1, 2,...,j L=  there exists a basis of V  that 

makes the matrix of A  diagonal. 
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 Given (6.2.7), (6.2.12) and (6.2.15), it follows from (6.2.5) that 
 

 

( )( )
( ) ( ) ( ) ( )( )

( ) ( )( )

1 2
0 1 2 1

1 2
1

2 3 2
2 3 4 1

1 2 3
1 2 1

31 2 2
1 1 2

adj( ) ( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

N N
N N

N N

N N
N N N

N N N
N

NN N

λ λ λ λ

λ λ µ

λ µ µ µ µ

µ µ µ

λ µ λ µ λ µ

− −
− −

− −

− −
− − −

− − −
−

−− −

− = − + − + ⋅⋅⋅+ − +

= − + − + −

+ ⋅⋅⋅+ − + − + − + ⋅⋅⋅+ − + −

+ − + − + − + ⋅⋅⋅+

= − + − + − + − + − + −

+

A I B B B B

I I A

I A A A A

A A A I

A A A

( )( )
( )

2 3
1 3 2

1 2 3
1 2 2 1

( ) ( ) ( )

( ) ( ) ( ) ( )

N N
N N

N N N
N N

λ µ λ µ λ µ

λ µ λ µ λ µ λ µ

− −
− −

− − −
− −

⋅⋅ ⋅ + − + − + ⋅⋅⋅+ − + −

+ − + − + − + ⋅⋅⋅+ − +

A

I
  (6.2.16) 
 
The complicated formula (6.2.16) simplifies considerably if the parameter λ  is selected to be an 
eigenvalue of A .  In this case, after (6.1.13) is used to express the fundamental invariants in terms 
of the eigenvalues of A , the result from (6.2.16) is6 
 

 
( ) ( )

( ) ( )( ) ( )

1

1 1 1

adj
N

j k
k
k j

j j N

λ λ

λ λ λ λ

=
≠

− +

− = −

= − ⋅⋅⋅ − − ⋅⋅⋅ −

∏A I I A

I A I A I A I A

 (6.2.17) 

 
for the case where jλ λ= , the thj  eigenvalue in the set 1 2, ,..., Nλ λ λ , 
 
 The steps from (6.2.16) to (6.2.17) can best be illustrated if we make the special choice 

1λ λ=  and use (6.1.13) or, equivalently, (6.1.14) to evaluate the coefficients in the polynomial of 
linear transformations (6.2.16)2.  The sequence of formulas that result are 
 

 
6 A different derivation of (6.2.17) can be found in Elementary Matrices by Frazer, Duncan and Collar, Cambridge 
University Press, 1938, Section 3.8.  In the case of repeated roots of the characteristic polynomial such as the case 
(5.2.26), this reference also derives the identity 
 

( ) ( ) ( )1

1

adj1 for   1, 2,..., 1
!

j k

j

p Ld p d
j k jp

k
k l

d
p d

p d
λ λ

λ
λ λ

λ
− −

== ≠

−
= − − = −∏

I A
A I A I  

where jd  is the algebraic multiplicity of the eigenvalue jλ and 2jd ≥ . 
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( )( )

( )

( ) ( ) ( )

1 2 1 2
1 2 1 2

1 2 1 2

1 1 1 1 2
2

2
1 1 1 2 1 1 1 2

1
2 , 1 , 2

1 2

1 2 3
1 1 1 2 1 2 1 1

2 3
1 1 1 1

( ) ( )

( ) ( ) ( ) ( )

N

N k
k

N N N

k k k k k
k k k k k

k k N k k N

N N N
N N

N N

λ µ λ λ λ λ λ

λ µ λ µ λ λ µ µ

λ λ λ λ λ λ

λ µ λ µ λ µ λ µ

λ λ µ λ

=

= = =
≤ < ≤ ≤ < ≤

− − −
− −

− −

− + = − + + + ⋅⋅⋅+ =

− + − + = − − + +

 = − + = 
 

⋅
⋅
⋅

− + − + − + ⋅⋅⋅+ − +

= − − + − +

∑

∑ ∑ ∑

( )

( )
1 2 3 2 1 2 3 2 1

1 2 3 2 1 2 3 2 1
1 2 3 2 1 2 3 2 1

1 2 3 2 1
1 2 3 2

2 1

1
, , , 2 , , , , 1

2 1

, , , ,

N N N
N N N

N N N

N N
N

N N

N N

k k k k k k k k k
k k k k k k k k k

k k k k N k k k k k N

k k k k k
k k k k k

µ µ

λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ

− − −

− − −
− − −

− −

−

− −

⋅⋅⋅ = ⋅⋅⋅ =
≤ < < <⋅⋅⋅< ≤ ≤ < < <⋅⋅⋅< < ≤

⋅⋅⋅

⋅ ⋅ ⋅ + +

 
 = − ⋅⋅⋅ + ⋅⋅⋅  
 

= ⋅⋅⋅

∑ ∑

1
1 2 3 2 1

2 3 4 1
2

2
N

N N

N

N N

k k k k k N

λ λ λ λ λ
−

− −

−
=

≤ < < <⋅⋅⋅< < ≤

= ⋅⋅⋅∑

  (6.2.18) 
 
If these formulas are used in (6.2.16)2, the result can be seen to factor into the form (6.2.17) for 

1jλ λ= . 
 
 In Exercise 4.10.5, a formula was asserted for the derivative of a linear transformation that 
depends upon a parameter.  This formula, equation (4.10.39), was stated in the context of three 
dimensional vector spaces but it was asserted that it holds for vector spaces of arbitrary finite 
dimension.  If we accept this generalization, it follows from (6.2.2) that7 
 

 ( )1
0

detN
d

d λ

µ λ
λ−

=

= − −A I  (6.2.19) 

 
If we utilize equation (4.10.39) to evaluate the derivative in (6.2.19), it follows that8 
 

 1 tr(adj )Nµ − = A  (6.2.20) 
 

7 Equation (6.2.19) is a special case of the formula which also follows from (6.2.2) that  
 

( )
( ) ( )

0

1
det

!

N j N j

j N j

d
N j d λ

µ λ
λ

− −

−
=

−
= −

−
A I  

 
8 A special case of equation (6.2.20) was given in footnote 3 of Section 5.2. 



484  Chap. 6     •        ADDITIONAL TOPICS EIGENVALUE PROBLEMS 

 
If the formula (6.2.14) is used to calculate the right side of (6.2.20), the result is 
 

 { }1 2
1 1 2

1 tr( ) tr( ) tr( )
1

N N
N NN

µ µ µ− −
− −= − − + − + ⋅⋅⋅+ −

−
A A A  (6.2.21) 

 
which is the result obtained earlier in equation (6.1.11)N-1. 
 
 
Exercises 
 
6.2.1  Consider the linear transformation whose matrix is given by (5.6.65), repeated, 
 

 

0 1 0 0
2 0 1 0

0 0 0 1
1 0 2 0

A

 
 − =
 
 − 

 (6.2.22) 

 
In Section 5, we showed that the eigenvalues of this matrix are given by (5.6.68), repeated, 
 

 

1

2

3

4

3

3

i

i
i

i

λ

λ
λ
λ

= −

=
= −
=

 (6.2.23) 

 
Show that  
 

 ( )1

3 1 3 1

3 3 3 3
adj I

3 1 3 1

3 3 3 3

i i

i i
A

i i

i i

λ

 − −
 
− − 

− =  
− − 

 − − 

 (6.2.24) 

 
Confirm (6.2.24) by direct calculation of the left hand side and, also, by use of the identity (6.2.17). 
 
6.2.2  Consider the linear transformation whose matrix is given by (5.3.45), repeated, 
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1 1 1
0 1 1
0 0 1

A
 
 =  
  

 (6.2.25) 

 
In Section 5, we showed that the eigenvalues of this matrix are given by (5.3.47), repeated, 
 

 1 1λ =  (6.2.26) 
 
and it has an algebraic multiplicity of 3.  Show that  
 

 ( )1

0 0 1
adj I 0 0 0

0 0 0
A λ

 
 − =  
  

 (6.2.27) 

 
Confirm (6.2.27) by direct calculation of the left hand side and, also, by use of the identity (6.2.17). 
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Section 6.3. The Exponential Linear Transformation 
 
 
 The exponential linear transformation is one example of a function of a linear 
transformation.  In other words, given a linear transformation : →A V V , the exponential 
function, which we shall define, is a function g that maps ( );∈A L V V  into a linear 

transformation ( )g A .  The exponential linear transformation is an example of an analytical 
function of a linear transformation : →A V V  .  These are functions that can be expressed as the 
series 
 

 ( )
0

n
n

n
g β

∞

=

=∑A A  (6.3.1) 

 
Example 6.3.1:  A special case of equation (6.3.1) is the polynomial of a linear transformation 

: →A V V  defined by 
 
 ( ) 2 32 3g = + + +A I A A A  (6.3.2) 
 
The exponential linear transformation is a special case of (6.3.1) defined by 
 

 2 3

0

1 1 1
2! 3! !

n

n
e

n

∞

=

= + + + + ⋅⋅⋅ = ∑A I A A A A  (6.3.3) 

 
The motivation for this definition is the power series representation of the ordinary exponential 
function eλ .  Recall that this series takes the form 
 

 2 3

0

1 1 11
2! 3! !

n

n
e

n
λ λ λ λ λ

∞

=

= + + + + ⋅⋅⋅ = ∑  (6.3.4) 

 
Equation (6.3.3) is formally obtained from (6.3.4) by replacing λ  with A  and the constant term by 
I .  We shall often encounter the matrix exponential in the form 
 

 2 2 3 3

0

1 1 1
2! 3! !

t n n

n
e t t t t

n

∞

=

= + + + + ⋅⋅⋅ = ∑A I A A A A  (6.3.5) 

 
which you obtain from the definition by the substitution t→A A  
 

The definition (6.3.3) and its equivalent definition (6.3.5) yield the following properties of 
the exponential linear transformation: 
 

a)  
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 e =0 I  (6.3.6) 
 

b)  
 
 e eλ λ=I I  (6.3.7) 
 
The proof of (6.3.7) follows from (6.3.5) and (6.3.4). 
 

c)  
 
 ( )t s t se e e+ =A A A  (6.3.8) 
 
The proof of (6.3.8) involves forming ( )t se +A  from the definition (6.3.5) as follow 
 

 ( ) 2 2 3 3

0

1 1 1( ) ( ) ( ) ( )
2! 3! !

t s n n

n
e t s t s t s t s

n

∞
+

=

= + + + + + + + ⋅⋅⋅ = +∑A I A A A A  (6.3.9) 

 
Next, we can again use the definition (6.3.5) and form the product 
 

 2 2 3 3 2 2 3 31 1 1 1
2! 3! 2! 3!

t se e t t t s s s  = + + + + ⋅⋅⋅ + + + + ⋅⋅⋅  
  

A A I A A A I A A A  (6.3.10) 

 
The algebra is not pretty, but if (6.3.10) is expended and compared to (6.3.8) the asserted result is 
obtained. 
 

d)  
 
 ( ) 1t te e

− −=A A  (6.3.11) 
 
This result follows from (6.3.6) and (6.3.8) by the choice s t= −  in (6.3.8). 
 

e)  
 
 ( )   if    t t te e e= =A+B A B AB BA  (6.3.12) 
 
The proof of (6.3.12) follows by use of the definition (6.3.5) to form both sides of (6.3.12).  The 
next step is to expand the result and utilize the given condition =AB BA  
 

f) If A  is given by the product 
 
 1−=A TBT  (6.3.13) 
 
then 
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 1n n −=A TB T  (6.3.14) 
 
and it follows from (6.3.3) that 
 
 1e e −=A BT T  (6.3.15) 
 

g) As introduced in Section 3.2, if { }1 2, ,..., Ne e e  is a basis for V , the matrix of 

: →A V V  with respect to the basis is written ( ), ,k jM A e e .  It follows from equation (3.4.19) and 
the definition (6.3.3) that 
 
 ( ) ( ), ,, , k jM

k jM e e= A e eA e e  (6.3.16) 
 
In words, (6.3.16) says simply that the matrix of the exponential linear transformation is the 
exponential linear transformation of the matrix. 
 

h) If, for example, the linear transformation : →A V V , has N  linearly independent 
eigenvectors { }1 2, ,..., Nv v v , then, as explained in Section 5.1, the matrix of A  with respect to this 
basis takes the diagonal form (5.19), repeated, 
 

 ( )

1

2

3

0 0 0
0 0 0
0 0 0

, ,

0 0 0

j j

N

D M

λ
λ

λ

λ

⋅ ⋅ 
 ⋅ ⋅ 
 

= =  ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅
 

⋅ ⋅  

A v v  (6.3.17) 

 
It is elementary to see that 
 

 

1

2

3

0 0 0
0 0 0
0 0 0

0 0 0

n

n

n
n

n
N

D

λ
λ

λ

λ

 ⋅ ⋅
 ⋅ ⋅ 
 

=  
⋅ ⋅ ⋅ ⋅ ⋅ 

 ⋅ ⋅ ⋅ ⋅ ⋅
 

⋅ ⋅  

 (6.3.18) 

 
As a result, the definitions (6.3.3) and (6.3.4) combine to yield 
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⋅ ⋅  

∑

∑

∑∑

∑

 (6.3.19) 

 
i) If we return to the case where { }1 2, ,..., Ne e e  is an arbitrary basis for V  and continue 

to assume A  has N  linearly independent eigenvectors { }1 2, ,..., Nv v v , then the matrix of A  with 

respect to { }1 2, ,..., Nv v v  is connected to the matrix of A  with respect to { }1 2, ,..., Ne e e  by (5.1.10), 
repeated, 
 
 ( ) ( )1, , , ,j k j kM T M T−=A v v A e e  (6.3.20) 
 
where T  is the transition matrix.  Given (6.3.13), (6.3.15), (6.3.16) and (6.3.19), it follows that 
 

 

( ) ( )

1

2

3

, , 1

1

, ,

0 0 0
0 0 0
0 0 0

0 0 0

j k

N

M D
k jM e e Te T

e
e

e
T T

e

λ

λ

λ

λ

−

−

= =

 ⋅ ⋅
 ⋅ ⋅ 
 

=  
⋅ ⋅ ⋅ ⋅ ⋅ 

 ⋅ ⋅ ⋅ ⋅ ⋅
 

⋅ ⋅  

A e eA e e

 (6.3.21) 

 
In the special case where A  has N  distinct eigenvalues and, thus, N linearly independent 
eigenvectors, equation (6.3.21) provides a useful way to actually calculate the exponential linear 
transformation.  The disadvantage of (6.3.21) is that it requires the calculation of the N  
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eigenvectors in order to construct the transition matrix T .  In cases where the eigenvalues of A  are 
not distinct, the situation is more complicated.  For this reason, it is useful to outline an alternate 
way to determine the exponential linear transformation.  This alternate method has the advantage, 
when applied to the case where the eigenvalues are distinct, that it does not need an explicit 
calculation of the eigenvectors. 
 
 The Cayley-Hamilton theorem, equation (6.2.8), offers a method to simplify the series 
expansion (6.3.3).  Given this simplification, we can then develop a method of calculating the 
exponential linear transformation.  As a first step, it is helpful to illustrate this simplification by an 
example. 
 
Example 6.3.2:  Consider the polynomial defined by (6.3.2) and assume for the moment that we 
are dealing with a vector space V  such that dim 2N = =V .  In this case, the Cayley-Hamilton 
Theorem (6.2.3) specializes to 
 
 2

1 2µ µ− + =A A I 0  (6.3.22) 
 
This relationship reduces (6.3.2) to 
 

 

( )
( ) ( )
( ) ( )

( ) ( )

2 3

1 2 1 2

1 2 1 1 2 2

2
2 1 2 1 2 1

2 3

2 3

2 3

2 3 1 3

g

µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ

= + + +

= + + − + −

= + + − + − −

= − − + + − +

A I A A A

I A A I A A I

I A A I A I A

I A

 (6.3.23) 

 
Because the degree of the polynomial was greater than dim 2N = =V , the terms explicit in 2A  
and 3A  can be eliminated by use of the Cayley-Hamilton result (6.3.22). 
 

The point illustrated in Example 6.2.2 can be applied to (6.3.3).  Equation (6.2.8), written in 
the form 
 
 ( ) ( ) 1

1 1( )N N
N Nµ µ µ−
−− = − − − ⋅⋅⋅− − −A A A I  (6.3.24) 

 
can be used to eliminate the term in (6.3.3) corresponding to n N=  in terms of lower powers of A
.  The next term in the series, the one with the factor 1N+A , can be eliminated in terms of lower 
powers of A  because we can write 1N N+ =A AA  and again use (6.3.24).  If we continue this 
process, the series (6.3.3) always takes the form 
 

 ( )
1

1 2
0

, ,...,
N

n
n N

n
e α µ µ µ

−

=

=∑A A  (6.3.25) 

 
where the coefficients 0 1 2 1, , ,..., Nα α α α −  are complicated functions of the invariants.  Given a linear 
transformation : →A V V , the problem of expressing its exponential as a function in the form 
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(6.3.25) reduces to finding a method to determine the functions 0 1 2 1, , ,..., Nα α α α −  in the polynomial 
(6.3.25).  It is this calculation that we shall now explain. 
 
 Because we do not have anything equivalent to the Cayley-Hamilton theorem for scalars, 
i.e. for 1N = , we have no obvious way to reduce (6.3.4) to a polynomial.  We can, however, 
establish such a result in an important special case.  Given (6.2.2), by long division, (6.3.4) can 
always be written 
 

 ( ) ( ) ( )
0

1
!

n

n
e Q f R

n
λ λ λ λ λ

∞

=

= = +∑  (6.3.26) 

 
The remainder from the division, ( )R λ , is a polynomial of degree 1 dim 1N − = −V .  The quotient 

( )Q λ  is an infinite series in λ  obtained by dividing the series 
0

1
!

n

n n
λ

∞

=
∑  by the characteristic 

polynomial ( )f λ .  Given the form of the series (6.3.4) for eλ  and the series (6.3.3) for eA , it is 
also true from (6.3.26) that  
 

 ( ) ( ) ( )
0

1
!

n

n
e Q f R

n

∞

=

= = +∑A A A A A  (6.3.27) 

 
However, the Cayley-Hamilton Theorem (6.2.3) tells us that ( )f =A 0 .  Therefore (6.3.27) 
reduces to 
 

 ( ) ( )
1

1 2
0 0

1 , ,...,
!

N
n n

n N
n n

e R
n

α µ µ µ
∞ −

= =

= = =∑ ∑A A A A  (6.3.28) 

 
where (6.3.25) has been used.  The explicit form of the remainder as a function of A  given in 
(6.3.28), the formal similarity of (6.3.3) and (6.3.4) and the result (6.3.26) combine to give an 
explicit form of the remainder as a function of the scalar λ .  This explicit form is 
 

 ( ) ( )
1

1 2
0

, ,...,
N

n
n N

n
R λ α µ µ µ λ

−

=

=∑  (6.3.29) 

 
This result allow us to write (6.3.26) as 
 

 ( ) ( ) ( )
1

1 2
0 0

1 , ,...,
!

N
n n

n N
n n

e Q f
n

λ λ λ λ α µ µ µ λ
∞ −

= =

= = +∑ ∑  (6.3.30) 

 
The utility of (6.3.30) arises when the parameter λ  is an eigenvalue of the linear transformation 

: →A V V .  In this special case, λ  is a root of the characteristic equation and (6.3.30) reduces to 
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 ( )
1

1 2
0 0

1 , ,...,    for  an eigenvalue of 
!

N
n n

n N
n n

e
n

λ λ α µ µ µ λ λ
∞ −

= =

= = =∑ ∑ A  (6.3.31) 

 
If the linear transformation : →A V V  has dimN = V  distinct eigenvalues 1 2, ,..., Nλ λ λ , then we 
can apply (6.3.31) N  times and obtain the system of equations 
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( )

( )

1

2

1

1 2 1
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1
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n N
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e
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α µ µ µ λ
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=

−

=

−

=

=
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⋅
⋅
⋅
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∑

∑

∑

 (6.3.32) 

 
This set of equations, when expressed as a matrix equation, takes the form 
 

 

1

2

3

2 1
01 1 1

2 1
12 2 2

2 1
23 3 3

2 1
1

1
1
1

1 N

N

N

N

N
NN N N

e
e
e

e

λ

λ

λ

λ

αλ λ λ
αλ λ λ
αλ λ λ

αλ λ λ

−

−

−

−
−

   ⋅ ⋅  
    
    
    

=    
⋅ ⋅ ⋅ ⋅    
    ⋅ ⋅ ⋅ ⋅
    

         

 (6.3.33) 

 
The matrix of coefficients is the transpose of the Vandermondian matrix that was introduced in 
Section 1.10 and again in Section 5.4.  Because the matrix and the transpose have the same 
determinant, the determinant of the matrix of coefficients, as explained in Section 5.4, is 
 

 ( )

2 1
1 1 1

2 1
2 2 2

2 1
3 3 3

, 1

2 1

1
1
1

det

1

N

N

N N

i j
i j
i j

N
N N N

λ λ λ
λ λ λ
λ λ λ

λ λ

λ λ λ

−

−

−

=
>

−

 ⋅ ⋅
 
 
 

= − 
⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅
 
  

∏  (6.3.34) 

 
In the case under discussion, we have assumed the eigenvalues are distinct, thus the determinant 
(6.3.34) is nonzero, and the system (6.3.33) has a solution.  This solution can then be used along 
with (6.3.28) to determine the exponential solution. 
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Example 6.3.3:  If we examine the case where 2N =  and the two eigenvalues are distinct, the 
system (6.3.32) reduces to 
 

 
( ) ( )
( ) ( )

1

2

0 1 2 1 1 2 1

0 1 2 1 1 2 2

, ,

, ,

e

e

λ

λ

α µ µ α µ µ λ

α µ µ α µ µ λ

= +

= +
 (6.3.35) 

 
and the solution is 
 

 
( )

( )

1 2

2 1

2 1
0 1 2

2 1

1 1 2
2 1

,

,

e e

e e

λ λ

λ λ

λ λα µ µ
λ λ

α µ µ
λ λ

−
=

−

−
=

−

 (6.3.36) 

 
Given (6.3.36) and our assumption 2N = , (6.3.28) reduces to 
 

 

( ) ( )
1 2 2 1

1 2

0 1 2 1 1 2

2 1

2 1 2 1

2 1

1 2 2 1

, ,e

e e e e

e e

λ λ λ λ

λ λ

α µ µ α µ µ

λ λ
λ λ λ λ

λ λ
λ λ λ λ

= +

− −
= +

− −
− −

= +
− −

A I A

I A

A I A I

 (6.3.37) 

 
Example 6.3.3 presumes the two eigenvalues are distinct.  If this is not the case, i.e., if 1 2λ λ= , the 
logic that led to (6.3.35) only produces a single equation that connects the two unknowns 

( )0 1 2,α µ µ  and ( )1 1 2,α µ µ .  The key to how the argument above is modified in this case is 
equation (6.3.26) and the characteristic equation in the case of multiple roots, equation (5.2.26).  As 
(5.2.26) illustrates, the polynomial ( )f λ  vanishes at, for example, 1λ λ= .  In addition, for the root 

1λ λ= , 
 

 ( )

1

10 for   1, 2,..., 1
j

j

d f
j d

d
λ λ

λ
λ

=

= = −  (6.3.38) 

 
Equations (6.3.38) and (6.3.30) combine to yield 
 

 ( )1

1

1

1 2 1
0

, ,..., for   1, 2,..., 1
j N

n
n Nj

n

de j d
d

λ

λ λ

α µ µ µ λ
λ

−

= =

 = = − 
 
∑  (6.3.39) 

 
with similar results for each of the other repeated roots. 
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 In order to be more explicit, consider the case where the linear transformation : →A V V  
has L  distinct eigenvalues 

1 1

1 1 1 2, ,..., , ,..., L

d N d

λ λ λ λ λ
−

 

, where 1d  is the algebraic multiplicity of the 

repeated root.  For this case, equations (6.3.39) yield the 1 1d −  equations 
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( )( ) ( ) ( )
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, ,..., 2 , ,..., 1 , ,...,
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N
N N N N

N
N N N
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N N

e N

e N N

e N N N d
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α µ µ µ α µ µ µ λ α µ µ µ λ

α µ µ µ α µ µ µ λ

α µ µ µ λ

−
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−
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−
−

= + + ⋅⋅⋅ + −

= + ⋅⋅⋅+ − −

⋅
⋅
⋅

= − − ⋅⋅⋅ − +

 (6.3.40) 

 
For the distinct roots 

1

1 2, ,..., L

N d

λ λ λ
−



, we have the 1 1N d− +  equations 
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∑

∑

∑

 (6.3.41) 

The N  equations (6.3.40) and (6.3.41) yield the matrix equation for the N unknowns 
0 1 1, ,..., Nα α α −  
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 (6.3.42) 

 
The matrix of coefficients is the (transpose) of a matrix known as a confluent Vandermondian 
matrix.  It can be shown to be nonsingular, thus it determines the unknowns 0 1 1, ,..., Nα α α − .  As an 
illustration of the repeated root case, consider the following example: 
 
Example 6.3.4:  We again examine the case where 2N =  except in this case, the two eigenvalues 
are not distinct.  The system (6.3.32) yields the single equation 
 
 ( ) ( )1

0 1 2 1 1 2 1, ,eλ α µ µ α µ µ λ= +  (6.3.43) 
 
The second equation follows from (6.3.39).  In this case it yields 
 
 ( )1

1 1 2,eλ α µ µ=  (6.3.44) 
 
Therefore, from (6.3.43) 
 
 ( ) ( ) 1

0 1 2 1, 1 eλα µ µ λ= −  (6.3.45) 
 
Given (6.3.44), (6.3.45) and our assumption 2N = , (6.3.28) reduces to 
 

 

( ) ( )
( )

( )( )
1 1

1

0 1 2 1 1 2

1

1

, ,

1

e

e e

e

λ λ

λ

α µ µ α µ µ

λ

λ

= +

= − +

= + −

A I A

I A

I A I

 (6.3.46) 

 
Example 6.3.5:  Consider the linear transformation defined in Example 5.3.1.  Namely, the linear 
transformation : →A V V  defined by 
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1 1 2 3

2 1 3

3 1 2 3

4
2 4

5

= + +
= −
= − + +

Ae e e e
Ae e e
Ae e e e

 (6.3.47) 

 
where { }1 2 3, ,e e e  is a basis for V .  The eigenvalues are given by equation (5.3.4), repeated, 
 

 
1

2

3

1
2
3

λ
λ
λ

=
=
=

 (6.3.48) 

 
Because the three eigenvalues are distinct, the exponential linear transformation is given by 
specializing (6.3.28).  The result is 
 
 ( ) ( ) ( ) 2

0 1 2 3 1 1 2 3 2 1 2 3, , , , , ,e α µ µ µ α µ µ µ α µ µ µ= + +A I A A  (6.3.49) 
 
where the coefficients 0 1 2, ,α α α  are determined from (6.3.31).  When (6.3.31) is specialized in this 
case, the results are 
 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
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2
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e

e

e
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λ

α µ µ µ α µ µ µ λ α µ µ µ λ

α µ µ µ α µ µ µ λ α µ µ µ λ

α µ µ µ α µ µ µ λ α µ µ µ λ

= + +

= + +

= + +

 (6.3.50) 

 
where the eigenvalues are given by (6.3.48).  If (6.3.48) is used, the solution of (6.3.50) turns out to 
be 
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( )
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1 1 1
0 1 2 3

2 2
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3 3
2 1 2 3

2 3

2 3

2 3

3 3 1, , 1 1 1
5 3, , 1 2 4 4
2 2
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3 3 6.0732
5 34 7.3678
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4.01291 1
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e e
e e
e e

e e e

e e e

e e e

α µ µ µ
α µ µ µ
α µ µ µ

−

 
 −                = = − −                      
 
 

 
 − +

 
 = − + − = − 

  
 − +
 





 

 (6.3.51) 

 
Therefore, (6.3.49) reduces to 
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 26.0732 7.3678 4.0129e = − +A I A A  (6.3.52) 
 
If we utilize (6.3.16) and the matrix representation of the linear transformation defined by (6.3.47), 
equation (5.3.2), it follows from (6.3.52) that 
 

 

1 2 1 2
1 0 1
4 4 5

1 0 0 1 2 1 1 2 1
6.0732 0 1 0 7.3678 1 0 1 4.0129 1 0 1

0 0 1 4 4 5 4 4 5

5.3078 9.3415 8.6836
12.6965 1.9525 8.6836
50.7859 18.6831 37.4528

e

− 
 
 
 − 

− −     
     = − +     
     − −     

− − 
 = − 
 − 

 (6.3.53) 

 
Example 6.3.6:  The linear transformation in Example 5.3.2 has the eigenvalues 
 

 1

2

3
3

λ
λ
= −
=

 (6.3.54) 

 
where the algebraic multiplicity for 1λ  is 1 and that for 2λ  is 2 .  The exponential linear 
transformation is given by 
 
 ( ) ( ) ( ) 2

0 1 2 3 1 1 2 3 2 1 2 3, , , , , ,e α µ µ µ α µ µ µ α µ µ µ= + +A I A A  (6.3.55) 
 
where the coefficients 0 1 2, ,α α α  are determined from (6.3.31) and, because of the repeated root, 
(6.3.39).  When (6.3.31) is specialized in this case, the results are the two equations 
 

 
( ) ( ) ( )
( ) ( ) ( )

1

2

2
0 1 2 3 1 1 2 3 1 2 1 2 3 1

2
0 1 2 3 1 1 2 3 2 2 1 2 3 2

, , , , , ,

, , , , , ,

e

e

λ

λ

α µ µ µ α µ µ µ λ α µ µ µ λ

α µ µ µ α µ µ µ λ α µ µ µ λ

= + +

= + +
 (6.3.56) 

 
The third equation is our set follows from (6.3.39).  The result is 
 
 ( ) ( )2

1 1 2 3 2 1 2 3 2, , 2 , ,eλ α µ µ µ α µ µ µ λ= +  (6.3.57) 
 
Given the numerical values in (6.3.54), the solution of (6.3.56) and (6.3.57) is given by 
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( )
( )
( )

1 3 3
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1 1 2 3

3 3
2 1 2 3

3 3

3 3

3 3

1 3 3
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e e
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−

−
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 − 
   −     
        = = −        
              

 −
  

 − 
− 

 = − = 
 
 +
  

393
2.791

 
 
 
  

 (6.3.58) 

 
Therefore, (6.3.55) reduces to 
 
 215.052 3.3393 2.791e = − + +A I A A  (6.3.59) 
 
If we utilize (6.3.16) and the matrix representation of the linear transformation defined by (5.3.25), 
equation (5.3.26), it follows from (6.3.59) that 
 

 

1 2 2 2
2 1 2

2 2 1

1 0 0 1 2 2 1 2 2
15.052 0 1 0 3.3393 2 1 2 2.791 2 1 2

0 0 1 2 2 1 2 2 1

13.4070 6.6786 6.6786
6.6786 13.4070 6.6786

6.6786 6.6786 13.4070

e

− 
 − 
  

− −     
     = − + − + −     
          

− 
 = − 
  

 (6.3.60) 

 
 
Exercises 
 
6.3.1  Show that the determinant of the exponential linear transformation obeys 
 
 trdet e e=A A  (6.3.61) 
 
6.3.2 Determine the exponential linear transformation of the linear transformation defined in 
Example 5.3.3 of Section 5.3. 
 
Answer: 
 
 ( )21.3591e = +A I A  (6.3.62) 
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Section 6.4 More About the Exponential Linear Transformation 
 
 
 In the case when there the eigenvalues are distinct, embedded in the calculations utilizing 
(6.3.28) and (6.3.32) is a somewhat more elegant way to calculate the exponential matrix.  The 
essential fact that allows this more elegant formula to be obtained is a result known as the Lagrange 
Interpolation Formula.  Lagrange interpolation was mentioned in Exercise 2.4.2 and, later, in 
Example 2.6.3.  The essentials of the derivation of this formula begins with a polynomial of degree 

1N −  that we shall write simply 
 
 ( ) 2 1

0 1 2 1
N

Nf x x x xα α α α −
−= + + + ⋅⋅⋅+  (6.4.1) 

 
The idea is to calculate the coefficients 0 1 2 1, , ,..., Nα α α α −  from knowledge of the values 

( ) ( ) ( )1 2, ,..., Nf x f x f x at N  distinct points 1 2, ,..., Nx x x .  If (6.4.1) is evaluated at these points, the 
coefficients 0 1 2 1, , ,..., Nα α α α −  are the solution of 
 

 

( )
( )
( )

( )

2 1
0 11 1 1

2 1
1 22 2 2

2 1
2 23 3 3

2 1
1

1
1
1

1

N

N

N

N
N NN N N

f xx x x
f xx x x
f xx x x

f xx x x

α
α
α

α

−

−

−

−
−

  ⋅ ⋅  
    ⋅ ⋅     
    ⋅ ⋅

=     ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅     
    ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅
    

⋅ ⋅         

 (6.4.2) 

 
If we were actually to calculate the coefficients we are led again to the solution of an equation of 
the form (6.3.33).  In this case, however, the polynomial is formally rearranged such that the 
polynomial (6.4.1) is written 
 

 ( ) ( ) ( )2 1
0 1 2 1

1

N
N

N j j
j

f x x x x l x f xα α α α −
−

=

= + + + ⋅⋅⋅+ =∑  (6.4.3) 

 
where the quantities ( )jl x , for 1, 2,...,j N= , are 1N −  degree polynomials to be determined.  One 
obvious property that follows from (6.4.3) is 
 

 ( )
1 if  
0 if  j k

j k
l x

j k
=

=  ≠
 (6.4.4) 

 
These functions are solutions of 
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( )
( )
( )

( )

1

1 2 3 2
2 2 2 2 2
1 2 3 3

1 1 1 1 1
1 2 3

1 1 1 1 1

N

N

N N N N N
N N

l x
x x x x l x x
x x x x l x x

x x x x l x x− − − − −

⋅ ⋅     
    ⋅ ⋅     
    ⋅ ⋅

=    ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    
    ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
    

⋅ ⋅        

 (6.4.5) 

 
Equation (6.4.5) follows from the multiplication of (6.4.2) by the matrix 

( ) ( ) ( ) ( )1 2 3 Nl x l x l x l x⋅ ⋅   , making use of (6.4.3) to eliminate ( ) ( )
1

N

j j
j

l x f x
=
∑  from the 

result and forcing the result to hold as an identity in the coefficients 0 1 2 1, , ,..., Nα α α α − .  Given what 
we know about the determinant of the Vandermondian matrix, equation (6.3.34), and Cremers rule, 
equation (1.11.6), we can write the solution for ( )1l x , for example, as 
 

 ( )

2 3
2 2 2 2

2 3

1 1 1 1
2 3

1

1 2 3
2 2 2 2
1 2 3

1 1 1 1
1 2 3

1 1 1 1

1 1 1 1

N

N

N N N N
N

N

N

N N N N
N

x x x x
x x x x

x x x x
l x

x x x x
x x x x

x x x x

− − − −

− − − −

⋅ ⋅
⋅ ⋅
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅
=

⋅ ⋅
⋅ ⋅
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

 (6.4.6) 

 
with similar formulas for the other functions ( )jl x , for 2,...,j N= .  The two determinants in 
(6.4.6) can be evaluated by the formula (6.3.34) to yield 
 

 ( )

( )

( )

( )( ) ( )
( )( ) ( )

1
1 2 3

1
1 2 1 3 1

1
1
1

N

k
k
k N
N

N
k

k
k

x x
x x x x x x

l x
x x x x x xx x

=
≠

=
≠

−
− − ⋅⋅⋅ −

= =
− − ⋅⋅⋅ −−

∏

∏
 (6.4.7) 
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The general expression for the functions ( )jl x , for 1, 2,...,j N=  follows by a similar argument and 
is 
 
 

 ( )

( )

( )
( )
( )

( )
( )

( )
( )

( )
( )

1
1 11

1 1 1

1

N

k
k

j jk j N
j N

j j j j j j N
j k

k
k j

x x
x x x xx x x x

l x
x x x x x x x xx x

=
− +≠

− +

=
≠

−
− −− −

= = ⋅⋅⋅ ⋅ ⋅ ⋅
− − − −−

∏

∏
 (6.4.8) 

 
Equations (6.4.8) and (6.4.3)2 combine to yield the Lagrange Interpolation Formula 
 

 ( ) ( ) ( ) ( )
( )

( )

1

1 1

1

N

k
kN N
k j

j j j N
j j

j k
k
k j

x x

f x l x f x f x
x x

=
≠

= =

=
≠

−

= =
−

∏
∑ ∑

∏
 (6.4.9) 

 
 Equation (6.4.9) is an identity for the 1N −  degree polynomial (6.4.1).  Given the duality 
between polynomials and polynomials of linear transformations, we can apply (6.4.9) to the 
polynomial (6.3.28) and write 
 

 

( )

( )

1

1

1

j

N

k
kN
k j

N
j

j k
k
k j

e eλ

λ

λ λ

=
≠

=

=
≠

−

=
−

∏
∑

∏
A

A I

 (6.4.10) 

 
Equation (6.4.10) is a special case of a result known as Sylvester’s Theorem.9  Equation (6.3.37)3, a 
result that was derived without the use of (6.4.10), is of the same form.  The point is that the results 
in Section 6.3 contain results like (6.4.10).  They are simply not manipulated into the form (6.4.10)
.10 
 

 
9 See, for example, Elementary Matrices by Frazer, Duncan and Collar, Cambridge University Press, 1938, Section 3.9. 
10 Sometimes equation (6.2.17) is used to write (6.4.10) in the equivalent form 
 

( )
( )1

1

adj
j

N
j

N
j

k j
k
k j

e eλ λ

λ λ=

=
≠

−
=

−
∑

∏
A

A I
 

 



504  Chap. 6     •        ADDITIONAL TOPICS EIGENVALUE PROBLEMS 

As explained, (6.4.10) assumes that the eigenvalues are distinct.  We shall not give the 
generalization of (6.4.10) to the multiple eigenvalue case.11  It is useful to note in passing that in the 
special case where a linear transformation has a single eigenvalue λ , the exponential matrix turns 
out to be 
 

 ( ) ( ) ( ) ( ) ( )2 3 11 1 1
2! 3! 1 !

Ne e
N

λ λ λ λ λ − 
= + − + − + − + ⋅⋅⋅+ −  − 

A I A I A I A I A I  (6.4.11) 

 
Equation (6.3.46) is a special case of (6.4.11).  The Exercises below relate to the problem of 
finding the exponential matrix in cases of multiple eigenvalues. 
 
 
Exercises 
 
6.4.1  In this exercise, we shall develop the modification of Sylvester’s Theorem, equation (6.4.10), 
in the case where 3N =  that is appropriate for the case where the characteristic polynomial takes 
the form 
 
 ( ) ( ) ( ) ( )2

1 2detf λ λ λ λ λ λ= − = − −A I  (6.4.12) 
 
In other words, the first eigenvalue has algebraic multiplicity of two and the other eigenvalue has 
algebraic multiplicity of one.  The first step is to find a generalization of the Lagrange interpolation 
formula to replace (6.4.9).  If ( )f x  is the quadratic 
 
 ( ) 2

0 1 2f x x xα α α= + +  (6.4.13) 
 
and we are given two values ( )1f x  and ( )2f x  for distinct values of 1x  and 2x .  In order to 

complete the interpolation based upon (6.4.13), we are also given the slope, ( )1'f x , at 1x .  As with 
the derivation of (6.3.42), these conditions and (6.4.13) yield the following three equations for the 
unknown coefficients 1 2,α α  and 3α . 
 

 
( )
( )
( )

2
1 1 0 1

1 1 1
2

2 2 2 2

1
0 1 2 '
1

x x f x
x f x

x x f x

α
α
α

    
     =    
        

 (6.4.14) 

 
Equation (6.4.14) is an example of a confluent Vondermonde matrix (transposed).  Show that 
 

 
11 See, Elementary Matrices by Frazer, Duncan and Collar, Cambridge University Press, 1938, Section 3.10.  Equation 
(6.4.11) above coincides with the result on page 85 of Frazer, Duncan and Collar. 
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( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

12
1 1

1
2

3 3

2
2 1 2 1 2 1

2 2
1 21 2 1 2

1 1 2 1
2 2

1 21 2 1 2

2 2
1 21 2 1 2

1
0 1 2
1

2

2 2

1 1 1

x x
x

x x

x x x x x x
x xx x x x

x x x x
x xx x x x

x xx x x x

−
 
  = 
  
 −
− 

−− − 
 + − −
 −− −
 
 − − −− − 

 

  (6.4.15) 
 
As with the derivation of (6.4.9), we are interested in how the polynomial (6.4.13) can be 
rearranged into the form 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2f x N x f x M x f x N x f x′= + +  (6.4.16) 
 
where the quadratics ( )1N x , ( )1M x  and ( )2N x  need to be determined.  Show that these three 
quadratics are given by 
 

 
( )
( )
( )

( )
( )

( )( )
( )
( )
( )

2
1

2
1 1 22

1 1 1
1 2

1 1
1 22 2

2 3 3 2
1

2
1 2

1

1 1
0 1 2
1

T

x x
x x

N x x x
x x x x

M x x x
x x

N x x x x
x x
x x

−

 −
 −

−          − −      = =       −                −
 

−  

 (6.4.17) 

 
Finally, show that for the linear transformation : →A V V  whose characteristic polynomial is 
given by (6.4.12) the exponential linear transformation is given by 
 

 ( )
( )

( )( )
( )

( )
( )

1 1 2

2 2
1 1 2 1

2 2
1 21 2 1 2

e e e eλ λ λλ λ λ λ
λ λλ λ λ λ

 − − − −
= − + + 

  −− − 

A A I A I A I A I
I  (6.4.18) 

 
6.4.2  Adapt the results of Example 5.3.2 to the notation used in (6.4.18) and show that the 
exponential matrix is given by 
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3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

2 13.4070 6.6786 6.6786
1 2 6.6786 13.4070 6.6786
3

2 6.6786 6.6786 13.4070

A

e e e e e e
e e e e e e e

e e e e e e

− − −

− − −

− − −

 + − − − 
   = − + − = −   
   − − +   

 (6.4.19) 

 
This exercise is essentially the same as Example 6.3.6 except that here a basis has been selected to 
represent the linear transformation that was unspecified in Example 6.3.6.  Also, the method of 
solution was built around the method introduced in Section 6.4. 
 
6.4.3  Repeat Exercise 6.4.1 for the case where all of the eigenvalues are identical.  In particular, 
show that 
 

 ( ) ( )1
2

1 1
1
2

e eλ λ λ = + − + − 
 

A I A I A I  (6.4.20) 

 
Equation (6.4.20) confirms (6.4.11) for the special case 3N = .12 
 

 
12 The reference, Elementary Matrices by Frazer, Duncan and Collar, Cambridge University Press, 1938, in its Section 
3.10 derives a generalization of Sylvester’s Theorem for the case of repeated eigenvalues.  It is referred to as the 
Confluent Form of Sylvester’s Theorem.  In the notation used here (see Equation (5.2.26)), this formula is 
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( )

( )

1

1
1

1

j
 

ad1
1 !

 
j

j
k

j

dL

d L
dj j

k
k
k j

de e
d d

λ

λ λ

λ
λ λ λ

−

−
=

=
≠

=

  
  
  −

=   
−   −

     

∑
∏

A I A
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Section 6.5 Application of the Exponential Linear Transformation 
 
 
 One important application of the exponential linear transformation is to the study of certain 
types of systems of linear constant coefficient ordinary differential equations.  Our discussion of 
ordinary differential equations in Sections 5.5 and 5.7 was limited to the case where the matrix that 
defined the system or ordinary differential equations has N distinct eigenvalues.  As illustrated in 
Section 6.3, the exponential linear transformation can be calculated in cases where the eigenvalues 
are not distinct and, thus, the eigenvectors do not form a basis.  Therefore, the exponential linear 
transformation can be used to generate the solution of systems of linear constant coefficient 
ordinary differential equations in those cases where the matrix that defines the system does not 
have N  distinct eigenvalues.  Before we illustrate this generalization, we need to establish a few 
additional properties of the exponential linear transformation. 
 

We begin with the exponential linear transformation in the form (6.3.5).  When studying 
constant coefficient linear ordinary differential equations, one of the most important properties is 
 

 
t

t tde e e
dt

= =
A

A AA A  (6.5.1) 

 
The exponential linear transformation is exceptional in that it commutes under multiplication in the 
special way the last formula shows.  This feature of polynomials of linear transformations was 
pointed out in Section 6.1.  The result (6.5.1) follows by differentiation of the formula (6.3.5).  The 
result of this differentiation is 
 

 

2 3 2 4 3

2 2 3 3

2 3 4
2! 3! 4!

1 1
2! 3!

t

t

de t t t
dt

t t t

e

= + + + ⋅⋅⋅

 = + + + ⋅⋅⋅ 
 

=

A

A

A A A A

A I A A A

A

 (6.5.2) 

 
Likewise, 
 

 

2 3 2 4 3

2 2 3 3

2 3 4
2! 3! 4!

1 1
2! 3!

t

t

de t t t
dt

t t t

e

= + + + ⋅⋅⋅

 = + + + ⋅⋅⋅ 
 

=

A

A

A A A A

I A A A A

A

 (6.5.3) 

 
The fact that teA  obeys the ordinary differential equation (6.5.1) turns out to make the exponential 
linear transformation of great importance when one tries to find the solution to (5.5.1). 
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In Section 5.5, our study of ordinary differential equations involved finding the solution of  
 

 ( )d A t
dt

= +
x x g  (6.5.4) 

 
where ( )tx  is a 1N ×  column matrix, A  is an N N×  matrix and ( )tg  is a 1N ×  column matrix.  

The initial value problem associated with (6.5.4) is the problem of finding the function ( )t=x x  
such that 
 

 ( ) ( ) 0   and    0d A t
dt

= + =
x x g x x  (6.5.5) 

 
where 0x is given.  As discussed in Section 5.6, the solution of (6.5.5) will be of the form 
 
 ( ) ( ) ( )h pt t t= +x x x  (6.5.6) 
 
where hx  is the general solution , i.e., the solution of the homogeneous equation 
 

 h
h

d A
dt

=
x x  (6.5.7) 

 
and px  is a particular solution of 
 

 ( )p
p

d
A t

dt
= +

x
x g  (6.5.8) 

 
If (6.5.7) is multiplied by Ate−  and (6.5.3) is utilized, we find that ( )h tx  obeys 
 

 
( )At

hd e
dt

−

=
x

0  (6.5.9) 

 
Therefore, after (6.3.11) is utilized, the general solution is 
 
 ( ) At

h t e=x h  (6.5.10) 
 
where h  is an arbitrary 1N ×  column matrix.  The particular solution is obtained from (6.5.8), for 
example, by the same kind of procedure used in Section 5.7.  The result turns out to be 
 

 ( ) ( ) ( )
0

t A t
p t e d

τ τ

τ
τ τ

= − −

=
= ∫x g  (6.5.11) 
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and, from (6.5.6), (6.5.10) and (6.5.11), 
 

 ( ) ( ) ( )
0

t A tAtt e e d
τ τ

τ
τ τ

= − −

=
= + ∫x h g  (6.5.12) 

 
Finally, if the initial condition ( ) 00 =x x  is applied to (6.5.12), the result is 0=h x  and (6.5.12) 
becomes 
 

 ( ) ( ) ( )0 0

t A tAtt e e d
τ τ

τ
τ τ

= − −

=
= + ∫x x g  (6.5.13) 

 
In the special case where the matrix A  has N  linearly independent eigenvectors, equation (6.3.21) 
reduces (6.5.13) to our earlier result (5.7.10). 
 
 The method used in Chapter 5, in the special case where the matrix A  has N  distinct 
eigenvalues and, thus, N  linearly independent eigenvectors, is the preferred method to evaluate the 
exponential matrix Ate .  However, when the matrix A  does not have N  linearly independent 
eigenvectors, we need a method based upon the discussion in Section 6.2.  The fundamental 
equations are (6.3.25), (6.3.31) and (6.3.39).  Even when the matrix has N  distinct eigenvalues, 
equations (6.3.25), (6.3.31) and (6.3.39) or, in this case, (6.4.10) have the advantage of not 
requiring that the eigenvectors be explicitly calculated.  In certain numerical situations, this fact can 
be beneficial. 
 

Before we utilize (6.3.25), (6.3.31) and (6.3.39) we must adjust these equations to 
accommodate the substitution t→A A .  We could rederive these equations for the linear 
transformation teA .  However, this approach is not necessary.  We simply need to agree that the 
symbols 1 2, ,..., Nµ µ µ  are the fundamental invariants of A  and not those of tA .  Likewise, the 
symbols 1 2, ,..., Nλ λ λ  are the N , not necessarily distinct, eigenvalues of A  rather than the 
eigenvalues of tA .  With these understandings, the substitution t→A A  converts the fundamental 
invariants by the rule N

j jtµ µ→  and the eigenvalues by the rule j jtλ λ→ .  Next, we redefine the 
unknown coefficients in (6.3.25) to reflect a dependence on t .  The result is 
 

 ( )
1

1 2
0

, ,..., ,
N

t n
n N

n
e tα µ µ µ

−

=

=∑A A  (6.5.14) 

 
Likewise, (6.3.31) transforms into 
 

 ( )
1

1 2
0

, ,..., ,      for  an eigenvalue of 
N

t n
n N

n
e tλ α µ µ µ λ λ

−

=

= =∑ A  (6.5.15) 

 
and (6.3.39) transforms into 
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 ( ) ( )1

1
1

1

1 2 1
0

, ,..., , for   1, 2,..., 1
j j N

tt j n
n Nj j

n

d de t e t j d
d d

λλ

λ λ
λ λ

α µ µ µ λ
λ λ

−

=
= =

 = = = − 
 
∑  (6.5.16) 

 
The transformation t→A A  converts Sylvester’s Theorem, equation (6.4.10), to 
 

 

( )

( )

1

1

1

j

N

k
kN

t k jt
N

j
j k

k
k j

e eλ

λ

λ λ

=
≠

=

=
≠

−

=
−

∏
∑

∏
A

A I

 (6.5.17) 

 
In the case of the repeated root example discussed in Exercise 6.4.1, the answer (6.4.18) becomes 
 

 ( )
( )

( )( )
( )

( )
( )

1 1 2

2 2
1 1 2 1

2 2
1 21 2 1 2

t t tte e te eλ λ λλ λ λ λ
λ λλ λ λ λ

 − − − −
= − + + 

  −− − 

A A I A I A I A I
I  (6.5.18) 

 
Likewise, the result (6.4.11) becomes 
 

 ( ) ( ) ( ) ( ) ( )2 3 12 3 11 1 1
2! 3! 1 !

N Ne e t t t t
N

λ λ λ λ λ − − 
= + − + − + − + ⋅⋅⋅+ −  − 

A I A I A I A I A I

  (6.5.19) 
 
Example 6.5.1:  In Example 5.6.1, we calculated the general solution of the second order ordinary 
differential equation 
 
 2

0 0u uω+ =  (6.5.20) 
 
where 0ω  is a positive constant.  The matrix A  in this case is given by equation (5.6.19), repeated, 
 

 2
0

0 1
0

A
ω

 
=  − 

 (6.5.21) 

 
The eigenvalues in this case are given by equation (5.6.21), repeated, 
 

 1 0

2 0

i
i

λ ω
λ ω
=

= −
 (6.5.22) 

 
The transition matrix, as follows from (5.6.24) and (5.6.25), is given by 
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0 0

1 1
T

i iω ω
 

=  − 
 (6.5.23) 

 
Because this example is one where the eigenvalues are distinct, we have three equivalent ways to 
calculate the exponential matrix Ate . 
 
Method 1:  The first method is simply to use (6.3.21) which, in this case, yields 
 

 

( )

0

0

0

0

0 0

0 0

0 0 0

1
1

0 0 0 0

0

0 0 00

0

0 00 0

0

1 1 1 10
0

1 1 101
12 0

1 11
2

1 1
2 2

i t
At Dt

i t

i t

i t

i t i t

i t i t

i t i t i t
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e Te T

i i i ie

ie
i i ii e

i e e
i ii i e e

e e e
i

ω

ω

ω

ω

ω ω

ω ω

ω ω ω

ω ω ω ω

ω
ω ω ωω

ω
ω ωω ω

ω

−

−
−

−

− −

−

    
= =     − −    

    
=     − −    

  
=   − −   

+ −
=

( )

( ) ( )

( ) ( )

( ) ( )

0

0 0 0 00

0 0
0

0 0 0

1
2 2

1cos sin

sin cos

i t

i t i t i t i t

e

e e e e
i

t t

t t

ω

ω ω ω ωω

ω ω
ω

ω ω ω

−

− −

 
 
 
 
− − +  
 
 =  
−  

 (6.5.24) 

 
Method 2:  The second method utilizes (6.5.14) and (6.5.15).  From (6.5.14), the exponential 
matrix is given by 
 
 ( ) ( )0 1 2 1 1 2, , , ,Ate t I t Aα µ µ α µ µ= +  (6.5.25) 
 
Because the eigenvalues are distinct, the coefficients ( )0 1 2, , tα µ µ  and ( )1 1 2, , tα µ µ  are determined 
by specializing (6.5.15).  The results are 
 

 
( ) ( )
( ) ( )

0

0

0 1 2 1 1 2 0

0 1 2 1 1 2 0

, , , ,

, , , ,

i t

i t

e t t i

e t t i

ω

ω

α µ µ α µ µ ω

α µ µ α µ µ ω−

= +

= −
 (6.5.26) 

 
The solutions of (6.5.26) are 
 



512  Chap. 6     •        ADDITIONAL TOPICS EIGENVALUE PROBLEMS 

 
( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

0 1 2 0

1 1 2 0
0 0

1, , cos
2

1 1, , sin
2

i t i t

i t i t

t e e t

t e e t
i

ω ω

ω ω

α µ µ ω

α µ µ ω
ω ω

−

−

= + =

= − =
 (6.5.27) 

 
If (6.5.27) and (6.5.21) are combined with (6.5.25), the result is again 
 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0 1 2 1 1 2

0 0 2
00

0 0
0

0 0 0

, , , ,

0 11 0 1cos sin
00 1

1cos sin

sin cos

Ate t I t A

t t

t t

t t

α µ µ α µ µ

ω ω
ωω

ω ω
ω

ω ω ω

= +

  
= +    −   
 
 =  
−  

 (6.5.28) 

 
Method 3:  If this problem is worked by use of Sylvester’s Theorem, equation (6.5.17), the result is 
again 
 

 

( )

( )

( ) ( )

1 2

0 0

0 0

0 0 0 0

0

1
2 1

1 1 2 2 1

1

0 0

0 0

0 0
2 2
0 0 0 00 0

0

0

2 2
1 1

2 2

1 1
2 2

2

j

N

k
kN

t k j t tAt
N

j
j k

k
k j

i t i t

i t i t

i t i t i t i t

i

A I
A I A Ie e e e

A i I A i Ie e
i i
i ie e

i ii i

e e e e
i

e
i

λ λ λ

ω ω

ω ω

ω ω ω ω

ω

λ
λ λ

λ λ λ λλ λ

ω ω
ω ω
ω ω
ω ω ω ωω ω

ω
ω

=
≠

=

=
≠

−

−

− −

−
− −

= = +
− −−

+ −
= −

−   
= −   − − −   

+ −
=

−

∏
∑

∏

( ) ( )

( ) ( )

( ) ( )0 0 0

0 0
0

0 0 0

1cos sin

1 sin cos
2

t i t i t i t

t t

t te e eω ω ω

ω ω
ω

ω ω ω− −

        =    − − +    

 (6.5.29) 

 
Example 6.5.2:  In Example 5.6.2, we calculated the general solution of the second order ordinary 
differential equation 
 
 2

0 0( ) 2 ( ) ( ) 0u t u t u tςω ω+ + =   (6.5.30) 
 
where 0ω  is a positive constant and ζ  is a nonnegative constant.  The matrix A  in this case is 
given by equation (5.6.35), repeated, 
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 2
0 0

0 1
2

A
ω ζω

 
=  − − 

 (6.5.31) 

 
The eigenvalues in this case are given by equation (5.6.21), repeated, 
 

 
2

1 0 0

2
2 0 0

1

1

i

i

λ ζω ω ζ

λ ζω ω ζ

= − + −

= − − −
 (6.5.32) 

 
As with Example 5.6.2, equations (6.5.32) are written to fit what is called the under damped case.  
For this case, the damping is assumed to be such that 21 0ζ− > .  We shall work this example 
utilizing equations (6.5.14) and (6.5.15).   From (6.5.14), the exponential matrix is given by 
 
 ( ) ( )0 1 2 1 1 2, , , ,Ate t I t Aα µ µ α µ µ= +  (6.5.33) 
 
Because the eigenvalues are distinct, the coefficients ( )0 1 2, , tα µ µ  and ( )1 1 2, , tα µ µ  are determined 
by specializing (6.5.15).  The results are 
 

 
( ) ( )( )
( ) ( )( )

2
00

2
00

1 2
0 1 2 1 1 2 0 0

1 2
0 1 2 1 1 2 0 0

, , , , 1

, , , , 1

i tt

i tt

e e t t i

e e t t i

ω ζζω

ω ζζω

α µ µ α µ µ ζω ω ζ

α µ µ α µ µ ζω ω ζ

−−

− −−

= + − + −

= + − − −
 (6.5.34) 

 
The solutions of (6.5.34) are 
 

 
( ) ( ) ( )

( ) ( )

0

0

2 2
0 1 2 0 02

2
1 1 2 02

0

, , sin 1 cos 1
1

, , sin 1
1

t

t

t e t t

et t

ζω

ζω

ζα µ µ ω ζ ω ζ
ζ

α µ µ ω ζ
ω ζ

−

−

 
 = − + −
 − 

= −
−

 (6.5.35) 

 
If (6.5.35) and (6.5.31) are combined with (6.5.33), the result is 
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( ) ( )

( ) ( )

( )
( )

( ) ( )

( )

0

0

0

0 1 2 1 1 2

2 2
0 02

2
0 22

0 00

2 2
0

2
0

2 0
0

2 2
0

2
0 0

, , , ,

1 0
sin 1 cos 1

0 11

0 1
sin 1

21

1 cos 1 1 sin 1
sin 1

1 1 cos 1
sin 1

At

t

t

t

e t I t A

e t t

e t

t
t

te

t

ζω

ζω

ζω

α µ µ α µ µ

ζ ω ζ ω ζ
ζ

ω ζ
ω ζωω ζ

ζ ω ζ
ω ζ

ωζ ω ζ

ζ ζ ω
ω ω ζ

−

−

−

= +

   
 = − + −   −   

 
+ −  − −−  

 − − 
− 

+ − 
 =

− − −
− −

( )
( )

2

2
0sin 1

t

t

ζ

ζ ω ζ

 
 
 
 
 
  
  
  
 − − 

  

 (6.5.36) 

 
 The last two examples have the property that the eigenvalues are distinct, and the associated 
eigenvectors are linearly independent.  An example where this is not the case is one based upon 
Examples 5.3.3 and 5.6.4.  This example is as follows: 
 
Example 6.5.3:  In Example 5.6.4, we considered the system of first order ordinary differential 
equations 
 

 

1
1 2 3

2
2 3

3
3

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

dy t y t y t y t
dt

dy t y t y t
dt

dy t y t
dt

= + +

= +

=

 (6.5.37) 

 
The matrix A  in this case is given by equation (5.3.45), repeated, 
 

 
1 1 1
0 1 1
0 0 1

A
 
 =  
  

 (6.5.38) 

 
The eigenvalue in this case are given by equation (5.3.47), repeated, 
 
 1 1λ =  (6.5.39) 
 
and it has an algebraic multiplicity of 3.  As explained in the discussion of Example 5.3.3, one 
cannot construct a basis of eigenvectors for this problem.  Given this fact, we can never the less 
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proceed with the calculation of Ate  based upon equations (6.5.14) through (6.5.16).  In this case, 
equation (6.5.14) reduces to 
 
 ( ) ( ) ( ) 2

0 1 2 3 1 1 2 3 2 1 2 3, , , , , , , , ,Ate t I t A t Aα µ µ µ α µ µ µ α µ µ µ= + +  (6.5.40) 
 
For the eigenvalue 1 1λ = , equation (6.5.15) reduces to 
 
 ( ) ( ) ( )0 1 2 3 1 1 2 3 2 1 2 3, , , , , , , , ,te t t tα µ µ µ α µ µ µ α µ µ µ= + +  (6.5.41) 
 
Because the 1 1λ =  has a multiplicity of 3, equation (6.5.16) yields 
 

 
( ) ( )
( )

1 1 2 3 2 1 2 3

2
2 1 2 3

, , , 2 , , ,

2 , , ,

t

t

te t t

t e t

α µ µ µ α µ µ µ

α µ µ µ

= +

=
 (6.5.42) 

 
Equations (6.5.41) and (6.5.42) yield 
 

 

( )

( ) ( )
( )

2
0 1 2 3

2
1 1 2 3

2
2 1 2 3

1, , , 1
2

, , ,

1, , ,
2

t

t

t

t t t e

t t t e

t t e

α µ µ µ

α µ µ µ

α µ µ µ

 = − + 
 

= −

=

 (6.5.43) 

 
These results along with (6.5.38) and (6.5.40) yield 
 

 

( ) ( ) ( )

( )

( )

2
0 1 2 3 1 1 2 3 2 1 2 3

2

2 2 2

2 2

, , , , , , , , ,

1 0 0 1 1 1 1 1 1
1 11 0 1 0 0 1 1 0 1 1
2 2

0 0 1 0 0 1 0 0 1

1 0 0 1 1 1
1 11 0 1 0 0 1 1
2 2

0 0 1 0 0 1

At

t t t

t t

e t I t A t A

t t e t t e t e

t t e t t e

α µ µ µ α µ µ µ α µ µ µ= + +

     
       = − + + − +                   

   
     = − + + − +             

2

2

1 2 3
0 1 2
0 0 1

11
2

0 1
0 0 1

t

t

t e

t t t

e t

 
 
 
  

 + 
 

=  
 
 
 

 (6.5.44) 

 
Equation (6.5.44) also follows from (6.4.11) or from its special case, equation (6.4.20). 
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Exercises 
 
6.5.1  Calculate Ate  for the matrix  
 

 
1 6
1 2

A  
=  
 

 (6.5.45) 

 
that arose when we worked Exercise 5.6.3.  Calculate Ate  twice, first utilizing the fact that the 
eigenvalues are distinct and second utilizing the second method used with Examples 6.4.1, 6.4.2 
and 6.4.3 above. 
 

Answer:  

4 4

4 4

2 3 6 6
5 5 5 5
1 1 3 2
5 5 5 5

t t t t

At

t t t t

e e e e
e

e e e e

− −

− −

 + − 
=  
 − +  

 

 
6.5.2  Calculate Ate  for the matrix  
 

 
1 5
1 5

A  
=  − 

 (6.5.46) 

 
that arose when we worked Exercise 5.6.5.  Calculate Ate  twice, first utilizing the fact that the 
eigenvalues are distinct and second utilizing the second method used with Examples 6.4.1, 6.4.2 
and 6.4.3 above. 
 

Answer:  ( )
( )

3 3

3 3

cos 2sin 5 sin
3 sin cos 2sin

t t
At

t t

e t t e t
e

e t e t t
 −

=  − + 
 

 
6.5.3  Calculate Ate  for the matrix  
 

 
1 2 2
2 1 2

2 2 1
A

− 
 = − 
  

 (6.5.47) 

 
that arose when we worked Exercise 5.3.2.  Calculate Ate  utilizing the appropriate forms of 
equations (6.5.14) through (6.5.16).  The calculations in this problem are similar to those used in 
Example 6.4.2. 
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Answer:13  

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

2
1 2
3

2

t t t t t t

At t t t t t t

t t t t t t

e e e e e e
e e e e e e e

e e e e e e

− − −

− − −

− − −

 + − −
 = − + − 
 − − + 

 

 
 
6.5.4.  Use the formula (6.4.11), that was given without proof, and derive the result (6.5.44) 
 
6.5.5  Utilize the result (6.5.44) and the general solution (6.5.10) and derive the solution (5.6.53) 
that was given without proof in Section 5.6. 
 
6.5.6  Rework Example 6.5.2 utilizing Sylvester’s Theorem, equation (6.5.17). 
 
  

 
13 The answer to this problem can also be obtained from (6.5.18).  In this case, it can be confirmed that  
 

( )( )1 2 0λ λ− − =A I A I  
 
This result is the minimum polynomial for this linear transformation. 
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Section 6.6 Projections and Spectral Decompositions 
 
 
 In this section, we shall look deeper into the eigenvalue problem introduced in Chapter 5.  
In particular, we shall introduce a special linear transformation called a projection and show how it 
can be used to produce a decomposition, called a spectral decomposition, of certain linear 
transformations : →A V V . 
 
Definition:  A projection is a linear transformation is a linear transformation : →P V V  that 
satisfies the condition 
 
 2 =P P  (6.6.1) 
 
Theorem 6.6.1.  If : →P V V  is a projection, then 
 
 ( ) ( )R K= ⊕P PV  (6.6.2) 

 
Proof. Let v  be an arbitrary vector in V .  Let 
 
 = −w v Pv  (6.6.3) 

 
Then, by (6.6.1), ( )= − = − =Pw Pv P Pv Pv Pv 0 .  Thus, ( )K∈w P .  Since ( )R∈Pv P , (6.6.3) 
implies that  
 
 ( ) ( )R K= +P PV  (6.6.4) 
 
To show that ( ) ( ) { }R K∩ =P P 0 , let ( ) ( )R K∈ ∩u P P .  Then, since ( )R∈u P  for some ∈v V , 

=u Pv .  But, since u  is also in ( )K P , 
 

 ( )0 = Pu = P Pv = Pv = u  (6.6.5) 
 
which completes the proof. 
 

The name projection arises from the geometric interpretation of (6.6.2).  Given any ∈v V , 
then there are unique vectors ( )R∈u P  and ( )K∈w P  such that  
 
 = +v u w  (6.6.6) 

 
where  
 
 and    = =Pu u Pw 0  (6.6.7) 
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Viewed as an eigenvalue problem, equation (6.6.7)1 shows that every nonzero vector ( )R∈u P  is 
an eigenvector and the corresponding eigenvalue is 1.  Likewise, (6.6.7)2 shows that every nonzero 
vector ( )K∈w P  is an eigenvector and the corresponding eigenvalue is 0 . 
 

Geometrically, the linear transformation P  takes v  and projects in onto the subspace ( )R P  

along the subspace ( )K P .  The following figure illustrates this point. 

 
 

Given a projection P , the linear transformation −I P  is also a projection.  It is easily 
shown that  
 

 ( ) ( )R K= − ⊕ −I P I PV  (6.6.8) 
 
and  
 

 ( ) ( ) ( ) ( ),R K K R− = − =I P P I P P  (6.6.9) 
 
 The matrix of a projection : →P V V  takes a simple form if a judicious choice of made for 
the basis of V .  If dimN = V  and ( )dimR R= P , the basis of V  can always be written 

( ) ( )
1 2 1 1

Basis for Basis for 

, ,..., , , ,...,R R R N

R K

+ +

 
 
 
  P P

e e e e e e
 

.  It follows from the result (6.6.7) that 
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   for   1, 2,...,

    for   1,...,
k

k

k R
k R N
=

=  = +

e
Pe

0
 (6.6.10) 

 
Therefore, the matrix of : →P V V  with respect to the basis { }1 2 1 1, ,..., , , ,...,R R R N+ +e e e e e e  is 
 

 ( )

1 0 0 0
0 1 0 0
0 0 1

, , 0 0 1

0 0 0 0
0

0 0 0

j k

R R

N N

M
×

×

⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ 
 ⋅
 ⋅ ⋅ ⋅ ⋅ 

=  ⋅
 
 

⋅ ⋅ ⋅ 
 ⋅ ⋅ 

⋅ ⋅ ⋅ ⋅ ⋅  

P e e




 (6.6.11) 

 
Given the matrix (6.6.11), the characteristic polynomial of the projection is 
 

 ( ) ( )( ) ( ) ( )det det , , 1N R R
j kMλ λ λ λ−− = − = − −P I P I e e  (6.6.12) 

 
Theorem 6.6.1 is a special case of the following theorem. 

 
Theorem 6.6.2.  If kP , 1,...,k R= , are projection operators with the properties that 
 

 
2 , 1,...,

,
k k

k q

k R
k q

= =
= ≠

P P
P P 0

 (6.6.13) 

 
and 
 

 
1

R

k
k=

=∑I P  (6.6.14) 

 
then 
 
 ( ) ( ) ( )1 2 RR R R= ⊕ ⊕ ⊕P P PV   (6.6.15) 

 
The proof of this theorem is left as an exercise.  It is a small generalization of the proof of Theorem 
6.6.1.  As a converse of Theorem 6.6.2, if V  has the decomposition 
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 1 R= ⊕ ⊕V V V  (6.6.16) 
 
then the R  linear transformations  :k →P V V defined by 
 
 , 1,...,k k k R= =P v v  (6.6.17) 

 
for all ∈v V , where 
 
 1 2 R= + + +v v v v  (6.6.18) 

 
are projections and satisfy (6.6.14).  Moreover, ( )k kR= PV , 1,...,k R= . 
 
 If the vector space V  is an inner product space, the adjoint of a linear transformation 

: →A V V  is a linear transformation * : →A V V  defined by the following special case of the 
definition (4.9.1) 
 
 *

2 1 2 1 1 2, ,    for all    ,= ∈v Av A v v v v V  (6.6.19) 
 
If we apply the definition (6.6.19) to the projection (6.6.1), the definition becomes 
 
 *

2 1 2 1 1 2, ,    for all    ,= ∈v Pv P v v v v V  (6.6.20) 
 
If we form the inner product ( ) 1 2,−I P v Pv , the definition (6.6.20) allows the result to be written 
 
 ( ) ( ) ( )* * *

1 2 1 2 1 2, , ,− = − = −I P v Pv P I P v v P P P v v  (6.6.21) 

 
The conclusion from (6.6.21) and the definition (6.6.1) is that if the projection P  is self adjoint, 
i.e., if *=P P  then the subspaces ( )R P and ( )K P  are orthogonal.  As explained in Section 4.11, 
this geometric relationship between orthogonal subspaces is written 
 
 ( ) ( )R K ⊥=P P  (6.6.22) 
 
In this case, the projection is called an orthogonal or perpendicular projection. 
 

In Section 5.4, it was pointed out that for eigenvalue problems for which the geometric 
multiplicity is equal to the algebraic multiplicity for each eigenvalue of a linear transformation 

: →A V V , then the vector space V  admits the direct sum representation 
 
 1 2( ) ( ) ( )Lλ λ λ= ⊕ ⊕⋅⋅⋅⊕V V V V  (6.6.23) 
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where 1,..., Lλ λ  are the distinct eigenvalues of A .  Given the representation (6.6.23), then every 
∈w V  has the unique representation 

 

 1 2
1

L

L j
j=

= + + + =∑w w w w w  (6.6.24) 

 
The representation (6.6.24) allow us to define L  projections :k →P V V  by 
 
 for    1,...,k k k L= =P w w  (6.6.25) 
 
The L  projections :k →P V V  defined by (6.6.25) obey (6.6.13) and (6.6.14).  Given (6.6.24), it 
follows that 
 

 
1 1 1

L L L

j k k k
k k k

λ
= = =

 = = = 
 
∑ ∑ ∑Aw A w Aw w  (6.6.26) 

 
where the defining condition for the thk  eigenvector, k k kλ=Aw w , has been used.  Given (6.6.25), 
equation (6.6.26) yields 
 

 
1

L

k k
k
λ

=

 − = 
 

∑A P w 0  (6.6.27) 

 
Equation (6.6.27) holds for all vectors ∈w V .  Therefore, (6.6.27) yields the spectral 
decomposition of : →A V V  in terms of its eigenvalues and projections into its characteristic 
subspaces.  The result is 
 

 
1

L

k k
k
λ

=

=∑A P  (6.6.28) 

 
The representation (6.6.28) holds for linear transformations for which the geometric multiplicity is 
equal to the algebraic multiplicity for each eigenvalue.  If this condition does not hold for each 
eigenvalue, then (6.6.28) is not valid. 
 
 Given (6.6.28), it follows from (6.6.13) that 
 

 
1

L
n n

k k
k
λ

=

=∑A P  (6.6.29) 

 
for a positive integer n .  Equation (6.6.29) shows that the exponential matrix (6.3.3) takes the form 
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0 1 0 1

1 1
! !

k

L L
n n

k k k
n k n k

e e
n n

λλ
∞ ∞

= = = =

 = = = 
 

∑ ∑ ∑ ∑A A P P  (6.6.30) 

 
where (6.3.4) has been used.  It is also true that 
 

 
1 1

1

L
n n

k k
k
λ

=

=∑A P  (6.6.31) 

 

The quantity 
1
nA  obeys 

 

 
1 1 1

 times

n

n n n

n

 
= = 

 
A A A A



 (6.6.32) 

 
and gives an analytical expression for the thn root of a linear transformation that has the spectral 
decomposition (6.6.28). 
 
Example 6.6.1:  In this example, we shall consider again Example 5.3.1.  This example solved the 
eigenvalue problem for the linear transformation : →A V V  defined by (5.3.1), repeated, 
 

 
1 1 2 3

2 1 3

3 1 2 3

4
2 4

5

= + +
= −
= − + +

Ae e e e
Ae e e
Ae e e e

 (6.6.33) 

 
where { }1 2 3, ,e e e  is a basis for V .  The problem is to determine the spectral decomposition 
(6.6.28) for this example.  This particular example was one where the three eigenvalues were 
distinct and the associated characteristic subspaces were one dimensional.  In Example 5.3.1, we 
wrote the three eigenvalues as in (5.3.4), repeated, 
 

 
1

2

3

1
2
3

λ
λ
λ

=
=
=

 (6.6.34) 

 
and the three eigenvectors as in (5.3.20), repeated, 
 

 

1 1 2 3

2 1 2 3

3 1 2 3

1 1
2 2
1 1
2 4
1 1
4 4

= − + +

= − + +

= − + +

v e e e

v e e e

v e e e

 (6.6.35) 
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The three projections 1 2,P P  and 3P  are defined by (6.6.25).  With respect to the basis of 
eigenvectors, { }1 2 3, ,v v v , their components are given by 
 

 
for   
for   

k
k j

j k
j k
=

=  ≠

v
P v

0
 (6.6.36) 

 
Therefore, with respect to the basis of eigenvectors, { }1 2 3, ,v v v , the projections have the following 
matrices 
 

 

( )

( )

( )

1

2

3

1 0 0
, , 0 0 0

0 0 0

0 0 0
, , 0 1 0

0 0 0

0 0 0
, , 0 0 0

0 0 1

j k

j k

j k

M

M

M

 
 =  
  
 
 =  
  
 
 =  
  

P v v

P v v

P v v

 (6.6.37) 

 
The matrices of the three projections with respect to the basis { }1 2 3, ,e e e  are given by the usual 
basis transformation formula (3.6.18).  Therefore, 
 
 ( ) ( ) 1, , , ,j k j kM TM T −=A e e A v v  (6.6.38) 
 
where A  is any one of the matrices in (6.6.37) and T  is the transition matrix based upon the basis 
change (6.6.35).  This matrix was given earlier in equation (5.3.22), repeated, 
 

 

1 1 1
2 2 4

1 1 1
2 4 4
1 1 1

T

 − − − 
 
 =  
 
 
  

 (6.6.39) 

 
Given (6.6.37), (6.6.38) and (6.6.39), it follows that 
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( ) ( )

1

1
1 1

1 1 1 1 1 1
2 2 4 2 2 41 0 0

1 1 1 1 1 1, , , , 0 0 0
2 4 4 2 4 4

0 0 01 1 1 1 1 1

1 1 1 10 2
2 2 4 1 0 0 0 4 1

1 1 1 0 0 0 4 4 0
2 4 4

0 0 0 4 0 21 1 1

j k j kM TM T

−

−

   − − − − − −   
    
    = =     
     

   
      

 − − − − 
−    

    = − =    
   −     

 
  

P e e P v v

2
10 2
2

0 4 1

 
 
 
 − 
 − 
  

  (6.6.40) 
 
Likewise, 
 

 ( ) ( ) 1
2 2

2 2 0
, , , , 1 1 0

4 4 0
j k j kM TM T −

 
 = = − − 
 − − 

P e e P v v  (6.6.41) 

 
and 
 

 ( ) ( ) 1
3 3

11 0
2

1, , , , 1 0
2

4 0 2

j k j kM TM T −

 − − 
 
 = =  
 
 
  

P e e P v v  (6.6.42) 

 
It is elementary to show that the relationships (6.6.13) and (6.6.14) are obeyed by the projections 
whose matrices are given by (6.6.40), (6.6.41) and (6.6.42).  In addition, these formulas along with 
(6.6.34) can be used to confirm the spectral decomposition (6.6.28) in this case.  Finally, one can 
use (6.6.40), (6.6.41) and (6.6.42) along with (6.6.30) and rederive the result (6.3.53) that was 
obtained earlier by a different method. 
 
Example 6.6.2:  In this next example, we shall consider again Example 5.3.2.  This example solved 
the eigenvalue problem for the linear transformation : →A V V  defined by (5.3.25), repeated, 
 

 
1 1 2 3

2 1 2 3

3 1 2 3

2 2
2 2

2 2

= − +
= − + +
= + +

Ai i i i
Ai i i i
Ai i i i

 (6.6.43) 
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where { }1 2 3, ,i i i  is an orthonormal basis for V .  The problem is to determine the spectral 
decomposition for the linear transformation defined by (6.6.43).  This particular example was one 
where there were only two distinct eigenvalues.  The two eigenvalues are given by (5.3.28), 
repeated, 
 

 1

2

3
3

λ
λ
= −
=

 (6.6.44) 

 
The algebraic multiplicity for 1λ  is 1 and that for 2λ  is 2 .  The characteristic subspace ( )1λV  is 
one dimensional and is spanned by the vector, from (5.3.41), repeated, 
 
 1 1 2 3= − − +v i i i  (6.6.45) 
 
The characteristic subspace ( )2λV  is two dimensional and is spanned by vectors { }1 2 1 3,− + +i i i i .  

Without loss of generality, we can take the basis of ( )2λV  to be the pair of vectors 
 
 2 1 2 3 1 3and   = − + = +v i i v i i  (6.6.46) 
 
The two projections 1P  and 2P  are defined by (6.6.25).  With respect to the basis, { }1 2 3, ,v v v , their 
components are given by 
 

 

1
1

2

for   1
for   2,3

for   1
for   2,3

j

j
j

j
j

j
j

=
=  =

=
=  =

v
P v

0

0
P v

v

 (6.6.47) 

 
Therefore, with respect to the basis of eigenvectors, { }1 2 3, ,v v v , the projections have the following 
matrices 
 

 

( )

( )

1

2

1 0 0
, , 0 0 0

0 0 0

0 0 0
, , 0 1 0

0 0 1

j k

j k

M

M

 
 =  
  
 
 =  
  

P v v

P v v

 (6.6.48) 
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The matrices of the two projections with respect to the basis { }1 2 3, ,i i i  are given by the usual basis 
transformation formula (3.6.18).  Therefore, 
 
 ( ) ( ) 1, , , ,j k j kM TM T −=A i i A v v  (6.6.49) 
 
where A  is any one of the matrices in (6.6.48) and T  is the transition matrix based upon the basis 
change (6.6.45) and (6.6.46).  This matrix was given by, 
 

 
1 1 1
1 1 0

1 0 1
T

− − 
 = − 
  

 (6.6.50) 

 
Given (6.6.37), (6.6.38) and (6.6.39), it follows that 
 

 

( ) ( )
1

1
1 1

1 1 1 1 0 0 1 1 1
, , , , 1 1 0 0 0 0 1 1 0

1 0 1 0 0 0 1 0 1

1 1 1 1 1 1
3 3 3 3 3 31 1 1 1 0 0
1 2 1 1 1 11 1 0 0 0 0
3 3 3 3 3 3

1 0 1 0 0 0 1 1 2 1 1 1
3 3 3 3 3 3

j k j kM TM T

−

−

− − − −     
     = = − −     
          

  − − −  
− −      
      = − − = −      
         

  − −
   

P i i P v v








 
 

 (6.6.51) 

 
Likewise, 
 

 ( ) ( ) 1
2 2

2 1 1
3 3 3
1 2 1, , , ,
3 3 3

1 1 2
3 3 3

j k j kM TM T −

 − 
 
 = = − 
 
 
  

P i i P v v  (6.6.52) 

 
It is again elementary to show that the relationships (6.6.13) and (6.6.14) are obeyed by the 
projections whose matrices are given by (6.6.51) and (6.6.52).  In addition, these formulas along 
with (6.6.44) can be used to confirm the spectral decomposition (6.6.28) in this case.  Note that the 
matrices (6.6.51) and (6.6.52) are symmetric matrices.  Because the basis { }1 2 3, ,i i i  is orthonormal, 
the projection linear transformations are symmetric and, as mentioned above, the image spaces 

( )1λV  and ( )2λV  are orthogonal.  Finally, one can use (6.6.51) and (6.6.52) along with (6.6.30) 
to rederive the result (6.3.60) that was derived earlier by a different method. 
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Example 6.6.3:  In Example 5.3.4 the eigenvalue problem was solved for the linear transformation 

: →A V V  defined by (5.3.53), repeated, 
 

 

1 1 3

2 2

3 1 3

2 2
2 2

2 2
2 2

= +

=

= − +

Ae e e

Ae e

Ae e e

 (6.6.53) 

 
Of course, { }1 2 3, ,e e e  is a basis for V .  The eigenvalues for this problem are given by equation 
(5.3.56), repeated, 
 

 

( )

( )

1

2

3

2 1
2

1

2 1
2

i

i

λ

λ

λ

= +

=

= −

 (6.6.54) 

 
and the three eigenvectors are given by (5.3.69), repeated, 
 

 
1 1 3

2 1

3 1 3

i

i

= +
=
= − +

v e e
v e
v e e

 (6.6.55) 

 
The three projections 1 2,P P  and 3P  are defined by (6.6.25).  As with Example 6.6.1, with respect to 
the basis of eigenvectors, { }1 2 3, ,v v v , the projections have the following matrices 
 

 

( )

( )

( )

1

2

3

1 0 0
, , 0 0 0

0 0 0

0 0 0
, , 0 1 0

0 0 0

0 0 0
, , 0 0 0

0 0 1

j k

j k

j k

M

M

M

 
 =  
  
 
 =  
  
 
 =  
  

P v v

P v v

P v v

 (6.6.56) 
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The matrices of the three projections with respect to the basis { }1 2 3, ,e e e  are given by 

 

( ) ( )
1

1
1 1

0 1 0 0 0
, , , , 0 1 0 0 0 0 0 1 0

1 0 1 0 0 0 1 0 1

1 10 00 1 0 0 2 2 2 2
0 1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 0 1 10 0

2 2 2 2

j k j k

i i i i
M TM T

i i
i i

i i

−

−

− −     
     = =      
          
   −   −   
      = =      
          −   
   

P e e P v v

 (6.6.57) 

 
Likewise, 
 

 ( ) ( ) 1
2 2

0 0 0
, , , , 0 1 0

0 0 0
j k j kM TM T −

 
 = =  
  

P e e P v v  (6.6.58) 

 
and 
 

 ( ) ( ) 1
3 3

1 0
2 2

, , , , 0 0 0
10

2 2

j k j k

i

M TM T
i

−

 − 
 

= =  
 
 
 

P e e P v v  (6.6.59) 

 
 
Exercises 
 
6.6.1  Consider the special case where the linear transformation : →A V V  has N  distinct 
eigenvalues and show that the projections jP  for 1, 2,...,j N=  are given by the explicit formulas 
 

 

( )

( )

1

1

for   1, 2,...,

N

k
k
k j

j N

j k
k
k j

j N

λ

λ λ

=
≠

=
≠

−

= =
−

∏

∏

A I

P  (6.6.60) 

 
6.6.2  Example 6.6.2 involved the arbitrary choice (6.6.46) of the basis for the two dimensional 
characteristic subspace ( )2λV .  Other choices are possible.  For example, rather than (6.6.46) one 
could take 
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 2 2 3 3 1 2 3and   2= + = − + −v i i v i i i  (6.6.61) 
 
The two vectors (6.6.61) can be show to span ( )2λV .  Show that the two projections 1P  and 2P  
are again given by (6.6.51) and (6.6.52).  The point of this exercise is to illustrate that when the 
geometric multiplicity is greater than one the corresponding projection into the characteristic 
subspace does not depend upon the basis selected for the characteristic subspace. 
 
6.6.3  Show that the fundamental invariants of a projection : →P V V  are given by 
 

 ( )
!    for   1, 2,...,

! !
0        for  1,...,

j

R j R
R j j

j R N
µ

 = −= 
 = +

 (6.6.62) 
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Section 6.7 Tensor Product of Vectors 
 
 
 In this short section, we shall introduce a notation that is convenient in certain applications.  
The notation is connected to an operation known as the tensor product of vectors.  In rough terms, 
if one is given a pair of vectors in an inner product space, the tensor product is an operation that 
creates a linear transformation from the two vectors.  The convenience of the notation is that it 
allows a somewhat more convenient connection to be made between linear transformations and 
components of linear transformations. 
 
Definition:  If f  is a vector in an inner product spaceV  and g  is in an inner product spaceU , 
their tensor product, written ⊗g f , is a linear transformation in :⊗ →g f V U  defined by 
 
 ( ) ,⊗ =g f w g w f  (6.7.1) 
 
for all w  in V . 
 
Because of the properties of an inner product, it should be evident that the quantity ⊗g f  as 
defined by (6.7.1) is, in fact, a linear transformation as defined in Section 3.1.  It is important to 
note that ⊗ ≠ ⊗g f f g . 
 

The definition (6.7.1) and the properties of the inner product combine to show that 
 
 1 2 1 2( )λ µ λ µ+ ⊗ = ⊗ + ⊗g g f g f g f  (6.7.2) 
 
and 
 
 1 2 1 2( )λ µ λ µ⊗ + = ⊗ + ⊗g f f g f g f  (6.7.3) 
 
for scalars ,λ µ∈C .  It is also true that 
 
 *( )⊗ = ⊗g f f g  (6.7.4) 
 
Equation (6.7.4) follows from the definition of adjoint, equation (4.9.1), and the definition of the 
tensor product, equation (6.7.1).  The following sequence of calculations establishes (6.7.4).  From 
the definition of the adjoint *( )⊗g f  
 
 ( )*( ) , ,⊗ = ⊗g f u v u g f v  (6.7.5) 
 
If the definition (6.7.1) is utilized, (6.7.5) can be written 
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( )

( )

*( ) , , , ,

, , , , ,

⊗ = ⊗ =

= = = ⊗

g f u v u g f v u g v f

u g f v f u g v f g u v
 (6.7.6) 

 
Because (6.7.6) holds for all vectors ∈v V  and ∈u U , (6.7.4) is obtained.  Another relationship 
that holds is  
 
 ( )( ) , ( )⊗ ⊗ = ⊗d c g f g c d f  (6.7.7) 
 
for the product of two linear transformations :⊗ →g f V U  and :⊗ →d c U W .  If { }1 2, ,..., Ne e e  is 

a basis for V  and { }1 2, ,..., Mb b b  is a basis for U , the matrix ( ), ,k jM ⊗g f e b  is given by 
 

 

( )

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1

1 2 3

1

2

3
1 2 3

, ,

N

N

k j

M M M M N

N

M

g f g f g f g f
g f g f g f g f
g f

M

g f g f g f g f

g
g
g

f f f f

g

 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ 
 ⋅

⊗ =  
⋅ ⋅ 

 ⋅ ⋅
 

⋅ ⋅ ⋅  
 
 
 
 

 = ⋅ ⋅   ⋅ 
 ⋅
 
  

g f e b

 (6.7.8) 

 
 The definition (6.7.1) allows the formula (3.2.3), repeated,  
 

 
1

    1, 2,...,
M

j
k k j

j
A k N

=

= =∑Ae b  (6.7.9) 

 
to be written in an alternate form which is sometimes convenient.  If { }1 2, ,..., Ne e e  is the reciprocal 

basis to { }1 2, ,..., Ne e e , then it is true from (4.7.7), repeated, 
 
 , for    , 1, 2,...,k k

q q q k Nδ= =e e  (6.7.10) 
 
Therefore, (6.7.9) can be rewritten 
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1 1 1 1 1

1 1

,
M M N M N

j j q j q
k k j q j k q j k

j j q j q

M N
j q
q j k

j q

A A A

A

δ
= = = = =

= =

= = =

 
= ⊗ 
 

∑ ∑∑ ∑∑

∑∑

Ae b b b e e

b e e
 (6.7.11) 

 

Because an arbitrary vector ∈v V  has the representation 
1

N
k

k
k
υ

=

=∑v e , it follows from (6.7.11) that 

 

 
1 1

M N
j q
q j

j q
A

= =

 
− ⊗ = 

 
∑∑A b e v 0  (6.7.12) 

 
for all vectors ∈v V .  Therefore, 
 

 
1 1

M N
j q
q j

j q
A

= =

= ⊗∑∑A b e  (6.7.13) 

 
By the usual changes between basis and reciprocal bases, one can establish the following 
equivalent forms of (6.7.13) 
 

 1 1 1 1

1 1 1 1

M N M N
j q jq
q j j q

j q j q

M N M N
j q q j

jq j q
j q j q

A A

A A

= = = =

= = = =

= ⊗ = ⊗

= ⊗ = ⊗

∑∑ ∑∑

∑∑ ∑∑

A b e b e

b e b e
 (6.7.14) 

 
Example 6.7.1:  If : →I V V  is the identity linear transformation and { }1 2, ,..., Ne e e , then equation 
(6.7.13) yields 
 

 1 2
1 2

1 1

M N
j q N

q j N
j q

δ
= =

= ⊗ = ⊗ + ⊗ + + ⊗∑∑I e e e e e e e e  (6.7.15) 

 
Example 6.7.2:  For the eigenvalue problem given in Example 5.3.1, we defined a linear 
transformation : →A V V  by equation (5.3.1), repeated, 
 

 
1 1 2 3

2 1 3

3 1 2 3

4
2 4

5

= + +
= −
= − + +

Ae e e e
Ae e e
Ae e e e

 (6.7.16) 

 
If we apply the representation (6.7.13) to the linear transformation (6.7.16), the result is 
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3 3

1 1

1 2 3 1 3 1 2 3
1 1 1 2 2 3 3 32 4 4 5

j q
q j

j q
A

= =

= ⊗

= ⊗ + ⊗ − ⊗ + ⊗ + ⊗ + ⊗ − ⊗ + ⊗

∑∑A e e

e e e e e e e e e e e e e e e e
 (6.7.17) 

 
If we represent : →A V V  with respect to its basis of eigenvectors defined by (5.3.20), repeated, 
 

 

1 1 2 3

2 1 2 3

3 1 2 3

1 1
2 2
1 1
2 4
1 1
4 4

= − + +

= − + +

= − + +

v e e e

v e e e

v e e e

 (6.7.18) 

 
The representation of : →A V V  becomes 
 

 
3

1 2 3
1 2 3

1
2 3j

j j
j
λ

=

= ⊗ = ⊗ + ⊗ + ⊗∑A v v v v v v v v  (6.7.19) 

 
where the components with respect to the basis { }1 2 3, ,v v v  are given by (5.3.21) and where 

{ }1 2 3, ,v v v  is the reciprocal basis to { }1 2 3, ,v v v .  It is readily established that the three linear 

transformations 1
1 ⊗v v , 2

2 ⊗v v  and 3
3 ⊗v v  are projections into the characteristic subspaces 

( )1λV , ( )2λV  and ( )3λV , respectively. 
 
Example 6.7.3:  For the eigenvalue problem given in Example 5.3.2, we defined a linear 
transformation : →A V V  by equation (5.3.25), repeated, 
 

 
1 1 2 3

2 1 2 3

3 1 2 3

2 2
2 2

2 2

= − +
= − + +
= + +

Ai i i i
Ai i i i
Ai i i i

 (6.7.20) 

 
If we represent : →A V V  with respect to its basis of eigenvectors defined by (5.3.40) and 5.3.41), 
repeated, 
 

 
1 1 2 3

2 1 2

3 1 3

= − − +
= − +
= +

v i i i
v i i
v i i

 (6.7.21) 

 
The representation of : →A V V  becomes 
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 ( )
3

1 2 3
1 2 3

1
3 3j

j j
j
λ

=

= ⊗ = − ⊗ + ⊗ + ⊗∑A v v v v v v v v  (6.7.22) 

 
where the components with respect to the basis { }1 2 3, ,v v v  are given by (5.3.42) and where 

{ }1 2 3, ,v v v  is the reciprocal basis to { }1 2 3, ,v v v .  It is readily established that the two linear 

transformations 1
1 ⊗v v  and 2 3

2 3⊗ + ⊗v v v v  are projections into the characteristic subspaces 

( )1λV  and ( )2λV , respectively.  From our earlier discussion of this example in Section 6.7, it 

should be clear that the matrix of 1
1 ⊗v v  with respect to the orthonormal basis { }1 2 3, ,i i i  is given 

by (6.6.51) and the matrix of 2 3
2 3⊗ + ⊗v v v v  with respect to the same basis is given by (6.6.52). 

 
 
Exercises: 
 
6.7.1  If : →A V U  has the representation (6.7.13), show that the adjoint * : →A U V  has the 
representation 
 

 *

1 1

M N
j q
q j

j q
A

= =

= ⊗∑∑A e b  (6.7.23) 

 
6.7.2  If : →A V U  and : →B U V  are linear transformations show that  
 
 ( ) *⊗ = ⊗A v u B Av Bu  (6.7.24) 
 
where ∈v V  and ∉u U . 
 
6.7.3  If f  and g  are vectors in an inner product space V , show that 
 
 ( )tr ,⊗ =g f g f  (6.7.25) 
 
6.7.4  If f  is a vector in an inner product spaceV , g  a vector in an inner product spaceU , and 

: →B U V  a linear transformation show that 
 
 ( )*( )⊗ = ⊗g f B g B f  (6.7.26) 
 
and 
 
 ( )( )⊗ = ⊗B g f Bg f  (6.7.27) 
 
6.7.5  In Section 4.3, the Gram Schmidt Orthogonalization process was introduced.  The 
fundamental equations that defined that process were equations (4.3.22), repeated, 
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1

1

1

1

,
   for   1, 2,...,

,

k

k k j j
j

k k

k k j j
j

k K

−

=

−

=

−
= =

−

∑

∑

e e i i
i

e e i i
 (6.7.28) 

 
Use the definition of tensor product and show that these equations can be replaced by 
 

    for   1, 2,...,k k
k

k k

k K= =
P ei
P e

 (6.7.29) 

 
where :k →P V V , for 1, 2,...,k K= , are the orthogonal projections 
 

 
1

1

k

k j j
j

−

=

= − ⊗∑P I i i  (6.7.30) 

 
Also, show that the normalizations that appear in (6.7.29) can be evaluated with the formulas 
 
 ,k k k k k=P e e P e  (6.7.31) 
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Section 6.8 Singular Value Decomposition 
 
 
 In this section, we shall discuss what is known as the singular value decomposition of a 
matrix.14  The discussion begins with a linear transformation : →A V U , where V  and U  are 
finite dimensional inner product spaces.  The singular value decomposition of : →A V U is a 
factorization of the matrix of A that is a generalization of the eigenvalue problem discussed in 
Chapter 5.  As we shall see, the factorization expresses the matrix of A  as the product of a unitary 
matrix, a diagonal matrix and another unitary matrix.  In the following, we shall illustrate how this 
decomposition is achieved. 
 

As we have done before, we shall write dimN = V  and dimM = U .  Also, we shall write 
( )dimR R= A  for the dimension of the image space ( )R A .  We know from our discussions in 

Chapters 2 and 3 that 
 
 ( )min ,R M N≤  (6.8.1) 
 
 The singular value decomposition arises from the calculation of the so-called singular 
values and the singular vectors of : →A V U .  These quantities are defined as follows: 
 
Definition:  If µ  is a nonzero scalar and ∈v V  and ∈u U  are nonzero vectors such that 
 
 µ=Av u  (6.8.2) 
 
and 
 
 * µ=A u v  (6.8.3) 
 
then µ  is a singular value of A  and v  and u  are a pair of singular vectors of A . 
 
It follows from (6.8.2) and (6.8.3) that 
 
 * * 2µ µ= =A Av A u v  (6.8.4) 
 
Likewise, it follows from (6.8.3) and (6.8.2) that 
 
 * 2µ µ= =AA u Av u  (6.8.5) 
 

 
14 The article, Professor DVD, on the MathWorks website gives an excellent summery of how Professor Gene Golub 
has caused the singular value decomposition to be a widely used and important tool in modern matrix computation.  
The link to this article is https://www.mathworks.com/company/newsletters/articles/professor-svd.html. 
 

https://www.mathworks.com/company/newsletters/articles/professor-svd.html
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Equation (6.8.4) shows that 2µ  is an eigenvalue corresponding to the eigenvector v  of the linear 
transformation * : →A A V V .  Likewise (6.8.5) shows that 2µ  is also an eigenvalue corresponding 
to the eigenvector u  of the linear transformation * : →AA U U .  If we utilize the identities (4.9.5) 
and (4.9.9), it is readily established that 
 
 ( )** *=A A A A  (6.8.6) 
 
and 
 
 ( )** *=AA AA  (6.8.7) 
 
Therefore, the two linear transformations * : →A A V V  and * : →AA U U  are Hermitian.  They 
are also positive semidefinite because 
 
 2*, , 0= = ≥v A Av Av Av Av  (6.8.8) 
 
and 
 
 

2* * * *, , 0= = ≥u AA u A u A u A u  (6.8.9) 
 
These facts and the results summarized in Theorems 5.4.3 through 5.4.6 tell us that the 
characteristic subspaces of * : →A A V V  and * : →AA U U , respectively, are mutually orthogonal 
and that the eigenvalue, 2µ  is greater than or equal to zero.  The fact that 2 0µ ≥  makes it 
convenient to change notation slightly and write 
 
 2λ µ=  (6.8.10) 
 
and adopt the convention that we shall always use the positive square root of (6.8.10) and write the 
singular values as 
 
 µ λ=  (6.8.11) 
 
 It is a theoretical result that 
 
 ( ) ( )*K K=A A A  (6.8.12) 
 
This result was established in Section 4.4 for the case when V  and U  are real inner product 
spaces.  The particular result is given in equation (4.4.13).  That proof is easily modified to fit the 
case where V  and U  are complex inner product spaces.  If we apply the rank nullity theorem, 
Theorem 3.3.5, to the two linear transformations A  and *A A , we can conclude that 
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 *dim ( ) dim ( )R R=A A A  (6.8.13) 
 
The kernel of *A A , by definition, consists of those vectors ∈v V  that obey * =A Av 0 .  The 
dimension of the kernel, by the rank nullity theorem is N R− .  Therefore, the linear transformation 

*A A  has zero for an eigenvalue and it has an algebraic multiplicity of N R− .  From (6.8.12), the 
vectors in the kernel of *A A  are in the kernel of A  and conversely. 
 

In Section 5.2, we introduced the idea of the spectrum of a linear transformation as the set 
of its eigenvalues.  Given the fact that * : →A A V V  is Hermitian, positive semidefinite and has 
N R−  zero eigenvalues, the spectrum of *A A  is the set of nonnegative real numbers 
 

 ( )


*
1 2Spectrum , ,..., , 0,...,0R

N RR

λ λ λ
−

  =  
  

A A


 (6.8.14) 

 
An entirely similar argument tells us that the spectrum of *AA  is the set 
 

 ( )


*
1 2Spectrum , ,..., , 0,...,0R

M RR

λ λ λ
−

  =  
  

AA


 (6.8.15) 

 
The convention we shall follow is to order the eigenvalues { }1 2, ,..., Rλ λ λ  such that 
 
 1 2 3 0Rλ λ λ λ≥ ≥ ≥ ⋅⋅⋅ ≥ >  (6.8.16) 
 
Therefore, the singular values are ordered as follows: 
 
 1 2 3 0Rλ λ λ λ≥ ≥ ≥ ⋅⋅⋅ ≥ >  (6.8.17) 
 
We have not assumed that the singular values are distinct.  We have, however, ordered the singular 
values so as to give a list of ( )dimR R= A  nonzero quantities. 
 
 In Section 5.4, it was established that Hermitian linear transformations possess an 
orthonormal basis consisting entirely of eigenvectors.  Given this fact, we can always construct an 
orthonormal set { }1 2 3 1, , ,..., , ,...,R R N+v v v v v v of N eigenvectors of *A A  and an orthonormal set 

{ }1 2 3 1, , ,..., , ,...,R R M+u u u u u u  of M  eigenvectors of *AA .  Given this construction, it is true that 
 

 *    for   1,...,
       for  1,...,
j j

j

j R
j R N

λ =
= 

= +

v
A Av

0
 (6.8.18) 

 
and 
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 *    for   1,...,
       for  1,...,
j j

j

j R
j R M

λ =
= 

= +

u
AA u

0
 (6.8.19) 

 
It is important when constructing singular values and singular vectors to build the orthonormal sets 
{ }1 2 3 1, , ,..., , ,...,R R N+v v v v v v  and { }1 2 3 1, , ,..., , ,...,R R M+u u u u u u  such that the vectors obey (6.8.2) 
and (6.8.3).  These relationships are summarized by rewriting (6.8.2) and (6.8.3) as 
 

 
   for   1,...,

           for  1,...,
j j

j

j R

j R N

λ == 
= +

u
Av

0
 (6.8.20) 

 
and 
 

 *    for   1,...,

           for  1,...,
j j

j

j R

j R M

λ == 
= +

v
A u

0
 (6.8.21) 

 
The construction of the orthonormal basis { }1 2 3 1, , ,..., , ,...,R R N+v v v v v v of V  and 

{ }1 2 3 1, , ,..., , ,...,R R M+u u u u u u  of U yields, among other facts, 
 
 ( ) ( )1span ,...,R NK +=A v v  (6.8.22) 
 
 ( ) ( )1 2 3span , , ,..., RR =A u u u u  (6.8.23) 
 
 ( ) ( ) ( )*

1span ,...,R MK R ⊥
+= =A A u u  (6.8.24) 

 
and 
 
 ( ) ( ) ( )*

1 2 3span , , ,..., RR K ⊥= =A A v v v v  (6.8.25) 
 
Example 6.8.1  Let V  and U  be real vector spaces such that dim 2=V and dim 4=U .  We 
define : →A V U  by 
 

 1 1 2

2 1 2

3
3

= +
= +

Ai j j
Ai j j

 (6.8.26) 

 
where { }1 2,i i  and { }1 2 3 4, , ,j j j j  are orthonormal bases.  The matrix of A  is 
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 ( )
1 3
3 1

, ,
0 0
0 0

q kM

 
 
 =
 
 
 

A i j  (6.8.27) 

 
The transpose of A , is a linear transformation :T →A U V   defined by 
 

 

1 1 2

2 1 2

3

4

3
3

T

T

T

T

= +

= +

=

=

A j i i
A j i i
A j 0
A j 0

 (6.8.28) 

 
The matrix of TA  is 
 

 ( ) 1 3 0 0
, ,

3 1 0 0
T

k qM  
=  
 

A j i  (6.8.29) 

 
A straight forward series of calculations yields 
 

 ( ) 10 6
, ,

6 10
T

q pM  
=  
 

A A i i  (6.8.30) 

 
and 
 

 ( )
10 6 0 0
6 10 0 0

, ,
0 0 0 0
0 0 0 0

T
k sM

 
 
 =
 
 
 

AA j j  (6.8.31) 

 
Note that 2N =  and 4M =  in this example.  The eigenvalue problem for TA A  yields 
 

 
( ) ( )

1 2

1 1 2 2 1 2

16, 4
1 1,
2 2

λ λ= =

= + = − +v i i v i i
 (6.8.32) 

 
As with all eigenvalue problems, the eigenvectors length is not determined.  Our convention is to 
normalize the eigenvectors to have unit length, which makes them unique up to a sign change.  For 
example, the choices  
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 ( ) ( )1 1 2 2 1 2
1 1,
2 2

= − + = − − +v i i v i i  (6.8.33) 

 
are also eigenvectors.  We shall continue to use the choices (6.8.32).  Given (6.8.32), it follows 
from (6.8.20) that the vectors 1u and 2u  are given by 
 

 
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 2 1 2 1 2
1

2 2 1 2 1 2 1 2 1 2
2

1 1 1 1 13 3
4 2 4 2 2

1 1 1 1 13 3
2 2 2 2 2

λ

λ

 = = + = + + + = + 
 

 = = − + = − − + + = − 
 

u Av A i i j j j j j j

u Av A i i j j j j j j
 (6.8.34) 

 
The full set of eigenvectors are obtained by solving the eigenvalue problem for TAA .  The result of 
this solution is 
 

 
( ) ( )

1 2 3 4

1 1 2 2 1 2 3 3 4 4

16, 4, 0
1 1, , ,
2 2

λ λ λ λ= = = =

= + = − = =u j j u j j u j u j
 (6.8.35) 

 
where the choices (6.8.34) have been made along with the choices 3 3 4 4,= =u j u j .  Given the fact 
that there are two nonzero eigenvalues, the rank of the linear transformation : →A V U  is 2R = , 
and the characteristic subspace of the zero eigenvalue has dimension 2.  It follows from the results 
(6.8.32) and (6.8.35), that the singular values are 
 
 1 24, 2λ λ= =  (6.8.36) 
 
and the singular vectors are  
 

 ( ) ( )1 1 2 2 1 2
1 1,
2 2

= + = − +v i i v i i  (6.8.37) 

 
and 
 

 ( ) ( )1 1 2 2 1 2
1 1,
2 2

= + = −u j j u j j  (6.8.38) 

 
With respect to the orthonormal bases { }1 2,v v  and { }1 2 3 4, , ,u u u u , the matrix of : →A V U  is 
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 ( )
4 0
0 2

, ,
0 0
0 0

j kM

 
 
 =
 
 
 

A v u  (6.8.39) 

 
The matrix (6.8.27) and the matrix (6.8.39) are connected by the usual change of basis expression 
(3.6.17).  In the notation utilized here, (3.6.17) takes the form 
 
 ( ) ( )1, , , ,q k j kM S M T−=A i j A v u  (6.8.40) 
 
where T  is the (orthogonal) transition matrix for the basis change { } { }1 2 1 2, ,→v v i i  and S  is the 

(orthogonal) transition matrix for the basis change { } { }1 2 3 4 1 2 3 4, , , , , ,→u u u u j j j j .  It follows from 
(6.8.37) that 
 

 1

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

T T−

   −   
   = ⇒ =
   −      

 (6.8.41) 

 
and, from (6.8.35), 
 

 1

1 1 0 0
2 2

1 1 0 0
2 2

0 0 1 0
0 0 0 1

S −

 
 
 
 −=  
 
 
 
 

 (6.8.42) 

 
If we combine (6.8.27), (6.8.39), (6.8.41)2 and (6.8.42) the result (6.8.40) becomes 
 

 ( )

1 1 0 0
1 3 4 02 2 1 1
3 1 1 1 0 2 2 20 0, ,

2 20 0 0 0 1 1
0 0 1 0 2 20 0 0 0
0 0 0 1

q kM

 
                −  = =         −           
 
 

A i j  (6.8.43) 

 
An equivalent version of (6.8.43) is 
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 ( )

1 1
1 3 2 2 1 1
3 1 1 1 4 0 2 2, ,

2 20 0 0 2 1 1
0 0 2 20 0
0 0

q kM

 
            −  = =         −       
 
 

A i j  (6.8.44) 

 
Equation (6.8.43) is an example of a singular value decomposition.  It expresses the matrix (6.8.27) 
as the product of an orthogonal matrix followed by a diagonal matrix followed by an orthogonal 
matrix. 
 
 If we return to the general case characterized by (6.8.20), we can express the linear 
transformation : →A V U  in terms of its components with respect to the orthonormal bases 
{ }1 2 3 1, , ,..., , ,...,R R N+v v v v v v  and { }1 2 3 1, , ,..., , ,...,R R M+u u u u u u .  The result is the matrix 
 

 ( )

1

2

3

0 0 0

0 0 0

0

, , 0

0 0 0

0 0 0 0

q k

R

N

R

M

M R

λ

λ

λ

λ

 ⋅ ⋅ ⋅ ⋅ ⋅   ⋅ ⋅ ⋅ ⋅ ⋅    ⋅ ⋅ ⋅ ⋅   ⋅ ⋅ ⋅ ⋅ ⋅   = ⋅ ⋅ ⋅ ⋅    ⋅ ⋅ ⋅ ⋅ 
  ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
   −⋅ ⋅ ⋅ ⋅  

 ⋅ ⋅  

A v u



 (6.8.45) 

 
If we adopt the notation of the tensor product introduced in Section 6.7, the linear transformation 

: →A V U  can, from (6.8.20), be written 
 

 
1

R

p p p
p

λ
=

= ⊗∑A u v  (6.8.46) 

 
The matrix version of (6.8.46) arises from projecting (6.8.46) into a basis for V  and U .  Equation 
(6.8.45), as explained, represents the matrix with respect to the orthonormal bases 
{ }1 2 3 1, , ,..., , ,...,R R N+v v v v v v  and { }1 2 3 1, , ,..., , ,...,R R M+u u u u u u .15  With respect to an arbitrary 

basis { }1 2, ,..., Ne e e  for V  and { }1 2, ,..., Mb b b  for U , the matrix is given by the change of basis 

 
15 Equation (6.8.46) displays the fact that A does not depend upon the eigenvectors that span the characteristic 
subspaces of *A A and *AA , respectively, for the zero eigenvalue. 
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formula (6.8.40).  Equivalently, the matrix can be derived by projecting the linear transformation in 
the form (6.8.46) into the given bases.  In the applications, the most useful form of (6.8.46) results 
when orthonormal bases of V  and U  are utilized.  If we denote these bases by { }1 2, ,..., Ni i i  for 

V  and { }1 2, ,..., Mj j j  for U .  If we represent the matrix ( ), ,q kM A i j  in components, as in Chapter 
3, we can write 
 

 ( )

11 12 1

21 22 2

31 33

1 2

, ,

N

N

q k

M M MN

A A A
A A A
A A

M

A A A

⋅ ⋅ ⋅ 
 
 
 ⋅

=  ⋅ ⋅ 
 ⋅ ⋅
 

⋅ ⋅ ⋅  

A i j  (6.8.47) 

 
where, from (4.8.6)1,  
 
 ,kq q kA = Ai j  (6.8.48) 
 
it follows from (6.8.46) and the definition (6.7.1) that 
 

 
( )

1

1 1

, ,

, , , ,

R

kq q k p p p q k
p

R R

p q p p k p p k p q
p p

A λ

λ λ

=

= =

= = ⊗

= =

∑

∑ ∑

Ai j u v i j

i v u j u j v i
 (6.8.49) 

 
Equation (6.8.49) is equivalent to the matrix product 
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( )

11 12 1

21 22 2

31 33

1 2

1 1 2 1 3 1 1

1 2 2 2 3 2 2

1 3 2 3 3 3 3

1 2 3

, ,

, , , ,
, , , ,
, , , ,

, , , ,

N

N

q k

M M MN

M

M

M

M M M M M

M M

A A A
A A A
A A

M

A A A

×

⋅ ⋅ ⋅ 
 
 
 ⋅

=  ⋅ ⋅ 
 ⋅ ⋅
 

⋅ ⋅ ⋅  

 ⋅ ⋅ 
 
 
 

=  
⋅ ⋅ ⋅ 

 ⋅ ⋅ ⋅
 

⋅ ⋅  

A i j

u j u j u j u j
u j u j u j u j
u j u j u j u j

u j u j u j u j
 

1

2

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

0 0 0

0 0 0
0

0 0 0

0 0 0 0

, , , ,

, , , ,

, , , ,

, , , ,

R

M N

N

N

N

N N N N N

λ

λ

λ

×

 ⋅ ⋅ ⋅ ⋅
 

⋅ 
 ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅

× 
⋅ ⋅ ⋅ 

 ⋅ ⋅ ⋅ 
 
 ⋅ ⋅ ⋅ ⋅ 

 ⋅ ⋅




 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅


⋅ ⋅ 

v i v i v i v i

v i v i v i v i

v i v i v i v i

v i v i v i v i





N N×













  (6.8.50) 
 
Because the bases { }1 2 3 1, , ,..., , ,...,R R N+v v v v v v  and { }1 2, ,..., Ni i i  of V  are orthonormal, the 

N N× matrix is ,p q  v i unitary.  The proof, which is similar to that used to derive equation 

(4.4.7), involves connecting the two sets of bases by the usual change of basis formulas we have 
used many times.  In this case, we shall write the change of basis as 
 

 
N

p qp q
q

V=∑v i  (6.8.51) 

 
As a result of (6.8.51), the components of the matrix ,p q  v i  are given by 

 
 ,qp p qV = v i  (6.8.52) 
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Given the labeling of the inner products as in (6.8.52), we can define the N N×  unitary matrix 
 

 

1 1 2 1 3 1 1

1 2 2 2 3 2 2

1 3 2 3 3 3 3

1 2 3

, , , ,
, , , ,
, , , ,

, , , ,

N

N

N
qp

N N N N N

V V

 ⋅ ⋅ 
 
 
 

 = =    ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅
 
  

v i v i v i v i
v i v i v i v i
v i v i v i v i

v i v i v i v i

 (6.8.53) 

 
In a like fashion, we can characterize the change of basis { }1 2, ,..., Mj j j  to 

{ }1 2 3 1, , ,..., , ,...,R R M+u u u u u u  by the formula 
 

 
M

p qp q
k

U=∑u j  (6.8.54) 

 
and define the M M×  unitary matrix 
 

 

1 1 2 1 3 1 1

1 2 2 2 3 2 2

1 3 2 3 3 3 3

1 2 3

, , , ,
, , , ,
, , , ,

, , , ,

M

M

M
qp

M M M M M

U U

 ⋅ ⋅ 
 
 
 

 = =    ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅
 
  

u j u j u j u j
u j u j u j u j
u j u j u j u j

u j u j u j u j

 (6.8.55) 

 
With the notation (6.8.53) and (6.8.55), equation (6.8.50) becomes 
 

 

1

11 12 1 2

21 22 2

31 33 *

1 2

0 0 0

0 0 0
0

0 0 0

0 0 0 0

N

N

R

M M MN

A A A
A A A
A A

U V

A A A

λ

λ

λ

 ⋅ ⋅ ⋅ ⋅
 

⋅ ⋅ ⋅  ⋅ 
   ⋅ ⋅ ⋅   
 ⋅  ⋅ ⋅ ⋅ ⋅

=   ⋅ ⋅ ⋅ ⋅ ⋅   
   ⋅ ⋅ ⋅ ⋅ ⋅   ⋅ ⋅ ⋅    

 ⋅ ⋅ ⋅ ⋅ 

 (6.8.56) 

 
Equation (6.8.56) is the singular value decomposition for the matrix ( ), ,q kM A i j .  It expresses the 

matrix ( ), ,q kM A i j  as the product of a unitary matrix, a diagonal matrix and another unitary 



550  Chap. 6     •        ADDITIONAL TOPICS EIGENVALUE PROBLEMS 

matrix.  Equation (6.8.56) is illustrated in Example 6.8.1 by equation (6.8.43).  As mentioned in 
Example 6.8.1, it is implicit in eigenvalue problems that the eigenvectors are not unique.  This fact 
results in the matrices U  and V  not being unique in the decomposition (6.8.56).16  Because of the 
convention (6.8.17), the matrix (6.8.45) is unique.  The following example further illustrates the 
construction leading to (6.8.56). 
 
Example 6.8.2:  The linear transformation in this case is defined by the matrix 3 1 4 1:A × ×→M M  
 

 

1 7
8 9 8
4 9 15
7 4 0

i
i i

A
i

i i

− 
 − =
 −
 
 

 (6.8.57) 

 
The first step is to determine the eigenvalues and eigenvectors of the Hermitian matrix  
 

 *

130 8 71 57 60
8 71 179 56

57 60 56 338

i i
A A i i

i i

− + − + 
 = − − − 
 − − 

 (6.8.58) 

 
The characteristic polynomial for (6.8.58) is 
 

 
( ) ( )

( )( )( )

* 3 2det 647 112622 4106615

377.4466 220.1275 49.4258

f A A Iλ λ λ λ λ

λ λ λ

= − = − + − +

= − − −
 (6.8.59) 

 
Therefore, 
 

 
1 1

2 2

3 3

377.4466 19.4280

220.1275 14.8367

49.4258 7.0304

λ λ

λ λ

λ λ

= ⇒ =

= ⇒ =

= ⇒ =

 (6.8.60) 

 
A set of eigenvectors corresponding to these eigenvalues turn out to be 
 

 1 2 3

0.1539 0.2593 0.2663 0.4758 0.6573 0.4239
0.0990 0.2159 , 0.7696 0.2415 , 0.2728 0.4674

0.9234 0.2282 0.3087

i i i
i i i

− + − − − +     
     = − = − + = − −     
     −     

v v v  (6.8.61) 

 

 
16 The notes at the site http://www.cs.toronto.edu/~jepson/csc420/notes/introSVD.pdf provide a good summary of the 
kinds of uniqueness issues that arise when constructing singular value decompositions. 
  

http://www.cs.toronto.edu/%7Ejepson/csc420/notes/introSVD.pdf
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The eigenvectors in (6.8.61) have been normalized to have unit length.  Because the matrix *A A  
Hermitian, the eigenvectors are orthogonal.  Thus, { }1 2 3, ,v v v  is an orthonormal basis.  Given 
(6.8.61), the matrix V  from (6.8.53) is given by 
 

 
0.1539 0.2593 0.2663 0.4758 0.6573 0.4239

0.0990 0.2159 0.7696 0.2415 0.2728 0.4674
0.9234 0.2282 0.3087

i i i
V i i i

− + − − − + 
 = − − + − − 
 − 

 (6.8.62) 

 
Choices of the eigenvectors 1 2,u u  and 3u  are made by utilization of (6.8.20).  Therefore, 
 

 1 1
1

1 7 0.3137 0.0083
0.1539 0.2593

8 9 8 0.1562 0.34361 1 0.0990 0.2159
4 9 15 0.0775 0.8664377.4466 0.9234
7 4 0 0.0490 0.0351

i i
i

i i i
A i

i i
i i i

λ

− +   
− +    − +    = = − =    − − +
      − −   

u v

  (6.8.63) 
 

 2 2
2

1 7 0.1060 0.0198
0.2663 0.4758

8 9 8 0.7234 0.41311 1 0.7696 0.2415
4 9 15 0.3951 0.0441220.1275 0.2282
7 4 0 0.1594 0.331

i i
i

i i i
A i

i i
i i i

λ

− +   
− −    − − +    = = − + =    − −
      −   

u v

  (6.8.64) 
 
and 
 

 3 3
3

1 7 0.4673 0.0991
0.6573 0.4239

8 9 8 0.1331 0.20161 1 0.2728 0.4674
4 9 15 0.0247 0.181049.4258 0.3087
7 4 0 0.1561 0.8097

i i
i

i i i
A i

i i
i i i

λ

− − +   
− +    − −    = = − − =    − − +
 −     − −   

u v

  (6.8.65) 
 
The vectors 1 2,u u  and 3u  are three of the four eigenvectors of the Hermitian matrix  
 

 *

51 57 4 96 4 7
57 209 39 32 56 36

4 96 39 32 322 8
4 7 56 35 8 65

i i i
i i i

AA
i i i
i i i

− − − − 
 − − − =
 + +
 − + − + − 

 (6.8.66) 

 
The solution of this eigenvalue problem yields 
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1

2

3

4

377.4466
220.1275
49.4258
0

λ
λ
λ
λ

=
=
=
=

 (6.8.67) 

 
for the four eigenvalues and the four eigenvectors given by (6.8.63), (6.8.64) and (6.8.65) and17 
 

 4

0.8134
0.1229 0.3021
0.0655 0.2185

0.0155 0.4239

i
i

i

 
 − =
 − −
 − 

u  (6.8.68) 

 
for the normalized eigenvectors.  Given (6.8.63), (6.8.64), (6.8.65) and (6.8.68) the matrix U  in 
(6.8.55) is given by18 
 

 

0.3137 0.0083 0.1060 0.0198 0.4673 0.0991 0.8134
0.1562 0.3436 0.7234 0.4131 0.1331 0.2016 0.1229 0.3021
0.0775 0.8664 0.3951 0.0441 0.0247 0.1810 0.0655 0.2185
0.0490 0.0351 0.1594 0.331 0.15

i i i
i i i i

U
i i i i
i i

+ + − +
+ − + − −

=
− + − − + − −
− − − − 61 0.8097 0.0155 0.4239i i

 
 
 
 
 − − 

  (6.8.69) 
 
Given (6.8.62) and (6.8.69), the singular value decomposition of (6.8.57) is 
 
 

1 7 0.3137 0.0083 0.1060 0.0198 0.4673 0.0991 0.8134
8 9 8 0.1562 0.3436 0.7234 0.4131 0.1331 0.2016 0.1229 0.3021
4 9 15 0.0775 0.8664 0.3951 0.0441 0.0247 0.1810 0.0655 0.2185
7 4 0

i i i i
i i i i i i

A
i i i i

i i

− + + − + 
 − + − + − − = =
 − − + − − + − −
 
  0.0490 0.0351 0.1594 0.331 0.1561 0.8097 0.0155 0.4239

19.4280 0 0
0.1539 0.2593 0.2663 0.4758 0.6573 0.4239

0 14.8367 0
0.0990 0.2159 0.7696 0.2415 0.2728 0.4674

0 0 7.0304
0 0 0

i
i i i i

i i i
i i

 
 
 ×
 
 − − − − − − 

 
− + − − − + 

  − − + − −
 
 
 

*

0.9234 0.2282 0.3087
i

 
 
 
 − 

  (6.8.70) 
 
An equivalent version of (6.8.70) is 
 

 
17 Equation (6.8.68) follows from the solution of (6.8.5) for the the single zero eigenvalue.   
18 The normalization of 1 2,v v and 3v to be unit vectors and the definition (6.8.20) cause 1 2,u u and 3u to also be unit 
vectors. 
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1 7 0.3137 0.0083 0.1060 0.0198 0.4673 0.0991
8 9 8 0.1562 0.3436 0.7234 0.4131 0.1331 0.2016
4 9 15 0.0775 0.8664 0.3951 0.0441 0.0247 0.1810
7 4 0 0.0490 0.0351 0.1594 0.331 0.156

i i i i
i i i i i

A
i i i i

i i i i

− + + − + 
 − + − + − = =
 − − + − − +
  − − − − 

*

1 0.8097

19.4280 0 0 0.1539 0.2593 0.2663 0.4758 0.6573 0.4239
0 14.8367 0 0.0990 0.2159 0.7696 0.2415 0.2728 0.4674
0 0 7.0304 0.9234 0.2282 0.3087

i

i i i
i i i

 
 
 ×
 
 − 

− + − − − +   
   − − + − −   
   −   

  (6.8.71) 
 
The transformation from (6.8.70) to (6.8.71), which is similar to the transformation from (6.8.43) to 
(6.8.44) simply reflects the result (6.8.46) which does not depend upon the vectors { }1,...,R N+v v  

and { }1,...,R M+u u .  In our Example 6.8.2, this observation means that the last column of the matrix 
(6.8.69) does not contribute to the answer.19 
 
 It was mentioned above that the U  and V  are not unique in the decomposition (6.8.56).  
The matrix (6.8.45) is unique.  The source of this lack of uniqueness is the fact we have observed, 
namely, that an eigenvalue problem does not determine the length of an eigenvector.  More 
explicitly, if v is a unit eigenvector, −v is also a unit eigenvector.  In the singular value 
decomposition the vectors { }1 2, ,..., Ru u u  are determined by the vectors { }1 2, ,..., Rv v v by (6.8.20).  

It follows then that the indeterminacy in the vectors { }1 2, ,..., Rv v v  is passed to the vectors 

{ }1 2, ,..., Ru u u .  This fact is perhaps illustrated by rewriting (6.8.46) as 
 

 

1 1

2
1

1

R R
p

p p p p p p
p p p

R
p p

p p p
p p

R
p p p p

p
p p p

σ
λ λ

σ

σ σ
λ

σ

σ σ
λ

σ σ

= =

=

=

 
= ⊗ = ⊗  

 
 
 = ⊗
 
 
   
   = ⊗
   
   

∑ ∑

∑

∑

A u v u v

u v

u v

 (6.8.72) 

 
where pσ , for 1, 2,...,p R=  are arbitrary nonzero complex numbers.  The arrangement (6.8.72)4 

preserves the orthonormal character of the sets 1 1 2 2

1 2

, ,..., R R

R

σ σ σ
σ σ σ

  
 
  

v v v  and 

1 1 2 2

1 2

, ,..., R R

R

σ σ σ
σ σ σ

  
 
  

u u u .  The pairwise multiplications by a scalar with magnitude one of the 

 
19 The version (6.8.71) is sometimes referred to as the economy size decomposition.   
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vectors { }1 2, ,..., Rv v v and { }1 2, ,..., Ru u u produce different matrices U and V  in the singular 
decomposition, but do not alter the equality (6.8.56).  As an example, if we take 
 

 

1

1

2

2

3

3

0.5105 0.8599

0.4884 0.8726

0.8404 0.5419

i

i

i

σ
σ
σ
σ
σ
σ

= +

= − +

= +

 (6.8.73) 

 
then, for Example 6.8.2, we can construct a new set of orthonormal vectors as follows: 
 

 

( )

( )

1 1

1

2 2

2

0.1539 0.2593 0.3015
0.5105 0.8599 0.0990 0.2159 0.2362 0.0251

0.9234 0.4714 0.7940

0.2663 0.4758 0.5452
0.4884 0.8726 0.7696 0.2415 0.1651 0.7895

0.2282

i
i i i

i

i
i i

σ
σ

σ
σ

− + −   
   = + − = −   
   +   

− − 
 = − + − + = − 
  

v

v

( )

( )

3 3

3

1 1

1

0.1114 0.1991

0.6573 0.4239 0.7822
0.8404 0.5419 0.2728 0.4674 0.0240 0.5407

0.3087 0.2594 0.1673

0.3137 0.0083
0.1562 0.3436

0.5105 0.8599
0.0775 0.

i
i

i
i i i

i

i
i

i

σ
σ

σ
σ

 
 
 
 − + 

− + −   
   = + − − = −   
   − − −   

+
+

= +
− +

v

u

( )2 2

2

0.1530 0.2739
0.2175 0.3066

8664 0.7845 0.3756
0.0490 0.0351 0.0052 0.0600

0.1060 0.0198 0.069
0.7234 0.4131

0.4884 0.8726
0.3951 0.0441
0.1594 0.331

i
i

i i
i i

i
i

i
i
i

σ
σ

+   
   − +   =
   − +
   − − −   

+ − 
 − + = − + =
 −
 − 

u

( )3 3

3

0 0.0828
0.0072 0.8330
0.1544 0.3663

0.2129 0.3018

0.4673 0.0991 0.4456 0.1700
0.1331 0.2016 0.2211 0.0974

0.8404 0.5419
0.0247 0.1810 0.1188 0.1387
0.1561 0.8097

i

i
i

i i
i i

i
i
i

σ
σ

+ 
 − − 
 − +
 + 

− + − − 
 − − = + =
 − + − +
 − − 

u

0.3076 0.7651
i

i

 
 
 
 
 − 

 (6.8.74) 
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Given, the results (6.8.74), the singular decomposition (6.8.71) can be replaced by the equivalent 
result20 
 

 

1 7 0.1530 0.2739 0.0690 0.0828 0.4456 0.1700
8 9 8 0.2175 0.3066 0.0072 0.8330 0.2211 0.0974
4 9 15 0.7845 0.3756 0.1544 0.3663 0.1188 0.1387
7 4 0 0.0052 0.0600 0.2129 0.3018 0.30

i i i i
i i i i

A
i i i i

i i i i

− + − + − − 
 − − + − − − = =
 − − + − + − +
  − + 

*

76 0.7651

19.4280 0 0 0.3015 0.5452 0.7822
0 14.8367 0 0.2362 0.0251 0.1651 0.7895 0.0240 0.5407
0 0 7.0304 0.4714 0.7940 0.1114 0.1991 0.2594 0.1673

i

i i i
i i i

 
 
 ×
 
 − 

− −   
   − − −   
   + − + − −   

  (6.8.75) 
 
 An interesting application for the formula (6.8.46)  is to derive a representation for the 
solution of the equation we have discussed throughout this textbook, namely, given a vector ∈b U  
and a linear transformation : →A V U , find a vector ∈x V  such that 
 
 =Ax b  (6.8.76) 
 
As we discussed in Section 1.8.1 with Theorem 1.8.1, (6.8.76) has a solution if and only if the 
vector ( )R∈b A .  This result was again discussed in Section 2.7.  If the representation (6.8.46)  is 
used, equation (6.8.76) can be written 
 

 
1

R

p p p
p

λ
=

 
⊗ = 

 
∑ u v x b  (6.8.77) 

 
The definition (6.7.1) can be used to rewrite (6.8.77) as 
 

 
1

,
R

p p p
p

λ
=

=∑ x v u b  (6.8.78) 

 
This equation shows that the given b must be in the span of { }1 2, ,..., Ru u u , the image space ( )R A .  
This result is simply a restatement of the earlier result mentioned above.  An equivalent way to 
assert this fact is to observe that (6.8.78) is equivalent to 
 
 , for    1, 2,...,p p R R M= = + +u b 0  (6.8.79) 
 

 
20 Example 6.8.2 has been worked with the aid of MATLAB to carry out the calculations.  The result (6.8.75) is the 
form of the answer given by MATLAB’s built in singular value decomposition command. 
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Equation (6.8.79) asserts that ( )*K
⊥

∈b A .  Of course, equation (4.12.8) shows that the result 

( )*K
⊥

∈b A  is simply a restatement of ( )R∈b A .  The result (6.8.79) was also established earlier 
in the proof of Theorem 4.12.3, the first part of the Fredholm Alternative Theorem.  If the given b  
obeys ( )R∈b A , it follows from (6.8.78) that 
 

 1, , for    1, 2,...,p p
j

p R
λ

= =x v b u  (6.8.80) 

 
Because x is a vector in V and { }1 2 3 1, , ,..., , ,...,R R N+v v v v v v  is a basis for V , it has the 
representation 
 

 
1 1 1

, , ,
N R N

p p p p p p
p p p R= = = +

= = +∑ ∑ ∑x x v v x v v x v v  (6.8.81) 

 
If we now use (6.8.80), (6.8.81) can be used to write the solution of =Ax b  as 
 

 

( ) ( )
( )*

1 1

In K
In 

1 , ,   
R N

p p p p
p p Rp

R K

λ
⊥

= = +

=

 
 = +
 
 

∑ ∑
A

A A

x b u v x v v




 (6.8.82) 

 
Equation (6.8.82) is a representation of the solution of (6.8.76) in the case where ( )R∈b A .  It is 
of the form of the representation given in Theorem 2.7.5. 
 
Example 6.8.3:  In Example 2.7.6, we found the solution of equation (2.7.91), repeated, 
 

 

1

2

3

4

5

1 1 2 1 3 1
2 1 2 2 6 2
3 2 4 3 9 3

x
x
x
x
x

 
 −        − =       − − −    
  

 (6.8.83) 

 
to be  
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1

2

3 3 5

4

5

0 0 1
2 0 0
1 0 0
0 3 0
0 1 0

x
x
x x x
x
x

       
       
       
       = = + +
       −       
             

x  (6.8.84) 

 
It is instructive to generate (6.8.84) based upon the singular value decomposition of the matrix of 
coefficients 
 

 
1 1 2 1 3
2 1 2 2 6
3 2 4 3 9

A
− 

 = − 
 − − − 

 (6.8.85) 

 
The eigenvalues of the matrix 
 

 

14 5 10 4 12
5 6 12 7 21
10 12 24 14 42
4 7 14 14 42
12 21 42 42 126

TA A

− − − 
 − − − 
 = − −
 − − 
 − − 

 (6.8.86) 

 
are the solution of the fifth order polynomial 
 

 
( ) ( ) ( )

( )( )( )

2 3 2

2

det 184 3845 16200

160.70 17.56 5.74

Tf A A Iλ λ λ λ λ λ

λ λ λ λ

= − = − + − +

= − − −
 (6.8.87) 

 
and the solution representation (6.8.82).  Therefore, 
 

 

1 1

2 2

3 3

4 5

160.70 12.6768

17.56 4.1902

5.74 2.3962
0

λ λ

λ λ

λ λ
λ λ

= ⇒ =

= ⇒ =

= ⇒ =

= =

 (6.8.88) 

 
Among other things, equation (6.8.88) tells us that the rank of the matrix (6.8.85) is 3.  The 
normalized eigenvalues of (6.8.86) are 
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 1 2 3 4 5

0.1074 0.7401 0.6638 0 0
0.1611 0.2654 0.3219 2 0

1 1, , , ,0.3221 0.5308 0.5438 1 0
5 100.2930 0.1000 0.0641 0 3

0.8791 0.3001 0.1942 0 1

− −        
        −        
        = = = = =− −
        −       
               

v v v v v







 
 

 (6.8.89) 

 
and the corresponding singular vectors are 
 

 1 2 3

0.1592 0.7320 0.6624
0.5089 , 0.5141 , 0.6904
0.8460 0.4470 0.2907

     
     = = = −     
     − −     

u u u  (6.8.90) 

 
The next formal step is to utilize (6.8.88), (6.8.89) and (6.8.90) to form the solution (6.8.82).  This 
calculation goes as follows: 
 

 

[ ] [ ]
1

2

3

4

5

0.1074 0.7401
0.1592 0.73200.1611 0.2654

1 11 2 3 0.5089 1 2 3 0.51410.3221 0.5308
12.6768 4.1902

0.8460 0.44700.2930 0.100
0.8791

x
x
x
x
x

− 
    −            + −               −         

     = =
 
 
  

x

[ ]

[ ]

1

1 ,

1 2 3 4 5

0
0.3001

0.6638
0.6624 0.3219

1 1 2 3 0.6904 0.5438
2.3962

0.2907 0.0641
0.1942

0
2

1 1
5

0
0

R

p p
pp

x x x x x

λ=

 
 
 
 

 
 
 
 
 
 
  

− 
         + − −      −    
  

∑




+



b u v



[ ]

1

1 2 3 4 5

,

0 0 0
2 0 0

1   1 0 0
10

0 3 3
0 1 1

N

p p
p R

x x x x x

= +

         
         
          
          +
          − −          
                   

∑ x v v



  (6.8.91) 
If this complicated numerical expression is evaluated, one finds 
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( ) ( )

1

1

1

2

3

4

5

1 ,

2 3 4 5

,

1
0
0
0
0

0 0
2 0

1 12 3   1 0
5 10

0 3
0 1

R

p p
pp

N

p p
p R

x
x
x
x
x

x x x x

λ=

= +

 
 
 
 

   
   
   
   = = +
   
   
     

∑

   
   
   
   + + + − +
   −   
      

∑

b u v

x v v

x



 (6.8.92) 

 
This result is entirely equivalent to the earlier answer (6.8.84) 
 
 This brief introduction to the singular value decompositions does not do justice to a large 
and complex topic that has great application.  A few minutes searching the internet will reveal 
many of these applications.21 
 
 
Exercises 
 
6.8.1  Let V  and U  be real vector spaces such that dim 2=V  and dim 4=U .  We define 

: →A V U  by 
 

 1 1 2

2 1 2

3
5

= +
= +

Ai j j
Ai j j

 (6.8.93) 

 
where { }1 2,i i  and { }1 2 3 4, , ,j j j j  are orthonormal bases.  Determine the singular values and the 
singular vectors for the linear transformation A . 
 
6.8.2  In the case where you are given a matrix N NA ×∈M  that has rank N , the singular value 
decomposition (6.8.56) can be written 

 
21 A couple of interesting articles that give insights to the singular value decomposition can be found at 
http://www.ams.org/samplings/feature-column/fcarc-svd and https://www.mathworks.com/videos/the-singular-value-
decomposition-saves-the-universe-1481294462044.html  The first article contains a link to a New York Times article 
that discusses a challenge by Netflix that will award a million dollars to anyone that can improve in a specific way its 
recommendation engine.  The article explains how the singular value decomposition is being utilized by individuals 
working to win the Netflix challenge.  The second article is a video which, among other things, mentions the Netflix 
challenge. 

http://www.ams.org/samplings/feature-column/fcarc-svd
https://www.mathworks.com/videos/the-singular-value-decomposition-saves-the-universe-1481294462044.html
https://www.mathworks.com/videos/the-singular-value-decomposition-saves-the-universe-1481294462044.html
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1

2
*

0

0
0

N

A U V

λ

λ

λ

 ⋅ ⋅ ⋅
 
 
 = ⋅ 
 ⋅ ⋅
 
⋅  

 (6.8.94) 

 
The matrix N NA ×∈M , by our assumptions is nonsingular.  The inverse, from (6.8.94), is given by 
 

 

1

21 *

1 0

10

0

1

N

A V U

λ

λ

λ

−

 ⋅ ⋅ ⋅ 
 
 
 
 =  ⋅ 

⋅ ⋅ 
 
 ⋅
  

 (6.8.95) 

 
Given the matrix from Example 1.6.5, repeated, 
 

 
1 3 1
2 1 1
2 2 1

A
 
 =  
 − − 

 (6.8.96) 

 
and utilize (6.8.95) to calculate the inverse of (6.8.96).  The answer was given earlier in equation 
(1.6.35). 
 
6.8.3  Show that a singular value decomposition of the matrix 3 1 5 1:A × ×→M M  defined by 
 

 

( ) ( )

( )

( )

16 1 11 1
5 5 5

1 22 31
5 5 5
1 3 221
5 5 5

0 0 0
0 0 0

i i

i i
A

i i

 − + 
 
 + − 

=  
 −
 
 
 
  

 (6.8.97) 

is 
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( ) ( )

( )

( )

1 20 1 1 0 0
10 10

5 0 0
2 1 0 0 0 4 0
52 10

0 0 3
1 2 1 0 0 00 0

52 10 0 0 0
0 0 0 1 0
0 0 0 0 1

10
2 2

1 2 21
5 510

2 1 11
1010 10

i i

i i i
A

i

i i

i i

 + − + 
   
   −   
   = ×   
   
     
 
  
 
 
 
 

− 
 
 
− − − 
 

  (6.8.98) 
 
Also, show that an equivalent form of (6.8.98) is 
 
 

( ) ( )

( )

( )

1 20 1 1
10 10 10

2 22 1 5 0 0
52 10 1 2 20 4 0 1

5 5101 2 1 0 0 3
2 1 152 10 1

1010 100 0 0
0 0 0

i i
i

i i i
A i i

i i

 + − +         −       = −             − − −     
  

  (6.8.99) 
  



562  Chap. 6     •        ADDITIONAL TOPICS EIGENVALUE PROBLEMS 

 



Sec. 6.9 • The Polar Decomposition Theorem 563 

 

 
Section 6.9 The Polar Decomposition Theorem 
 
 
 The polar decomposition is a decomposition of a linear transformation : →A V U  into the 
product of a Hermitian linear transformation and a unitary linear transformation.  The Hermitian 
linear transformation is positive semidefinite and, depending upon the properties of A , the unitary 
linear transformation may not be unique.  The details of this rough description will be made clear in 
this section.  One of the applications of the polar decomposition theorem is in the case where 

: →A V U  is one to one and dim dimN = =V U .  In other words, when : →A V U  is one to one 
and onto, thus invertible.  This is the case that arises when one studies the kinematics of strain for 
continuous materials.  The formal statement of the polar decomposition theorem in the invertible 
case is 
 
Theorem 6.9.1:  A one to one onto linear transformation : →A V U  has a unique multiplicative 
decomposition 
 
 =A RV  (6.9.1) 
 
where : →R V U  is unitary and : →V V V  is Hermitian and positive definite. 
 
Proof:  The proof utilizes a construction similar to that used in Section 6.8 for the singular value 
decomposition.  Given a one to one onto linear transformation : →A V U , we can construct 
Hermitian linear transformation : →C V V  by the definition 
 
 *=C A A  (6.9.2) 
 
By the same argument that produced (6.8.8) 
 
 2*, , , 0= = = ≥v Cv v A Av Av Av Av  (6.9.3) 
 
Because : →A V U  is one to one and onto, ( )K A  only contains the zero vector.  As a result, 

2 0>Av  for all non zero vectors ∈v V .  Therefore, the Hermitian linear transformation 
: →C V V  is positive definite.  As a positive definite Hermitian linear transformation, : →C V V  

has the spectral representation 
 

 
1

N

j j j
j
λ

=

= ⊗∑C v v  (6.9.4) 

 
where the positive numbers 1 2, ,..., Nλ λ λ  are the eigenvalues of C  and { }1 2, ,..., Nv v v  is an 
orthonormal basis for V consisting of eigenvectors of C  .  The representation (6.9.4) does not 
assume the eigenvalues are distinct.  If they are, the tensor products in (6.9.4) represent the 
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projections into the characteristic subspaces of C .  It is useful to note that we can apply (6.6.31) to 
the expression (6.9.4) and obtain 
 

 1

1

1N

j j
j jλ

−

=

= ⊗∑C v v  (6.9.5) 

 
We can also apply the definition (6.6.31) and define the linear transformation : →V V V  by 
 

 
1

2

1

N

j j j
j

λ
=

= = ⊗∑V C v v  (6.9.6) 

 
where, by convention, we have used the positive square root of each eigenvalue.  It follows from 
(6.9.6) that 
 

 1

1

1N

j j
j jλ

−

=

= ⊗∑V v v  (6.9.7) 

 
Equation (6.9.6) provides one of the two linear transformations in the decomposition (6.9.1).  The 
next formal step is to define the linear transformation : →R V U  by the formula 
 
 1−=R AV  (6.9.8) 
 
Because A  is invertible, R as defined by (6.9.8) is also invertible.  If we can establish that R  is 
unitary, we will have established (6.9.1).  We shall establish that R  is unitary by showing that it 
obeys (4.10.14), repeated, 
 
 * =R R IV  (6.9.9) 
 
The definition (6.9.8) yields 
 

 

( ) ( )

( )( )

* ** 1 1 1 * 1

1 * 1 1 2 1

1 1

− − − −

− − − −

− −

= =

= =

= =

R R AV AV V A AV

V A AV V V V

V V VV IV

 (6.9.10) 

 
where (4.9.10) and (6.9.6) have been used.  The uniqueness of the decomposition (6.9.1) is a 
consequence of (6.9.2), (6.9.6) and (6.9.8). 
 
 A corollary to Theorem 6.9.1 is that : →A V U  also has the decomposition 
 
 =A UR  (6.9.11) 
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where : →U U U  is a positive definite Hermitian linear transformation.  Equation (6.9.11) results 
if we simply define U by the formula 
 
 *=U RVR  (6.9.12) 
 
It readily follows from this definition that 
 
 2=B U  (6.9.13) 
 
where : →B U U  is the positive definite Hermitian linear transformation defined by 
 
 *=B AA  (6.9.14) 
 
It is possible to show that 
 

 

1

1

1

1
2

1

1

1

1

1

N

j j j
j

N

j j
j j

N

j j j
j

N

j j
j j

λ

λ

λ

λ

=

−

=

=

−

=

= ⊗

= ⊗

= = ⊗

= ⊗

∑

∑

∑

∑

B u u

B u u

U B u u

U u u

 (6.9.15) 

 
where { }1 2, ,..., Nu u u  is an orthonormal basis of U  consisting of eigenvectors of B .  The 

eigenvectors { }1 2, ,..., Nu u u  are related to the eigenvectors { }1 2, ,..., Nv v v  by the formula 
 

 
( )

1 1

1

j j j
j j

j j j
j

λ λ

λ
λ

= =

= =

u Av RVv

R v Rv
 (6.9.16) 

 
where (6.9.1) and (6.9.6) have been used.  Equation (6.9.16) can also be established from (6.9.12), 
(6.9.6), (6.9.15) and (6.7.24). 
 
Example 6.9.1:  As an illustration of the polar decomposition theorem, consider the linear 
transformation : →A V V introduced in Example 5.3.1.  The definition of this linear 
transformation is given in equation (5.3.1), repeated, 
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1 1 2 3

2 1 3

3 1 2 3

4
2 4

5

= + +
= −
= − + +

Ae e e e
Ae e e
Ae e e e

 (6.9.17) 

 
where { }1 2 3, ,e e e  is a basis for V .  As explained in Example 4.5.1, the matrix of A  with respect to 
this basis is 
 

 ( )
1 2 1

, , 1 0 1
4 4 5

j kA M
− 

 = =  
 − 

A e e  (6.9.18) 

 
The linear transformation C  defined by (6.9.2) has the matrix 
 

 

( )
1 2 1 1 2 1

, , 1 0 1 1 0 1
4 4 5 4 4 5

18 14 20
14 20 22

20 22 27

T

j kC M
− −   

   = =    
   − −   

− 
 = − − 
 − 

C e e

 (6.9.19) 

 
The eigenvalues and eigenvectors of the matrix (6.9.19) can be shown to be 
 
 
 1 2 30.1207, 0.4.9776, 59.9017λ λ λ= = =  (6.9.20) 
 
and 
 

 
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1
1 2 3

2 2 2
1 2 3

3 3 3
1 2 3

0.4164 0.7578 0.5024
0.5268 0.6515 0.5459
0.7410 0.0374 0.6705

T

υ υ υ

υ υ υ

υ υ υ

  −    =   = −    −   

 (6.9.21) 

 
where the notation introduced in equation (5.3.23) has been used to label the eigenvectors.  The 
spectral form of (6.9.19) which follows from (6.9.4) is 
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( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 1 1 1 1 1
1 1 2 2 3 3

2 2 2 2 2 2
1 2 31 1 2 2 3 3

3 3 3 3 3 3
1 1 2 2 3 3

18 14 20
, , 14 20 22

20 22 27
j k

T T

C M

υ υ υ υ υ υ

λ υ υ λ υ υ λ υ υ

υ υ υ υ υ υ

− 
 = = − − 
 − 

              
             
   =     +     +   
             
                           

C e e

0.1734 0.2194 0.3085 0.5742 0.4937 0.0283
0.1207 0.2194 0.2775 0.3904 4.9776 0.4937 0.4244 0.0243

0.3085 0.3904 0.5491 0.0283 0.0243 0.0014

0.2524 0.2743 0.3369
59.9017 0.274

T
 
 
 
 
  

− − −   
   = − + −   
   − − −   

−
+ − 3 0.2981 0.3660

0.3369 0.3660 0.4495

 
 − 
 − 

  (6.9.22) 
 
where (6.7.8) has been used to determine the matrix representation of the tensor products in (6.9.4).  
From (6.9.6) and (6.9.22), it follows that 
 

 

( )
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 1 1 1 1 1
1 1 2 2 3 3

2 2 2 2 2 2
1 2 31 1 2 2 3 3

3 3 3 3 3 3
1 1 2 2 3 3

, ,

0.1734 0.
0.3475

T T T

j kV M

υ υ υ υ υ υ

λ υ υ λ υ υ λ υ υ

υ υ υ υ υ υ

                
                
     = =     +     +    
                
                                

−
=

V e e

2194 0.3085 0.5742 0.4937 0.0283
0.2194 0.2775 0.3904 2.311 0.4937 0.4244 0.0243
0.3085 0.3904 0.5491 0.0283 0.0243 0.0014

0.2524 0.2743 0.3369
7.7396 0.2743 0.2981 0.3660

0.3369 0.3660 0.4495

− −   
   − + −   
   − − −   

−
+ − −

−
3.2950 1.0978 2.4368
1.0978 3.3501 2.7516

2.4368 2.7516 3.6730


 
 
 

− 
 = − − 
 − 

  (6.9.23) 
 
Finally, the matrix of the orthogonal linear transformation : →R V V  is, from (6.9.8) 
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( ) ( ) ( ) 1

1

, , , , , ,

1 2 1 3.2950 1.0978 2.4368
1 0 1 1.0978 3.3501 2.7516
4 4 5 2.4368 2.7516 3.6730

0.7551 0.5442 0.3656
0.0682 0.6198 0.7818

0.6520 0.5654 0.5051

j k j k j kR M M M
−

−

= =

− −   
   = − −   
   − −   

− 
 = − 
 − 

R e e A e e V e e

 (6.9.24) 

 
Therefore, the polar decomposition (6.9.1) is given by (6.9.18), (6.9.24) and (6.9.23).  If we utilize 
(6.9.12) and (6.9.24) it follows that 
 
 ( ) ( ) ( ) ( ), , , , , , , ,T

j k j k j k k jM M M M=U e e R e e V e e R e e  (6.9.25) 
 
Equation (6.9.25) creates a small problem because the components of the linear transformation TR  
with respect to the basis { }1 2 3, ,e e e  are given by (4.9.24) specialized to the case of a real vector 
space V  and a linear transformation →V V .  Equation (4.9.24) requires knowledge of the matrix 
of inner products formed from the basis{ }1 2 3, ,e e e .   Fortunately, we do not need to utilize (4.9.24) 
in this case because R  is orthogonal and, from (4.10.15), 
 
 1T −=R R  (6.9.26) 
 
and from (3.5.42) 
 

 ( ) ( ) ( )( ) 11, , , , , ,T
k j k j j kM M M

−
−= =R e e R e e R e e  (6.9.27) 

 
Equation (6.9.27) allows (6.9.25) to be written 
 

 ( ) ( ) ( ) ( )( ) 1
, , , , , , , ,j k j k j k j kM M M M

−
=U e e R e e V e e R e e  (6.9.28) 

 
As a result of (6.9.28) and (6.9.24),  
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( )
0.7551 0.5442 0.3656 3.2950 1.0978 2.4368 0.7551 0.5442 0.3656

, , 0.0682 0.6198 0.7818 1.0978 3.3501 2.7516 0.0682 0.6198 0.7818
0.6520 0.5654 0.5051 2.4368 2.7516 3.6730 0.6520 0.5654 0.505

j kM
− − −   

   = − − − −   
   − − −   

U e e

1

1

0.7551 0.5442 0.3656 3.2950 1.0978 2.4368 0.7551 0.0682 0.6520
0.0682 0.6198 0.7818 1.0978 3.3501 2.7516 0.5442 0.6198 0.5654

0.6520 0.5654 0.5051 2.4368 2.7516 3.6730 0.3656 0.7818

−
 
 
 
  

− − −   
   = − − − −   
   − − −    0.5051

2.2091 0.3896 0.9840
0.3896 0.7136 1.1571
0.9840 1.1571 7.3955

 
 
 
  

− 
 =  
 − 

  (6.9.29) 
 
Example 6.9.2:  Consider the linear transformation : →A V V  whose matrix with respect to an 
orthonormal basis { }1 2 3 4, , ,i i i i  is  
 

 ( )
2 3 2 4
3 2 1 2

, ,
3 2 3 4
2 4 0 5

j k

i i
i

A M
i i
i i

− 
 − = =
 
 − 

A i i  (6.9.30) 

 
The linear transformation C  defined by (6.9.2) has the matrix 
 

 

( )
2 3 2 4 2 3 2 4
3 2 1 2 3 2 1 2

, ,
3 2 3 4 3 2 3 4
2 4 0 5 2 4 0 5

2 3 3 2 2 3 2 4 26 6 8 12 4 2 6
3 2 2 4 3 2 1 2 6 8 33 8 6 8

2 1 3 0 3 2 3 4
4 2 4 5 2 4 0 5

T

j k

i i i i
i i

C M
i i i i
i i i i

i i i i i i i
i i i i

i i i i
i i i i

− −   
   − −   = =
   
   − −   

− − − + − − −   
   − − − − − − + +   = =
   −
   − − −   

C i i

4
12 4 8 6 14 2

2 6 8 4 2 61

i
i i i
i i i

 
 
 
 + − − −
 − + − 

  (6.9.31) 
 
The eigenvalues and eigenvectors of the matrix (6.9.31) can be shown to be 
 
 
 1 2 3 42.8842, 23.1440, 42.2155, 65.7563λ λ λ λ= = = =  (6.9.32) 
 
and 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1
1 2 3 4

2 2 2 2
1 2 3 4

3 3 3 3
1 2 3 4

4 4 4 4
1 2 3 4

0.0880 0.5008 0.4924 0.3650 0.5494 0.1283 0.1498 0.1584
0.3202 0.0747 0.5868 0.2064 0.2852 0.5665 0.2463 0.2050
0.1050 0.7851 0.1

T

i i i i
i i i i
i

υ υ υ υ

υ υ υ υ

υ υ υ υ

υ υ υ υ

 
 
 

=  
 
 
  

+ − − − − −
− − − + +

=
− − 570 0.4337 0.1758 0.3270 0.0368 0.1437

0.0769 0.1569 0.3764 0.9098
i i i

 
 
 
 − − − − −
 − − 

  (6.9.33) 
 
where the notation introduced in equation (5.3.23) has been used to label the eigenvectors.  The 
spectral form of (6.9.33) is given by (6.9.4).  From (6.9.6) and (6.9.33), it follows that 
 

 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

* *1 1 1 1 1 1
1 1 2 2 3 3

2 2 2 2 2 2
1 1 2 2 3 3

1 2 33 3 3 3 3
1 1 2 2 3

4 4 4 4 4
1 1 2 2 3

, ,j kV M

υ υ υ υ υ υ

υ υ υ υ υ υ
λ λ λ

υ υ υ υ υ υ

υ υ υ υ υ

            
            
            

= = + +            
            
                                    

V i i
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

*

3
3

4
3

*1 1
4 4

2 2
4 4

4 3 3
4 4

4 4
4 4

4.6995 0.4113 0.9145 1.5795 0.3682 0.1218 0.5138
0.4113 0.9145 5.4913 0.8112 0.8392

i i i
i

υ

υ υ

υ υ
λ

υ υ

υ υ

  
  
  
  
  
      

    
    
    

+     
    
            

− + − − −
− − − +

=
0.6347 0.2736

1.5795 0.3682 0.8112 0.8392 3.1631 0.0264 0.0356
0.1218 0.5138 0.6347 0.2736 0.0264 0.0356 7.7615

i i
i i i
i i i

 
 + 
 + − − −
 − + − + 

  (6.9.34) 
 
Finally, the matrix of the orthogonal linear transformation : →R V V  is, from (6.9.8) 
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( ) ( ) ( ) 1
, , , , , ,

2 3 2 4 4.6995 0.4113 0.9145 1.5795 0.3682 0.1218 0.5138
3 2 1 2 0.4113 0.9145 5.4913 0.8112 0.8392 0.6347 0.2736
3 2 3 4 1.5795 0.3682 0.8112 0.8392 3.1
2 4 0 5

j k j k j kR M M M

i i i i i
i i i i

i i i i
i i

−
= =

− − + − − − 
 − − − − + + =
  + − −
 − 

R i i A i i V i i
1

631 0.0264 0.0356
0.1218 0.5138 0.6347 0.2736 0.0264 0.0356 7.7615

0.33 8 0.2091 0.0859 0.4342 0.0572 0.6152 0.5180 0.0115
0.7544 0.1556 0.4194 0.1684 0.1913 0.2303 0.0501 0.3321
0.04

i
i i i

i i i i i
i i i i

−
 
 
 
 −
 − + − + 

+ + − − −
− − − − + +

=
66 0.4144 0.2809 0.1589 0.0386 0.7080 0.4679 0.0155

0.0943 0.2648 0.6970 0.0992 0.1436 0.0720 0.0416 0.6307
i i i i
i i i i

 
 
 
 + + + −
 − − − − + 

  (6.9.35) 
 
Therefore, the polar decomposition (6.9.1) is given by (6.9.30), (6.9.34) and (6.9.35).  If we utilize 
(6.9.12) it follows that 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1*, , , , , , , , , , , , , ,j k j k j k k j j k j k j kM M M M M M M

−
= =U i i R i i V i i R i i R i i V i i R i i  

  (6.9.36) 
 
As a result of (6.9.34) and (6.9.35),  
 

 ( )
5.2688 0.7433 1.8926 1.0255 0.0011 0.1317 0.1896

0.7433 1.8926 3.5748 0.4145 0.6976 0.2939 0.5847
, ,

1.0255 0.0011 0.4145 0.6976 5.8007 0.2171 1.6108
0.1317 0.1896 0.2939 0.5847 0.2171 1.6108 6

j k

i i i
i i i

M
i i i
i i i

− − − −
+ − − +

=
+ − + −

− + − +

U i i

.4712

 
 
 
 
 
 

 

  (6.9.37) 
 
 The proof of the polar decomposition theorem, as shown by the above, involves a 
construction that is very similar to that used for the singular value decomposition theorem of 
Section 6.8.  It is the singular value decomposition theorem that generalizes the polar 
decomposition theorem given above.  Our next discussion will return to the singular value 
decomposition theorem, and it will be used to reprove and generalize the polar decomposition 
theorem above.  The generalization will be that we will not assume that the linear transformation 

: →A V U  is one to one and onto.  The result will be a polar decomposition theorem similar in 
form to the one above except that the linear transformation : →R V U  is not unique.  We begin 
this discussion by summarizing the results of Section 6.8.  If we are given a linear transformation 

: →A V U , it has the component representation (6.8.46) 
 

 
1

R

p p p
p

λ
=

= ⊗∑A u v  (6.9.38) 
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where ( )dimR R A= , 1 2, ,..., ,0,0,...,0R
N R

λ λ λ
−

  
 
  



 are the eigenvalues of * : →A A V V , 

{ }1 2 1, ,..., , ,...,R R N+v v v v v  is an orthonormal basis of V  consisting of eigenvectors of *A A  and 

{ }1 2 1, ,..., , ,...,R R N+u u u u u  is an orthonormal basis of U  consisting of eigenvectors of *AA .  The 

sets of vectors { }1 2, ,..., Rv v v  and { }1 2, ,..., Ru u u  are connected by the relationships (6.8.18)1 and 
(6.8.19)1. 
 
 Given the above construction, we define linear transformations : →V V V  and : →R V U  
by 
 

 
1

R

j j j
j

λ
=

= ⊗∑V v v  (6.9.39) 

 
and 
 

 
1

R

j j
j=

= ⊗∑R u v  (6.9.40) 

 
respectively.  Because the eigenvalues { }1 2, ,..., Rλ λ λ  are positive and, by convention, we are 
utilizing their positive square roots, it easily follows that V  is a positive semidefinite Hermitian 
linear transformation.  From the definitions (6.9.39) and (6.9.40) it follows that 
 

 

( )( )
1 1 1 1

1 1 1 1

1

,

R R R R

j j k k k k j j k k
j k j k

R R R R

k j k j k k jk j k
j k j k

R

j j j
j

λ λ

λ λ δ

λ

= = = =

= = = =

=

  = ⊗ ⊗ = ⊗ ⊗  
  

= ⊗ = ⊗

= ⊗ =

∑ ∑ ∑∑

∑∑ ∑∑

∑

RV u v v v u v v v

v v u v u v

u v A

 (6.9.41) 

 
where the fact the basis { }1 2 1, ,..., , ,...,R R N+v v v v v  is orthonormal has been used.  If, as in (6.9.12), 
we define a positive semidefinite Hermitian linear transformation : →U U U  by  
 
 *=U RVR  (6.9.42) 
 
it is possible to show that 
 

 
1

R

j j j
j

λ
=

= ⊗∑U u u  (6.9.43) 
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and 
 
 =UR A  (6.9.44) 
 
Equations (6.9.41) and (6.9.44) represent the same kind of decomposition as we encountered for 
the first version of the polar decomposition theorem.  In this case, as was mentioned, we have not 
had to assume that : →A V U  is one to one and onto.  If it is one to one and onto, then (6.9.41) and 
(6.9.44) become the results (6.9.1) and (6.9.11) respectively.  It should be evident that in the one to 
one case, the above is an alternate proof of the polar decomposition theorem which starts from the 
singular value decomposition. 
 
 If we return to the case where : →A V U  is not one to one and onto, it is interesting to ask 
the question whether or not the linear transformation : →R V U  is unitary.  An answer to this 
question is obtained if we form the product 
 

 
( )( )

*

*

1 1 1 1

1 1 1 1 1
,

R R R R

j j k k j j k k
j k j k

R R R R R

k j j k kj j k j j
j k j k j

δ

= = =

= = =

   = ⊗ ⊗ = ⊗ ⊗   
  

= ⊗ = ⊗ = ⊗

∑ ∑ ∑∑

∑∑ ∑∑ ∑

R R u v u v v u u v

u u v v v v v v

 (6.9.45) 

 
Because : →R V U  does not obey (4.10.14), the conclusion is that it is not unitary.  In the special 
case where : →A V U  is one to one and onto, it is true that R N=  and, because of the result 
(6.7.15), equation (6.9.45) establishes that R  is unitary.  Given (6.7.15), we can replace (6.9.45) by 
 

 *

1 1

R N

j j j j
j j R= = +

= ⊗ = − ⊗∑ ∑R R v v I v vV  (6.9.46) 

 
Essentially, one can establish that the restriction of R  to the subspace spanned by { }1 2, ,..., Rv v v is 

a one to one onto linear transformation ( ) ( )1 2:Span , ,..., R R→R v v v AV  that is unitary. 
 
 If one simply defines the linear transformations : →V V V  and : →R V U  by (6.9.39) and 
(6.9.40), respectively, then the decomposition (6.9.41) is a consequence.  If the problem is stated 
differently, namely, given : →A V U  and : →V V V , is there an : →R V U  such that (6.9.41) 
holds, then one encounters the problem that R  is not necessarily given by (6.9.40).  A similar 
problem arises when one is given an : →A V U  and : →U U U  and asks whether or not there is 
an : →R V U  such that (6.9.44) holds.  In order to be more precise, assume for the moment that 
we are given : →A V U , : →V V V  and : →U U U  and two linear transformations : →R V U  
and ˆ : →R V U  such that 
 
 ˆ= =A RV RV  (6.9.47) 
 
and 
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 ˆ= =A UR UR  (6.9.48) 
 
Therefore, the two linear transformations R  and R̂  must obey 
 
 ( )ˆ − =R R V 0  (6.9.49) 

 
and 
 
 ( )ˆ− =U R R 0  (6.9.50) 

 
The question is what linear transformation ˆ= −Z R R  is allowed by the requirements (6.9.49) and 
(6.9.50) when V  is given by (6.9.39) and U is given by (6.9.43).  With respect to the bases 
{ }1 2 1, ,..., , ,...,R R N+v v v v v  for V  and { }1 2 1, ,..., , ,...,R R M+u u u u u  for U , we can write 
 

 
1 1

ˆ
M N

kj k j
k j

Z
= =

= − = ⊗∑∑Z R R u v  (6.9.51) 

 
If we use (6.9.51) and (6.9.39), equation (6.9.49) takes the form 
 

 ( ) ( )
1 1 1 1

ˆ
M N M R

kj k j j kj k j
k j k j

Z Zλ
= = = =

− = ⊗ = ⊗ =∑∑ ∑∑R R V u Vv u v 0  (6.9.52) 

 
where the identity (6.7.26) has also been used.  If we use (6.9.51) and (6.9.43), equation (6.9.50) 
takes the form 
 

 ( ) ( )
1 1 1 1

ˆ
M N R N

kj k j k kj k j
k j k j

Z Zλ
= = = =

− = ⊗ = ⊗ =∑∑ ∑∑U R R Uu v u v 0  (6.9.53) 

 
where the identity (6.7.27) has also been used.  Because the eigenvalues 1 2, ,..., Rλ λ λ  are nonzero, 
equations (6.9.52) and (6.9.53) show that 
 

 
0 for  1, 2,...,  and 1,2,...,
0 for  1, 2,...,  and 1,2,...,kj

k R j N
Z

k R R M j R
= =

=  = + + =
 (6.9.54) 

 
Equivalently, (6.9.51) must be of the form 
 

 
1 1

ˆ
M N

kj k j
k R j R

Z
= + = +

− = ⊗∑ ∑R R u v  (6.9.55) 
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where the coefficients kjZ  for 1,...,k R M= +  and 1,...,j R N= +  are arbitrary.  Equation (6.9.55) 
shows to what extent the linear transformation : →R V U  in the decompositions (6.9.41) and 
(6.9.44) are determined by the linear transformation : →A V U .  More specifically, if we agree to 
construct the decompositions (6.9.41) and (6.9.44) utilizing the definition (6.9.40), then any other 
decompositions of the form ˆ ˆ= =A RV UR  also hold where 
 

 
1 1 1

ˆ
R M N

j j kj k j
j k R j R

Z
= = + = +

= ⊗ + ⊗∑ ∑ ∑R u v u v  (6.9.56) 

 
and where the coefficients kjZ  for 1, 2,...,k M=  and 1,...,j R N= +  are arbitrary.  The construction 
(6.9.56) shows the cases where the linear transformation : →R V U  is unique.  It is unique in 
cases where R M=  ( : →A V U  is onto) and/or R N=  ( : →A V U  is one to one) 
 
Example 6.9.3:  The polar decomposition in the case where the linear transformation : →A V V  
is not one to one and onto can be illustrated by the linear transformation : →A V V  whose matrix 
with respect to an orthonormal basis { }1 2 3 4, , ,i i i i  is 
 

 ( )
36 9 18 9
42 7 19 8

, ,
48 5 20 7
58 25 35 22

j kA M

− 
 − = =
 −
 − 

A i i  (6.9.57) 

 
Therefore, for this example 4M N= = .  The matrix of the linear transformation T=C A A  is 
 

 

36 9 18 9 36 9 18 9 8728 2308 4436 2272
42 7 19 8 42 7 19 8 2308 780 1270 722
48 5 20 7 48 5 20 7 4436 1270 2310 1224
58 25 35 22 58 25 35 22 2272 722 1224 678

T

C

− − −     
     − − − − −     = =
     − − −
     − − −     

 (6.9.58) 

 
The eigenvalues of C turn out to be 
 
 1 2 3 412252, 243.5946, 0λ λ λ λ= = = =  (6.9.59) 
 
and, given (6.9.59), the following transition matrix gives four othonormal eigenvectors 
 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1
1 2 3 4

2 2 2 2
1 2 3 4

3 3 3 3
1 2 3 4

4 4 4 4
1 2 3 4

0.8416 0.4506 0.1188 0.2730
0.2314 0.7131 0.6346 0.1876

0.4328 0.2465 0.1843 0.8473
0.2254 0.4771 0.7411 0.4152

T

υ υ υ υ

υ υ υ υ

υ υ υ υ

υ υ υ υ

  −      − − − − = =   − −     −   

 (6.9.60) 
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The results (6.9.59) show that 2R = .  The singular vectors 1u  and 2u corresponding to 1v  and 2v  
are given by (6.8.20)1.  Therefore, 
 

 

( )

( )

( )

( )

( )

( )

( )

( )

1 1
1 1

2 2
1 1

3 3
11 1

4 4
1 1

0.3812
0.42461
0.4679
0.6749

u

u
A

u

u

υ

υ

υλ

υ

               = =                     

 (6.9.61) 

 
and 
 

 

( )

( )

( )

( )

( )

( )

( )

( )

1 1
2 2

2 2
2 2

3 3
22 2

4 4
2 2

0.0688
0.34821
0.6276

0.6929

u

u
A

u

u

υ

υ

υλ

υ

    −          − = =     −                

 (6.9.62) 

 
The eigenvectors of T=B AA  corresponding to the two zero eigenvalues are not needed to 
calculate ( ), ,j kR M= R i i .  The two-dimensional null space of the linear transformation C  can be 
shown to be spanned by an infinite number of vector pairs.  One pair of the many choices is  
 

 

( )

( )

( )

( )

1
3

2
3

3
3

4
3

0.9219
0.2012
0.2606
0.2274

u

u

u

u

        − =   −     −   

 (6.9.63) 
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 (6.9.64) 

 
Equations (6.9.59) through (6.9.62) combine with (6.9.39) to yield 
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 (6.9.65) 

 
The same equations along with the definition (6.9.40) yield 
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 (6.9.66) 

 
Finally, the definition (6.9.42) along with (6.9.65) and (6.9.66) yield 
 

 

( ), ,

16.1624 18.2901 20.4179 27.7373
18.2901 21.6439 25.3976 27.9513
20.4179 25.3976 30.3774 28.1653
27.7373 27.9513 28.1653 57.9145

T
j kU M RVR= =

 
 
 =
 
 
 

U i i

 (6.9.67) 

 
If, instead of (6.9.66), one uses a linear transformation R̂  that obeys (6.9.56) it is readily shown 
that again ˆ ˆ= =A RV UR  where A , V  and U  are given by (6.9.57), (6.9.65) and (6.9.67), 
respectively. 
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Example 6.9.4:  Another example of the polar decomposition in the case where the linear 
transformation : →A V U  is not one to one and onto can be illustrated by the linear transformation 
introduced in Example 6.8.1.  In this example V  and U  are real vector spaces with dim 2=V and 
dim 4=U .  We defined : →A V U  by (6.8.26), repeated, 
 

 1 1 2

2 1 2

3
3

= +
= +

Ai j j
Ai j j

 (6.9.68) 

 
where { }1 2,i i  and { }1 2 3 4, , ,j j j j  are orthonormal bases.  In the solution of Example 6.8.1, we 
showed that  2N R= =  and 4M =  in this example.  In addition, we showed that  
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 (6.9.69) 

 
and 
 

 ( ) ( )1 1 2 2 1 2 3 3 4 4
1 1, , ,
2 2

= + = − = =u j j u j j u j u j  (6.9.70) 

 
With respect to the orthonormal bases { }1 2,v v  and { }1 2 3 4, , ,u u u u , the matrix of : →A V U  is 
given by (6.9.38) which takes the form 
 

 1 1 2 2
1

4 2
R

p p p
p

λ
=

= ⊗ = ⊗ + ⊗∑A u v u v u v  (6.9.71) 

 
The linear transformation : →V V V , defined by (6.9.39), is given by 
 

 1 1 2 2
1

4 2
R

j j j
j

λ
=

= ⊗ = ⊗ + ⊗∑V v v v v v v  (6.9.72) 

 
The linear transformation : →R V U , defined by (6.9.40), is given by 
 

 1 1 2 2
1

R

j j
j=

= ⊗ = ⊗ + ⊗∑R u v u v u v  (6.9.73) 

 
Finally, the linear transformation : →U U U , defined by (6.9.42), is given by 
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If we choose to represent the four linear transformations in (6.9.71), (6.9.72), (6.9.73) and (6.9.74) 
as matrices with respect to the orthonormal bases { }1 2,i i  and { }1 2 3 4, , ,j j j j  the results are 
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  (6.9.75) 
 
 
Exercises 
 
6.9.1  As an illustration of the polar decomposition theorem for a nonsingular matrix (a matrix 
whose linear transformation is one to one and onto, consider the matrix of coefficients of the 
problem introduced in Exercise 1.3.2.  The matrix in this case is  
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0 1 1 1
3 0 3 4
1 1 1 2
2 3 1 3

A

 
 − =
 
 
 

 (6.9.76) 

 
Show that the polar decomposition theorem (6.9.1) and (6.9.11) are given by 
 

 

0.5892 0.4120 0.6884 0.0958
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 (6.9.78) 

 
and 
 

 

1.1962 0.0859 0.7028 1.0333
0.0859 5.8216 0.1946 0.2520

0.7028 0.1946 1.7285 1.8656
1.0333 0.2520 1.8656 4.2881

U

− 
 − − =
 
 − 

 (6.9.79) 

 
6.9.2  Show that a polar decomposition of the matrix introduced in Exercise 6.8.3, i.e.,  
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is 
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and 
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184, 188, 190, 193, 199-200, 209-210, 212. 
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159-160, 163-167, 169-170, 172, 174, 176-
177, 179-182, 185, 207, 209-210, 222, 225, 
235, 238, 242, 247-254, 257-258, 260, 269, 
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Zero Matrix, 6, 135 


	LinearAlgebraPreface-TableOfContents
	Chapter1 Nov 2019 Update
	BOWEN, RAY M., and C.-C. WANG, Introduction to Vectors and Tensors, Linear and Multilinear Algebra, Volume 1, Plenum Press, New York, 1976.
	BOWEN, RAY M., and C.-C. WANG, Introduction to Vectors and Tensors: Second Edition—Two Volumes Bound as One, Dover Press, New York, 2009.

	Chapter2 Dec 2019 Update
	Chapter3 Dec 2019 Update
	Theorem 3.4.1.

	Chapter4 Dec 2019 Update
	Theorem 4.9.1:

	Chapter5 Dec 2019 Update
	Chapter6 Jan 2020 Update
	LinearAlgebraIndexVersion34Mar2020

