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A Distributed Converging Overland Flow Model 
2. Effect of Infiltration 

BERNARD SHERMAN AND VIJAY P. SINGH 

New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 

The overland flow on an infiltrating converging surface is studied. Mathematical solutions are devel- 
oped to study the effect of infiltration on nonlinear overland flow dynamics. To develop mathematical 
solutions, infiltration and rainfall are represented by simple time and space invariant functions. For 
complex rainfall and infiltration functions, explicit solutions are not feasible. 

INTRODUCTION 

Overland flow and infiltration have been extensively studied 
as separate components of the hydrologic cycle [Woolhiser and 
Liggett, 1967; Woolhiser, 1969; Kibler and Woolhiser, 1970; 
Singh, 1974; Lane, 1975; Philip, 1957; Hanks and Bowers, 1962; 
Whisler and Klute, 1965; Rubin, 1966]. A combined study of 
these phases is required for modeling overland flow. With a 
few exceptions, notably the work by Smith [1970] and Smith 
and Woolhiser [1971 ], the conventional approach [Wooding, 
1965; Eagleson, 1972; Singh, 1975] to combining these phases 
has been through the familiar notion of so-called rainfall ex- 
cess. In this approach, infiltration is independently determined 
and subtracted from rainfall; the residual is termed rainfall 
excess, which forms input to the overland flow model. It seems 
to us that this concept of rainfall excess is more an artifice than 
a reality. The processes of rainfall, infiltration, and runoff 
occur concurrently in nature and therefore warrant a com- 
bined study. The purpose of this paper, part 2 of a series, is to 
consider infiltration in the converging overland flow model 
and then develop mathematical solutions for overland flow. 
The mathematical treatment developed here is useful in study- 
ing the effect of infiltration on nonlinear watershed dynamics. 

EFFECT OF INFILTRATION ON OVERLAND FLOW: 

MATHEMATICAL SOLUTIONS 

In a previous paper [Sherman and Singh, 1976], hereafter 
referred to as part 1, the infiltration of water through the 
ground was disregarded. Now we include such a term in the 
model. Let f(x, t) be the rate of infiltration per unit area; f is 
dependent on the depth of flow h in the following sense: 

f(x, t) >0 if h(x, t) >0 

f(x, t) = 0 if h(x, t) = 0 

We will assume further that 

q(x, t) > f(x, t) O< t < T 0 < x < L(1 - r) 

where q is the lateral inflow per unit area, T is the duration of 
q, L is the length of the converging section, r is the degree of 
convergence, and x and t are space and time coordinates. Then 
the continuity and momentum equations are 

Oh O(uh) uh 
q- -- q(x, t) -- ](x, t) q- (1) 

Ot Ox L -- x 

Q = uh = a(x)h n (2) 

Copyright ̧ 1976 by the American Geophysical Union. 

where u is the local mean velocity and a and n are kinematic 
wave parameters. As before, q(x, t) = 0 when t > T and n > 1. 
The boundary conditions are 

h(x, O) = 0 0 < x < L(1 - r) 

h(0, t) = 0 0 < t < T 
(3) 

It is plausible on physical grounds that there will be a curve t 
= tø(x) in{t > T, 0 <x <L(1 - r)} starting at x = 0, t = T 
such that h(x, tø(x)) = 0. This curve gives the time history of 
the water edge as it recedes from x = 0 to x = L(1 - r). 
Equations (1) and (2) are satisfied in S = {0 < t < tø(x), 0 < x 
< L(1 - r)}. Thus t = tø(x) is a free boundary, and (1)-(3) and 
h(x, tø(x)) = 0 constitute a free boundary problem. In the 
domain above the curve t = tø(x), h(x, t) = 0. The determina- 
tion of the free boundary t = tø(x) is, as we shall see, relatively 
simple when q and f are constant (see Figure 1); in this paper 
we will discuss only that case. 

If we eliminate u between (1) and (2) we get 

Oh Oh 

• + na(x)h"-' Ox 

= q(x, t) -- [(x, t) -Jr- 
a(x)h" 
L -- x 

a'(x)h '• (4) 

The characteristics of (4) are 

dt/ds = I dx/ds = na(x)h"-' 

dh 

ds - q(x, t) -- l(x, t) q L m x 
a'(x)h" 

and the solution of (4) and (3) is the surface h(x, t) formed by 
all the characteristic curves through the segment t = 0, 0 < x < 
L(1 - r) and the segment x = 0, 0 < t < T. The free boundary 
t = tø(x) is the locus h(x, t) = 0 in the (x, t) plane. 

If we take x as a parameter, then the characteristic curves 
are 

dt / dx = [n a( x )hn - q - • (5) 

dh q(x, t) -- ](x, t) h a'(x)h 
dx - na(x)h '•-' or- n(L -- x) ns(x) (6) 

and the initial conditions are 

t(0) = to h(0) = 0 0_< to < T (7) 

or 

t(Xo) = 0 h(xo) = 0 0 < Xo < L(1 - r) (8) 

We assume that the curves t = t(x, to), which are the solutions 
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Rainfall 

/Infiltration 

T t 

Fig. 1. Rainfall and infiltration, constant in space and time. 

of (5), (6), and (7), do not intersect for distinct values of to. 
Similarly, we assume that the curves t = t(x, x0), which are the 
solutions of (5), (6), and (8), do not intersect for distinct values 
of x0. This is true when q and f are constant and (L - x)/a(x) 
is a decreasing function of x; it is known from part 1 when t < 
T, i.e., in domains D: and Do (Figure 2), and it is proved in 
Appendix A when t > T. 

We distinguish three cases A, B•, and B2 (Figure 2) which 
depend on the relative disposition of the three curves t = tø(x), 
t = T, and t = t(x, 0); t = t(x, x*) is the prolongation of t = 
t(x, O) to the right of x = x*. In case A, tø(x) > T > t(x, 0), 0 < 
x < L(1 - r). In case B•, tø(x) > T, and tø(x) > t(x, 0), but t = 
T and t / t(x, 0) intersect at x / x*; i.e., T = t(x*, 0), and 0 < 
x* < L(1 - r). In case B:, tø(x) > T, but t = Tand t = t(x, O) 
intersect at x = x*, and t = tø(x) and t - t(x, x*) intersect at x 
= ./; i.e., tø(./) = t(œ, x*), and 0 < œ < L(1 - r). 

Since tø(x) and t(x, 0) are not known until we have solved 
the problem, it appears that we cannot distinguish these cases 
beforehand. But in the special case which we consider in this 
paper, q(x, t) and f(x, t) both constant, we can distinguish the 
three cases beforehand. The domains D•, D:, and Do in case A 
and the domains D•, D•:, D:, and Do in cases B• and B• are 
indicated in Figure 2. 

In case A the solutions in D: and Do when q and f are 
constant are obtained from the discussion in part 1. Let 

q, = q_ ] •, = T, = 1 
Then in D: the solution is given by (13) and (14) of part 1, • 
and 7 being replaced by •* and T*' 

h(x t,,) = [ -- ( -- ' .(x)(L- x) 3 (9) 
t(x, t,,) = t,, + 

l 
ß or(r/) •/" L '• -- (L -- r/)2dr/ (10) 

In Ds the solution is given by (18) and (19) of part 1, t5 and 3/ 
being replaced by/5* and 7*' 

h(x, Xo) = fl,[(L-- Xo)2-- (L -- x)2] .(x)(L -- x) (1 ) 

do (12) 

In D• we solve (5) and (6) with q(x, t) = 0 and f(x, t) = f, 
subject to 

= r h(Xo*) = - a(Xo*)(L -- Xo*) _] 

The solution is (here p = f/q) 

h(x , xo* ) 

= t5 (1 -- p)L • -- (L- Xo* + p(L- x) • '/" a(x)( L -- x) ' (13) 

t(x, Xo*) = r + • • ß 

' (1 -- p)L 2 (L-- xo*) 2 p(L-- •)2d• (14) 
The curves t = t(x, to) do not intersect in D:, the curves t = t(x, 
x0*) do not intersect in D•, and on the assumption 

d L-- x 
< 0 (15) 

dx or(x) 

the curves t = t(x, Xo) do not intersect in Ds (Appendix B of 
part 1). The free boundary t = tø(x) is now determined by 

(1 - p)L:- (L - Xo*) •' + p(L - x) • = 0 (16) 

and (14). Eliminating Xo* between (16) and (14), we get (here w 
- n-1(2/f)("-1)/n.) 

tø(x) = T+ w ),/,, 
L--r/ 

ß (L- r/)'" -- (L -- x) 2 dr/ (17) 
where 

X(x) = L- [(1 - jo)L 9' -J- jo(L- x)2] 1/2 

or 

1 - p(1 - r •') < [(L - x*)/L]: (20) 

Thus if (20) is true, we are in case B•., and otherwise we are in 
case B•. In case B• the intersection of the curves t - t(x, x*) 

As in part 1, for fixed x, h(x, t) is an increasing function of t in 
Do, independent of t in D2, and a decreasing function of t in D• 
(Figure 3). 

The criterion for distinguishing between case A and cases B• 
and B2 is, as in part 1, obtained from 

[ T = 'r* 1 'L '• -- (L- r/) 2 ce(r/),/,, dr/ (18) 
If (18) does not have a root between 0 and L(1 - r), then we 
are in case A; if there is such a root x*, then we are in case Bx 
or case B:. If F(x) is the right side of (18), then case A occurs if 
and only if F[L(1 - r)] < T, and case Bx or case B: occurs if 
and only if F[L(1 - r)] > T. To distinguish between cases Bx 
and B:, we note, referring to (13), that 

(1 - p)L • - (L - x*) • + p(L - x): = 0 (19) 

does not have a root between 0 and L(1 - r) in case B• and 
does have such a root ./in case B:. Such a root exists if and 
only if 

L2r: < p-X(L - x*): - [(l/p)- 1]L 2 
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and t = tø(x) occurs at 

• = L - {(1/o)(L - x*) •- [(l/o)- llL:} •/: (21) 

? = T+co a(r/) '/" (L -- r/) •' -- (L -- •)• d• (22) 
We discuss now the solution in cases B• and B:. In both 

cases the solution in D,, is given by (13) and (14), in D: by (9) 
and (10), and in Da by (11) and (12). It remains to determine 
the solution in D•:. As in part 1, we define Xo* by T = t(Xo*, 
Xo); here x* • Xo* • L(1 - r). Thus from (12), 

••o * T=7* 1 ß o •(•)'/'• 

• ••,,__,•/,, (L- Xo) • -- (L- •)• d• (23) 
Then from (16) and (17) of part 1, 

h(x; Xo*, Xo) 

= • (1 -- p)(L-- xo) -- (L-- Xo* + p(L-- x) 2 •/'• 
a(x)( L -- x) 

(24) 

t(x; Xo*, Xo) = r -Q 'y , •-•r/-•i?;; 

I I (n-1)/n L -- r/ )•' _ ß (1-- p)(L-- Xo) 2-- (L--xo* + p(L r/)2 dr/ 
(25) 

It is proved in Appendix A that the curves defined by (23) and 
(25) do not, on condition (15), intersect in D•2. 

In case B2, part of the boundary of D•2 is t = tø(x). This is 
obtained by eliminating x0 and x0* between (23) and (25), and 
from (24), 

(I p)(L - Xo) -• ,r ,)2 n •,• - Xo + p(L - x) 2 -- -- = v 

From (26) we get Xo* = X(x, Xo), where 

X(x, x0) = L- [(1 -p)(L-x0) 2+p(L-x)2] u2 (27) 

Thus t = tø(x) is defined by 

•x X (x ,x ) T=•* o 1 ß o a(r/) '/" 

I ! (n-I)In L--r/ 

ß (L- Xo) 2-- (L- r/) 2 dr/ 

t(x, Xo) = T q- co ,/,, 
ß ( .... > a(r/) 

ß 

(L- r/)•' -- (L- x) •' dr/ 

(28) 

(29) 

In (28) and (29),)• < x < L(1 - r); when 0 < x < )•, tø(x) is 
defined by (16). 

The behavior of h(x, t) as a function of t for fixed x, 0 < x < 
x*, is the same in cases B• and B2 as it is in case A (Figure 3). In 
cases B• and B2, ht(x, t) > 0 when (x, t) G Da, and ht(x, t) < 0 
when (x, t) • D•; the arguments are the same as they are in 
case A. The maximum of h(x, t) occurs therefore when (x, t) G 
D•2 (Figure 3), but it can occur on the boundary of D•2 as in 
part 1 (0 = 0). The case or(x) = ot is discussed in greater detail 
in Appendix B; Figure 4 illustrates the possibilities. 

D• t: t(• D• 

L(I-r) 

Fig. 2a. Solution domain for case A. 

t= t ø (/•gl • t: t (x,x•/• 
D• ': 

D• 

X • L( 

Fig. 2b. Solution domain for case B•. 

I-r) -x 

t= t(x,x •() 

,t=tø(x ') /.• 

•,' 
i 

D• 

D• 

i 

x* •' L_(I- r) 

Fig. 2c. Solution domain for case B•.. 

CONCLUDING REMARKS 

The mathematical solutions developed above demonstrate 
that simultaneous consideration of the rainfall and infiltration 

phases of the hydrologic cycle alters the character of overland 
ttow dynamics. To stimulate the watershed response realis- 
tically, their combined study is essential, although we do recog- 
nize that this enhances the mathematical complexity. 
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As was noted in part 1, the analysis in this paper can be 
carried out on the assumption that q(x, t) = q(x) and f(x, t) = 
f(x) with only a slight increase in mathematical complexity. 
But the main features are already contained in the case q(x, t) 
= q and f(x, t) = f discussed above and in the appendices. 

APPENDIX A 

It follows from Appendix B of part 1 that the curves t = t(x, 
to) do not intersect in Do. and from assumption (15) that the 
curves t - t(x, Xo) do not intersect in Da. It follows from (14) 
that txo,(X, Xo*) < 0, so the curves t = t(x, Xo*) do not intersect 
in D• (case A) or in D• (cases B• and Bo.). We prove now with 
assumption (15) that the curves t = t(x; Xo*, Xo) do not inter- 
sect in D•o.. We introduce the change of variable • = (L - 
rt)/(L - Xo) in (23) and (25): 

T ='y* f, L-- Xo .[œ - - xo)l 

ß • d• (A1) 

t(x; Xo*, Xo) 

z L- Xo__ = T q- 'y -x a[L ---•'•-• x0)lJ L-x)/(L o) 

. 

''1- p •..+. pt;2 d• (A2) 
where z - (L - Xo*)/(L - Xo). As in Appendix B of part 1, it 
follows from (A1) that dz/dxo ( O. We have therefore, from 
(A2), that txo(X; Xo*(Xo), Xo) < 0. 

APPENDIX B 

In this appendix we discuss the behavior, when a(x) = a, of 
h(x, t) for fixed x in Dxo.. The discussion is parallel to that of 
Appendix C of part 1. From (A1) we have 

T .V,a_•/n(L__xo),/nji'•( •i = (B ) 
From (24) it is clear that we need be concerned only with 

G(xo, z) = (1 - p)(L-xo)o. = (L-xo)o.(1 - p -zo.) (B2) 
as a function of x and t. On eliminating Xo between (B1) and 
(B2) we see that (B2) is, except for a constant positive multi- 
plier, 

' } •a d•; (B3) g(z) = (1 -- p -- z 2) 1 -- ) 
The relationship between (x, t) and (x, z) in D•o. is obtained 
from (A2): 

t(x, z) = T -Jr- 3•a-'/"(L -- Xo) '/" 

. : : d• (n4) 
-•)/(•-•o) 1- p--z + p• 

Here Xo is a function of z through (B1). Since z'(Xo) < 0 and 
%(x; Xo*(Xo), Xo) < O, t,(x, z) > O. The correspondence be- 
tween (x, t) and (x, z) in D•, is one to one. The curve z = Zo 
coincides with t = t(x; Xo*, Xo), where Xo and Xo* are deter- 
mined by (L - Xo*)/(L - Xo) = Zo and (B1). 

A simple calculation shows that the sign of g'(z) and there- 
fore also the sign of ht(x, t) is determined by 

k(z) = n(1 -- p- z 2) -- [z(1 --z2)n--l] l/n 

.• d• (B5) 
For a fixed x, T _< t _< t(x, x*) in case Bx and also in case 
when x _< )?; when x > )•, T • t • tø(x). Correspondingly, 

(L - x)/(L - Xo) • z < Zo(X) (B6) 

where Zo(X) = (L - x*)/L in case Bx and also in case B• when x 
• •; when x > •, we determine Zo(X) from (B4) by replacing 
the left side of (B4) by tø(x) and then solving (B4) and (B 1) for 
z. Thus the problem is to determine the sign of k(z) in the 
interval (B6). If k(zo) = 0 and z0 is in the interval of (B6), then 
the maximum occurs for z = z0; the corresponding value of t is 
determined from (B4). Since the locus z = z0 is one of the 
curves t = t(x; Xo*, Xo), the maximum of h(x, t) for fixed x 
occurs on this curve when these maxima are interior to the t 
interval corresponding to the given x. Various possibilities are 
indicated in Figure 4. 
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