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ABSTRACT

The ∂-Neumann Operator and the Kobayashi Metric. (August 2003)

Mijoung Kim, B.S., Duksung Women’s University;

M.S., Seoul National University

Chair of Advisory Committee: Dr. Harold P. Boas

We study the ∂-Neumann operator and the Kobayashi metric. We observe that

under certain conditions, a higher-dimensional domain fibered over Ω can inherit

noncompactness of the ∂-Neumann operator from the base domain Ω. Thus we have

a domain which has noncompact ∂-Neumann operator but does not necessarily have

the standard conditions which usually are satisfied with noncompact ∂-Neumann

operator. We define the property K which is related to the Kobayashi metric and gives

information about holomorphic structure of fat subdomains. We find an equivalence

between compactness of the ∂-Neumann operator and the property K in any convex

domain. We also find a local property of the Kobayashi metric [Theorem IV.1], in

which the domain is not necessary pseudoconvex.

We find a more general condition than finite type for the local regularity of the ∂-

Neumann operator with the vector-field method. By this generalization, it is possible

for an analytic disk to be on the part of boundary where we have local regularity of

the ∂-Neumann operator. By Theorem V.2, we show that an isolated infinite-type

point in the boundary of the domain is not an obstruction for the local regularity of

the ∂-Neumann operator.
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CHAPTER I

INTRODUCTION

This dissertation is intended to show our new results related to the ∂-Neumann

operator and the Kobayashi metric. The ∂-Neumann operator and the Kobayashi

metric are topics in the study of several complex variables. The prerequisite is famil-

iarity with real analysis and one complex variable. Some knowledge in distribution

theory and elliptic partial differential equations will also be helpful.

In Chapter II, as background for the ∂-Neumann operator and the Kobayashi

metric, not only do we give the definitions of the Bergman kernel, the Bergman

projection, Carathéodory pseudodistance, Kobayashi pseudodistance, operators ∂,

∂
∗
, and the complex Laplacian �, but also we mention some recent progress.

Chapter III is devoted to noncompactness of the ∂-Neumann operator. We ge-

ometrically analyze domains having noncompact ∂-Neumann operator. Let Ω be

a smooth, bounded, pseudoconvex Reinhardt domain in Cn with noncompact ∂-

Neumann operator. We observe that under certain conditions, a higher-dimensional

domain fibered over Ω can inherit noncompactness of the ∂-Neumann operator from

the base domain Ω. Thus we have a domain which has noncompact ∂-Neumann oper-

ator but does not necessarily have the standard conditions which usually are satisfied

with noncompact ∂-Neumann operator. Also we define the notion of a fat subdomain

A of any domain Ω. (A is called a fat subdomain of Ω if the restriction operator

L2(Ω) ∩ O(Ω) → L2(A) is not a compact operator.)

In Chapter IV we find a certain relation between the compactness of the ∂-

Neumann operator and the Kobayashi metric. We define the property K which gives

The journal model is Transactions of the American Mathematical Society.
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information about holomorphic structure of fat subdomains. We find an equivalence

between compactness of the ∂-Neumann operator and the property K in any convex

domain. We also find a local property of the Kobayashi metric [Theorem IV.1], in

which the domain is not necessarily pseudoconvex.

In Chapter V, we find a more general condition than finite type for the local

regularity of the ∂-Neumann operator. In that condition we observe that it is possible

for an analytic disk to be on the part of boundary where we have local regularity of

the ∂-Neumann operator. By our Theorem V.2, we show that an isolated infinite-type

point in the boundary of the domain is not an obstruction for the local regularity of

∂-Neumann operator. In this chapter, we introduce both the vector-field method for

the regularity of ∂-Neumann operator and the worm domain.

We are still working on better conditions for every theorem we prove. In partic-

ular, hopefully we expect to get better conditions for Theorem V.2 in Chapter V.
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CHAPTER II

BACKGROUND FOR THE ∂-NEUMANN OPERATOR

AND THE KOBAYASHI METRIC

A. Bergman Kernel and Bergman Projection

A Bergman kernel is a function of a pair of complex variables with the reproduc-

ing kernel property defined for any domain Ω in which there exist nonzero analytic

functions of class L2(Ω) with respect to Lebesgue measure. Let H(Ω) be the Hilbert

space of all square-integrable holomorphic functions on Ω. A function BΩ : Ω×Ω → C

is called the Bergman kernel of H(Ω) if

(i) BΩ(·, y) ∈ H(Ω), y ∈ Ω,

(ii) f(y) = (f,BΩ(·, y))H(Ω), f ∈ H(Ω), y ∈ Ω.

The property (ii) is called the reproducing property [3]. To obtain explicit kernels a

fundamental role is played by orthonormal bases for H(Ω) on Ω. The Bergman kernel

can rarely be calculated explicitly; unless the domain Ω has a great deal of symmetry,

in which case a useful orthonormal basis can be determined, there are few techniques

for determining a Bergman kernel. The study of the Bergman kernel of the Hilbert

space H(Ω) is deeply related to function theory, but also has various applications

to the geometry of bounded domains. However, we restrict our attention to the

subject related to our results. As an important property of the Bergman kernel, the

transformation rule for the Bergman kernel (later we will use this rule in Chapter III)

says that if F : G→ D is a biholomorphic mapping between the domains G,D ⊂ Cn

then we have

BD(F (z), F (w)) detF ′(z)detF ′(w) = BG(z, w), z, w ∈ G. (II.1)
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The Bergman kernel is well understood on certain classes of domains. For ex-

ample, when the domain is strongly pseudoconvex, the Bergman kernel function is

differentiable up to the boundary [22]. But the case of arbitrary smooth, bounded,

pseudoconvex domains remains open. Differentiability of the Bergman kernel is re-

lated to the properties of the Bergman projection.

The Bergman projection is the orthogonal projection from L2(Ω) onto the space

of all square-integrable holomorphic functions on Ω. Also it can be reformulated in

terms of the reproducing kernel property. The continuity of the Bergman projection

from the space C∞(Ω) into itself is a very interesting topic. An important application

of the Bergman projection is that a biholomorphic mapping between two smooth

bounded domains can be extended smoothly up to the boundaries of the domains

when the Bergman projections on the two domains are continuous. When a domain

is pseudoconvex, it plays an important role with the ∂-Neumann operator in partial

differential equations and differential geometry (when a domain is pseudoconvex, it

has a bounded ∂-Neumann operator in L2(Ω)) [11].

In this dissertation, we usually consider a pseudoconvex domain since we apply

the property of ∂-Neumann operator we observed to the Bergman projection. In

Chapter V, we will say more about the Bergman Projection.

The Bergman kernel BΩ leads to the following positive semidefinite Hermitian

form

MΩ(z;X) :=
n∑

i,j=1

∂2

∂zi∂zj

logBΩ(z, z)XiXj, z ∈ Ω, X ∈ Cn.

The pseudometric

MΩ :=
√
MΩ(z;X), z ∈ Ω, X ∈ Cn,

induced by MΩ is called the Bergman pseudometric on Ω. It is invariant under

biholomorphic maps and induces the Bergman pseudodistance, which inherits the



5

invariance property. Recently comparing invariant pseudodistances has been an in-

teresting topic. In the next section we turn to holomorphically invariant metrics that

arise directly from extremal problems.

B. Kobayashi Metric and Kobayashi Completeness

As one of the most beautiful results in classical complex analysis, the Riemann

mapping theorem says that every simply connected plane domain except the whole

complex plane is biholomorphically equivalent to the unit disk. On the other hand,

the Euclidean ball and the bidisk in C2 are topologically equivalent simply connected

domains, but they are not biholomorphic.

H. Poincaré observed that even inside the class of bounded simply connected

domains there is no single model (up to biholomorphisms) as there is in the plane

case. Therefore many mathematicians have thought it important to study objects

that are invariant under biholomorphic mappings. For this purpose, the invariant

pseudodistance is very popular.

Among invariant distances, the Carathéodory pseudodistance and the Kobayashi

pseudodistance are most famous. Here we give the definitions of the Carathéodory

pseudodistance and the Kobayashi pseudodistance. Let O(Ω′,Ω′′) be the space of

holomorphic functions from Ω′ to Ω′′. For any domain Ω in Cn, n ≥ 1, put

cΩ(z′, z′′) := sup{p(f(z′), f(z′′)) | f ∈ O(Ω, D)}, z′, z′′ ∈ Ω,

where p is the Poincaré distance in the unit disk D in C. We call cΩ the Carathéodory

pseudodistance for Ω. For (p, v) ∈ Ω × Cn, the Kobayashi metric K(p, v) is defined

by

K(p, v) = inf

{
1

|c|
: f(0) = p, f ′(0) = cv, f ∈ O(D,Ω)

}
.
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Then we define kΩ(z′, z′′) = inf{
∫ 1

0
K(r(t), r′(t))dt: r is a piecewise C1-curve in Ω

from z′ to z′′}. We call kΩ the Kobayashi pseudodistance on Ω.

Both the Carathéodory pseudodistance and the Kobayashi pseudodistance are

motivated by the extremal problem that arises from the Riemann mapping theorem.

They endow virtually any domain with a pseudodistance. Moreover, these distances

turn out to be invariant under biholomorphic mappings. Many important results have

been obtained from studying the interaction of the two distances. Now we mention

two famous results. One, observed by elementary tools, is that the Carathéodory

and the Kobayashi pseudodistance coincide in the unit disk in C1. The other one,

observed by Lempert, is that the distances (Carathéodory and Kobayashi) agree in

convex domains in Cn [24].

In particular, one of our main results is related to properties of the Kobayashi

metric and the Kobayashi pseudodistance. Therefore we focus on the Kobayashi

metric and the Kobayashi pseudodistance.

We say that a domain Ω ⊂ Cn is k-hyperbolic if the Kobayashi pseudodistance

is a distance. Any bounded domain in Cn is k-hyperbolic. Therefore, the Kobayashi

pseudodistance is a distance in any bounded domain in Cn. (Later, we will consider

only bounded domains in Cn.)

Naturally, we consider the completeness of the topology induced by this pseu-

dodistance. This is also a property that depends on the type of domain. For in-

stance, convex domains are Kobayashi-complete. Since cΩ ≤ kΩ, every Carathéodory-

complete domain is Kobayashi-complete [21].

In Chapter IV, we discuss more about the Kobayashi metric and Kobayashi

pseudodistance.
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C. The ∂-Neumann Problem

In this section, first we present the definitions of key words: the Cauchy-Riemann

equations, the ∂ operator, and the complex Laplacian, background for the ∂-Neumann

operator.

Let Ω be a bounded domain in Cn, n ≥ 1. We call the following equations the

Cauchy-Riemann equations:

∂u = f in Ω. (II.2)

It is necessary that ∂f = 0 in Ω in order for equation (II.2) to be solvable because

∂
2

= 0. The precise definitions of the forms and ∂ are as follows.

L2
(p,q) is the space of (p, q)-forms whose coefficients are in L2(Ω). Any (p, q)-form

f ∈ L2
(p,q)(Ω) can be expressed as f =

∑′
I,J fI,J dz

I ∧ dzJ , where I = (i1, . . . , ip) and

J = (j1, . . . , jq) are multi-indices and dzI = dzi1 ∧ · · · ∧ dzip , dz
J = dzj1 ∧ · · · ∧ dzjq .

The notation
∑′ means summation over strictly increasing multi-indices.

The operator ∂ is defined by

∂f =
∑′

I,J

fI,J

n∑
k=1

∂fI,J

∂zk

dzk ∧ dzI ∧ dzJ . (II.3)

An element f ∈ L2
(p,q−1) is in the domain of ∂ if ∂f , defined in the distribution

sense, belongs to L2
(p,q)(Ω).

The Hilbert space adjoint of ∂ is denoted by ∂
∗
. An element f ∈ L2

(p,q−1) belongs

to Dom(∂
∗
) if there exists a g ∈ L2

(p,q−1)(Ω) such that for every ψ ∈ Dom(∂) ∩

L2
(p,q−1)(Ω), we have

(f, ∂ψ) = (g, ψ), (II.4)

in which case ∂
∗
f is defined to be equal to g. The operators ∂(p,q) and ∂

∗
(p,q) are linear,

closed, densely defined operators on L2
(p,q).
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Now for fixed 0 ≤ p ≤ n, 1 ≤ q ≤ n, we define the Laplacian of the ∂ complex

as follows.

Definition II.1. Let �(p,q) = ∂(p,q−1)∂
∗
(p,q)+∂

∗
(p,q+1)∂(p,q) be the operator from L2

(p,q)(Ω)

to L2
(p,q)(Ω) such that Dom(�(p,q)) = {f ∈ L2

(p,q)(Ω) | f ∈ Dom(∂(p,q)) ∩ Dom(∂
∗
(p,q));

∂(p,q)f ∈ Dom(∂
∗
(p,q+1)) and ∂

∗
(p,q)f ∈ Dom(∂(p,q−1))}.

�(p,q) is a linear, closed, densely defined self-adjoint operator in L2
(p,q)(Ω).

1. L2 Existence Theorem

The following L2 existence theorem holds for the ∂-Neumann operator.

Theorem II.1 (Hörmander [11]). Let Ω be a bounded pseudoconvex domain in

Cn, n ≥ 2. For each 0 ≤ p ≤ n, 1 ≤ q ≤ n, there exists a bounded operator

N(p,q) : L2
(p,q)(Ω) → L2

(p,q)(Ω) such that the following hold.

1. R(N(p,q)) ⊂ Dom(�(p,q)), N(p,q)�(p,q) = �(p,q)N(p,q) = I on Dom(�(p,q)).

2. For any f ∈ L2
(p,q)(Ω), f = ∂̄∂̄∗N(p,q)f ⊕ ∂̄∗∂̄N(p,q)f .

3. ∂̄N(p,q) = N(p,q+1)∂̄ on Dom(∂̄), 1 ≤ q ≤ n− 1.

4. ∂̄∗N(p,q) = N(p,q−1)∂̄
∗ on Dom(∂̄∗), 2 ≤ q ≤ n.

5. Let δ be the diameter of Ω. The following estimates hold for any f ∈ L2
(p,q)(Ω):

‖N(p,q)f‖ ≤
eδ2

q
,

‖∂N(p,q)f‖ ≤

√
eδ2

q
‖f‖,

‖∂∗N(p,q)f‖ ≤

√
eδ2

q
‖f‖,

where ‖·‖ is the norm in L2.
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Corollary II.1. Let Ω and N(p,q) be the same as Theorem II.1, where 0 ≤ p ≤ n,

1 ≤ q ≤ n. For any α ∈ L2
(p,q)(Ω) such that ∂α = 0, the (p, q − 1)-form

u = ∂
∗
N(p,q)α (II.5)

satisfies the equation ∂u = α and the estimate

‖u‖2 ≤ eδ2

q
‖α‖2. (II.6)

The solution u is called the canonical solution to the equation (II.2), and it is

the unique solution which is orthogonal to ker(∂).

The existence of the ∂-Neumann operator for q = 0, N(p,0), is also important.

Let �(p,0) = ∂
∗
∂ on L2

(p,0)(Ω). We define

H(p,0)(Ω) = {f ∈ L2
(p,0)(Ω) | ∂f = 0}. (II.7)

This space H(p,0)(Ω) is a closed subspace of L2
(p,0) since ∂ is a closed operator. Let

H(p,0)(Ω) denote the projection from L2
(p,q)(Ω) onto the set H(p,0)(Ω). We have the

following theorem [11].

Theorem II.2. Let D be a bounded pseudoconvex domain in Cn, n ≥ 2. There exists

an operator N(p,0) : L2
(p,0) → L2

(p,0) such that

1. R(N(p,0)) ⊂ Dom(�(p,0)), N(p,0)�(p,0) = �(p,0)N(p,0) = I −H(p,0),

2. for every f ∈ L2
(p,0)(Ω), f = ∂

∗
∂N(p,0)f ⊕H(p,0)(Ω)f , and

3. ∂N(p,0) = N(p,1)∂ on Dom(∂), ∂
∗
N(p,1) = N(p,1)∂

∗
on Dom(∂

∗
).

The Bergman projection P is the orthogonal projection from L2
(0,0)(Ω) onto

H(0,0)(Ω). By Theorem II.2, P can be reformulated by

P = I − ∂
∗
N(0,1)∂. (II.8)
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2. Globally Regular Operators

We say that an operator is globally regular when it maps the space C∞(Ω)

into itself (this is the space of functions that extend smoothly across the boundary).

If for every nonnegative integer s the operator acts continuously from the Sobolev

space Hs(Ω) to itself (this is the space of functions or forms with square-integrable

derivatives through order s), we say that the operator is exactly regular.

Boas and Straube proved equivalence of regularity for the Bergman projection

and the ∂-Neumann operator when the domain is a bounded smooth pseudoconvex

domain [6].

The regularity of the ∂-Neumann operator has been studied extensively when

the domain has smooth boundary. Many classes of domains have been found to have

regularity of the ∂-Neumann operator: for example strongly pseudoconvex domains,

finite-type domains, and domains admitting plurisubharmonic defining functions [11].

On the other hand, D. Barrett [1] showed the failure of exact regularity of the ∂-

Neumann operator on the worm domains constructed by K. Diederich and J. Fornæss

[14]. Later M. Christ showed the failure of global regularity in the worm domains

[12].

The worm domains are pseudoconvex domains with C∞-boundaries which do not

have plurisubharmonic defining functions on bD [5]. Before D. Barrett’s observation

about the worm domain, it had been thought that smoothness of a pseudoconvex

domain would be sufficient for the regularity of the ∂-Neumann operator. Up to now,

necessary and sufficient conditions for global regularity of the ∂-Neumann operator

are not known.

Recently, the regularity of the ∂-Neumann operator on domains which do not

have a smooth boundary has been studied. For example, Michel and Shaw proved
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that the ∂-Neumann operator is bounded on Sobolev (1/2)-spaces on a bounded

pseudoconvex domain Ω in Cn with a plurisubharmonic Lipschitz defining function

[27]. But they have this result only for Sobolev (1/2)-spaces. Therefore there still

remains a big gap for the regularity of the ∂-Neumann operator. In the strictly

pseudoconvex case, Englǐs observed that the singular support of Nf is contained in

the singular support of the strictly plurisubharmonic Lipschitz defining function [16].

This is a direct result from Catlin’s pseudolocal estimate for the ∂-Neumann operator.

In Chapter V, we will discuss a more general condition for pseudolocal estimates for

the ∂-Neumann operator.

3. Compactness in the ∂-Neumann Problem

Kohn and Nirenberg [23] found that global regularity for the canonical solution

does hold when a certain estimate, known as a compactness estimate, holds for the

domain Ω. A compactness estimate is said to hold for the ∂-Neumann problem on Ω

if for every ε > 0, there is a function ζε ∈ C∞
0 (Ω) such that

‖f‖2 ≤ εQ(f, f) + ‖ζεf‖2
−1, f ∈ Dom(∂̄) ∩Dom(∂̄∗).

Here Q(f, f) refers to the form (∂f, ∂f) + (∂
∗
f, ∂

∗
f), and ‖·‖2

−1 refers to the Sobolev

norm of order −1 for forms on Cn. A sufficient condition for the compactness of the

∂-Neumann operator called property (P) was found by Catlin. The precise definition

follows below.

The boundary of a domain Ω satisfies property (P) if for every positive numberM

there is a plurisubharmonic function λ ∈ C∞(Ω) with 0 ≤ λ ≤ 1, such that for all

z ∈ bΩ,
n∑

i,j=1

∂2λ

∂zi∂zj

(z)titj ≥M |t|2, t ∈ Cn.
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By the virtue of a consequence of the analysis of finite-type points in [10], it

is not hard to see that if a domain is strictly pseudoconvex except at finitely many

points, then the boundary of the domain satisfies property (P). In fact, if the infinite-

type points of the boundary have two-dimensional Hausdorff measure zero, then the

domain satisfies property (P) [4].

Here we restrict our attention to some results related to our main results [Chap-

ters III, IV]. We consider on which domains a disk in the boundary is a sufficient

condition for failure of compactness. The following proposition was observed by David

Catlin.

Theorem II.3. Let Ω be a bounded pseudoconvex domain in C2 with Lipschitz bound-

ary. If the boundary of Ω contains an analytic disk, then the ∂-Neumann operator N1

on Ω is not compact [19].

It is not known whether Theorem II.3 holds in higher dimensions. However, Fu

and Straube proved that a necessary and sufficient condition for the compactness of

the ∂-Neumann operator N1 in convex domains is the absence of an analytic disk on

the boundary [18].

Let Ω be a domain (an open connected set) in Cn. We say that Ω is a Reinhardt

domain if whenever z = (z1, . . . , zn) ∈ Ω and θ1, . . . , θn ∈ R, (eiθ1z1, . . . , e
iθnzn) ∈ Ω.

Pseudoconvex Reinhardt domains are locally convexifiable at most of their boundary

points. Therefore, it is not surprising that the observation about the case of convex

domains also give results on the class of Reinhardt domains [19].

Theorem II.4 (Fu, Straube). Let Ω be a bounded pseudoconvex Reinhardt domain

in Cn. If the boundary of Ω does not contain an analytic disk of dimension 1, then

∂-Neumann operator N1 on (0, 1)-forms is compact.

This theorem implies that when a pseudoconvex Reinhardt domain has a non-
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compact ∂-Neumann operator N1, there is an analytic disk on the boundary. It gives

an idea about the proof of Theorem III.1 in the next chapter.
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CHAPTER III

INHERITANCE OF NONCOMPACTNESS OF THE

∂-NEUMANN PROBLEM

A. Introduction

For many years, it has been an open question whether every smooth, bounded,

pseudoconvex domain in Cn with an analytic disk in the boundary necessarily has a

noncompact ∂-Neumann operator N . Some partial results are known. For instance,

the answer is affirmative both for domains in C2 [19] and for convex domains in Cn

[18]. It remains open, for example, whether an analytic disk in the boundary of a

complete Reinhardt domain in C3 necessarily obstructs compactness of N . On the

other hand, it is known that in the case of Reinhardt domains, disks in the boundary

are the only possible obstructions to compactness of N [19].

In this chapter I show that noncompactness of the ∂-Neumann operator on a

smooth, bounded, pseudoconvex Reinhardt domain Ω in C2 implies an analogous

noncompactness for higher-dimensional domains fibered over Ω under a suitable size

restriction on the fibers. The main result is as follows.

Theorem III.1. Suppose that Ω is a smooth, bounded, pseudoconvex Reinhardt do-

main in C2 whose ∂-Neumann operator N is noncompact (on the space of square-

integrable (0, 1)-forms). A sufficient condition for noncompactness of the ∂-Neumann

operator N of a smooth, bounded, pseudoconvex domain G in Cn (n ≥ 3) fibered

over Ω is that there exist a constant C such that all points (z, w) of G (where z ∈ Ω,

w ∈ Cn−2) satisfy the restriction ‖w‖ < Cd(z, bΩ)1/2.

In the next section, I will introduce the notion of “fat subdomain” and some

lemmas that enter into the proof of the theorem.
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B. Fat Subdomains

Let G be a domain in Cn, and let A be a subdomain of G. If there is a sequence

{fj} of holomorphic functions in the unit ball of L2(G) such that no subsequence of

{fj} converges in L2(A), then A is said to be a fat subdomain of G. In other words,

A is a fat subdomain of G if the restriction operator L2(G) ∩ O(G) → L2(A) is not

a compact operator.

For example, if there is a point p in the boundary of G and a neighborhood U

of p in Cn such that A∩U = G∩U , then A is a fat subdomain of G. This condition

is not necessary, however. For instance, let E be the unit disk {z | |z| < 1} in C and

let A be {(x, y) ∈ E | 0 < x < 1 and 0 < y < (1 − x)p}, where p > 0. Then A is a

fat subdomain of E if (and only if) p ≤ 1. One can easily check this by taking the

sequence of holomorphic functions {fj} to be the sequence of normalized Bergman

kernel functions {KE(z, pj)/
√
KE(pj, pj) }, where the sequence {pj} approaches the

point (1, 0).

I recall the definition of the Bergman kernel function. Let H(D) denote the

space of square-integrable holomorphic functions on a domain D in Cn. By the Riesz

representation theorem, for each fixed point w in D there is a unique element of

H(D), denoted by KD(·, w), such that

f(w) = (f,KD(·, w)) =

∫
D

f(z)KD(z, w) dVz

for all f ∈ H(D). This function KD(z, w) is called the Bergman kernel function for

D.

The following lemma is contained in [18].

Lemma III.1. If Ω is a bounded convex domain in Cn, and 0 < R ≤ 1, then

1. for any points p0 ∈ bΩ and p1 ∈ Ω there exist positive constants C and δ0 such
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that the Bergman kernel function KΩ satisfies the inequality

KΩ(pδ, pδ) > CKΩ(pδ/R, pδ/R)

for any δ ∈ (0, δ0), where pδ := p0 + δ(p1 − p0)/‖p1 − p0‖;

2. if 0 ∈ bΩ then the scaled domain RΩ is a fat subdomain of Ω.

Part (1) of Lemma III.1 is identical with [18, Lemma 4.1, part (1)], and I omit

the proof. The proof of the second part of Lemma III.1 is contained in [18, proof of

the implication (1) ⇒ (2) in Theorem 1.1]. I recall the proof for the convenience of

the reader.

Let p1 be an arbitrary point in RΩ, and set pj = p1/j for j ∈ N. Let fj(·) =

KΩ(·, pj)/
√
KΩ(pj, pj). Then ‖fj‖Ω = 1. The reproducing property of KRΩ(pj, ·)

applied to the function KΩ(·, pj) implies, via the Cauchy-Schwarz inequality, that

KΩ(pj, pj) ≤ ‖KΩ(·, pj)‖RΩ

√
KRΩ(pj, pj) .

Consequently,

‖fj‖2
RΩ =

‖KΩ(·, pj)‖2
RΩ

KΩ(pj, pj)
≥ KΩ(pj, pj)

KRΩ(pj, pj)
.

By the transformation rule for the Bergman kernel function,

KRΩ(pj, pj) = R−2nKΩ(pj/R, pj/R).

Therefore by part (1) of the lemma, the right-hand side of the preceding inequality

is bounded below by a positive constant independent of j. Thus the sequence {fj} is

bounded away from 0 in the norm of L2(RΩ). On the other hand, the sequence {fj}

tends to 0 pointwise. Consequently, the sequence {fj} has no subsequence converging

in L2(RΩ).

I now recall briefly the ∂-Neumann operator from Chapter II. When a domain Ω
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is bounded and pseudoconvex, the (unbounded) self-adjoint, surjective operator ∂∂
∗
+

∂
∗
∂ has a bounded inverse operator acting on (0, q)-forms. This operator N = Nq

is called the ∂-Neumann operator. I refer the reader to [17], [20] and the recent

survey [9] and book [11] for background on the ∂-Neumann problem. In this paper,

I consider only N1. The compactness condition can be reformulated in the following

way [19].

Lemma III.2. Let Ω be a bounded pseudoconvex domain, 1 ≤ q ≤ n. Then the

following are equivalent.

(1) The ∂-Neumann operator Nq is compact from L2
(0,q)(Ω) to itself.

(2) The canonical solution operators ∂̄∗Nq : L2
(0,q)(Ω) → L2

(0,q−1)(Ω) and ∂̄∗Nq+1 :

L2
(0,q+1)(Ω) → L2

(0,q)(Ω) are compact.

C. Proof of Theorem III.1

I will prove a little more than is stated in the theorem: the smoothness of the

boundary is needed only in a neighborhood of the base domain Ω.

Let z = (z1, z2) denote the coordinate in the space C2, and let w denote the

coordinate in the space Cn−2. I divide the proof of the theorem into the following

three steps.

Step 1: A local model There is a point p in the boundary of Ω and a neighborhood

U of p in C2 such that G∩ (U×Cn−2) is biholomorphic to a domain G′ that has

in its boundary the affine disk {(z1, 0, 0) | |z1| < 1}. Moreover {z2 | (z1, z2, w) ∈

G′} is contained in the disk {z2 | |z2 − 1| < 1}.

Step 2: Geometry of the model The local model domain is nested between two
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product domains of the form

{z1 ∈ C | |z1| < r} × {(z2, w) ∈ Cn−1 | |z2 − r|2 + ‖w‖2 < r2}

for two suitable values of r.

Step 3: Analysis From the geometry of the local model, a standard argument leads

to noncompactness of the ∂-Neumann operator of the original domain G.

Proof of Step 1. By hypothesis, Ω has a noncompact ∂-Neumann operator N . But

since Ω is also a bounded pseudoconvex Reinhardt domain, Ω has an analytic disk in

its boundary by [19, Theorem 5.2]. Since the boundary of Ω is smooth, this analytic

disk cannot be entirely contained in the part of the boundary of Ω where either z1 = 0

or z2 = 0. Let p be a point of the analytic disk where both coordinates are nonzero.

Near such a point p, a pseudoconvex Reinhardt domain is locally convexifiable (see,

for example, [31]).

Let φ be a biholomorphic map defined on a neighborhood U of p in C2 such that

Ω′ := φ(U ∩Ω) is convex. Then Ω′ also has an analytic disk in its boundary. Because

Ω′ is convex, we may assume by [18, §2] that the analytic disk in its boundary is an

affine analytic disk. After an affine coordinate change, we may assume that φ(p) =

(0, 0), the affine disk lies in the z1 coordinate plane, and a supporting hyperplane

for Ω′ at (0, 0) is given by {x2 = 0}. After a linear fractional transformation in

the z2 coordinate, we may assume further that Ω′ is contained in the set {(z1, z2) |

|z2 − 1| < 1}.

We extend φ to U × Cn−2 by making φ the identity in the remaining variables.

Set G′ = φ(G ∩ (U × Cn−2)).

Proof of Step 2. Consider slicing G′ with a complex hyperplane on which the value

of z1 is constant. Since the (n − 1)-dimensional slice is contained in {(z2, w) |
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|z2 − 1| < 1}, and the origin is a smooth boundary point, the slice contains the

ball {(z2, w) | |z2 − r1|2 + ‖w‖2 < r2
1} for a sufficiently small radius r1.

The biholomorphic map φ distorts distance by a bounded amount, so the hypoth-

esis of the theorem about the size restriction on the fibers of G carries over to G′. This

restriction implies that the slice is contained in a ball {(z2, w) | |z2−r2|2 +‖w‖2 < r2
2}

for a sufficiently large radius r2.

The radii r1 and r2 depend continuously on the value of z1, so we may choose

values of the radii that are independent of z1 for z1 in a neighborhood of the origin.

Proof of Step 3. After possibly shrinking U and r1, we may assume that G′ contains

the set {z1 ∈ C | |z1| < 3r1} × {(z2, w) ∈ Cn−1 | |z2 − 3r1|2 + ‖w‖2 < (3r1)
2}. By

Lemma III.1.(2), the ball {(z2, w) | |z2 − r1|2 + ‖w‖2 < r2
1} is a fat subdomain of

the ball {(z2, w) | |z2 − r2|2 + ‖w‖2 < r2
2} in Cn−1. It follows easily that the product

domain

A :=
{
z1 ∈ C | |z1| < r1

2
} × {(z2, w) ∈ Cn−1 | |z2 − r1

2
|2 + ‖w‖2 < ( r1

2
)2

}
is a fat subdomain of the product domain

{z1 ∈ C | |z1| < r2} × {(z2, w) ∈ Cn−1 | |z2 − r2|2 + ‖w‖2 < r2
2}.

Consequently, A is a fat subdomain of G′.

Let {fj} be a sequence of holomorphic functions in the unit ball of L2(G′)

having no subsequence that converges in L2(A). Let χ be a smooth cutoff func-

tion of one real variable that is identically equal to 0 for t ≥ 2r1 and identically

equal to 1 for t ≤ r1. Let αj denote the pullback to G under φ of the (0, 1)-form

∂(fj(z1, z2, w)χ(|z1|)χ(‖(z2, w)‖)).

The form αj is ∂-closed, and the function gj := ∂
∗
Nαj represents the canonical
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solution on G to the equation ∂u = αj. Seeking a contradiction, let us suppose that

the ∂-Neumann operator N for G (and hence the operator ∂
∗
N) is compact. Then

after passing to a subsequence, we may assume that the sequence {gj} converges in

L2(G).

On G′, define a sequence of functions {hj} via

hj(z1, z2, w) = gj ◦ φ−1(z1, z2, w)− fj(z1, z2, w)χ(|z1|)χ(‖(z2, w)‖).

The functions hj are holomorphic on G′, and hj = gj ◦φ−1 when |z1| > 2r1. Since the

gj ◦ φ−1 are converging in L2(G′), the mean-value property of holomorphic functions

implies that the hj are converging in L2(A). But fj(z1, z2, w)χ(|z1|)χ(‖(z2, w)‖) = fj

on A, so it follows that the fj are converging in L2(A). This contradiction shows that

the ∂-Neumann operator N for G cannot be compact.

Corollary III.1. Let φ : [0, 1] → [0, 1] be a concave C∞ function such that φ ≡ 1 on

[0, 1
4
] and φ(r) = 1 − r2 on [3

4
, 1]. Let D = {(z1, z2) ∈ C2 | |z2|2 ≤ φ(|z1|)}. If G is

a smooth pseudoconvex domain with base domain D, and if there exists a constant C

such that ‖w‖ < Cd(z, ∂D)1/2 for all points (z, w) ∈ G, then G has a noncompact

∂-Neumann operator N .

That the base domain D in the corollary has a noncompact ∂-Neumann operator

was first observed by Ligocka [25]. Corollary III.1 provides some simple concrete

examples of higher-dimensional domains that have noncompact ∂-Neumann operator

although they are neither product domains nor convex domains with analytic disks

in the boundary.
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CHAPTER IV

THE ∂-NEUMANN OPERATOR AND THE KOBAYASHI METRIC

A. Introduction

In this chapter we study a condition on the Kobayashi metric near a boundary

point p of a pseudoconvex domain in Cn that is related to compactness of the ∂-

Neumann operator. We call this condition property K.

If Ω is a bounded pseudoconvex domain in Cn that is Kobayashi complete near p,

and if Ω has a compact ∂-Neumann operator, then property K is necessarily satisfied.

The precise definition of property K is given in the next section.

Product domains are examples of domains that have noncompact ∂-Neumann

operator. If a domain Ω does not have property K near a boundary point p, then Ω

can be well approximated near p by a product domain, in a sense made precise below

in Lemma IV.1.

In particular, we have the following result about the Kobayashi metric and prod-

uct domains. Let D denote the open unit disk in C1. When Ω is a domain in Cn and

v is a vector, dv(z) denotes the radius of the largest affine disk in Ω with center z and

direction v, that is, dv(z) = sup{r | z + rDv ⊂ Ω}.

Theorem IV.1. If Ω is a bounded domain in Cn that is Kobayashi complete near a

boundary point p and there is some ε < 1 and some v ∈ Cn such that for all z close

enough to p, the Kobayashi metric K satisfies

K(z, v) .
1

dv(z)ε

(when ε = 1 the above equation is always true), then Ω is locally a product space

near p.
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We also give an example in which property K is not satisfied (and hence the

∂-Neumann operator is not compact).

In the next section, I define terminology. Section C contains the main results.

There are some applications in Section D.

B. Terminology and Definition of Property K

Definition IV.1 (Fat subdomain with mass at p). Let Ω be a domain in Cn,

and let A be a fat subdomain of Ω. If A ∩ U is still a fat subdomain of Ω for every

open neighborhood U of p in Cn, then we say that A has mass at p.

A domain Ω is called Kobayashi complete if any Cauchy sequence {zj}j∈N with

respect to the Kobayashi pseudodistance converges to a point z0 ∈ Ω, i.e., {kΩ(zj, z0)}

converges to 0.

Some examples of Kobayashi complete domains are strongly pseudoconvex do-

mains, convex domains, and bounded pseudoconvex Reinhardt domains containing 0.

It is an open problem whether every bounded balanced domain with C∞ Minkowski

function is Kobayashi complete. Up to now, it is also an open problem whether every

bounded pseudoconvex domain with C∞-smooth boundary is Kobayashi complete

[21].

Definition IV.2 (Property K). We say that Ω has property K near p ∈ bΩ if the

following property is satisfied:

For every fat subdomain A having mass at p of bΩ, ∀v ∈ Cn, ∀ε < 1, there is a

sequence {qn} approaching p in Ω ∩ (A+ vD) such that

K(qn, v) &
1

dv(qn)ε
.
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The following theorem gives examples of domains that have property K and

examples of domains that do not have this property. We will give the proof of this

theorem in Section D.

Theorem IV.2. If Ω is a bounded convex domain in Cn, then the following are

equivalent.

(1) Ω has property K at every p in bΩ.

(2) The ∂-Neumann operator N1 is compact.

(3) There is no affine complex disk in the boundary of Ω.

Although the property K and compactness of N1 are equivalent in convex do-

mains, this equivalence does not hold in general. Here is an example of a pseu-

doconvex Reinhardt domain in C2 with compact ∂-Neumann operator N1. Let

Ω = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 < 1, 0 < |z1| < 1}. This domain is not Kobayashi

complete and also does not have the property K near (0, 0) in bΩ [19, p. 150].

C. Main Proof

Theorem IV.3. If Ω is a bounded pseudoconvex domain in Cn that is Kobayashi

complete near p and has smooth boundary near p in bΩ, and Ω does not satisfy prop-

erty K, then Ω has a noncompact ∂-Neumann operator.

Before we prove Theorem IV.3, we need Lemmas IV.1 and IV.2.

Lemma IV.1. Suppose that Ω is a bounded domain in Cn that is Kobayashi complete

near p, and Ω does not have property K near p in bΩ. Then there is a fat subdomain

A having mass at p such that after linearly changing the coordinate system there is

a coordinate system (z1, . . . , zn) on some open neighborhood U0 of p in Cn such that
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∃C0 for which (1/4)C0D × π({A ∩ U0 | |z1| < (1/2)C0}) ⊂ Ω, where π : Ω → Cn−1 is

the natural projection π(z) = (z2, . . . , zn).

Proof of Lemma IV.1. By the hypotheses, there are a fat subdomain A having mass

at p, a nonzero vector v ∈ Cn, a number ε < 1, and a constant Cε such that

K(z, v) ≤ Cε

dv(z)ε
(IV.1)

when z ∈ (A + Dv) ∩ (Ω ∩ U), where U is a small enough open neighborhood of p

in Cn. (When ε = 1, the above equation is always true.) Here I need to prove the

following two steps.

Step 1 There is an open U0 ⊂⊂ U containing p such that for ∀z ∈ U0 ∩ A, we have

C0Dv + z ⊂ Ω.

Step 2 After linearly changing the coordinate system, v is a unit vector in the z1-

direction, and (1/4)C0D × π({A ∩ U0 | |z1| < (1/2)C0}) ⊂ Ω.

Proof of Step 1. Fix an open set U0 ⊂⊂ U in Cn. We may assume that Ω ∩ U is

Kobayashi complete. Choose C0 such that C0 = 1
‖v‖ min(d(U0,Ω ∩ U c), 1). Suppose

that ∃q ∈ A ∩ U0 such that C0Dv + q 6⊂ Ω. Let |z0| be the minimum value in

{|z| | zv + q ∈ bΩ}; obviously |z0| < C0. We define a curve r from q to z0v + q in Cn

via r(s) = sz0v+q, r(0) = q, r(1) = z0v+q, r′(s) = z0v. Since ‖sz0v‖ < d(U0,Ω∩U c),

it follows that r(s) ∈ (A + C0Dv) ∩ (Ω ∩ U) if s < 1. We choose sj approaching 1.

By the property of the Kobayashi pseudodistance, the inequality in (IV.1), and the

inequality dv(r(s)) ≥ (1− s)(|z0|), we have

kΩ(q, r(sj)) ≤
∫ sj

0

K(r(s), r′(s))ds ≤ |z0|
∫ sj

0

K(r(s), v)ds

≤ |z0|
∫ sj

0

Cε

dv(r(s))ε
ds ≤ |z0|

|z0|ε

∫ sj

0

Cε

(1− s)ε
ds ≤M.
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But r(sj) approaches z0v + q ∈ bΩ as j goes to infinity, which contradicts the

Kobayashi completeness of Ω near p. Therefore C0Dv+z ⊂ Ω, for all z ∈ U0∩A.

Proof of Step 2. We choose coordinates (z1, . . . , zn) such that v is a unit vector in

the z1-direction. For a fixed z = (z1, . . . , zn) ∈ U0 ∩ A, by Step 1, if |w| < C0,

then wv + z ∈ Ω, that is, wv + z = (w + z1, z2, . . . , zn) ∈ Ω. If we choose any

(z1, z
′) ∈ (1/4)C0D × π({A ∩ U0 | |z1| < (1/2)C0}), then there is a point (z0

1 , z
′) ∈

A ∩ U0, |z0
1 | < (1/2)C0. This implies that |z1 − z0

1 | ≤ C0. By the argument just

above, (z1, z
′) = (z1 − z0

1)v + (z0
1 , z

′) ∈ Ω. So we get (1/4)C0D × π({A ∩ U0 | |z1| <

(1/2)C0}) ⊂ Ω.

This completes the proof of Lemma IV.1.

Lemma IV.2. If Ω has a fat subdomain A having mass at p in bΩ which is a product

space and has smooth boundary near p, then Ω has noncompact ∂-Neumann operator.

Proof of Lemma IV.2. We give a sketch of the proof of Lemma IV.2, which is a stan-

dard argument [19]. We may assume that there is a coordinate system (z1, . . . , zn) on

a neighborhood U of p such that p = 0 and A = C0D×W , where W is an open set in

Cn−1. Since (C0/2)D×W is still a fat subdomain having mass at p, we may assume

that there is a holomorphic sequence {fj}∞j=1 which lies in the unit ball of L2(Ω) and

which has no subsequence that converges in L2((C0/2)D × W ). Denote by χ(t) a

smooth cut-off function that is identically equally to 1 for 0 ≤ t ≤ C0/2 and identi-

cally equal to 0 for t ≥ 2C0/3. Let z′ = (z2, . . . , zn). Let αj be ∂(χ(|z1|)fj((z1, z
′))),

which is ∂ closed on Ω. Let gj = ∂
∗
Nαj. Suppose that N is a compact opera-

tor. By Lemma III.2, we may assume that ∂
∗
N is also a compact operator. After

passing to a subsequence, we may assume that {gj}∞j=1 converges in L2(Ω). Let

hj((z1, z
′)) = χ(|z1|)fj((z1, z

′))− gj((z1, z
′)). Then hj is holomorphic. If |z1| ≥ 2C0/3
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on A, then hj = gj. Using the mean-value property of holomorphic functions, we

see that hj converges in L2(A), hence χfj converges on L2((C0/2)D ×W ). This is a

contradiction.

Proof of Theorem IV.3. Lemma IV.1 implies that Ω has a fat subdomain with mass

at p that is a product domain. By Lemma IV.2, Ω has a noncompact ∂-Neumann

operator.

D. Applications

Theorem IV.1 and Theorem IV.4 are the applications of Lemma IV.1. Now we

give the proof of Theorem IV.1.

Proof of Theorem IV.1. By the hypotheses, there are a sufficiently small open neigh-

borhood U of p in Cn and a constant Cε such that for z ∈ U ∩ Ω,

K(z, v) ≤ Cε

dv(z)ε
.

We may assume that U ∩Ω is Kobayashi complete. The hypothesis of Theorem IV.1

gives inequality (IV.1) in the proof of Lemma IV.1 with the set A replaced by the set

U ∩ Ω. We may assume that v is a unit vector in z1-direction.

Now we can follow directly the argument of Lemma IV.1. There are C0 and an

open neighborhood U0 of p in Cn such that (1/4)C0D×π({Ω∩U0 | |z1| < (1/2)C0}) ⊂

Ω. Hence if we suppose that |z1| ≤ (1/4)C0 for all z = (z1, . . . , zn) ∈ U0, then we get

Ω ∩ U0 = U0 ∩ ((1/4)C0D × π({Ω ∩ U0 | |z1| < (1/2)C0})). Near p = 0, Ω is locally a

product space.

Theorem IV.4. Suppose that Ω is a bounded domain that is Kobayashi complete

near p in ∂Ω. The following are equivalent.
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(1) For z close enough to p, for some ε < 1 there exists Cε such that

K(z, v) ≤ Cε

dv(z)ε
.

(2) For z close enough to p, for all ε ≤ 1 there exists Cε such that

K(z, v) ≤ Cε

dv(z)ε
.

(3) There is a small open neighborhood U of p in Cn and a constant M such that

K(z, v) ≤M for all z ∈ U ∩ Ω.

(4) The domain Ω is locally a product space as follows. Let p = 0. After linearly

changing the coordinate system then there are C0, an open neighborhood U of 0

in Cn, and an open set W in Cn−1 such that U ∩ (C0D ×W ) = Ω ∩ U .

Proof of Theorem IV.4. By theorem IV.1, (1) implies (4). Suppose that (4) is true,

then there is a constant C and open neighborhood U0 of 0 such that if z = (z1, z
′) ∈

U0 ∩ ((C/2)D ×W ), then dv(z) ≥ C/2. So we get K(z, v) ≤ 1/dv(z) ≤ 2/C. Thus

(3) is satisfied.

Now we show that (3) implies (2). The domain Ω is bounded, so there is a

constant M0 such that dv((z1, z
′)) ≤ M0, 1 ≤ M ε

0(
1

dv(z)ε ) for all ε. This implies that

K(z, v) ≤ MM ε
0(

1
dv(z)ε ). Let Cε = MM ε

0. So we get K(z, v) ≤ Cε

dv(z)ε . Obviously (2)

implies (1).

We wondered whether the property (3) in Theorem IV.4 may be invariant un-

der biholomorphism. But Theorem IV.4 gives a negative answer because product

structure is not preserved under biholomorphism. Here is an example. The domain

Ω = {(z, w) | z ∈ D, |w| < R(z)} can be mapped onto the unit dicylinder by some

biholomorphism if − lnR(z) is harmonic in D [29]. This example is enough to show
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that the product structure is not invariant under biholomorphism.

Now we introduce the localization principle of the Bergman kernel in the case of

a bounded pseudoconvex domain with smooth boundary in Cn (see [15], [28]). Let

Ω be a bounded pseudoconvex domain with smooth boundary in Cn, z0 ∈ bΩ. Then

for any sufficiently small neighborhood U of z0, for z ∈ U ′ ∩Ω, where U ′ is a smaller

neighborhood U ′ ⊂⊂ U , we have:

1

c
BU∩Ω(z, z) ≤ BΩ(z, z) ≤ BU∩Ω(z, z).

Corollary IV.1. If Ω is a smooth, bounded, pseudoconvex domain in Cn that is

Kobayashi complete near p, and there are a neighborhood U , a nonzero vector v, and

M > 0 such that for q ∈ Ω ∩ U ,

K(q, v) ≤M,

then after linearly changing the coordinate system such that p = 0 and v is a unit

vector in the z1-direction, we have the following inequality for z = (z1, z
′) ∈ Ω ∩ U1,

z′ ∈ Cn−1:

BC0D(z1, z1)×Bπ(U0)(z
′, z′) . BΩ(z, z) . BC0D(z1, z1)×Bπ(U0)(z

′, z′),

where U0 and U1 ⊂ U0 are subneighborhoods of U containing p and C0 is the constant

from Theorem IV.4.

Geometrically, π(U0) is the intersection of the hypersurface supported by v at p

and Ω ∩ U0. The point of the Corollary is that the rate of blow-up of the Bergman

kernel BΩ(z, z) as z → p is comparable to the rate of blow-up of the Bergman kernel

Bπ(U0) of a lower-dimensional domain. Theorem IV.4 and the argument above imply

this Corollary.
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Now we give Proof of Theorem IV.2.

Proof of Theorem IV.2. The proof of (2) ↔ (3) is in [18, Theorem 1.1]. Now we show

that (2) implies (1). Suppose that Ω does not have property K near some point p in

bΩ. Convexity of Ω implies Kobayashi completeness. By Theorem IV.3 (when the

domain is convex, smoothness is not necessary), Ω has a noncompact ∂-Neumann

operator.

To prove that (1) implies (3), we assume that there is an affine complex disk on

the boundary of Ω. After linearly changing the coordinate system, we may assume

that 0 ∈ ∂Ω. Let A = {z1 ∈ C1 | |z1| < 1} × Ω2 ⊂ Ω, where Ω2 = (1/2){z′ ∈ Cn−1 |

(0, z′) ∈ Ω}. By Lemma III.1 (2), the convexity of Ω implies that A is a fat subdomain

having mass at 0 of Ω. The complete proof of existence of the fat subdomain which

is a product space after linearly changing the coordinate system is contained in [18].

Denote by v = (1, 0, . . . , 0). For all z ∈ A∩{(z1, z
′) | |z1| < (1/4)}, dv(z) is uniformly

lower and upper bounded. There exist M1 and M2 such that M1 < 1/dv(z) < M2.

This implies that K(z, v) ≤ 1/dv(z) ≤ M2(M
−ε
1 )/dv(z)

ε. Thus Ω does not have

property K.
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CHAPTER V

LOCAL REGULARITY OF THE ∂-NEUMANN OPERATOR

A. Introduction

Kohn proved that if Ω is a strongly pseudoconvex domain in Cn with smooth

boundary, then the ∂-Neumann operator is regular. Catlin, one of Kohn’s students,

proved [10] by almost classical machinery of Kohn and Nirenberg [23] that if p is of

finite type in the sense of D’Angelo [13] and p is a smooth boundary point, then a

pseudolocal estimate for some ε holds near p. Here we give the precise definition of

the pseudolocal estimate. One says that a pseudolocal estimate of order ε > 0 holds

in U if for each k ≥ 0 and any functions ξ1, ξ2 ∈ C∞
0 (U) with ξ1 = 1 on the support

of ξ2 there exists a constant C > 0 such that

‖ξ2Nα‖(k+2)ε ≤ C(‖ξ1α‖kε + ‖α‖0) (V.1)

for all α ∈ L2
(p,q), q > 0. Here ‖·‖s stands for the ordinary Sobolev s-norm on Ω.

Further, we say that N is locally regular in U if whenever α is C∞-smooth up to the

boundary of Ω, the restriction to U of Nα is also C∞-smooth up to the boundary. As

a direct application of Catlin’s pseudolocal estimate near finite-type points, we have

the following theorem.

Theorem V.1. If Ω has a smooth boundary near p, and p is of finite type in the

sense of D’Angelo [13], then there is an open neighborhood U on which a pseudolocal

estimate holds for some ε, and N is locally regular in U [16].

In this chapter, we study whether suitable assumptions (more general than finite

type) on bΩ∩U imply local regularity of N on U . A natural situation to consider is the

case when Ω admits a local plurisubharmonic defining function. The counterexample
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of the worm domain shows that an additional hypothesis is needed to obtain a positive

result. Each boundary point of the worm domain has a neighborhood U in which there

is a local plurisubharmonic defining function. By Christ’s theorem the ∂-Neumann

problem is not globally regular in the worm domain [12], so local regularity must

fail on at least one of these patches U . Hence, existence of a local plurisubharmonic

defining function on Ω ∩ U may not be a sufficient condition for the regularity of N

on U . We found by analysis of the proof in [7] a sufficient additional condition.

Theorem V.2. We assume that Ω is a smooth, bounded, pseudoconvex domain, and

U is polynomially convex in Cn. If there are open sets V0 ⊂ V1 ⊂ U such that

(1) there is a plurisubharmonic function ρ on V1 such that {z | ρ(z) < 0} = Ω ∩ V1

and ∇ρ vanishes nowhere on V1 ∩ bΩ,

(2) for p ∈ bΩ ∩ (U \ (V0)), p is of finite type,

then N is locally regular in U , and for each s ≥ 0 there exists a constant Cs such that

‖Nf‖W s(Ω∩U) ≤ Cs‖f‖W s(Ω) for f ∈ W s
p,q(Ω), 0 ≤ p ≤ n, 1 ≤ q ≤ n.

We will prove Theorem V.2 in the next section. In section C, we give several

corollaries as applications of Theorem V.2.

B. Main Proof

1. The Vector Field Method

The vector field method is a well-known method for proving the regularity of the

∂-Neumann operator. For the convenience of the reader, we briefly introduce this

method.

Let Ω be a smooth bounded pseudoconvex domain, and let r be a smooth defining
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function for Ω. Set

Ln =
4

|∇r|2
n∑
i,j

∂r

∂zj

∂

∂zj

.

For 1 ≤ j < k ≤ n, set

L(jk) =
∂r

∂zj

∂

∂zk

− ∂r

∂zk

∂

∂zj

.

Denote by Xn = (|∇r|/
√

2)Ln the globally defined type (1, 0) vector field which

is transverse to the boundary everywhere. The field Xn vanishes nowhere on the

boundary. Thus, near every boundary point p ∈ ∂Ω, we may choose tangential

type (1,0) vector fields X1, . . . , Xn−1 so that X1, . . . , Xn−1 together with Xn form an

orthonormal basis of the space of type (1,0) vector fields in some open neighborhood

of p.

Following [11], we define the Condition (T).

Definition V.1 (Condition (T)). For any given ε > 0 there exists a smooth real

vector field T = Tε, depending on ε, defined in some open neighborhood of Ω and

tangent to the boundary with the following properties:

(1) On the boundary, T can be expressed as

T = Θε(z)(Ln − Ln) mod (T(1,0)(bΩ)⊕ T(0,1)(bΩ))

for some smooth function Θε(z) with |Θε(z)| ≥ δ > 0 for all z ∈ bΩ, where δ is

a positive constant independent of ε.

(2) If S is any one of the vector fields Ln, Ln, L(jk), L(jk), 1 ≤ j < k ≤ n, then

[T, S]|bΩ = As(z)Ln mod (T(1,0)(bΩ)⊕ T(0,1)(bΩ), Ln)

for some smooth function As(z) with supbΩ |As(z)| < ε.

Remark. Near a boundary point p, we have, say, ∂r/∂zn(p) 6= 0. Thus, for each
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j = 1, . . . , n− 1, we may write

Xj =
n−1∑
k=1

cjkLkn

for some smooth functions cjk. It follows that if condition (T) holds on Ω, then

property (2) of condition (T) is still valid with S taken to be Xj or Xj for j = 1, . . . ,

n − 1, where the Xj’s are defined as above in some small open neighborhood of p.

Here we use the same explanation about condition (T) and Xn, . . . , X1 as that in

[11, 6.2]. Now we state the well known theorem.

Theorem V.3. Let Ω be a smooth, bounded, pseudoconvex domain in Cn, n ≥ 2,

with a smooth defining function r. Suppose that Condition T holds on Ω. Then the

∂-Neumann operator N maps W s
(p,q)(Ω), 0 ≤ p ≤ n, 1 ≤ q ≤ n, boundedly into itself

for each nonnegative real number s [11].

Boas and Straube proved that when the domain Ω has a plurisubharmonic defin-

ing function, the condition T holds on Ω.

Theorem V.4. Let Ω ∈ Cn, n ≥ 2, be a smooth, bounded, pseudoconvex domain ad-

mitting a plurisubharmonic defining function r(z). Then the ∂-Neumann operator N

is exactly regular on W(p,q)(Ω) for 1 ≤ q ≤ n and all real s ≥ 0 [7].

By analyzing the proof of Theorems V.3 and V.4, we can observe that when a

smooth, bounded, pseudoconvex domain has a plurisubharmonic defining function on

some neighborhood U , then the condition T holds on U ∩Ω. That point is needed in

the proof of Theorem V.2.

2. Proof of Theorem V.2

Before we prove Theorem V.2, we need Lemma V.1.
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Lemma V.1. Suppose that Ω is a bounded pseudoconvex domain in Cn. If there is

an open set U such that the part of bΩ in U is smooth, and for p ∈ bΩ ∩ U , p is of

finite type, then N is locally regular on U , and for each s ≥ 0 there exists a constant

Cs such that for f ∈ W s
p,q(Ω), 0 ≤ p ≤ n, 1 ≤ q ≤ n,

‖Nf‖W s(Ω∩U) ≤ Cs‖f‖W s(Ω). (V.2)

Proof of Lemma V.1. For p ∈ bΩ∩U , by Theorem V.1, there is an open neighborhood

Vp of p on which there is Cp,s such that for f ∈ C∞(Ω ∩ V p), for s ≥ 0,

‖Nf‖W s(Ω∩Vp) ≤ Cp,s‖f‖W s(Ω).

Since Ω∩U is compact, we may assume that the union of a finite number of Vpi
cover

bΩ∩U . Here we use ‖f‖2
s to control the interior term. So we can choose Cs such that

‖Nf‖W s(Ω∩U) ≤ Cs‖f‖W s(Ω).

This completely proves Lemma V.1.

Proof of Theorem V.2. We explain about the strategy of the proof. We construct

special approximating smooth subdomains Ωε, and then for some V2, V0 ⊂ V2 ⊂ U ,

we show ‖Nεf‖W s(Ω∩V2) . ‖f‖W s(Ω) for Nεf ∈ C∞(Ω∩V2). By passing to the limit as

ε → 0, we will get ‖Nf‖W s(Ω∩V0) . ‖f‖W s(Ω) and also ‖Nf‖W s(Ω∩(U\V0)) . ‖f‖W s(Ω)

by Lemma V.1.

Fix V ′
2 , V0 ⊂⊂ V ′

2 ⊂ U . Now we construct a smooth pseudoconvex domain Ωε

for each ε such that bΩε ∩ V ′
2 = bΩ ∩ V ′

2 , and for q ∈ bΩε \ V0, q is finite type.

We may assume that V ′
2 is a compact polynomially convex domain since U is.

By [32, Lemma 4], there is a nonnegative plurisubharmonic function ψ such that

ψ−1(0) = V ′
2 . Then we use an idea similar to [2].
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Let r be a C∞ defining function for Ω. We may assume that for some positive η,

−(−r(z))η is a strictly plurisubharmonic function on Ω, and we may assume that η

is the reciprocal of a positive integer (we want ψ1/η to be C∞) [30].

Define ρε(z) = −(−r(z))η + εψ(z). The function ρε is strictly plurisubharmonic

on Ω. The domain Ωε will be given by Ωε = {z ∈ Ω | ρε(z) < 0}. That implies

bΩε ∩ V ′
2 = bΩ ∩ V ′

2 . We need to show why Ωε is smooth. First, we consider points

in bΩε ∩ bΩ. Now Ωε = {z | R(z) < 0} where R(z) = r(z) + (εψ(z))1/η. Since R is a

C∞ defining function for bΩε which agrees to infinite order with r on bΩε ∩ bΩ, where

∇r 6= 0, it follows that ∇R 6= 0. On bΩε \ bΩ, ∇ρε(z) 6= 0 for sufficiently small ε,

since ‖∇r‖ is below bounded on bΩ.

D’Angelo’s Theorem [13] and hypothesis (2) of the theorem yield that the bound-

ary points of Ωε in bΩ∩(V ′
2 \V0) are finite type. So we can conclude that the boundary

points of bΩε \V0 are of finite type. By the hypotheses (1), (2), and [8], we can extend

the vector field T to Ωε. Theorem V.4 yields that Ωε has regularity of the ∂-Neumann

operator.

Claim 1. There is a constant Cs such that for Nεf ∈ C∞(Ω ∩ V2), where V0 ⊂⊂

V2 ⊂⊂ V ′
2 ,

‖Nεf‖W s(Ω∩V2) ≤ Cs‖f‖W s(Ω) (V.3)

(Cs is independent of ε and we may assume that Ωε ∩ V2 = Ω ∩ V2).

Proof of Claim 1. Denote u = Nεf . We will estimate ‖u‖W s(Ω∩V2). The initial step

s = 0 is obvious, since Nε is a bounded operator in L2(Ωε). This boundedness is

independent of ε because the constant depends only on the diameter of the domain

Ωε by Hörmander’s theorem (Theorem II.1).

Here we prove the case s = 1 in detail. The general case follows in a similar way

by induction on s. By the hypothesis of Theorem V.2, there is a smooth plurisubhar-
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monic function ρ on V1 such that {z | ρ < 0}∩(V1∩V2) = Ωε∩(V1∩V2) = Ω∩(V1∩V2).

Near bΩε ∩ (V1 ∩ V2), the condition (T) holds. For ε > 0, we can define a vector

field Tε on Ωε ∩ (V1 ∩ V2) which satisfies conditions (1) and (2) in condition (T). By

multiplying with a smooth cut-off function χ that is identically one on V0 and zero

outside of V2, we can extend Tε to Ωε. For convenience, we write Tε = T.

We choose boundary coordinate charts {Uα}m
α=1 such that {Uα}m

α=1 and U0 =

Ωε ∩ V ′
2 form an open cover of Ωε ∩ V2. Let {ζα}m

α=0 be a fixed partition of unity

subordinate to {Uα}m
α=1. On each Uα, 1 ≤ α ≤ m, let wαk, k = 1, . . . , n, be an

orthonormal frame of (1, 0)-forms dual to Xαk, k = 1, . . . , n. We note that wαn = wn,

α = 1, . . . ,m, is a globally defined type (1, 0)-form dual to Xn = (|∇r|/
√

2)Ln.

Similarly, Xαn = Xn, α = 1, . . . ,m, is also a globally defined type (1, 0) vector field.

The form u can be locally expressed on Uα as
∑′ uα

(I,J)w
α,I ∧wα,J , where wα,I =

wαi1 ∧ · · · ∧ wαip
and wα,J = wαj1 ∧ · · · ∧ wαjq .

Set

‖Xu‖2
Ωε∩V0

=
m∑

α=1

∑′

I,J

n∑
k=1

‖Xαk(ζαu
α
I,J)‖2

Ωε∩V0
,

‖X ′u‖2
Ωε∩V0

=
m∑

α=1

∑′

I,J

n−1∑
k=1

‖Xαk(ζαu
α
I,J)‖2

Ωε∩V0
,

Tu = T(ζ0u) +
m∑

α=1

∑′

I,J

T(ζαu
α
I,J)wα,I ∧ wα,J .

By the standard calculus (we recommend the reader to refer to [11, p. 130]) we get

‖Xu‖2
Ωε∩V0

+ ‖X ′u‖2
Ωε∩V0

≤ C1(‖f‖2 + ‖u‖2 + (sc)‖Tu‖2). (V.4)

The constant C1 is independent of ε, and (sc) can be as small as we wish. If we

can control ‖Tu‖Ωε∩V0 , then ‖u‖W 1(Ωε∩V0) can be estimated. In view of (V.4) and

the hypothesis (1) on the vector field T, if we control ‖Tu‖Ωε∩V0 , then we control all
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derivatives of u, that is, we can estimate ‖u‖W 1(Ωε∩V0). Therefore, we call Xα1, . . . ,

Xαn−1, Xα1, . . . , Xαn−1 and Xαn, 1 ≤ α ≤ m, good directions.

Now we estimate ‖Tu‖L2(Ωε∩V0). First by the basic L2 estimate, we get

‖Tu‖2 ≤ C2(‖∂Tu‖2 + ‖∂∗εTu‖2). (V.5)

The constant C2 is independent of ε, since supp(Tu) ⊂ V2 where the boundaries of Ω

and Ωε agree. Hence the operators ∂
∗

and ∂
∗
ε agree on the form Tu. We estimate the

right-hand side as follows.

‖∂Tu‖2 = (∂Tu, ∂Tu)

= (∂
∗
∂u,−T2u) + (∂u, [[∂,T],T]u) + (−∂Tu, [∂,T]u)

+ ‖[∂,T]u‖2 + ([∂,T]u, ∂Tu) + O((‖∂Tu‖+ ‖u‖W 1(Ωε∩V2))‖∂u‖).

Note that

Re{(−∂Tu, [∂,T]u) + ([∂,T]u, ∂Tu)} = 0.

With a similar estimate for ‖∂∗εTu‖2, we obtain

‖∂Tu‖2 + ‖∂∗εTu‖2

≤ C3(‖f‖2
1 + ‖[∂,T]u‖2 + ‖[∂∗ε ,T]u‖2) + (sc)‖Tu‖2 + (sc)‖u‖2

W 1(Ωε∩V2). (V.6)

To estimate ‖[∂,T]u‖2
Ωε∩V2

and ‖[∂∗ε ,T]u‖2
Ωε∩V2

, we use the hypothesis on T on

Ωε ∩ V0 and (2) in the hypothesis of Theorem V.2. We need to separately estimate

‖[∂,T]u‖2
Ωε∩V2

as ‖[∂,T]u‖2
Ωε∩V0

and ‖[∂,T]u‖2
Ωε∩(V2\V0). The second part can be con-

trolled by ‖f‖1 by Lemma V.1 since every point p ∈ ∂(Ωε)∩ (V2 \ V0) is of finite type.

The domain Ωε has the same boundary as Ω on (V2 \ V0), so we get

‖[∂,T]u‖Ωε∩(V2\V0) + ‖[∂∗ε ,T]u‖Ωε∩(V2\V0) ≤ C4‖u‖Ωε∩(V2\V0) ≤ C5‖f‖W 1(Ω). (V.7)
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Here we need to emphasize why C4 is independent of ε. In the proof of Lemma

V.1, we use a pseudolocal estimate near a finite-type point p. The constant C in

(V.1) depends only on the boundary near p and the diameter of the domain. But bΩε

has the same boundary on V ′
2 , and there is an uniform bound on the diameter of Ωε.

So we need to estimate only the first part. On each boundary coordinate chart

the commutator between T and X1, . . . , Xn−1, X1, . . . , Xn−1 can be controlled by

the hypothesis on T. Thus we need to consider the commutator of T and Xn (or Xn)

which occurs, when commuting T and ∂ (or ∂
∗
), only for those multi-indices (I, J)

with n /∈ J (or n ∈ J). Such terms can be handled as follows:

[Xn,T](ζαu
α
I,J) = [(|∇r|/

√
2)Ln,T](ζαu

α
I,J)

= (|∇r|/
√

2)[Ln,T](ζαu
α
I,J)− (T(|∇r|)/|∇r|)Xn(ζαu

α
I,J)

for α = 1, . . . , m. Using the basic estimate, we obtain

m∑
α=1

∑′

n∈J

‖T(|∇r|)/|∇r|)Xn(ζαu
α
I,J)‖2

Ωε∩V0
≤ C6(‖∂u‖2 + ‖∂∗εu‖2) ≤ C7‖f‖2

Ω.

The remaining commutator terms can be estimated by the hypothesis on T on

Ωε∩V0. Since C7 depends only on the diameter of Ωε, we can choose C7 independently

of ε. Now

‖[∂,T]u‖2
Ωε∩V0

≤ C ′
4

( m∑
α=1

∑′

I,J

∥∥∥∥ AΘε

T(ζαu
α
I,J)

∥∥∥∥2

Ωε∩V0

+ ‖Xu‖2
Ωε∩V0

+ ‖X ′u‖2
Ωε∩V0

+ ‖f‖2
W 1(Ω)

)
≤

(ε
δ

)2

‖Tu‖2 + C ′
5(‖Xu‖2

Ωε∩V0
+ ‖X ′u‖2

Ωε∩V0
+ ‖f‖2

1). (V.8)

For ‖[∂∗ε ,T]u‖Ωε∩V0 we commute T with Xn if n ∈ J . Hence

[Xn,T](ζαu
α
I,J) = (|∇r|/

√
2)[Ln,T](ζαu

α
I,J)− (T(|∇r|)/|∇r|)Xn(ζαu

α
I,J)
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for α = 1, . . . , m. Observe that ±Xn(ζαu
α
I,J) appears in the coefficient of wα,I ∧wα,H

with {n} ∪H = J in ∂
∗
u.

Meanwhile, all the other terms in the coefficient of wα,I ∧wα,H are differentiated

by X1, . . . , Xn−1 only. Thus we have

m∑
α=1

∑′

n∈J

‖(T(|∇r|)/|∇r|)Xn(ζαu
αuI,J)‖2

Ωε∩V0
≤ C ′

7(‖∂
∗
εu‖2 + ‖X ′u‖2

Ωε∩V0
+ ‖f‖2).

The first term can be controlled as before. Here we use ‖f‖2
1 to control the interior

term:

‖[∂∗,T]u‖2
Ωε∩V0

+ ‖[∂,T]u‖2
Ωε∩V0

≤ C8(‖f‖2 + ‖X ′u‖2
Ωε∩V0

+ ‖Xu‖2
Ωε∩V0

+ ‖f‖2
1) + r‖Tu‖2, (V.9)

where r > 0 is a constant that can be as small as we wish. Combining equations

(V.7) and (V.9), we get

‖[∂∗ε ,T]u‖2 + ‖[∂,T]u‖2

≤ C8(‖f‖2
W 1(Ωε)

+ ‖X ′u‖2
Ωε∩V0

+ ‖Xu‖2
Ωε∩V0

) + r‖Tu‖2. (V.10)

By (V.5), (V.6), and (V.10),

‖Tu‖2 ≤ C ′
8(‖f‖2

W 1(Ωε)
+ (sc)‖u‖2

W 1(Ωε∩V2)). (V.11)

Inequalities (V.4), (V.7), and (V.11) imply

‖u‖W 1(Ωε∩V2) ≤ (‖u‖W 1(Ωε∩V0) + ‖u‖W 1(Ωε∩V2\V0))

≤ C9(‖u‖W 1(Ωε∩V2\V0) + ‖X ′u‖Ωε∩V0 + ‖Xu‖Ωε∩V0 + ‖Tu‖) + (sc)‖u‖W 1(Ωε∩V2).

Finally we get

‖Nεf‖W 1(Ω∩V2) ≤ C1‖f‖W 1(Ω).
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By using induction, and a similar procedure to the first case, independently of ε,

we get the equation (V.3) in Claim 1. This completely proves Claim 1.

By Claim 1, and the regularity of the ∂-Neumann operator of Ωε, if f ∈ C∞(Ω) ⊂

C∞(Ωε), then Nεf ∈ W s(Ω ∩ V2), and we have

‖Nεf‖W s(Ω∩V0) ≤ ‖Nεf‖W s(Ω∩V2) ≤ Cs‖f‖W s(Ω). (V.12)

Now Nεf converges weakly to some function B in W s(Ω∩ V0), and Nεf converges to

Nf in L2(Ω∩V0) [26]. We can conclude that Nf = B and Nf is in W s(Ω∩V0). The

constant Cs in (V.12) is independent of ε, so we have

‖Nf‖W s(Ω∩V0) ≤ Cs‖f‖W s(Ω).

After replacing U in Lemma V.1 with U \ V0, we have completely proved Theorem

V.2.

Remark. In the situation of Theorem V.2, it is possible for an analytic disk to be

on the part of boundary where we have local regularity of the ∂-Neumann operator.

C. Application

By Corollary V.1, we show that an isolated infinite-type point in the boundary

of the domain is not an obstruction for local regularity of the ∂-Neumann operator.

Corollary V.1. Suppose that Ω is a smooth, bounded, pseudoconvex domain, and

p is a boundary point of Ω. If there is an open neighborhood U of p such that for

q ∈ bΩ ∩ U , q 6= p, q is finite type, then N is locally regular on U , and for s > 0,

there is Cs such that for f ∈ C∞(Ω) we have

‖Nf‖W s(Ω∩U) ≤ Cs‖f‖W s(Ω).
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Proof of Corollary V.1. There is a small number σ > 0 such that Bσ(p) = {z |

d(z, p) < σ} ⊂⊂ U . Now Bσ(p) is a compact, polynomially convex set. By the

same argument as in the proof of Theorem V.2, we can construct a smooth bounded

pseudoconvex domain Ωε such that bΩε ∩Bσ(p) = bΩ ∩Bσ(p).

We define a vector field T = Ln − Ln where Ln = 4
|∇r|2

∑n
j=1

∂r
∂zj

∂
∂zj

on U . By

multiplying with a smooth cut-off function χ that is identically one around p and

zero outside of U , we can define a smooth vector field T on Ω. There is an open

neighborhood Vε of p contained in Bσ(p) such that T satisfies (1) and (2) in Condition

T on bΩ ∩ Vε.

We replace V0 in the equations (V.7) and (V.9) with Vε. The corollary follows

by the same argument as in the proof of Theorem V.2.

Corollary V.2. Let Ω, p, and U be the same as in Theorem V.2. Then for f ∈

C∞(Ω) we have Pf ∈ C∞(Ω ∩ U), where P is the Bergman projection.

Corollary V.2 is a direct result from Theorem V.2 and the identity P = I −

∂
∗
N(0,1)∂.
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CHAPTER VI

SUMMARY

We have shown in Chapter III that under certain conditions, a higher-dimensional

domain fibered over Ω can inherit noncompactness of the ∂-Neumann operator from

the base domain Ω. We tried to generalize the inheritance of noncompactness of the

∂-Neumann operator from the base domain, but more work needs to be done for the

generalization.

In Chapter IV we showed by using the property K that a certain local property

of a domain is a sufficient condition for noncompactness of the ∂-Neumann operator.

We wondered whether the condition in Theorem IV.1 may be invariant under biholo-

morphisms, but Theorem IV.4 gives a negative answer because product structure is

not preserved under biholomorphisms.

Using the vector-field method, we found a more general condition than finite

type for the local regularity of the ∂-Neumann operator. By this generalization, it is

possible for an analytic disk to be on the part of the boundary where we have the

local regularity of the ∂-Neumann operator. In Theorem V.2, we showed that an

isolated infinite-type point in the boundary of the domain is not an obstruction for

local regularity of the ∂-Neumann operator.
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