

# Economic Analysis of Trickle Distribution Systems

# **Texas High Plains**

he Texas Agricultural Experiment Station E. Miller, Director The Texas A&M University System College Station, Texas

## Contents

| Summary                                           | 2  |
|---------------------------------------------------|----|
| Introduction                                      | 3  |
| Methods and Materials                             | 4  |
| Study Area                                        | 4  |
| Procedures                                        | 4  |
| Systems                                           | 4  |
| Movable-Surface Trickle Distribution Systems      | 4  |
| Automated Subsurface Trickle Distribution Systems | 4  |
| Furrow System                                     | 4  |
| Cost Roturn Budgota                               | 4  |
| Break-Even Analysis                               | 6  |
| Results and Discussion                            | 7  |
| Investment in Distribution Systems                | 7  |
| Irrigation Costs                                  | 7  |
| Cotton                                            | 7  |
| Sorghum                                           | 8  |
| Break-Even Prices Per Unit of Output              | 8  |
| Solid Cotton                                      | 8  |
| Double-Row Cotton                                 | 8  |
| Solid Sorghum                                     | 9  |
| Double-Row Sorghum                                | 10 |
| References                                        | 11 |
| Appendix Tables                                   | 12 |
|                                                   |    |

#### Summary

The Texas High Plains is a major agricultural producing area that is using irrigation to increase production. The source of water for irrigation is a finite supply in an enclosed aquifer. This supply will be exhausted in the future.

Trickle irrigation has been developed which could extend the life of the ground water by increasing the efficiency of water use. Fifteen trickle distribution systems were evaluated in this study. Three of the systems were movable surface systems, and twelve were automated subsurface systems. Furrow distribution systems are the conventional methods, and a furrow distribution system was included in the analysis. The systems were evaluated for producing cotton and sorghum in solid and double-row planting methods.

Estimated investment ranged from \$49.19 to \$60.61 per acre for the movable surface systems. For automated subsurface systems, estimated investment requirements per acre ranged from \$562.57 to \$1,860.17. Investment requirements per acre for the furrow distribution system was estimated to be \$62.74.

The lowest estimated costs per acre for cotton for the movable trickle distribution systems were \$36.39, \$35.37 for the furrow system and \$97.48 for the automated subsurface trickle systems. For sorghum, the lowest estimated costs per acre were \$34.20 and \$122.80 for the furrow and automated subsurface systems, respectively.

Break-even prices for the furrow systems were less than any of the trickle systems for cotton. The break-even price for the furrow system was only \$.001 less per pound than some of the movable surface systems. Break-even prices for automated subsurface trickle systems were higher than similar calculations for furrow systems. The results were similar for sorghum.

# ECONOMIC ANALYSIS OF TRICKLE DISTRIBUTION SYSTEMS TEXAS HIGH PLAINS

James E. Osborn, Alan M. Young Otto C. Wilke, and Charles Wendt\*

The major source of water for irrigation in the Texas High Plains is ground water. Ground water is being mined from an aquifer in the area called the Ogallala which is geologically isolated from major sources of recharge.

The furrow irrigation system is the traditional method for applying irrigation water in the Texas High Plains. Currently, 78 percent of the acreage in the region is irrigated by furrow systems. The application efficiency for furrow systems in this region has been estimated to be as low as 50 percent (1).

Trickle (drip) irrigation is a method for distributing water that has been demonstrated to increase efficiency when compared to other methods of distribution. Water is distributed evenly in small quantities through orifices. With subsurface systems, evaporation and seepage can be reduced.

The economic benefits accruing from irrigated crop production to the economy of the Texas High Plains may be extended into the future by a more efficient system of distribution. Results from research have shown that less water is required for trickle irrigation than for furrow irrigation systems to produce comparable crop yields. Therefore, the withdrawal rate of water from the Ogallala aquifer might be reduced, thus, increasing the number of years that water would be available for irrigation from the Ogallala. A major purpose of this study was to determine the economic feasibility for using tickle irrigation in the production of row crops.

Respectively, professor, Texas A&M University-Texas Tech University Cooperative Research Unit, Lubbock; research assistant, The Texas Agricultural Experiment Station (Department of Agricultural Economics); associate professor, and professor, The Texas Agricultural Experiment Station, Lubbock. The overall objective of this study was to determine the economic feasibility of trickle distribution systems in cotton and sorghum production in the Texas High Plains. More specifically, the objectives were

- 1. To determine input-output requirements in the production of cotton and sorghum by using trickle and furrow distribution systems in the Texas High Plains.
- 2. To determine costs and returns in the production of cotton and sorghum by using trickle and furrow distribution systems in the Texas High Plains.
- To determine break-even prices for cotton and for sorghum with trickle and furrow distribution systems.

Considerable research work has been completed concerning trickle distribution systems in foreign countries, such as Israel, Australia, Mexico, England, Italy, Denmark, and Japan. Studies of trickle distribution systems have been conducted in many states in the United States including Utah, Hawaii, California, Arizona, Michigan, Florida, and Texas.

Few economic studies, however, have been conducted for row crops. Lacewell, Wilke, and Baush completed a study in 1972 on the economic implications of sub-irrigation as compared to furrow systems in cotton (2). Data from the experiments at the Texas A&M University Agricultural Research and Extension Center at Lubbock were used to estimate yields, costs, and returns. A conclusion of the study was that before subirrigation would be economically feasible in the production of row crops, fixed cost per acre would have to be reduced.

Experiments at the Texas A&M University Research and Extension Center at Lubbock have shown that crop yields using trickle irrigation systems can be high with relatively low levels of water. Water application rates of less than 7-acre inches resulted in yields of nearly 2-1/2 bales of cotton per acre in 1973 (11).

## Methods and Materials

#### Study Area

The study area included portions of 5 counties in the Texas Panhandle (Bailey, Parmer, Castro, Lamb, and Hale Counties) and is composed of approximately 510,000 acres of medium-textured soils (5, 6). The area is relatively homogenous with respect to soils, weather, and supply of ground water (Figure 1). Average annual precipitation for the study area from 1963 to 1973 ranged from slightly under 16.0 inches in the northwest portion to more than 19.0 inches in the southeast portion, for an average of 17.44 inches (10). The average growing season for the study area from 1964 to 1973 ranged from 201 days in southeast sections to 187 days in northwest sections, with an average of 197 days (10).

Approximately 475,600 acres of cropland are included in the study area, approximately 85 percent of which is irrigated (4, 5). Major crops grown in the area are cotton and sorghum. About 22 percent of the irrigated cropland in the area was used for cotton and 40 percent for sorghum in 1968. Minor crops in the area include corn, wheat, forage crops, soybeans, castors, and vegetables.

#### Procedures

#### Systems

Three movable-surface trickle distribution systems, twelve automated subsurface trickle distribution systems, and one furrow distribution system were evaluated in the study. The trickle distribution systems were designed for pump capacities of 60, 120, and 180 gallons per minute (GPM). Pumping units were based on lift, pumping pressure, and system capacity of the different trickle systems.<sup>1</sup>

The furrow distribution system was designed for a 700 gallon per minute well. The selected well yield was chosen to be representative for the study area (4). Well depth for all distribution systems was assumed to be 227 feet with a lift of 200 feet (9). Movable-Surface Trickle Distribution Systems: Each lateral was designed to apply 0.1 acre-inch of water in 24 hours (Table 1). Pump capacities for movable-surface distribution systems 1, 2, and 3 were 60, 120, and 180 GPM, respectively; the surface area irrigated by the three systems was 32, 64, and 96 acres, respectively.

Automated Subsurface Trickle Distribution Systems: Electric controls were used to automate the subsurface distribution systems. Tensionmeters were connected to a control box at the well. The control box initiates the pump and opens solenoid valves in the moisture short area. Flow dividers alternate the flow of water into the laterals in the area.

Subsurface systems were designed with laterals and emitters which were 12 to 15 inches below the surface. Emitters and laterals were spaced 40 inches apart for subsurface systems 4 through 9 (Table 1). For subsurface systems 10 through 15, emitters and laterals were spaced 80 inches apart. Emitters in the designs with 80-inch spacings were designed for greater flow rates.

Subsurface distribution systems were designed for two water application rates (0.2 and 0.1 inch per day), three pump capacities (60, 120, and 180 gallons per minute), and three sizes of systems from 16 to 96 acres (Table 1). Automated-subsurface distribution systems were evaluated for solid and double-row cotton, as well as for sorghum.

*Furrow System:* The furrow distribution system contained 1,637 feet of underground pipe with risers every 200 feet. Twelve joints of gated aluminum pipe which were 20 feet long were included (4, 7). The well was designed to water approximately 96 acres (3). The irrigation efficiency was assumed to be 75 percent for furrow distribution systems.

#### **Economic Analysis**

Two methods of economic analysis were used to evaluate the variables in this study.

*Cost-Return Budgets:* Cost-return budgets were developed for cotton and sorghum. Irrigated and dryland crop enterprises were included (Table 2).

Representative prices for resources for early 1975 were used to develop costs of production. Information for prices of inputs were determined through interviews with agricultural input supply firms and custom operators in the study area.

<sup>&</sup>lt;sup>1</sup>Leon New, irrigation specialist with The Texas Agricultural Extension Service, determined the electric submersible motors and pumps for the selected wells.



| TABLE T. CHARACTERISTICS OF SELECTED DISTRIBUTION SYSTEMS, TEXAS HIGH PLAINS |       |      |         |           |           |          |  |
|------------------------------------------------------------------------------|-------|------|---------|-----------|-----------|----------|--|
| System                                                                       | Water | Pump | Size of | Number of | Length of | Dimensio |  |

| System | Water                   | Pump     | Size of        | Number of        | Length of      | Dimensio   | n or design |
|--------|-------------------------|----------|----------------|------------------|----------------|------------|-------------|
|        | application<br>rate per | capacity | design         | laterals         | laterals       | Width      | Length      |
|        | day                     |          |                | ware built 20, c | ord 180 GPM, 1 | wapes live | 1           |
|        | (inches)                | (GPM)    | (acres)        |                  | (feet)         | (feet)     | (feet)      |
|        |                         |          | Movable surf   | ace systems      | 1              |            |             |
| 1      | 0.1                     | 60       | 32             | 16               | 660            | 1.068      | 1.320       |
| 2      | 0.1                     | 120      | 64             | 32               | 660            | 2.133      | 1,320       |
| 3      | 0.1                     | 180      | 96             | 48               | 660            | 1,600      | 2,400       |
|        |                         |          | Automated subs | urface systems   |                |            |             |
| 4      | 0.2                     | 60       | 16             | 960              | 220            | 792        | 880         |
| 5      | 0.1                     | 60       | 32             | 1,920            | 220            | 1,584      | 880         |
| 6      | 0.2                     | 120      | 32             | 1,920            | 220            | 1,584      | 880         |
| 7      | 0.1                     | 120      | 64             | 3,840            | 220            | 1,584      | 1,760       |
| 8      | 0.2                     | 180      | 48             | 2,880            | 220            | 2,376      | 880         |
| 9      | 0.1                     | 180      | 96             | 5,760            | 220            | 2,376      | 1,760       |
| 10     | 0.2                     | 60       | 16             | 240              | 440            | 792        | 880         |
| 11     | 0.1                     | 60       | 32             | 480              | 440            | 792        | 1,760       |
| 12     | 0.2                     | 120      | 32             | 480              | 440            | 792        | 1,760       |
| 13     | 0.1                     | 120      | 64             | 960              | 440            | 1,584      | 1,760       |
| 14     | 0.2                     | 180      | 48             | 720              | 440            | 2,376      | 880         |
| 15     | 0.1                     | 180      | 96             | 1,440            | 440            | 2,376      | 1,760       |
|        |                         |          | Furrow s       | ystems           |                |            |             |
| 16     |                         | 700      | 96             |                  |                |            |             |

Cost-return budgets were developed for low, average, and high crop yields (Table 3). Three alternative price levels were used for crops (Table 4).

Trickle distribution systems were depreciated for 15 years. Repair and maintenance for the movable-surface systems were determined by estimating the cost necessary to replace the laterals, emitters, and vinyl hoses every 4 years. The replacement and variable costs were then expressed as a percentage of total investment per acre (Table 5).

For the automated-subsurface systems, repair and maintenance costs were determined by estimating the cost of cleaning and (or) replacing 4 percent of the emitters per year for each system. The cleaning, replacement, and other variable costs were expressed as a percentage total investment per acre (Table 5).

Break-Even Analysis: Break-even analysis we used to evaluate trickle distribution systems re ative to furrow irrigation for the crop enterprise Break-even prices with respect to total costs production were determined by dividing to specified cost of each crop by the specified co

# TABLE 3. ASSUMED YIELDS FOR COTTON AND SORGHUM TEXAS HIGH PLAINS

| Distribution          | Yields in pounds per a                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| system                | Low                                                                                                                                                                                                                                                                                             | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Cotton                |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1                     | 200                                                                                                                                                                                                                                                                                             | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| M.S.S. <sup>2</sup>   | 500                                                                                                                                                                                                                                                                                             | 625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| A.S.U.S. <sup>3</sup> | 500                                                                                                                                                                                                                                                                                             | 625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Furrow                | 500                                                                                                                                                                                                                                                                                             | 625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| A.S.U.S.              | 625                                                                                                                                                                                                                                                                                             | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Furrow                | 625                                                                                                                                                                                                                                                                                             | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Sorghum               |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1                     | 1000                                                                                                                                                                                                                                                                                            | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| A.S.U.S.              | 5000                                                                                                                                                                                                                                                                                            | 5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Furrow                | 5000                                                                                                                                                                                                                                                                                            | 5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| A.S.U.S.              | 5500                                                                                                                                                                                                                                                                                            | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Furrow                | 5500                                                                                                                                                                                                                                                                                            | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                       | Distribution<br>system<br>Cotton<br>1<br>M.S.S. <sup>2</sup><br>A.S.U.S. <sup>3</sup><br>Furrow<br>A.S.U.S.<br>Furrow<br>Sorghum<br>1<br>A.S.U.S.<br>Furrow<br>A.S.U.S.<br>Furrow<br>A.S.U.S.<br>Furrow<br>A.S.U.S.<br>Furrow<br>A.S.U.S.<br>Furrow<br>A.S.U.S.<br>Furrow<br>A.S.U.S.<br>Furrow | Distribution<br>system         Yields i<br>Low           1         200           M.S.S. <sup>2</sup> 500           A.S.U.S. <sup>3</sup> 500           Furrow         500           A.S.U.S.         625           Furrow         625           Sorghum         1           1         1000           A.S.U.S.         5000           Furrow         5000           Sorghum         1           1         1000           A.S.U.S.         5000           Furrow         5000           Furrow         5000           Furrow         5500 | Distribution<br>system         Yields in pounds<br>Low           1         Low         Average           1         200         250           M.S.S. <sup>2</sup> 500         625           A.S.U.S. <sup>3</sup> 500         625           Furrow         500         625           A.S.U.S.         625         750           Furrow         625         750           Sorghum         1         1000         1500           A.S.U.S.         5000         5500           Furrow         5000         5500           Furrow         5000         5500           A.S.U.S.         5500         6000           Furrow         5500         6000 |  |

<sup>1</sup>Does not apply to dryland production.

<sup>2</sup>Movable-surface systems.

<sup>3</sup>Automated subsurface system.

TABLE 2. COTTON AND SORGHUM ENTERPRISES, TEXAS HIGH PLAINS

Distribution

| Сгор    | pattern    | applied<br>(Ac. In.) | system               |
|---------|------------|----------------------|----------------------|
| Cotton  | Solid      | Dryland              | 1                    |
| Cotton  | Solid      | 4                    | Movable-surface      |
| Cotton  | Solid      | 7                    | Automated-subsurface |
| Cotton  | Solid      | 14                   | Furrow               |
| Cotton  | Double-row | 7                    | Automated-subsurface |
| Cotton  | Double-row | 14                   | Furrow               |
| Sorghum | Solid      | Dryland              | 1                    |
| Sorghum | Solid      | 9                    | Automated-subsurface |
| Sorghum | Solid      | 14                   | Furrow               |
| Sorghum | Double-row | 9                    | Automated-subsurface |
| Sorghum | Double-row | 14                   | Furrow               |
|         |            |                      |                      |

<sup>1</sup> Does not apply to dryland production.

ABLE 4. ASSUMED PRICES FOR COTTON AND SORGHUM, TEXAS HIGH PLAINS, 1975<sup>1</sup>

| Commodity   | Unit         | L      | evel of price | es     |
|-------------|--------------|--------|---------------|--------|
|             | den en nette | Low    | Average       | High   |
| Cotton lint | Pound        | \$0.30 | \$0.40        | \$0.50 |
| Sorghum     | Cwt.         | 4.00   | 4.50          | 5.00   |

These are representative historical prices in the Texas High Plains, 1975.

rield, which included harvest costs, variable and fixed irrigation costs, and variable and fixed non-irrigation costs.

# **Results and Discussion**

#### nvestment in Distribution Systems

Estimated investment for the movablesurface distribution systems were determined Table 6 and Appendix Table A.1). Investment requirements for the distribution systems ranged from \$66.00 for emitters for surface system 1 to \$1,825.20 for PVC mainline in surface system 3. Total estimated investment requirements were \$1,574.03 for surface system 1, \$3,562.70 for surface system 2, and \$5,818.96 for surface system 3. Estimated investment per acre was \$49.19, \$55.67, and \$60.61 for surface systems 1, 2, and 3, respectively.

Required investment for six automatedsubsurface distribution systems with 40-inch spacing of laterals and emitters was estimated Table 6 and Appendix Table A.2). The greatest investment was estimated for laterals and emitters. Total investment was estimated to range tom \$26,826.41 for subsurface system 4 to \$178,576.44 for subsurface system 9. Investment per acre ranged from \$1,676.65 for subsurface system 4 to \$1,860.17 for subsurface system 9.

The component of automated-subsurface distribution systems with 80-inch spacing of laterals and emitters which required the greatest investment was the laterals (Table 6 and Appendix Table A.3). Investment per acre ranged from \$562.57 for subsurface system 10 to \$716.78 for subsurface system 15.

TABLE 5, REPAIR AND MAINTENANCE PERCENTAGE ESTIMATES FOR TRICKLE DISTRIBUTION SYSTEMS, 15 YEARS OF LIFE, TEXAS HIGH PLAINS

| System                            | Percent of original investment |  |  |  |  |
|-----------------------------------|--------------------------------|--|--|--|--|
| Movable-surface                   | 147                            |  |  |  |  |
| Automated-subsurface <sup>1</sup> | 81                             |  |  |  |  |
| Automated-subsurface <sup>2</sup> | 61                             |  |  |  |  |

40-inch spacings. 80-inch spacings. TABLE 6. ESTIMATED INVESTMENT FOR IRRIGATION DISTRIBUTION SYSTEMS, TEXAS HIGH PLAINS, 1975

| System  | Investm                      | Investment |   |  |  |  |  |
|---------|------------------------------|------------|---|--|--|--|--|
| oystem. | Total                        | Per acre   | 2 |  |  |  |  |
|         | Movable surface systems      |            |   |  |  |  |  |
| 1       | \$ 1,574.03                  | \$ 49.19   |   |  |  |  |  |
| 2       | 3,562.70                     | 55.67      |   |  |  |  |  |
| 3       | 5,818.96                     | 60.61      |   |  |  |  |  |
|         | Automated subsurface systems |            |   |  |  |  |  |
| 4       | 26,826.41                    | 1,676.65   |   |  |  |  |  |
| 5       | 54,464.20                    | 1,702.01   |   |  |  |  |  |
| 6       | 56,531.88                    | 1,766.62   |   |  |  |  |  |
| 7       | 112,510.04                   | 1,757.97   |   |  |  |  |  |
| 8       | 89,374.23                    | 1,861.96   |   |  |  |  |  |
| 9       | 178,576.44                   | 1,860.17   |   |  |  |  |  |
| 10      | 9,001.12                     | 562.57     |   |  |  |  |  |
| 11      | 18,589.98                    | 580.94     |   |  |  |  |  |
| 12      | 19,128.72                    | 597.77     |   |  |  |  |  |
| 13      | 39,355.97                    | 614.94     |   |  |  |  |  |
| 14      | 33,322.43                    | 694.22     |   |  |  |  |  |
| 15      | 68,810.63                    | 716.78     |   |  |  |  |  |
|         | Furrow system                |            |   |  |  |  |  |
| 16      | 6,023.00                     | 62.74      |   |  |  |  |  |

The furrow distribution system consisted of underground pipe, gated pipe, and shut-off valves. The underground pipe required an estimated investment of \$5,400.00. Investment required for gated pipe and shut-off valves was estimated to be \$623.00. Total investment requirements were \$6,023 or \$62.74 per acre (assuming 96 acres in the system).

#### Irrigation Costs

Estimates of irrigation costs per acre included variable operating expenses of irrigation equipment and distribution system, hail insurance for operating expenses, labor, depreciation, and interest on operating capital.<sup>2</sup>

#### Cotton

Irrigation costs per acre of land for cotton with the furrow distribution system was estimated to be \$35.37 (Table 7). Irrigation costs for the movable-surface distribution systems ranged from \$36.39 per acre for surface system 3 to \$41.96 for surface system 1. Surface system 3 had higher per acre irrigation costs (\$36.39) than the furrow distribution system (\$35.37).

Estimated irrigation costs per acre for automated-subsurface distribution systems with 40-inch spacing of laterals and emitters (systems 4 through 9) ranged from \$268.50 for subsurface

<sup>2</sup>Costs for hail insurance were included for expenses directly associated with irrigation.

#### TABLE 7. ESTIMATED IRRIGATION COSTS PER ACRE OF LAND FOR DISTRIBUTION SYSTEMS, TEXAS HIGH PLAINS, 1975<sup>1</sup>

| System <sup>2</sup> | Costs pe                    | er acre |
|---------------------|-----------------------------|---------|
|                     | Cotton                      | Sorghum |
|                     | Movable surface systems     |         |
| 1                   | \$ 41.96                    | NA      |
| 2                   | 37.43                       | NA      |
| 3                   | 36.39                       | NA      |
|                     | Automated subsurface system | S       |
| 4                   | 269.44                      | 338.62  |
| 5                   | 276.09                      | 347.05  |
| 6                   | 269.32                      | 338.16  |
| 7                   | 268.50                      | 337.43  |
| 8                   | 279.27                      | 356.56  |
| 9                   | 278.91                      | 350.05  |
| 10                  | 105.56                      | 133.21  |
| 11                  | 107.99                      | 136.30  |
| 12                  | 97.48                       | 122.80  |
| 13                  | 99.74                       | 125.67  |
| 14                  | 106.56                      | 134.08  |
| 15                  | 109.27                      | 137.62  |
|                     | Furrow system               |         |
| 16                  | 35.37                       | 34.20   |

<sup>1</sup>Costs included variable costs of irrigation equipment, hail insurance, interest on operating capital, depreciation on machinery and equipment and labor. Unallocated overhead costs such as pickup expenses, taxes, insurance and depreciation on buildings, and interest on investment in land were not included. Costs for hail insurance were included for expenses directly associated with irrigation. <sup>2</sup>Systems 1 through 3 were not evaluated for irrigated sorghum.

NOTE: NA means not applicable. Movable surface systems were not included in the analysis for sorghum.

system 7 to \$279.27 for subsurface system 8. The estimated cost for subsurface system 8 of \$279.27 per acre was the highest for all distribution systems. Estimated irrigation costs per acre with automated-subsurface distribution systems with 80-inch spacing of laterals and emitters (systems 10 through 15) ranged from \$97.48 for subsurface system 12 to \$109.27 for subsurface system 15.

#### Sorghum

Irrigation costs per acre of land for sorghum with the furrow distribution system were estimated to be \$34.20 (Table 7). Irrigation costs per acre with automated-subsurface distribution systems with 40-inch spacing of laterals and emitters (systems 4 through 9) varied from \$337.43 for subsurface system 7 to \$356.56 for subsurface system 8. The irrigation cost for subsurface system 8 of \$356.56 per acre was the highest for all distribution systems.

Per acre irrigation costs for subsurface distribution systems 10 through 15 ranged from an estimated \$122.80 per acre for subsurface system 12 to \$137.62 for subsurface system 15. The irrigation cost per acre with subsurface distribution system 12 was the lowest for all trickle systems.

#### Break-Even Prices Per Unit of Output

Break-even prices per unit of output with respect to total costs and total variable cost were estimated for solid cotton, double-row cotton, solid sorghum, and double-row sorghum.

#### Solid Cotton

Break-even prices for total costs of production for surface systems 1, 2, and 3 ranged from \$.259 to \$.270 per pound at a yield of 500 pounds per acre. The break-even price for total cost of production for the furrow distribution system was \$.257 per pound. Subsurface systems 10 through 15 had higher break-even prices for total costs which ranged from \$.381 per pound for subsurface system 12 to \$.40 for subsurface system 14 (Table 8).

For the yields of 625 pounds per acre, breakeven prices for total costs of production for suface systems 1, 2, and 3 ranged from \$.213 to \$.222 cents per pound. Break-even price for total costs with the furrow system was \$.211 per pound. Subsurface distribution systems 10 through 15 had break-even prices for total costs which ranged from \$.311 to \$.33 per pound.

At the high yield per acre (750 pounds), break-even prices for total costs and subsurface systems 1, 2, and 3 ranged from \$.182 to \$.189 per pound and the furrow system had a break-even price of \$.181 per pound. Subsurface distribution systems 10 through 15 had break-even prices for total costs which ranged from \$.263 to \$.279 per pound. The lowest break-even price for total costs (\$.181) was estimated for the furrow distribution system. The highest break-even price was \$.279 with subsurface system 15.

#### **Double-Row Cotton**

For the low yield level (625 pounds per acre), break-even prices for total costs of production for subsurface distribution systems 10 through 15 ranged from \$.317 to \$.356 per pound (Table 8). The furrow distribution system had the lowest break-even price for total cost which was \$.218 per pound. Break-even price for total variable costs was the lowest with the furrow distribution system (\$.179 per pound), and the range for subsurface systems 10 through 15 was from \$.194 to \$.200 per pound.

With yields of 750 pounds per acre, breakeven price for total costs of production with the furrow system was \$.186 per pound. Subsurface distribution systems 10 through 15 had breakeven prices for total costs which ranged from \$.269 to \$.285 per pound. Break-even prices for total variable costs of production for subsurface systems 10 through 15 ranged from \$.166 to \$.172

| ystem           | Break-even p      | prices for solid  | Break-even price        | s for double-row  |
|-----------------|-------------------|-------------------|-------------------------|-------------------|
|                 | Total cost        | Variable cost     | Total cost              | Variable cost     |
|                 | – 500 poun        | ds per acre —     | - 625 pound             | ds per acre —     |
| 12              | \$ .270           | \$ .208           | \$NA                    | \$NA              |
| 2 <sup>2</sup>  | .261              | .208              | NA                      | NA                |
| 3 <sup>2</sup>  | .259              | .209              | NA                      | NA                |
| 10 <sup>4</sup> | .398              | .231              | .330                    | .196              |
| 114             | x                 | x                 | .334                    | .198              |
| 124             | .381              | .229              | .317                    | .194              |
| 13 <sup>4</sup> | .386              | .230              | .321                    | .195              |
| 14 <sup>4</sup> | .400              | .235              | .332                    | .199              |
| 15 <sup>4</sup> | ×                 | ×                 | .356                    | .200              |
| 16 <sup>2</sup> | .257              | .210              | .218                    | .179              |
|                 | - 625 poun        | ds per acre —     | - 750 pound             | ds per acre —     |
| 12              | .222              | .172              | NA                      | NA                |
| 2 <sup>2</sup>  | .215              | .172              | NA                      | NA                |
| 3 <sup>2</sup>  | .213              | .173              | NA                      | NA                |
| 10 <sup>3</sup> | .324              | .191              | .280                    | .168              |
| 11              | .3274             | .1924             | .283 <sup>3</sup>       | .169 <sup>3</sup> |
| 12 <sup>3</sup> | .311              | .188              | .269                    | .166              |
| 13 <sup>3</sup> | .314              | .190              | .272                    | .167              |
| 14              | .3254             | .1934             | .281 <sup>3</sup>       | .170 <sup>3</sup> |
| 15              | .3304             | .1954             | .285 <sup>3</sup>       | .172 <sup>3</sup> |
| 16 <sup>2</sup> | .211              | .174              | .186                    | .163              |
|                 | — 750 pou         | nds per acre      | - 875 pounds per acre - |                   |
| 1 <sup>2</sup>  | .189              | .148              | NA                      | NA                |
| 2 <sup>2</sup>  | .183              | .148              | NA                      | NA                |
| 3 <sup>2</sup>  | .182              | .148              | NA                      | NA                |
| 10 <sup>3</sup> | .274              | .163              | .244                    | .148              |
| 11 <sup>3</sup> | .277              | .165              | .246                    | .149              |
| 12              | .263 <sup>3</sup> | .162 <sup>3</sup> | .234                    | .147              |
| 13              | .266 <sup>3</sup> | .163 <sup>3</sup> | .237                    | .147              |
| 14 <sup>3</sup> | .276              | .166              | .245                    | .150              |
| 15 <sup>3</sup> | .279              | .167              | .248                    | .151              |
| 16 <sup>2</sup> | .181              | .149              | .163                    | .136              |

TABLE 8. ESTIMATED BREAK-EVEN PRICES PER POUND FOR SOLID AND DOUBLE-ROW IRRIGATED COTTON FOR SELECTED YIELDS, TEXAS HIGH PLAINS, 1975<sup>1</sup>

Notation "x" designated where net returns of irrigated solid cotton did not exceed dryland net returns at any specified price. Break-even prices where net returns from irrigated solid cotton exceeded dryland net returns at specified lint prices of \$.30, \$.40, and \$.50 per pound.

Break-even prices where net return from irrigated cotton exceeded dryland net returns at a specified lint price of \$.40 and \$.50 per pound. Break-even prices where net returns from irrigated cotton exceeded dryland net returns at a specified lint price of \$.50 per pound. NOTE: NA means not applicable. Movable surface systems were not included in the analysis for double-row cotton production.

per pound. Break-even price for total variable costs was the lowest with the furrow distribution system (\$.163 per pound).

Subsurface distribution systems 10 through 15 had break-even prices for total costs which ranged from \$.234 to \$.248 per pound for the high yield level (875 pounds per acre). Break-even prices for total cost with the furrow distribution was \$.163 per pound. Subsurface distribution systems 10 through 15 had break-even prices for total variable costs which ranged from \$.147 to \$.151 per pound. Break-even price for total variable costs for the furrow distribution system was \$.136 per pound.

#### Solid Sorghum

The estimated break-even prices per hundredweight were determined for total costs and total variable costs in the production of irrigated solid sorghum (Table 9). At the low-yield level (5,000 pounds per acre), break-even prices for total costs of production for subsurface systems 10 through 15 ranged from \$4.22 to \$4.52 per hundredweight. Sorghum irrigated with a furrow system had the lowest break-even price for total costs which was \$2.45 per hundredweight. The break-even price for total variable costs was the lowest with the furrow distribution system (\$2.02 per hundredweight), and the range for subsurface systems 10 through 15 was from \$.236 to \$.245 per hundredweight.

Break-even price for total costs of production at the average yield level (5,500 pounds per acre) for the furrow distribution system was the lowest at \$2.26 per hundredweight. Sorghum production with subsurface systems 10 through 15 had break-even prices for total costs which ranged

| System          |             | Break-ever           | n prices for                             | solid                | Break-even price     | s for double-row  |
|-----------------|-------------|----------------------|------------------------------------------|----------------------|----------------------|-------------------|
| inter and       | io sidaineV | Total cost           | 00<br>                                   | Variable cost        | Total cost           | Variable cost     |
|                 |             | 5,000 pc             | ounds per ac                             | cre —                | – 5,500 poun         | ds per acre –     |
| 10              |             | \$ 4.43 <sup>3</sup> |                                          | \$ 2.39 <sup>3</sup> | \$ 4.10 <sup>2</sup> | \$ 2.242          |
| 11              |             | 4.49 <sup>3</sup>    |                                          | 2.42 <sup>3</sup>    | 4.16 <sup>2</sup>    | 2.262             |
| 12              |             | 4.22 <sup>2</sup>    |                                          | 2.36 <sup>2</sup>    | 3.91 <sup>1</sup>    | 2.211             |
| 13              |             | 4.28 <sup>2</sup>    |                                          | 2.38 <sup>2</sup>    | 3.96 <sup>1</sup>    | 2.231             |
| 14              |             | 4.45 <sup>3</sup>    |                                          | 2.43 <sup>3</sup>    | 4.11 <sup>2</sup>    | 2.272             |
| 15              |             | 4.52 <sup>3</sup>    |                                          | 2.45 <sup>3</sup>    | 4.18 <sup>2</sup>    | 2.30 <sup>2</sup> |
| 16 <sup>1</sup> |             | 2.45                 |                                          | 2.02                 | 2.30                 | 1.90              |
|                 |             | - 5,500 pc           | ounds per ad                             | cre —                | - 6,000 poun         | ds per acre –     |
| 10              |             | 4 06 <sup>3</sup>    |                                          | 2 213                | 3 792                | 2 082             |
| 11              |             | 4 11 <sup>3</sup>    |                                          | 2 233                | 3.842                | 2.00 <sup>2</sup> |
| 12              |             | 3872                 |                                          | 2.182                | 3 611                | 2 051             |
| 13              |             | 3 922                |                                          | $2.19^{2}$           | 3 661                | 2.00              |
| 14              |             | 4.07 <sup>3</sup>    |                                          | 2.24 <sup>3</sup>    | 3.80 <sup>2</sup>    | 2.112             |
| 15              |             | 2.143                |                                          | 2.26 <sup>3</sup>    | 3.86 <sup>2</sup>    | 2 132             |
| 16 <sup>1</sup> |             | 2.26                 |                                          | 1.87                 | 2.14                 | 1.77              |
|                 |             | - 6,000 pc           | ounds per ad                             | cre —                | - 6,500 poun         | ds per acre –     |
| 10              |             | 3 753                | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 2 053                | 3 522                | 1 952             |
| 11              |             | 3 80 <sup>3</sup>    |                                          | 2.00                 | 3 572                | 1 972             |
| 12              |             | 3 572                |                                          | $2.07^{2}$           | 3.361                | 1 921             |
| 13              |             | 3 622                |                                          | $2.02^{2}$           | 3 411                | 1 941             |
| 14              |             | 3.763                |                                          | 2.083                | 3 542                | 1 992             |
| 15              |             | 3.823                |                                          | 2 10 <sup>3</sup>    | 3 59 <sup>2</sup>    | 2 002             |
| 16 <sup>1</sup> |             | 2.10                 |                                          | 1.74                 | 2.00                 | 1.66              |

# TABLE 9. ESTIMATED BREAK-EVEN PRICES PER HUNDREDWEIGHT FOR SOLID AND DOUBLE-ROW IRRIGATED SORGHUM FOR SELECTED YIELDS, TEXAS HIGH PLAINS, 1975

<sup>1</sup>Break-even prices where net returns from irrigated sorghum exceeded dryland net returns at specified prices of \$4.00, \$4.50, and \$5.00 per hundredweight.

<sup>2</sup> Break-even prices where net returns from irrigated sorghum exceeded dryland net returns at specified prices of \$4.00 and \$5.00 per hundred weight.

<sup>3</sup>Break-even prices where net returns from irrigated sorghum exceeded dryland net returns at a specified price of \$5.00 per hundredweight.

from \$3.87 to \$4.14 per hundredweight. Breakeven prices for total variable costs of production for subsurface systems 10 through 15 ranged from \$2.18 to \$2.26 per hundredweight. Breakeven price for total variable cost was the lowest with the furrow distribution system (\$1.87 per hundredweight).

At the high-yield level (6,000 pounds per acre), break-even prices for total costs of production for subsurface systems 10 through 15 ranged from \$3.57 to \$3.82 per hundredweight. The furrow distribution system had a break-even price for total costs which was \$2.10 per hundredweight. Break-even prices for total variable costs of production for subsurface systems 10 through 15 ranged from \$2.02 to \$2.10 per hundredweight. The break-even price for total variable costs with the furrow system was the lowest at \$1.74 per hundredweight.

#### **Double-Row Sorghum**

Break-even prices for total costs of production for subsurface systems 10 through 15 for the low-yield level (5,500 pounds per acre) ranged from \$3.91 to \$4.18 per hundredweight (Table 9). Furrow irrigated sorghum had the lowest breakeven price for total costs (\$2.30 per hundredweight). The break-even price for total variable costs of production was the lowest for the furrow distribution system (\$1.90 per hundredweight), and the range for subsurface systems 10 through 15 was estimated to be from \$2.21 to \$2.30 per hundredweight.

Break-even price for total costs of production at the average yield level (6,000 pounds per acre) for the furrow distribution system was the lowest at \$2.14 per hundredweight. Sorghum production with subsurface systems 10 through 15 had break-even prices for total costs which ranged from \$3.61 to \$3.86 per hundredweight. Breakeven prices for total variable costs of production for subsurface systems 10 through 15 ranged from \$2.05 to \$2.13 per hundredweight. Furrow irrigated sorghum had the lowest break-even price for total variable costs of production (\$1.77 per hundredweight).

At the high-yield level (6,500 pounds per acre), break-even prices for total costs of production for subsurface systems 10 through 15 ranged from \$3.36 to \$3.59 per hundredweight. Sorghum production with the furrow distribution system had a break-even price which was the lowest at \$2.00 per hundredweight. Break-even prices for total variable costs of production for subsurface systems 10 through 15 ranged from \$1.92 to \$2.00 per hundredweight. The break-even price for total variable costs for the furrow system was the lowest at \$1.66 per hundredweight.

- Foerster, Eugene P. Unpublished data, Texas Tech University, 1974.
- Lacewell, Ronald D., Otto C. Wilke, and Walter Bausch. Economic Implications of Subirrigation and Trickle Irrigation in Texas. Texas Water Resources Institute, Texas A&M University, SP-4, March 1972.
- Moore, D. S., K. R. Tefertiller, W. F. Hughes, and R. H. Rogers. Production and Production Requirements, Costs and Expected Returns for Crop Enterprises — Medium-Textured (Mixed Soils) — High Plains of Texas, Texas Agri. Exp. Sta., MP-695, February 1964.
- New, Leon, 1973 High Plains Irrigation Survey. Texas Agriculture Extension Service, College Station, Texas, 1974.
- Soborn, James E., and Don E. Ethridge. An Economic Analysis of Production Responses for Cotton and Grain Sorghum — Mixed Soils, Texas High Plains. Texas Agri. Exp. Sta., MP-858, November 1967.
- 1 Osborn, James E., D. S. Moore, and Don Ethridge. Expected Production Requirements, Costs and Returns

2. 1.

for Major Crops — Medium-Textured Soils — Texas High Plains. Texas Agri. Exp. Sta., MP-922, August 1969.

- Searsy, L. D. "Optimal Farm Organization for Selected Situations, Texas High Plains." M.S. Thesis, Department of Agricultural Economics, Texas Tech University, 1974.
- Texas Water Development Board. Inventories of Irrigation in Texas 1958, 1964 and 1969, Report 127, May 1971.
- 9. \_\_\_\_\_. Water Level Data from Observation Wells in the Southern High Plains of Texas 1965-70, Report 121, November 1970.
- U. S. Department of Commerce. National Oceanic and Atmospheric Administration. Environmental Data Service, Climatological Data, Texas, Vols. 69-78, 1964-1973.
- Wendt, Charles. Unpublished data, Texas A&M University Agricultural Research and Extension Center, Lubbock, Texas, February 1974.

#### APPENDIX TABLE A.1. ESTIMATED INVESTMENT FOR MOVABLE-SURFACE TRICKLE DISTRIBUTION SYSTEMS, TEXAS HIGH PLAINS, 1975

| Item                                                                             | Movable-surface systems |                             |          |                             |                                  |  |
|----------------------------------------------------------------------------------|-------------------------|-----------------------------|----------|-----------------------------|----------------------------------|--|
|                                                                                  | Number 1                |                             | Number 2 |                             | Number 3                         |  |
| PVC mainline<br>Laterals<br>Emitters                                             | \$                      | 285.00<br>464.64<br>66.00   | \$       | 929.20<br>929.28<br>132.00  | \$1,825.20<br>1,393.92<br>198.00 |  |
| Installation labor<br>Trenching and backfilling<br>Filtration system             |                         | 74.80<br>190.00<br>198.00   |          | 151.80<br>404.00<br>396.00  | 228.80<br>856.00<br>444.00       |  |
| Other items <sup>1</sup><br>Total investment<br>Investment per acre <sup>2</sup> | 1                       | 295.59<br>1,574.03<br>49.19 | 3        | 640.20<br>3,562.70<br>55.67 | 873.04<br>5,818.96<br>60.61      |  |

<sup>1</sup>Included all items, not listed in separate categories such as ells, tees, glue, etc.

<sup>2</sup>Systems 1, 2, and 3 were designed for 32, 64, and 96 acres, respectively.

#### APPENDIX TABLE A.2. ESTIMATED INVESTMENT FOR AUTOMATED-SUBSURFACE TRICKLE DISTRIBUTION SYSTEMS, TEXAS HIGH PLAINS, 1975

| Item                             | Automated-subsurface systems <sup>1</sup> |             |             |             |             |              |  |
|----------------------------------|-------------------------------------------|-------------|-------------|-------------|-------------|--------------|--|
|                                  | Number 4                                  | Number 5    | Number 6    | Number 7    | Number 8    | Number 9     |  |
| PVC mainline                     | \$ 785.68                                 | \$ 2,337.32 | \$ 3,330.88 | \$ 7,154.56 | \$10,350.48 | \$ 21,774.56 |  |
| PVC submainline                  | 414.00                                    | 828.00      | 2,108.70    | 4,217.40    | 3,195.00    | 6,390.00     |  |
| Laterals                         | 8,448.00                                  | 16,896.00   | 16,896.00   | 33,792.00   | 25,344.00   | 50,688.00    |  |
| Emitters                         | 7,603.20                                  | 15,206.40   | 15,206.40   | 30,412.80   | 22,809.60   | 45,619.20    |  |
| Electrical system                | 4,909.35                                  | 10,089.80   | 8,909.65    | 17,128.98   | 12,707.45   | 24,569.50    |  |
| Installation labor               | 2,426.60                                  | 4,842.20    | 4,804.80    | 9,603.00    | 7,176.40    | 14,348.40    |  |
| Trenching and backfilling        | 341.60                                    | 658.40      | 743.75      | 1,597.00    | 1,060.50    | 2,231.00     |  |
| Sandseparator(s)                 | 150.00                                    | 150.00      | 300.00      | 300.00      | 300.00      | 300.00       |  |
| Other items <sup>2</sup>         | 1,747.98                                  | 3,456.08    | 4,231.70    | 8,304.30    | 6,430.80    | 12,655.78    |  |
| Total investment                 | 26,826.41                                 | 54,464.20   | 56,531.88   | 112,510.04  | 89,374.23   | 178,576.44   |  |
| Investment per acre <sup>3</sup> | 1,676.65                                  | 1,702.01    | 1,766.62    | 1,757.97    | 1,861.96    | 1,860.17     |  |

<sup>1</sup>The automated-subsurface systems listed were designed with laterals and emitters on 40-inch spacing.

<sup>2</sup> Included all items not listed in separate categories such as ells, tees, glue, etc.

<sup>3</sup>Systems 4, 5, 6, 7, 8, and 9 were designed for 16, 32, 32, 64, 48, and 96 acres, respectively.

#### APPENDIX TABLE A.3. ESTIMATED INVESTMENT FOR AUTOMATED-SUBSURFACE TRICKLE DISTRIBUTION SYSTEMS, TEXA HIGH PLAINS, 1975

| Item                             | Automated-subsurface systems <sup>1</sup> |             |             |             |             |             |
|----------------------------------|-------------------------------------------|-------------|-------------|-------------|-------------|-------------|
| n na segun romana.<br>Markana    | Number 10                                 | Number 11   | Number 12   | Number 13   | Number 14   | Number 15   |
| PVC mainline                     | \$ 349.60                                 | \$ 1,104.00 | \$ 1,684.80 | \$ 4,480.00 | \$ 6,298.00 | \$14,743.20 |
| Laterals                         | 4,224.00                                  | 8,448.00    | 8,448.00    | 16,896.00   | 12,672.00   | 25,344.00   |
| Emitters                         | 1,900.80                                  | 3,801.60    | 3,801.60    | 7,603.20    | 5,702.40    | 11,404.80   |
| Electrical system                | 957.34                                    | 2,132.88    | 1,838.80    | 3,717.60    | 2,746.95    | 5,615.15    |
| Installation labor               | 646.80                                    | 1,280.40    | 1,280.40    | 2,530.00    | 1,905.20    | 3,792.80    |
| Trenching and backfilling        | 152.00                                    | 480.00      | 480.00      | 1,000.00    | 742.00      | 1,704.00    |
| Sandseparator(s)                 | 150.00                                    | 150.00      | 300.00      | 300.00      | 300.00      | 300.00      |
| Other items <sup>2</sup>         | 620.58                                    | 1,193.10    | 1,295.12    | 2,829.17    | 2,955.88    | 5,906.68    |
| Total investment                 | 9,001.12                                  | 18,589.98   | 19,128.72   | 39,355.97   | 33,322.43   | 68,810.63   |
| Investment per acre <sup>3</sup> | 562.57                                    | 580.94      | 597.77      | 614.94      | 694.22      | 716.78      |

<sup>1</sup>The automated-subsurface systems listed were designed with laterals and emitters on 80-inch spacing.

<sup>2</sup>Included all items not listed in separate categories such as ells, tees, glue, etc.

<sup>3</sup> Systems 10, 11, 12, 13, 14, and 15 were designed for 16, 32, 32, 64, 48, and 96 acres, respectively.

#### APPENDIX TABLE B.1. continued

| Lint price   |                     | Net return     | ns per acre  |
|--------------|---------------------|----------------|--------------|
| per pound    | System <sup>2</sup> | Solid          | Double-row   |
|              | Proven in           | - 500 pounds   | - 625 pounds |
| \$ 20        | 1                   | ¢14.70         |              |
| \$.30        | 2                   | \$14.78        | \$ NA        |
|              | 23                  | 20.35          | NA           |
|              | 16                  | 20.35          | 51.45        |
| 10           | 1                   | 21.37          | 51.45        |
| .40          | 1                   | 64.78          | NA           |
|              | 2                   | 69.31<br>70.25 | NA           |
|              | 10                  | 70.35          | INA<br>42.7C |
|              | 11                  | X              | 43.70        |
|              | 12                  | X              | 51 Q/        |
|              | 13                  | ×              | 40 52        |
|              | 14                  | ×              | 42 76        |
|              | 15                  | ×              | 40.05        |
|              | 16                  | 71.37          | 113 95       |
| 50           | 1                   | 114 70         | NIA          |
| .50          | 2                   | 110.31         | NA           |
|              | 3                   | 120.35         | NA           |
|              | 10                  | 51 18          | 106 16       |
|              | 11                  | x              | 103.83       |
|              | 12                  | 50.26          | 114.34       |
|              | 13                  | 57.00          | 112.08       |
|              | 14                  | 50.18          | 105.26       |
|              | 15                  | x              | 102.55       |
|              | 16                  | 121.37         | 176.45       |
|              |                     | - 625 pounds   | - 750 pounds |
|              |                     | per acre -     | per acre -   |
| \$ 30        | 1                   | 48.86          | \$ NA        |
| <b>\$.00</b> | 2                   | 53.39          | NA           |
|              | 3                   | 54.43          | NA           |
|              | 12                  | ×              | 23 41        |
|              | 16                  | 55.45          | 85.52        |
| 40           | 1                   | 111 36         | NA           |
|              | 2                   | 115.89         | NA           |
|              | 3                   | 116.93         | NA           |
|              | 10                  | 47.76          | 90.33        |
|              | 11                  | x              | 87.90        |
|              | 12                  | 55.84          | 98.41        |
|              | 13                  | 53.58          | 96.15        |
|              | 14                  | x              | 89.43        |
|              | 15                  | x              | 86.62        |
|              | 16                  | 117.95         | 160.52       |
| .50          | 1                   | 173.86         | NA           |
|              | 2                   | 178.39         | NA           |
|              | 3                   | 179.43         | NA           |
|              | .10                 | 110.26         | 165.33       |
|              | 11                  | 107.83         | 162.90       |
|              | 12                  | 118.34         | 173.41       |
|              | 13                  | 116.08         | 171.15       |
|              | 14                  | 109.26         | 164.43       |
|              | 15                  | 106.55         | 161.62       |
|              | 16                  | 180 45         | 235 52       |

| L int price                 |                     | Net returns per acre                               |                            |   |
|-----------------------------|---------------------|----------------------------------------------------|----------------------------|---|
| per pound                   | System <sup>2</sup> | Solid                                              | Double-row                 |   |
|                             |                     | <ul> <li>750 pounds</li> <li>per acre –</li> </ul> | - 875 pounds<br>per acre - |   |
| \$ 30                       | 1                   | 82 93                                              | \$ NA                      |   |
|                             | 2                   | 87.46                                              | NA                         |   |
|                             | 3                   | 88.50                                              | NA                         |   |
|                             | 10                  | x                                                  | 49.30                      |   |
|                             | 11                  | x                                                  | 46.87                      |   |
|                             | 12                  | ×                                                  | 57.38                      |   |
|                             | 13                  | ×                                                  | 55.12                      |   |
|                             | 14                  | x                                                  | 48.30                      |   |
|                             | 15                  | ×                                                  | 45.59                      |   |
|                             | 16                  | 89.52                                              | 119.49                     |   |
| 40                          | 1                   | 157.93                                             | NΔ                         |   |
| .+0                         | 2                   | 162.46                                             | NA                         |   |
|                             | 2                   | 163 50                                             | NA                         |   |
|                             | 10                  | 94 33                                              | 136.80                     |   |
|                             | 11                  | 01 00                                              | 130.00                     |   |
|                             | 12                  | 102.41                                             | 1/1/ 99                    |   |
|                             | 12                  | 100.15                                             | 149.00                     |   |
|                             | 14                  | 03.33                                              | 125.90                     |   |
|                             | 15                  | 90.62                                              | 133.00                     |   |
|                             | 16                  | 164.52                                             | 206.09                     |   |
| 50                          | 10                  | 104.52                                             | 200.33                     |   |
| .50                         | 1                   | 232.93                                             | NA                         |   |
|                             | 2                   | 237.46                                             | NA                         |   |
|                             | 3                   | 238.50                                             | NA                         |   |
|                             | 10                  | 169.33                                             | 224.30                     |   |
|                             | 11                  | 166.90                                             | 221.87                     |   |
|                             | 12                  | 177.41                                             | 232.38                     |   |
|                             | 13                  | 175.15                                             | 230.12                     |   |
|                             | 14                  | 168.33                                             | 223.30                     |   |
|                             | 15                  | 165.62                                             | 220.59                     |   |
| 1000                        | 16                  | 239.52                                             | 294.49                     | - |
| <sup>1</sup> Yield comparis | ons of irrigated    | d and dryland cot                                  | ton were as follows        | : |
|                             | Solid               | Double-row                                         | Dryland                    |   |
|                             | irrigated           | irrigated                                          |                            |   |
| L                           | E00 II.             | 005 11                                             |                            |   |
| Low yield                   | 500 lbs.            | 625 lbs.                                           | 200 lbs.                   |   |
| Average yield               | 625 Ibs.            | /50 lbs.                                           | 250 lbs.                   |   |
| High yield                  | 750 lbs.            | 875 lbs.                                           | 300 lbs.                   |   |
| Dryland net retu            | irns were as fo     | llows:                                             |                            |   |
| Yield                       | Pri                 | ce                                                 | Net Returns                |   |
| 200 lbs.                    | \$.3                | 0                                                  | \$ 8.94                    |   |
|                             | .4                  | 0                                                  | 28.94                      |   |
|                             | .5                  | 0                                                  | 48.94                      |   |
| 250 lbs.                    | .3                  | 0                                                  | 22.61                      |   |
|                             | .4                  | 0                                                  | 47.61                      |   |
|                             | .5                  | 0                                                  | 72.61                      |   |
| 300 lbs.                    | .3                  | 0                                                  | 36.18                      |   |
|                             | .4                  | 0                                                  | 66.18                      |   |
|                             | .5                  | 0                                                  | 96.18                      |   |

Notation "x" designated net returns of irrigated cotton which did not exceed dryland net returns at the specified price. NA means not applicable. Movable surface systems were not included in the analysis for double-row cotton production.

<sup>2</sup> Systems not appearing in the table under each specified price and quantity have been omitted because the net returns of dryland cotton exceeded the net returns of the enterprise with which that system was associated.

#### APPENDIX TABLE B.2 ESTIMATED NET RETURNS FOR SOLID AND DOUBLE-ROW IRRIGATED SORGHUM FOR SELECTED PRICES AND YIELDS, TEXAS HIGH PLAINS, 1975<sup>1</sup>

| Canaburg puice       |                     | Net returns per acre                                   |                                                        |  |  |
|----------------------|---------------------|--------------------------------------------------------|--------------------------------------------------------|--|--|
| per pound            | System <sup>2</sup> | Solid                                                  | Double-row                                             |  |  |
|                      |                     | - 5,000 pounds                                         | - 5,500 pounds                                         |  |  |
|                      |                     | per acre -                                             | per acre -                                             |  |  |
| \$4.00               | 12                  | \$ x                                                   | \$ 4.96                                                |  |  |
|                      | 13                  | x                                                      | 2.09                                                   |  |  |
|                      | 16                  | 77.61                                                  | 93.56                                                  |  |  |
| 4.50                 | 10                  | x                                                      | 22.05                                                  |  |  |
|                      | 11                  | x                                                      | 18.96                                                  |  |  |
|                      | 12                  | 14.01                                                  | 32.46                                                  |  |  |
|                      | 13                  | 11.14                                                  | 29.59                                                  |  |  |
|                      | 14                  | X                                                      | 21.18                                                  |  |  |
|                      | 15                  | X                                                      | 17.64                                                  |  |  |
| AND AN INC.          | 16                  | 102.61                                                 | 121.06                                                 |  |  |
| 5.00                 | 10                  | 28.60                                                  | 49.55                                                  |  |  |
|                      | 11                  | 25.51                                                  | 46.46                                                  |  |  |
|                      | 12                  | 39.01                                                  | 59.56                                                  |  |  |
|                      | 13                  | 30.14                                                  | 57.09                                                  |  |  |
|                      | 14                  | 27.73                                                  | 40.00                                                  |  |  |
|                      | 16                  | 127.61                                                 | 148 56                                                 |  |  |
|                      | 10                  | F F 00                                                 | 0.000                                                  |  |  |
|                      |                     | per acre —                                             | – 6,000 pounds<br>per acre –                           |  |  |
| \$4.00               | 12                  | ×                                                      | 23.21                                                  |  |  |
| Service and a second | 13                  | x                                                      | 20.34                                                  |  |  |
|                      | 16                  | 95.86                                                  | 111.81                                                 |  |  |
| 4 50                 | 10                  | x                                                      | 42.80                                                  |  |  |
|                      | 11                  | ×                                                      | 30 71                                                  |  |  |
|                      | 12                  | 34.76                                                  | 53 21                                                  |  |  |
|                      | 13                  | 31.89                                                  | 50.34                                                  |  |  |
|                      | 14                  | X                                                      | 41.93                                                  |  |  |
|                      | 15                  | x                                                      | 38.39                                                  |  |  |
|                      | 16                  | 123.36                                                 | 141.81                                                 |  |  |
| 5.00                 | 10                  | 51.85                                                  | 72.80                                                  |  |  |
|                      | 11                  | 48.76                                                  | 69.71                                                  |  |  |
|                      | 12                  | 62.26                                                  | 83.21                                                  |  |  |
|                      | 13                  | 59.39                                                  | 80.34                                                  |  |  |
|                      | 14                  | 50.98                                                  | 71.93                                                  |  |  |
|                      | 15                  | 47.44                                                  | 68.39                                                  |  |  |
|                      | 16                  | 150.86                                                 | 171.81                                                 |  |  |
|                      |                     | <ul> <li>– 6,000 pounds</li> <li>per acre –</li> </ul> | <ul> <li>– 6,500 pounds</li> <li>per acre –</li> </ul> |  |  |
| \$4.00               | 12                  | ×                                                      | 41.46                                                  |  |  |
| ,                    | 13                  | x                                                      | 38.59                                                  |  |  |
|                      | 16                  | 114.11                                                 | 130.06                                                 |  |  |
| 4.50                 | 10                  | ×                                                      | 63 55                                                  |  |  |
| 1.00                 | 11                  | ×                                                      | 60.46                                                  |  |  |
|                      | 12                  | 55.51                                                  | 73.96                                                  |  |  |
|                      | 13                  | 52.64                                                  | 71.09                                                  |  |  |
|                      | 14                  | ×                                                      | 62.68                                                  |  |  |
|                      | 15                  | x                                                      | 59.14                                                  |  |  |
|                      | 16                  | 144.11                                                 | 162.56                                                 |  |  |
| 5.00                 | 10                  | 75.10                                                  | 96.05                                                  |  |  |
|                      | 11                  | 72.01                                                  | 92.96                                                  |  |  |
|                      | 12                  | 85.51                                                  | 106.46                                                 |  |  |
|                      | 13                  | 82.64                                                  | 103.59                                                 |  |  |
|                      | 14.                 | 74.23                                                  | 95.18                                                  |  |  |
|                      | 15                  | 70.69                                                  | 61.64                                                  |  |  |
| To start and a start | 16                  | 174.11                                                 | 195.06                                                 |  |  |

<sup>1</sup>Yield comparisons of irrigated soil sorghum and dryland sorghum were as follows:

|                   | Solid<br>irrigated | Double-row<br>irrigated | Dryland     |
|-------------------|--------------------|-------------------------|-------------|
| Low yield         | 5,000 lbs.         | 5,500 lbs.              | 1,000 lbs.  |
| Average yield     | 5,500 lbs.         | 6,000 lbs.              | 1,500 lbs.  |
| High yield        | 6,000 lbs.         | 6,500 lbs.              | 2,000 lbs.  |
| Dryland net retur | ns were as follo   | ws:                     |             |
| Yield             | Prices             |                         | Net Returns |
| 1,000 lbs.        | \$4.00             |                         | \$ .65      |
|                   | 4.50               |                         | 4.35        |
|                   | 5.00               |                         | 9.35        |
| 1,500 lbs.        | 4.00               |                         | 18.35       |
|                   | 4.50               |                         | 25.85       |
|                   | 5.00               |                         | 33.35       |
| 2,000 lbs.        | 4.00               |                         | 37.35       |
|                   | 4.50               |                         | 47.35       |
|                   | 5.00               |                         | 57.35       |
|                   |                    |                         |             |

Notation "x" designated net returns of irrigated sorghum which not exceed dryland net returns at specified price.

<sup>2</sup>Systems not appearing in the table under each specified price a quantity have been omitted because the net returns of dryland sorghum exceeded the net returns of the enterprise with which that system was associated.

## HE TEXAS AGRICULTURAL EXPERIMENT STATION

#### MAIN STATION DEPARTMENTS

#### COLLEGE OF AGRICULTURE

Agricultural Analytical Services Agricultural Communications Agricultural Economics Agricultural Engineering Animal Science **Biochemistry and Biophysics** Consumer Research Center Entomology Feed and Fertilizer Control Service **Forest Science** Horticultural Sciences Plant Sciences **Poultry Science Range Science Recreation and Parks Rural Sociology** Soil and Crop Sciences Wildlife and Fisheries Sciences

#### COLLEGE OF VETERINARY MEDICINE

Veterinary Research-General Veterinary Medicine and Surgery Veterinary Microbiology Veterinary Parasitology Veterinary Pathology Veterinary Physiology and Pharmacology Veterinary Public Health Institute of Tropical Veterinary Medicine

TEXAS WATER RESOURCES INSTITUTE

### AGRICULTURAL RESEARCH UNITS

Texas A&M University Agricultural Research and Extension Center at AMARILLO (Bushland) Texas A&M University Agricultural Research and Extension Center at BEAUMONT Western Division at EAGLE LAKE Texas A&M University Agricultural Research Station at ANGLETON Texas A&M University Agricultural Research and Extension Center at CHILLICOTHE-VERNON Texas A&M University Agricultural Research Station at CHILLICOTHE Texas A&M University Research Station at IOWA PARK Texas A&M University Vegetable Station at MUNDAY Texas A&M University Agricultural Research Station at SPUR Texas Experimental Ranch, THROCKMORTON Texas A&M University Research and Extension Center at CORPUS CHRISTI Texas A&M University Agricultural Research Station at BEEVILLE Texas A&M University Research and Extension Center at DALLAS Texas A&M University Research Center at EL PASO Texas A&M University Agricultural Research Station at PECOS Texas A&M University Agricultural Research and Extension Center at LUBBOCK High Plains Research Foundation (Halfway) Texas A&M University-Texas Tech University Cooperative Research Unit at LUBBOCK Texas A&M University Agricultural Research Center at McGREGOR Texas A&M University Agricultural Research and Extension Center at OVERTON Prairie View-Texas A&M University Research Center at PRAIRIE VIEW Texas A&M University Agricultural Research and Extension Center at SAN ANGELO Texas A&M University Agricultural Research Station at SONORA **Texas Range Station, BARNHART** Texas A&M University Agricultural Research and Extension Center at STEPHENVILLE Texas A&M University Fruit Research — Demonstration Station at MONTAGUE Blackland Research Center at TEMPLE Texas A&M University Agricultural Research and Extension Center at UVALDE Texas A&M University Agricultural Research and Extension Center at WESLACO Texas A&M University-Texas A&I University Cooperative Research Unit at WESLACO Texas A&M University Plant Disease Research Station at YOAKUM

Mention of a trademark name or a proprietary product does not constitute a guarantee or warranty of the product by The Texas Agricultural Experiment Station and does not imply its approval to the exclusion of other products that also may be suitable.

, recretion and minut Artist Societory Batilera Core Solarcer

Within and Protected Sci

#### AGRICULTURAL GESCARCH UNTE

estas AOM University Agentiates Persinte and the rates GATTER & AAANEER (BURANAN) (addrived University Agentications Carterion and Earl mone (Latier of BLAUNEA)] (Western Division of ACL and

All programs and information of The Texas Agricultural Experiment Station are available to everyone without regard to race, color, religion, sex, age, or national origin.

The Texas Agricultural Experiment Station, J. E. Miller, Director, College Station, Texas 2M—10-77