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12. FINITE ELEMENTS MODELLING OF MECHANICAL SYSTEMS
Reference, J.M. Reedy, “Introduction to the Finite Element Method,” John Wiley.
The finite element method is a piecewise application of the variational methods.

Here we will provide a fundamental introduction to the method and in agreement with
our previous studies of mechanical systems and the assumed modes method.

So far what we have leamed on mechanical systems (MDOF) is of fundamental nature
and independent of the method we choose to solve the problem.

The beauty of the FEM method lies on its simplicity since its formulation is
independent of the actual response of the system. That is, little knowledge about what
one 15 expected to get as an answer is required.

Let’s review the Assumed Modes Method:
In any mechanical system, we have shown that the Hamiltonian:
YA
£\ (T-ViWe)dt = ()
1

is the fundamental principle of mechanics from which all laws can be derived, 1.e.
Newton’s Laws and/or Lagrangian Mechanics.

We know that in general the kinetic energy and the strain energy of the system are
general functions of the displacements and its time derivatives, i.e.
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where (+)=d/dtand ¥ = Vi + ¥j + VE are the displacements of a material point

in the material domain of interest.
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In the assumed modes method an approximation to a continuous system was created
by letting the displacement function be expressed in the form:

— -
vV = P Y W (2)
| =4 4 v
where gach Y, (Q) describes a deflected shape of the entire system.

As shown in past classes, substitution of (3) into (1) leads to an N-DOF mathematical
model of the mechanical system in the form:

MY + KW = (43

when M = MT and K = K" are the N x N mass and stiffness matrices
Q 1s the vector of generalized forces.

The coefficients of M and K are determined from relations of the shape functions and
its denvatives.

For example: SOER™

for a bar subjected to axial motion we had:
-

- - ’ ’
yami s §OAY Han ; Kie Kgia { EARIY dx (5.4)

[
while, for a beam sub!'ected to transverse deformations we had:

WMis Wi s S:(l Y d;dx ; Kij s Kyie J:‘-I \“: q)i', dy  (S.b)

etc.

'

~N.

/2.2



The set of {q:,.}’f’ ., Wwas required to satisfy the following relationships:

ie., be
¥, must satisfy the essential B.C.'s an admissible set.
b be suffciady dilferentialle.

However, there is a number of problems associated with these requirements:
a) a complex system geometry requires of complex shape function which may be
difficult to choose for the unexperienced user.
b) the y; are usually defined over the entire domain and thus lead to highly coupled
system of equations.
c) the Y; functions may be related to a particular problem, and consequently, are
difficult to be generalized to other problems.

Y, must be linearly independent >

The FEM overcomes these difficulties and provides a sound basis for the analysis
of mechanical systems.

The FEM can be envisioned in the present context as an application of the assumed
modes method wherein the shape functions {¥,} represent deflection over just a portion
(finite element) of the structure, with the elements being assembled to form the
structural system.

ri r Axi i0

Consider as shown in the figure,
bar subjected to axial deformation.

The first step in the FEM is to discretize
the domamn Q into a series of finite elements
Q. and then devising a finite element mesh.

T e <« hc" kk“_’
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® denotes the Finite element Nodes or joints, i.c., the imbersection poirnts.

Do not mistake these nodes with vibration nodes!!
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ion inite el n ati
A typical element Q° = (x,, x,)) is isolated from the mesh.

--—_'.—'c"".I §=x‘xA

— % 2 ehe hex Xg =Xa

R=0 =
and the free body diagram of such element is given as:

— X

P:: ~AE %A\_-, ne -—-!-E;:AE%.‘:\

oW,

=¥ L_’ L-’ X=Xs
Rl us Uz = U(xa)

Where u,*” and 1, are the nodal displacements at the tip of the element and P,*® and
P, are the nodal axial forces coming from the reaction with the netghboring elements

The kinetic and potentlal (strain) energy for the element are given by:
e . QU \F (6.0)
ve.:.\_ S EA 3“) dx (6-33
3

Nl

h\nrtual work of external forces over the element is given by:
e

e e
(-

The Hamiltonian

6‘[{1’ Y + ub} dt =9

holds over the entire system i.e., for xe{e, L], and in particular it is also valid over the
element O° = (x,, xp) , i.e.

ST viNTe e o
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Let over the element Q° | the displacement u be given by
U (56) = "Z:. "'P (X) u ) (9)
o A

where u)° =y, and u)’ = u, are the nodal displacements and §,®, ¥, are shape

(or approximation) functions that must be admissible for the problem. (Note that here
we presume to know v, and u,*).

This choice then leads us to select from (9) E

Ue = ®ful 4 W UL Reo o Rrhe
ot RzXa, X2, U%(qy = U: = "\’?(o) u:-t-‘\’:@) U“;
Then, 4504 | 43z e (le
st xeZa; Xzhe; Ul UE « HGnUE +d7 () US
Thew, G, 10 =@ , P (h) =4

(Note) n > 2 in (9) is also possible, although we will not con51der the case of higher
order elements.

Substitution of (9) into (6) giveS'
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he e 1€ e
whee W} 2 WG =.j (eaY'Y: & ax (12.4)
o

he . . yzLt
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o x dw

are the elements of the mass and stiffness matrices.

" Note that from (12.b), the shape functions need to be at least once differentiable over

the element (| i.e.,
¥& e 4 () ¢13)

Substitution of (9) into (7) leads to:

Wyt = LS\‘;& $eag) Sub + SutWho) B + 8L Gk By

2 (f‘;‘ ¢! axléui + SUE BS oSut RS ()

- ‘PF S
..
where Eﬂe - . EA él_l_ are the nodal forces
- O [¥-0 comnecting to the
(’5) e " neighboring
e+E A& - elements.
L R e the

Substitution of (11) and (14) into the Hamiltonian eqn. (8) leads to the element system

of equations:
e ¢

T L3 e
2 My Y; + _Z i Trie FS o+ J?: (16.a)
Jd S

Jt-o

MU+ KU = Fov E° )
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where:  WA{} W=

° z /. ’ - ("7)
ki = i - S“‘ TIO a

ke
’:l - j j( %) q' die components of distributed force vector
E' ,- 2 < nodal forces.

(16) can be also be written as:

My W ] Y_ kn} ] F ©STre ¢
= +
le Mu. ‘ K" Fl et

Primary Secondarvy
WRIL WL Wwe WM oW

At this point, we need to construct the shape functions {2 1
These need to satisfy:

Yeerz=4 ; Yina:zo

such that they satisfy the geometric or
qt‘ )= LP& Ct‘\t) - A essential conditions.

and A
b, ¢ ¢"(¢)

We choose

LP‘- 0\ X"\'\a N q) :'.az:i "'bz (!3.40
Note that §; and s, are linear combinations of the linearly independent complete set

{rx}) .
ot E;Q H *‘l:ﬂ_%d\e +h| - Bi=1
‘ Pr:0 2012 +hy > ba =2 (18.%)
ok Xzhe 2 Gic@ = QG he +4 —» Q==

"&*a:i: Qs lie O "’Qt.e.t/h(f .5



[ 4 <
Note that Z“ "P{, (.i) = { = g\,‘ *q)t

are a partition of unity (This means the shape functions y;° will be able to model rigid
body motions).

Note that the set {°} is different from zero only on Q° and elsewhere is zero. This

quality is called a Jggcalsupgart and it is extremely important for compact or banded
forms in the global matrices (M and K).

The denivation of the shape (or approximation or interpolation) functions {° does not
depend on the problem. They do depend on the type of element (geometry, number of
nodes or joints and number of primary unknowns).

Substitution of the shape functions (18) into the mass and stiffness matrices gives:
- ——
he {4 14

e g ft] (19
Fe il

e CAh. J 2 O -
=" e 1 2

here we have considered that the bar geometric and material properties (A,p,E) are
uniform within the element.
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The system of equation for element Q° are then:
o &
U, ¢ ag |t VY < RI% TIe
—6 A ¢ u‘ hg_ -1 Ue r E; (2e)

Note that [K*] is singular.

We perform (repeatedly) the same procedure for each element (subdivision) in the
domain of interest, and then we must perform the interconnection or assembly of these
elements.

Equation (20) has been derived for an arbitrary typical element, and thus, it holds for
any element from the FEM mesh. For the sake of discussion, suppose that the domain
of the problem Q = (o, L) is divided into 3 elements of possibly unequal lengths, i.e.

R

QLo Vsl
iedes

Viem
with global displacements e
L —>U —> O3 ~—P>Jy

and element displacements

¢ ¢ ) 3 3
Q (4] (3} Ue W4,

The elements are connected at global nodes (2) and (3) and the displacement u needs
to be continuous (i.e., no cracks, fractures, etc.) at these locations, then we must have
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element (local) §\obel
that u:' = u:— _ Ot
u: = U E = O3 2

[ \
and also u 4 = 01 .
3
U2 = Oy
These are called the jpterelempent continuity conditions. { Alse dlwwsvatives ‘/Jt)

The correspondence between local nodes and the global nodes can be expressed in the
form of an array called the BOOLEAN or CONNECTIVITY ARRAY or MATRIX:

b; = the global node number corresponding to the J-th node of element |

I'=1,2... N number elements on mesh.
J=12....N, number of nodes per element.

In this case, we have that B = {b;} is given by:

\ < first element
B=] 2 3 second element
3 & third element
local local
node node
#1 #2

Repetition of a number in B indicates that the coefficients of [K*] and [M°] associated
with the number add up.

In a computer implementation of the FEM scheme, the connectivity array is used
extensively for automatic assembly of the global system of equations.

For the 3 elements in question, the element eqns. (20) are written in global coordinate
or nodes as:

l2.lo



(n):

st element

\ F: + ! |.
(ZIN] j Uz {Forpe
L . A . U o
o
2nd element
f Qo
ff_éh)z A&
¢ T AN
0
3rd element:
Lo
/bl o)
L "'1,

Equation (22) indicates contributions of each element to the overall problem. The
equation of the global systein are obtained by superposition (addition) of eqns. (22), i.e.

O (23.1)

O, [Fep _‘
Oz Fz. + 21'. + F|2+ 2.2
Uil =

U4 L 1

(2.1



MU+KU:=F +E o2
M. umne

Kae = U KE (24)

Foe U F€

E G = U E ¢ —p global vector of ggdal forces.
' (4

% global vector of distributed forces

Note that the system of eqns. (23.1) is tridiagonal and thus, its solution can be attained
very easily.

Imposition of Boundary Conditions

2) Internal Nodal Forces
In general, due to continuity (action = reaction) we must have in eqn.. (23.1):

)
Pz -+ Blz."'- @

(4 3 (14 aa)
B, E,
T =
unless nodal point forces are specified, i.e. then
2, + B * = specried value of nedal foree Cconcewtraded
N ' (24.8)

for the problem under consideration we have that:

- S B(t) (Tip \ead)
Uize “PUg?  Puy? P U4?
and no distributed force, so then F - 0 and (23.2) comes to be;

q
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q ot B

L o

M‘\ 3;} + Kés ; U;-g ] o (25)
5-.0"..5 Uy -j po0 r:= Bw

Note that the essential B.C.’s specified is ¥, = @ while the reaction force Plis
unknown. At this moment (25) can not be resolved since K, is singular.

-

The global finite element equation can be partitioned conveniently in the following

form: .o
™M, M r 0] e Ka T[] TR

ol
-

+
L.qu Mzgja. UJ KO( Kzg ! Ud g F' j

Where the vector {U“}. contains the active degrees of freedom while the {U,4} vector

contains the gpecificd (constant) displacements. Note that {U,} = o
and also

Knb -
M, =

(2¢)

Kba., % the partitioned global matrices are symmetric

! ""*3 F‘ i1s the global vector of known aEElied external forces.

F is the global vector of unknown reaction forces.
z S —————

(<3) can be written as:

Mn 6&. + K“ Ua o= K‘t UJ - F. 2:;)
Mu ()a. . K“ (Jo. + Kl.t. ud

(n
or

M. Ga v K, Qo = FI. - K‘,‘.O,L 2e.a)

Once (28.a) is solved and the active displacements are known, i.e., {U,(t)} is found,
from (27) we can calculate the unknown intemat forces as:

E =M, Uax K<, Vs + K, 04 (2e4)

- e
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For the example problem discussed we know that the essential B.C. is U, = ¢ while
P, is unknown and P(t) is specified.

Then from eqns. (23.1) we have to solve the 3 DOF systems:

rm,, 0‘_-1 F' 7] -Ua" o
Oy |+ Vilz]l o (240
Ga J | el Lew

M, O,+ W, Ua= Fy o

where

Oaz[02 0, Ua]‘; Fozlo.o,e
Oy = W:6)T Fezle' 1T

and once (29) is solved:

(30)

.o ] )
from first eqn..; M:‘ O & M:l Op + %, U, ¥ %3 Vg ¢ 2:

isobtained. —» BI 2 My Uy + Kis Oa (1)

In the example problem, the satisfaction of the essential constant U, = o removes the
singularity of the stiffness matrix (i.e. removes the rigid body wmede Y.

For the example case, considering elements of equal length, i.e. h,=L1/3, the eqns.
(29) are written as:

4100 2 -t eV, o 1
(%3 ta O | 2R€ ta 2o [{uy )] o (32)
o\ 2 }[lU, “Jo 4])]ug -0

Now eqn.. (32) can be solved in the usual way, i.e. we can write (32) as:

MO +K U < P (33

+Initial Conditions.
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Solve the homogeneous form of (33)

[_wafl?’\.:’%-_-_e Note:

here N denotes the
degrees of

active \ gr

freedom in the

. '
obtainmodal matrix § - [ # teeon "¢ ] system!

Transform (33) to modal coordinates with:

U= <& 1w
s ‘j‘l'? +.i'z = \?

where

=
i
3
o

= ) diagend
and obtain the solution = 7(t)

and back to physical coordinates.

‘t :§?K§ s

majenz

Dﬂ'ﬁf_"h'ﬁ( F'E
gutwcf!‘y A, I_

and for a piece of the beam, we have been using the following sign convention

) kd”“*\ MzET 22V
é G L Tmz M%xt
7 M \'z Ve ég;(
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In the finite element method, we discretize the beam into a series of finite elements Q¢

Wih hy G~
and a typical element ﬂee body diagram is given as:

%VLQC =% primary variable

Q ( tQ. Qq e=) sccondary variable
G e \J
where X - e - o /ax Gt A)

Aewy

Q - %‘[EI L
Ry 282 (e:

Shear force at ends of beam. (3‘ . b)

M ‘] Xewy

Q [Et ] Bending moments at ends of beam. (3‘ . C)
e ) ¢e
Ny . JELY

Xe 4y xcn = Ked lﬂe.

Yes® ,VyzOa
Vis Tlxe, &)
Vs s U’(Z;b\,t)

Va: ©(xc ¢)
VII'-' 5(1(".,3)




We assume that the displacement v¥(x,t) and rotation o°(x,t) on the finite element Q° is

given by the approximation. e e
U ey = éi, ¢ ry VL e

L

. C37)
Becac,t.) = o ‘“P" l)::tt.)

l.’-'-l

From our discussion for the assumed modes method, we know that the elements of the
element mass and stiffness matrices are given by:

he € e
M.J W\O" < f ?A‘K“?s dx (38.0)
- ’3 ‘,oﬁ q
We e )
bﬁ‘) 3 Js > j EL ‘.‘tw' ‘.I:ﬂ)i o (18.b)
FECIT
Note here that ? q' S e G‘ ( _SZ‘ )
As before, we require that Al Sivee

Yi(ed:t Yrzdy:Wyco ot %zo S Vixe) = Vi
Yathd el 420 a0 ot Trhed Ulneey = V3
Yetodet, &) -0 .q 0 atTz0)Oxe) :Vy
Pi(he) 30, W Wi c®fzo X XeneIDxgany & Vy

for each §;* we have to satisfy four conditions and the §j need to be at least twice
differentiable. Equation (39) guarantees that they will be linearly independent and
satisfying the geometric (essential) constraints of the problem. The lowest orde"
polynomial with four constants and C? is of the form:

- - - - 43
UEar:s G+ “E o+ GE] oy (ﬁ) (4o

(24)

e
ngg Ca +283X 4 3¢y R? (4)
\ne \ﬂc.t \ﬁg‘

(217



so at the extremes (boundary) of the element:

ax:o iz & v, [ © ° °If¢
Va0, 2 Sy, Va ©o'/ve© 0 []Ce
y o | ¥ L R R S
ok Xz he 3=CGelatCraCu v ' J G
Lvad Lo % % %™
Va s ®rz Ca & 26 43Cy ()

he UWe he
inverting (42) and writing the {C,}’s in terms of the {V.,}’s, we obtain

g
U’&.t)f- Z “l'f' ¢ VL) Can)

(21
M Pre 4. AT + 2 (R4
$F: & (4-%A N (a3)
W5 3 (ROt - 2 (R4, |
&2 E (A, (R - 2)

and
’
\\JJ- s -‘;/h} + ¢ 'i‘/\&g

4

2= 4 -4%/) & 3RS
’ - - (4u)
fo: 6% - CRAS =-y

Y s JE‘/h: - a,‘g/‘_"c

and
- )
"P\":-G/\\:*'“"/ke? SRl &

3y - . 74 -
Wis-in ERAT Ty = R 24 218
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Note that the shape functions (38) satisfy identically (39) and are linearly independent.

Substitution of (43) and (45) intc (38.a) and (38.b), respectively, renders the following
element mass and stiffness matrices.

e ['2 €We =12 @he ]
k=& 4 he =Ch, 213
s e (d¢)
sym 2 '“';
4 th
IS4 22ke 54 =13he
(4
= 4zo SYm IS8 -2¢ he
4 he
and the vector of gene :alized forces {F;} is given by:
he
e - € . - Qa
Foo [ Sz (48a)
o
assuming a constant distributed force f{x,/) over the elemcit we obtain: )
. 2 s 9T (4a8.%
- 'Ff.k& )te"\c ;&_\_}L _‘F{.\“c T ft
- -: I I 12 4 v 1:_1']
and the constraint nodal forces are obtained from he

6W - Qe\$y|+ &g.'! 8V3 "'Q’L 8\’; - Qeq S\)q

@ez %&\,-Q;,Qs,-Qq }? (49)

. : } h
Note that the distributed force is equal or equivalent to the nodal shear forces (f‘ ‘]

-
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at the ends.

Then, the system of equations for the element Q° are £I1Ven as:
e * @ e e e e Q
MYV +KY2F . Q% o)
h Vi , Vi, Vd ] T
where v - [ ))' , Y2 V3,

) V3
W | :T Yy

Assembly of element matrices to produce the Elobal system of equations is easily done
as exemplified before. Here, we need to be careful to keep continuity of displacements

at nodal (joints) and also the continuity of constraint forces at the joints.

The global system of equations will then be given as:
| N
Y KV = F +Q, ©»
o G q S q S
where the sub-index G means global, and
m - U Me global FEM matrix
q )
<o = Y S (s52)
Q@ - global FEM stiffness matrix
Fe = WUFS
aQ = global FEM distributed lateral
Nem force vector

and QC\ =UQ°

global FEM vector of constraint
=\

force
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T
V[ o ]
¢ \‘ is the vector of generalized nodal
Oy S displacements

The global FEM vector of constraint force Q; will generally have Zero-components
at internal nodes. The elements of this vector are of the form:

Qq& : QS x Ry ' &‘Hu\ = Qé:;l + R Csa)

—“_’ - wm-e e - _— QL(Q&L. Néb&é
-t 5 ~y €
U ? v \ Nl

Qe ( TQ 1 da

3 '
Equations (53) constitute a statement of equilibrium of forces at the nodal interface
(boundary) of the element.

Recall from equations (36.b) and (36.¢) that

e-1 e 1 . 181\/' -
QRa + Q = -%[Elﬁ_‘r]l + 2 |84 ©

dx? o% L xYd
aXe X =xe
1
e« _ _[e1sv e:.g_g"l : @
Q“ + Q1 = Elﬁtl‘ * A g [
XzKe. Kz2Xe

if no external nodal forces or moments are applied.

Thus, then Qq‘ - &G““_.= ®

However, if an external nodal shear force or moment is applied at the joint, then the
components of the force vector Q, will be non-zero.
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Consider, for example, the case of an intermediate spring on a beam; i.e.,

|l

{»77—_.“ —— q‘t.l'f)‘ ‘é/“
X Z.. € ~) Sé £, / v
. ~ €~ ; e
k Qa T e ? Q‘ ¢
s U Esping =1, v,
we need then to have
-A K224 -4
®3 + Qi +~ Fsrn'ns = @ —

€ .4 c e €~
so, &3 + Q =- FSyﬁns '-'-"kS v\ but vl( - vO = \)3
TS\L bal despla coumends

Note that this restoring force depends on the element displacement, and, therefore, it
is unknown. At this point, you need to modify the global stiffness matrix and add the
contribution of the support stiffness k, .

]

| ;angfggmmign gf E!gmgm Matrices:

A plane frame element has three displacement coordinates at each end (two
orthogonal displacements and one rotation). As shown in the figure, this element has
a local coordinate system (x,y) where the x-coordinate is aligned with the major axis

(length) of the bar-beam element. ™
VAN s

“

The x-axis is tilted 0 degrees relative to a global (inertial) coordinate system X, Y)
to which all elements in the structure will be related. In the (X,Y) coordinate system,
the displacements are given as:
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The transformation between the U displacements in (X,Y) to the U, displacements in
the local coordinate system is given by the transformation equation

U ] oo swe © ¢ o JG, e
U | e 50 ® © o oflg, 7; U b

u3 "= {4 1 © o o G’
Yy || ¢ ® 5o sinp © Gy
bg © o -sind wsp Offu; .
b g ©
b | oo O 1 ¢ 4 characteristic for each element,

re. 6=0°

The element equations in the (x,y) coordinate system are given as

e'i

Mue-l-Kch: c%a Qe (2)

where M" 4 MT element mass matrix
Wtz w?
(3) Ee

element stiffness matrix
element distributed forces (load) vector

Q\" element vector of nodal constraint force (loads)

Substitution of (1) into ) and premultiplication by T, gives the following equation:
T a T -~ T T
TMTU+ TKT U:=:T FaeTqm (4

\2.24



and letting

A T
] ¢
M - -re M Tg mass and stiffness matrices relative to the
«C T K e (X,Y) coordinate system
KK'= T, Te (5
EC - TT Fe force vectors relative to (X,Y)
—e - .‘. coordinate system
Q= Te Q®

we write equation (4) as:

- A “ A - e
. e e : < (‘
Me Qe IREU e FE+ ™ ©
Note that Af“and K< are still symmetric matrices, i.e.
T T \J
ATz (TrMT) = T (T7M) N
sTTMTT = T M T=™M

1;

shee MT 2 M

The assembly of the element matrices proceeds in the usual way to obtain the global
system of equations:

—_ - A s . )
' - (n

A?

,:;.\q':u':;\e QSU‘EG CG)
e e
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Constraints. Reduction of Degrees of Freedom:

So far, we have assumed that all generalized displacements are independent of each
other. This assumption has lead to the system of equations:

MO+UOz F+Q (4

where I have omitted the (G) subindex and the superindex ( *) for simplicity.

Frequently, there arises a need for specifying relationships among system displacement
coordinates. ThlS is c{e\quwalent to specify a number N of displacements which are L.1.
andtherest N+ 1 N + 2., . depend on the N displacements. The discussion is now
related to constraint equanon of the form:

f‘ (03401(‘!3‘?7., s uN)- 9& (ul, tl;, -e a:)z g

and where ﬂ\k N

equation (10) can be written in matrix form as:

RU [PJ& ‘QJJ][U‘L cr)

where U, is the vector of N, dependent coordinates, and
U, is the vector of N = N, independent or ACTIVE coordinates

and such that ﬁ/+Nd =N, +N, =N

from (11) we can find the dependent coordinates from:

Rda'()a_"' Rdd Wd =0 Gi2)
UJ = —QJJ Q“_ Oa = -rda Ua
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where Ty, is the Ny x N, matrix transformation between active to dependent degrees of
freedom. Now, the total global displacement vector can be written as:

U: [U[q' Uga, .v s UM‘,) O(J,Uz[,,,,.UMJJT

Taa
U e 3:’ e :Axuu, U.,: T Uq, (13)

N
Nd xNea xNe.

where 1, is the Na x Na ynitary matrix.

Substitution of (13) into (9) and premultiplying by T7 gives:

ThT Oa s TTRTU:TF +T'Q

—— e CId)

M. Ua_"’ <o Oa = "_a + Ra

where the active mass and stiffess matrices are reduced to be square (IN, x N,) and the
system of equation (14) only accounts for the active degrees of freedom.
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