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Handout 8 
Modal Analysis of MDOF Systems with 
Proportional Damping 
 

The governing equations of motion for a n-DOF linear 
mechanical system with viscous damping are:  
 

( ) ( )t tM U + DU +K U =F    (1) 
 
where andU,U, U are the vectors of generalized displacement, 
velocity and acceleration, respectively; and ( )tF  is the vector of 
generalized (external forces) acting on the system. 
M,D,K represent the matrices of inertia, viscous damping and 
stiffness coefficients, respectively1.  
 

The solution of Eq. (1) is uniquely determined once initial 
conditions are specified. That is, 

(0) (0)at 0 ,o ot = → = =U U U U   (2) 

Consider the case in which the damping matrix D is of the form 
 

α β= +D M K     (3) 
 
where α, β are constants2, usually empirical. This type of damping 
is known as PROPORTIONAL, i.e proportional to either the mass 
M of the system, or the stiffness K of the system, or both.  
 

                                                 
1 The matrices are square with n-rows = n columns, while the vectors are n-
rows. 
2 These constants have physical units, α is given in [1/sec] and β in [sec] 



MEEN 617 – HD 8 Modal Analysis with Proportional Damping. L. San Andrés © 2008 2

Proportional damping is rather unique, since only one or two 
parameters, α, β, appear to fully describe the complexity of 
damping, irrespective of the system number of DOFs, n. This is 
clearly not realistic. Hence, proportional damping is not a rule but 
rather the exception.  

 
Nonetheless the approximation of proportional damping is 

useful since, most times damping is quite an elusive phenomenon, 
i.e. difficult to model (predict) and hard to measure but for a few 
DOFs. 

 
Next, consider one already has found the natural frequencies 

and natural modes  (eigenvectors) for the UNDAMPED case, i.e. 
given M U +K U =0 ,  

 
{ }( ) 1,2...

,i i i n
ω

=
φ satisfying 2

( ) 1,...,i i i nω =⎡ ⎤−⎣ ⎦M +K φ =0 .  (4) 

 
with properties [ ] [ ];T TM K= =Φ MΦ Φ KΦ    (5) 
 

As in the undamped modal analysis, consider the modal 

transformation      ( ) ( )t t=U Φ q   (6) 

And with ( ) ( ) ( ) ( );t t t t= =U Φ q U Φ q , then EOM (1) becomes: 
 

( )t+MΦq + DΦq KΦq =F   (7) 
which offers no advantage in the analysis. However, premultiply 
the equation above by TΦ  to obtain 
 

( ) ( ) ( ) ( )
T T T T

t+Φ MΦ q + Φ DΦ q Φ KΦ q =Φ F  (8) 
 
And using the modal properties, Eq. (5), and 
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( )T T T Tα β α β= + = +Φ DΦ Φ M K Φ Φ MΦ Φ KΦ  

     [ ] [ ] [ ]T M K Dα β= + →Φ DΦ      (9) 
i.e.  a diagonal matrix known as proportional modal damping. 
Then Eq. (7) becomes 
  

[ ] [ ] [ ] ( )
T

tM D K+ =q + q q =Q Φ F   (10) 
 
Thus, the equations of motion are uncoupled in modal space, 
since [M], [D], and [K] are diagonal matrices. Eq. (10) is just a set 
of n-uncoupled ODEs. That is,  
 

1 1 1 1 1 1 1

2 2 2 2 2 2 2

.....

n n n n n n n

M q D q K q Q
M q D q K q Q

M q D q K q Q

+ + =
+ + =

+ + =

     (11) 

 
Or  1,2...,j j j j j j j j nM q D q K q Q =+ + =    (12) 
 

Where j
jj

K
Mnω = and j j jD M Kα β= + . Modal damping 

ratios are also easily defined as 
 

2 2
j j j

j
j j j j

D M K
K M K M

α β
ζ

+
= =  ; j=1,2,….n    (13) 

 
 For damping proportional to mass only, 0β = , and  

22
j

j
j

nj j

M
K M
α αζ

ω
= =    (13a) 
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i.e., the j-modal damping ratio decreases as the natural frequency 
increases. 
 

For damping proportional to stiffness only, 0α = , 
(structural damping) and  

22
jnj

j
j j

K
K M

βωβ
ζ = =    (13b) 

 
i.e., the j-modal damping ratio increases as the natural frequency 
increases. In other words, higher modes are more increasingly 
more damped than lower modes. 
 
The response for each modal coordinate satisfying the modal Eqn. 

1,2...,j j j j j j j j nM q D q K q Q =+ + =  proceeds in the same way as 
for a single DOF system (See Handout 2).  
 
First, find initial values in modal space { },

j jo oq q . These follow 

from either 
1 1;o o o o

− −= =q Φ U q Φ U    (14) 
or  

[ ]
[ ]

1

1

,T
o o

T
o o

M

M

−

−

=

=

q Φ M U

q Φ M U
    (15a) 

 

( ) ( )( ) ( )
1 1,

k k

T T
o k o o k o

k k

q q
M M

= =φ M U φ M U  (15b) 

 
k=1,….n 
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Free response in modal coordinates 
Without modal forces, Q=0, the modal EOM is    
 

0
j j jj H j H j H jM q D q K q Q+ + = =  (16) 

 
with solution, for an elastic underdamped mode   1jζ <  

 

( ) ( )( )cos sinj d j

j j j

t
H j d j dq e C t S t

ζ ω
ω ω

−
= +     if 0

jnω ≠  (17a) 

 

where  21 , j
jj j j

K
Md n j nω ω ζ ω= − = and  

; j j j

j

j

o j n o
j o j

d

q q
C q S

ζ ω

ω

+
= =     (17b) 

 
See Handout (2a) for modal responses corresponding to 
overdamped and critically damped SDOF system. 
 
 
Forced response in modal coordinates 

 
For step-loads, S jQ , the modal equations are    
 

j j j j j j S jM q D q K q Q+ + =  (18) 
 
with solution, for an elastic underdamped mode   1jζ <  

( ) ( )( )cos sinj d j

j j j j

t
j d j d Sq e C t S t q

ζ ω
ω ω

−
= + +     0

jnω ≠  (19a) 
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where  21 , j
jj j j

K
Md n j nω ω ζ ω= − =  and  

( ); ;j j j

j j j

j

S o j n j
S j o S j

j d

Q q C
q C q q S

K

ζ ω

ω

+
= = − =  (19b) 

 
See Handout (2a) for physical responses corresponding to 
overdamped and critically damped SDOF system. 
 
For periodic-loads, 
Consider the case of force excitation with frequency 

jnωΩ ≠ and 
acting for very long times.  The EOMs in physical space are 

( )cos t+ ΩPM U + DU K U =F  
The modal equations are    

 
cos( )

jj j j j j j PM q D q K q Q t+ + = Ω   (20) 
 
with solutions 
for an elastic mode, 0

jnω ≠  

( ) ( )( )
( ) ( )

( )

cos sin

cos sin

j n j

j j

j j

j transient ss t

t
j d j d

c s

q q q

e C t S t

C t C t

ζ ω
ω ω

−

= + =

+ +

Ω + Ω

  (21) 

 
The steady state or periodic response is of importance, since the 
transient response will disappear because of damping dissipative 
effects. Hence,  the j-mode response is: 
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( )cosj

j

P
PS j j

j

Q
q A t

K
ψ

⎛ ⎞
= Ω −⎜ ⎟⎜ ⎟
⎝ ⎠

     (22) 

 
Let 

j

j
n

f
ω
Ω

= be a  jth-mode excitation frequency ratio. Then, define 

 

 
( ) ( )2 22

1

1 2  
j

j j j

A
f fζ

=
− +

and ( ) ( )2

2
tan

1
j j

j
j

f
f

ζ
ψ =

−
  (23) 

 
Recall that jϕ  is a phase angle and Aj is an amplitude ratio for 
the jth-mode.  

Note that depending on the magnitude of the excitation 
frequency Ω, the frequency ratio for a particular mode, say k, 
determines the regime of operation, i.e. below, above or around the 
natural frequency. 
 

Using the mode displacement method, the response in physical 
coordinates is 

( )
1

cosj
m

P
j j j

j j

Q
A t

K
ψ

=

⎛ ⎞
≈ Ω −⎜ ⎟⎜ ⎟

⎝ ⎠
∑U φ   (24) 

And recall that 2
( ) ( )j

T
j n j j jK Mω= = φ Kφ and ( )j

T
P jQ = Pφ F .  

A mode acceleration method can also be easily developed to 
give 

( ) 2
1 1

2
cos

j j

m m
j j

j PS PS
j jj j

t q q
ζ
ω ω= =

≈ Ω − −∑ ∑SP

φ
U U φ  (25) 

where 1−=SP pU K F . (please demonstrate Eq. (25) above). Note 
that the mode acceleration method cannot be applied modes if 
there are any rigid body modes.  
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Frequency response functions for damped 
MDOF systems. 
 
The steady state or periodic modal response for j-mode is: 
 

( )cosj

j

P
PS j j

j

Q
q A t

K
ψ

⎛ ⎞
= Ω −⎜ ⎟⎜ ⎟
⎝ ⎠

     (22) 

 
Or, taking the real part of the following complex number 
expression 

j

j

P i t
PS j

j

Q
q H e

K
Ω

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

    (26) 

 

where   ( ) ( )2

1
1 2  j

j j j

H
f i fζ

=
− +

   (27) 

 

with 1i = − is the imaginary unit, and where 
j

j
n

f
ω
Ω

= is the  jth-

mode excitation frequency ratio. Then, recall from Eqs. (23) 
 

( ) ( )2 22

1

1 2  
j j

j j j

A H
f fζ

=
− +

and ( )argj jHψ =   (28) 

 
Using the modal transformation, the periodic response UP in 

physical coordinates is 

( )
1

cosj
n

P
j j j

j j

Q
A t

K
ψ

=

⎛ ⎞
= Ω −⎜ ⎟⎜ ⎟

⎝ ⎠
∑PU φ   (24)  
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or take the real part of the equation below 

( )
1 1

1

Tn n
j i t

j j j j
j j j

n
jT i t

j j
j j

q H e
K

H
e

K

Ω

= =

Ω

=

⎛ ⎞
= = = ⎜ ⎟⎜ ⎟

⎝ ⎠
⎧ ⎫⎛ ⎞⎪ ⎪= ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑ ∑

∑

P
P

P

φ F
U Φq φ φ

φ φ F
(29)  

  
Now, the product ( )T

j j n n= ×φ φ matrix . That is, define the 
elements of the complex – frequency response matrix H as 
 

( ) ( ), 2

1
1 2  

p q

T
j j

p q
j j j j

H
K f i fζ

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− +⎝ ⎠⎝ ⎠

φ φ
  (30) 

p,q =1,2…. n. The response in physical coordinates thus becomes: 
 

i te Ω
P PU = H F      (31) 

Or in component form, 
 

, 1,2..
1

;
j r

n
i t

P j r P j n
r

U H F e Ω
=

=

⎛ ⎞=⎜ ⎟
⎝ ⎠
∑    (32) 

 
The components of the frequency response matrix H are 
determined numerically or experimentally. In any case, the 
components of H depend on the excitation frequency (Ω). 
Determining the elements of H seems laborious and (perhaps) its 
physical meaning remains elusive.  
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Direct Method to Find Frequency Responses in 
MDOF Systems  

Nowadays, with fast computing power at our fingertips, the 
young engineer prefers to pursue a more direct approach, one 
known as brute force or direct aproach. Recall that the equation 
of motion is  

 

Or   

( )
( )
cos

Re i t

t

e Ω

+ Ω

+

P

P

M U + DU K U =F

M U + DU K U = F  (33) 

Assume a periodic solution of the form 
i te Ω

PU = V   (34) 
where PV  is a vector in the complex domain. Substitution of Eq. 
(34) into eq. (33) gives 
 

2i⎡ ⎤+ Ω −Ω =⎣ ⎦ P PK D M V F    (35) 
 
Define at each excitation frequency the complex impedance 
(dynamic stiffness) matrix as: 

( )
2iΩ ⎡ ⎤= + Ω −Ω⎣ ⎦DK K D M    (36) 

 
And find the vector of physical responses (amplitude and phase) as 

( )

1−

Ω
⎡ ⎤= ⎣ ⎦P PDV K F     (37) 

  
Since

real imaginary
i= +P P PV V V , the physical response for each DOF 

follows as: 
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( )

( ) ( )
1,2...

2 2

cos ;

; tan

r

P imaginaryr
r r r P realr

r P r r n

V
P P real P imaginary r V

U V t

V V V

γ

γ −

−

=

− −

= Ω −

= + =−
 (38) 

 
The direct method requires calculating the inverse of the 

dynamic stiffness matrix at each excitation frequency. The 
computational effort to perform this task could be excessive but for 
systems with a few DOFs (n small). 
 
 

 



# of  DOF

Note M and K are symmetric matrices

example α 0.0
1
s

⋅:= β .001 s⋅:=
D α M⋅ β K⋅+:=

D
2 103×

1− 103×

1− 103×

2 103×

⎛
⎜
⎝

⎞
⎟
⎠
N

s
m

⋅=

Xo
0

0
⎛
⎜
⎝

⎞
⎟
⎠

m⋅:= Vo
0.0

0
⎛
⎜
⎝

⎞
⎟
⎠

m
sec

⋅:=initial conditions

Applied force vector: Fo
10000

5000−
⎛
⎜
⎝

⎞
⎟
⎠

N⋅:=

l i

STEP FORCED RESPONSE of 2-DOF mechanical 
system with proportional damping

ORIGIN 1:=

Dr. Luis San Andres (c) MEEN 363, 617  February 2008

The equations of motion are: (1)M
2t

Xd
d

2
⋅ D

t
Xd

d
⋅+ K X⋅+ Fo=

where M,D, K are matrices of inertia, damping and stiffness coefficients; and X, V=dX/dt,  

d2X/dt2 are the vectors of physical displacement, velocity and acceleration, respectively. 
The FORCED undamped response to the initial conditions, at t=0, Xo,Vo=dX/dt, follows:

For proportional damping, D = α M + β K, so the undamped mode analysis can be used. 
α & β are physical constants usually determined from measurements of modal damping.

============================================================================================

The equations of motion are:

M11

M21

M12

M22

⎛
⎜
⎝

⎞
⎟
⎠ 2t

x1

x2

⎛
⎜
⎝

⎞
⎟
⎠

d
d

2
⋅

D11

D21

D12

D22

⎛
⎜
⎝

⎞
⎟
⎠ t

x1

x2

⎛
⎜
⎝

⎞
⎟
⎠

d
d
⋅+

K11

K21

K12

K22

⎛
⎜
⎝

⎞
⎟
⎠

x1

x2

⎛
⎜
⎝

⎞
⎟
⎠

⋅+
F1o

F2o

⎛
⎜
⎝

⎞
⎟
⎠

= (2)

1. Set elements of inertia, stiffness & damping matrices
DATA FOR problem

M
100

0

0

50
⎛
⎜
⎝

⎞
⎟
⎠

kg⋅:= K
2 106⋅

1− 106⋅

1− 106⋅

2 106⋅

⎛
⎜
⎝

⎞
⎟
⎠

N
m

⋅:=
n 2:=



j 1 n..:=
ω j λ j( ) .5:= ω

112.6

217.53
⎛
⎜
⎝

⎞
⎟
⎠

rad
sec

= (4)
f

ω

2 π⋅
:=

f
17.92

34.62
⎛
⎜
⎝

⎞
⎟
⎠
Hz=

Note that: Δ ω1( ) Δ ω2( )= 0=

For each eigenvalue, the eigenvectors (natural modes) are 

j 1 n..:=
Set arbitrarily first element of vector = 1

aj

1

K1 1, M1 1, λ j⋅−

K1 2, M1 2, λ j⋅−( )−

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

:=

a1
1

0.73
⎛
⎜
⎝

⎞
⎟
⎠

= a2
1

2.73−
⎛
⎜
⎝

⎞
⎟
⎠

= (5)
MODAL matrix A j〈 〉 aj:=

A is the matrix of eigenvectors (undamped
modal matrix): each column corresponds to an 
eigenvector

A
1

0.73

1

2.73−
⎛
⎜
⎝

⎞
⎟
⎠

=

analysis

2. Find eigenvalues (undamped natural frequencies) and eigenvectors

Set determinant of system of eqns = 0

Δ K11 M11 ω2⋅−( ) K22 M22 ω2⋅−( )⋅ K12 M12 ω2⋅−( ) K21 M21 ω2⋅−( )⋅−⎡⎣ ⎤⎦= 0= (2a)

(2b)Δ a ω4⋅ b ω2⋅+ c+= a λ2⋅ b λ⋅+ c+( )= 0= with λ ω2=

where the
coefficients
are:

a M1 1, M2 2,⋅ M1 2, M2 1,⋅−:=
(2c)b K1 2, M2 1,⋅ K1 1, M2 2,⋅− K2 2, M1 1,⋅− K2 1, M1 2,⋅+:=

c K1 1, K2 2,⋅ K1 2, K2 1,⋅−:=

The roots of equation (2b) are:

(3)λ1
b− b2 4 a⋅ c⋅−( ) .5−⎡⎣ ⎤⎦

2 a⋅
:= λ2

b− b2 4 a⋅ c⋅−( ) .5+⎡⎣ ⎤⎦
2 a⋅

:=

also known as eigenvalues. The natural frequencies follow as:



Dm α Mm⋅ β Km⋅+:=or better

Dm
1.61 103×

1.8− 10 13−×

3.06 10 13−×

2.24 104×

⎛
⎜
⎝

⎞
⎟
⎠
s

N
m

=Dm AT D⋅ A⋅:=

ω
112.6

217.53
⎛
⎜
⎝

⎞
⎟
⎠
s-1=

Km
1.61 106×

3.51 10 10−×

3.18 10 10−×

2.24 107×

⎛
⎜
⎝

⎞
⎟
⎠

N
m

=
Km AT K⋅ A⋅:=

Mm
126.79

1.58− 10 14−×

2.24− 10 14−×

473.21

⎛
⎜
⎝

⎞
⎟
⎠
kg=Mm AT M⋅ A⋅:=

The natural modes satisfy the orthogonality properties

(9)so Mm
1− AT M⋅ Vo⋅( )⋅=qo Mm

1− AT M⋅ Xo⋅( )⋅=

and initial conditions (modal displacement=q and modal velocity dq/dt=s)

Qm AT Fo⋅=with modal force vector: (8)

Mm 2t
qd

d

2
⋅ Dm

t
qd

d
⋅+ Km q⋅+ Qm= (7) 

EOMs (1) become uncoupled in modal space:

X A q⋅=Using transformation: (6)

3. Modal transformation of physical equations to (natural) modal coordinates

2.73

0.37

mode 1
mode 2

DOF

Aj 1,

Aj 2,

j

Plot the mode shapes:



As
j

so
j

ζ j ω j⋅ Ac
j

⋅−( )
ωdj

:=

: coefficients of cos & sin functions.Ac
j

qo
j

qs
j

−( ):=

: static displacement in modal spaceqs
j

Qm
j

Km
j j,

:=

j 1 2..:=

two elastic modes - underdamped4.c Build Modal responses:

Qm
6.34 103×

2.37 104×

⎛
⎜
⎝

⎞
⎟
⎠
N=

Qm AT Fo⋅:=

4.b Find Modal forces:

so
0

0
⎛
⎜
⎝

⎞
⎟
⎠
m s-1=qo

0

0
⎛
⎜
⎝

⎞
⎟
⎠
m=

so Ainv Vo⋅:=qo Ainv Xo⋅:=

Ainv Mm
1− AT M⋅( )⋅:=Set inverse of modal mass matrix

4.a Find initial conditions in modal coordinates (displacement = q, velocity = s)

4. Find Modal and Physical Response for given initial condition and 
Constant Force vector

=========================================================================================

ωd
112.42

216.24
⎛
⎜
⎝

⎞
⎟
⎠
s-1=UNDERDAMPED CASE ω

112.6

217.53
⎛
⎜
⎝

⎞
⎟
⎠
s-1=

ζ
0.06

0.11
⎛
⎜
⎝

⎞
⎟
⎠

= Underdamped modes

(11)ωdk
ωk 1 ζk( )2−⎡⎣ ⎤⎦

.5
⋅:=ζk

Dm
k k,

2 Mm
k k,

⋅ ωk⋅
:=

k 1 n..:=Define the modal damping ratios and damped natural freqs:



q1 t( ) e ζ1− ω1⋅ t⋅ Ac
1

cos ωd
1

t⋅( )⋅ As
1

sin ωd
1

t⋅( )⋅+( )⋅ qs
1

+:=

q2 t( ) e ζ2− ω2⋅ t⋅ Ac
2

cos ωd
2

t⋅( )⋅ As
2

sin ωd
2

t⋅( )⋅+( )⋅ qs
2

+:=

for plots:

4.d Build Physical responses: X t( ) a1 q1 t( )⋅ a2 q2 t( )⋅+:= Tplot
6
f1

:=

4.e Graphs of Modal and Physical responses:
analysis

0 0.056 0.11 0.17 0.22 0.28 0.33
0

0.005

0.01

q1
q2

Response in modal coordinates

time (s)

0 0.056 0.11 0.17 0.22 0.28 0.33
0.005

0

0.005

0.01

x1
x2

Response in  physical coordinates

time (s)

 



5. Interpret response: analyze results, provide recommendations

Note the paramount effect of damping in attenuating the system response.

Recall for this example: ζ
0.06

0.11
⎛
⎜
⎝

⎞
⎟
⎠

= ωd
112.42

216.24
⎛
⎜
⎝

⎞
⎟
⎠
s-1= ω

112.6

217.53
⎛
⎜
⎝

⎞
⎟
⎠
s-1=

S-S displacement

K 1− Fo⋅
5 10 3−×

0

⎛
⎜
⎝

⎞
⎟
⎠
m=

compare to modal derived values:

A qs⋅
5 10 3−×

0

⎛
⎜
⎝

⎞
⎟
⎠
m=



Note M and K are symmetric matrices with a RIGID BODY MODE

example α 0.0
1
s

⋅:= β .001 s⋅:=
D α M⋅ β K⋅+:=

D
1 103×

1− 103×

1− 103×

1 103×

⎛
⎜
⎝

⎞
⎟
⎠
N

s
m

⋅=

Xo
0

0
⎛
⎜
⎝

⎞
⎟
⎠

m⋅:= Vo
0.0

0
⎛
⎜
⎝

⎞
⎟
⎠

m
sec

⋅:=initial conditions

Applied force vector: Fo
1000

980−
⎛
⎜
⎝

⎞
⎟
⎠

N⋅:=

l i

STEP FORCED RESPONSE of 2-DOF mechanical 
system with proportional damping

ORIGIN 1:=

Dr. Luis San Andres (c) MEEN 363, 617  February 2008

The equations of motion are: (1)M
2t

Xd
d

2
⋅ D

t
Xd

d
⋅+ K X⋅+ Fo=

where M,D, K are matrices of inertia, damping and stiffness coefficients; and X, V=dX/dt,  

d2X/dt2 are the vectors of physical displacement, velocity and acceleration, respectively. 
The FORCED undamped response to the initial conditions, at t=0, Xo,Vo=dX/dt, follows:

For proportional damping, D = α M + β K, so the undamped mode analysis can be used. 
α & β are physical constants usually determined from measurements of modal damping.

============================================================================================

The equations of motion are:

M11

M21

M12

M22

⎛
⎜
⎝

⎞
⎟
⎠ 2t

x1

x2

⎛
⎜
⎝

⎞
⎟
⎠

d
d

2
⋅

D11

D21

D12

D22

⎛
⎜
⎝

⎞
⎟
⎠ t

x1

x2

⎛
⎜
⎝

⎞
⎟
⎠

d
d
⋅+

K11

K21

K12

K22

⎛
⎜
⎝

⎞
⎟
⎠

x1

x2

⎛
⎜
⎝

⎞
⎟
⎠

⋅+
F1o

F2o

⎛
⎜
⎝

⎞
⎟
⎠

= (2)

1. Set elements of inertia, stiffness & damping matrices
DATA FOR problem

M
100

0

0

50
⎛
⎜
⎝

⎞
⎟
⎠

kg⋅:= K
1 106⋅

1− 106⋅

1− 106⋅

1 106⋅

⎛
⎜
⎝

⎞
⎟
⎠

N
m

⋅:=
n 2:= # of  DOF



j 1 n..:=
ω j λ j( ) .5:= ω

0

173.21
⎛
⎜
⎝

⎞
⎟
⎠

rad
sec

= (4)
f

ω

2 π⋅
:=

f
0

27.57
⎛
⎜
⎝

⎞
⎟
⎠
Hz=

Note that: Δ ω1( ) Δ ω2( )= 0=

For each eigenvalue, the eigenvectors (natural modes) are 

j 1 n..:=
Set arbitrarily first element of vector = 1

aj

1

K1 1, M1 1, λ j⋅−

K1 2, M1 2, λ j⋅−( )−

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

:=

a1
1

1
⎛
⎜
⎝

⎞
⎟
⎠

= a2
1

2−
⎛
⎜
⎝

⎞
⎟
⎠

= (5)
MODAL matrix A j〈 〉 aj:=

A is the matrix of eigenvectors (undamped
modal matrix): each column corresponds to an 
eigenvector

A
1

1

1

2−
⎛
⎜
⎝

⎞
⎟
⎠

=

analysis

2. Find eigenvalues (undamped natural frequencies) and eigenvectors

Set determinant of system of eqns = 0

Δ K11 M11 ω2⋅−( ) K22 M22 ω2⋅−( )⋅ K12 M12 ω2⋅−( ) K21 M21 ω2⋅−( )⋅−⎡⎣ ⎤⎦= 0= (2a)

(2b)Δ a ω4⋅ b ω2⋅+ c+= a λ2⋅ b λ⋅+ c+( )= 0= with λ ω2=

where the
coefficients
are:

a M1 1, M2 2,⋅ M1 2, M2 1,⋅−:=
(2c)b K1 2, M2 1,⋅ K1 1, M2 2,⋅− K2 2, M1 1,⋅− K2 1, M1 2,⋅+:=

c K1 1, K2 2,⋅ K1 2, K2 1,⋅−:=

The roots of equation (2b) are:

(3)λ1
b− b2 4 a⋅ c⋅−( ) .5−⎡⎣ ⎤⎦

2 a⋅
:= λ2

b− b2 4 a⋅ c⋅−( ) .5+⎡⎣ ⎤⎦
2 a⋅

:=

also known as eigenvalues. The natural frequencies follow as:



or better Dm α Mm⋅ β Km⋅+:=

Dm
0

0

0

9 103×

⎛
⎜
⎝

⎞
⎟
⎠
s

N
m

=Dm AT D⋅ A⋅:=

ω
0

173.21
⎛
⎜
⎝

⎞
⎟
⎠
s-1=

Km
0

0

0

9 106×

⎛
⎜
⎝

⎞
⎟
⎠

N
m

=
Km AT K⋅ A⋅:=

Mm
150

0

0

300
⎛
⎜
⎝

⎞
⎟
⎠
kg=Mm AT M⋅ A⋅:=

The natural modes satisfy the orthogonality properties

(9)so Mm
1− AT M⋅ Vo⋅( )⋅=qo Mm

1− AT M⋅ Xo⋅( )⋅=

and initial conditions (modal displacement=q and modal velocity dq/dt=s)

Qm AT Fo⋅=with modal force vector: (8)

Mm 2t
qd

d

2
⋅ Dm

t
qd

d
⋅+ Km q⋅+ Qm= (7) 

EOMs (1) become uncoupled in modal space:

X A q⋅=Using transformation: (6)

3. Modal transformation of physical equations to (natural) modal coordinates

2

0

2

mode 1
mode 2

DOF

Aj 1,

Aj 2,

j

Plot the mode shapes:



: static displacement in modal spaceqs
j

Qm
j

Km
j j,

:=
j 2:=

elastic mode - UNDERDAMPED

q1 t( ) qo
1

so
1

t⋅+
Qm

1

Mm
1 1,

t2

2
⋅+:=

rigid body mode - NO DAMPING

4.c Build Modal responses:

Qm
20

2.96 103×

⎛
⎜
⎝

⎞
⎟
⎠
N=

Qm AT Fo⋅:=

4.b Find Modal forces:

so
0

0
⎛
⎜
⎝

⎞
⎟
⎠
m s-1=qo

0

0
⎛
⎜
⎝

⎞
⎟
⎠
m=

so Ainv Vo⋅:=qo Ainv Xo⋅:=

Ainv Mm
1− AT M⋅( )⋅:=Set inverse of modal mass matrix

4.a Find initial conditions in modal coordinates (displacement = q, velocity = s)

4. Find Modal and Physical Response for given initial condition and 
Constant Force vector

=========================================================================================

ωd
0

172.55
⎛
⎜
⎝

⎞
⎟
⎠
s-1=UNDERDAMPED CASE ω

0

173.21
⎛
⎜
⎝

⎞
⎟
⎠
s-1=

ζ
0

0.09
⎛
⎜
⎝

⎞
⎟
⎠

= ONE RIGID BODY mode with null modal damping

(11)ωdk
ωk 1 ζk( )2−⎡⎣ ⎤⎦

.5
⋅:=ζk

Dm
k k,

2 Mm
k k,

⋅ ωk⋅
:=

k 1 n..:=Define the modal damping ratios and damped natural freqs:



Ac
j

qo
j

qs
j

−( ):= : coefficients of cos & sin functions.

As
j

so
j

ζ j ω j⋅ Ac
j

⋅−( )
ωdj

:=

q2 t( ) e ζ2− ω2⋅ t⋅ Ac
2

cos ωd
2

t⋅( )⋅ As
2

sin ωd
2

t⋅( )⋅+( )⋅ qs
2

+:=

for plots:

4.d Build Physical responses: X t( ) a1 q1 t( )⋅ a2 q2 t( )⋅+:= Tplot
6
f2

:=

4.e Graphs of Modal and Physical responses:
analysis

0 0.022 0.044 0.065 0.087 0.11 0.13 0.15 0.17 0.2 0.22
0

0.001

0.002

0.003

0.004

q1
q2

Response in modal coordinates

time (s)

0 0.022 0.044 0.065 0.087 0.11 0.13 0.15 0.17 0.2 0.22
0.002

0

0.002

x1

Response in  physical coordinates

time (s)

3.47 10 3−×

1.15− 10 3−×

X t( )1

X t( )2

T plot0 t



x2
 

5. Interpret response: analyze results, provide recommendations

Note the paramount effect of damping in attenuating the system response.

Recall for this example: ζ
0

0.09
⎛
⎜
⎝

⎞
⎟
⎠

= ωd
0

172.55
⎛
⎜
⎝

⎞
⎟
⎠
s-1= ω

0

173.21
⎛
⎜
⎝

⎞
⎟
⎠
s-1=

i.e., Modal damping ratios of 9% for elastic mode. 


