Handout 8

Modal Analysis of MDOF Systems with
Proportional Damping

The governing equations of motion for a N-DOF linear
mechanical system with viscous damping are:

MU+DU+KU, =F, (1)

where U, U, and U are the vectors of generalized displacement,
velocity and acceleration, respectively; and F(t) is the vector of

generalized (external forces) acting on the system.
M, D, K represent the matrices of inertia, viscous damping and

stiffness coefficients, respectively'.

The solution of Eq. (1) is uniquely determined once initial
conditions are specified. That is,

att=0 - U, =U,, U, =U, 2)

Consider the case in which the damping matrix I is of the form
D=aM+ K 3)

where o, B are constants®, usually empirical. This type of damping
is known as PROPORTIONAL, i.e proportional to either the mass
M of the system, or the stiffness K of the system, or both.

' The matrices are square with n-rows = n columns, while the vectors are n-
TOWS.
2 These constants have physical units, a is given in [1/sec] and B in [sec]
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Proportional damping is rather unique, since only one or two

parameters, O, [3, appear to fully describe the complexity of
damping, irrespective of the system number of DOFs, n. This is
clearly not realistic. Hence, proportional damping is not a rule but
rather the exception.

Nonetheless the approximation of proportional damping is
useful since, most times damping is quite an elusive phenomenon,
1.e. difficult to model (predict) and hard to measure but for a few
DOFs.

Next, consider one already has found the natural frequencies
and natural modes (eigenvectors) for the UNDAMPED case, i.e.

given MU+K U=0,
{a)|)(P(I)} _Lo. nsatisfying |:_M a)iz +K] L0 =0, . 4

with properties (I)TM(I)z[I\/I ]; (I)TK(I):[K] (5)

As in the undamped modal analysis, consider the modal
transformation U = O q(t) (6)
And with U = ®q,; U =®q,, then EOM (1) becomes:

M®q+DPq+ KPq=F_, (7)
which offers no advantage in the analysis. However, premultiply
the equation above by @' to0 obtain

(P'M®)j+(®'D®)q+(PKD)q=D'F,, )
And using the modal properties, Eq. (5), and
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Q' DP=0" (aM+ K)P=0 P'MP+SDP KD
®'D®=c [M]+p[K]->[D] )

i.e. a diagonal matrix known as proportional modal damping.
Then Eq. (7) becomes

[I\/I]('j+[D]q+[K]q=Q:(I)TF(t) (10)

Thus, the equations of motion are uncoupled in modal space,
since [M], [D], and [K] are diagonal matrices. Eq. (10) is just a set
of n-uncoupled ODEs. That is,

|\/|1C]'1+D1q1+K1q1=Q1
quz"‘quz"'quz:Qz

(11)
n qn + Kn qn :Qn

Or quj+quj+quj:Qj > j=1,2..n (12)

Where , =«/K%j and D;=aM; + K, . Modal damping

ratios are also easily defined as
D. oM. + K.
= - it/ L =120 (13)
2 KJ.I\/Ij 2«/Kij

For damping proportional to mass only, =0, and
aM . o

J
L= = (13a)
g 2 /KM, 20,
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i.c., the ]-modal damping ratio decreases as the natural frequency
increases.

For damping proportional to stiffness only, & =0,
(structural damping) and

pK; B,
= = ' 13b
°7) KM, 2 (130)

i.e., the ]-modal damping ratio increases as the natural frequency
increases. In other words, higher modes are more increasingly
more damped than lower modes.

The response for each modal coordinate satisfying the modal Eqn.
M i CIj + Dj q,- + KJ- oF =QJ-, i=1.2,.n broceeds in the same way as

for a single DOF system (See Handout 2).

First, find initial values in modal space {qoj , qoj } These follow
from either
-1 Lo -l
qo:(I) Uo ! =0 Uo (14)
or

q,=[M] @MU, ,

. 15
Q,=[M] @MU, (19
q =L(PT|< (MU,),q =L(PTK (MU ) (15b)
Ok Mk (k) 0 0y Mk (k) 0
k=1,....n

MEEN 617 — HD 8 Modal Analysis with Proportional Damping. L. San Andrés © 2008 4



Free response in modal coordinates
Without modal forces, Q:O, the modal EOM is

M;d, +D;q, +Kjay =0=Q, (16)

with solution, for an elastic underdamped mode ¢ <1

O, :e‘é,-wd,-t(Cjcos(codjt)+Sjsin(a)djt)) if @, #0 (17a)
where a)djza)nj«/l—é'jz, o, =«/K%jand
qo- +§jwn-qo-
Cj:qu; Sj: j — (17b)
@y

]

See Handout (2a) for modal responses corresponding to
overdamped and critically damped SDOF system.

Forced response in modal coordinates

For step-loads, Q ;» the modal equations are
Mjd;+D;q;+K;q;=Q; 19

with solution, for an_elastic underdamped mode ¢ <1

q :e_g"m‘“t(Cj cos(a)djt)+8jsin(a)djt)) +0s, @, #0 (192

j
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_ 2 _ [k
where Wy =@, NS o, =/ %J_ and

Os = KSJ ; Cj:(qoj _qu); Sj: J —— (19b)

]
j Wy

j

See Handout (2a) for physical responses corresponding to
overdamped and critically damped SDOF system.

For periodic-loads,

Consider the case of force excitation with frequency €2 # @, and
J

acting for very long times. The EOMs in physical space are
MU+DU+KU=F, cos(Qt)

The modal equations are
quj+quj +quj:QPjCOS(Qt) (20)

with solutions
for an_elastic mode, @, #0
J

4; = Giransient + Gssty =
e—é/ja)njt (CJ COS((()djt)-l-Sj Sin(a)djt))‘l‘ (21)

C, cos(Qt)+C, sin(Qt)

The steady state or periodic response is of importance, since the
transient response will disappear because of damping dissipative
effects. Hence, the j-mode response is:
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J

]

Qp
Ops, = ( < JAJ- cos(Qt -y, ) (22)

Let f= Q be a jy-mode excitation frequency ratio. Then, define

a)nj

A,- = : ~ and tan(t,yj)zzé,—jfj

J- 12 +(2¢, 1)) (1-17)

Recall that ¢, is a phase angle and A; is an amplitude ratio for

(23)

the jg,-mode.

Note that depending on the magnitude of the excitation
frequency Q, the frequency ratio for a particular mode, say k,
determines the regime of operation, i.e. below, above or around the
natural frequency.

Using the mode displacement method, the response in physical
coordinates is

Uzz P, KP,— A cos(Qt—wj) (24)
=1 ]

2 T T
And recall that K, =, M;=9¢,;Ko; and QPJ_ =0 Fp-

A mode acceleration method can also be easily developed to
give

m 2 4’ m Q.
UNUSPCOS(Qt)—Z—J(Pj qpsj _Z—iqpsj (25)
=1 @; j=1 W;

where Ug, = K_le. (please demonstrate Eq. (25) above). Note
that the mode acceleration method cannot be applied modes if

there are any rigid body modes.
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Frequency response functions for damped
MDOF systems.

The steady state or periodic modal response for j-mode is:

Qs
Ops, = ( KJ A cos(Qt —gyj) (22)
j
Or, taking the real part of the following complex number
expression
QP- iQt
Ops. = ( L 1H j e' (26)
j Kj
h H 1 @)
where = :
(1-17)+i(2¢; 1))
with 1 =+/—11is the imaginary unit, and where f,= Q is the ji-
a,

n;

mode excitation frequency ratio. Then, recall from Egs. (23)

1
\/(1_ () +(2¢ 1)

Using the modal transformation, the periodic response Up in
physical coordinates is

UP:Z 0 Kpj A, cos(Qt—wj) (24)
j=1 j

A,-=‘H,-‘ - andl//j:arg(Hj) (28)
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or take the real part of the equation below

. . (PTjFP Ot
UP:(Dq:Z(‘ijj) :Z P He
=1

j=1 j

n , 9)
T i iQt
=12 00, K—:FP €

j=1

Now, the product @ (p} =matrix (N xn). That is, define the

elements of the complex — frequency response matrix H as

L | e 1
P-d Ky \(1-f7)+i(2¢; 1)

p,d =1,2.... n. The response in physical coordinates thus becomes:

(30)

U, =HF, e (31)

Or in component form,
n it
I .
U P; :LZ H j.r |:P, je > j=1,2..n (32)
r=1

The components of the frequency response matrix H are
determined numerically or experimentally. In any case, the
components of H depend on the excitation frequency ().
Determining the elements of H seems laborious and (perhaps) its
physical meaning remains elusive.
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Direct Method to Find Frequency Responses in
MDOF Systems

Nowadays, with fast computing power at our fingertips, the
young engineer prefers to pursue a more direct approach, one
known as brute force or direct aproach. Recall that the equation
of motion is

MU+DU+KU=F, cos(Qt)

or MU+DU+KU=Re(F, )

(33)

_ 1Ot
Assume a periodic solution of the form U= VP € (34)
where V, is a vector in the complex domain. Substitution of Eq.
(34) into eq. (33) gives

K+iQD-Q°M |V, =F, (35)

Define at each excitation frequency the complex impedance
(dynamic stiffness) matrix as:

K, = K+iQD-Q°M | (36)

And find the vector of physical responses (amplitude and phase) as
-1
Ve =[KD(9)} F, (37)

+1V,

imaginary

SinceV, =V,

follows as:

, the physical response for each DOF

real
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U, =V|;,r COS(Qt e ); r=1,2..n
(38)
2 2 . _ VP,—ima inar
VPr :\/VPr—reaI +VPr—imaginary ’ tan(yr ) __( 9 %Pr—real)

The direct method requires calculating the inverse of the
dynamic stiffness matrix at each excitation frequency. The
computational effort to perform this task could be excessive but for
systems with a few DOFs (n small).
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The equations of motion are: d2 d (1)
M- —X+D-—X+K:-X=Fg
dt? dt

where M,D, K are matrices of inertia, damping and stiffness coefficients; and X, V=dX/dt,

d2X/dt? are the vectors of physical displacement, velocity and acceleration, respectively.
The FORCED undamped response to the initial conditions, at t=0, X0,Vo=dX/dt, follows:

For proportional damping, D = a M + B K, so the undamped mode analysis can be used.
o & B are physical constants usually determined from measurements of modal damping.

The equations of motion are:

[Mll Mlzj g2 (le +[D11 Dlzj d [le +(K11 Klzj (le _['E)oj
Ms1 Moo dt?| % D1 Dy ) dt{ X5 Ko1 Kaz ) | X2 Foo

1. Set elements of inertia, stiffness & damping matrices

DATA FOR problem

100 © 2.10° -1.10°) N
= kg K= —
0 50 _1,106 2,106 m N := 2#of DOF
Note M and K are symmetric matrices
example il
a:=0.0-— p:=.001-s
> D=aM+pK
2x103 -1x103 S
D= N.—
-1x10% 2x10° m
. 0 Y 0.0y m
. - “ . := .m ::  —_—
initial conditions ° 1o o o | sec

Applied force vector: = . (10000) N
o — :




[Mlanalysis

2. Find eigenvalues (undamped natural frequencies) and eigenvectors

Set determinant of system of eqns =0

A= [(Kll - Mll'(’)z)’(KZZ - IV|22'032) - (K12 - M12‘032)'(K21 - le'mz)} =@a)

A:a-m4+b-m2+c:(a-x2+b-k+c):(with L =0 (2b)
where the a=Mq 1My 5-M; 5-Ms 4

coefficients ’ ’ ’ ’ (2(;)
are: b= K1’2-|\/|2,1—K1,1'M2,2—K2,2'M1,1+K2,1'M1,2

c=Kq 1Ky 2-Kqg 2Ky 4
The roots of equation (2b) are:

- [—b—(b2—4-a.x2 i bi(b2-aa0)”] 3)
2-a 2-a

also known as eigenvalues. The natural frequencies follow as:

j=1.n o (x_)_5 (1126 ) rad
R N ® | 217.53 ) sec (4)
2 17.92
f:( )Hz
34.62

Note that: A(ml) = A(mz) =0

For each eigenvalue, the eigenvectors (natural modes) are
j=1.n
1 Set arbitrarily first element of vector = 1
aji=| Ki,1-Mg 1-}j
{K1,2- My 21)

1 1
j o ( ) w2 ( ) (5)
MODAL matrix A<J> = g 0.73 -2.73

A is the matrix of eigenvectors (undamped 1 1
modal matrix): each column corresponds to an A =
eigenvector 0.73 -2.73



Plot the mode shapes:

S —F]
AJ , 1 \\
E-E-E_O.?)? \\
i, 2 \
92T JC) N
\
\
-2.73 : =
J
DOF

B== mode 1
©<>® mode 2

3. Modal transformation of physical equations to (natural) modal coordinates

Using transformation:

X =

A-q

EOMs (1) become uncoupled in modal space:

with modal force vector:

Mm-

d? d
—dt2q + Dm'aq + Km-d=Qm

T
Qm=A ‘Fo

and initial conditions (modal displacement=q and modal velocity dg/dt=s)

do = Mm‘l-(AT-M-xo) S = Mm‘l-(AT-M-vo)

The natural modes satisfy the orthogonality properties

T
Mm=A -M-A
m M =

Km=A KA

m

|

T
Dm=A ‘DA
m D =

or better

126.79 —224%x10 14
kg
~1.58x 10" 1% 473.21

1.61x10° 3.18x10°1°\ N

351x10 10 224x107 | M
1.61x10° 3.06x10 3] N
S_
1.8x10 13  224x10% m

Dm ::(X'Mm+B'Km

|

112.6
217.53

(6)

(7)

(8)

(9)

-



Define the modal damping ratios and damped natural freqgs: k=1.

Dm E
k, k _ 2 |-
Ck = 2'Mmk ok od, = mk'[l—(gk) } (11)

(= 0.06 Underdamped modes
0.11

112.6 | _1
0 = s 112.42) _
UNDERDAMPED CASE 217.53 0d = s 1
216.24

4. Find Modal and Physical Response for given initial condition and
Constant Force vector

4 .a Find initial conditions in modal coordinates (displacement = q, velocity = s)

Set inverse of modal mass matrix 1 (AT
Ainv = Mm '(A 'M)

do = Ainv' Xo So = Ainv' Vo

0 s 0 -1
= m = ms
do . o o

4.b Find Modal forces:

T
Qm=A ‘Fo 6.34x 10°
Qm = N
2.37x 104

4.c Build Modal responses:  {yg'gjastic modes = Underdamped

j=1.2

Os. = K. ! static displacement in modal space
m.

Ac = (qo_ - qs_) : coefficients of cos & sin functions.
] i ]

(SO - (;J(DJAC)
AS - J J

i 0d.
J



qi(t) =e

qz(t) = e

_Cl'wl't_(

—C2'032't_(

4.d Build Physical responses:

Ac -cos(md -t)+AS -sin(cod -t))+qS
1 1 1 1 1

Ac -cos(md -t)+AS -sin(cod -t))+qS
2 2 2 2 2

X (1) = a1-91(t) + az-qz(1)

4 .e Graphs of Modal and Physical responses:

Response in modal coordinates

0.01
o /\\//\\/A\/A\/\/\
OO 0.056 0.11 0.17 0.22 0.28
time (s)
— ql
........ q2
Response in physical coordinates
0.01
0.005 . \/ \/ \/ N\ N~ ~
o/ t et et e e,
—0.005
0 0.056 0.11 0.17 0.22 0.28
time (s)
x1

0.33

for plots:

6
Tplot = r

1



5. Interpret response: analyze results, provide recommendations

Note the paramount effect of damping in attenuating the system response.

0.06 112.42\ _1 112.6 |\ _q
Recall for this example: Z; = 0dg = S 0 = S
0.11 216.24 217.53

S-S displacement

-3
Kl-FO—(SX:LO jm

compare to modal derived values:
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The equations of motion are: d2 d (1)
M- —X+D-—X+K:-X=Fg
dt? dt

where M,D, K are matrices of inertia, damping and stiffness coefficients; and X, V=dX/dt,

d2X/dt? are the vectors of physical displacement, velocity and acceleration, respectively.
The FORCED undamped response to the initial conditions, at t=0, X0,Vo=dX/dt, follows:

For proportional damping, D = a M + B K, so the undamped mode analysis can be used.
o & B are physical constants usually determined from measurements of modal damping.

The equations of motion are:

[Mll Mlzj g2 (le +[D11 Dlzj d [le +(K11 Klzj (le _['E)oj
Ms1 Moo dt?| % D1 Dy ) dt{ X5 Ko1 Kaz ) | X2 Foo

1. Set elements of inertia, stiffness & damping matrices

DATA FOR problem

1.10® -1.10°| N
kg K= —
~1.10% 1.10% | M n:= 2#of DOF

100 O
O 50

1
BENNER |, _0 = B:=.001's
S D=aM+pK
1x10% -1x103| s
D = N_
~1x10% 1x10%) M
- 0 vV 0.0 m
. - “ . := .m ::  —_—
initial conditions ° 1o °" 1o | sec

, . 1000
Applied force vector: Fo = ( )-N




[Mlanalysis

2. Find eigenvalues (undamped natural frequencies) and eigenvectors

Set determinant of system of eqns =0

A= [(Kll - Mll'(’)z)’(KZZ - M22'032) - (K12 - M12‘032)'(K21 - M21'®2)} =@a)

A:a-m4+b-m2+c:(a-x2+b-k+c):(with L =0 (2b)
where the a=Mq 1My 5-M; 5-Ms 4

coefficients ’ ’ ’ ’ (2(;)
are: b= K1’2-|\/|2,1—K1,1'M2,2—K2,2'M1,1+K2,1'M1,2

c=Kq 1Ky 2-Kqg 2Ky 4
The roots of equation (2b) are:

- [—b—(b2—4-a.x2 i bi(b2-aa0)”] 3)
2-a 2-a

also known as eigenvalues. The natural frequencies follow as:

j=1.n 5 0 rad
0= (K) 0= —
I e 173.21 ) sec (4)
C2.n 0
f= Hz
27.57

Note that: A(ml) = A(mz) =0

For each eigenvalue, the eigenvectors (natural modes) are

j=1.n
1 Set arbitrarily first element of vector = 1

aJ = Kl,l_Ml,l'}\‘j
{K1,2- My 21)

1 1
MODAL matrix A<J> = g 1 -2 )

A is the matrix of eigenvectors (undamped (

modal matrix): each column corresponds to an A
eigenvector



Plot the mode shapes:

2
[l |
AJ , 1 \\\
=== o \
Aj , 2 \
RS N
\
\
\'(\
_2 -
J
DOF
=== mode 1
©>© mode 2

3. Modal transformation of physical equations to (natural) modal coordinates

(6)

Using transformation: X=Aq

EOMs (1) become uncoupled in modal space:
d? d 7

Mm——q+Dm-S.q+Km'q=Qm (7)
dt dt

with modal force vector: Qm = AT-Fo (8)

and initial conditions (modal displacement=q and modal velocity dg/dt=s)

qo:Mm‘l-(AT-M-xo) so:Mm‘l-(AT-M-vo) (9)

The natural modes satisfy the orthogonality properties

.
Mm=A"MA [0 0
0 300
Km=A KA « _[© ©° N
m: —_—
0 9x10°%) M o
m:( Js'l
173.21
Dm=A' DA p=0 0 N
0 9x103) M

or better Dm=o Mm+p-Km



Define the modal damping ratios and damped natural freqgs: k=1.

Dm

3 k, k _ 2]5
K Mmook Yoy T o] 1- (2 1y
k, k

[ = ( 0 ) ONE RIGID BODY mode with null modal damping
0.09

0 -1
0 = ) 0 -
UNDERDAMPED CASE (173_21J o = ( js 1

4. Find Modal and Physical Response for given initial condition and
Constant Force vector

4 .a Find initial conditions in modal coordinates (displacement = q, velocity = s)

Set inverse of modal mass matrix 1 (AT
Ainv = Mm '(A 'M)

do = Ainv' Xo So = Ainv' Vo

0 s 0 -1
= m = ms
do . o o

4.b Find Modal forces:

T
2.96 x 10°

4.c Build Modal responses:
rigid body mode - NO DAMPING

t)=0p +So t+—— —
da (t) QOl o, M >

elastic mode - UNDERDAMPED
j=2 Qm

Os. = K. 1 static displacement in modal space
m.



Ac = (qo_ - qs_) - coefficients of cos & sin functions.
J i J

So - Cioij-A )
(oj 5 0j Ac,

As_ =
] od.
i
_ o Cooxt -
q2(t) =e -(AC -cos(md -t)+AS -Sln(cod -t))+qS
2 2 2 2 2
for plots:
4.d Build Physical responses:
. : X(t) = a1-q1(D) +az d2(!) Tolot = —
f

2

4 .e Graphs of Modal and Physical responses:
Manalysis

Response in modal coordinates

0.004
0.003 /
0.002
0.001 //
e, eee. —
o] Ceeige o h—% .............................................
o}
O 0.0220.044 0.0650.087 0.11 0.13 0.15 0.17 0.2 0.22
time (s)
— ql
........ q2
Response in physical coordinates
3.47x10~ 3
X(t)l 0.002 '//. ......
. — e
XMz | e
"""" vh @ecccee® ..'.
o R Ty R P e e
-1.15x10" 3
-0.002
O 0.0220.0440.0650.087 0.11 0.13 0.15 0.17 0.2 0.22
0 t T plot

time (s)

x1



X2

5. Interpret response: analyze results, provide recommendations

Note the paramount effect of damping in attenuating the system response.

0] 0] -1
Recall for this example: Z; = 0g = S
0.09

i.e., Modal damping ratios of 9% for elastic mode.



