Derivation of Mode Acceleration Method for MDOF systems (proportional damping or light damping)

(Luis San Andrés, Lecturer. Based on homework delivered by Mr. Rahul Kar)

Problem Statement

Determine the system response of a MDOF system with proportional damping using the **Mode Acceleration method**.

Solution

The differential equation governing the motion of a *n*-DOF linear system is:

$$[M]\ddot{X} + [C]\dot{X} + [K]X = P(t)$$
(1)

where [M], [K], [C] are the $(n_x n)$ matrices of (constant) mass, stiffness and damping coefficients. P(t) is a vector of *n*-external forces, time dependent, and X(t) is the vector of system displacements (physical responses). The physical damping is of proportional type, i.e. [C] = a [M] + b [K]

The system described by (1) has a set of natural frequencies $(\omega_i)_{i=i,..n}$ and associated modal (eigen) vectors $({}^i\phi)_{i=i,..n}$. Each pair $(\omega_i{}^i\phi)$ satisfies the fundamental relationship

$$[K]^{i}\phi = \omega_{i}^{2}[M]^{i}\phi, \quad _{i=1,2,\dots n}$$

$$\tag{2}$$

The physical response X(t) or solution to (1) can be found using modal analysis, i.e.

$$X(t) = [\Phi] \eta(t) = \sum_{i=1}^{n} {}^{i} \phi \ \eta_{i}$$
(3)

where $[\Phi] = \{ \frac{1}{\phi} \phi^2 \phi \dots \phi^n \}$ is the modal matrix. Each of the components of the modal response vector $\eta(t)$ is obtained from solution of the (uncoupled) equations:

$$M_{m_i} \,\ddot{\eta}_i + C_{m_i} \,\dot{\eta}_i + K_{m_i} \,\eta_i = Q_i \qquad \qquad \text{i=1,2,...n}$$
(4)

where $Q = [\Phi]^T P$, and $(K_m, M_m, C_m)_i$ are the *i*-th **modal** stiffness, mass and damping coefficients obtained from:

$$\begin{bmatrix} M_m \end{bmatrix} = \begin{bmatrix} \Phi \end{bmatrix}^T \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} \Phi \end{bmatrix}; \begin{bmatrix} K_m \end{bmatrix} = \begin{bmatrix} \Phi \end{bmatrix}^T \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} \Phi \end{bmatrix}; \begin{bmatrix} C_m \end{bmatrix} = \begin{bmatrix} \Phi \end{bmatrix}^T \begin{bmatrix} C \end{bmatrix} \begin{bmatrix} \Phi \end{bmatrix};$$
(5)

In (3), using a number of modes *m* less than the *n*-DOF is known as **the mode displacement method**, **i.e.**

$$X(t) \cong \sum_{i=1}^{m} {}^{i} \phi \eta_{i} ; {}_{m < n}$$

$$\tag{6}$$

The <u>mode acceleration method</u> aims to find exactly the system static response should *P* be a vector of constant generalized forces. In this case, the mode displacement method does poorly when just a few modes, m << n, are used To derive the appropriate equations, pre-multiply (1) by $[K]^{-1}$, i.e. the *flexibility matrix* (obviously this operation precludes any rigid body motion), to obtain:

$$[K]^{-1}[M]\ddot{X} + [K]^{-1}[C]\dot{X} + X = [K]^{-1}P(t)$$

and

$$X = [K]^{-1} P(t) - [K]^{-1} [M] \ddot{X} - [K]^{-1} [C] \dot{X}$$
(7)

from (6) it follows that $\dot{X} \cong \sum_{i=1}^{m} \phi_i \dot{\eta}_i(t)$ and $\ddot{X} \cong \sum_{i=1}^{m} \phi_i \ddot{\eta}_i(t)$. Replacing these relationships into (7) gives:

$$X(t) \cong \left[K\right]^{-1} P(t) - \sum_{i=1}^{m} \left[K\right]^{-1} \left[M\right]^{i} \phi \ \ddot{\eta}_{i}(t) - \sum_{i=1}^{m} \left[K\right]^{-1} \left[C\right]^{i} \phi \ \dot{\eta}_{i}(t); \quad _{m < n}$$
(8)

Let's work with the terms: $[K]^{-1}[M]^{i}\phi$ and $[K]^{-1}[C]^{i}\phi$. Since each pair $(\omega_{i}, {}^{i}\phi)$ satisfies the fundamental relationship

$$[K]^{i}\phi = \omega_{i}^{2} [M]^{i}\phi \qquad (2)$$

then

$$[K]^{-1} [M]^{i} \phi = (1/\omega_{i}^{2})^{i} \phi$$
(9.a)

and similarly,

$$[K]^{-1} [C]^{i} \phi = (2\xi_i / \omega_i)^{i} \phi \qquad (9.b)$$

where ξ_i is the *i*-th **modal** damping ratio defined as

$$\xi_{i} = \frac{C_{m_{i}}}{C_{cr_{i}}} \quad ; \ [C_{m}] = [\Phi]^{T} [C] [\Phi], \ C_{cr_{i}} = 2 (K_{m_{i}} M_{m_{i}})^{1/2}$$
(10)

Note that in the equation above, $(K_m, M_m)_i$ are the *i*-th **moda**l stiffness and mass coefficients satisfying $\left(\frac{K_{m_i}}{M_{m_i}}\right)^{1/2} = \omega_i$

Replacing (9) into (8) gives the physical response of the system as:

$$X(t) \cong \left[K\right]^{-1} P(t) - \sum_{i=1}^{m} \frac{{}^{i} \phi}{\omega_{i}^{2}} \ddot{\eta}_{i}(t) - \sum_{i=1}^{m} \frac{2\xi_{i} {}^{i} \phi}{\omega_{i}} \dot{\eta}_{i}(t); \quad m < n$$
(10)

which is known as the **mode acceleration response method**. The first term in the response $[K]^{-1}P(t)$ corresponds to a "pseudostatic" static displacement due to P(t).

Note that for $P = P_s$ (*constant*), $X = X_s = [K]^{-1}P_s$ since all $\eta_i = 0$. This simple check certifies the accuracy of the mode acceleration method even when using few modes (m < n).

<u>Reference:</u> MEEN 617 Handout #8 Modal Analysis of MDOF Systems with Proportional Damping, L. SanAndrés, 2008.