
Derivation of Mode Acceleration Method for 
MDOF systems (proportional damping or light 
damping) 
(Luis San Andrés, Lecturer. Based on homework delivered by Mr. Rahul Kar) 

 
Problem Statement 

Determine the system response of a MDOF system with proportional damping using the 
Mode Acceleration method.  
 

Solution 
The differential equation governing the motion of a n-DOF linear system is: 
 

[ ] [ ] [ ] ( )M X C X K X P t+ + =       (1) 
 
where [M], [K], [C] are the (nxn) matrices of (constant) mass, stiffness and damping 
coefficients. P(t) is a vector of n-external forces, time dependent, and X(t)  is the vector of 
system displacements (physical responses). The physical damping is of proportional type, 
i.e. [C] = a [M] + b [K]  
 
The system described by (1) has a set of natural frequencies (ωi)i=i,..n and associated 
modal (eigen) vectors (iφ )i=i,..n. Each pair (ωi iφ) satisfies the fundamental relationship   
 

[K] iφ =ωi
2 [M]  

 iφ, i=1,2,…n    (2) 
 
The physical response X(t) or solution to (1) can be found using modal analysis, i.e. 
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where [ ] { }φφφ n.....21=Φ  is the modal matrix. Each of the components of the modal 
response vector η(t) is obtained from solution of the (uncoupled) equations: 
 

iiimiimiim QKCM =++ ηηη   i=1,2,…n  (4) 
 
where [ ] PQ TΦ= , and (Km, Mm, Cm )i are the i-th modal stiffness, mass and damping 
coefficients obtained from: 
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In (3), using a number of modes m less than the n-DOF is known as the mode 
displacement method, i.e.  
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The mode acceleration method aims to find exactly the system static response 
should  P be a vector of constant generalized forces. In this case, the mode displacement 
method does poorly when just a few modes, m<<n , are used 



 
To derive the appropriate equations, pre-multiply (1) by [K]-1 , i.e. the  flexibility matrix 
(obviously this operation precludes any rigid body motion), to obtain: 
 

1 1 1[ ] [ ] [ ] [ ] [ ] ( )K M X K C X X K P t− − −+ + =  
and 

1 1 1[ ] ( ) [ ] [ ] [ ] [ ]X K P t K M X K C X− − −= − −    (7) 
 

from (6) it follows that
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into (7) gives: 
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Let’s work with the terms: [ ] [ ] φφ ii CKandMK ][][ 11 −− . Since each pair (ωi , iφ) satisfies 
the fundamental relationship  
 

[K] iφ =ωi
2 [M]  

 iφ    (2) 
then  

[K]-1 [M]  
 iφ  = (1/ωi

2)  iφ   (9.a) 
 
and similarly,   [K]-1 [C]  

 iφ  = (2ξi /ωi)  iφ   (9.b) 
 
 where ξi is the i-th modal damping ratio defined as  
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Note that in the equation above, (Km, Mm)i are the i-th modal stiffness and mass 
coefficients satisfying 
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Replacing (9) into (8) gives the physical response of the system as:  
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which is known as the mode acceleration response method. The first term in the 
response 1[ ] ( )K P t− corresponds to a “pseudostatic” static displacement due to P(t).  
 
Note that for P = Ps (constant), X=Xs=[K]-1Ps since all ηi=0. This simple check certifies 
the accuracy of the mode acceleration method even when using few modes (m<n). 

Reference: 
MEEN 617 Handout #8 Modal Analysis of MDOF Systems with Proportional Damping, L. 
SanAndrés, 2008. 


