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ME617 - Handout 7 

(Undamped) Modal Analysis of 
MDOF Systems 
 

The governing equations of motion for a n-DOF linear 
mechanical system with viscous damping are:  
 

( ) ( )t tM U + DU +K U =F    (1) 
 
where andU,U, U are the vectors of generalized displacement, 
velocity and acceleration, respectively; and ( )tF  is the vector of 
generalized (external forces) acting on the system. 
M,D,K represent the matrices of inertia, viscous damping and 
stiffness coefficients, respectively1.  
 

The solution of Eq. (1) is uniquely determined once initial 
conditions are specified. That is, 

 

(0) (0)at 0 ,o ot = → = =U U U U   (2) 
 

In most cases, i.e. conservative systems, the inertia and stiffness 
matrices are SYMMETRIC, i.e. ,T T= =M M K K  . The kinetic 
energy (T) and potential energy (V) in a conservative system are  
 

1 1,
2 2

T TT V= =U M U U K U    (3) 

 

                                                 
1 The matrices are square with n-rows = n columns, while the vectors are n-
rows. 
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In addition, since T > 0, then M is a positive definite matrix2. If V 
>0, then K is a positive definite matrix. V=0 denotes the existence 
of a rigid body mode, and makes K a semi-positive matrix.   
 

In MDOF systems, a natural state implies a certain 
configuration of shape taken by the system during motion. 
Moreover a MDOF system does not possess only ONE natural 
state but a finite number of states known as natural modes of 
vibration. Depending on the initial conditions or external forcing 
excitation, the system can vibrate in any of these modes or a 
combination of them. To each mode corresponds a unique 
frequency knows as a natural frequency. There are as many 
natural frequencies as natural modes.  

 
The modeling of a n-DOF mechanical system leads to a set of n-

coupled 2nd order ODEs, Hence the motion in the direction of one 
DOF, say k, depends on or it is coupled to the motion in the other 
degrees of freedom, j=1,2…n.  

 
In the analysis below, for a proper choice of generalized 

coordinates, known as principal or natural coordinates,  the 
system of n-ODE describing the system motion is independent of 
each other, i.e. uncoupled. The natural coordinates are linear 
combinations of the (actual) physical coordinates, and conversely. 
Hence, the motion in physical coordinates can be construed or 
interpreted as the superposition or combination of the motions in 
each natural coordinate.  
 
 
 

                                                 
2 Positive definite means that the determinant of the matrix is greater than 
zero. More importantly, it also means that all the matrix eigenvalues will be 
positive.  A semi-positive matrix has a zero determinant, with at least an 
eigenvalues equaling zero. 
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For simplicity, begin the analysis of the system by neglecting 
damping, D=0. Hence, Eq.(1) reduces to 
 

( ) ( )t tM U +K U =F    (4) 

and (0) (0)at 0 ,o ot = → = =U U U U  
Presently, set the external force F=0, and let’s find the free 

vibrations response of the system.  
 

 M U +K U =0     (5) 
 

The solution to the homogenous Eq. (5) is simply 
 

cos( )tω θ−U = φ     (6) 
 
which denotes a periodic response with a typical frequency ω . 
From Eq. (6),  

2 cos( )tω ω θ− −U = φ    (7) 
 
Note that Eq. (6) is a simplification of the more general solution  
 

  with and where 1s te s i iω= = −U = φ  (8)  
 
Substitution of Eqs. (6) and (7) into the EOM (5) gives: 

2

2

cos( ) cos( )

cos( )

t t

t

ω ω θ ω θ

ω ω θ

→

→ − − −

⎡ ⎤→ − −⎣ ⎦

M U +K U =0
Mφ +Kφ =0

M +K φ =0

 

 
and since cos( ) 0tω θ− ≠  for most times, then  
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2ω⎡ ⎤−⎣ ⎦M +K φ =0     (9) 
or 

2ω =Mφ Kφ      (10) 
 

Eq. (10) is usually referred as the standard eigenvalue 
problem (mathematical jargon):  

 

1 2where = and
λ

λ ω−

=

=

Aφ φ
Α M K   (11) 

 
Eq.(9) is a set of n-homogenous algebraic equations. A nontrivial 
solution, ≠φ 0  exists if and only if the determinant Δ of the 
system of equations is zero, i.e.   
 

2 0ωΔ= − =M +K     (12) 
 

Eq. (12) is known as the characteristic equation of the system. 
It is a polynomial in 2ω λ= , i.e. 

( )

2 4 6
0 1 2 3

0
1

0 ....

0

n
n

n
i

i
i

a a a a a

a a

ω ω ω ω

λ
=

Δ= = + + + +

Δ= = +∑
 (13) 

This polynomial or characteristic equations has n-roots, i.e. the 
set { } 1,2,....k k n

λ
=

or { } 1,2,....k k n
ω

=
± since ω λ= ± .  

 
The ω’s are known as the natural frequencies of the system. In 

the MATH jargon, the λ’s are known as the eigenvalues (of matrix 
A) 
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Knowledge summary 
a) A n-DOF system has n-natural frequencies. 
 
b) If M and K are positive definite, then 

1 2 10 ....... n nω ω ω ω−< ≤ ≤ .  
 
c) If K is semi-positive definite, then 

1 2 10 ....... n nω ω ω ω−= ≤ ≤ , i.e. at least one natural frequency 
is zero, i.e. motion with infinite period. This is known as 
rigid body mode. 

 
Note that each of the natural frequencies satisfies Eq. (9). 

Hence, associated to each natural frequency (or eigenvalues) 
there is a corresponding natural mode vector (eigenvector) such 
that 
 

[ ] ( ) 1,...,i i i nλ =−M +K φ =0   (14) 
 

The n-elements of an eigenvector are real numbers (for 
undamped system), with all entries defined except for a constant. 
The eigenvectors are unique in the sense that the ratio between two 
elements is constant, i.e.  

( )

( )
constant for any , 1,....j

i

k

k
j i n

ϕ
ϕ

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

 
The actual value of the  elements in the vector is entirely 

arbitrary. Since Eq. (14) is homogenous, if φ  is a solution, so it is 
αφ  for any arbitrary constant α. Hence, one can say that the 
SHAPE of a natural mode is UNIQUE but not its amplitude.  

 
For MDOF systems with a large number of degrees of freedom, 

n>>3, the eigenvalue problem, Eq. (11), is solved numerically.  
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Nowadays, PCs and mathematical computation software allow, 
with a single (simple) command, the evaluation of all (or some) 
eigenvalues and its corresponding eigenvectors in real time, even 
for systems with thousands of DOFs. 

 
Long gone are the days when the graduate student or practicing 

engineer had to develop his/her own efficient computational 
routines to calculate eigenvalues. Handout # 9 discusses briefly 
some of the most popular numerical methods to solve the 
eigenvalue problem. 

 
A this time, however, let’s assume the set of eigenpairs 

{ }( ) 1,2...
,i i i n

ω
=

φ is known.  

 
Properties of natural modes 

The natural modes (or eigenvectors) satisfy important 
orthogonality properties. Recall that each eigenpair 
{ }( ) 1,2...

,i i i n
ω

=
φ satisfies the equation  

   2
( ) 1,...,i i i nω =⎡ ⎤−⎣ ⎦M +K φ =0 .    (15) 

 
Consider two different modes, say mode-j and mode-k, each 

satisfying 
 

2 2
( ) ( ) ( ) ( )andj j j k k kω ω= =Mφ Kφ Mφ Kφ   (16) 

 
Pre-multiply the equations above by ( )

T
kφ and ( )

T
jφ  to obtain 
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2
( ) ( ) ( ) ( )

2
( ) ( ) ( ) ( )

and

T T
j k j k j

T T
k j k j k

ω

ω

=

=

φ Mφ φ Kφ

φ Mφ φ Kφ

   (17)  

 
Now, perform some matrix manipulations. The products 

φTMφ  and φTKφ  are scalars, i.e. not a matrix nor a vector. The 
transpose of a scalar is the number itself. Hence,  

 

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )

( ) ( ) since

T TTT T
j k k j

T T
k j

T T
k j

=

=

=

φ Kφ Kφ φ

φ K φ

φ Kφ K = K

 

and 

( )( ) ( ) ( ) ( ) since
TT T T

j k k j=φ Mφ φ Mφ M = M  
 
for symmetric systems. Thus, Eqs. (17) are rewritten as 
 

2
( ) ( ) ( ) ( )

2
( ) ( ) ( ) ( )

( )

and
( )

T T
j j k j k

T T
k j k j k

a

b

ω

ω

=

=

φ Mφ φ Kφ

φ Mφ φ Kφ

  (18) 

 
 Subtract (b) from (a) above to obtain 
 

( )2 2
( ) ( ) 0T

j k j kω ω− =φ Mφ     (19) 
 
if j kω ω≠ , i.e. for TWO different natural frequencies; then it 
follows that 
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for j k≠    ( ) ( ) 0T
j k =φ Mφ     and    ( ) ( ) 0T

j k =φ Kφ  (20) 
 
for j k=   ( ) ( )

T
j j jM=φ Mφ  and  2

( ) ( )
T

j j j j jK Mω= =φ Kφ  (20) 
 
where Kj and Mj are known as the j-modal stiffness and j-modal 
mass, respectively. 
 

Define a modal matrix Φ  has as its columns each of the 
eigenvectors, i.e. 

[ ]1 2 .. n=Φ φ φ φ    (21)  
 
and the modal properties are written as 
 

[ ] [ ];T TM K= =Φ MΦ Φ KΦ    (22) 
 
where  [M] and [K] are diagonal matrices containing the  modal 
mass and stiffnesses, respectively.  
 

The eigenvector set φ k=1,…n is linearly independent. Hence, 
any vector (v) in n-dimensional space can be described as a linear 
combination of the natural modes, i.e. 

( )
1

n

j j
j

a
=

= =∑v φ Φa           (23) 

 

[ ]

1

2
1 1 2 2 1 2.. ..

..n n n

n

a
a

a a a

a

⎡ ⎤
⎢ ⎥
⎢ ⎥= + + + = =
⎢ ⎥
⎢ ⎥
⎣ ⎦

v φ φ φ φ φ φ Φa
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System Response in Modal Coordinates 
 

The orthogonality property of the natural modes (eigenvectors) 
permits the simplification of the analysis for prediction of system 
response. Recall that the equations of motion for the undamped 
system are 

( ) ( )t tM U +K U =F    (4) 

and (0) 0 (0) 0at 0 ,t = → = =U U U U  
   

Consider the modal transformation ( ) ( )t t=U Φ q   (24)3 

And with ( ) ( )t t=U Φ q , then EOM (4) becomes: 
 

( )tMΦq +KΦq =F  
 
which offers no advantage in the analysis. However, premultiply 
the equation above by TΦ  to obtain 
 

  ( ) ( ) ( )
T T T

tΦ MΦ q + Φ KΦ q =Φ F   (25) 
 
and using the properties of the natural modes, 

[ ] [ ];T TM K= =Φ MΦ Φ KΦ , then Eq. (25) becomes 
  

[ ] [ ] ( )
T

tM K =q + q =Q Φ F    (26) 
 

                                                 
3 Eq. (24) sets the physical displacements U as a function of the 
modal coordinates q. This transformation merely uses the property 
of linear independence of the natural modes. 
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And since [M] and [K] are diagonal matrices. Eq. (26) is just a set 
of n-uncoupled ODEs. That is,  
 

1 1 1 1 1

2 2 2 2 2

.....

n n n n n

M q K q Q
M q K q Q

M q K q Q

+ =
+ =

+ =

     (27) 

 

Or  1,2...with ,j
jj

K
Mj j j j j n j nM q K q Q ω =+ = =   (28) 

 
The set of q’s are known as modal or natural 

coordinates (canonical or principal, too). The vector 

( )
T

t=Q Φ F is known as the modal force vector. 
 

Thus, the major advantage of the modal transformation (24) 
is that in modal space the EOMS are uncoupled. Each equation 
describes a mode as a SDOF system.  
 

The unique solution of Eqs. (28) needs of initial conditions  
specified in modal space, i.e. { },o oq q .  

Using the modal transformation, ;o o o o= =U Φq U Φq  , it 
follows 

1 1;o o o o
− −= =q Φ U q Φ U    (28) 

 
However, Eq. (28) requires of the inverse of modal matrix Φ , 

i.e. 1− =Φ Φ I . For systems with a large number of DOF, n>> 1, 
finding the matrix 1−Φ  is computationally expensive.  
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A more efficient to determine the initial state { },o oq q in modal 
coordinates follows. Start with the fundamental transformation,  

o o=U Φq , and premultiply this relationship by  TΦ M  to 
obtain, 

 

[ ] ,

T T
o o

oM
=

=

Φ M U Φ MΦq
q

 since [ ] TM =Φ MΦ  , hence 

 

[ ]
[ ]

1

1

,T
o o

T
o o

M

M

−

−

=

=

q Φ M U

q Φ M U
    (29a) 

or 

( ) ( )( ) ( )
1 1,

k k

T T
o k o o k o

k k

q q
M M

= =φ M U φ M U  (29b) 

 
Eqs. (29) are much easier to calculate efficiently when n-DOF is 

large. Note that finding the inverse of the modal mass matrix [M]-1 
is trivial, since this matrix is diagonal.  

 
Comparing eqs. (28) and (29a) it follows that 
 

[ ] 11 TM −− =Φ Φ M    (30) 
 
The solution of ODEs j j j j jM q K q Q+ =  with initial 

conditions { },
j jo oq q  follows an identical procedure as in the 

solution of the SDOF response. That is, each modal response adds 
the homogeneous solution and the particular solution. The 
particular solution clearly depends on the time form of the modal 
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force Q(t), i.e step-load, ramp-load, pulse-load, periodic load, or 
arbitrary time form.  
 
Free response in modal coordinates 

Without modal forces, Q=0, the modal equations are 
 

0j H j j H j jM q K q Q+ = =   (31a) 
 
with solutions, for an elastic mode 

 

( ) ( )cos sinj

j j j

j

o
H j o n n

n

q
q q t tω ω

ω
= +     if 0

jnω ≠  (31b) 

; and for a rigid body mode  
 

j jH j o oq q q t= +      if 0
jnω =    (31c) 

j=1,2,….n 
 
Forced response in modal coordinates 

 
For step-loads, S jQ , the modal equations are    

 

j j j j S jM q K q Q+ =    (32a) 
 
and; for an elastic mode, 0

jnω ≠ , 

( ) ( ) ( )cos sin 1 cosj j

j j j j

j

o S
j o n n n

n j

q Q
q q t t t

K
ω ω ω

ω
⎡ ⎤= + + −⎣ ⎦     (32a) 
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; and for a rigid body mode, 0
jnω = , 

  21
2

j

j j

S
j o o

j

Q
q q q t t

M
= + +     (32c) 

j=1,2,….n 
For periodic loads,, the modal equations are    

 
cos( )

jj j j j PM q K q Q t+ = Ω   (33a) 
with solutions 
for an elastic mode, 0

jnω ≠ , and 
jnωΩ ≠  

 

( ) ( )
( )

( )2
1cos sin cos

1
j

j j

j

P
j j n j n

j n

Q
q C t S t t

K
ω ω

ω

⎡ ⎤
⎢ ⎥= + + Ω⎢ ⎥− Ω⎢ ⎥⎣ ⎦

    

(33b) 
 
Note that if 

jnωΩ = , a resonance appears that will lead to system 
destruction.  

For a rigid body mode, 0
jnω = , 

2 cos( )j

j j

P
j o o

j

Q
q q q t t

M
= + − Ω

Ω
   (33c) 

 

For arbitrary-loads jQ  , the modal response is    

( )0

1cos( ) sin( ) sin ( )o

o j j j

j j

tj
j j n n j n

n j n

q
q q t t Q t d

M τω ω ω τ τ
ω ω

⎡ ⎤= + + −⎣ ⎦∫
(34) 
for an elastic mode, 0

jnω ≠ . 
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System Response in Physical Coordinates 
Once the response in modal coordinates is fully determined, the 

system response in physical coordinates follows using the modal 
transformation 
  

( ) ( )t t=U Φ q  = 

[ ]

( )1

2
( ) 1 2 1 1 2 2.. ..

..

t

t n n n

n

q

q q q q

q

⎡ ⎤
⎢ ⎥
⎢ ⎥= = + + +
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

U φ φ φ φ φ φ  

 

( )( )
1

t

n

t j j
j

q
=

=∑U φ      (35) 

 
One important question follows: are all the modal 

responses important and need be accounted for to 
obtain the response in physical coordinates? If not, 
savings in computation time are evident. Hence, the physical 
response becomes 
 

( )( )
1

,
t

m

t j j
j

q m n
=

≈ <∑U φ     (36) 

 
If m<n, then how many modes are to be included to ensure the 
physical response is accurate? That is, which modes are important 
and which others are not? 
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Example: Consider the case of force excitation with frequency 

jnωΩ ≠ and acting for very long times.  The EOMs in physical 
space are 

( )cos tΩPM U +K U =F  
 
Let’s assume there is a little damping; hence, the steady state 
periodic response in modal coordinates is (see eq. (33b)): 
 

( )
( )2

1 cos
1

j

j

P
j

j n

Q
q t

K ω

⎡ ⎤
⎢ ⎥≈ Ω⎢ ⎥− Ω⎢ ⎥⎣ ⎦

  (37a) 

And thus,  

( )
( )2

1

1cos( ) cos
1

j

j

n
P

j
j j n

Q
t t

K ω=

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥= Ω = = Ω⎜ ⎟⎢ ⎥⎜ ⎟− Ω⎢ ⎥⎣ ⎦⎝ ⎠

∑PU U Φq φ

(38) 
The physical response is also periodic with same frequency as the 
force excitation.   
 
Recall that 2

( ) ( )j

T
j n j j jK Mω= = φ Kφ and ( )j

T
P jQ = Pφ F  

 
However, nowadays the engineer in a hurry prefers to dump the 
problem into a super computer; and for cos( )tΩPU = U , finds the 
solution 

12
P

−
⎡ ⎤−Ω⎣ ⎦ PU = K M F    (39) 

 
at a fixed excitation frequency Ω. Brute force substitutes beauty 
and elegance, time savings in lieu of understanding! 



The roots (eigenvalues) of the characteristic equation are

c 10:=b 17−:=a 5:=with:

(4)0 a λ
⎯( )2

⋅ b λ
⎯

⋅+ c+⎡⎣ ⎤⎦=λ
⎯

λ
mo
ko

⎛
⎜
⎝

⎞
⎟
⎠

⋅= Leads to:Let

0 λ
2

5⋅ mo
2 λ 7 ko⋅ mo⋅ 10 ko⋅ mo⋅+( )⋅− 14 ko

2⋅+ 4 ko
2⋅−=

, and expanding the products in the determinantλ ω
2=Let

Δ ω( ) 7 ko⋅ 5 mo⋅ ω
2

⋅−( ) 2 ko⋅ mo ω
2

⋅−( )⋅ 4 ko
2⋅−= 0=

has a non-trivial solution if the determinant of the system of equations equals zero, i.e. if

ORIGIN 1:=Example: Find natural frequencies and natural 
mode shapes of UNDAMPED system.
Given EOMs for a 2DOF - undamped- system:

M2

0

0

M1

⎛⎜
⎜⎝

⎞⎟
⎟⎠

2t

X2

X1

⎛⎜
⎜⎝

⎞⎟
⎟⎠

d
d

2
⋅

2 K2⋅

2− K2⋅

2− K2

2 K2⋅ K1+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

X2

X1

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅+
0

K1 Z⋅
⎛
⎜
⎝

⎞
⎟
⎠

= (1)

where M2=mo, M1=5 mo, K2=ko; K1=5 ko

mo

0

0

5 mo⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

2t

X2

X1

⎛⎜
⎜⎝

⎞⎟
⎟⎠

d
d

2
⋅

2 ko⋅

2− ko⋅

2− ko

2 ko⋅ 5 ko⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

X2

X1

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅+
0

K1 Z⋅
⎛
⎜
⎝

⎞
⎟
⎠

=

(a) PROCEDURE TO FIND NATURAL FREQUENCIES AND NATURAL MODES: Assume the 
motions are periodic with frequency ω, ie

X2 a1 cos ω t⋅( )⋅= X1 a2 cos ω t⋅( )⋅= (2)

Set the RHS of Eq. (1) equal to 0. Substitution of (2) into (1) gives

2 ko⋅ mo ω2⋅−

2− ko⋅

2− ko

7 ko⋅ 5 mo⋅ ω2⋅−

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

a1

a2

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅ cos ω t⋅( )⋅
0

0
⎛
⎜
⎝

⎞
⎟
⎠

=
cancel cos(ωt) since it 
is NOT zero for all times

The homogeneous system of eqns

2 ko⋅ mo ω2⋅−

2− ko⋅

2− ko

7 ko⋅ 5 mo⋅ ω2⋅−

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

a1

a2

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅
0

0
⎛
⎜
⎝

⎞
⎟
⎠

= (3)



(b) Explanation: DOF1 (X2) and DOF2 (X1) move in phase, with X2>X1

for ω2 φ1 1:=

φ2

2 ko⋅ mo ω2
2

⋅−( )
2 ko⋅

=
2 ko⋅ 2.643 ko⋅−( )

2 ko⋅
= φ2

2 2.643−( )
2

:=

φ2 φ:=
φ2

1

0.321−
⎛
⎜
⎝

⎞
⎟
⎠

= is the 2nd eigenvector (natural mode)

(b) Explanation:DOF1 (X2) and DOF2 (X1) move 180 deg OUT of phase, with |X2|>|X1|

(c) find the numerical value for each natural frequency:
ko 105 lb

in
⋅:=mo

1000lb
g

:=Since
ω

0.87

1.626
⎛
⎜
⎝

⎞
⎟
⎠

ko
mo

⎛
⎜
⎝

⎞
⎟
⎠

0.5

⋅:=
0

Note that mass must be 
expressed in physical units 
consistent with the problem, i.e.

ω
170.947

319.495
⎛
⎜
⎝

⎞
⎟
⎠

rad
sec

=

fn
ω

2 π⋅
:=

fn
27.207

50.849
⎛
⎜
⎝

⎞
⎟
⎠

Hz= mo 2.59
lb sec2⋅

in
=

λ1
b− b2 4 a⋅ c⋅−( )0.5

−
2 a⋅

:= λ2
b− b2 4 a⋅ c⋅−( )0.5

+
2 a⋅

:= λ
0.757

2.643
⎛
⎜
⎝

⎞
⎟
⎠

=
ko
mo

⎛
⎜
⎝

⎞
⎟
⎠

and the natural frequencies are:

ω1 λ1( )0.5
:= ω2 λ2( )0.5

:=
ω

0.87

1.626
⎛
⎜
⎝

⎞
⎟
⎠

=
ko
mo

⎛
⎜
⎝

⎞
⎟
⎠

0.5

Find the eigenvectors:
The two equations in (3) are linearly dependent. Thus, one cannot solve for a1 and a2. Setφ1 1:=

arbitrarily; and from the first equation

for ω1

φ2
2 0.757−( )

2
:=φ2

2 ko⋅ mo ω1
2

⋅−( )
2 ko⋅

=
2 ko⋅ 0.757 ko⋅−( )

2 ko⋅
=

φ2 0.621=

φ1 φ:=

is the first eigenvector (natural mode)φ1
1

0.621
⎛
⎜
⎝

⎞
⎟
⎠

=



which are the same ratios as for 
the vectors found earlier

φ2( )
2

φ2( )
1

0.322−=

φ2
0.952

0.306−
⎛
⎜
⎝

⎞
⎟
⎠

=
φ2 eigenvec Z λ2,( ):=

φ1( )
2

φ1( )
1

0.622=
φ1

0.849

0.528
⎛
⎜
⎝

⎞
⎟
⎠

=
φ1 eigenvec Z λ1,( ):=

natural modes:

ω2 λ2( ).5
:=

ω

2 π⋅

27.202

50.849
⎛
⎜
⎝

⎞
⎟
⎠

Hz=ω
170.914

319.495
⎛
⎜
⎝

⎞
⎟
⎠

rad
sec

=

ω1 λ1( ).5
:=

λ
2.921 104×

1.021 105×

⎛
⎜
⎝

⎞
⎟
⎠

1

sec2
=

λ sort eigenvals Z( )( ):=

Z M 1− K⋅:=Let

K
2

2−

2−

7
⎛
⎜
⎝

⎞
⎟
⎠

ko⋅:=M
1

0

0

5
⎛
⎜
⎝

⎞
⎟
⎠

mo⋅:=

Use BUILT IN functions
-
Not much learning

Perform same work using a calculator



(b) Find initial moddal displacements and velocities and modal force vector (Q)
At time t=0s, the system is at REST at its static equilibrium position, hence the initial conditions are null 
displacements and null velocities. Of course, the same applies to modal space, i.e. null initial displacements 
and velocities

X1
X2

for generality, define: Xo
0

0
⎛
⎜
⎝

⎞
⎟
⎠

ft⋅:= Vo
0

0
⎛
⎜
⎝

⎞
⎟
⎠

ft
sec

⋅:= Calculate inverse of A matrix
Φinv Φ

1−
:=

and in modal coordinates
(disp & velocities)

qo Φ inv Xo⋅:= qo_dot Φinv Vo⋅:= velocity

No need for actual calculation
- a knowledge statement sufficesqo

0

0
⎛
⎜
⎝

⎞
⎟
⎠

ft= qo_dot
0

0
⎛
⎜
⎝

⎞
⎟
⎠

ft
sec

=

Define modal force

δm
2.802 10 3−

×

8.013− 10 4−
×

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

in=where are the "static" deflections in modal space. δ2 << δ1, thus first 
modal response is MORE important

where: ωn
170.95

319.5
⎛
⎜
⎝

⎞
⎟
⎠

rad
sec

=q2 t( ) δm2
1 cos ωn2

t⋅⎛
⎝

⎞
⎠

−⎛
⎝

⎞
⎠

⋅:=q1 t( ) δm1
1 cos ωn1

t⋅⎛
⎝

⎞
⎠

−⎛
⎝

⎞
⎠

⋅:=

δm2

Q2

Km2

:=δm1

Q1

Km1

:=
Using the cheat sheet, and since the Initial conditions 
are null, the response in modal coordinates are

i 1= 2,
Mmi 2t

qi
d

d

2⎛⎜
⎜⎝

⎞⎟
⎟⎠

Kmi
qi⋅+ Qi=The EOMs in modal space are uncoupled

and equal to

(c) Modal EOMs and modal responses

Both natural modes will be excitedQ
621

321−
⎛
⎜
⎝

⎞
⎟
⎠

lb=
Q Φ

T F⋅:=

Example: Undamped Modal Analysis mo
1000lb

g
:= ko 105 lb

in
⋅:= g 32.174

ft

sec2
= ORIGIN 1:=

Equations of motion:                                                     natural frequencies,         modal matrix (eigenvectors)

ωn
170.95

319.5
⎛
⎜
⎝

⎞
⎟
⎠

rad
sec

⋅:= Φ
1

0.621

1

0.321−
⎛
⎜
⎝

⎞
⎟
⎠

:=
mo

0

0

5 mo⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

2t

X2

X1

⎛⎜
⎜⎝

⎞⎟
⎟⎠

d

d

2
⋅

2 ko⋅

2− ko⋅

2− ko

7 ko⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

X2

X1

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅+
0

ko Z⋅
⎛
⎜
⎝

⎞
⎟
⎠

=

given: Zo 0.01 in⋅:= provides a Fo ko Zo⋅:= constant force
Define matrices:

at t=0s, Initial conditions:
system is at REST

Km
2.216 105

×

4.006 105
×

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

lb
in

=Mm
7.584

3.925
⎛
⎜
⎝

⎞
⎟
⎠

lb sec2
⋅

in
=

Km2
ωn2

⎛
⎝

⎞
⎠

2
MM2 2,

⋅:=
Mode 2 Mm2

MM2 2,
:=

Km1
ωn1

⎛
⎝

⎞
⎠

2
MM1 1,

⋅:=Mm1
MM1 1,

:=Mode 1modal masses and stiffnesses:

MM
7.584

8.534 10 3−
×

8.534 10 3−
×

3.925

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

lb sec2
⋅

in
=

non-diagonal elements are very small= non zero b/c of 
roundoff in numerical calculator

KM Φ
T K⋅ Φ⋅:=MM Φ

T M⋅ Φ⋅:=(a) FIND modal masses and stiffnesses

F
0 lb⋅

Fo

⎛
⎜
⎝

⎞
⎟
⎠

:=K
2 ko⋅

2− ko⋅

2− ko

7 ko⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

:=M
mo

0

0

5 mo⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

:=



2t

X1

X2

⎛⎜
⎜⎝

⎞⎟
⎟⎠

d

d

2 0

0
⎛
⎜
⎝

⎞
⎟
⎠

= ; hence ===> K
X1end

X2end

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅ F=

And equations of motion reduce to:
2 ko⋅

2− ko⋅

2− ko

7 ko⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

X1end

X2end

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅
0

Fo

⎛
⎜
⎝

⎞
⎟
⎠

= Fo 1 103
× lb=

And solving this system of equations using Cramer's rule
Δ 14 ko

2
⋅ 4 ko

2
⋅−:= determinant of system of eqns.

X1end
Fo 2⋅ ko⋅

Δ
:= X2end

2 ko⋅ Fo⋅

Δ
:=

X1end 2 10 3−
× in= X2end 2 10 3−

× in=

Note that the graph of undamped periodic motions Z(t) and X(t) 
shows oscillatory motions abut these terminal or end values. recall

Zo 0.01 in=
OR

K 1− F⋅
2 10 3−

×

2 10 3−
×

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

in=
Zo

X1end
5=

(d) The response in physical coordinates, X1 and X2, equals (from transformation x=Aq)
with

X1 t( ) q1 t( ) q2 t( )+:= Φ
1

0.621

1

0.321−
⎛
⎜
⎝

⎞
⎟
⎠

=X1 t( ) δm1
1 cos ωn1

t⋅⎛
⎝

⎞
⎠

−⎛
⎝

⎞
⎠

⋅ δm2
1 cos ωn2

t⋅⎛
⎝

⎞
⎠

−⎛
⎝

⎞
⎠

⋅+=

X2 t( ) 0.621 q1 t( )⋅ 0.321 q2 t( )⋅−:= for graph below:

X2 t( ) δm1
0.621⋅ 1 cos ωn1

t⋅⎛
⎝

⎞
⎠

−⎛
⎝

⎞
⎠

⋅ δm2
0.321−( )⋅ 1 cos ωn2

t⋅⎛
⎝

⎞
⎠

−⎛
⎝

⎞
⎠

⋅+= Tlarge 10
2 π⋅

ωn1

⎛⎜
⎜⎝

⎞⎟
⎟⎠

1
⋅:=

δm2
0.321−( )⋅ 2.572 10 4−

× in=
δm1

0.621⋅ 1.74 10 3−
× in=

Explanation: Since q1 and q2 are non-zero, then physical motion, X1 &X2, shows excitation of the 
TWO fundamental modes of vibration - BUT response for second mode is much less

GRAPHs not needed for exam:

0 0.046 0.092 0.14 0.18 0.23 0.28 0.32 0.37
0.002

0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

X1
X2
terminal value

time (sec)

di
sp

la
ce

m
en

ts
 (i

nc
h)

Note that there is no damping or 
attenuation of motions.

Not too complicated physical response. It 
shows dominance of first mode (lowest 
natural freq or largest period) 

2 π⋅

ωn1

0.037 sec=

2 π⋅

ωn2

0.02 sec=

Terminal condition:
If damping is present and since the applied force is a constant, the system will achieve a new steady state
condition. 

In the limit as t approaches very, very large values



0 0.12 0.25 0.37
0.002

0.001
0

0.001
0.002
0.003
0.004
0.005
0.006

X1
X2
terminal

time (sec)
di

sp
la

ce
m

en
ts

 (i
nc

h)

COMPARE actual 
response with a 
response
neglecting q2.
Indeed mode 2 does 
not afffect the physical 
response, except for 
motion X2 sligthly
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Normalization of eigenvectors (natural modes) 

Recall that the components of an eigenvector jφ  are 
ARBITRARY but for a multiplicative constant. If one of the 
elements of the eigenvector is assigned a certain value, then this 
vector becomes unique, since then n-1 remaining elements are 
automatically adjusted to keep constant the ratio between any two 
elements in the vector.  
 

In practice, the eigenvectors are normalized. The resulting 
vectors are called NORMAL MODES.   
 
Some typical NORMS are 
 
L1 norm: ( )( ) 1 max

kj jq= =q      (39a) 
 
L2 norm: 

1 2

2 2 2
( ) 1 ....

nj j j jq q q= = + + +q    (39b) 
 
Or making the mass modal matrix equal to the identity matrix, 
[M]=I, i.e.  
 
 ( ) ( ) 1T

j j jM= =φ Mφ       (39c) 
hence 
 2 2

( ) ( )
T

j j j j j n jK Mω ω= = =φ Kφ    (39d) 
 

This normalization has obvious advantages since it will reduce 
the number of operations when conducting the modal analysis. 
However, the physical significance of the modal equations is lost.  
Note that the modal Eqs. (26) become: 
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2
jj n j jq q Qω+ =  

 
Your lecturer recommends this normalization procedure be 

conducted only for systems with large number of degrees of 
freedom, n>>>1.   

 
Note that the normalization process is a mere convenience, 

devoid of any physical significance. 
 

Rayleigh’s Energy Method 
The method is a procedure to determine an approximate value 

(from above) for the fundamental natural frequency of a MDOF 
system. At times, the full solution of the eigenvalue problem is of 
NO particular interest and an estimate of the system lowest natural 
frequency suffices.  
 
Recall that the pairs { }( ) 1,2...

,i i i n
ω

=
φ  satisfy 2

( ) ( )i i iωKφ = M φ  

 
with properties [ ] [ ];T TM K= =Φ MΦ Φ KΦ     
i.e. with modal stiffness and masses calculated from: 

 2
( ) ( ) ( ) ( ); , andT T i

i i i i i i i
i

KK M Mω= = =φ Kφ φ Mφ   (41) 

 

That is,   
1

2 ( ) ( )2

1
2 ( ) ( )

T
i ii

i T
i i i

K
Mω = =

φ Kφ
φ Mφ

    (42) 

 
Above, the numerator relates to the potential or strain energy of 
the system for the i-mode, and the denominator to the kinetic 
energy for the same mode. 
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Consider an arbitrary vector u and define Rayleigh’s 
quotient R(u) as 
 

1
2

1
2

( )
T

TR =
u Kuu
u Mu    (43) 

 
( )R u  is a scalar whose value depends not only on the matrices M 

& K, but also on the choice of the vector u. 
 

Clearly, if the arbitrary vector u coincides with (or is a multiple 
of) one of the natural mode vectors, then Rayleigh’s quotient will 
deliver the exact natural frequency for that particular mode. It can 
also be shown that the quotient has a stationary value, i.e. a 
minimum, in the neighborhood of the system natural modes 
(eigenvectors). To show this, since u is an arbitrary vector and the 
natural modes are a set of linearly independent vectors, then one 
can represent  

1

n

j j
j

c
=

= =∑u φ Φc     (44) 

Where { }1 2 ..T
nc c c=c  is the vector of coefficients in the 

expansion. Substitution of the expression above into Rayleigh’s 
quotient gives 
 

( ) ( )
( ) ( )

( )
( )

1
2

1
2

( )
T T T

T T T
R = =

c Φ KΦ cΦc K Φc
u

c Φ MΦ cΦc M Φc
   

 
[ ]
[ ]

( )
T

T

K
R

M
=

c c
u

c c
   (45) 
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Assume the modes have been normalized with respect to the 

mass matrix, i.e. 
2 2

2
1

2

1

( )
i

n

T i n
n i

nT

i
i

c
R

c

ωω
=

=

⎡ ⎤⎣ ⎦= =
∑

∑

c c
u

c Ic
  (46a) 

 
Next, consider that the arbitrary vector u (which at this time can be 
regarded as an assumed mode vector) differs very little from the 
natural mode (eigenvector) ( )rφ . This means that in the expansion 
of vector u, the coefficients ; for 1,2,... andi rc c i n i r<< = ≠  
Or  

; <<1 for 1,2,... andi i r ic c i n i rς ς= = ≠  
 
Then, Rayleigh’s quotient is expressed as 
 

2 2 2 2 2

1,

2 2 2

1,

( )
r i

n

r n r i n
i i r

n

r r i
i i r

c c
R

c c

ω ς ω

ς

= ≠

= ≠

+
=

+

∑

∑
u  

 

( )2
2 2 2

1, 1,2

2 2

1, 1,

1
( )

1 1

i ni
r i nr

r

n n

n i n
i i r i i r

nn n

i i
i i r i i r

R

ς ω
ωω ς ω

ω
ς ς

= ≠ = ≠

= ≠ = ≠

+ +
= =

+ +

∑ ∑

∑ ∑
u    (46b) 

The quantities { }2
iς are small, of second order, hence R(u) differs 

from the natural frequency by a small quantity of second order. 
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This implies that R(u)has a stationary value in the vicinity of the 
modal vector ( )rφ . 
 
The most important property of Rayleigh’s quotient is that it 
shows a minimum value in the neighborhood of the 
fundamental mode, i.e. when r=1.  

( )
( )1

1 1

2

2 2 2

2

2

1
( ) , since 1

1

i ni

n
ni

n

n

i
n n

i
i

R

ς ω
ω

ω
ωω ω

ς

=

=

+
= = >

+

∑

∑
u  (47) 

Then each term in the numerator is greater than the corresponding 
one in the denominator. Hence, it follows that 
 

1

2 2( ) nR ω ω= ≥u    (48) 
 
i.e., Rayleigh’s quotient provides an upper bound to the first 
(lowest) natural frequency of the undamped MDOF system. 
Clearly, the equality holds above if one selects 1 (1) 1; 0c c= ≠u φ . 
 
Closure 

Rayleigh’s energy method is generally used when one is 
interested in a quick (but particularly accurate) estimate of the 
fundamental natural frequency of a continuous system, and for 
which a solution to the whole eigenvalue problem cannot be 
readily obtained. The method is based on the fact that the natural 
frequencies have stationary values in the neighborhood of the 
natural modes.  

In addition, Rayleigh’s quotient provides an upper bound to the 
first (lowest) natural frequency. The engineering value of this 
approximation can hardly be overstated. Rayleigh’s energy 
method is the basis for the numerical computing of eigenvectors 
and eigenvalues as will be seen later. 
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Mode Acceleration Method 
Recall that the response in physical coordinates is  

  

( )( )
1

,
t

m

t j j
j

q m n
=

≈ <∑U φ     (36) 

 
where m<n. The procedure is known as the mode displacement 
method.  
 

This method, however, fails to give an accurate solution even 
when a static load is applied (See Structural Dynamics, by R. 
Craig, J. Wiley Pubs, NY, 1981.).   
 

The difficulty is overcome by using the procedure detailed 
below. Recall that the system motion is governed by the set of 
equations 
 

( ) ( )t tM U +K U =F    (4) 
 
And, if there are no rigid body modes, i.e. all natural frequencies 
are greater than zero, then 
 

( )1
( ) ( )t t

− −U =K F M U    (51) 
 

where 1−K  is a flexibility matrix. From Eq. (36),   

  ( ) ( )
1

,
t

m

jj
j

q m n
=

≈ <∑U φ     (52) 

 
Hence, Eq, (51) can be written as 
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( ) ( )

1 1
( ) ( )

1
t

m

t t jj
j

q− −

=

≈ − ∑U K F K M φ   (53) 

 
Using the fundamental identity, 

2 1
( ) ( ) ( ) ( )2

1
i i i i i

i

ω
ω

−= ⇒ =Kφ Mφ φ K Mφ  

Write Eq. (53) as  

( )
( )

1
( ) ( ) 2

1
t

m
j

t t j
j j

q
ω

−

=

⎛ ⎞
≈ − ⎜ ⎟⎜ ⎟

⎝ ⎠
∑

φ
U K F   (54) 

 
Note that     1

( )S t
−=U K F     (55) 

 
is the displacement response vector due to a “pseudo-static” force 
F(t), i.e. without the system inertia accounted for. Hence write Eq. 
(54), as 
 

   
( )

( )( ) ( ) 2
1

t

m
j

t s t j
j j

q
ω=

⎛ ⎞
≈ − ⎜ ⎟⎜ ⎟

⎝ ⎠
∑

φ
U U  ; m<n (56) 

 
The second term above can be thought as the “inertia induced 
response.” 
 
Example: Consider the case of force excitation with frequency 

jnωΩ ≠ and acting for very long times.  The EOMs in physical 
space are: 
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( )cos tΩPM U +K U =F    
With a little damping, the steady state periodic response in modal 
coordinates is 
 

( )
( )2

1 cos
1

j

j

P
j

j n

Q
q t

K ω

⎡ ⎤
⎢ ⎥≈ Ω⎢ ⎥− Ω⎢ ⎥⎣ ⎦

   (37a) 

Recall that, using the mode displacement method, the 
response in physical coordinates is: 

( )
( )2

1

1 cos
1

j

j

m
P

j
j j n

Q
t

K ω=

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥≈ Ω⎜ ⎟⎢ ⎥⎜ ⎟− Ω⎢ ⎥⎣ ⎦⎝ ⎠

∑U φ   (38) 

 
From each of the modal responses, 

( )
( )

( )2
2

1 cos ;
1

jP
j

j j

Q
q t

K ω

⎡ ⎤
⎢ ⎥≈ −Ω Ω
⎢ ⎥− Ω⎣ ⎦

 

( )
( )

2

22 2

1 cos
1

jPj

j j j j

Qq
t

Kω ω ω

⎡ ⎤⎛ ⎞− Ω ⎢ ⎥≈ Ω⎜ ⎟⎜ ⎟ ⎢ ⎥− Ω⎝ ⎠ ⎣ ⎦

  (57) 

 
Since 2

j j jK Mω= ; then  using the mode acceleration method, the 
response is  

( )
( )

2

22
1

1 cos
1

j
m

P
j

j j j j

Q
t

K ω ω=

⎧ ⎫⎡ ⎤⎛ ⎞Ω⎪ ⎪⎢ ⎥≈ + Ω⎜ ⎟⎨ ⎬⎜ ⎟ ⎢ ⎥− Ω⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∑SPU U φ (58

) 
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where the pseudo-static response is 
1−=SP PU K F . Now, in the 

limit, as the excitation frequency decreases, i.e., as 0Ω→ , the 
second term in Eq. (58) above disappears, and hence the physical 
response becomes: 

1−= =SP PU U K F    (59) 
 
which is the exact response, regardless of the number of modes 
chosen. Hence, the mode acceleration method is more accurate 
than the mode displacement method. Known disadvantages 
include more operations.  
 

Finding the flexibility matrix is, in actuality, desirable. In 
particular, if derived from measurements, the flexibility matrix is 
easier to determine than the stiffness matrix. 
 
 
 



are symmetric matrices

Xo
0

0
⎛
⎜
⎝

⎞
⎟
⎠

m⋅:= Vo
0.0

0
⎛
⎜
⎝

⎞
⎟
⎠

m
sec

⋅:=initial conditions

Applied force vector: Fo
10000

5000−
⎛
⎜
⎝

⎞
⎟
⎠

N⋅:=

2. Find eigenvalues (undamped natural frequencies) and eigenvectors

Set determinant of system of eqns = 0

Δ K11 M11 ω
2

⋅−( ) K22 M22 ω
2

⋅−( )⋅ K12 M12 ω
2

⋅−( ) K21 M21 ω
2

⋅−( )⋅−⎡⎣ ⎤⎦= 0= (2a)

(2b)Δ a ω
4

⋅ b ω
2

⋅+ c+= a λ
2

⋅ b λ⋅+ c+( )= 0= with λ ω
2=

where the
coefficients
are:

a M1 1, M2 2,⋅ M1 2, M2 1,⋅−:=
(2c)b K1 2, M2 1,⋅ K1 1, M2 2,⋅− K2 2, M1 1,⋅− K2 1, M1 2,⋅+:=

c K1 1, K2 2,⋅ K1 2, K2 1,⋅−:=

STEP FORCED RESPONSE of Undamped 2-DOF 
mechanical system

ORIGIN 1:=

Dr. Luis San Andres (c) MEEN 363, 617  February 2008

The undamped equations of motion are: (1)M
2t

Xd
d

2
⋅ K X⋅+ Fo=

where M,K are matrices of inertia and stiffness coefficients, and X, V=dX/dt,  d2X/dt2 are the 
vectors of physical displacement, velocity and acceleration, respectively. 
The FORCED undamped response to the initial conditions, at t=0, Xo,Vo=dX/dt, follows:

========================================================================

The equations of motion are:

M11

M21

M12

M22

⎛
⎜
⎝

⎞
⎟
⎠ 2t

x1

x2

⎛
⎜
⎝

⎞
⎟
⎠

d
d

2
⋅

K11

K21

K12

K22

⎛
⎜
⎝

⎞
⎟
⎠

x1

x2

⎛
⎜
⎝

⎞
⎟
⎠

⋅+
F1o

F2o

⎛
⎜
⎝

⎞
⎟
⎠

= (2)

1. Set elements of inertia and stiffness matrices DATA FOR problem

M
100

0

0

50
⎛
⎜
⎝

⎞
⎟
⎠

kg⋅:= K
2 106⋅

1− 106⋅

1− 106⋅

2 106⋅

⎛
⎜
⎝

⎞
⎟
⎠

N
m

⋅:=
n 2:= # of  DOF

Note M and K



2.73

0.37

mode 1
mode 2

DOF

Aj 1,

Aj 2,

j

Plot the mode shapes:

A
1

0.73

1

2.73−
⎛
⎜
⎝

⎞
⎟
⎠

=
A is the matrix of eigenvectors (undamped
modal matrix): each column corresponds to an 
eigenvector

A j〈 〉 aj:=
MODAL matrix

(5)a2
1

2.73−
⎛
⎜
⎝

⎞
⎟
⎠

=a1
1

0.73
⎛
⎜
⎝

⎞
⎟
⎠

=

aj

1

K1 1, M1 1, λ j⋅−

K1 2, M1 2, λ j⋅−( )−

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

:=

Set arbitrarily first element of vector = 1
j 1 n..:=

For each eigenvalue, the eigenvectors (natural modes) are 

Δ ω1( ) Δ ω2( )= 0=Note that:

f
17.92

34.62
⎛
⎜
⎝

⎞
⎟
⎠
Hz=

f
ω

2 π⋅
:=

(4)ω
112.6

217.53
⎛
⎜
⎝

⎞
⎟
⎠

rad
sec

=ω j λ j( ) .5:=
j 1 n..:=

also known as eigenvalues. The natural frequencies follow as:

λ2
b− b2 4 a⋅ c⋅−( ) .5+⎡⎣ ⎤⎦

2 a⋅
:=λ1

b− b2 4 a⋅ c⋅−( ) .5−⎡⎣ ⎤⎦
2 a⋅

:= (3)

The roots of equation (2b) are:



for an elastic mode
OR

for ωk 0=qk qo
k

so
k

t⋅+
1
2

Qm
k

Mm
k k,

⋅ t2⋅+= (10b)
for a rigid body mode

And, the response in the physical coordinates is given
by the superposition of the modal responses, i.e. 

X t( ) A q t( )⋅= (5)

=== CHECK ========================================================
Verify the orthogonality properties of the natural mode shapes

Mm AT M⋅ A⋅:= Mm
126.79

1.58− 10 14−×

2.24− 10 14−×

473.21

⎛
⎜
⎝

⎞
⎟
⎠
kg=

Km AT K⋅ A⋅:=
Km

1.61 106×

3.51 10 10−×

3.18 10 10−×

2.24 107×

⎛
⎜
⎝

⎞
⎟
⎠

N
m

=

ω
112.6

217.53
⎛
⎜
⎝

⎞
⎟
⎠
s-1=

=========================================================================================

3. Modal transformation of physical equations to (natural) modal coordinates

(6)Using transformation: X A q⋅=
EOMs (1) become uncoupled in modal space:

(7) Mm 2t
qd

d

2
⋅ Km q⋅+ Qm=

(8)Qm AT Fo⋅=with modal force vector:

and initial conditions (modal displacement=q and modal velocity dq/dt=s)

qo Mm
1− AT M⋅ Xo⋅( )⋅= so Mm

1− AT M⋅ Vo⋅( )⋅= (9)

The modal responses are of the form: k=1....n 

(10a)qk qo
k

cos ωk t⋅( )⋅
so

k

ωk
sin ωk t⋅( )⋅+

Qm
k

Km
k k,

1 cos ωk t⋅( )−( )⋅+= ωk 0≠



0.01
Response in modal coordinates

4.e Graphs of Modal and Physical responses:

Tplot
6
f1

:=X t( ) a1 q1 t( )⋅ a2 q2 t( )⋅+:=4.d Build Physical responses:
for plots:

q2 t( ) qo
2

cos ω2 t⋅( )⋅
so

2

ω2
sin ω2 t⋅( )⋅+

Qm
2

Km
2 2,

1 cos ω2 t⋅( )−( )⋅+:=

q1 t( ) qo
1

cos ω1 t⋅( )⋅
so

1

ω1
sin ω1 t⋅( )⋅+

Qm
1

Km
1 1,

1 cos ω1 t⋅( )−( )⋅+:=

4.c Build Modal responses:

Qm
6.34 103×

2.37 104×

⎛
⎜
⎝

⎞
⎟
⎠
N=

Qm AT Fo⋅:=

4.b Find Modal forces:

so
0

0
⎛
⎜
⎝

⎞
⎟
⎠
m s-1=qo

0

0
⎛
⎜
⎝

⎞
⎟
⎠
m=

so Ainv Vo⋅:=qo Ainv Xo⋅:=

Ainv Mm
1− AT M⋅( )⋅:=Set inverse of modal mass matrix

4.a Find initial conditions in modal coordinates (displacement = q, velocity = s)

Fo
1 104×

5− 103×

⎛
⎜
⎝

⎞
⎟
⎠
m

N
m

=
DATA FOR problem being analyzed:and Constant forces:

Vo
0

0
⎛
⎜
⎝

⎞
⎟
⎠

m
s

=Xo
0

0
⎛
⎜
⎝

⎞
⎟
⎠
m=Recall the vectors of initial conditions

4. Find Modal and Physical Response for given initial condition and 
Constant Force vector



0 0.056 0.11 0.17 0.22 0.28 0.33
0

0.005

q1
q2

time (s)

0 0.056 0.11 0.17 0.22 0.28 0.33
0.01

0.005

0

0.005

0.01

x1
x2

Response in  physical coordinates

time (s)

 

5. Interpret response: analyze results, provide recommendations

S-S displacement

K 1− Fo⋅
5 10 3−×

0

⎛
⎜
⎝

⎞
⎟
⎠
m=

Recall natural frequencies & periods

f
17.92

34.62
⎛
⎜
⎝

⎞
⎟
⎠
Hz=

1
f

0.056

0.029
⎛
⎜
⎝

⎞
⎟
⎠
s=

A
1

0.73

1

2.73−
⎛
⎜
⎝

⎞
⎟
⎠

=

ω
112.6

217.53
⎛
⎜
⎝

⎞
⎟
⎠
s-1=



K are symmetric matrices

Xo
0

0
⎛
⎜
⎝

⎞
⎟
⎠

m⋅:= Vo
0.0

0
⎛
⎜
⎝

⎞
⎟
⎠

m
sec

⋅:=initial conditions

Applied force vector: Fo
1000

980−
⎛
⎜
⎝

⎞
⎟
⎠

N⋅:=

2. Find eigenvalues (undamped natural frequencies) and eigenvectors

Set determinant of system of eqns = 0

Δ K11 M11 ω2⋅−( ) K22 M22 ω2⋅−( )⋅ K12 M12 ω2⋅−( ) K21 M21 ω2⋅−( )⋅−⎡⎣ ⎤⎦= 0= (2a)

(2b)Δ a ω4⋅ b ω2⋅+ c+= a λ2⋅ b λ⋅+ c+( )= 0= with λ ω2=

where the
coefficients
are:

a M1 1, M2 2,⋅ M1 2, M2 1,⋅−:=
(2c)b K1 2, M2 1,⋅ K1 1, M2 2,⋅− K2 2, M1 1,⋅− K2 1, M1 2,⋅+:=

c K1 1, K2 2,⋅ K1 2, K2 1,⋅−:=

STEP FORCED RESPONSE of Undamped 2-DOF 
mechanical system

ORIGIN 1:=

Dr. Luis San Andres (c) MEEN 363, 617  February 2008

The undamped equations of motion are: (1)M
2t

Xd
d

2
⋅ K X⋅+ Fo=

where M,K are matrices of inertia and stiffness coefficients, and X, V=dX/dt,  d2X/dt2 are the 
vectors of physical displacement, velocity and acceleration, respectively. 
The FORCED undamped response to the initial conditions, at t=0, Xo,Vo=dX/dt, follows:

========================================================================

The equations of motion are: WITH RIGID BODY 
MODEM11

M21

M12

M22

⎛
⎜
⎝

⎞
⎟
⎠ 2t

x1

x2

⎛
⎜
⎝

⎞
⎟
⎠

d
d

2
⋅

K11

K21

K12

K22

⎛
⎜
⎝

⎞
⎟
⎠

x1

x2

⎛
⎜
⎝

⎞
⎟
⎠

⋅+
F1o

F2o

⎛
⎜
⎝

⎞
⎟
⎠

= (2)

1. Set elements of inertia and stiffness matrices DATA FOR problem

M
100

0

0

50
⎛
⎜
⎝

⎞
⎟
⎠

kg⋅:= K
1 106⋅

1− 106⋅

1− 106⋅

1 106⋅

⎛
⎜
⎝

⎞
⎟
⎠

N
m

⋅:=
n 2:= # of  DOF

Note M and



X AUsing transformation: (6)

3. Modal transformation of physical equations to (natural) modal coordinates

2

0

2

mode 1
mode 2

DOF

Aj 1,

Aj 2,

j

Plot the mode shapes:

A
1

1

1

2−
⎛
⎜
⎝

⎞
⎟
⎠

=A is the matrix of eigenvectors (undamped
modal matrix): each column corresponds to an 
eigenvector

A j〈 〉 aj:=
MODAL matrix

(5)a2
1

2−
⎛
⎜
⎝

⎞
⎟
⎠

=a1
1

1
⎛
⎜
⎝

⎞
⎟
⎠

=

aj

1

K1 1, M1 1, λ j⋅−

K1 2, M1 2, λ j⋅−( )−

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

:=

Set arbitrarily first element of vector = 1
j 1 n..:=

For each eigenvalue, the eigenvectors (natural modes) are 

Δ ω1( ) Δ ω2( )= 0=Note that:

f
0

27.57
⎛
⎜
⎝

⎞
⎟
⎠
Hz=

f
ω

2 π⋅
:=

(4)ω
0

173.21
⎛
⎜
⎝

⎞
⎟
⎠

rad
sec

=ω j λ j( ) .5:=
j 1 n..:=

also known as eigenvalues. The natural frequencies follow as:

λ2
b− b2 4 a⋅ c⋅−( ) .5+⎡⎣ ⎤⎦

2 a⋅
:=λ1

b− b2 4 a⋅ c⋅−( ) .5−⎡⎣ ⎤⎦
2 a⋅

:= (3)

The roots of equation (2b) are:

, , , ,



ωk 0=qk qo
k

so
k

t⋅+
1
2

Qm
k

Mm
k k,

⋅ t2⋅+= (10b)
for a rigid body mode

And, the response in the physical coordinates is given
by the superposition of the modal responses, i.e. 

X t( ) A q t( )⋅= (5)

=== CHECK ========================================================
Verify the orthogonality properties of the natural mode shapes

Mm AT M⋅ A⋅:= Mm
150

0

0

300
⎛
⎜
⎝

⎞
⎟
⎠
kg=

Km AT K⋅ A⋅:=
Km

0

0

0

9 106×

⎛
⎜
⎝

⎞
⎟
⎠

N
m

= ω
0

173.21
⎛
⎜
⎝

⎞
⎟
⎠
s-1=

=========================================================================================

4. Find Modal and Physical Response for given initial condition and 
Constant Force vector

Recall the vectors of initial conditions Xo
0

0
⎛
⎜
⎝

⎞
⎟
⎠
m= Vo

0

0
⎛
⎜
⎝

⎞
⎟
⎠

m
s

=

d C t t f

(6)Using transformation: X A q⋅=

EOMs (1) become uncoupled in modal space:

(7) Mm 2t
qd

d

2
⋅ Km q⋅+ Qm=

(8)Qm AT Fo⋅=with modal force vector:

and initial conditions (modal displacement=q and modal velocity dq/dt=s)

qo Mm
1− AT M⋅ Xo⋅( )⋅= so Mm

1− AT M⋅ Vo⋅( )⋅= (9)

The modal responses are of the form: k=1....n 

(10a)qk qo
k

cos ωk t⋅( )⋅
so

k

ωk
sin ωk t⋅( )⋅+

Qm
k

Km
k k,

1 cos ωk t⋅( )−( )⋅+= ωk 0≠

for an elastic mode
OR

for



0 0.022 0.044 0.065 0.087 0.11 0.13 0.15 0.17 0.2 0.22
0

0.001

0.002

0.003

0.004
Response in modal coordinates

time (s)

4.e Graphs of Modal and Physical responses:

Tplot
6
f2

:=X t( ) a1 q1 t( )⋅ a2 q2 t( )⋅+:=4.d Build Physical responses:
for plots:

q2 t( ) qo
2

cos ω2 t⋅( )⋅
so

2

ω2
sin ω2 t⋅( )⋅+

Qm
2

Km
2 2,

1 cos ω2 t⋅( )−( )⋅+:=

q1 t( ) qo
1

so
1

t⋅+
Qm

1

Mm
1 1,

t2

2
⋅+:= response for rigid body mode

4.c Build Modal responses:

Qm
20

2.96 103×

⎛
⎜
⎝

⎞
⎟
⎠
N=

Qm AT Fo⋅:=

4.b Find Modal forces:

so
0

0
⎛
⎜
⎝

⎞
⎟
⎠
m s-1=qo

0

0
⎛
⎜
⎝

⎞
⎟
⎠
m=

so Ainv Vo⋅:=qo Ainv Xo⋅:=

Ainv
0.67

0.33

0.33

0.33−
⎛
⎜
⎝

⎞
⎟
⎠

=

Ainv Mm
1− AT M⋅( )⋅:=Set inverse of modal mass matrix

4.a Find initial conditions in modal coordinates (displacement = q, velocity = s)

Fo
1 103×

980−

⎛
⎜
⎝

⎞
⎟
⎠
m

N
m

=
DATA FOR problem being analyzed:and Constant forces:



q1
q2

time (s)

0 0.022 0.044 0.065 0.087 0.11 0.13 0.15 0.17 0.2 0.22
0.002

0

0.002

x1
x2

Response in  physical coordinates

time (s)

 

5. Interpret response: analyze results, provide recommendations

S-S displacement - NONE

Recall natural frequencies & periods

f
0

27.57
⎛
⎜
⎝

⎞
⎟
⎠
Hz= A

1

1

1

2−
⎛
⎜
⎝

⎞
⎟
⎠

= ω
0

173.21
⎛
⎜
⎝

⎞
⎟
⎠
s-1=




