Appendix A: Conservation of Mechanical Energy = Conservation of Linear Momentum

Consider the dynamics of a $2^{\text {nd }}$ order system composed of the fundamental mechanical elements, inertia or mass (M), stiffness (K), and viscous damping coefficient, (D). The Principle of Conservation of Linear Momentum (Newton's $2^{\text {nd }}$ Law of Motion) leads to the following $2{ }^{\text {nd }}$ order differential equation:

$$
\begin{equation*}
M \ddot{X}+D \dot{X}+K X=F(t) \tag{1}
\end{equation*}
$$

where $X(t)$ represents the coordinate describing the system motion and $F(t)=F_{\text {ext }}$ is the external force applied to the system.

No dry friction (dissipation) mechanism

Now, integrate Eq. (1) between two displacements $X_{1}=X\left(t_{1}\right)$ and $X_{2}=X\left(t_{2}\right)$ occurring at times t_{1} and t_{2}, respectively At these times the system velocities are also given by $\dot{X}_{1}=\dot{X}\left(t_{1}\right), \dot{X}_{2}=\dot{X}\left(t_{2}\right)$, respectively. From Eq. (1) obtain:

$$
\begin{equation*}
\int_{X_{1}}^{X_{2}} M \ddot{X} d X+\int_{X_{1}}^{X_{2}} D \dot{X} d X+\int_{X_{1}}^{X_{2}} K X d X=\int_{X_{1}}^{X_{2}} F(t) d X \tag{2}
\end{equation*}
$$

The acceleration and velocity are defined as $\ddot{X}=\frac{d \dot{X}}{d t}, \dot{X}=\frac{d X}{d t}$, respectively. Using these definitions, write Eq. (2) as:

$$
\int_{t_{1}}^{t_{2}} M \frac{d \dot{X}}{d t} \frac{d X}{d t} d t+\int_{t_{1}}^{t_{2}} D \dot{X} \frac{d X}{d t} d t+\int_{X_{1}}^{X_{2}} K d\left(\frac{1}{2} X^{2}\right)=\int_{X_{1}}^{X_{2}} F(t) d X
$$

or,
$\int_{t_{1}}^{t_{2}} M \frac{d \dot{X}}{d t} \dot{X} d t+\int_{t_{1}}^{t_{2}} D \dot{X} \dot{X} d t+\int_{X_{1}}^{X_{2}} K d\left(\frac{1}{2} X^{2}\right)=\int_{X_{1}}^{X_{2}} F(t) d X$

$$
\begin{equation*}
\int_{\dot{X}_{1}}^{\dot{X}_{2}} M d\left(\frac{1}{2} \dot{X}^{2}\right)+\int_{t_{1}}^{t_{2}} D \dot{X} \dot{X} d t+\int_{X_{1}}^{X_{2}} K d\left(\frac{1}{2} X^{2}\right)=\int_{X_{1}}^{X_{2}} F(t) d X \tag{3}
\end{equation*}
$$

and since (M, K, D) are constants, express Eq. (3) as:

$$
\begin{equation*}
\frac{1}{2} M\left(\dot{X}_{2}^{2}-\dot{X}_{l}^{2}\right)+\int_{t_{l}}^{t_{2}} D \dot{X}^{2} d t+\frac{1}{2} K\left(X_{2}^{2}-X_{l}^{2}\right)=\int_{X_{1}}^{X_{2}} F(t) d X \tag{4}
\end{equation*}
$$

Recognize several of the terms in equation above. These are known as

Change in kinetic energy,
$T_{2}-T_{1}=\frac{1}{2} M \dot{X}_{2}^{2}-\frac{1}{2} M \dot{X}_{1}^{2}$
Change in potential energy,

$$
\begin{equation*}
V_{2}-V_{1}=\frac{1}{2} K X_{2}^{2}-\frac{1}{2} K X_{1}^{2} \tag{5.b}
\end{equation*}
$$

Total work from external force input into the system,

$$
\begin{equation*}
W_{1-2}=\int_{X_{1}}^{X_{2}} F(t) d X \tag{5.c}
\end{equation*}
$$

With $P_{v}=D \dot{X}^{2}$ as the viscous power dissipation, Then the dissipated energy (removed from system) is,

$$
\begin{equation*}
E_{v_{1-2}}=\int_{t_{1}}^{t_{2}} D \dot{X}^{2} d t=\int_{t_{1}}^{t_{2}} P_{v} d t \tag{5.d}
\end{equation*}
$$

With these definitions, write Eq. (4) as

$$
\begin{equation*}
\left(T_{2}-T_{1}\right)+\left(V_{2}-V_{1}\right)+E_{v_{1-2}}=W_{1-2} \tag{6}
\end{equation*}
$$

That is, the change in (kinetic energy + potential energy) + the viscous dissipated energy = External work. This is also known as the Principle of Conservation of Mechanical Energy.

Note that Eq. (1) and Eq. (6) are NOT independent. They actually represent the same physical concept. Note also that Eq. (6) is not to
be mistaken with the first-law of thermodynamics since it does not account for heat flow and/or changes in temperature.

One can particularize Eqn. (6) for the initial time t_{0} with initial displacement and velocities given as (X_{0}, \dot{X}_{0}), and at an arbitrary time (t) with displacements and velocities equal to $(X(t), \dot{X}(t))$, respectively, i.e.,

$$
\begin{equation*}
\left(T_{t}+V_{t}\right)+E_{v_{t}}=W_{t}+T_{0}+V_{0} \tag{7}
\end{equation*}
$$

or, using Eq. (4),

$$
\begin{equation*}
\frac{1}{2} M \dot{X}_{(t)}^{2}+\frac{1}{2} K X_{(t)}^{2}+\int_{t_{0}}^{t} D \dot{X}^{2} d t=\int_{X_{0}}^{X(t)} F(t) d X+\frac{1}{2} M \dot{X}_{0}^{2}+\frac{1}{2} K X_{0}^{2} \tag{8}
\end{equation*}
$$

Note that the last two terms in the right hand side of equation (8) are constant and represent the initial state of (kinetic + potential) energy of the system.

Now, take the time derivative of Eq.. (8), i.e.

$$
\begin{align*}
& \frac{d}{d t}\left[\frac{1}{2} M \dot{X}_{(t)}^{2}+\frac{1}{2} K X_{(t)}^{2}+\int_{t_{0}}^{t} D \dot{X}^{2} d t=\int_{X_{0}}^{X(t)} F(t) d X+\frac{1}{2} M \dot{X}_{0}^{2}+\frac{1}{2} K X_{0}^{2}\right] \\
& \frac{2}{2} M \dot{X}_{(t)} \frac{d \dot{X}_{(t)}}{d t}+\frac{2}{2} K X_{(t)} \frac{d X_{(t)}}{d t}+D \dot{X}^{2}=F(t) \frac{d X_{(t)}}{d t} \tag{9}
\end{align*}
$$

Recall that the derivative of an integral function is just the integrand.

Using well-known definitions $\ddot{X}=\frac{d \dot{X}}{d t}, \dot{X}=\frac{d X}{d t}$, then Eq. (9) is

$$
M \dot{X}_{(t)} \ddot{X}_{(t)}+K X_{(t)} \dot{X}_{(t)}+D \dot{X} \dot{X}_{(t)}=F(t) \dot{X}_{(t)}
$$

and factoring out the velocity, obtain

$$
\left[M \ddot{X}_{(t)}+K X_{(t)}+D \dot{X}\right] \dot{X}_{(t)}=F(t) \dot{X}_{(t)}
$$

Since for most times the velocity is different from zero, i.e. system is moving; then

$$
\begin{equation*}
M \ddot{X}+D \dot{X}+K X=F(t) \tag{1}
\end{equation*}
$$

i.e., the equation for conservation of linear momentum.

Suggestion/recommended work:

Rework the problem for a rotational (torsional) mechanical system and show the equivalence of conservation of mechanical energy to the principle of angular momentum, i.e. start with the following Eqn.

$$
I \ddot{\theta}+D_{\theta} \dot{\theta}+K_{\theta} \theta=T(t)
$$

where ($I, D_{\theta}, K_{\theta}$) are the equivalent mass moment of inertia, rotational viscous damping and stiffness coefficients, $T(t)=T_{\text {ext }}$ is an applied

Tviscous damping
Equivalent Rotational System external moment or torque, and $\theta(t)$ is the angular displacement of the rotational system.

