Appendix A: Conservation of Mechanical Energy = Conservation of Linear Momentum

Consider the dynamics of a 2^{nd} order system composed of the fundamental mechanical elements, inertia or mass (M), stiffness (K), and viscous damping coefficient, (D). The **Principle of Conservation of Linear Momentum** (Newton's 2^{nd} Law of Motion) leads to the following 2^{nd} order differential equation:

$$M\ddot{X} + D\dot{X} + KX = F(t)$$
 (1)

where X(t) represents the coordinate describing the system motion and $F(t)=F_{ext}$ is the external force applied to the system.

Now, integrate Eq. (1) between two displacements $X_1 = X(t_1)$ and $X_2 = X(t_2)$ occurring at times t_1 and t_2 , respectively At these times the system velocities are also given by $\dot{X}_1 = \dot{X}(t_1)$, $\dot{X}_2 = \dot{X}(t_2)$, respectively. From Eq. (1) obtain:

$$\int_{X_{I}}^{X_{2}} M \ddot{X} dX + \int_{X_{I}}^{X_{2}} D \dot{X} dX + \int_{X_{I}}^{X_{2}} K X dX = \int_{X_{I}}^{X_{2}} F(t) dX$$
 (2)

The acceleration and velocity are defined as $\ddot{X} = \frac{d\dot{X}}{dt}$, $\dot{X} = \frac{d\dot{X}}{dt}$, respectively. Using these definitions, write Eq. (2) as:

$$\int_{t_{1}}^{t_{2}} M \frac{d \dot{X}}{dt} \frac{dX}{dt} dt + \int_{t_{1}}^{t_{2}} D \dot{X} \frac{dX}{dt} dt + \int_{X_{1}}^{X_{2}} K d \left(\frac{1}{2} X^{2}\right) = \int_{X_{1}}^{X_{2}} F(t) dX$$

or,

$$\int_{t_{I}}^{t_{2}} M \frac{d \dot{X}}{dt} \dot{X} dt + \int_{t_{I}}^{t_{2}} D \dot{X} \dot{X} dt + \int_{X_{I}}^{X_{2}} K d \left(\frac{1}{2} X^{2}\right) = \int_{X_{I}}^{X_{2}} F(t) dX$$

$$\int_{\dot{X}_{I}}^{\dot{X}_{2}} M d \left(\frac{1}{2} \dot{X}^{2}\right) + \int_{t_{I}}^{t_{2}} D \dot{X} \dot{X} dt + \int_{X_{I}}^{X_{2}} K d \left(\frac{1}{2} X^{2}\right) = \int_{X_{I}}^{X_{2}} F(t) dX$$
(3)

and since (M,K,D) are constants, express Eq. (3) as:

$$\frac{1}{2}M(\dot{X}_{2}^{2}-\dot{X}_{1}^{2})+\int_{t_{1}}^{t_{2}}D\dot{X}^{2}dt+\frac{1}{2}K(\dot{X}_{2}^{2}-\dot{X}_{1}^{2})=\int_{X_{1}}^{X_{2}}F(t)dX$$
(4)

Recognize several of the terms in equation above. These are known as

Change in kinetic energy,

$$T_{2} - T_{1} = \frac{1}{2} M \dot{X}_{2}^{2} - \frac{1}{2} M \dot{X}_{1}^{2}$$
 (5.a)

Change in potential energy,

$$V_{2} - V_{1} = \frac{1}{2}KX_{2}^{2} - \frac{1}{2}KX_{1}^{2}$$
 (5.b)

Total work from external force input into the system,

$$W_{I-2} = \int_{X_I}^{X_2} F(t) dX$$
 (5.c)

With $P_v = D\dot{X}^2$ as the viscous power dissipation, Then

the dissipated energy (removed from system) is,

$$E_{v_{l-2}} = \int_{t_l}^{t_2} D \dot{X}^2 dt = \int_{t_l}^{t_2} P_v dt$$
 (5.d)

With these definitions, write Eq. (4) as

$$(T_{2} - T_{1}) + (V_{2} - V_{1}) + E_{v_{1-2}} = W_{1-2}$$
 (6)

That is, the change in (kinetic energy + potential energy) + the viscous dissipated energy = External work. This is also known as **the Principle of Conservation of Mechanical Energy.**

Note that Eq. (1) and Eq. (6) are **NOT** independent. They actually represent the same physical concept. Note also that Eq. (6) is not to

be mistaken with the first-law of thermodynamics since it does not account for heat flow and/or changes in temperature.

One can particularize Eqn. (6) for the initial time t_0 with initial displacement and velocities given as (X_0, \dot{X}_0) , and at an arbitrary time (t) with displacements and velocities equal to $(X(t), \dot{X}(t))$, respectively, i.e.,

$$\left(T_{t} + V_{t}\right) + E_{v_{t}} = W_{t} + T_{0} + V_{0} \tag{7}$$

or, using Eq. (4),

$$\frac{1}{2}M\dot{X}_{(t)}^{2} + \frac{1}{2}KX_{(t)}^{2} + \int_{t_{0}}^{t}D\dot{X}^{2} dt = \int_{X_{0}}^{X(t)}F(t)dX + \frac{1}{2}M\dot{X}_{0}^{2} + \frac{1}{2}KX_{0}^{2}$$
 (8)

Note that the last two terms in the right hand side of equation (8) are constant and represent the initial state of (kinetic + potential) energy of the system.

Now, take the time derivative of Eq. (8), i.e.

$$\frac{d}{dt} \left[\frac{1}{2} M \dot{X}_{(t)}^{2} + \frac{1}{2} K X_{(t)}^{2} + \int_{t_{0}}^{t} D \dot{X}^{2} dt \right] = \int_{X_{0}}^{X(t)} F(t) dX + \frac{1}{2} M \dot{X}_{0}^{2} + \frac{1}{2} K X_{0}^{2} \right]$$

$$\frac{2}{2} M \dot{X}_{(t)} \frac{d\dot{X}_{(t)}}{dt} + \frac{2}{2} K X_{(t)} \frac{dX_{(t)}}{dt} + D \dot{X}^{2} = F(t) \frac{dX_{(t)}}{dt}$$
(9)

Recall that the derivative of an integral function is just the integrand.

Using well-known definitions
$$\ddot{X} = \frac{d\dot{X}}{dt}$$
, $\dot{X} = \frac{dX}{dt}$, then Eq. (9) is
$$M\dot{X}_{(t)}\ddot{X}_{(t)} + KX_{(t)}\dot{X}_{(t)} + D\dot{X}\dot{X}_{(t)} = F(t)\dot{X}_{(t)}$$

and factoring out the velocity, obtain

$$[M\ddot{X}_{(t)} + KX_{(t)} + D\dot{X}]\dot{X}_{(t)} = F(t)\dot{X}_{(t)}$$

Since for most times the velocity is different from zero, i.e. system is moving; then

$$M \ddot{X} + D \dot{X} + K X = F(t)$$
(1)

i.e., the equation for conservation of linear momentum.

Suggestion/recommended work:

Rework the problem for a rotational (torsional) mechanical system and show the equivalence of conservation of mechanical energy to

the principle of angular momentum, i.e. start with the following Eqn.

$$I\ddot{\theta} + D_{\theta}\dot{\theta} + K_{\theta}\theta = T(t)$$

where $(I, D_{\theta}, K_{\theta})$ are the equivalent mass moment of inertia, rotational viscous damping and stiffness coefficients, $T(t)=T_{ext}$ is an applied

Equivalent Rotational System

external moment or torque, and $\theta(t)$ is the angular displacement of the rotational system.