An example of system parameter identification (Hybrid Brush Seal)

Luis San Andrés (lecturer)

Thanks to Adolfo Delgado, José Baker (RAs) & support from Siemens Power Generation

Experimental Facility

Structural parameters

 K_{shaft} = 243 lbf/in (42.5 kN/m) M_{s+d} = 9.8 lb (4.45 kg) ζ : 0.01 % (damping ratio)

Installation:

High pressure air

6.550" diameter brush seal Max. air Pressure: 60 psig Shaker (20 lb max)

Test Rig: Rotordynamic Configuration

GT2008-50532

Brush Seals

Reduce secondary leakage in turbomachinery
Replace labyrinth seals in HP TM (hot side of steam & gas turbines)
Wear and thermal distortions are a reliability problem

Hybrid Brush Seals

Novel improvement over BS. Reduce more leakage and do not introduce wear or thermal distortion. Allow bi-directional rotation

Courtesy of Advanced Turbomachinery Group®

* Close-up courtesy of Advanced Technologies Group, Inc.

Spring Lever Mechanism

Dynamic Load Tests (no shaft rotation)

Equivalent Test System

$$M_{eq}\ddot{x} + K_{eq}x + C_{eq}\dot{x} = F_{ext}$$

Parameter Identification (no shaft rotation)

ASME DETC2005-84159

$$\overline{x} = x e^{i\omega t}$$

$$\overline{x} = xe^{i\omega t}$$
 $\overline{F} = F_{ext}e^{i\omega t}$

Harmonic force & displacements

$$Z = \frac{\overline{F}}{\overline{x}} = (K_{eq} - \omega^2 M_{eq}) + i \omega C_{eq}$$

Impedance Function

$$W = \oint F_{ext} \dot{x} dt$$

Work External

$$E_{dis} = \pi \omega C_{eq} \left| \overline{x} \right|^2$$

Viscous Dissipation

$$E_{dis} = \gamma_{eq} \pi K_{eq} |\overline{x}|^2 + 4\mu |\overline{F}| |\overline{x}|$$

DRY **FRICTION & STRUCTURAL DAMPING**

HBS Dynamic Stiffness vs. Frequency (no shaft rotation)

Load = 63 N, frequency: 20-100Hz

Pressure ratio $(P_r = P_s/P_d)$ = Discharge/Supply

Model reproduces real part of the impedance under the given supply pressure conditions.

HBS Equivalent Viscous Damping vs. Frequency (no shaft rotation)

Load = 63 N, frequency 20-110Hz

Pressure ratio $(P_r = P_s/P_d)$ = Discharge/Supply

$$C_{eq} = \frac{\gamma_{eq} K_{eq}}{\omega} + \frac{4\mu |\overline{F}|}{\pi \omega |\overline{x}|}$$

Identification of Rotordynamic Force Coefficients

Imbalance forces $(1X=\Omega)$

Identification of Rotordynamic Force Coefficients

For periodic force excitation:

$$\overline{F}_{x} = F_{x}e^{i\omega t} \qquad \overline{y} = ye^{i\omega t}$$

$$\overline{x} = xe^{i\omega t}$$

EOMS reduce to:

$$Z_{xx} \cdot \overline{x} + Z_{xy} \cdot \overline{y} = \overline{F}_{x}$$

$$Z_{yx} \cdot \overline{x} + Z_{yy} \cdot \overline{y} = 0$$

With impedances:

$$Z_{\alpha\beta} = \{K_{\alpha\beta} - M_{\alpha\beta}\omega^2 + iC_{\alpha\beta}\omega\}_{\alpha\beta=x,y}$$

For centered operation (axi-symmetry)

$$Z_{xx} = Z_{yy}$$
 $Z_{xy} = -Z_{yx}$

$$Z_{xy} = -Z_{yx}$$

$$\begin{bmatrix} M_{xx} & 0 \\ 0 & M_{xx} \end{bmatrix} \begin{Bmatrix} \ddot{x} \\ \ddot{y} \end{Bmatrix} + \begin{bmatrix} K_{xx} & K_{xy} \\ -K_{xy} & K_{xx} \end{bmatrix} \begin{Bmatrix} x \\ y \end{Bmatrix} + \begin{bmatrix} C_{xx} & 0 \\ 0 & C_{xx} \end{bmatrix} \begin{Bmatrix} \dot{x} \\ \dot{y} \end{Bmatrix} = \begin{bmatrix} F_{x} \\ 0 \end{bmatrix}$$

Rotor mode shapes

Only first mode excited in rotor speed range (0-1200 rpm)

Effect of rotor speed on rotor-HBS natural frequency

Gyroscopic effects negligible for test rotor speeds (600 and 1,200 rpm [20 Hz])

Axial Location, z [m]

Rotor Speed [RPM]	1 st Backward Nat. Frequency, [Hz]		Forward Nat. equency, [Hz]	2 nd Forward Nat. Frequency, [Hz]	^{3rd} Forward Nat. Frequency, [Hz]
0	30.5		30.5	146	1351
600	29.7		31.4	154	1351
1200	28.8		32.2	163	1351
T=32 Hz					

CROSS-Coupling Effects under rotation

Load=22 N, 600 rpm

Test dynamic stiffness vs. frequency

Load = 22 N, frequency 25-80Hz

Pressure ratio $(P_r = P_s/P_d)$ = Discharge/Supply

$$Z_{xx} = \frac{\overline{F}_{x} \cdot \overline{x}}{(\overline{x}^{2} + \overline{y}^{2})}$$

Model reproduces the measured real part of impedance. Little effect of pressurization

Test impedance (imag) vs. frequency

Load = 22 N, frequency 25-80Hz

Pressure ratio $(P_r = P_s/P_d)$ = Discharge/Supply

$$Z_{yx} = -Z_{yy} \frac{\overline{y}}{\overline{x}}$$

Equivalent Viscous Damping $(C_{xx} \sim C_{eq})$ vs. Frequency

Damping decreases with frequency, with little effect of supply pressure. Minimum value at test system natural frequency (~32 Hz)

Pr=1.7

Pr=2.4

HBS predicted & test direct stiffness vs. frequency

Frequency 25-100 Hz

Predicted HBS stiffness (K_{sxx}) drops slightly in range from 20- 100 Hz. Tests show nearly constant K_{sxx}

Pressure $(P_r = P_s/P_d)$ has negligible effect on seal direct stiffness, K_{sxx}

HBS predicted & test cross stiffness vs. frequency

Frequency 25-100 Hz

$$Z_{yx} = -Z_{xx} \frac{\overline{y}}{\overline{x}}$$

HBS cross stiffness $(K_{sxy}) \ll \text{direct}$ stiffness (K_{sxy})

Pressure $(P_r = P_s/P_d)$ has negligible effect on seal cross stiffness, K_{sxy}

HBS predicted & test damping vs. frequency

Frequency 25-100 Hz

Pressure ratio $(P_r = P_s/P_d) = \text{Discharge/Supply}$

HBS direct damping (C_{sxx}) decreases with excitation frequency. Loss factor coefficient (γ) models well seal structural (hysteresis) damping

Conclusions

- A structural loss factor (γ) and a dry friction coefficient (μ) effectively characterize the energy dissipation mechanism of a Hybrid Brush Seal (HBS).
- HBS Direct stiffness ($K_{sxx} = K_{syy}$) decreases minimally with rotor increasing rotor speed for $P_r = 1.7$ and 2.4 HBS Cross-coupled stiffness ($K_{sxy} = -K_{syx}$) is much smaller than the direct stiffness coefficients.
- HBS Direct viscous damping coefficients decrease as a function of increasing excitation frequency.