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Structural parameters
Kshaft= 243 lbf/in (42.5 kN/m)
Ms+d= 9.8 lb (4.45 kg)
ζ: 0.01 % (damping ratio)

Installation:
6.550” diameter brush seal 
Max. air Pressure: 60 psig 
Shaker (20 lb max)

Test Rig: Rotordynamic Configuration
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Brush Seals
Reduce secondary leakage in turbomachinery
Replace labyrinth seals in HP TM (hot side of steam & gas turbines)
Wear and thermal distortions are a reliability problem

Hybrid Brush Seals
Novel improvement over BS. Reduce more leakage and do not 
introduce wear or thermal distortion. Allow bi-directional rotation

High Pressure Side Low Pressure Side

Bristle Bed 

Pad or shoe 

Back Plate

Spring Lever 
Mechanism

* Close-up courtesy of Advanced 
Technologies Group, Inc.Courtesy of Advanced Turbomachinery Group®
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HBS Dynamic Stiffness vs. Frequency                             
(no shaft rotation)

ModelTESTs

Load = 63 N, frequency: 20-100Hz
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Load = 63 N, frequency 20-110Hz  
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Equivalent damping 
increases slightly with 
pressure differential. 

Results typical of a 
system with dry-friction 

& material damping 
energy dissipation

HBS Equivalent Viscous Damping vs. Frequency      
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Identification of Rotordynamic Force Coefficients
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Identification of Rotordynamic Force Coefficients
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For centered operation 
(axi-symmetry) Zxx = Zyy Zxy = -Zyx



 

Measured Mode Shapes (one end fixed)
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Hybrid Brush Seal Rotor/Shaft Assembly
First Fixed-Free Mode Shape Plot (one end fixed) 

Hybrid Brush Seal Rotor Assembly 

Measured  (Nat. Freq. 20 Hz) Prediction (Nat. Freq. ~21 Hz)

 

Measured Mode Shapes (one end fixed)

-1

-0.5

0

0.5

1

1.5

0.000 0.050 0.100 0.150 0.200 0.250 0.300

Axial Location [m.]

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t

Measured - (Nat. Freq. 144 Hz) Prediction - (Nat. Freq. 151.5 Hz)
Hybrid Brush Seal Rotor/Shaft Assembly

Second Fixed-Free Mode Shape Plot (one end fixed) 
Hybrid Brush Seal Rotor Assembly 

Measured - (Nat. Freq. 144 Hz) Prediction - (Nat. Freq. 151.5 Hz)

Rotor mode shapes
Only first mode excited 
in rotor speed range (0-

1200 rpm)
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SECOND MODE



Effect of rotor speed on rotor-HBS natural frequency
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CROSS-Coupling Effects under rotation

For load along X 
direction, 

rotor principal (X) 
motions 

>>>
cross (Y) motions

3X motions 
always small

Load=22 N, 600 rpm
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600 rpm,    Pr = 1.7 
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Kxx - Mxxω2 

Test dynamic stiffness vs. frequency
Load = 22 N, frequency 25-80Hz  
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Equivalent Viscous Damping (Cxx~Ceq) vs. Frequency

Damping decreases 
with frequency, with 
little effect of supply 
pressure. Minimum 
value at test system 

natural frequency 
(~32 Hz)

Pr=1.7

600 rpm

Pr=2.4

1200 rpm



HBS predicted & test direct stiffness vs. frequency
Frequency 25-100 Hz  Predicted HBS stiffness 

(Ksxx) drops slightly  in 
range from 20- 100 Hz.

Tests show nearly constant 
Ksxx

Pressure (Pr = Ps/Pd) has 
negligible effect on seal 

direct stiffness, Ksxx
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HBS predicted & test cross stiffness vs. frequency
Frequency 25-100 Hz  

HBS cross stiffness 
(Ksxy) << direct 
stiffness (Ksxx)

Pressure (Pr = Ps/Pd) has 
negligible effect on seal 

cross stiffness, Ksxy
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Increasing loss factor (γ )

HBS predicted & test damping vs. frequency
Frequency 25-100 Hz  

HBS direct damping (Csxx) decreases with excitation frequency. Loss factor 
coefficient (γ) models well seal structural (hysteresis) damping
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Conclusions

• A structural loss factor (γ) and a dry friction 
coefficient(μ) effectively characterize the energy 
dissipation mechanism of a Hybrid Brush Seal (HBS).

• HBS Direct stiffness (Ksxx = Ksyy) decreases minimally 
with rotor increasing rotor speed for Pr = 1.7 and 2.4 HBS 
Cross-coupled stiffness (Ksxy = -Ksyx) is much smaller than the direct 
stiffness coefficients.

• HBS Direct viscous damping coefficients decrease as a 
function of increasing excitation frequency.


