

Hydrodynamic fluid film bearings and their effect on the stability of rotating machinery

Dr. Luis San Andres

Mast-Childs Professor

Lsanandres@tamu.edu

http://rotorlab.tamu.edu/me626

September 2010

畿

Lubricated Journal Bearings

Radial and axial load support of rotating machinery – low friction and long life

Advantages

Do not require external source of pressure.

Support heavy loads. The load support is a function of the lubricant viscosity, surface speed, surface area, film thickness and geometry of the bearing.

Long life (infinite in theory) without wear of surfaces.

Provide stiffness and damping coefficients of large magnitude.

Disadvantages

Thermal effects affect performance if film thickness is too small or available flow rate is too low.

Potential to induce hydrodynamic instability, i.e. loss of effective damping for operation well above critical speed of rotor-bearing system

Typically use MINERAL OIL as lubricant. Modern trend is to replace with working fluid (water)

Fundamentals of Thin Film Lubrication

•Film thickness << other dimensions •No curvature effects •Laminar flow, inertialess

TYP $(c/L^*) = 0.001$

$$\operatorname{Re} = \frac{\rho U_* c}{\mu}$$

SMALL Couette flow Reynolds #

Flow equations: continuity + momentum (x,y)

Cylindrical bearing

$$\frac{\partial (v_x)}{\partial x} + \frac{\partial (v_y)}{\partial y} + \frac{\partial (v_z)}{\partial z} = 0$$

$$0 = -\frac{\partial P}{\partial x} + \mu \frac{\partial^2 v_x}{\partial y^2}; \quad 0 = -\frac{\partial P}{\partial z} + \mu \frac{\partial^2 v_x}{\partial y^2}$$

Quasi-static (pressure forces = viscous forces)

Figures 1 & 2 Geometry of flow region in a thin fluid film bearing (h << Lx, Lz)

Importance of fluid inertia in thin film flows

			Reynolds numbers		
fluid	Absolute viscosity (μ) lbm.ft.s x 10 ⁻⁵	Kinematic viscosity (v) centistoke	Re at 1,000 rpm	Re at 10,000 rpm	
Air	1.23	15.4	9.9	99	
Thick oil	1,682	30.0	5.1	51	
Light oil	120	2.14	71	711	
Water	64	1.00	159	1,588	
Liquid hydrogen	1.075	0.216	705	7,052	
Liquid oxygen	10.47	0.191	794	7,942	
Liquid nitrogen	13.93	0.179	848	8,477	
R134 refrigerant	13.30	0.163	930	9,296	

Fluid inertia is important for operation at high speeds and with process fluids. These are prevalent conditions in HP turbomachinery

Table 1

Importance of fluid inertia effects on several fluid film bearing applications. $(c/R_J)=0.001$, $R_J=38.1$ mm (1.5 inch)

Fluid inertia (Bernoulli's effect) causes sudden pressure drop (or raise) at sharp inlets (exits). Most important effect on annular pressure seals and hydrostatic bearings with process fluids

Thin Film Lubrication: Reynolds Equation

Kinematics of journal motion

 $\mathbf{e}_x = \mathbf{e} \cos(\phi); \ \mathbf{e}_y = \mathbf{e} \sin(\phi)$

$$\begin{bmatrix} \dot{e}_{X} \\ \dot{e}_{Y} \end{bmatrix} = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} \dot{e} \\ e\dot{\phi} \end{bmatrix}$$

Set: incompressible fluid (oil)

Reynolds Eqn. in fixed coordinates (X,Y)

$$\frac{1}{R^2} \frac{\partial}{\partial \Theta} \left\{ \frac{h^3}{12\mu} \frac{\partial P}{\partial \Theta} \right\} + \frac{\partial}{\partial z} \left\{ \frac{h^3}{12\mu} \frac{\partial P}{\partial z} \right\} = \left\{ \dot{e}_X + e_Y \frac{\Omega}{2} \right\} \cos \Theta + \left\{ \dot{e}_Y - \frac{\Omega}{2} e_X \right\} \sin \Theta$$

OJ

Reynolds Eqn. in moving coordinates)

$$\frac{1}{R^2} \frac{\partial}{\partial \theta} \left\{ \frac{h^3}{12\mu} \frac{\partial P}{\partial \theta} \right\} + \frac{\partial}{\partial z} \left\{ \frac{h^3}{12\mu} \frac{\partial P}{\partial z} \right\} = \dot{e} \cos \theta + e \left\{ \dot{\phi} - \frac{\Omega}{2} \right\} \sin \theta$$

For circular centered orbits:: radius (e) and $\dot{\phi} = \Omega/2$

Loss of load capacity

Hydrodynamic pressure *P*=0

7

Journal bearing reaction force

Force = integration of pressure field on journal surface

$$\begin{bmatrix} F_r \\ F_t \end{bmatrix} = \int_0^L \int_0^{2\pi} P(\theta, z, t) \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} R \cdot d\theta \ dz$$

$$\begin{bmatrix} F_X \\ F_Y \end{bmatrix} = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} F_r \\ F_t \end{bmatrix}$$

Dynamic forces = fn. of journal position and velocities, rotational speed (Ω), viscosity (μ) and geometry (*L*, *D*, *c*)

$$F_{\alpha} = F_{\alpha}(\Omega, \dot{e}_{X}, \dot{e}_{Y}) = F_{\alpha}\left(\dot{e}, e\left[\dot{\phi} - \frac{\Omega}{2}\right]\right)$$

LONG journal bearing (limit geometry)

LONG BEARING MODEL

L/D >> 1

 $dP/dz \rightarrow 0$

L/D >>> 1

 $\frac{\partial}{\partial t} \{h\} + \frac{\Omega}{2} \frac{\partial}{\partial \Theta} \{h\} = \frac{\partial}{\partial z} \left\{ \frac{h^3}{12 \,\mu} \frac{\partial P}{\partial z} \right\}$

Pressure does not vary axially. Not applicable for most practical cases, except sealed squeeze film dampers

SHORT journal bearing (limit geometry)

SHORT JOURNAL BEARING MODEL

$$P(\theta, z, t) - P_a = \frac{6\mu \left[\dot{e}\cos\theta + e\left(\dot{\phi} - \frac{\Omega}{2}\right)\sin\theta\right]}{C^3 H^3} \left\{z^2 - \left(\frac{L}{2}\right)^2\right\}$$

Hydrodynamic pressure is proportional to viscosity (μ), speed (Ω), and most important to:

Control of tolerances in machined clearance is critical for reliable performance

STATIC LOAD PERFORMANCE

Force Balance for Static Load

Radial and tangential forces for L/D=0.25 bearing. $\mu=0.019$ Pa.s, L=0.05 m, c=0.1 mm, 3, 000 rpm,

Journal bearing can generate large reaction forces. Highly nonlinear functions of journal eccentricity Bearing reaction force = applied static load (% of rotor weight)

$$F_r = -\frac{\mu R L^3 \Omega}{c^3} \frac{\varepsilon^2}{\left(1 - \varepsilon^2\right)^2}; \quad F_t = +\frac{\mu R L^3 \Omega}{c^2} \frac{\pi \cdot \varepsilon}{4\left(1 - \varepsilon^2\right)^{3/2}}$$

Figures 8 & 9

DESIGN PARAMETER: STATIC LOAD PERFORMANCE

DESIGN PARAMETER: STATIC LOAD PERFORMANCE

DESIGN PARAMETER: STATIC LOAD PERFORMANCE

14

DYNAMICS OF ROTOR-BEARING SYSTEM

Symmetric - rigid rotor supported on short length journal bearings

 $M \ddot{X} = F_X + M u \Omega^2 \sin(\Omega t) + F_o$ $M \ddot{Y} = F_Y + M u \Omega^2 \cos(\Omega t)$

Figure 13 Rigid rotor supported on journal bearings. (u) imbalance, (e) journal eccentricity

×

DYNAMICS OF ROTOR-BEARING SYSTEM

Consider small amplitude motions about static equilibrium position (SEP). SEP defined by applied static load.

$$F_{X_{o}} = -F_{o}, \quad F_{Y_{o}} = 0, \quad \Rightarrow e_{X_{o}}, e_{Y_{o}} \text{ or } e_{o}, \phi_{o}$$
Let:
$$e_{X} = e_{X_{o}} + \Delta e_{X}(t), \quad e_{Y} = e_{Y_{o}} + \Delta e_{Y}(t)$$

Static load

$$F_{X} = F_{X_{o}} + \frac{\partial F_{X}}{\partial X} \Delta X + \frac{\partial F_{X}}{\partial Y} \Delta Y + \frac{\partial F_{X}}{\partial \dot{X}} \Delta \dot{X} + \frac{\partial F_{X}}{\partial \dot{Y}} \Delta \dot{Y}$$

$$F_{Y} = F_{Y_{o}} + \frac{\partial F_{Y}}{\partial X} \Delta X + \frac{\partial F_{Y}}{\partial Y} \Delta Y + \frac{\partial F_{Y}}{\partial \dot{X}} \Delta \dot{X} + \frac{\partial F_{Y}}{\partial \dot{Y}} \Delta \dot{Y}$$

16

Figure 14 Small amplitude journal motions about an equilibrium position

ROTORDYNAMIC FORCE COEFFICIENTS

The "physical representation" of stiffness and damping coefficients in lubricated bearings Strictly valid for small amplitude motions. Derived from SEP

ROTORDYNAMIC FORCE COEFFICIENTS

$$\begin{bmatrix} M & O \\ O & M \end{bmatrix} \begin{pmatrix} \Delta \ddot{X} \\ \Delta \ddot{Y} \end{pmatrix} + \begin{bmatrix} C_{XX} & C_{XY} \\ C_{YX} & C_{YY} \end{bmatrix} \begin{pmatrix} \Delta \dot{X} \\ \Delta \dot{Y} \end{pmatrix} + \begin{bmatrix} K_{XX} & K_{XY} \\ K_{YX} & K_{YY} \end{bmatrix} \begin{pmatrix} \Delta X \\ \Delta Y \end{pmatrix} = M u \Omega^2 \begin{pmatrix} \cos \Omega t \\ \sin \Omega t \end{pmatrix}$$

Strictly valid for small amplitude motions. Derived from SEP

Journal Bearing: STIFFNESS COEFFICIENTS

 $\sigma = \frac{\mu \,\Omega LR}{\mu \,\Omega LR}$ **Journal Bearing: DAMPING COEFFICIENTS** 4W100 100 Damping Damping Cxx 10 10 =Cyx··. Суу Cvv xy=Cyx 1 0.01 0.2 0.8 0.1 10 0 0.4 0.6 Eccentricity (e/c) Sommerfeld # (σ) Cxx Cyy Cxy **High speed High speed** Cvx Low load Low load Low speed Large viscosity Large viscosity Large load Low viscosity $\sigma = \frac{\mu \,\Omega L R}{\Gamma}$ $\mathbf{C}_{\alpha\beta} = \mathbf{C}_{\alpha\beta} (\mathbf{C}\Omega/\mathbf{F}_{o})$

Care with non dimensional value interpretation

Figure 16 & 17 Bearing damping versus eccentricity and design number (σ)

20

Journal Bearing: OPERATION at CENTERED CONDITION

STABILITY OF ROTOR-BEARING SYSTEM

$$\begin{bmatrix} M & O \\ O & M \end{bmatrix} \begin{pmatrix} \Delta \ddot{X} \\ \Delta \ddot{Y} \end{pmatrix} + \begin{bmatrix} C_{XX} & C_{XY} \\ C_{YX} & C_{YY} \end{bmatrix} \begin{pmatrix} \Delta \dot{X} \\ \Delta \dot{Y} \end{pmatrix} + \begin{bmatrix} K_{XX} & K_{XY} \\ K_{YX} & K_{YY} \end{bmatrix} \begin{pmatrix} \Delta X \\ \Delta Y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

If rotor-bearing system is to become unstable, this will occur at a <u>threshold speed of rotation</u> (Ωs) with rotor performing (undamped) orbital motions at a <u>whirl frequency</u> (ωs)

$$x = A e^{j\omega_s t} = A e^{j\overline{\omega}\tau} ; \quad y = B e^{j\omega_s t} = B e^{j\overline{\omega}\tau} ; \quad j = \sqrt{-1}$$

STABILITY OF ROTOR-BEARING SYSTEM

ratio

= whirl frequency (ω s) threshold speed instability (Ω s)

The WFR is independent of the rotor characteristics (rotor mass and flexibility)

$$M \omega_s^2 = k_{eq} \left(\frac{F_o}{C}\right) = K_{eq} \implies \omega_s = \sqrt{\frac{K_{eq}}{M}} = \omega_n \implies$$

whirl frequency equals the natural frequency of rigid rotor supported on journal bearings²³

WHIRL FREQUENCY RATIO

 $\sigma = \frac{\mu \ \Omega LR}{4W} \left(-\frac{\mu}{4W} \right)$

Figure 19 Threshold speed of instability versus eccentricity and design number (σ)

CRITICAL MASS

Critical mass equals maximum mass rotor is able to support stably if current operating speed = threshold speed of instability.

Critical mass decreases for centered condition. Unlimited for large (e/c)

Figure 20 Critical mass versus eccentricity and design number (σ)

EFFECTS OF ROTOR FLEXIBILITY

Rotor flexibility decreases system natural frequency, thus lowering threshold speed of instability. WFR still = 0.50

Forces in rotating coordinate system

$$\begin{pmatrix} F_r \\ F_t \end{pmatrix}_d = - \begin{bmatrix} K_{rr} & K_{rt} \\ K_{tr} & K_{tt} \end{bmatrix} \begin{pmatrix} \Delta e \\ e_0 \Delta \phi \end{pmatrix} - \begin{bmatrix} C_{rr} & C_{tr} \\ C_{tr} & C_{tt} \end{bmatrix} \begin{pmatrix} \Delta \dot{e} \\ e_0 \Delta \dot{\phi} \end{pmatrix}$$

Bearing force coefficients at (e/c)=0

$$K_{rr} = K_{tt} = C_{rt} = C_{tr} = 0$$

$$\overline{K} = K_{rt} = -K_{tr} = \frac{\Omega}{2}\overline{C}; \quad \overline{C} = C_{tt} = C_{rr} = \frac{\mu R L^3}{C^3} \frac{\pi}{2}$$

Resultant forces

Figure 22

$$F_{r_d} = 0; \qquad F_{t_d} = -(C_{tt} \omega - K_{rt}) \Delta e$$

At centered condition: No radial support, tangential force must be < 0 to oppose whirl motion

$$(C_{tt} - \frac{1}{\omega} K_{rt}) = C_{eq} < 0$$

Loss of damping for speeds above ωs

Figure 22 Force diagram for circular centered whirl motions

Figure 23 Forces driving and retarding rotor whirl motion

$$E = -(2\pi\Delta e^2)(C_{tt}\omega - K_{rt}) = -2Area_{orbit}C_{eq}\omega$$

Work from bearing forces. E<0 is dissipative; E>0 adds energy to whirl motion

Energy from cross-coupled forces = Area $(K_{xy}-K_{yx})$

Bearing asymmetry creates strong stiffness asymmetry – a remedy to reduce potential for hydrodynamic instability

Amplitudes of rotor motion versus shaft speed. Experimental evidence of rotordynamic instability

Waterfall of recorded rotor motion demonstrating subsynchronous whirl

WFR ~ 0.47 X

Transition from oil whirl to oil whip (sub sync freq. locks at system natural frequency)

TC supported on semi-floating ring bearings

Automotive Turbocharger

36

CLOSURE

Commercial rotating machinery implements bearing configurations aiming to reduce and even eliminate the potential of hydrodynamic instability (sub synchronous whirl)

Cutting axial grooves in the bearing to supply oil flow into the lubricated surfaces generates some of these geometries.

Other bearing types have various patterns of variable clearance (preload and offset) to create a pad film thickness that has strongly converging wedge, thus generating a direct stiffness for operation even at the journal centered position.

In tilting pad bearings, each pad is able to pivot, enabling its own equilibrium position. This feature results in a strongly converging film region for each loaded pad and the near absence of cross-coupled stiffness coefficients.

Bearing Type	Advantages	Disadvantages	Comments
Plain Journal	 Easy to make Low Cost 	1. Most prone to oil whirl	Round bearings are nearly always "crushed" to make elliptical bearings
Partial Arc	 Easy to make Low Cost Low horsepower loss 	 Poor vibration resistance Oil supply not easily contained 	Bearing used only on rather old machines
Axial Groove	 Easy to make Low Cost 	1. Subject to oil whirl	Round bearings are nearly always "crushed" to make elliptical or multi- lobe
Floating Ring	 Relatively easy to make Low Cost 	1. Subject to oil whirl (two whirl frequencies from inner and outer films (50% shaft speed, 50% [shaft + ring] speeds)	Used primarily on high speed turbochargers for PV and CV engines

Bearing Type	Advantages	Disadvantages	Comments
Elliptical	 Easy to make Low Cost Good damping at critical speeds 	 Subject to oil whirl at high speeds Load direction must be known 	Probably most widely used bearing at low or moderate rotor speeds
Offset Half (With Horizontal Split)	 Excellent suppression of whirl at high speeds Low Cost Easy to make 	 Fair suppression of whirl at moderate speeds Load direction must be known 	High horizontal stiffness and low vertical stiffness - may become popular - used outside U.S.
Three and Four Lobe	 Good suppression of whirl Overall good performance Moderate cost 	 Expensive to make properly Subject to whirl at high speeds 	Currently used by some manufacturers as a standard bearing design

 Table 2
 Fixed Pad Pre-Loaded Journal Bearings

40

Bearing Type	Advantages	Disadvantages	Comments	
Pressure Dam (Single Dam)	 Good suppression of whirl Low cost Good damping at critical speeds Easy to make 	 Goes unstable with little warning Dam may be subject to wear or build up over time Load direction must be known 	Very popular in the petrochemical industry. Easy to convert elliptical over to pressure dam	
Multi-Dam Axial Groove or Multiple- Lobe	 Dams are relatively easy to place in existing bearings Good suppression of whirl Relatively low cost Good overall performance 	 Complex bearing requiring detailed analysis May not suppress whirl due to non bearing causes 	Used as standard design by some manufacturers	
Hydrostatic	 Good suppression of oil whirl Wide range of design parameters Moderate cost 	 Poor damping at critical speeds Requires careful design Requires high pressure lubricant supply 	Generally high stiffness properties used for high precision rotors	

41

Bearing Type	Advantages	Disadvantages	Comments
Tilting Pad journal bearing Flexure pivot,	1. Will not cause whirl (no cross coupling)	 High Cost Requires careful design Poor damping at critical speeds Hard to determine 	Widely used bearing to stabilize machines with subsynchronous
tilting pad bearing		actual clearances 5. Load direction must be known	non-bearing related excitations
Foil bearing	1.Tolerance to misalignment. 2.Oil-free	 High cost. Dynamic performance not well known for heavily loaded machinery. Prone to subsynchronous whirl 	Used mainly for low load support on high speed machinery (APU units).

 Table 3
 Tilting Pad Bearings & Foil Bearings