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ABSTRACT 
 

Improvement in the Mechanical Properties of B-staged Carbon Nanotube/Epoxy Based 

Thin Film Systems. (April 2009) 

 

Kevin Lee White 
Department of Industrial Engineering 

Texas A&M University 
 

Research Advisor: Dr. Hung Jue Sue 
Department of Mechanical Engineering 

 

Polymeric systems have been the subject of tremendous interest to the aerospace 

industry due to their high strength per weight ratio but have not seen the use projected 

due to their poor compression after impact strength, fracture toughness, and electrical 

conductivity.  This work has focused on the integration of single walled carbon 

nanotubes (SWCNTs) into polymeric systems to serve as interleaves to improve the 

mechanical properties of carbon fiber panels.  Pristine, oxidized, and functionalized 

carbon nanotubes were produced and cast into B-staged (50% cured) thin film epoxy 

resin systems.  Mechanical characterizations were carried out on bulk samples and 

showed that the introduction of well dispersed SWCNTs functionalized with 

sulfanilamide improved the Young’s modulus of the neat epoxy by 16%, the tensile 

strength by 47%, the elongation at break by 157%, and the fracture toughness, as 

determined by KIC, by 10%.  Nylon was introduced into the system as a toughening 

agent at 10 wt% and showed an 8% increase in the Young’s modulus, a 29% increase in 
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tensile strength, a 183% increase in elongation at break, and a 44% increase in fracture 

toughness.  These composite films were successfully transferred into a carbon fiber 

interleave using Vacuum Assisted Resin Transfer Molding (VARTM). 
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CHAPTER I 

INTRODUCTION 

 

This chapter will begin by describing some of the various technological developments 

that have been instrumental in generating the present interest in multifunctional 

composite systems for aerospace applications.  It will introduce carbon nanotubes and 

detail the difficulties that have been encountered since their discovery.  The discussion 

will shift toward the use of carbon nanotubes as a filler agent to create multifunctional 

nanocomposite systems, and will conclude with an outline detailing the material in this 

work. 

 

Significance of epoxy/SWCNT based composite systems 

The history of airplane development has shown a steady progression from lightweight, 

flexible materials, toward heavier, stiffer materials more capable of handling large 

payloads and high speeds.  With the advent of polymer science, and the subsequent 

development of advanced polymer composite systems with tremendous strength to 

weight ratios, many speculated that there would be an exponential growth in the amount 

of composite materials used in aircraft.  However, the growth has been significantly 

slower than expected due to the development of lightweight alloys, advanced joining 

_______________ 
This thesis follows the style of Carbon. 
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techniques, low-cost castings, and high speed machining, extending the use of traditional 

materials in aircraft design [1].  To add to these developments, the uncertainty involving 

the fatigue life of polymer materials, and the typically poor fracture toughness and 

compression after impact (CAI) strength, have further mired the growth of polymer 

composite systems in structural applications. 

 

In the last two decades there have been tremendous resources pushed toward the 

development of multifunctional nanocomposite materials using carbon nanotubes as a 

reinforcing agent within a polymer matrix.  Multifunctional composite materials promise 

to simultaneously decrease weight, increase strength, and allow for improved 

performance over a range of mechanical, thermal, and electrical properties, but have and 

continue to face several obstacles. 

 

Fundamental properties of carbon nanotubes 

Carbon nanotubes are not a new discovery by any means.  Recent work has shown that 

multi- and single-walled carbon nanotubes, along with carbon nanowires, were present 

in Damascus steel, used to make swords of legendary strength during the Crusades [2].  

However, the actual observation and manipulation of carbon nanotubes has only been 

made possible with the development of high resolution electron microscopy, and even 

then their fundamental discovery was largely a matter of chance. 
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While there is a great deal of academic conjecture regarding who first discovered carbon 

nanotubes [3], there is little debate as to the progress that guided the research in the field.  

The first fundamental discovery that led to the observation of CNTs was during an 

experiment to understand the mechanisms of formation of long-chain carbon molecules 

in interstellar space [4].  A vaporization laser was focused on a single disk of graphite 

and produced a highly stable shell of carbon in a C60 arrangement, analogous to a soccer 

ball with 60 vertices and 32 faces.  This molecule was termed a “Buckminsterfullerene,” 

as a reference to a geodesic dome based on a truncated icosahedral structure designed by 

architect Buckminster Fuller.  This simple observation proved to generate tremendous 

interest because it fundamentally proved that there were more than two allotropes of 

carbon present in nature.  Research began to focus on what other types of structures may 

result from manipulation of graphite sheets.  This interest led to the observation of multi-

walled carbon nanotubes by Iijima [5] and single-walled carbon nanotubes by Bethune 

[6] in the early 1990’s, igniting the imagination of the academic world as to the 

applications of these unique structures.  In the two decades since, there has been a 

tremendous growth in research in this field, with early work focused on overcoming the 

difficulties in characterizing the material, and more recent work spent attempting to 

impart these characteristics to a matrix material. 

 

A carbon nanotube is a hollow structure that is made up of one or more shells of 

concentric graphitic sheets.  These graphitic sheets, also known as graphene, are planar 

sheets one atom thick and densely packed with carbon atoms in hexagonal arrangements.  
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Each carbon atom forms a hybridized sp2 bond with its three neighbors that is 

immensely strong and stable [7].  The basic method of characterization of the CNTs is 

by the number of these concentric shells.  Single-walled carbon nanotubes (SWCNTs) 

are made up of one shell of graphene rolled along a chiral vector.  Multi-walled 

(MWCNT) carbon nanotubes are made of more than two shells and have significantly 

different properties than SWCNTs.  Double-walled (DWCNTs) carbon nanotubes have 

also been observed [8].  SWCNTs typically have an inner diameter of about 1-3 

nanometers and a length that may be 1 micron or longer, leading to observed aspect 

ratios of 1000 and greater [9].  MWCNTs typically have an inner diameter on the order 

of about 15 nanometers and aspect ratios closer to 100.  The distance between the 

concentric shells in DWCNTs and MWCNTs is about 0.34 nm, corresponding to the 

interlayer spacing of graphitic sheets [7].  This work will largely focus on SWCNTs. 

 

Mechanical properties of SWCNTs 

The mechanical properties of SWCNTs are largely due to the hybridized bonds that exist 

between the carbon atoms making up the shells of the material.  Theoretical calculations 

were made regarding the Young’s modulus of the material by correlating the thermal 

oscillations of the tubes as a function of temperature and predicted a value of 

approximately 1 TPa [10], confirmed later experimentally [11].  This value suggests that 

the tubes have an extremely high degree of flexibility, implying that the strain and 

fracture characteristics of the matrix material should not be negatively impacted by their 
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addition.  The maximum tensile strength was observed to be 30 GPa, demonstrating a 

strength to weight unparalleled by any other material [11]. 

 

Electrical properties of SWCNTs 

Early work showed that, depending on how the tubes were rolled, the nanotubes could 

exhibit the electronic properties of either metals or semi-conductors [10].  The so-called 

“armchair” configuration, corresponding to a chiral angle of θ=30°, has been shown to 

behave electronically as a metal.  The “chiral” configuration, corresponding to a chiral 

angle somewhere in the range between 0-30°, bears semi-conductive properties [8, 12].  

Fig. 1 below illustrates this concept [7]. 

 

Fig. 1 – A carbon nanotube will behave as a metal (filled circles), narrow bandgap 
semiconductor (filled triangle), or moderate bandgap semiconductor (open triangle) if 
rolled in a way that the origin (0) is superimposed on a given hexagon (from [7]). 
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Thess et al. [13], observed that the electrical resistivity of a SWCNT with metallic 

chirality was on the order of 10-4 S/cm, with one peak observation of 0.34 x 10-4 S/cm, 

making it the most conductive carbon fiber known .  Later work by Frank et al. [10], 

achieved a current density of 107 A/cm2, indicating a very promising future for the 

material in the field of high powered electronics.  In the same work, it was noted that the 

conductance of the tube is quantized and that it acts as a ballistic conductor.  It was 

noted that the overall chirality of the tube has little impact on the mechanical properties 

of the material. 

 

Due to the combination of these superior properties, carbon nanotubes have been exalted 

as being the solution for development of multifunctional composites [14].  However, a 

large problem exists when considering the interface between the carbon nanotubes and 

the matrix material.  In order to fully impart the properties of the nanotubes to a material, 

it is necessary to achieve optimal dispersion, adhesion, and alignment [15-17]. 

 

Problems in integrating CNT systems 

One of the basic features of a carbon nanotube is that it has an atomically smooth 

surface.  Due to the hybridized bonds between the carbon atoms on the graphitic shells, 

there are no reactive groups to form bonds with a matrix material.  Therefore, because 

there is no effective bond that will promote compatibility with a matrix material, there 

must be some group added to the surface of the CNT to promote a sidewall reaction.  

Another problem is that the high aspect ratio promotes an extremely high free surface 
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energy.  In order to minimize the energy of the system, carbon nanotubes are attracted to 

each other and form bundles and ropes held together by van der Waals forces [18]. 

 

Attempts at achieving good dispersion have sought to debundle the clumps of CNTs and 

have them uniformly distributed throughout the matrix.  While there are some 

applications where ropes are useful, such as in creating percolation networks for 

electrical conductivity [19-22], the greater the dispersion of the material in the matrix, 

the greater the mechanical properties should be.  Poor dispersion allows the nanotubes to 

slip past one another when forces impact the composite material, significantly reducing 

their efficiency as reinforcing agents [16].  It is worth noting that the dispersability of a 

carbon nanotube is inversely proportional to the aspect ratio of the nanotube [23].  While 

the mechanical properties tend to degrade with increasing diameter and shortening 

length, the ability to transmit these properties to the matrix material has been observed to 

increase.  It has been suggested that dual-walled carbon nanotubes (DWCNT) may strike 

a useful balance between dispersability and mechanical and electrical improvement [24, 

25]. 

 

The second problem with the implementation of carbon nanotubes into a matrix material 

is poor interfacial adhesion.  The atomically smooth and non-reactive surface 

characteristics of the carbon nanotubes restrict any degree of interfacial bonding between 

the nanotubes and the matrix material.  This is shown in failure mechanisms where 
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carbon nanotubes were pulled out of the epoxy material without breaking, limiting their 

reinforcement effect [26-28]. 

 

The final consideration with regard to imparting the properties of a CNT filler material 

to a matrix material is alignment.  Tremendous research efforts have sought to utilize the 

magnetic and electrical properties of carbon nanotubes in order to orient them to create 

conductive pathways.  The most common methods have sought to align the CNTs via 

ambient electrical or magnetic currents while suspended in a viscous medium [29-36].  

Of particular interest may be the application of electrical current during curing, such that 

as the viscosity of the material increases, the tubes will migrate toward the anode and 

grow backward toward the cathode, becoming locked in place as the degree of cure 

increases in the material [35].  Other techniques include mechanical deformation of 

thermoplastic networks [37] and epoxy infusion into nanotube networks that have been 

pre-aligned via catalytic deposition processes [11, 38-42], among many others [43]. 

 

There has been a large amount of effort put into the development of techniques to 

overcome these problems.  The first problem, dispersion, depends largely on the medium 

of interest.  Various mechanical means such as ultrasonication, high shear mixing, 

encapsulation, and surface functionalization have been considered [11, 44].  For 

thermoplastic networks, particular success has been reported for techniques involving 

shear mixing, stepwise dispersion, and elongational flow mixing.  Gains of >300% have 

been reported [45].  More involved processing is required for thermosetting networks 
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due to the large shear forces that are required to achieve dispersion.  Some reports have 

shown success using conventional means, such as lab scale twin-screw mixing [16], but 

these approaches appear limited in their scope.  Other groups have employed the 

calendaring approach, utilizing adjacent cylinders of different sizes to impart high shear 

stresses to achieve good dispersion [46, 47], which shows good potential for scalability. 

 

The problem of adhesion remains unaddressed by the above techniques.  In order to 

achieve an interfacial bond between the CNT and the matrix, there must be a chemical 

interface that promotes the transfer of stress to the reinforcing material.  To produce 

composite materials for structural applications, the surface of the nanotubes must 

therefore be functionalized to create reactive groups.  The two primary methods of 

functionalization are non-covalent and covalent functionalization [43, 48]. 

 

Non-covalent functionalization is based largely on VdW attractive forces and primarily 

consists of either encapsulation or wrapping [49-51].  Molecules are added to the surface 

of the carbon nanotubes, often in the form of amphiphilic surfactants, that promote 

electrostatic repulsions between the carbon nanotubes, preventing agglomeration after 

initial dispersion.  These effects are limited in application due to the lack of chemical 

bonding between the molecules and the surface of the CNT, thus limiting the amount of 

stress that can be effectively transferred and significantly diminishing the effect of 

mechanical property improvement within the composite system. 
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Covalent surface functionalization appears to be the best alternative with regard to load 

bearing structural applications because it simultaneously encourages dispersion while 

creating reactive surface groups that promote strong interfacial bonding.  There are many 

approaches presented in literature, but all bear the common aspect that there must be an 

intermediate reaction to alter the surface of the carbon nanotube [52].  The basic 

approach is to introduce the carbon nanotubes into an extreme environment, typically 

acidic, such that some carbon atoms are broken from their ordered structure and form 

carboxylic acid groups upon oxidation [53, 54].  These exposed –OOH groups can be 

subsequently functionalized with a group that will react with the epoxy media.  Other 

approaches, such as fluorination, are also popular [18, 27, 55, 56]. 

 

Of particular interest to this work are those functionalizing agents that will bond strongly 

within a diglycidyl ether of bisphenol A (DGEBA) epoxy system.  Amine 

functionalization has been reported extensively within literature [57-59], and appears to 

be a highly viable route toward achieving strong interfacial bonding because it will serve 

as a potential cross-linking agent within the system [18, 49].  A drawback to this 

approach is that the extreme conditions imposed by the reaction introduce defects into 

the carbon nanotubes and limit their potential strength [50, 60].  This effect has been 

speculated to be small in reference to the expected performance increase from the 

SWCNTs, as theoretical modeling has shown that even with a high degree of sidewall 

functionalization, mechanical strength of SWCNTs should only be diminished by about 

15% [14]. 
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The processing techniques involved with the application of CNTs to the epoxy matrix 

become critical when considering the substantial increase in cost and relative decrease in 

processability that will result from a high loading percentage.  An approach that shows 

great promise is that, instead of building a material composed entirely of nanocomposite 

material, the CNTs will be placed only at locations of particular interest.  With regard to 

this work and the aerospace industry, the problem of how to strengthen carbon fiber 

panels has been approached.  Instead of creating an entire panel doped with a  CNT 

filler, the strength of an existing panel can be tremendously improved by the use of 

epoxy/CNT nanocomposite films as interleaves within a laminated panel. 

 

The approach of this work has been to create 0.5 wt% epoxy/SWCNT composite thin 

films to be used as interleaves within a composite laminated panel.  Other approaches 

have been suggested to prepare laminated composites, such as spraying a CNT mixture 

on a substrate [61, 62], but these involve the incorporation of the nanotubes throughout 

the entire material.  In the proposed approach, the SWCNTs are oxidized via covalent 

oxidization and subsequently functionalized using sulfanilamide (SAA).  SAA was 

chosen following work by Sun and Warren [63, 64] where a polyamidoamine generation 

0 (PAMAM-G0) dendrimer was used as a functionalizing agent.  Work is also presented 

to improve the fracture toughness of composite panels by introducing nylon-12 particles 

to absorb fracture energy within the system.  Nylon-12 particles have been used 

extensively in research to promote toughenability within polymer materials, specifically 

by introducing modes of matrix shear yielding or crack pinning [65, 66].  This system 
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was cast as an interleave to enhance the inter-laminar strength and toughness of 

laminated composite systems [67-69].  These improvements should result in an 

improvement in the compression after impact (CAI) strength of the material as well [70]. 

 

A particularly interesting approach toward maximizing the potential for mechanical 

reinforcement while retaining the processability of the material is to create partially 

cured (B-stage) thin films that can be processed using Vacuum Assisted Resin Transfer 

Molding (VARTM).  Using covalent oxidation and functionalization, a high degree of 

dispersion and interfacial bonding will be achieved and subsequently locked into place 

following a partial cure.  Upon later heating, these properties should be passed to the 

composite panel. 

 

This approach brings with it the potential for other applications outside of the aerospace 

industry, such as in micro-devices and electronic packaging [71-73].  It is unique 

because it allows a large quantity of nanotubes to be incorporated into a system for 

mechanical and, potentially, electrical property improvement without the sacrifice of 

processability.  Future work will consider approaches intended to promote electrical 

conductivity within these systems, as well as the potential of aligning the CNTs to 

achieve further improvements in the mechanical, thermal, and electrical properties of the 

nanocomposite system [15]. 
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Thesis layout 

This thesis will focus primarily on the preparation and characterization of 

epoxy/SWCNT thin films.  Chapter II will introduce work accomplished so far on this 

project regarding the processing of F-SWCNTs using PAMAM-G0 dendrimer, and 

detail the observed relationships between dispersion and mechanical properties.  It will 

also consider the use of sulfanilamide (SAA) as a functionalizing agent and the resulting 

mechanical properties.  Chapter III will discuss the introduction of nylon-12 particles 

into the system as a toughening agent.  Chapter IV will discuss the processing and 

characterization of B-staged epoxy/SWCNT thin films, with specific focus on the 

characterization of the degree of cure and the flow properties of the system.  Chapter V 

will conclude this work and highlight specific interests that may give rise to continued 

research. 
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CHAPTER II 

PRODUCTION AND CHARACTERIZATION OF 

FUNCTIONALIZED SINGLE WALLED CARBON NANOTUBES 

 

This thesis is a continuation of the tremendous effort by Dr. Luyi Sun and was done 

largely as part of an assistantship under Graham Warren.  This chapter will highlight 

previously published work by these two individuals, specifically dealing with the 

determination of the degree of oxidation achieved with O-SWCNTs and the 

characterization of the mechanical properties of epoxy/F-SWCNT(PAMAM-G0) 

composite systems.  This will be used as a framework to introduce work done in this 

thesis using sulfanilamide (SAA) as an improved functionalizing agent. 

 

Experimental 

Materials 

XD-grade pristine single-walled carbon nanotubes (P-SWCNTs) were purchased from 

Unidym (formerly Carbon Nanotechnologies, Inc.) with a reported density of ca. 1.35 

g/cm3, an aspect ratio of >1,000, and a composition of 2/3 SWCNT, 1/3 ‘few wall’ CNT, 

and <5 wt% iron impurities.  Concentrated sulfuric acid (95.4%) and nitric acid (70%) 

were obtained from Fisher Scientific for the oxidation reactions.  Polyvinylidene 

difluoridic (PVDF) filter membranes were purchased from Millipore to recover the O-

SWCNTs and had a reported pore size of 45 μm. 
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Initial work from Sun et al., used a polyamidoamine generation 0 (PAMAM-G0) 

dendrimer functionalizing agent, purchased from Sigma-Aldrich.  Later work, from 

Warren and this report, used sulfanilamide (99%) purchased from Sigma-Aldrich.  

EPIKOTETM 862 resin (formerly Epon 862), a diglycidyl ether of bisphenol A (DGEBA) 

epoxy, was used as a matrix material in previous and current work, with EPIKURETM W 

(formerly Epicure W), a di-amine hardener, used as a curing agent.  Both epoxy resin 

and curing agent were purchased from Hexion Specialty Chemicals, Inc. 

 

Preparation of F-SWCNT 

Oxidized single-walled carbon nanotubes (O-SWCNTs) were prepared using a strong 

acid treatment.  A sample of 1.0 g of untreated P-SWCNT were oxidized using a mixture 

of 180 mL sulfuric acid and 60 mL concentrated nitric acid (3:1 ratio) in a round-bottom 

flask, followed by 2.5 hours sonication in an ultrasonication bath.  Following initial 

sonication, 760 mL of de-ionized water was added to the sample and subsequently 

sonicated for another 3 hours.  The O-SWCNTs were collected through a PVDF filter 

and washed several times with de-ionized water.  The cleaned O-SWCNTs were 

collected and re-dispersed in 500 mL acetone, followed by an additional three hours 

sonication.  The degree of oxidation was confirmed using X-ray photoelectron 

spectroscopy (XPS). 

 

Initial work by Sun determined that a 64:1 stoichiometric ratio of PAMAM-G0 was 

needed to promote interaction among the reactive sites on the SWCNT surfaces.  A 1:1 
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wt% of sulfanilamide (SAA) was used in later work.  The functionalizing agent was 

added to the O-SWCNT and ultrasonicated for 1 hour to ensure good mixing and 

interaction. 

 

Plates were cast from neat epoxy, epoxy/P-SWCNT, epoxy/O-SWCNT, epoxy/F-

SWCNT(PAMAM-G0), and epoxy/F-SWCNT(SAA) nanocomposite systems.  The 

epoxy monomer was added to the F-SWCNT/acetone solution at a predetermined ratio 

to achieve a desired loading by wt% in the final nanocomposite.  The epoxy/F-

SWCNT/acetone mixture was sonicated for 15 minutes to promote dispersion.  Curing 

agent was added at 26.4 parts by weight curing agent per 100 parts by weight epoxy 

monomer.  Acetone and entrapped air were removed from the system using a rotary 

evaporator in a water bath at 70°C.  Mechanical samples were prepared using a pre-

heated glass mold coated with a release agent.  The samples were pre-cured at 121°C for 

2 hours, followed by a post-cure at 177°C for 2 hours. 

 

XPS spectroscopy 

In order to determine the degree of oxidation, a surface chemical analysis technique 

known as X-ray photoelectron spectroscopy (XPS) was used.  The XPS spectra of the O-

SWCNTs was obtained to determine the elemental composition, empirical formula, and 

electrochemical state of elements on the surface of the tubes.  A Kratos Axis Ultra 

multitechnique spectrometer with non-monochromatic Mg Kα photos was used for all 

measurements with a binding energy for C(1s) set at 284.5 eV as a reference for all other 



  17 

peaks [74].  The composition of the O-SWCNT surface was found from the high 

resolution peak areas for the XPS main core line of each element.  Sensitivity factors 

were used as provided by the instrument manufacturer, along with Shirley-type 

background correction. 

 

Results and discussion 

Covalent oxidation and functionalization of SWCNT 

The initial goals of this work were to increase the dispersion of the SWCNT and to 

promote interfacial bonding between the SWCNT and the epoxy monomer.  In order to 

accomplish this, the surface of the tubes needed to be altered.  It has been reported that 

the treatment of SWCNTs with strong acids will distort the perfect structure of the tubes 

and leave exposed carbon end groups available for reaction, subsequently forming 

carboxylic acids in the presence of an oxidizing agent [67, 68].  This formation of 

carboxylic groups provides a reactive site that may link the O-SWCNT and the epoxy 

monomer.  Even more promising is that this site allows for additional groups to be 

grafted onto the tube surface to promote a stronger bond that has the potential to act as a 

cross-linker within the system, possibly even acting to absorb fracture energy and 

promote toughening mechanisms within the nanocomposite.  It should also reduce the 

free energy in the system and prevent both agglomeration and flocculation, promoting a 

more uniform dispersion. 
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The overall degree of oxidation on the tube surface can be estimated from the XPS 

characterization of the O-SWCNT.  As determined by Sun et al., the XPS spectra of the 

O-SWCNT treated with the above procedures is shown in Fig. 2 below.  The presence of 

the carboxylic acid groups can be observed due to the shoulder at the higher bonding 

energy.  This allows a quantitative relationship to be determined regarding the number of 

carbon atoms on the tube surface with carboxylic acid groups [74]. 

 

 

Fig. 2 – XPS Spectra of oxidized SWCNTs (from [64]). 
 

From Fig. 2, it can be observed that the ratio between carbon and oxygen on the O-

SWCNT surface is approximately 4:1.  Each carboxylic acid group contributes 2 oxygen 

atoms, suggesting that the ratio of carboxylic acid groups to carbon atoms is 8:1.  

Therefore, a stoichiometric ratio can be determined for the functionalizing agent by 

considering that each carboxylic acid group on the surface can form a bond with a single 

functionalizing group.  In the case of the PAMAM-G0 dendrimer, there are 4 primary 

amine groups and 4 secondary amine groups that may act as functionalizing sites.  An 

overall stoichiometric ratio of 64:1 was therefore determined to be optimal.  However, in 
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order to account for possible steric hindrance effects, as well as to promote co-curing 

between the matrix material and the amine groups on the functionalizing agents, slightly 

more was used [64]. 

 

Following initial work using PAMAM-G0, sulfanilamide (SAA) was selected as a 

surface functionalizer.  SAA is a particularly interesting functionalizer because it is a 

small molecule, and therefore unlikely to lead to the high increases in viscosity as was 

observed with the PAMAM-G0, and has a controllable bifunctionality [75].  This effect 

is due to its chemical structure, in that it is made up of  a highly reactive aniline end 

group with a melting point of  120°C, and a less reactive sulfonamide  group with a 

melting point of about 165°C.  This allows the cross-linking density to be manipulated 

by varying the temperature.  More importantly, it allows for a low viscosity during B-

stage processing due to the low melting point of the aniline group.  Finally, the use of 

sulfanilamide as a functionalizer should strongly impact the modulus and Tg of the 

epoxy materials due to its backbone rigidity [76, 77].  This should give rise to an 

improvement in the toughness, as the well known correlation between molecular length 

and its ability to act as a toughening agent does not hold in the case of a molecule with 

strong backbone rigidity [75, 78].  Figure 3 shows a schematic of the process involved in 

the functionalization of the SWCNT by sulfanilamide. 
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Fig. 3 – Schematic (not to scale) of functionalization of SWCNT by sulfanilamide. 
 

Mechanical characterization 

Several samples were prepared for each system and cast into plates.  These plates were 

machined and characterized by tensile testing to determine the Young’s modulus, tensile 

strength, and elongation at break.  Fracture testing was also conducted to determine the 

mode-I critical stress intensity factor (KIC).  Initial work done by Sun and Warren 

determined the impact of the addition of PAMAM-G0 functionalizing agent into the 

system via procedures described above.  These results are summarized in Table 1 below. 

 

Table 1: Summary of mechanical properties of epoxy/SWCNT (0.5 wt%) 
nanocomposites (from [63]) 

Property Neat Epoxy Epoxy/ 
P-SWCNT 

Epoxy/ 
O-SWCNT 

Epoxy/ 
F-SWCNT 

Young’s Modulus (GPa) 2.77 ± 0.01 2.84 ± 0.05 3.17 ± 0.01 3.21 ± 0.15 
Tensile Strength (MPa) 60.1 ± 5.6 74.2 ± 0.5 76.5 ± 3.9 82.7 ± 3.2 
Elongation (%) 1.98 ± 0.22 2.57 ± 0.18 2.97 ± 0.40 4.88 ± 0.91 
KIC (MPa·m1/2) 0.78 ± 0.01 0.76 ± 0.03 0.83 ± 0.05 0.93 ± 0.04 

 
 
 
These results showed a high correlation between the dispersion of SWCNT in the matrix 

and the overall mechanical strength of the system.  It was suggested that the 

reinforcement characteristics due to the P-SWCNT were limited due to large 

agglomerates and bundles present, as evidenced by optical microscopy, scanning 
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electron microscopy, and Raman spectroscopy (images available in [63]).  Following 

oxidation, there was a significant improvement in the Young’s modulus of the material, 

coupled with a slight increase in the tensile strength and a significant improvement in the 

elongation at break. 

 

The best results were generated after grafting functional groups onto the surface of the 

O-SWCNT, as indicated by the 16% improvement in the Young’s modulus and 38% 

improvement in the tensile strength.  The increase in dispersion and interfacial adhesion 

allowed for a tremendous increase in the structural reinforcement of the material, as 

compared to the neat epoxy.  The elongation at break was also observed to increase by 

146%, likely due to the introduction of the long chain dendrimer as a functionalizing 

agent, allowing ductile failure and an overall transmission of stress throughout the 

material, rather than being focused at specific points due to poor dispersion and limited 

adhesion. 

 

Use of sulfanilamide as a functionalizing agent 

While the PAMAM-G0 returned good mechanical results, its overall utility was limited.  

Due to its large branch structure, achieving good dispersion within the epoxy equated to 

a significant increase in the viscosity of the system, limiting the processability.  It was 

also prohibitively expensive.  Sulfanilamide (SAA) was chosen as a potential 

replacement due to reasons mentioned previously.  Initial optical microscopy results 
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suggested that SAA showed a heightened dispersion when compared to PAMAM-G0.  

The optical microscopy results are shown in Fig. 4 below. 

 

           
   (a) Epoxy/F-SWCNT(PAMAM-G0)       (b) Epoxy/F-SWCNT(SAA)  

Fig. 4 – Optical microscopy of F-SWCNT with PAMAM-G0 dendrimer and SAA as 
functionalization agents (from [79]). 

 

From Fig. 4, it appears that the overall dispersion is improved with the use of 

sulfanilamide as a functionalization agent.  From previous work, this is anticipated to 

correlate with an improvement in the mechanical characteristics of the system.  To verify 

this, tensile tests were conducted on the Epoxy/F-SWCNT(SAA) samples.  The values 

are summarized in Table 2 below. 

 

Table 2: Summary of mechanical properties of epoxy/F-SWCNT(PAMAM-G0) and 
epoxy/F-SWCNT(SAA) (0.5 wt%) nanocomposites (data available from [79]) 

Property Epoxy/F-SWCNT  
(PAMAM-G0) 

Epoxy/F-SWCNT 
(SAA) 

Young’s Modulus (GPa) 3.21 ± 0.15 3.21 ± 0.16 
Tensile Strength (MPa) 82.7 ± 3.2 88.3 ± 0.61 
Elongation (%) 4.88 ± 0.91 5.08 ± 0.30 
KIC (MPa·m1/2) 0.93 ± 0.04 0.86 ± 0.08 
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The results show that the sulfanilamide offers an improvement in the tensile strength and 

elongation at break (7% and 4%, respectively) of the nanocomposites, with an 8% 

reduction in the KIC value.  This reduction in the fracture toughness of the material is 

likely due to the reduction in the chain length of the functionalizer.  With the smaller 

size of the sulfanilamide molecule, there is less ability for the fracture energy of the 

system to be absorbed in the chains.  The increase in the tensile strength and elongation 

at break was deemed significant enough to select SAA as the primary functionalizer for 

the remainder of this work. 
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CHAPTER III 

PROCESSING AND CHARACTERIZATION OF 

EPOXY/SWCNT/NYLON NANOCOMPOSITES 

 

Experimental 

Materials 

Nylon particles (Nylon-12) were donated by Toray Industries.  The nylon particles had a 

reported particle size of ca. 10 μm and melting point of 165 °C. 

 

Preparation of epoxy/F-SWCNT/nylon nanocomposite plates 

XD-grade pristine single-walled carbon nanotubes (P-SWCNTs) were treated with 

strong acids to obtain oxidized single-walled carbon nanotubes (O-SWCNT) as 

described in the previous section.  Sulfanilamide (SAA) was added at a 1:1 weight ratio 

and stirred to promote reaction between the exposed carboxyl groups on the tube 

surfaces and the amine end groups of the SAA.  The mixture was diluted with acetone to 

reduce viscosity and ultrasonicated for 1 hour to encourage interaction.  Nylon particles, 

pre-dispersed in an acetone mixture, were added to the mixture to ensure a final loading 

of 10 wt% nylon-12.  A predetermined ratio of epoxy monomer was added to the system 

and ultrasonicated for 15 minutes.  Curing agent W was added at a ratio of 26.4 parts by 

weight per 100 parts by weight of epoxy monomer.  The acetone was removed from the 

system, along with any entrapped air, using a rotary evaporator with a water bath at 
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70°C.  The samples were poured into pre-heated glass molds coated with release agent 

and pre-cured for 2 hours at 121°C, followed by a post-cure at 177°C, before being 

removed from the mold. 

 

Results and discussion 

The objective of this chapter was to improve the fracture toughness of the 

nanocomposite systems with minimal degradation to the mechanical properties observed 

in the previous chapter.  To do this, nylon-12 was introduced to the system as a 

toughening agent.  The mechanical properties were characterized using tensile testing 

approaches described in the previous chapter.  The summary of results from the 

epoxy/SWCNT/nylon systems are shown in Table 3 below. 

 

Table 3: Summary of mechanical properties of epoxy/F-SWCNT(SSA)(0.5 wt%)/nylon 
(10wt%) nanocomposites (from [79]) 

Property Epoxy/nylon Epoxy/P-
SWCNT /nylon 

Epoxy/O-
SWCNT/ nylon 

Epoxy/F-
SWCNT/ nylon 

Young’s Modulus 
(GPa) 

2.61 ± 0.16 2.73 ± 0.16 2.79 ± 0.10 2.98 ± 0.09 

Tensile Strength (MPa) 78.3 ± 1.4 80.4 ± 1.4 84.0 ± 1.7 77.3 ± 0.4 
Elongation (%) 7.11 ± 0.76 2.52 ± 0.50 5.49 ± 0.82 5.60± 0.84 
KIC (MPa·m1/2) 0.95 ± 0.09 0.99 ± 0.07 1.02 ± 0.10 1.12 ± 0.09 
 

These results indicate that the addition of 10 wt% nylon diminishes the strength 

characteristics of the bulk material, with the Young’s modulus and tensile strength being 

lowered 7% and 12%, respectively, but substantially increases the ductility and 

toughness of the nanocomposite, with a 10% gain in the elongation at break and a 30% 

increase in the KIC observed.  The decreases in the strength of the material are expected, 
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as nylon should act as a defect due to its low modulus (<1.5 GPa), but this reduction can 

be viewed as moderate when considered against the gains in the toughness of the 

material.  When compared to the original neat epoxy system, the nanocomposite 

containing epoxy/F-SWCNT/nylon still shows an 8% improvement in Young’s modulus 

and 29% improvement in tensile strength.  The true strength in the incorporation of 

nylon into the material is in the improvements in the elongation at break and KIC.  The 

observed improvements in these parameters are 183% and 44%, respectively. 

 

Fracture analysis 

In order to consider the impact of these modifications to the system on the fracture 

mechanics, scanning electron microscopy was performed on the fracture surfaces of the 

material, as shown in Fig. 5 below.   

 

 

(a) Neat Epoxy                                  (b) Epoxy/F-SWCNT                         (c) Epoxy/F-SWCNT/nylon 

Fig. 5 – SEM images of fracture surface of neat epoxy, epoxy/F-SWCNT, and 
epoxy/F-SWCNT/nylon (10 wt%) (from [79]) 

 

From the fracture surface of the neat epoxy, it can be observed that there are no 

toughening mechanisms present in the system and that brittle fracture occurs, with the 
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crack propagating along the fracture surface with no deviation in growth.  With the 

introduction of F-SWCNT, there appears to be some deflection of the fracture energy, 

likely due to energy absorbed in the interfacial bond between the SWCNT and the epoxy 

matrix.  There is no propagation of micro-cracks or other effects to suggest that the 

SWCNT is active in the absorption of the fracture energy. 

 

In the epoxy/F-SWCNT/nylon system, there are clear toughening mechanisms present as 

the crack tip is split into hundreds of micro-cracks that appear to be pinned by the nylon 

particles.  In many cases, as shown in Fig. 5c, the fracture energy appears to be 

completely absorbed by the nylon particles, leading to the increase in the fracture 

toughness values observed in Table 3. 

 

This section has detailed the preparation and characterization of bulk panels of 

epoxy/SWCNT/nylon samples.  It has shown that the fracture toughness of 

epoxy/SWCNT panels can be greatly increased with the introduction of nylon-12 

particles, and that the overall degree of mechanical reinforcement agrees with the 

general correlation that mechanical properties are enhanced with heightened dispersion.  

The fracture characteristics were investigated, and it was shown that there is some drop 

in the tensile properties of systems incorporating nylon particles, but that the 

improvement in the fracture characteristics is significant enough that this drop is 

acceptable for certain applications.  Continued effort will be made to further optimize 
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the dispersion and adhesion of the system to continue to improve the mechanical 

properties. 
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CHAPTER IV 

PROCESSING AND CHARACTERIZATION OF B-STAGED 

EPOXY/SWCNT/NYLON THIN FILMS 

 

The primary focus of this research has been to develop methodologies to produce strong, 

tough nanocomposite materials that can be cast as thin films for further processing via 

VARTM.  The VARTM processing will be conducted by a separate group and is not a 

part of this work.  The concern of this group has been to develop methodologies for 

preparing thin films and to characterize them based on their flow properties.  

Specifically, the degree of cure and flow temperatures are of the greatest importance.  

The methodologies used in this chapter were initially developed by Warren et al., as 

reported in [63], with subsequent improvements being made as part of this work, as 

reported in [79]. 

 

Experimental 

Materials 

The thin film coater used in this work was purchased from Elcometer Inc. (Rochester 

Hills, Michigan) and modified by the addition of a temperature control system in our lab.  

Release paper was donated from Hexcel Corporation (Salt Lake City, Utah). 
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Thin film preparation 

SWCNT of various states were prepared using methods described in the previous 

chapters.  P-SWCNT, O-SWCNT, and F-SWCNT were made, with sulfanilamide (SAA) 

as the functionalizing agent.  Samples were prepared by adding the epoxy monomer to a 

representative SWCNT sample at a predetermined ratio and sonicated for 15 minutes to 

achieve a final SWCNT loading of 0.5 wt%.  SAA was added at a 1:1 wt% with the  O-

SWCNT.  Nylon was added as a toughening agent for a separate set of a samples using 

methods described in the previous chapter.  Curing was added at 26.4 parts by weight 

per 100 parts by weight of EPIKOTETM 862 prior to removal of acetone and entrapped 

air by rotary evaporator in a water bath at 70°C.  Samples were B-stage cured at 121°C 

for 70 minutes in an oven.  Samples were quickly transferred to the thin film coater, 

preheated to 90°C, and cast into thin films at a thickness of approximately 50 μm on 

release paper.  Neat epoxy thin films were also prepared with the same procedures. 

 

Differential scanning calorimetry 

In order to determine the degree of cure, a Mettler Toledo (Model DSC821c)  differential 

scanning calorimeter was used to obtain DSC thermograms.  Differential scanning 

calorimetry (DSC) is a technique of thermal characterization that measures the 

difference in the amount of heat required to increase the temperature of a sample and the 

temperature of a reference (typically air) as a function of temperature.  A B-stage curing 

process was mimicked by keeping a sample isothermal at 121°C for 3 hours.  A full 
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curing process was mimicked by maintaining an isotherm at 177°C for two hours.  The 

experiments were carried out under a nitrogen gas purge (80 mL/min). 

 

Results and discussion 

The most important characteristics of thin films that require further processing on 

VARTM are the degree of cure, which dictates if the dispersion and alignment achieved 

in the samples is sufficiently locked in place, and the melt range of the sample, which 

determines the ease in which future processing can be carried out.  The objective should 

be to achieve a degree of cure as high as possible while maintaining a reasonable melt 

range, likely in the range of about 50°C. 

 

In this work, thin films were prepared from epoxy/SWCNT of various states.  B-stage 

curing, with a degree of cure of about 50%, was determined to be optimal because it 

offers a compromise between limited particle mobility and reduced void formation on 

the surface of the film, while maintaining low enough viscosity to allow for processing.  

The thin film coater was kept at 90°C to allow for the film to be prepared prior to 

excessive hardening.  

 

Determination of degree of cure 

In order to determine the degree of cure, differential scanning calorimetry was used.  

Two samples were prepared for each state of SWCNT and neat epoxy, with the first 

undergoing a B-stage curing cycle and the second undergoing a full cure, as described 
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previously.  The degree of cure was estimated from the ratio of exotherm during the B-

stage curing cycle ( ) and the exotherm during the full curing cycle ( ).  The 

thermograms for these samples are shown in Fig. 6 below. 
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Fig. 6 – DSC thermograms of epoxy/SWCNT (0.5 wt%) thin films:  a)  samples cured at 
121°C for 3 hours, and b) samples cured at 177°C for 2 hours (data from [63]) 
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The ratio of the exotherm between the B-stage and full curing cycles gives an idea of the 

overall network structure that has formed within the nanocomposites.  From the data in 

Fig. 6, it was determined that each nanocomposite system requires about 70 minutes to 

achieve a 50% degree of cure.  From data presented in [63, 64, 79], it was shown that the 

Tg of each system considered is similar, indicating that though there is some 

stoichiometric variation following the addition of SWCNT and functionalizing agents 

into the system, the overall change of the thermal characteristics of the system is not 

significant enough to bring about large changes in the thermal properties of the 

nanocomposite.  From these considerations, a time of about 70 minutes was projected to 

be the optimal time for each system.  These values also allow future calculations to be 

made on completed panels to project the quality of the thin film, as determined by its 

degree of cure. 

 

In order to determine the melt range of the systems, DSC samples were taken of B-stage 

cured and fully cured thin films with temperature ramps from 30°C-180°C.  The overall 

melting point in the system could therefore be easily observed, along with the glass 

transition properties of the fully cured samples.  This data is shown in Fig 7. below. 
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Fig. 7 – DSC thermograms of (a) 50% cured thin film and (b) 100% cured thin film 
(from [63])  
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From this data, it is clear that the melt range of the 50% cured thin film samples is within 

the range needed for VARTM applications.  Also, it can be observed that the glass 

transition temperatures of the fully cured thin films are about the same, with slight 

increases in the Tg being observed for the heightened processing of the nanocomposites.  

This increase in the Tg is likely due to the increase in the interfacial bonding between the 

SWCNT and the epoxy monomer, and may suggest that there is some alteration in the 

stoichiometric ratio between the epoxy monomer and the curing agent due to the 

presence of the functionalizing agent in the system. 

 

In summary, it has been shown the incorporation of 0.5 wt% SWCNT in epoxy has little 

effect on the overall curing process of the material.  These results allow high quality, 

defect free thin films to be prepared with the present methods.  These films are stable at 

room temperature and may be used to serve as interleaves between layers of composite 

materials in VARTM applications. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

Carbon nanotubes have brought about a tremendous interest in the field of material 

science and generated remarkable amounts of research regarding multifunctional 

materials that may define the next century of materials science and engineering.  This 

work has been focused on using carbon nanotubes to improve the mechanical strength of 

thin films in order to enhance the mechanical properties of laminated composite 

materials. 

 

Prior research on this topic was conducted by Sun and Warren and confirmed the 

oxidation of SWCNT by strong acid reaction and showed a correlation between the 

dispersion achieved with the functionalization of SWCNT and the overall mechanical 

properties of the nanocomposites.  This work considered the use of sulfanilamide as a 

functionalizing agent and quantified the mechanical properties that resulted from it, 

indicating that the smaller molecular size contributed to a reduction in the amount of 

fracture energy that can be absorbed, but the improved dispersion allowed for an 

increase in the Young’s modulus, tensile strength, and elongation at break.  With 

sulfanilamide as a functionalizing agent, tensile testing showed that the Young’s 

modulus and tensile strength of the epoxy system could be improved by 16% and 38%, 

respectively, with the addition of F-SWCNT.  The elongation at break was improved by 

146%, indicating a greatly improved toughness and shifting from brittle to ductile 
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failure.  The fracture toughness was improved by 19%, as indicated by the mode-I 

critical stress intensity factor (KIC). 

 

Work was also carried out to introduce nylon particles into the nanocomposite system to 

promote toughening mechanisms.  These samples showed somewhat diminished 

mechanical properties when compared to the results from the epoxy/SWCNT systems, 

due to the low mechanical reinforcement of the nylon particles loaded at 10 wt%, but 

showed an improvement in the Young’s modulus (an 8% gain) and tensile strength (a 

29% gain) when compared to the neat epoxy system.  The elongation at break was 

improved by 183% over the neat epoxy system, and the KIC results showed an 

improvement of 44% from the original system.  Fracture mechanisms were investigated 

using SEM and showed that the nylon particles absorbed the fracture energy of the 

system and dispersed the energy from a single crack into a large number of micro-

cracks.  These results indicate that the addition of nylon particles is an effective method 

of toughening the system, though lower weights and different processing techniques may 

be needed in order to further optimize the balance of loss in mechanical properties and 

improvement in the fracture characteristics of the nanocomposite systems.   

 

As an assistant to Warren, thin-films were created to utilize the properties defined by the 

bulk samples.  These samples showed good uniformity in thickness.  Results showed that 

these thin films were high quality, stable at room temperature, and able to be processed 

with the addition of low levels of heat.  These characteristics were made using 
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differential scanning calorimetry (DSC), which showed that the melt range of the 

nanocomposites varied between 50-57°C and that the Tg of the systems was relatively 

stable between 136-144°C.  The variation in the Tg was attributed to the trapping of 

curing agents around SWCNT bundles and excess curing agent in the system due to 

increased cross-linking and reactions with the oxidative and functionalizing groups on 

the SWCNT surface, altering the curing ratio within the system. 

 

These findings show that epoxy/SWCNT/nylon nanocomposites thin films are ideal 

candidates to be used as interleaves for VARTM composite panel applications for 

concentrated improvement in mechanical and fracture toughness characteristics of 

composite laminates. 

 

Future work 

The tremendous potential of SWCNTs lie in their inherent multi-functionality across a 

regime of properties.  Nanocomposites have the potential to offer tailored conductivity 

based on chirality, and may be able to exhibit isotropic electrical and thermal 

conductivity if well dispersed.  Future work should focus on continued improved in the 

dispersion and interfacial bonding of the system, but should consider less harsh 

techniques to limit the degradation of the electrical properties of the tubes.  An 

alternative method may be to use multi-walled carbon nanotubes in an attempt to 

maintain the integrity of the inner shells to promote ballistic conduction of electrons and 
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phonons.  This approach may allow for mechanical, electrical, and thermal property 

improvements to be achieved with low loadings. 

 

Further work should also focus on the use of electrical and magnetic currents to promote 

alignment of SWCNT systems within the epoxy materials.  A consequence of this may 

be that there is tremendous anisotropic strength enhancements that lend a directionality 

to the composite panels.  If this improvement in strength is large enough, layered thin 

films in known direction be used to create material of immense strength in all directions, 

much in the way that carbon fibers developed.  These panels could potentially have 

extremely high electrical conductivities, as well as high thermal conductivities, and 

could serve as replacements for heavy, brittle components in aircraft design.  

Applications for this work extend, obviously, well beyond the aerospace industry that it 

has so far been targeted at, and may extend to high-power electronics, electromagnetic 

interference uses, and most any application where high strength and low weight are 

desired.  As the ability of manufacturing firms to produce SWCNT at lower costs 

increases, applications will continue to abound, promising tremendous growth for this 

industry and ongoing research to continue to improve the methodologies. 

 

Limited to the scope of this work, efforts will continue to be made toward development 

electrically conductive thin films, thinner films using different techniques, and more 

advanced methods of characterizing the thickness of the films. 
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