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ABSTRACT 
 

Statistical Assessment of Time and Mass Alignment Quality in Liquid 
Chromatography-Mass Spectrometry. (April 2009) 

 

Isaac Velando 
Department of Mathematics 

Texas A&M University 
 

Research Advisor: Dr. Alan Dabney 
Department of Statistics 

 

This research evaluated the efficacy of an alignment quality algorithm and follows 

its development. Proteomics research frequently involves liquid chromatography-

mass spectrometry (LC-MS) methods for data collection. To correct for systematic 

errors, researchers often apply alignment algorithms to these data; the quality of 

these alignment procedures is often overlooked and needs to be assessed to offer 

confidence in results derived from LC-MS data. The data we worked with was 

aligned by a dynamic time warping (DTW) alignment algorithm. We developed an 

assessment algorithm based on a null hypothesis significance testing method 

applied to a generalized regression of particular LC-MS data. We found that the 

assessment algorithm alone was an insufficient indicator of the quality of alignment 

and could in some cases fail, but there is potential for it to be valuable as an aide 

with other information to make judgments on the alignment quality. 
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NOMENCLATURE 

 

LC Liquid Chromatography 

MS Mass Spectrometry  

Yi Estimated response variable 

xi Predictor variable value 

β0 Regression model parameter giving y-intercept 

β1 Regression model parameter giving slope 

εi Error term 

N(μ,σ2) A normal distribution with mean μ and variance σ2 

Tmn-2 Student’s t distribution with mn-2 degrees of freedom 

QC Quality Control 
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CHAPTER I 

INTRODUCTION 

 

LC-MS in proteomics 

Proteomics is the study of the complete protein set in a population. While there are many 

technologies and tools available to proteomics researchers, protein MS has become the 

method of choice.1 Protein MS allows for the identification and quantification of protein 

abundance levels in complex biological samples.2 

 

A specific variety of protein MS is based on LC-MS in combination. The LC step is 

intended to separate peptides on the basis of something other than mass, allowing for 

higher resolution mass analysis.3 Once peptides elute from the LC column, they are 

ionized and injected into a high-resolution MS instrument. The MS instrument then 

records accurate mass measurements and counts the number of ions for each unique 

mass feature, with the ion count roughly reflecting peptide abundance. 

 

_______________ 
This thesis follows the style of Journal of Proteome Research. 
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Figure 1.4 The result of an LC-MS run. The x-axis shows the scan number for each spectrum, a function 
of the time required for a particular batch of peptide ions to elute from the LC column. The y-axis shows 
the mass of the corresponding peptide. 
 

The result of an LC-MS run is a picture like that shown in Figure 1. Similar pictures are 

obtained for each of several replicate samples. A key question is then which spots or 

clusters of spots on different pictures correspond to the same peptide. A complication in 

making this determination is the fact that systematic errors inherent in LC-MS trials can 

result in images that are warped relative to one another. That is to say, where one peptide 

is located in one image, the identical peptide may be warped away from that spot in 

another as a result of these systematic errors. As a result, various algorithms have been 

proposed for aligning a set of LC-MS images and deriving a sensible set of common 

features.4 



  3 
 

 

Dynamic time warping 

The dynamic time warping (DTW) algorithm is an example of such an alignment 

algorithm and is used to align the data this research uses as a test case. Fundamentally, 

this algorithm computes an optimal alignment path between two time series (i.e. data 

sets where time is the independent variable) such that only the time axis is altered; this 

path is then applied to align a desired time series to another.5 This has become a very 

common procedure in the alignment of LC-MS data and is often extended to align both 

the time axis and mass axis.6 In the particular case of the data this research focuses on, 

the manner in which the DTW was applied involved aligning several replicate LC-MS 

samples to a selected template sample. 

 

 

Figure 2. A view of the DTW alignment procedure where the lower (red) time series is aligned to the 
upper (blue) time series by shifts in the time axis. 
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Figure 2 offers a diagrammatic view of the DTW algorithm’s procedure. The lines 

connecting the lower time series to the upper time series indicate how the time axis is 

mapped for particular values on the dependent axis. See Appendix A for a brief 

overview of the DTW alignment procedure. 

 

Alignment quality 

A key unsolved problem is the assessment of the quality of an alignment algorithm. 

Ideally, an alignment algorithm would return both the aligned images and a measure of 

the confidence in the alignment. Recent studies on the use of alignment algorithms in 

proteomics and metabolomics has shown a nascent trend towards standardized alignment 

procedures but a present lack of uniformity.7 Because of this lack of uniformity in 

alignment procedures, an assessment algorithm should ideally be as general and robust 

as possible. 

 

Regression and hypothesis testing 

We utilize a statistical approach to the assessment of alignment quality. The first major 

component of the assessment approach involves regression analysis. We focus on a 

generalized linear regression involving components of the LC-MS data in order to 

characterize the alignment’s effect. 

 

Following this analysis we apply a null hypothesis significance test to a regression 

parameter of interest. The goal of this method is to offer a measure of statistical 
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confidence in the particular results of some data; in this case we ask the question of how 

confident we are in the value of a particular regression parameter. 

 

Results 

The resulting algorithm first involves a generalized linear regression. For each time and 

mass value in an LC-MS data set there is a corresponding intensity value that can 

characterize the identity of a particular protein. Pairwise intensity-intensity values 

between an aligned data set and the template data set are compiled into a list upon which 

a general linear regression is performed. This model takes into account the fact that these 

data often exhibit non-constant variance. Once the regression is complete we perform a 

null hypothesis significance test on the slope parameter to determine whether the 

alignment resulted well or not. 

 

We show that under limited conditions this algorithm offers a simplistic indication of the 

quality of an alignment, but it can fail to give the predicted results in cases of perturbed 

data. Possible extensions of this algorithm and the use of other potential indicators are 

considered for future work. 
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CHAPTER II 

METHODS 

 

A model for protein comparison in LC-MS data 

The model-building process began with the consideration that the intensity values 

accompanying each time and mass pair effectively characterize the location and presence 

of a particular protein. We interpret a proper alignment between replicate LC-MS data 

sets to mean that a given protein should be found within a small time and mass region in 

each replicate set. Therefore, if we compare intensities between the template data set and 

an aligned data set in the same time and mass region, there should be a near one-to-one 

correspondence under a successful alignment. To explore this possibility we consider 

Figure 3. 
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Figure 3. The intensity-intensity plot for the template vs. aligned 01 data set. 
 

From Figure 3 it is evident that there is a linear relationship; a linear regression seems 

appropriate to characterize this data. A simple linear model follows: 

Yi = β0 + β1xi + εi where εi ~ N(0,σ2)  ............................................................................  (1) 

For this to hold we must assume the following: 

1. The data are independent 

2. There is a linear trend 
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3. All εi have constant variance 

4. All εi are normally distributed 

 

Assumption 1 is assumed to be true due to the nature of the LC-MS process not 

requiring repeated measurements of one subject. Assumption 2 is given by Figure 3. We 

use a Q-Q diagnostic plot to assess normality; we require a relatively linear relationship. 

 

 

Figure 4. A normal Q-Q diagnostic plot for the template vs. aligned 01 data set. 
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Figure 4 shows that assumption 4 is satisfied; only assumption 3 is problematic. To 

address this we modify the error distribution condition to εi ~ N(0,σi
2). This generalized 

linear model therefore must take into account non-constant variance. To do this we 

subject the data to a sampling procedure. The intensity-intensity data is ordered and then 

for every 100 consecutive data values we compute a sample variance which is associated 

with those 100 values. In preparing the intensity-intensity data, for simplicity we discard 

data pairs involving an intensity of 0. The primary motivation is that intensities of 0 may 

represent proteins that were present in too levels too to be detected or it may simply 

represent the absence of proteins; this could lead to confounding in the data 

interpretation. 

 

Null hypothesis significance testing 

The chief technique governing our approach to the alignment problem is null hypothesis 

significance testing. Null hypothesis significance testing seeks to make a statistical 

decision regarding a question posed about some data. This question is characterized by 

two competing hypotheses: the null hypothesis H0 and the alternative hypothesis HA. A 

way of interpreting the hypothesis test would be: assume that H0 is true, then compute 

the probability of obtaining data at least as extreme as was observed.8 This probability is 

known as a p-value, and that is the desired measure of alignment quality. 
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Here we ask the question: if the alignment is in fact perfect, what is the probability that 

we observed a particular alignment? Since we have established that under a perfect 

alignment there would be a one-to-one correspondence between corresponding intensity 

values, the slope parameter β1 is exactly equal to one and the y-intercept parameter β0 is 

exactly equal to zero; this leads to the following set of hypotheses: 

H0: β1 = 1 vs. HA: β1 ≠ 1 

H0: β0 = 0 vs. HA: β0 ≠ 0 

With this established, we proceed to compute test statistics for the parameters β0 and β1. 

Using a significance level α = 0.05, if the p-value falls beneath α then we would 

conclude that there is significant statistical evidence suggesting that the alignment was 

poor. Otherwise we would conclude that there is insufficient statistical evidence to 

suggest a poor alignment. See Appendix B for the details of the algorithm and Appendix 

C for an implementation in Maple software. 
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CHAPTER III 

RESULTS 

 

Figures 5 and 6 show the test cases with simulated random and well-aligned data 

respectively. Figures 7 through 18 are the six given aligned data sets’ intensity-intensity 

plots along with the linear fit and a Q-Q diagnostic plot to assess normality. 
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Figure 5. The intensity-intensity plot along with the linear fit for the randomly generated data simulating 
an extremely poor alignment of 100,000 points. 
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Figure 6. The intensity-intensity plot along with the linear fit for the simulated data for a near-perfect 
alignment of 100,000 points. 
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Figure 7. The intensity-intensity plot along with the linear fit for the template vs. aligned 01 data set. 
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Figure 8. A Q-Q diagnostic plot for the template vs. aligned 01 data set. 
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Figure 9. The intensity-intensity plot along with the linear fit for the template vs. aligned 02 data set. 
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Figure 10. A Q-Q diagnostic plot for the template vs. aligned 02 data set. 
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Figure 11. The intensity-intensity plot along with the linear fit for the template vs. aligned 03 data set. In 
this set of data, the aligned 03 set was in fact the template, so this is essentially the plot for template vs. 
template data set.  
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Figure 12. A Q-Q diagnostic plot for the template vs. aligned 03 data set. 
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Figure 13. The intensity-intensity plot along with the linear fit for the template vs. aligned 04 data set. 
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Figure 14. A Q-Q diagnostic plot for the template vs. aligned 04 data set. 
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Figure 15. The intensity-intensity plot along with the linear fit for the template vs. aligned 05 data set. 
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Figure 16. A Q-Q diagnostic plot for the template vs. aligned 05 data set. 
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Figure 17. The intensity-intensity plot along with the linear fit for the template vs. aligned 06 data set. 
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Figure 18. A Q-Q diagnostic plot for the template vs. aligned 06 data set. 
 

Table 1 gives a summary of the linear regression parameters, test statistics, p-values, and 

r values for each of the six data sets and the simulated test data. 
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Table 1. Statistical values for each data set comparison. 
aligned 

data set 

β0 β1 β0 Z test 

statistic 

β1 Z test 

statistic 

β0 p-value β1 p-value Pearson’s 

r 

Random 4.98×107 2.76×10-3 271 -313 0.000 0.000 -3.05×10-3 

Perfect -0.708 0.999 -0.802 -62000 0.422 0.000 1.00 

1 78100 1.22 11.8 12.8 0.000 0.000 0.874 

2 6490 0.999 2.42 -0.130 0.0154 0.897 0.965 

3 27.8 0.999 2.73 -3.51 < 0.01 < 0.001 1.00 

4 12000 0.973 4.60 -4.00 < 10-5 < 10-4 0.960 

5 31000 0.960 6.50 -3.22 0.000 < 0.01 0.918 

6 65600 0.958 13.7 -3.48 0.000 < 10-3 0.872 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

Interpretation of results 

Based on table 1, the simulated test cases alone show a weakness in the algorithm. We 

will refer to the situation where β1 ≠ 1 or β0 ≠ 0 as nonlinearity in that parameter. While 

the randomly generated poor alignment data did result in concluding nonlinearity and 

thus a bad alignment, the near-perfect example also concluded nonlinearity in the 

parameter β1, whereas we would have expected a failure to suggest nonlinearity. The 

root of this problem lies in the number of points being tested, which is 100,000 in the 

case of the simulated data. Since the slope parameter β1 is slightly perturbed from 1 and 

takes a value of 0.999, the large number of points drive the standard error increasingly 

lower. Essentially, the null hypothesis in this case is far too strict, resulting in a 

conclusion of nonlinearity. 

 

In all but one case with the actual data the algorithm concluded that there was sufficient 

statistical evidence to suggest that there was not linearity for that parameter. The one 

exception was with the aligned data set 2 where there was insufficient statistical 

evidence to conclude nonlinearity for β1. However, even then since nonlinearity was 

concluded for β0 the overall alignment would be marked as poor. 

 

 



  28 
 

Practical significance vs. statistical significance 

While all but one hypothesis test resulted in a statistically significant rejection, the 

accompanying Pearson’s r correlation values may suggest alternative conclusions. 

Speaking in terms of effect size given by r, conventions state that r = 0.1 is a small effect 

size, r = 0.3 is a medium effect size, and r = 0.5 is a large effect size for general 

purposes.9 Using these guidelines, each of the r values has a large effect size, although 

some are certainly stronger than others. Beyond that, however, one must taken into 

account the context of the experiment to determine how to interpret the statistical 

results.10 For example, according to Table 1 the aligned 03 data set, which should have a 

near-perfect alignment since it is essentially template vs. template, had tests for β0 and β1 

that were both rejections indicating poor alignment. However the r value was 1.00 (to 

that precision) indicating a near-perfect positive linear correlation as expected. In this 

case, the value of r told us more about the alignment quality in terms of practical 

significance than the p-values did in terms of statistical significance. 

 

This suggests that at the very least the effect size should be quantified either in terms of r 

or an alternative measure and reported along with significance levels. We conclude that 

in its current implementation, the hypothesis test algorithm is insufficient alone to give a 

sufficient indication of whether an alignment was good or bad, but if the reports of 

significance levels are accompanied by measures of effect size then a researcher can 

judge whether or not to accept an alignment. A fully automated procedure therefore has 

not been reached. 
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Usage of Z test statistics in relative comparisons 

In addition to the r values for effect size, we can also use the specific Z test statistics to 

indicate that a particular alignment was superior to another, even if both result in a 

statistically significant rejection. Using this ranking system might write for y-intercepts 

2 > 3 > 4 > 5 > 1 > 6 and for slopes 2 > 5 > 6 > 3 > 4 >1 since the smaller the magnitude 

of the Z test statistic the better the alignment. 

 

Future work 

The original goals of this project have not been fulfilled; we have not arrived at a fully-

automated accurate method of judging alignment quality. Despite this, progress has been 

made and more work must be one. Based on the results of this research it seems that 

reliance on only an all-or-nothing significance test isn’t sufficient. Future work might 

focus more on measurements of effect size to assess the alignments performed or 

develop a categorical set of standard values for various parameters that determine levels 

of success of alignment. 

 

Alternative data gathering methods 

New methods of alignment assessment may arise from new methods of creating LC-MS 

data sets. One such example is manipulating the subject data by adding in quality-control 

(QC) proteins to act as internal controls. The idea is to use QC proteins such that we 

have as much information as possible prior to the LC-MS run to ensure their 
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identification. Then we can analyze the warping of the QC proteins between aligned data 

sets to give a spatial assessment of the alignment quality. 
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APPENDIX A 

DTW ALGORITHM 

 

Formulation 

This implementation is adapted from Salvador and Chan.5 Suppose we are given two 

time series X and Y with lengths |X| and |Y|: 

X = x1, x2,…, xi,…, x|X| 

Y = y1, y2,…, yj,…, y|Y| 

We seek to construct a warp path W: 

W = w1, w2,…, wK 

Here we require max(|X|, |Y|) ≤ K < |X| + |Y| and K is the length of W . Each wk = (i, j) 

and denotes a warping on the time axis from the ith index of X to the jth index of Y; 

every index of both time series X and Y must be used. We also take w1 = (1, 1) and wK = 

(|X|, |Y|). Lastly we seek to minimize the distance of the warp path: 

Dist(W) = Σall k Dist(wki, wkj) 

We may use different measures of distance but for the purposes of this implementation 

we use the squared Euclidian distance, so: 

Dist(wki, wkj) = (wkj(x) - wki(x))2 + (wkj(y) - wki(y))2 

 

Cost matrix creation 

We use a cost matrix D to determine the minimum distance warp path. The cost function 

D(i, j) is defined recursively as follows: 
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D(i, j) = Dist(i, j) + min[ D(i - 1, j), D(i, j - 1), D(i - 1, j - 1) ] 

To utilize the cost function in this recursive manner, the cost matrix must be filled from 

bottom to top, left to right, and one column at a time. Once the cost matrix is filled, the 

warp path is computed by a greedy search starting at D(|X|, |Y|) such that the next entry 

in the warp path is essentially min[ D(i - 1, j), D(i, j - 1), D(i - 1, j - 1) ]. The search is 

complete when D(1, 1) is added to the warp path. Once the warp path is computed each 

warping wK is applied to the time series to be aligned, and the DTW alignment is 

complete. 
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APPENDIX B 

ALIGNMENT ASSESSMENT ALGORITHM 

 

Algorithm outline 

Note that regression and hypothesis testing formulas presented here are adapted from 

Fox.8 The quality assessment algorithm can be broken down into the following major 

steps when given a template data set T and an aligned data set A: 

1. Intensity List Construction 

2. Linear Regression 

3. Sigma Matrix Computation 

4. P-value Computation 

 

Intensity list construction 

The construction of the intensity data set must prepare the data to satisfy the model 

assumptions in the linear regression. We assume the following probability model: 

Yk = β0 + β1xk + εk where εk ~ N(0,σk
2) .........................................................................  (2) 

If we regard data sets T and A as m×n matrices where for each Aij and Tij there is a 

corresponding intensity value, we can construct a list M with at most mn elements where 

each element is given by Mk = [Aij , Tij ] where Aij ≠ 0 and Tij ≠ 0.  

 

Linear regression 
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This step involves estimating the parameters β0 and β1 in the probability model given by 

equation 1. If we define the matrix X having row elements [1 Mk1] and the column 

vector y having elements [Mk2] for all k from the given data, then we can compute the 

parameters by: 

 β = (XTX)-1XTy 

Here XT denotes the transpose and all bolded quantities are vectors. 

 

Sigma matrix computation 

Here we must compute a mn×mn matrix which we denote by Σ. This step is used to take 

into account non-constant variance. Specifically, for every 100 intensity values in the 

intensity list we compute σk
2 as follows: 

σl
2 = 1 / 98 Σk=1→100 (yk - Y)2 

Here Y is the estimated value from the linear regression. Then assign σk = σl for each 

100 sampled k. 

 

P-value computation 

Once the matrix Σ is computed we can compute a variance-covariance matrix as follows: 

Var(β) = (XTX)-1XTΣX(XTX)-1 

This yields a 2×2 matrix where the entry Var(β)1,1 = Var(β0) and Var(β)2,2 = Var(β1). We 

will test the following hypotheses: 

H0: β1 = 1 vs. HA: β1 ≠ 1 

H0: β0 = 0 vs. HA: β0 ≠ 0 
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Here the test statistics are given by: 

Tβ0 = β0 / Var(β0)1/2 

Tβ1 = (β1 - 1) / Var(β1)1/2 

These test statistics follow a Tmn-2 distribution; with the extremely large number of data 

points used this has a normal N(0,1) distribution, so at this point it is just a matter of 

integration to compute the test statistics. 
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APPENDIX C 

ALIGNMENT ASSESSMENT ALGORITHM IMPLEMENTATION 

 

The following is the Maple code for the assessment algorithm. First we divide up the 

main code block into three sections and then describe particular procedures used that 

aren’t included in Maple packages. In particular, the DataManip and Proteomics 

packages are custom packages created for use in this research. The ArrayTools, Linear 

Algebra, and Statistics packages are default Maple packages. 

 

Data import and preprocessing 

with(Proteomics): with(LinearAlgebra): with(ArrayTools): with(DataManip): 

with(Statistics): 

 

M:=502: N:=1201: 

 

for k from 1 to 6 do 

temData:=Array(readdata("file_template.txt",float,M)): 

aliData:=Array(readdata(cat("file_aligned_0",k,".txt"),float,M)): 

 

for i from 2 to M do 

 intensitiesVectorRaw[i]:=Alias(Array(Transpose(Matrix(temData))[i]),1,[1..N]): 

 intensitiesVectorAli[i]:=Alias(Array(Transpose(Matrix(aliData))[i]),1,[1..N]): 
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od: 

 

allTem:=Concatenate(2,seq(intensitiesVectorRaw[i],i=2..M)): 

allAli:=Concatenate(2,seq(intensitiesVectorAli[i],i=2..M)): 

 

i:=1: j:=1: 

while i<=(M-1)*N do 

 if allTem[i]<>0 and allAli[i]<>0 then 

  pairedIntensities[j]:=[allTem[i],allAli[i]]: 

  j:=j+1: 

 fi: 

 i:=i+1: 

od: 

 

writedata(cat("file_aligned_0",k,"_dezeroed.txt"),convert(Array([seq(pairedIntensities[i]

,i=1..j)]),array)); 

 

od: 

 

Data sorting 

for i from 1 to 6 do 
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allPairedIntensities:=Array(readdata(cat("file_aligned_0",i,"_dezeroed.txt"),float,999999

,2)): 

 

f0:=QuickSorter(allPairedIntensities): 

f00:=Array([seq([f0[i][1],f0[i][2]],i=1..nops(f0))]): 

 

writedata(cat("file_aligned_0",i,"_dezeroed_sorted.txt"),convert(f00,array)): 

 

od: 

 

Regression analysis and hypothesis test 

for i from 1 to 6 do 

colPairedIntensities:=Array(readdata(cat("file_aligned_0",i,"_dezeroed_sorted.txt"),float

,999999,2)): 

 

X:=Transpose(Matrix(colPairedIntensities))[1]: 

Y:=Transpose(Matrix(colPairedIntensities))[2]: 

nEles:=ArrayTools[NumElems](X): 

 

LinFit:=LinearFit([1,t],X,Y,t): 

B0:=coeffs(LinFit)[1]: 

B1:=coeffs(LinFit)[2]: 
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Sig:=SigmaPartition(X,Y,100): 

 

Mat1:=Vector[row]([seq(1,i=1..nEles)]): 

XMat:=Matrix([Vector[column](Mat1),Vector[column](X)]): 

 

P1:=(Transpose(XMat).XMat)^(-1).Transpose(XMat): 

P1Row1:=Vector[row]([seq(P1[1,i]*Sig[i,i]^2,i=1..nEles)]): 

P1Row2:=Vector[row]([seq(P1[2,i]*Sig[i,i]^2,i=1..nEles)]): 

P2:=Matrix([[P1Row1],[P1Row2]]): 

P3:=XMat.(Transpose(XMat).XMat)^(-1): 

 

Final:=P2.P3: 

 

TSB0:=B0/sqrt(Final[1,1]): 

TSB1:=(B1-1)/sqrt(Final[2,2]): 

 

writedata(cat("file_aligned_0",i,"_results txt"),convert([[TSB0,TSB1]],array)): 

 

od: 

 

Details of custom routines used 
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DataManip[SigmaPartition]:=proc(X::{Vector[row]},Y::{Vector[row]},n::posint) 

 

local i, j, fit, nEles, sigmaDiag: 

 

nEles:=LinearAlgebra[ColumnDimension](Matrix(X)): 

fit:=Statistics[LinearFit]([1,t],X,Y,t): 

 

#Compute all partitions except the last 

for i from 1 to (nEles - (nEles mod n))/n do 

 for j from n*(i-1)+1 to n*i do 

  sigmaDiag[j]:=sqrt(evalf(1/(n-2)*add((Y[j]-subs(t=X[j],fit))^2,j=n*(i- 

  1)+1..n*i))): 

 od: 

od: 

 

if (nEles mod n)>0 then 

 for j from (nEles - (nEles mod n)) + 1 to nEles do 

  sigmaDiag[j]:=sigmaDiag[nEles - (nEles mod n)]: 

 od: 

fi: 

 

LinearAlgebra[DiagonalMatrix](Vector[row]([seq(sigmaDiag[j],j=1..nEles)])); 
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end: 

 

Note: The following quicksort algorithm is adapted from Sedgewick.11 

DataManip[QuickSorter]:=proc(A::{list,Array,Matrix}) 

 

local top, left0, right0, left, right, i, neles; 

 

neles:=ArrayTools[NumElems](A)/2: 

 

top:=[seq(A[i], i=2..neles)]; 

left0:=select(x -> x[1] < A[1][1], top); 

right0:=select(x -> x[1] >= A[1][1], top); 

left:=Array([seq([left0[i][1],left0[i][2]],i=1..nops(left0))]); 

right:=Array([seq([right0[i][1],right0[i][2]],i=1..nops(right0))]); 

 

[op(DataManip[QuickSorter](left)), A[1], op(DataManip[QuickSorter](right))]; 

 

end: 
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