Adopted by the Waco MPO Policy Board: February 3, 2010

Prepared by the Waco Metropolitan Planning Organization in cooperation with the Federal Highway Administration, Federal Transit Administration, and the Texas Department of Transportation.

Preface

The Waco Metropolitan Planning Organization hasprepared this plan in compliance with the Safe, Accountable, Flexible and Efficient Transportation Equity Act: A Legacy for Users (SAFEIEA-LU). The preparation of this plan has been funded in part through grants by the Federal Highway Administration, the Federal Transit Administration and the Texas Department of Transportation.

The contents of this report reflect the views and opinions of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the offic ial view or polic ies of the Federal Highway Administration, Federal Transit Administration or the Texas Department of Transportation.

For more information regarding this Plan Update, the Metropolitan Planning Organization and its activities or for a copy of this report, please contact:

Waco Metropolitan Planning Organization
P.O. Box 2570

Waco, TX 76702-2570
www.waco-texas.com/mpo.htm
E-mail: mpo@ci.waco.tx.us
(254) 750-5650
(254) 750-1605 (fax)

Waco MPO Policy Board - FY 2010

Chair

The Honorable Randy Riggs
Vice-Chair
Mr. J ed Walker, P.E.

Members

Mr. Keith Bond
Mr. Robert E. Cervenka
The Honorable Virginia DuPuy
Dr. William Falco
Mr. Lamy D. Groth, P.E.
Mr. Chris Gutierrez
The Honorable Jim J a ska
The Honorable Jim Lewis

Council Member-City of Waco

Chair - City of Waco Transportation Committee

Public Works Director - City of Lacy-Lakeview City Manager - City of Robinson Mayor-City of Wa co Planning Director-City of Waco City Manager - City of Waco Waco Plan Commission Representative Mayor - City of Ross
County Judge - Mc Lennan County

The Honorable Joe Mashek
Mr. Adam Miles
Mr. Joseph Portugal
The Honorable Alice Rodriguez
Mr. Ric hard Skopik, P.E.
Mr. Doss Young blood
Mr. Yousry Zakhary

Ex-Officio Members

The Honorable John Comyn
The Honorable Kay Bailey Hutchison
The Honorable Chet Edwards
The Honorable Kip Averitt
The Honorable J im Dunnam
The Honorable Charles 'Doc' Anderson
Ms. Barbara Maley
Mr. Tony Ogboli

Commissioner - Mc Lennan County
City Manager - City of Hewitt
City Manager - City of McGregor
Council Member - City of Waco
Waco District Engineer - Texas Department of
Transportation
Council Member-City of Bellmead
City Manager - City of Woodway

U.S. Senate
U.S. Senate
U.S. House of Representatives
Texas Senate
Texas House of Representatives
Texas House of Representatives
Federal Highwa y Administration
Federal Transit Administration

Waco MPO Technical Committee - FY 2010

Mr. Keith Bond
Mr. Rick Charton
Ms. Natalie Edwards
Mr. Christopher Evilia, AICP
Mr. Robert E. Cervenka
Mr. Clark Gauer, P.E.
Mr. Steve Hendricks, P.E.
Mr. John Hendric kson
Mr. Mark Hines, P.E.
Mr. John Jasek, P.E.
The Honorable J im J a ska
Mr. Ed Kabobel, J r.
Mr. Joel Martinez
Mr.John Moran
Mr. Joseph Portugal
Ms. Paula Owens
Mr. Andy Petter, P.E.

Public Works Director - City of Lac y-Lakeview
Director- Traffic Services-City of Waco
Assistant to the City Manager - City of
Woodway
Director- Waco MPO
City Manager - City of Robinson
City Engineer - City of Lorena
County Engineer - Mc Lennan County
General Manager- Waco Transit
Eng ineering Services - City of Wa co
McLennan Area Engineer - Waco District Texas
Department of Transportation
Mayor - City of Ross
Transportation Planning Administrator- Wa co
District Texas Department of Transportation
Manager- Waco Regional Airport
City Manager - City of Lorena
City Manager - City of McGregor
Transportation Director-Central Texas Senior
Ministry
Director - Transportation Pla nning \&
Development - Waco District Texas
Department of Transportation

Mr. Gary Rushing
Mr. Adam Miles
Mr. James G. Vaughan, Jr.
The Honorable Douglas Woodward Waco MPO Staff

Mr. Christopher Evilia, AICP
Ms. Ruth Fajardo

Transportation Operations Coordinator - Heart of Texas Council of Govemments

City Manager-City of Hewitt

President / CEO - Greater Waco Chamber of Commerce
Mayor - City of Beverly Hills

Director
Staff Assistant

Section 1: Introduction

1.1 Background

1.1.1 What is the Metropolitan Planning Organization?

The US Census Bureau has identified over 400 regions throughout the United States that they consider to be urbanized. Urban Areas, by definition, conta in a population greater than 50,000. Federal law mandates the creation of a Metropolitan Planning Organization (MPO) for each census defined urbanized area, with the pupose of involving local govemments in transportation decisions involving federal highway or transit funds.

To achieve this, the City of Waco has been designated by the Govemor of Texas as the MPO responsible fortransportation planning in the Waco Urbanized Area. The City of Waco Planning Staff organizes, resea rches, a nd coordinates activities between the Texas Department of Transportation, Waco Transit and the Waco MPO Policy Board.

Although federal law mandates the creation of an MPO for each census defined urbanized area, federal law also requires that the MPO plan for a larger area that reflects the region anticipated to be urbanized within the next 25 years or areas antic ipated to significantly influence transportation activities within the forecasted urbanized area. This area is referred to as the Metropolitan Planning Area or MPA and is determined by an agreement between the MPO Policy Board and the Govemor of Texas. The MPA for Waco is coextensive with McLennan County. Please referto Map 1.1 for the Waco MPA and census defined urbanized area.

The Waco MPO is govemed by the MPO Polic y Board which consists of 18 members representing McLennan County, the various incorporated cities within McLennan County and TxDOT. See Appendix A for the list of Polic y Board members for FY 2009. The Policy Board is the decision-making component of the MPO and their duties include adopting metropolitan transportation policy and determining regional transportation priorities.

In addition to the Policy Board, the MPO has a Technical Committee composed of engineering, planning, and other tec hnic al professionals from member govemments, transit authorities, TxDOTengineers, MPO staff, and other transportation interests. The Technical Committee, along with the MPO Staff, provide the Policy Board with the tec hnic al assistance necessary for the decision making process. Please refer to the Preface for a list of Policy Board, Tec hnical Committee and MPO staff members as of FY 2009.

1.1.2 What is the Metropolitan Transportation Plan?

Connections 2035: The Waco Metropolitan Transportation Plan, also known as the MTP, is the 25 -year plan that outlines the mobility needs for the Waco Metropolitan Area. The MTP serves as the blueprint from which future mobility projects are developed and reflect the policies and prorities of the Wa co MPO Policy Board. The MTP is required by federal law to include all projects which intend to utilize federal highwa y or transit dolla rs during the 25-year planning period as well as all other regionally signific ant transportation projects, regardless of their source of funding. The MTP, however, must also be constrained against a realistic estimate of available resources. Only those projects that can be realistic ally funded during the 25 -year planning period may be included in the MTP.

Once identified within the MTP, a project is then eligible for federal highway or transit dollars for study, design, right of way acquisition or construction activities. Before proceeding to construction or implementation, however, the project must first be included in the Transportation Improvement Program (TIP). The TIP identifies those projects that the MPO a grees should either be implemented or constructed within the next 4 fiscal years. Similar to the MTP, the TIP must also be constra ined a gainst realistic estimates of funding.

The MTP is the final product of several years of research through the continuing, comprehensive, cooperative effort of the MPO Staff, MPO Policy Board, MPO Technical Committee, Texas Department of Transportation (TxDOT), Waco Tra nsit and the member govemments of the MPO.

1.1.3 Relationship between the MTP \& Transportation Improvement Program

The Transportation Improvement Program, also known asthe TIP, is a fisc ally constrained, program of projects to be implemented during the next 4 fiscal years. All projects using either federal highway or tra nsit funds must be included within the TIP prior to the execution of a ny contracts or the commencement of work.

In order to be included within the TPP, a project must first be identified within the 'Funded Recommendations' section of the MTP. In addition, projects must also have existing commitments to provide all necessary funding for completion. Construction projects must also have all necessa ry engineering and environmental studies complete in addition to all necessary right of way acquired.

1.2 Federal Legislation

The Waco MPO is the result of a long history of transportation planning legislation. In 1962, Congress passed the Federal Highway Act (FHWA) which focused on the needs for transportation planning in urbanized areas. The Act specific ally states:

The Secretary [of Transportation] shall not approve...any projects in any urban area of more than 50,000 population unless he finds that such projects are based on a CONTINUING, COMPREHENSIVE transportation planning process camied on COOPERATIVELY by the States a nd Local Communities.

The FHWA of 1962 became the catalyst formany laterfederal actions. When Congress passed the Federal Highway Act of 1970 they added:
...no highway project may be constructed in any urban area of 50,000 population or more unless the responsible public officials of such urban area in which the project is located have been consulted and their viewsconsidered.

In compliance with this Act, the Cities of Waco, Bellmead, Beverly Hills, Hewitt, LacyLakeview, Northcrest, Robinson, Woodway, Mc Lennan County and the Texas Highway Department (now known as TxDOT) formed the Waco MPO in 1974.

In 1975, Congress implemented the FHWA/Urban Mass Transportation Administration (UMTA) Joint Regulation. This directed Govemors to designate Metropolitan Planning Organizations that develop:

- Unified Planning Work Program (UPWP)
- Metropolitan Transportation Plan (MTP)
- Transportation Improvement Program (TIP)

The Intermodal Surface Transportation Efficiency Act of 1991, known as ISTEA, included measures that have affected transportation planning in a more signific ant manner than a ny previous legislation. ISTEA included for the first time an emphasis on public involvement, multi-modal considerations, and better highway design. Although not as significant in the Waco area as in larger MPOs, the inclusion of the Clean Air Act provisions in ISTEA highlighted the growing importance of issues beyond fast and convenient transportation.

The Transportation Equity Act for the $21^{\text { }}$ Century, known as TEA-21, was the reauthonization of ISTEA. TEA-21 further emphasized the importance of planning in the development of transporta tion projects and strengthened several core requirements within the transportation planning process.

All of these federal actions had a profound effect on the history, formation, and role of the Waco MPO. However, the most recent federal legislation that affects the organization and function of the Waco MPO is the reauthorization of TEA-21, the Safe, Accountable, Flexible and Effic ient Transportation Equity Act: A Legacy for Users (SAFETEA-LU).

As of the development of this plan, SAFETEA-LU has been extended by Congress beyond the original termination date of September 30, 2009. Congress is currently considering several different reauthorization proposals which will likely signific a ntly impact the MPO and regional transportation decisions, once adopted. Until that time, however, the transportation planning process will continue to be govemed by SAFEIEALU.

1.3 Overview of SAFIEA-LU

SAFETEA-LU was signed into Law in August of 2005. This legislation authorizes highway, highway safety, transit and other surface transportation programs for fiscal years 2003 through 2009. As mentioned previously, SAFETEA-LU has been extended by Congress through fiscal year 2009.

The five key features of SAFETEA-LU a re:

- Investing In Our Future: Highway and tra nsit programs are gua ranteed a minimum level of spending tied to actual Highway Trust Fund (HTF) Highway Account receipts and selected fixed a mounts (for transit funding). The minimum gua rantee specifies that each state's a pportionment for specified programs is at least 90.5% of its percentage share of contributions to the Highway Account.
- Improving Safety: Non-construction highway safety programs, exc luding motor camier safety, are continued and expanded. These programs include driver and vehicle safety programs, infrastructure safety, motor camer safety, recreational boating safety, and one-call notific ation programs for construction.
- Rebuilding America's Infrastructure: A commitment to improve the conditions and performance of the transportation system is reaffirmed with solid investments in people, highway construction, transit, a nd other special programs.
- Protecting Our Environment Proven strategies for a clea ner environment are strengthened. Safety, quality of life, and environmental issues come together in programs such as Congestion Mitigation and Air Quality Improvement (CMAQ), Transportation Enhancements (TE), Bic ycle Transportation and Pedestrian Walkways, Recreation Trail Program, National Scenic Byways Program, Transportation and Community and System Preservation Pilot Program (TCSP), and Ozone and Particulate Matter Standards.
- Advancing Research and Technology: Establishing a strategic planning process is foremost in determining national research and technology development priorities, competitive ment review procedures, performance measurement procedures, and model procurement procedures.

1.4 Federal Planning Considerations

The 7 planning factors of SAFEIEA-LU's predecessor, TEA-21, rema in la rgely unchanged under SAFETEA-LU with the exception that safety and sec urity have been separated into separate planning considerations. This change reflects the increased emphasis on protecting the public from threats to the transportation system.

1. Support the economic vitality of the metropolitan area, especially by enabling global competitiveness, productivity, a nd effic iency;
2. Inc rease the safety of the transportation system for motorized and non-motorized users;
3. Increase the security of the transportation system for motorized and non-motorized users;
4. Increase the accessibility and mobility options available to people and for freight;
5. Protect and enhance the environment, promote energy conservation, and improve qua lity of life;
6. Enhance the integration and connectivity of the transportation system, a cross and between modes, for people and freight;
7. Promote effic ient system mana gement a nd operation; and
8. Emphasize the preservation of the existing transportation system.

1.5 Air Quality Considerations

The Clean Air Act Amendments of 1990 requires all metropolitan areas to meet the National Ambient Air Quality Standards established by the Environmental Protection Agency (EPA) for numerous pollutants, including ozone, nitrous oxides, and partic ulate matter. Metropolitan areas that meet these standardsare considered to be in atta inment and are not required to establish control measures to improve a ir quality. The Waco Metropolitan Area is considered to be in attainment for all air pollutants by the EPA.

Section 2: Guiding Principles

The MTP must be financially constrained to a vailable resources and unfortunately the Waco Region does not have enough resources to fund all mobility needs by 2035. As a result many important needs cannot be included in this plan unless a significant change in available resources occurs. Since resources are limited, the MPO Policy Board uses the following principles to allocate funds to the most important regional prionties:

1. Maintain existing transportation facilities

2. Address serious safety and security problems
3. Maximize the use of existing transportation facilities
4. Preserve the region's air quality and environment
5. Support the region's economic development efforts

2.1 Performance Objectives

The Waco MPO has adopted several objectivesto measure the success of the MTP in meeting the guiding principles of the Polic y Board. The intent of these objectives is to develop a multi-modal transportation system that provides better service than is currently present. The extent to which these objectivescan realistic ally be met, however, will be determined by the availability of a dequate resources, which are beyond the control of the Policy Board. It should be noted that several of the objectives identified below will require resources that are not currently forecasted to exist.

Principle 1: Maintain existing transportation fac ilities
Objective 1-1: Rehabilitate all roadways rated with a condition of 'poor' or were constructed / reconstructed prior to 1990.

Objective 1-2: Perform adequate preventative maintenance on all other roadways.

Objective 1-3: Replace or rehabilitate all structurally defic ient or functionally obsolete bridges.

Objective 1-4: Replace public transportation rolling stock every 10 years.

Objective 1-5: Reconstruct all sidewalks which cannot accommodate wheelchairs

Princ iple 2: Address serious safety and sec urity problems

Objective 2-1: Reduce total c rashes by 10\%.
Objective 2-2: Reduce red light running crashes by 25%.
Objective 2-3: Reduce fatal, incapacitating and non-incapacitating injury crashes by 10%

Objective 2-4: Provide safe pedestrian connections between all elementary, intermediate and middle schools and residential neighborhoods within 1 mile.

Objective 2-5: Provide safe, well lit shelters a long Waco Tra nsit's fixed route system.
Principle 3: Maximize the use of existing transportation facilities
Objective 3-1: Improve Level of Service for all a renials a nd expresswaysto "E" or better.

Objective 3-2: Improve incident clearing time on expresswa ys and arterials to an a verage of 30 minutes or less.

Objective 3-3: Retrofit all a rerial highwa ys to meet TxDOTaccess ma na gement standards.

Objective 3-4: Adopt regional ITS a rchitec ture and deploy TS systems on regional freeways, principal a rterial and selec ted minor a rterials.

Princ iple 4: Preserve the region's airquality and environment
Objective 4-1: Increase percent of regions workers walking or bic ycling to work or school to 7\%.

Objective 4-2: Increase total annual boardings for public transportation within the region to 1.5 million.

Objective 4-3: Develop interregional passenger rail services as an altemative to IH-35.

Pinciple 5: Support the region's ec onomic development efforts

Objective 5-1: Employers with more than 100 employees should have direct access to a minor arterial or larger facility and the level of service for that facility should be equal to or better than "E".

Objective 5-2: Waco Transit's fixed route system should provide walking access* to 80% of employers with more than 100 employees.

Objective 5-3: Employers with more than 100 employees should have pedestrian infrastructure connecting their location with the Waco Transit fixed route system.

Objective 5-4: Waco's transportation system should be developed in such a way to encourage most future development to occur within existing nodes of development and provide walking access between new resid ential development and most basic municipal and commercial services.
*Wa lking a ccess defined as access within 0.25 miles with sidewalk connections.

Section 3: Geography \& Demographics

3.1 Geography

Located midway between Dallas and Austin on $\mathrm{IH}-35$, Waco is centrally located in the region known asthe "Heart of Texas." The Waco Urbanized Area, asidentified by the US Census Bureau, encompasses 70 square miles and an estimated population of 157,573 a s of the year 2006.

In order to account for future growth and activities that impact mobility within the urbanized area, the MPO studies a much larger area when developing the Metropolitan Transportation Plan. This a rea is referred to asthe Waco Metropolitan Area and it is coextensive with McLennan County, Texas. The Waco Metropolitan Area encompasses 1,060 square miles and in 2007 had an estimated population of 228,123. Map 3.1 shows both the Waco Urbanized Area and the Waco Metropolitan Area.

3.1.1 Physical Geography

The Waco Metropolitan Area is located at the confluence of the Brazos and Bosque Rivers. The Brazos River roughly bisects Mc Lennan County into two equal parts. The North, Middle and South Bosque Rivers enter the Metropolitan Area from the north, northwest and west respectively and flow into Lake Waco and then form the Bosque River. These rivers create signific ant natural ba miers across the Waco Metropolitan Area.

The Waco Metropolitan Area is relatively flat and without much change in relief despite being bisected by the Balcones Fault system. The highest point within the region is 962 feet above sea level at a point northwest of Crawford and the lowest point is 349 feet above sea levelalong the Brazos River at the McLennan / Falls C ounty Line. Elevation and severe slopes generally do not create significant natural ba miers within the Waco Metropolitan Area.

Most of the Waco Metropolitan Area lies within the Blackland Prairie region of Texas. Broad grasslands within fertile soils containing a large amount of clay characterize this region. Although this clay is beneficial for agriculture, it is problematic for road construction as these clays will experience a signific ant a mount of swelling when wet and will shrink signific antly when dry. The resulting shrinking and swelling often signific antly reduce the useful life of pavements within the metropolitan area.

3.1.2 Climate

The climate of Waco can best be described as moderate. Winters are generally mild with temperatures oc casionally dropping below freezing and rarely experiencing ice or snow. Summers are warm to hot with high temperatures often rising above 100 degrees Fahrenheit. Rainfall typic ally is concentrated during the spring with much drier conditions during summer and early fall.

Since snow and ice are rare occurrences, there is little need for the use of salt to de-ice roads. The result is less wear and tear on pavement surfaces and bridge structures as compared to areas with signific ant icing. This also results in a somewhat older motor vehicle fleet as vehicle bodies are less prone to rust and corrosion. This has potentially negative consequencesfor a ir quality and carbon emissions as is disc ussed in more detail in section 3.3.5.

The mild climate also makes bicycle and pedestrian travel modes more appealing to a largersegment of the population. Although the summers can be quite hot, the uncomfortable temperatures usually occur between 12:00 noon and 7:00 PM, which does not impose signific ant restrictions on these modes of travel.

Table 3.1 Waco 30 YearClimatological Data

	Winter (Jan to Mar)	Spring (Apr to J un)	Summer (J ul to Sep)	Fall (Oct to Dec)	Mean
High Temperature*	62.2	84.8	94.6	69.4	77.8
Low Temperature*	39.7	63.7	70.8	46.9	46.7
Precipitation**	6.1	11.1	7.2	7.6	32.0

*Mean temperatures.
**Measured in inches.

3.1.3 Existing Land Use

Much of the Waco Metropolitan Area can be described as rural in character with much of the urbanized usesconcentrated in a relatively small area in the center of the region. In 2005, nearly 82% of land in Mc Lennan County was used for either agric ultural purposes or was considered forested. Of the 8% of land considered 'developed', most was devoted to residential uses.

Table 3.2-2005 Land Use Percentages

Category	Acres	Percent of County
Agricultural	490,493	72.3%
Forested / Wooded	64,485	9.5%
Residential	37,600	5.5%
Highway Right of Way	26,771	3.9%
Water	18,022	2.7%
Vacant/ Undeveloped	11,365	1.7%
Surface Mining	7,343	1.1%
Parks/ Recreational Areas	5,655	0.8%
Industrial	5,283	0.8%
Commercial	2,549	0.4%
Other Development	8,834	1.3%

Table 3.3-2005 Developed Land Uses

Category	Percent of Developed Uses
Residential	69.3%
Industrial	9.7%
Commercial	4.7%
Office	0.5%
All otherdevelopment	15.8%

The relatively flat and well-drained soils that promote agric ulture, however, a re also very easy to develop into residential subdivisions. This, when combined with a favorable property tax structure, the perception of better schools and lower c rime, a nd relatively little traffic congestion have contributed to signific ant levels of urban sprawl. Between 1995 and 2005, developed land uses inc reased by 21.6%, wherea s population increased only 11.1% during the same time period.

Table 3.4 - Increases in Developed Land Uses 1995 to 2005

Category	New Acreage	Percent Increase 1995 to 2005
Commercial	539	26.8%
Residential	7,923	26.7%
Office	44	19.0%
Industrial	578	12.3%
Other Development	539	6.7%
Right of Way	4,744	21.6%
Total All Developed Uses	14,367	21.6%
Population	22,247	11.1%

Developments constructed during this time period utilized nearly twice the land to support each person as compared to all previous developments. The result is that the Waco Metropolitan Area usesmore developed land to support each person that nearly every other metropolitan area in the United States.

Table 3.5 - Change in Developed Acres per Person

1995	2005	Percent Change	Acres per Person for New Development
0.331	0.362	$+9.4 \%$	0.646

Of greater concem than the density of new developments is the location. Nearly three out of four acres of new residential development is found in areas considered rural in 1995. Commercial developments, however, were exactly the opposite whereasall other development, including industrial, was evenly divided between urban and rural. These new developments further exacerbate the existing disc onnect between where the regions residents live and where they work, go to school, shop and perform all other activities of life. The resulting distances between va rious land-uses forces residents of these new developments to use an automobile to perform any task. In addition, many of the developments furthest from the urban core also have the highest average age, many from retiring baby-boomers. The concem is that as these retirees age, their ability to utilize an automobile declines resulting in a signific ant increase in demand forvery limited rural demand response public transportation services. Section 3.3.4 describes in greater detail the distribution of elderly citizens within the Waco Region.

Table 3.6 - Location of New Developments since 1995

Geography	Percent of New Residential	Percent of New Commercial	Percent of New Industrial	Percent of Other New Development	Percent of All New Development
City of Waco	13.2%	46.6%	47.1%	35.5%	18.5%
Remainder of Waco Urbanized Area	14.7%	27.1%	7.1%	13.6%	14.8%
Rural	72.1%	26.3%	45.8%	50.9%	66.7%

3.1.4 Forec asted Land Use

The Waco MPO contracted with Wilbur Smith Associates (WSA) to identify future land uses pattems for the Waco Region should no significant changes in land-use or transportation policies, schools, tax structure, or economic s oc cur during the MTP planning period. In addition, WSA wastasked with identifying at least 2 altemative scenarios that could reasonably be accomplished by 2035 which would result in minimizing the need for new transportation and other municipal infrastructure and services. In addition, a nother goal of the altemative scenarios was to minimize the regions fuel consumption thus reducing the emission of ozone precursors (nitrogen oxides and volatile organic compounds) and reducing the regions carbon footprint.

The land use forecast estimated where residential, commercial and industrial uses would be located in the year 2030 assuming 56,000 new residents and 21,800 new jobs. The complete report with methodologies, results and recommendationscan be found in the document titled "Future Land Use Study for Mc Lennan County".

Trend Scenario

In their a nalysis, WSA projected that without signific ant change in policy or economics, development pattems through 2035 should be similar to the pattems observed since 1995, although at a lower population density and further dispersed. In the trend scenario, nearly all new residential development would occur in very low density developments in areas currently classified as rural. The average distance from each projected residential development and Downtown Waco is estimated to be 16 miles. The projected population density of most new development is estimated to be between 1 and 2 personsperacre, too low for any one development to support even modest commercial development by itself.

As a result of the projected low population densities, most commercial, industrial and office developments are projected to be concentrated within the existing urban core,
generally adjacent to or in close proximity of existing expressway or principal a rterials roadways.

The MPO staff used the trend scenario to estimate 2035 population and employment projections for development of the regional travel demand forecast model (section 5.1.2). This represents the 'worst case' scenario in terms of a utomobile travel demand. The altemative scenarios described below represent preferred scenarios for future land use distribution. Project recommendations found in Chapter 7 are intended to use the limited transportation resources projected to be regionally available to encourage a more effic ient land use pattem.

Altemate Scenario 1 - Suburban Centers

The 'Suburban Centers' scenario assigns nea rly all future population and employment growth to the existing urbanized area and as little as 5% is assigned to a reas beyond. This altemative produces the most effic ient transportation network but requires signific ant investment in public transportation, bicycle and pedestrian modes. Nevertheless, the reduced need for additional highway capacity more than offsets this increase. This scenario was preferred by personsidentifying a thriving natural environment as the most important emphasis. This scenario also produces the least fa mland impacts of the 3 scenarios.

Altemate Scenario 2 - Urban Center

The 'Urban Center' scenario is similar to the first altemative in that most future population and employment growth is assigned to the existing urbanized area. The primary difference, however, is that as much as 20% of the future growth is a ssigned to cities and towns outside of the urbanized area. This scenario acknowledges the presence of existing developments and is considered more politically realistic in that it does not assume the relocation of existing residents or jobs. This scenario was preferred by persons identifying transportation for all as the most important emphasis.

Table 3.7 provides a comparison of the 3 land use altematives in several important metrics. In general, there are only small differences between the 2 altematives, but signific ant positive differences between the altematives and the trend.

Table 3.7 Comparison of 3 Land Use Scenarios

Metric	Trend	Altemative 1	Altemative 2
Acres of New Development	9,977	6,913	6,672
Daily Vehic les Miles of Travel	11.2 million	9.9 million	10.0 milion
Annual Fuel Usa ge at 18 mph	$227,100,000$ gallons	$200,800,000$ gallons	$202,700,000$ gallons
Carbon Dioxide Emissions*	4.85 billion lbs	4.06 billion lbs	4.10 billion lbs
Arterial \& Collector 2030 Network Speed	31.7 mph	35.9 mph	35.8 mph

*Estimated 10% of VMTdue to heavy trucks at 6 mpg . Automobile \& light trucks estimated at 23 mpg . Estimated CO2 emissions: 19.4 lbs pergallon of gasoline, 22.2 lbs pergallon of diesel. Source: US EPA.

3.2 Demographics

3.2.1 Curent Population

Estimates from the Texas Data Center indic ate that the Waco Metropolitan Area experienced a 5.2% increase in population between 2000 and 2005 . This trend is slightly below the rate of change experienced between 1990 and 2000. The City of Waco conta ins the majority of the population of the MPO Study Area with 53.6 percent in 2005. The fastest growing communities within the Metropolitan Area are Hewitt, Lorena, and Robinson, which have all had an estimated double-digit growth rate since 2005. Mart has also shown a double-digit growth rate; however, much of this is due to the opening of the McLennan Youth Facility by the Texas Youth Commission. Table 3.8 shows the population trendsfor the Waco Metropolitan Area. Map 3.5 shows the population changes between 2000 a nd 2005 within the Waco Metropolitan Area.

Table 3.8 Population Trends for the Waco Metropolitan Area: 2000 to 2005

Geography	$\mathbf{2 0 0 0}$ Population	$\mathbf{2 0 0 5}$ Population***	Change	Percent Change	Percent of Metropolitan Growth
City of Waco	113,726	117,213	3,487	3.1%	31.3%
Suburban Cities*	50,914	55,224	4,310	8.5%	38.7%
Rural Cities**	11,536	11,716	180	1.6%	1.6%
Unincorporated Areas	37,341	40,515	3,174	8.5%	28.5%
McLennan County	213,517	224,668	11,151	5.2%	100.0%

*Includes the Cities of Bellmead, Beverly Hills, Hewitt, La cy-La keview, Lorena, Mc Gregor, Robinson and Woodway.
**Includes the Cities of Bruceville-Eddy, Crawford, Gholson, Hallsb urg, Leroy, Mart, Moody, Riesel, Ross a nd West.
**Estimated by MPO staff from 2005 a erial photography.
A trend of concem is the rapid growth of unincoporated areas. These areas, which are primarily rural, have few development restrictions and lowertaxes but also have an inadequate highway infrastructure to accommodate this growth. Additionally, these areas a re also developed at very low densities (1 to 2 housing units per acre or less) resulting in greater centerline mile requirements for the highway infrastruc ture and also makes these a reas unfeasible for transit senvice. Conversely, many areas within the urban core have excess highway capacity and housing unit densities appropriate for mass transit. These areas, however, continue the trend of losing population. One of the
goals of this plan is to utilize the underutilized highway infrastructure and mass transit in the urban core to encourage redevelopment in these areas.

Chart 3.1 Population Change: 2000 to 2005

Chart 3.2 Percent of Metropolitan Growth: 2005

3.2.2 Population Forecasts

McLennan County is forecasted to experience moderate growth during the period between 2005 and 2035 with an inc rease of 52,319 persons or 23.3%. This is less than half of the expected growth for the State of Texas projected during the same period. Projections for munic ipal populations were made under the assumption that no significant annexations would occur during the planning period. Additionally it is also assumed that no signific ant changes will occur regarding land-use restrictions, minimum lot sizes or property tax structures. Under these assumptions, the trend of signific ant population growth within unincoporated areas is anticipated to continue along with the trend of a declining share of population for Waco. Waco's population share of McLennan County is expected to decrease to 50.5% in 2035 ascompared with 53.6% in 2005.

The anticipated impact to the transportation network is to create more demand for highway infrastructure within the suburban and unincomorated areas. Suburban areas are generally developed with single-family dwellings on lot sizes of at least 0.25 acres. Within the unincorporated areas, residential lots generally do not have access to municipal sewers and thus require the use of septic systems. Lots developed with septic systems are required to have a minimum lot size of 0.5 acres according to requirements set by McLennan County. Depending upon soil type and depth, lot sizes may need to be greater than 0.5 acres. The result is that development within the suburban and unincoporated a reas are at densities that make transit service unfeasible.

Table 3.9 Population Forec asts for the Waco Metropolitan Area: 2005 to 2035

Geography	2005 Population	2035 Population	Change	Percent Change	Percent of Metropolitan Growth
City of Waco	117,213	132,397	15,184	13.0%	29.0%
Suburban Cities*	55,224	65,422	10,198	18.5%	19.5%
RuraI Cities**	11,716	13,099	1,383	11.8%	2.6%
Unincorporated Areas	40,515	66,069	25,554	63.1%	48.8%
McLennan County	224,668	276,987	52,319	23.3%	100.0%

*Includes the Cities of Bellmea d, Beverly Hills, Hewitt, La cy-La keview, Lorena, McGregor, Robinson and Woodway.
**Includes the Cities of Bruceville-Eddy, Crawford, Gholson, Hallsb urg, Leroy, Mart, Moody, Riesel, Ross a nd West.

Chart 3.3 Projected Population Change: 2005 to 2035

3.2.3 Current Employment

The estimated total labor force for 2005 within the Waco Metropolitan Area was 101,578. Most employment, similar to population, is concentrated within the City of Waco; however, it tends to be clustered in certain areas. There are 6 primary clusters of employment activity, which employs nearly half of the workforce within McLennan County. A $7^{\text {th }}$ cluster is included which was identified as a signific ant cluster of employment, but due to recent changes is less signific ant. Map 3.7 shows the distribution of employment within the MPO Study Area.

Cluster 1 - Downtown Waco / Baylor University

Downtown Waco, once the center of economic activity for the metropolitan area, is still a ma jor center of employment. The declines of the period from 1960 to 1990 have been reversed by development along Mary Avenue and with the relocation of the VeteransAdministration administrative offices. Baylor University, with 13,000 students and 1,400 employees, lies just east of $\mathrm{IH}-35$ and signific a ntly contributes to the activity within downtown.

Land use within downtown has, since the 1960's, been dominated by office uses such as finance, govemment, law offices or accounting firms. Areas near the Baylor campus,
espec ia lly a long $\mathrm{IH}-35$, have been prima rily resta urants catering to students and motorists along the interstate. The recent trend of increased retail and resta urant activity within downtown has somewhat offset some of the employment dec lines since 2000. Most new activity, however, has been clustered a round the City Hall / Heritage Square complex and the 800 block of Austin Ave. The continued trend of loft a partment construction has slightly inc reased the permanent residential population of downtown although not signific antly enough to bring in new commercial services as of 2005.

Cluster 2 - Texas State Technic al College

The TSTC campus, loc ated approximately seven miles north of downtown Waco, is the location of many a viation-related industries. The largest of these, which is also the la rgest employer within the MPO Study Area, is L-3 Communic a tions with a pproximately 1,700 employees. Several la rge apartment complexes exist just south and west of the campus prima rily serving TSTC students. Access to the campus has been considered a problem by surrounding communities.

Cluster 3 - Bellmead / Lacy-Lakeview

The intersection of IH-35 and Loop 340 / Lake Shore Drive continues to attract a signific ant a mount of new retail and commercial development. The most signific ant new development is the addition of Home Depot just north of the intersection.

Cluster 4 - Richland Mall / North Valley Mills Drive

Valley Mills Drive has, since the late 1950s, been a strong cluster of retail and commercial activity. This a ctivity has continued a slow dec line from recent years with the opening of new retail centers along State Highway 6 and Hewitt Drive. This cluster, however, still represents a signific ant center of commercial development.

Cluster 5 - Hillcrest Dr at MacArthur Dr

Hillcrest Medical Center, a former tenant of this cluster, moved in early 2009 to the intersection of SH 6 / Loop 340 and IH-35, signific antly dec reasing the activity in this cluster. Some activity continues in the former complex, mostly related to medical training, however most activity in 2009 was related to future uses antic ipated by 2015 (see section 3.3.3-forecasted employment).

Cluster 6 - Texas Central Industrial Park

The Texas Central Industrial Park is located southwest of the $\mathrm{IH}-35$ interchange with State Highway 6 and represents the largest area devoted to industrial development within the Waco Urban Area. When combined with the adja cent Clusters 4 and 7, these areas employ nearly 1 out of every 3 persons within the McLennan County workforce.

Cluster 7 - IH-35 at West Loop 340

This intersection has, since 2000, become a major center of retail and medical activity with the opening of the Central Texas Marketplace in 2003 and the relocation of the Hillcrest Medic al Center in 2009.

Table 3.10 Workforce Employment Location by Clusters-2005

Geography	Total Employment	Percent of Workfore	Change from 2000
Cluster 1 - Downto wn Wa co / Baylor University	9,946	9.2%	-20.0%
Cluster 2 - Texa s State Technical College	2,994	2.8%	-3.1%
Cluster 3 - Bellmead / La cy-La keview	4,582	4.2%	$+30.4 \%$
Cluster 4 - Ric hland Ma Il / North Valley Mills			
Drive	20,655	19.0%	$+13.8 \%$
Cluster 5 - Hillc rest Dr at MacArthur Dr	2,725	2.5%	-10.1%
Cluster 6 - Texas Central Industrial Park	10,436	9.6%	$+21.9 \%$
Cluster 7 - IH-35 at West Loop 340	1,255	1.2%	$+400.2 \%$
Tota I All Clusters			
Rema ining Mc Lennan County	52,317	49,261	45.4%
Total Mc Lennan County	101,578	93.7%	$+5.4 \%$
Employed outside of Mc Lennan County	6,860	6.3%	$+6.4 \%$
Total Workforce	108,438	100.0%	$+6.3 \%$

Source: Texas Workforce Commission

Chart 3.4 Employment by Clusters - 2005

3.2.4 Forecasted Employment

Total employment is anticipated to grow at a rate less than the growth of population during the planning period. This is due prima rily due two factors: first the aging of the population resulting in an increase in persons of retirement age and second an increase in student population, both at the elementary / secondary and college / university levels.

Employment location is expected to closely follow the pattems of population growth, a trend observed nationally. The employment clusters identified in section 3.2.3 are projected to slightly increase their percentage of the county workforce during the planning period. Three clusters are projected to experience signific ant inc reases in employment fordiffering reasons. Downtown Waco is projected to increase due to increases in service sector employment, i.e. attomeys, ac countants and other professionals. Bellmead / Lacy-Lakeview is projected to signific antly increase employment in the industrial and reta il sectors. The Texas Central Ind ustrial Park, although projected to experience inc reases in industrial employment, will also see increases due to new retail development anticipated at the intersection of $\mathrm{IH}-35$ and SH 6 / Loop 340. Elsewhere, signific ant inc reases in industrial employment are anticipated in the McGregorarea.

One area of concem is the projected explosive growth in retail employment within suburban areas. This growth is not antic ipated to add employment opportunities, rather relocate them to areas outside of the urban core. This relocation of employment is expected to signific antly strain public transportation resources by moving many jobs further away from persons requiring public transit for joumeys to and from work. In addition these developments will likely stra in the ability of the highwa y network to accommodate the anticipated increase in a utomobile traffic.

Table 3.11 Projected Workforce Employment Location by Clusters 2035

Geography	Total Employment	Percent of Workforce	Percent Change from 2005
Cluster 1 - Downtown Waco / Baylor University	10,608	8.5\%	+6.7\%
Cluster 2 - Texas State Technical College	4,075	3.3\%	+36.1\%
Cluster 3 - Bellmead / Lacy-Lakeview	5,165	4.1\%	+12.7\%
Cluster 4 - Richland Mall / North Valley Mills Drive	20,186	16.2\%	-2.3\%
Cluster 5 - Hillc rest Dr at MacArthur Dr	1,583	1.3\%	-35.4\%
Cluster 6 - Texas Central Industrial Park	12,139	9.7\%	+16.3\%
Cluster 7 - IH-35 at West Loop 340	4,838	3.9\%	+285.5\%
Total All Clusters	58,594	47.1\%	+12.0\%
Rema ining McLennan County	58,056	46.6\%	+17.9\%
Total McLennan County	116,650	93.7\%	+14.8\%
Employed outside of McLennan County	7,877	6.3\%	+14.8\%
Total Workforce	124,527	100.0\%	+14.8\%

Chart 3.5 Percent Change in Employment by Clusters 2005 to 2035

3.3 Titte VI Analysis

A primary goal of the Waco MPO is to ensure that the transportation needs of all people are met and that no one population group must endure a disproportional share of the burdens in meeting those needs. In order to accomplish this goal, the Waco MPO performs an analysis of it's plansand programs in order to assess the mobility of traditionally underrepresented groupsand to provide an assessment of the impacts of proposed projects upon these groups. The following sections of this chapter quantify the traditionally underrepresented groups and describe their distribution within the Waco Metropolitan Area. Specific analysis regarding the mobility of these groupsand plan recommendations to improve their mobility can be found within the chapters dealing with each transportation mode.

3.3.1 Race \& Ethnic ity

Minority populations within the Waco Metropolitan Area are primarily represented by two people groups: Blacksand Hispanicswith 15.0% and 17.9% of the population respectively. These groupsare generally concentrated within the urban core. Blacks reside predominantly east of Downtown Waco and within Bellmead and LacyLakeview. Hispanics reside predominantly south of Downtown Waco. An area bounded by the Brazos River, Waco Dr (US 84), New Rd and Heming Ave has a greater than average concentration of both minorities. In addition to these, there exists a higher than average concentration of Blacks in the Mart area and a higher than average concentration of Hispanics in the McGregor area.

These two people groups have traditionally been underrepresented in the transportation planning process. Chapter 8 outlines the MPO public involvement procedures and how the MPO involved these two minorities.

Table 3.12 Minority Population - 2000

Geography	Percent Non- Hispanic White	Percent Non- Hispanic Black	Percent Non- Hispanic Other	Percent Hispanic
City of Waco	51.7%	22.8%	1.9%	23.6%
Suburban Cities*	75.2%	8.4%	1.7%	14.7%
Rural Cities**	82.8%	8.7%	6.1%	8.4%
Unincomorated Areas	87.3%	4.0%	1.0%	7.7%
McLennan County	65.2%	15.3%	1.6%	17.9%

*Includes the Cities of Bellmead, Beverly Hills, Hewitt, Lacy-Lakeview, Lorena, McGregor, Robinson and Woodway.
**Includes the Cities of Bruceville-Eddy, Crawford, Gholson, Hallsburg, Leroy, Mart, Moody, Riesel, Ross a nd West.

Travel Time Analysis

In order to estimate whether the existing transportation system meets the goals of Title VI of the Civil Rights Act, the MPO staff performed an a nalysis of travel times by traffic a nalysis zonesto estimate access to the most basic necessary services. The analysis compared average travel times using the MPO travel demand model between both 'Protected' and 'Non-Protected' TAZs a nd the closest grocery stores, retail centers and medic al facilities. For purposes of this a nalysis ‘Protected’ zones consisted of TAZs with either Non-Hispanic Black or Hispanic populations greaterthan the McLennan County average. Map 3.9 identifies the protected zones used within this a nalysis.

Although each of the protected populations use public transportation in greater percentages that the non-protected populations, according to 2000 Census data the protected populations within the Waco Metropolitan Area still overwhelmingly use the a utomobile forbasic transportation. Therefore the MPO chose to perform the travel time a nalysis using only a utomobile travel times.

Table 3.6 identifies the results of the travel time a nalysis. In general, the protected populations have lower travel times to the 3 basic servicesevaluated than the nonprotected populations.

Table 3.13 Automobile Travel Time in Minutes to selected destinations for Protected Populations - 2007

Destination	Non-Hispanic Black	Hispanic	Non-Protected	All Persons
Nearest Grocery Store	3.96	3.45	8.17	6.36
Nearest Retail Center	9.57	10.10	12.19	11.21
Nearest Medical Facility	4.98	4.56	8.56	6.97
McLennan County Courthouse	10.05	10.98	18.73	16.46

3.3.2 Persons Living in Poverty

McLennan County is slightly above the state average for persons living below the census defined poverty level. Most portions of the County have poverty rates well below the state average, however the City of Waco has a signific antly greater poverty rate with nearly 1 in 4 persons living below the poverty level. Within Waco, several areas have extreme poverty rates with some block groups in the East Waco and South Waco areasexceeding 60\%below poverty level.

The extreme poverty a reas generally correlate well with a lack of access to automobiles (see section 3.3.3). As inc ome decreases, the ability to afford an automobile also decreases. The result is that these areas are more heavily dependant upon public transportation and bicycle / pedestrian facilities than other segments of the population.

Table 3.14 Poverty \& Income Statistics - 2000

Geography	Per Capita Income	Percent Living in Poverty
City of Waco	$\$ 14,584$	24.5%
Suburban Cities*	$\$ 20,731$	8.5%
Rural Cities*	$\$ 15,538$	13.7%
Unincorporated Areas	$\$ 20,717$	5.9%
McLennan County	$\$ 17,174$	16.8%
State of Texas	$\$ 19,617$	15.4%

*Includes the Cities of Bellmead, Bevenly Hills, Hewitt, Lacy-Lakeview, Lorena, McGregor, Robinson and Woodway. **Includes the Cities of Bruceville-Eddy, Crawford, Gholson, Ha llsburg, Leroy, Mart, Moody, Riesel, Ross a nd West.

3.3.3 Average Travel Time to Work \& Automobile Availability

Travel times to work for Mc Lennan County generally follow the expected pattem of the shortest tra vel times near the center of the urban core and inc reasing tra vel times as distance from the urban core increases. The best travel times to work can be found in the vic inity of Ba ylor University with one-way travel times of less than 10 minutes. The worst travel times, however, can be found only 2 miles away in East Waco with average one-way travel times of 35.7 minutes. Table 3.16 shows that there are several other areas near the center of the urban core with poor travel times.

These East Waco block groups also have high levels of poverty and low access to automobiles. The dependence on public transportation greatly increasesthe one-way travel times due to the one-hour headways with which each fixed route operates. In addition, many of the employment opportunities are moving further away from East Waco (see section 3.2.4). The result is a need to not only improve senvice by reducing headways, but also to realign routes such that travel paths between employment centers and East Waco are more direct.

Table 3.15 Average Travel Time to Work \& Occ upied Housing Units with No Automobiles - 2000

Geography	Average Travel Time to Work (minutes)***	Percent of Oc c upied Housing Units with No Automobiles
City of Waco	17.2	11.7%
Suburban Cities*	18.8	4.1%
Rural Cities*	26.1	7.1%
Unincomorated Areas	24.1	3.5%
McLennan County	19.5	8.3%

*Includes the Cities of Bellmead, Bevenly Hills, Hewitt, Lacy-Lakeview, Lorena, McGregor, Robinson and Woodway. **Includes the Cities of Bruc eville-Eddy, Crawford, Gholson, Hallsburg, Leroy, Mart, Moody, Riesel, Ross and West.
***For persons 16 years or older.

Table 3.16 Block Groups with One-way Travel Times to Work in Excess of $\mathbf{3 0}$ Minutes - 2000

Block Group	Geographic Area	Average Travel Time to Work (minutes)*
Tract 14, BG 2	Waco Drat Gholson Rd	35.7
Tract 15, BG 1	Elm Ave at Forrest St	30.4
Tract 15, BG 7	Elm Ave at Dallas St	32.1
Tract 35, BG 3	Elk Community	33.3

*For persons 16 years or older.

3.3.4 Ederly Population \& Mobility Disabilities

The largest concentration of eldenly within the metropolitan area is found in West Waco along the shores of Lake Waco. Two block groups in this a rea have in excess of 40% of the population older than 65 years of age and most other block groups in the vic inity exceeding the county average for elderly. These areas are generally at the county a verage for automobile availability (map 3.12), greatly below the county average for persons in poverty (map 3.10) but are also either beyond or on the periphery of Waco Transit's $3 / 4$ mile service area (map 4.4). Currently, transit service is concentrated towardssenving persons with limited access to an automobile. As the population ages, however, increasing transit service to these areas may become more of a priority, as their a bility to drive may inc rea singly be limited.

Persons with a mobility or self-care disability are more dispersed throughout the metropolitan area, but greater concentrations exist in areas with a higher percentage
of persons in poverty (map 3.10) and at the VA Regional Medical Center. Waco Transit's demand response service serveseach of the high mobility \& self-care disability percentage areas and are also served by the demand response services provided by the Central Texas Senior Ministry.

Table 3.17 Elderly Population \& Persons with Disabilities - 2000

Geography	Percent Over Age 65	Percent with a Self- Care or Mobility Disability
City of Waco	13.7%	10.9%
Suburban Cities*	12.4%	9.0%
Rural Cities*	17.6%	10.2%
Unincomorated Areas	9.4%	7.1%
McLennan County	12.9%	9.8%
State of Texas	9.9%	8.9%

*Inc ludes the Cities of Bellmead, Beverly Hills, Hewitt, Lacy-Lakeview, Lorena, Mc Gregor, Robinson and Woodway.
**Includes the Cities of Bruceville-Eddy, Crawford, Gholson, Hallsburg, Leroy, Mart, Moody, Riesel, Ross and West.

3.3.5 Environmental Mitigation Activities

SAFETEA-LU included in it's requirements an accounting of potential environmental mitigation activities which may be necessary as a result of impacts imposed by the transportation system upon the environment. Specific activities are usually identified as part of the development of an Environmental Impact Statement, typic ally performed during the design phase of a project. Congress, however, hasconsistently stated that a consideration of potential environmental impacts needs to be made during the planning process. This consideration would have a two-fold effect: 1.) Projects with signific ant environmental impacts would be identified sooner, allowing policy makers to better weigh the benefits of the project against these impacts as well as the antic ipated delays from potential mitigation of these impacts, and 2.) Projects with little or no signific ant impacts can develop more quickly as an accounting of these impacts hasbeen made prior to the design phase.

Analysis by the MPO focused on 3 general categories: 1.) Hazardous Material storage areas or generation facilities, 2.) Lands identified as part of Section 4(F) of the 1966 Transportation Act, and 3.) Land use takings. Generally speaking, recommended a lignments or proposed right of way boundaries have not been identified at the long range planning level, thus the MPO staff haschosen to evaluate projects based upon the chance that mitigation for one or more factors may be necessary as the project develops.

A "likely" chance is defined as a feature being located within 250 feet of the centerline of an existing highway and for new construction on a new alignment, a "likely" chance is defined as a feature being located within 500 feet of the center of the comidor. A "somewhat likely" chance is applied when it appears that a design altemative could be implemented which completely avoids impacting a feature within the 250 or 500 foot "likely" zone. Such an instance would be where a project could avoid a feature by a cquiring right of way completely from one side of the existing right of way. A "not likely" chance is defined as no features exists within the 250 or 500 foot "likely" zone.

Hazardous Materials

The Texas Commission on Environmental Quality issues permits for businesses or individuals that generate, store ortransport materials that could be hazardous to human health. These locations do not necessarily represent places with soil or ground water conta mination; however the acquisition of these sites may require special procedures that would signific antly increase the right of way and site preparation costs forproposed projects.

4F Lands

4F refers to section 4(f) of the Federal Transportation Act of 1966 which identifies several land uses that federal aid transportation projects must avoid impacting unless no other feasible altemative exists. If a signific ant impact were necessary upon one or more 4F lands, a mitigation of those impacts would be necessary to offset a ny impacts, usually at a very high cost. Lands included within section 4(f) are wetlands (asclassified by the US Army Corps of Engineers), wild life \& waterfowl refuges, historic or religious sites and park or recreation areas.

In McLennan County, the only areas offic ially classified as a wetla nd are lakes or other permanent waterfeatures. However, the 100 yearflood pla in does represent niparian habitats in McLennan County that provide unique habitats for wild life and waterfowl not found elsewhere in the County

This is in large part due to the fact that most other lands in the County are devoted to either developed or agric ultural land uses. Therefore, the MPO has decided to use the 100 yearflood plain, as defined by the Federal Emergency Management Agency, as a substitute for wetlands in our a nalysis of potential environmental mitigation activities. All offic ially defined wetla nds within McLennan County are included within the 100 year flood plain.

There are no offic ially designated wild life or waterfowl refuges located within McLennan County. With that said, however, several endangered or threatened species have been identified within the County and potential habitats forthese species exist throughout the county. One of the challenges with this form of a nalysis is that the Texas Parks \& Wild life Department usually does not reveal specific loc ations of endangered or threatened species habitats within a public forum for fear of some type
of disturbance or destruction by humans. Therefore, the MPO has chosen to identify all highway projects requiring additional right of way and with a rural component as having a "somewhat likely" impact on endangered or threatened species habitat.

Land Use Takings

Although partly accounted for within the right of way costs, this a nalysis provides some information regarding potential impacts to the built or human environment. One part of the a nalysis is the identific ation of the number of residential or commercial/ industrial struc tures within the 250 or 500 foot "likely" zone. This provides some approximate quantification of impacts to the built environment.

Analysis

Tables 3.18, 3.19 and 3.20 review the potential for mitigation for highway project recommendations identified in Chapter 7. As a general rule, most projects will require some review of underground storage tank location and floodplain / wetlands impacts as most projects of any length will encounter these features. With the possible exception of $\mathrm{IH}-35$ projects, which will require more significant reviews due to it's length and signific ant development adjacent to the comidor, most other projects will generally a void signific ant environmental impacts.

Table 3.18 Potential Environmental Mitigation for Highway Expansion Projects - Waco Metropolitan Transportation Plan

Project Desc ription			Hazardous Materials		
ProjectID	Facility \& Project Extent	ROW Needed?	Underground Storage Tanks	Generator	Transporter
S-022 Part 1	IH-35: Falls County Line to SH 6/W LP 340	Yes			
S-022 Part 2	IH-35: N LP 340 to Hill County Line	Yes			
S-022 Part 3	IH-35: SH 6 / W LP 340 to N LP 340	Yes			
S-022 Part 4	IH-35 Toll Lanes: SH 6 / W LP 340 to FM 308	No			
S-025	Valley Mills Dr: Cobbs Dr to Bagby Ave	No			
S-004	Hewitt Dr: US 84 to FM 2063	Yes			
S-034	SH 6/ W Lp 340: US 84 to IH-35	Yes			
S-036A	SH 6 / S LP 340: Brazos River to SP 484 / SH 6	Yes			
S-037	SH 6: Roadrunner Trail to Falls County Line	No			
S-035	SH 6 / S Lp 340: IH-35 to US 77	No			
S-003	FM 1637: FM 3051 to FM 185	Yes			
S-005	Hewitt Dr: FM 2063 to Ritc hie Rd	Yes			
S-018	FM 3476: Tx Central Pkwy to FM 2063	No			
S-026	Lp 574: IH-35 to SH 6 / E Lp 340	Yes			
S-046	US 84: Ritc hie Rd to Ha mis Creek Rd	Yes			
S-039A	Franklin Ave: New Rd to Lake Air Dr	No			

	Chance that mitigation a ctivites may be necessary
	Likely
Somewhat Likely depending upon the altemative chosen	
Unlikely	

Table 3.19 Potential Environmental Mitigation for
Highway Expansion Projects - Waco Metropolitan Transportation Plan

Project Desc ription			4F Lands					
ProjectID	Facility \& Project Extent	ROW Needed?	Parks/ Recreation Areas	National / Local Historic Register	Cemeteries	Religious Sites	100 Year Food Zone	Endangered or Threatened Spec ies Habitat
S-022 Part 1	IH-35: Falls County Line to SH 6 / W LP 340	Yes						
S-022 Part 2	IH-35: N LP 340 to Hill County Line	Yes						
S-022 Part 3	IH-35: SH 6 / W LP 340 to N LP 340	Yes						
S-022 Part 4	IH-35 Toll Lanes: SH 6/ W LP 340 to FM 308	No						
S-025	Valley Mills Dr: Cobbs Dr to Bagby Ave	No						
S-004	Hewitt Dr: US 84 to FM 2063	Yes						
S-034	SH 6 / W Lp 340: US 84 to IH-35	Yes						
S-036A	SH 6 / S LP 340: Brazos River to SP 484 / SH 6	Yes						
S-037	SH 6: Roadrunner Trail to Falls C ounty Line	No						
S-035	SH $6 / \mathrm{SLp} 340$ IH-35 to US 77	No						
S-003	FM 1637: FM 3051 to FM 185	Yes						
S-005	Hewitt Dr: FM 2063 to Ritc hie Rd	Yes						
S-018	FM 3476: Tx Central Pkwy to FM 2063	No						
S-026	Lp 574: IH-35 to SH 6/E Lp 340	Yes						
S-046	US 84: Ritc hie Rd to Ha mis Creek Rd	Yes						
S-039A	Franklin Ave: New Rd to Lake Air Dr	No						

	Chance that mitigation activites may be necessary
	Likely
	Somewhat Likely depending upon the altemative chosen Unlikely

Table 3.20 Potential Environmental Mitigation for

Highway Expansion Projects - Waco Metropolitan Transportation Plan

Project Desc ription			Landuse Acquisition				
ProjectID	Facility \& Project Extent	ROW Needed?	Residential	Structures	Commercial / Industrial	Structures	Agricultural
S-022 Part 1	IH-35: Falls County Line to FM 2063 / FM 2113	Yes		20		89	
S-022 Part 2	IH-35: N LP 340 to Hill County Line	Yes		73		84	
S-022 Part 3	IH-35: SH 6 / W LP 340 to N LP 340	Yes		59		81	
S-022 Part 4	IH-35 Toll Lanes: SH 6 / W LP 340 to FM 308	No		0		0	
S-025	Valley Mills Dr: Cobbs Dr to Bagby Ave	No		0		0	
S-004	Hewitt Dr. US 84 to FM 2063	Yes		0		5	
S-034	SH 6/ W Lp 340: US 84 to IH-35	Yes		0		7	
S-036A	SH 6 / S LP 340: Brazos River to SP 484 / SH 6	Yes		2		0	
S-037	SH 6: Roadrunner Tra il to Falls C ounty Line	No		0		0	
S-035	SH 6 / S Lp 340: IH-35 to US 77	No		0		0	
S-003	FM 1637: FM 3051 to FM 185	Yes		71		18	
S-005	Hewitt Dr: FM 2063 to Ritc hie Rd	Yes		0		3	
S-018	FM 3476: Tx Central Pkwy to FM 2063	No		0		0	
S-026	Lp 574: IH-35 to SH 6 / E Lp 340	Yes		0		2	
S-046	US 84: Ritc hie Rd to Ha mis Creek Rd	Yes		26		3	
S-039A	Franklin Ave: New Rd to Lake Air Dr	No		0		0	

\quad Chance that mitigation a ctivites may be necessary
\square
\square

[^0]

Population Change Loss Greater than－200 -199 to -100 －99 to No Change 1 to 100 101 to 200 201 to 500 \square Gain Greater than 500 I＝I Waco Metropolitan Area Miles September， 2009

September, 2009

September, 2009

Section 4: Modal Inventory

4.1 Highways and Bridges

The Waco Metropolitan Area contains 6,853.0 lane miles of public roadways. Of this a mount, the State of Texas ma inta ins 1,631.8 la ne miles or 23.8% and either Munic ipal Govemments or McLennan County maintains 5,221.2 lane miles or 76.2\%. Despite the preponderance of lane miles being maintained by local or county govemments, 81.9% of the daily vehic le miles traveled occur on the State Highway system. Of this a mount, nearly half of the daily VMTor nearly 40% of the total daily VMTfor all of Mc Lennan County oc curs on Interstate 35.

Each public roadway within McLennan County is classified underthe Highway Functional Classific ation System based upon how each roadway is utilized. The system is defined in section 3.1.1 which also details how the roadway system in McLennan County is classified.

4.1.1 Functional Classification System

The roadway network utilized for the MTP comprises those streets functionally classified in 2005 and those subsequently added to the functionally classified system through new construction. A functionally classified roadway system allows streets to be grouped according to their purpose and function within the transportation network of the urbanized area. Streets within urban a reas serve two primary functions: traffic movement or mobility, and accessibility. The functional classific ation system describes the a mount of mobility and land access that facilities possess within the transportation network. The transportation planning process uses functional classific ation to ensure that development issues are evaluated as a component in the detemination of existing and future transportation needs.

A summary of the characteristic s of each functional class is provided in Table 4.1. Interstates and freeways provide the highest movement of vehicles, but limit the extent of land access available. Arterials have less mobility than freeways, but a higher degree of land access to majortraffic generators. The primary function of collectors is the provision of land access and connectivity with larger facilities. All remaining public roadways are classified aslocal roads with the function of providing land access. Essentially, each class serves a collection and distribution function for each above, culminating with the mobility dominant function of the interstate orfreeway.

Table 4.1 Functional Classific ation Characteristics

Classification	Level of Mobility	Level of Accessibility	System Relationships
Interstate or Expressways	Connects urban and rural service, connects urban subregions, connects urban areas	No direct land access unless frontage roads are provided. Used forlong trips at high speed. (Note frontage roadsare classified as collectors.)	Other Interstates or Expressways, principal arterials.
Princ ipal Arterials	Connectstwo ormore subregions, compliments expressways in high volume corridors	No direct land access except for major traffic generators. Used for medium to long distance trips at moderately high speeds. Access is subordinate to traffic movement.	Expressways, other principal a rterials and high volume minor arterials and collectors.
Minor Arterials	Connects adjacent subregions, connects activity centers within a subregion, provides intracommunity continuity. Ideally does not penetrate into neighborhoods.	Land access restricted to major and minor traffic generators in industrial and commercial uses. Used for moderate to short length trips at moderate speed.	Limited expressway interaction, principal arterials, other minor arterials, facilities that place more emphasis on land access than higher classific ations.
Collectors	Connects neighborhoods and connects land uses with the arterial system.	Unrestricted land access to residential neighborhoods, commercial and industrial areas. Used forcollection and distribution to arterial facilities at moderate to low speeds.	Arterials, other collectors, local streets and private driveways providing direct land access.
Local Streets	Connects facilities within neighborhoods, connects land uses within transportation facilities.	Unrestric ted land access. Used for collection and distribution to collector facilities at low speeds.	Collectors, other local facilities and private driveways providing direct land access.

Table 4.2 Functional Classific ation Lane Miles and VMT- 2007

Classific ation	Lane- Miles	Percent of Total	Daily Vehicle Miles of Travel	Percent of Total
Interstate (Main La nes Only)	181.3	2.6%	$2,543,900^{*}$	35.7%
Other Expressways (Ma in Lanes only)	46.6	0.7%	$597,400^{*}$	8.4%
Princ ipal Arterials	420.7	6.0%	$1,441,200$	20.2%
Minor Arterials	500.9	7.1%	$1,342,300$	18.9%
Collectors	819.2	11.6%	779,300	10.9%
Frontage Roads	293.7	4.2%	$\mathrm{~N} / \mathrm{A} *$	$\mathrm{~N} / \mathrm{A}$
Local Streets	$4,800.2$	68.0%	413,456	5.8%
Total	7062.6	100.0%	$7,117,556$	100.0%

*Traffic counts for the Interstate and Expressway Systems include the main lanes and frontage roads added together. Therefore it is not possible to separate daily VMTbetween main lanes and frontage roads.

Chart 4.1 2007 Percentage of Lane Miles \& Vehic le Miles Traveled by Functional Classification

*Traffic counts for the Interstate and Expressway Systemsinclude the main la nes and frontage roads added together. Therefore it is not possible to separate daily VMTbetween main lanes and frontage roads.

4.1.2 Bridges

Every 2 years the Texas Department of Transportation evaluates the structural condition of every public use bridge within Texas to help in detemining priorities for bridge rehabilitation and reconstruction. Each bridge receives a score based on a maximum of 100 points with scores of 50 or below an indication of structural deficiency. Bridges scoring below 50 points are eligible for replacement using federal funds.

The results show that most bridges signific antly exceed minimum standards for structural integrity. Of the 645 public use bridges in McLennan County, only 28 or 4.3% were considered structurally defic ient. Of the structurally defic ient bridges, 25 or 89.3% were mainta ined either by McLennan County or a local municipality. Map 5.4 identifies the structurally deficient and functionally obsolete bridges.

In addition to bridges, there are 17 low water crossings within McLennan County. These are crossings were instead of a bridge being built over the water feature, the road uses the creek bed for the crossing. Low water crossings are used in locations where traffic volumes are generally low and the creeks are dry most of the time. Low water crossings are not used as extensively as in other parts of Texas due primarily to the a mount of rainfall received within McLennan County. Despite the fact that these crossings are usually dry, they do occasionally flood due to excessive rainfall.

Table 4.3 2007 Bridge Suffic iency Ratings by Functional Classification

Classification	Bridges	Average Rating	Percent Structurally Defic ient
Interstate	110	80.0	0.9%
Other Expressways	58	79.4	0.0%
Principal Arterials	81	84.9	0.0%
MinorArterials	78	83.5	1.5%
Collectors	133	85.4	0.7%
Local	185	69.6	13.5%
Total	645	79.1	4.3%

4.1.3 Highway Operations

Traffic operations within the Waco Metropolitan Area a re generally controlled through traffic signals or flashing beacons at high volume intersections. Within the region there are 241 traffic signals. The City of Waco operates 197 signals with the remainder operated by the Texas Department of Transportation. As a general rule, the City of Waco operates signals between 6:00 AM and 2:00 AM, 7 days a week except for high volume intersections, such as Waco Drat Va lley Mills Dr, where the signals operate 24 hours perday. Signalsoperated by the Texas Department of Transportation operate 24 hours perday, 7 days a week. Map 4.3 shows the location of traffic signals within the region.

Most signals within the region are controlled by loop detectors located within the pavement to detect vehicles. Both the City of Waco and TxDOTare gradually switching to infrared camera detectors which can better detect motorcycles and do not need to be adjusted after seal coats or pavement rehabilitation.

Signals along some major comidors have been timed in order to permit vehic les to travel a consistent speed with minimal stoppages. These comidors are generally high volume coridors with numerous signals within a short distance and timing adjustments have proven to signific antly improve comidor travel times. Table 4.4 identifies those comidors where signal timing has been adjusted.

Table 4.4 Traffic Signal Adjustment Coridors

Comidor	From	To	Signals
Waco Dr (US 84)	Centerpoint Shopping Center	Gholson Rd (FM 933)	22
$17^{\text {th }} / 18^{\text {th }} / 19^{\text {th }}$ Streets	Lake Shore Dr	La Salle Ave (US Business 77)	33
Valley Mills Dr (Lp 396)	Bosque Blvd	Waco Dr (US 84)	6
Franklin Ave (one-way)	$18^{\text {th }}$ Street	M L King J r Dr	12
Washington Ave (one- way)	$4^{\text {th }}$ Street	$18^{\text {th }}$ Street	9
Hewitt Dr (FM 1695)	US84	Panther Way	8
Bosque Blvd	$34^{\text {th }}$ Street	Valley Mills Dr (Lp 396)	6

Intelligent Transportation Systems

The Texas Department of Transportation, in cooperation with the Wa co MPO, McLennan County and cities within the region, has developed a regional architecture for intelligent transportation systems. The regional architecture has been approved by
the Waco MPO Policy Board but as of the date of this document, has not been adopted by TxDOT. As a result, deployment of ITS infrastructure has been limited to 2 dynamic message signs a long Interstate 35 in the vic inity of the Hilltop Rd / Old Dallas Rd intersection north of Elm Mott. The City of Waco is currently in the process of installing equipment to communicate with traffic signals remotely along high volume coridors, generally the same comidors identified in table 4.4. It is antic ipated that these upgrades will be completed between 2011 and 2012.

4.2 Public Transportation

Public transportation within the Waco Urbanized Area is characterized by two types of service: fixed routes providing regularly scheduled service on published routes and demand response where individual riders who cannot utilize the fixed route service are provided doorto door service. These servicesare provided forthe segment of the population that does not have accessto an automobile orwho have a physical disa bility which limits their mobility.

4.2.1 Urban Services

Fixed route senvice is provided by the City of Waco owned Waco Transit System which is operated under management contract with McDonald Transit Associates. Waco Transit presently operates an active fleet of 22 revenue vehicles. This fleet consists of thirteen 35-passenger coaches, six 12-passenger vans, a nd three rubber-tired trolleys. All revenue vehicles are wheelc ha ir lift equipped.

Waco Transit operates bus, van, and trolley services. The bus service operates with nine fixed bus routes throughout the City of Waco (See Map 4.4). Nine of the routes operate under a hub and spoke system with routes originating from the Intermodal Tra nsit Center in Downtown Waco and radiating out to various parts of Waco. Route 6 is the exception and it circulates between Valley Mills Drive and the Texas Central Industrial Park. Each route operates with a one hour headway. All routes generally operate between 6:00 AM and 7:00 PM Monday through Saturday. Waco Transit does not operate on Sundays.

One-way fares are $\$ 1.50$ for a dults, $\$ 1.00$ for students and $\$ 0.50$ for senior citizens and persons with a mobility impairment. Daily passes are $\$ 3.00$ and permit the passholder to ride an unlimited number of times for the duration of the calendar day. Monthly passes are $\$ 40$ for adults and $\$ 30$ for students a nd permit the passholder to ride an unlimited number of times for 31 days after the first use.

Public van service for persons with disabilities began in 1993 in Waco. This service provides door-to-door service for those unable to use the fixed route service due to a mobility or self-care disability. Patronage on the van service has inc reased from 250 in the first month of operation in J a nuary 1993 to current ridership of a pproximately 1800
personspermonth. A continuing increase in demand forthe service permonth is antic ipated for the foreseeable future. The fare for the van service is $\$ 3.00$ pertrip.

Waco Transit also provides service to the Baylor University campus. Rubber-tired trolleys circulate along 3 routes through the campus providing access between remote parking a reas and off-c ampus housing to the central portion of the campus. This service also connects to the Fixed Route service via Route 9 - South Terrace. Additional connections may be made via Route 9 at the Intermodal Transit Center. This service is free of charge to all riders.

Waco Transit's office and maintenance facility is located adjacent to the Intermodal Transit Center at 301 South $8^{\text {th }}$ Street in downtown Waco. The facility contains all of Waco Transit's office, bus repair, fueling, cleaning, and bus parking operations.

Table 4.5 Total Boardings - Waco Transit - Fisc al Year 2008

Fixed Route	Demand Response	Baylor Trolley	Special Services	Total
570,908	30,978	109,526	83,183	794,595

4.2.2 Rural \& Social Senvice Public Transportation

Funding under the Federal Transit Administration (FTA) section 5310 and 5311 provides capital grants to the state of Texas to help make available mass transportation service that is planned, designed, and carmied out to meet the special needs of elderly individuals and individuals with disabilities throughout the state. Funds a re available to private non-profit organizations and other public for-profit entities that certify to the govemor that there are no existing non-profit comorations or associations in their area that already provide transportation service. Local stakeholder forums or committees plan and design the service for their local community and existing rural and/or urban transit senvice providers operate the service as designed by the committees. These funds are a warded directly to the transit operator who may use the fundsfor eligible capital expenses including a cquiring transportation service from other transportation providers in the local area. Eligible capital expenses include but are not limited to buses, vans, or other paratransit vehic les, radios and communic ation equipment, vehic le shelters, and wheelc hair lifts and restra ints. Other options, with the concurrence of TxDOTPublic Transportation Division, are lease of equipment, the a cquisition of transportation services under a contract lease, and preventive maintenance service or parts associated with preventive maintenance service.

The Heart of Texas Rural Tra nsit District (HOTRTD) using a demand response system serves Hill County, Falls County, Limestone County, Freestone County, Bosque County and the rural portions of McLennan County. HOTRTD coordinates rural tra nsportation services
through the use of subcontractors. Central Texas Senior Ministry (CTSM) provides transportation services in rural Mc Lennan, Falls, a nd Hill counties. Bosque, Freestone, and Limestone County Senior Services provide transportation in their respective areas. Each county provides its own dispatch and scheduling and reports to the Heart of Texas Council of Govemments who oversees the entire operation.

Each subcontractor for the HOTRTD provides service into the Waco Metropolitan Area for various purposes. The primary purpose is for medic al transportation to \& from Hillcrest \& Providence Medical Centers and the VA Hospital. In addition, Waco Transit currently operates the ' 6 to Success' service funded by the Jobs Access Reverse Commute Program between Waco and Marlin in FallsCounty. '6 to Success' provides access to jobs, the Texas State Technical College and McLennan Community College for residents of Falls County.

Table 4.6 Regional Section 5310 \& 5311 Providers and Feet Information

Subcontractor	Senvice Area	Vehic les	Fuel	Wheelchair Ac cessible
Central Texas Senior Ministries	Fa lls \& Hill Counties, Rural McLennan County	35	32 - Gasoline 3 - Propane	62.9%
Bosque County Transit	Bosque County	7	$6-$ Gasoline 1 - Propane	87.5%
Freestone County Transit	Freestone County	9	8 - Gasoline 1 - Propane	66.7%
Limestone County Transit	Limestone County	14	11 - Gasoline 3 - Propane	57.1%

4.2.3 Medic aid Transportation

Waco Transit provides non-emergency medical transportation through the Medicaid Title XIX program. Medic aid transportation is provided fortripsoriginating in the sixcounty Heart of Texas region Monday thru Saturday 8 AM to 6 PM. This region includes the Waco Metropolitan Area. After hour senvice is also available for retum trips. Waco Transit coordinates Medic aid transportation through the use of subcontractors. CTSM serves Mc Lennan, Hill, a nd Falls counties. Bosque, Limestone, and Freestone County Senior Services serve their respective counties. Waco Transit only performs trips when the participating subcontractors cannot handle them.

4.2.4 Intercity Bus Senvice / Taxi and Limousine Senvice

Greyhound Bus Lines provides intercity bus service through the Intermodal Transit Center at South $8^{\text {th }}$ Street and Mary Avenue. Approximately 14 buses are dispatched daily from the transit center with the primary destinations of Austin, Dallas, Houston, La redo, a nd San Antonio. Connections to most destinations within the US can be made in Dallas, Houston or San Antonio.

The Waco Metropolitan Area is served by one taxi service: Yellow Cab, which offers 7-day, 24-hour local service with a total of 15 cabs. Five limousine services serve the Waco Metropolitan Area: Ac cent Limousine, Limousine Ltd., Limousine West, Waco Limousine, and Waco Streak Limousine. Another service, the Wa co Streak provides service between the Wa co Urbanized Area and the Dallas/ Fort Worth Intemational Airport. 3 daily round trips are made and the service is only to provide access to DFW Airport. No othertaxi services are available within the Heart of Texas Region.

4.3 Bicycle and Pedestrian

4.3.1 Bic ycle Facilities

Despite the presence of three institutions of higher education within the Waco Metropolitan Area, bicycling is not a significant mode of transportation. According to the 2000 Census, only 0.3 percent of all workers over age 16 use a bicycle as their primary mode of travel to school or work. A preponderance of these users resided either within or in close proximity to Baylor University.

Part of the problem can be attributed to a lack of bicycle facilities within the region. Curently only 2 non-recreational facilities exist, a facility across the Lake Waco Dam and the Brazos Riverwalk, a multipurpose trail between Cameron Park and the Baylor University Ferrell Center. A third facility, the McGregor Road Trail which will run between Ha mis Creek Rd and Bush Dr in Woodway, will be under construction during 2010. An unimproved facility exists through Cameron Park along the Brazos and Bosque Rivers which effectively provides another facility connecting Mc Lennan Community College to the Brazos Riverwalk. This facility, due to it being unpaved, is subject to being unusable during heavy rainfall.

Several ba miers also exist which limit bic ycle movements from one-side of town to the other. The ma in bamiers are $\mathrm{IH}-35$, the Brazos River, Valley Mills Dr and Lake Waco. Map 4.7 identifies the existing facilities.

In addition to a lack of facilities, bic yc le parking outside of the Baylor University Campus is virtually non-existent. There is currently one public bic yc le parking facility within the Waco Metropolitan Area at the Waco Transit Intemodal Center. Waco Transit does provide bicycle racks on all fixed route buses.

Bicycle Suitability

Since dedicated non-recreational bicycle facilities are rare, the MPO staff evaluated the existing arterial and collector network forbic ycle suitability. The staff scored each facility based upon an estimated level of comfort for a novice rider. The scoring system is modified from a system first developed by the US Department of Tra nsportation. Table 4.6 identifies the criteria used in sc oring bic ycle suitability. Ta ble 4.7 identifies the scores used to define the levels of comfort for novice bicyclists.

Table 4.6 Bic ycle Suitability Criteria

Criteria	Add / Subtract from Beginning Score	Sc ore
Beginning Score	n / a	3.67
Presence of 15' Curb Lane	Subtract	Speed Score*
Curb Lane Width	Subtract	Width x Speed Score
Curb Lane Volume	Subtract	Volume $\times 0.002$
Other Lane Volume	Subtract	Volume $\times 0.004$
Per Hour Truck Volumes	Add	10 to $19=0.1$
Speed Limits**		30 to $29=0.2$
Add	60 to $119=0.3$	
$120=0.5$		

*Speed Score: Less than $50 \mathrm{mph}=0.966$, 51 to $55 \mathrm{mph}=0.8,56$ to $60 \mathrm{mph}=0.6$, Greater than $60 \mathrm{mph}=0.4$
**Facilities with posted speed limits of 70 mph were automatic ally given a comfort level of "Not Recommended".

Table 4.7 Comfort Level Score

Score	Comfort Level
Less than 2.5	Easy
2.51 to 5.00	Moderate
5.01 to 10.00	Difficult
Greater than 10.00	Not Recommended

Map 4.7 shows the bicycle suitability scores for the Waco Urbanized Area. Scores outside of the urbanized area were generally either 'Easy' if the posted speed limit was below 70 mph or 'Not Recommended' if above 70 mph . Main lanes of $\mathrm{IH}-35$ and other expresswa ys prohibit bic yc les by state law and frontage road use, although permitted, is generally discouraged due to the high number of merging movements, speed and high number of driveway access points.

Sections 7.1.7 and 7.2.6 identify recommended bicycle projects for the Waco region. Comidors identified as 'Easy' were recommended as bicycle routes requiring only signage and minimal other improvements. Comidors identified as either 'Moderate’ or 'Diffic ult' were recommended as either requiring a combination of striped bicycle lanes, curb lane widening or the elimination of on-street parking.

4.3.2 Pedestrian Facilities

Walking as a mode choice to work or school is used significantly more often than bic ycling within the Waco Metropolitan Area. Even so, only 1 out of 40 commuters use this mode as their preference. As a general rule, this mode is used primarily by persons residing in close proximity to either Downtown Waco or Baylor University where the sidewalk network is more complete and where basic services are in closer proximity to residential a reas.

Pedestrian facilities are generally only found in areas developed prior to 1950, mostly Downtown Waco and the Ba ylor University campus. Beyond these areasthe sidewalk network is sc attered and basic services are generally well beyond 0.25 miles from residential areas. This distance is one that surveys indicate are the maximum distance most persons are willing to walk. The City of Waco has adopted an ordinance requiring the construction of sidewalks for new commercial development or reconstruction of certa in developments depending upon specific criteria. New residential developments are also required to install sidewalks along collector streets either identified by the City's sidewalk plan or by the Department of Traffic Services. Although this ha s served to increase the coverage of sidewalks beyond Downtown Waco and Baylor, the network rema ins patc hy at best. To date, only the City of Hewitt has identified pedestrian facilities in a formally adopted plan. None of the facilities identified in the Hewitt

Comprehensive Plan has been constructed as of the adoption of the MTP. Map 4.8 identifies the existing sidewalk facilities within the Waco Metropolitan Area.

4.4 Rail

4.4.1 Freight Rail

Two railroad companies serve the Waco Metropolitan Area: Union Pacific Corporation and the Burlington Northem Santa Fe Corporation (BNSF). Union Pacific hastwo primary lines through Waco. One line provides freight service between Fort Worth and Temple and is the main UP line between Fort Worth and Mexico via Laredo. The other line provides freight service from the Bellmead Yards south through Bryan / College Station and then to Houston. The remaining lines are spurs providing freight service to individual industries within Mc Lennan County. BNSF provides freight service connections to Temple and Fort Worth through Moody, McGregor and Crawford. The BNSF line is the primary connection between the Port of Houston and Fort Worth.

Table 4.8 Rail Line Statistics - Mc Lennan County

Line	Company	Daily Trains	Grade Separated Intersections	AtGrade Intersections	Proposed Grade Separations	Percent Grade Separated*
Bellmead to Fort Worth	Union Pacific	24	3	18	0	14.2\%
Bellmead to Temple	Union Pacific	14**	10	30	3	25.0\%
Bellmead to Heame	Union Pacific	12	3	14	0	17.6\%
Temple to Fort Worth	BNSF	20	1	17	0	5.5\%
Waco to Lehigh Cement	Union Pacific	1	3	6	0	33.3\%
LacyLakeview to Cargill	Union Pacific	2	2	7	2	22.2\%
UP Main Line to Lipsitz	Union Pacific	Less than 1	0	2	0	0.0\%
UP Main Line to M\&M Mars	Union Pacific	8	0	1	0	0.0\%
	Total	15.8***	22	95	5	18.8\%

[^1]
4.4.2 Passenger Rail

Passenger rail service provided by Amtrak stopsat McGregor on the BNSF tracks. The station is located a pproximately 20 minutes west of Downtown Waco off of SH 317. The Texas Eagle provides daily service to Dallas/ Fort Worth, Austin and San Antonio.
Passengers may continue to Chicago on the Texas Eagle via Fort Worth. Three times a week the Texas Eagle continues west from San Antonio to LosAngeles. Connections to New Orleans may be made on the Sunset Limited in San Antonio. Passengers may also continue to Oklahoma City by connecting to the Heartland Flyer in Fort Worth. In 2007, departures and a mivals at the McGregor Station totaled 4,800.

4.5 Aviation

Four public use aiports service the Waco Metropolitan Area, Waco Regional Airport, Texas State Technical College Airport (formerly J ames Connally Air Force Base), the McGregor Executive Airport and the Valley Mills Municipal Airport. In addition to these there are several small, private landing strips with mostly unimproved surfaces that are a vailable foremergency use.

4.5.1 Waco Regional Aiport (ACT)

Waco Regional Airport (ACT) is located northwest of downtown Waco with an approximate vehicle travel time of 12 minutes. WRA is a fully certified Federal Aviation Administration aiport and has an FAA tower, 24 -hour NOAA weather service, and 24hour fuel service. The tower operates between the hours of 6:00 AM and 12:00 PM. The a irport is equipped with two all-weather runways: Runway 1-19 is 6,600 feet in length and 150 feet in width, and lighted with an ILS (Instrument Landing System) approach to Runway 19; runway 14-32 is 5,900 feet in length and 100 feet in width, and lighted with nonprecision approaches to both runway approaches. Waco Regional Airport is currently constructing 1,000 foot runway safety areas at the approach end of each runway.

Commercial air service is currently provided by two carmiers: American Eagle with four flights daily to Dallas/ Fort Worth Intemational Airport (DFW), a nd Colgan Air operating as Continental Express with four flights daily to Houston George Bush Intercontinental Aiport (IAH). Americ an Eagle provides connection service through American Airlines and Colgan Air provides connection service through Continental Airlines.

Table 4.9 Passenger Enplanements - Waco Regional Aiport

$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 7}$	Change	Percent Change
65,213	76,410	$+11,197$	$+17.2 \%$

Currently American Eagle uses 68 passenger ATR-72 a ircraft and Colgan Air uses 34 passenger Saab 340B aircraft. The result is a total of 148,512 yearly one-way passenger seat capacity and 408 daily one-way passenger seat capacity. According to 2007 statistics, commercial airc raft at WRA are operating at an average of 51.4 percent of capacity, compared to the national average of 67.5 percent (Federal Aviation Administration).

For general aviation, ACT is a full service aiport providing 24 hour refueling and tiedown services, 18 executive hangars, 50 light aircraft hangars, major airframe and powerplant maintenance and repair services.

Table 4.10 Airc raft Operations - Waco Metropolitan Area 2008

Aiport	ID	General Aviation	Military	Commercial	Other	Total
Waco Regional	ACT	21,080	2,489	123	7,983	31,675
TSTC	CNW	22,489	10,106	11	307	32,913
McGregor Executive	PWG	44,100	100	0	900	45,100
Valley Mills Municipal	$9 F 1$	30	0	0	0	30
	Total Metro Area	133,949	24,160	215	19,779	178,103

Source: Federal Aviation Administration

4.5.2 Texas State Technic al College Aiport (CNW)

Texas State Technic al College (CNW) currently mainta ins and operates the former J ames Connally Air Force Base and provides training facilities at the aiport. The a irport is loc ated just off of $\mathrm{IH}-35$ a pproximately 7 miles north of downtown Waco, with an a pproximate drive time of 12 minutes. The airport has two runways, 1R-19L which is 8,600 feet in length and 200 feet in width, lighted with an ILS approach to Runway 19L. Runway 1L-19R is 6,400 feet in length and 150 feet in width. The aiport has a non-federal control tower that operates from 8:00 AM to sunset, Mondays through Fridays. CNW is home to several aviation related industries, including L-3 Communic ations, which prima rily refurbishes and rewires military aircraft, while also working on some civilian a irc raft. There are currently only limited general aviation services at CNW prima rily providing refueling services during daylight hours.

4.5.3 Mc Gregor Exec utive Aiport (PWG) \& Valley Mills Munic ipal Aiport (9F1)

The McGregor Exec utive Airport (PWG) provides general a viation service approximately 15 miles west of downtown Wa co off of US 84. The a ipport has two runwa ys: Runway 18-

36 is 5,100 feet in length and 100 feet in width with pilot controlled lighting; and runway $4-22$ is 3,400 feet in length and 60 feet in width with no runway lighting. The aiport does not have a control tower. There are curently no precision approaches for PWG.

PWG is a full service general aviation aiport providing 24 hour refueling and tiedown services, and major airframe and powerplant maintenance and repair services. UPS currently uses PWG for limited regional air freight service.

The Valley Mills Munic ipal Aiport (9F1) is an unattended field providing general aviation service to the northwestem portion of McLennan County. The aiport has two runways: Runway 6 - 24 is 3,028 feet in length and 40 feet in width and runway $14-32$ is 2,788 feet in length and 40 feet in width. Both runways have unimproved surfaces. 9F1 does not provide any general a viation services.

4.5.4 Navigational Aids

The FAA maintainstwo radio aidsto navigation within the Waco MPO Area. The Waco VOR (Very high frequency Omni Range) transmitter is located off of FM 2490 approximately 4 miles northeast of the Wa co Regional Airport and provides direction and distance information to commercial and military airc raft during periods of inclement weather. The Waco VOR is monitored by the Fort Worth Flight Service Station to ensure continuous operation. The other radio aid to navigation is the Robinson NDB (Non-Directional Beacon) which provides aircraft direction information to and from the facility. The Robinson NDB is located off of FM 434 south of Loop 340.

Section 5: Needs and Gap Analysis

5.1 Highways and Bridges

Highway Capacity and Relationship to Level of Senvice

Capacity refers to the maximum rate of flow that can be accommodated on a roadway segment under prevailing conditions. Congestion occurs when demand exceeds the capacity of a roadway resulting in a reduction of the rate of flow. The Highway Capacity Manual (HCM), published by the Transportation Research Board, defines the relationship between congestion and service characteristics through the use of level of service (LOS) measurements. Roadways are described in terms that represent reasonable ranges in three dimensions: average travel speed, density, and flow rate. LOS measures are used to identify existing problem areas, to measure the effects of increased travel demand, to determine the number of lanes needed to achieve efficient movement, and to compare altematives between proposed projects. Table 3.3 provides a definition of Level of Service and it's relationship with congestion.

Table 5.1 Level of Service (LOS) Definition

	Estimated Maximum Volume to Capacity Ratio			
Level of Senvice	 2 Lane Arterials	Multi-Lane Arterials	 Interstates	Relationship to Congestion
A	0.10	0.35	0.35	Free Flow
B	0.25	0.50	0.50	Light Traffic
C	0.40	0.65	0.70	Moderate Traffic
D	0.60	0.80	0.85	Heavy Traffic
E	1.00	1.00	1.00	Congested
F	>1.00	>1.00	>1.00	Heavily Congested

5.1.1 2007 Highway Level of Senvice

As a general rule, the functionally classified highway system is operating at an acceptable level of service. Collectors and Minor Arterials are functioning well with 3
out of 5 miles operating at a level of service "C" or better. Interstate 35 and the Principal Arterial system are not functioning as well with the majority of miles operating at marginal levels of service. Table 3.4 outlines the level of service characteristic s for the functiona lly classified highway system.

Generally only 1 out of 20 miles of the functionally classified highway system is operating at an unacceptable level of service. Those that are at a level of service " F " do tend to be concentrated within the suburban areas. Table 3.5 identifies those highway segments that have the worst congestion levels within the Metropolitan Area.

Table 5.2 Level of Service (LOS) per Classific ation - Existing Network

Classification	Acceptable LOSA to C	Marginal LOSD \& E	Unacceptable LOSF	Average LOS
Interstate	3.8%	87.4%	9.4%	E
Other Expressways	100.0%	0.0%	0.0%	B
Principal Arterials	43.3%	53.3%	3.4%	D
Minor Arterials	59.7%	32.5%	7.8%	C
Collectors	61.0%	35.9%	3.2%	D
Total System	54.0%	41.3%	4.7%	C

Chart 5.1 Percent Marginal or Unac ceptable Level of Service by Functional Classification - 2007

Table 5.3 Top 10 Most Congested Roads- 2007

Road	From	To	Volume to Capacity Ratio
China Spring Rd (FM 1637)	FM 3434	Steinbeck Bend Rd (FM 3051)	1.61
Gholson Rd (FM 933)	Spring Lake Rd	FM 308	1.60
Lake Shore Dr (FM 3051)	Gholson Rd (FM 933)	US Business 77	1.38
China Spring Rd (FM 1637)	Wortham Bend Rd (FM 2490)	FM 3434	1.38
S $8^{\text {th }}$ St	IH-35	Speight Ave	1.35
Gholson Rd (FM 933)	Lake Shore Dr 3051) \quad (FM	Spring Lake Rd	1.30
Waco Dr (US 84)	Valley Mills Dr	N 36 ${ }^{\text {th }}$ St	1.25
Bagby Ave	S $8^{\text {th }} \mathrm{St}$	University Parks Dr (FM 434)	1.24
Hewitt Dr (FM 1695)	Imperial $\operatorname{Dr}(F M$ 3223) / Chapel Rd	US 84	1.23
Texas Central Pkwy	Imperial Dr (FM 3223)	US 84	1.17

Several expressways in East Waco have a great amount of excess capacity. US Business 77 and US 84 (East Waco Dr), only portions of which are expressway standards, can accommodate 68,000 to 106,000 additional vehic les perday beyond the current volumes. Much of this can be attributed to the closure of several major industries within the area, as well as the development of Interstate 35 , which opened several decades after these facilities were constructed. With the useful life of the bridge structures ending, the need for these facilities to remain as an expressway is questionable. In addition, property access within East Waco has been very poor and hascontributed to declining economic opportunities. A recommendation from the MPO is that when bridge structures need to be replaced on these facilities, that these facilities be converted to standard 4 la ne principal arterials with at-grade intersections.

Table 5.4 The Bottom 10 - Roads with the Greatest Excess Capacity 2007

Road	From	To	Excess Capacity (Vehicles per Day)
US Business 77 (La Sa lle Ave)	S University Parks Dr	Spur 484 (Ma rlin Hwy)	106,280
E Waco Dr (US 84)	US Business 77 (N Loop Dr)	IH-35	75,000
E Waco Dr (US 84)	Gholson Rd (FM 933)	US Business 77 (N Loop Dr)	71,900
US Business 77 (SLoop Dr)	Spur 484 (Marlin Hwy)	Orchard Ln	70,320
US Business 77 (S Loop Dr)	Orchard Ln	IH-35	69,570
US Business 77 (N Loop Dr)	IH-35	E Waco Dr (US 84)	68,160
Spur 484 (Ma rlin Hwy)	E Loop 340	US Business 77 (La Salle Ave)	60,980
SH 6	Bosque Blvd	Fish Pond Rd	57,490
SH 6	Speegleville Rd	Dosher Ln / Spur 412	54,890
SH 6	Fish Pond Rd	Speegleville Rd	52,350

5.1.2 Projected 2035 Highway Level of Senvice

The Waco MPO utilizes a travel demand forecast model to estimate future level of service for the functionally classified highway system. Section 3.3.1 provides a complete description of the development of the Waco model. The results of this a nalysis represent a "no build" scenario in which only those roadscompleted or under construction since 2002 are added to the 2002 highway network.

The travel demand model was developed prior to the expansion of the Metropolitan Area Boundary in 2003. Therefore areas within McLennan County but outside of the former boundary are not included within the model forecasts (see map 3.3A).

Travel Demand Forec ast Model Development

Travel Demand Modeling is the process used to determine street facility needs in the future. The Travel Demand Model is developed by the Texas Department of Transportation with assistance from the MPO staff using TRANSCAD modeling software. This Plan Update is based on an updated model. The Waco MPO staff provided TxDOT
with 2005 base yeardata and highway network and 2035 forecast of population, income, employment and dwelling units by Traffic Analysis Zone to be used by TxDOTin the development of the model.

Travel demand modeling utilizes the following four step process:

1. Trip Generation

2. Trip Distribution

3. Mode Choice

4. Traffic Assignment

The Waco Urban Area, due to its size and relatively low utilization of modes other than automobiles, does not utilize Mode Choice in the modeling process.

Modeling utilizes socioeconomic data (population, income, dwelling units and employment by Standard Industrial Code) to forecast the number of trips from one given destination to a nother. This data is collected in small study areas called Traffic Analysis Zones (TAZs). The Waco MPO Study Area was originally delineated into 206 a nalysis zones for the 1964 Plan. Since that time the analysis zones have been revised several times as the arterial network and study area have changed. In 1998 the MPO expanded the Study Area to include Lorena and McGregor and unincomorated areas in between. For this Plan Update, the model uses the 251 TAZs delineated in 1998.

Tip Generation

Trip generation is the process by which socioeconomic variables (population, income, number of dwelling units, employment, land use and special generators) are translated into numbers of trips. Based on the relationships mentioned above, this process determines the number of trips each traffic zone will produce and the number of trips each traffic zone will attract.

Detailed a nalyses of household trip making characteristics, stratified by income, provides the basis for the development of zonal trip production rates. Trip attraction rates are based primarily on employment data in each zone, but also look at special generators and land use acreage found within each zone.

Trip Distribution

Trip distribution is the process by which the model detemines where the trips produced in each traffic zone will go. In other words it determines how the tripsproduced in each zone will be allotted a mong all the other zones in the area. In general, this model takes into account the relative attractiveness (based on employment, land use and special generators) and accessibility (based on trip lengths in minutes and socioeconomic and topographical bariers) of all zones in the area.

Once trip distribution is completed, the model is calibrated. Calibration is necessary to ensure the transportation network will have a balanced number of productionsand attractions.

Traffic Assignment

After determining the number of trips between each TAZ(trip distribution), the next step in the modeling process is traffic assignment. Traffic assignment determines how the trips will get from the production TAZ to the attraction TAZ Assignment is the process of assigning trips to the street network based upon the most likely route of tra vel between the trip's origin and destination. Trips are assigned to the available routes using a mathematical algorithm which determines the a mount of traffic to allocate to each route. The traffic allocation is generally based on the relative time it takes to travel along each available path, and the design capacity of each street link.

One important step in the traffic assignment process is validation. Model validation establishes the credibility of the model by demonstrating its ability to replicate actual travel pattems. Validation is a c complished by comparing traffic volumes estimated by the model to actual base yearground counts. Traffic estimated by the model is typic ally compared to actual traffic counts at points where streets cross ba miers called cordon lines, sc reenlines and cutlines. Va rious model parameters are adjusted until the model satisfac torily replic ates the ground counts. The Waco MPO model was validated using 2005 ground counts.

Once validation is completed, the model is used to assess the performance of the existing transportation system. The final traffic assignment is run on the existing network to produce a base yearbenchmark. The validated model is then provided to the MPO Staff to forecast future traffic conditions and to evaluate the effectiveness of proposed improvements.

Year 2035 No-Build Traffic Projections

Without substantial capacity inc reases, the functionally classified highway network is projected to be operating at a marginal level of service during the year2035. Over 60% of the system is projected to be operating at a marginal or unacceptable level of service, an increase of over 30% compared to 2007. Despite this, less than two in five miles of the system is projected to have an unacceptable level of service.

Table 5.5 Projected 2035 Level of Service (LOS) per Classification Existing Network

Classific ation	Acceptable LOSA to C	Marginal LOS D \& E	Unacceptable LOS F	Percent Change in Marginal or Unacceptable LOS	Average LOS
Interstate	0.0%	44.3%	55.6%	$+3.3 \%$	E
Other Expressways	88.9%	11.1%	0.0%	Infinite	B
Princ ipal Arterials	32.7%	48.7%	18.6%	$+18.7 \%$	D
Minor Arterials	43.3%	38.3%	18.4%	$+40.7 \%$	C
Collectors	46.0%	48.8%	5.2%	$+38.1 \%$	D
Total System	39.8%	42.3%	17.9%	$+30.9 \%$	D

Chart 5.2 Projected 2035 Percent Marginal or Unac ceptable Level of Service by Functional Classification

Interstate 35 is projected to have the worst performance with the entire system operating worse than level of service "C" and better than half of the system operating at unacceptable levels. All otherfacility types show a signific ant inc rease in mileage at
a marginal or unacceptable level of service with Minor Arterials showing the largest increase. In terms of location, nearly all of the facilities with signific antly worse levels of senvice were found in the suburban areassuch as Hewitt, Woodway, West Waco or China Spring. These are also the regions expected to experience the greatest growth in population and employment during the planning period.

Table 5.6 Projected Top 10 Most Congested Roads-2035

Road	From	TO	Volume to Capacity Ratio	Percent Change in Traffic from 2007
China Spring Rd (FM 1637)	FM 3434	Steinbeck Bend Rd (FM 3051)	2.02	+25.1\%
Texas Central Pkwy	Imperial Dr (FM 3223)	US 84	1.71	+46.7\%
China Spring Rd (FM 1637)	Wortham Bend Rd (FM 2490)	FM 3434	1.58	+14.4\%
SH 6	Spur 412 / Dosher Ln	FM 185	1.52	+64.0\%
IH-35	US Business 77	FM 308	1.32	+22.5\%
Wortham Bend Rd (FM 2490)	China Spring Rd (FM 1637)	N Rock Creek Rd	1.30	+51.4\%
SH 6	E Loop 340	FM 1860	1.30	+28.6\%
US 84	Cotton Belt Pkwy (FM 2188)	Speegleville Rd / FM 2837	1.30	+22.4\%
Waco Dr (US 84)	Valley Mills Dr	N 36 ${ }^{\text {th }}$ St	1.25	+0.1\%
US 84	SH 317	Cotton Belt Pkwy (FM 2188)	1.24	+37.2\%

5.1.3 Highway Surface Conditions

Proper maintenance will keep a road or bridge in good operating condition for many years beyond a nomal useful life of 40 years. Even with propermaintenance, at some point the road orstructure will deteriorate to the level of requiring reconstruction. This section reviews the condition of the functionally classified system to help determine which facilities are in need of reconstruction.

The MPO staff conducted a visual survey of the surface condition of the functionally classified highway system during early 2004. The survey consisted of observing the presence orabsence of the following conditions: travel path cracking, patching, weathering, potholes and edge cracking. Each condition was scored based on 2 points for no visible problems, 1 point for visible problems that did not signific antly
impact ride qua lity and 0 points for visible problems that signific antly impacted ride quality.

The results showed that as a general rule, the functionally classified network has an acceptable pavement surface condition. Only 5 highways were found to have a surface condition rating equal to zero (see table 3.8) and only 6% of all functionally classified facilities were found to have a surface condition rating below 5 .

Of concem was the relatively high number of urban collectors rating below 5 . These facilities are generally mainta ined by McLennan County or a munic ipal govemment and may point to a need for additional resourcesfor highway maintenance at the county or municipal level. Another point of concem was the relatively low average scores for Interstate 35. It should be noted, however, that at the time of publication, resurfacing work was being conducted for a signific ant portion of the lowest scoring segments of $\mathrm{IH}-35$.

Table 5.7 Road Surface Condition by Functional Classification*

Classification	Average Condition Rating	Percent with Rating Below $\mathbf{5}$
Interstate	6.8	0.0%
Other Expressways	9.0	8.5%
Principal Arterials	9.4	1.9%
MinorArterials	8.7	5.4%
Urban Collectors	6.8	27.8%
Rural Collectors	8.6	3.4%
Total**	8.4	6.0%

*20.4 centerline miles of roads were not evaluated due to the facility being under construction.
**Roads classified as local were not evaluated.

Table 5.8 Fac ilities with Surface Condition of Zero

Road	From	To	Classification	Traffic Count
Craven Ave	FM 933 (Gholson Rd)	Business 77	MinorArterial	475
Williams Rd	US 84	Concord Rd	Collector	2,545
Walnut St	Crest Dr	Craven Ave	Collector	510

5.1.4 Bridge Conditions

Every 2 years the Texas Department of Transportation evaluates the structural condition of every public use bridge within Texas to help in detemining priorities for bridge rehabilitation and reconstruction. Each bridge receives a score based on a maximum of 100 points with scores of 50 or below an indication of structural deficiency. Bridges scoring below 50 points are eligible for replacement using federal funds.

The results show that most bridges signific antly exceed minimum standards for structural integrity. Of the 659 public use bridges in McLennan County, only 51 or 7.7% were considered structurally defic ient. Of the structurally defic ient bridges, 43 or 84.3% were ma inta ined either by McLennan County or a local munic ipality.

In addition to bridges, there are 17 low water crossings within McLennan County. These are crossings were instead of a bridge being built over the water feature, the road uses the creek bed for the crossing. Low water crossings are used in locations where traffic volumes are generally low and the creeks are dry most of the time. Low water crossings are not used asextensively as in other parts of Texas due prima rily to the a mount of rainfall received within McLennan County. Despite the fact that these crossings are usually dry, they do occasionally flood due to excessive rainfall.

Table 5.92007 Bridge Sufficiency Ratings by Functional Classification

Classification	Bridges	Average Rating	Percent Structurally Deficient
Interstate	110	82.3	0.0%
Other Expressways	58	77.7	1.7%
Principal Arterials	75	84.3	1.3%
MinorArterials	78	85.4	2.6%
Collectors	126	87.9	3.2%
Local	207	72.2	20.8%
Total	659	81.2	7.7%

5.1.5 Highway Crash Analysis

An important a rea of emphasis identified in SAFEIEA-LU was ensuring the safety and sec urity of the transportation system. To perform an a nalysis of crashes, the MPO staff collected crash data from the Texas Department of Transportation and the Cities of Waco, Bellmead, Beverly Hills, Hewitt and Lacy-Lakeview for the year 2008.

The total number of crashes evaluated by the MPO staff equaled 3,896. In orderto compare highways with substantially different traffic volumes and mileages, the MPO staff used the statistic of crashes per million vehicle miles traveled which holds both variables constant. Urban Collectors had the highest rate of crashes per million VMT a nd Interstate 35 had the lowest. It should be noted that although IH-35 had the lowest crash rate, it had almost twice the crashes of the urban collectors.

Of the crashes evaluated, 12 involved a fatality and 578 involved a serious injury. Rural collectors had the highest percentage of injury orfatal crashes but urban collectors had the lowest percentage. Speed isthe primary difference between the facility types with the average posted speed for rural collectors being 60 miles per hour and urban collectors with an average posted speed of 30 miles per hour.

Table 5.10 Highway Crash Rate and Severity by Functional Classification

Classification	Crashes per Million Vehicle Miles Traveled	Percent Injury or Fatality*
Interstate	0.607	21.7%
Other Expressways	1.147	27.4%
Principal Arterials	2.246	24.3%
Minor Arterials	3.125	26.6%
Urban Collectors	4.480	19.6%
Rural Collectors	0.956	34.4%
Total**	1.180	26.8%

*Cra shes oc cuming at the intersection of differing classific ation types were counted in both classific ations.
**Total for crashes oc curing on functionally classified facilities.

Problem Areas

Even one crash is unac ceptable. With nearly 3,900 crashes in one year and considering that most crashes are the result of driver behavior, it is impossible for a fisc ally constrained transportation plan to eliminate all possible crash scenarios. Instead, the MPO staff has identified the 40 worst locations within the Metropolitan Area for crashes with the goal of reducing the crashes at these locations.

In identifying the worst crash locations, the MPO staff separated locations into highway segments a nd intersections. Then the worst locations for each were identified by the absolute number of crashes and then by crashes per million vehicle milestraveled for highway segments and crashes per million vehic les for intersections. This a nalysis is used in order to compare highways and intersections with differing traffic volumes and segment lengths. Further a nalysis provided details a bout the manner of collisions for each segment or intersection thus providing insights on possible corrective actions to reduce the number of crashes at these locations.

Table 5.11 Worst 10 Highway Segments - Crashes per Million Vehicle Miles Traveled - 2008*

Street	From	To	Total Crashes	Crashes per Million VMT	Fatal \& Serious Injury Crashes
Bosque Blvd**	N 34th St	$\mathrm{N} 18^{\text {th }} \mathrm{St}$	29	31.37	8
N 26th St**	Waco Dr	Franklin Ave	16	31.33	5
Franklin Ave**	S 18 ${ }^{\text {th }} \mathrm{St}$	S $11^{\text {th }} \mathrm{St}$	27	29.24	4
N 17 ${ }^{\text {th }}$ St**	Franklin Ave	Waco Dr	42	25.92	5
N 18 ${ }^{\text {th }}$ St**	Waco Dr	Franklin Ave	41	25.30	9
S $12^{\text {th }}$ St	Speight Ave	La Salle Ave	22	20.10	1
Valley Mills Dr	Wooded AcresDr	Lake Air Dr	26	19.92	2
Dutton Ave	S $11^{\text {th }} \mathrm{St}$	S 188 ${ }^{\text {th }} \mathrm{St}$	13	19.86	3
Homan Ave**	$\mathrm{N} 18{ }^{\text {th }} \mathrm{St}$	N 26 ${ }^{\text {th }}$ St	18	19.79	2
S $26{ }^{\text {th }}$ St	Franklin Ave	Dutton Ave	20	17.99	4

*Minimum 10 crashes
**One-Way streets

Table 5.12 Worst 10 Highway Segments - Total Crashes - 2008

Street	From	To	Total Crashes	Fatal \& Serious Injury Crashes
SH 6 / W Lp 340*	US 84	IH-35	82	15
IH-35*	S5th St	S 188 ${ }^{\text {th }} \mathrm{St}$	74	12
North Lp 340	IH-35	US 84	59	3
IH-35*	M L King J r Dr	US Business 77	48	10
IH-35*	Valley Mills Dr	S 18 ${ }^{\text {th }} \mathrm{St}$	43	8
N 17 ${ }^{\text {th }}$ St**	Franklin Ave	Waco Dr	42	5
N 18 ${ }^{\text {th }}$ St**	Waco Dr	Franklin Ave	41	9
Hewitt Dr	US 84	Chapel Rd/ Imperial Dr	41	5
LaSalle Ave	S 18 ${ }^{\text {th }} \mathrm{St}$	Waco Traffic Circle	39	4
Valley Mills Dr	Bosque Blvd	Wooded Acres Dr	36	5

*Expressway section - includes frontage road crashes.
**One-Way streets

Reviewing the highway segment a nalysis, the highways with the greatest number of crashes, in addition to the greatest number of serious injury \& fatal crashes are generally expressway or interstate sections. These facilities, however, also have the greatest traffic volumes, thus when taking into account vehic le miles of travel (VMT), these facilities have some of the lower values (<2.0 crashes per million VMT). When taking into account VMT, many of the worst highway segments are the one-way pairs within Waco.

When reviewing the contributing factors, there is not a clearpattem as to why the oneway pairs have signific antly higher crash rates other than the signa lized intersections a long these facilities have signific ant numbers of red-light running crashes (see tables 5.13 \& 5.14). These red-light running crashes are not necessarily related to the operations of the one-way pairs and would not necessarily have been prevented by conversion to two-way streets. In 2009, the City of Waco did convert the $11^{\text {th }} / 12^{\text {th }}$ street pair from one-way to two-way operations. The MPO will monitor crash rates along these facilities to assess whether such a conversion would have an impact on crash rates for similar facilities.

Another facility type, highways with continuous left tum lanes, a ppears to have signific antly higher numbers of crashes in addition to higher crash rates per million VMT. One facility in particular, Valley Mills Drive, appears to be particularly problematic, especially between Bosque Blvd and Lake Air Drive. One of the signific ant issues are vehic les either tuming left from the center tum lane into a place of business or vehicles tuming left from a place of business into the flow of traffic. These maneuvers are
resulting in a large number of front to side-impact collisions, which are also the manner of collision most likely to result in either a serious injury or fatality when speed is not a signific ant factor. Another similar facility with a similarcrash experience is Hewitt Dr. This coridor is becoming a concem due to the signific ant growth in both population and retail activity recently experienced in the comidor and projected during the planning period.

Other trends of concem are the high number of crashes oc cuming at merge locations a long the expressway and interstate systems where high speed traffic is mixing with relatively lower speed traffic merging from the frontage roads. TxDOT is current reviewing designs for such facilities to reduce the number of on-rampsand to reconfigure these rampsto an ' X ' configuration which switches many of the merging activities from the main lanes of such facilities to the lower speed frontage roads.

Table 5.13 Worst 10 Intersections - Crashes Per Million Vehic les 2008*

Primary Street	Secondary Street	Total Crashes	Crashes per Million Vehicles	Fatal \& Serious Injury Crashes
N 17th St**	Austin Ave	19	3.28	2
La Sa lle Ave	Wa co Traffic C ircle	24	2.87	1
Bosque Blvd**	N 26th St**	10	2.25	6
N 18 th St**	Franklin Ave	13	1.90	1
N 17th St**	Franklin Ave	10	1.82	1
N 18 th St**	Austin Ave	10	1.73	2
US Business 77	N Lp 340 / Industrial Dr (FM 3051)	18	1.37	3
M L King JrDr	E Heming Ave	10	1.31	3
Lyle Ave**	N 18 th St	11	1.21	1
Valley Mills Dr	Waco Dr	23	0.95	4

*Minimum 10 crashes
**One-Way street

Table 5.14 Worst 10 Intersections - Total Crashes-2008

Primary Street	Sec ondary Street	Total Crashes	Fatal \& Serious Injury Crashes
LaSalle Ave	Waco Traffic Circle	24	1
Valley Mills Dr	Waco Dr	23	4
N 17 ${ }^{\text {th }}$ St*	Austin Ave	19	2
US Business 77	N Lp 340 / Industrial Dr (FM	18	3
Franklin Ave	N New Rd	14	4
Valley Mills Dr	N New Rd	13	2
N 18 ${ }^{\text {th }}$ St*	Franklin Ave	13	1
Valley Mills Dr	Bagby Ave	12	3
Waco Dr	N 4 ${ }^{\text {th }}$ St*	11	3
Waco Dr	N New Rd	11	2

*One-Wa y street

In the staff review of intersection related crashes, the primary factor identified is one or more vehicles intending to run a red signal or failing to yield at either a stop oryield sign. Of the worst intersections, all but one, LaSalle Ave at the Waco Traffic Circle, are controlled by a traffic signal. As mentioned with the highway segment a nalysis, signa lized intersections a long the one-way pair system experienced signific ant numbers of red-light running crashes, thus contributing to the high crash rates per million VMTfor those facilities. The $17^{\text {th }}$ and $18^{\text {th }}$ street coridors between Wa shington and Franklin Avenues and the intersections between Bosque / Homan / 25th / 26th Streets are some of the more problematic in terms of red-light running. The City of Waco is currently evaluating these are several other intersections with similar problems for red-light camera enforcement to reduce these types of crashes. The City and MPO staff are a lso reviewing some intersections, such as Franklin Ave at New Rd, for different design treatments such as the possibility of a traffic circle where space permits.

Another problematic intersection is where LaSalle Ave intersects the Waco Traffic Circle. Review by TxDOTand the City of Waco indicated that the primary problem is the close proximity of the Circle Drive intersection which does not permit La Salle Ave traffic to safely merge into the traffic circle. TxDOTand Waco are currently reviewing design treatments for this portion of the circle to detemine a low-cost altemative that preservestraffic flow onto Circle Drive.

5.2 Public Transportation

In this section, the demand for public transportation is estimated to compare to current services and identify existing gaps in coverage. Important destination points are also identified and mapped to a nalyze the efficiency and completeness of existing services. The results from this section will be used in Chapter 5 to identify future projects to eliminate gaps in service and to ensure adequate service to those areas with the greatest estimated demand.

5.2.1 Transit Need Index

All areas have some degree of need for public transportation. In order to estimate this demand, an index was used to quantify and locate areas of greatest need for the six county region. Transit need indices have been widely used within urba nized areas, but generally have a signific ant emphasis on population density for the provision of urban fixed route services. For this plan, the transit need index has been modified to estimate overall need regardless of population density. The MTP uses the transit need index used to estimate need for the 6 county Heart of Texas region in the Regional Public Transportation Coordination Plan.

Methodology

To estimate need, several characteristics were identified for persons for whom use of a motor vehicle is either a financial burden or a physic al impossibility. Each population characteristic was identified at the USCensus Block Group level, the sma llest level of geography for which this data were available. The primary characteristics included the following:

- Median Household Income
- Persons in Poverty
- PersonsAge 65 and Above
- Persons with a Self-C are or Stay at Home Disability

Although not a population characteristic, occupied housing units with no automobiles wasalso used to estimate those householdsthat have no access to a motorvehicle. Even though high transit usage by minorities is generally related to overall lower household incomes or higher poverty rates for minorities, minority population was also utilized within the indexprimarily because there was not a direct relationship between minority population and low income or high poverty. Some block groups within the region had relatively high minority populations but relatively high household incomes or relatively low poverty rates and vice-versa. Minority population was not emphasized within the index, however, and was weighted accordingly.

Each population characteristic was weighted within the index to reflect its relative importance or unimportance. Table 4.1 identifies the relative weights for each characteristic.

Table 5.14 - Population Characteristic s \& Weights

Population Characteristic	Weight
Median Household Income	1.0
Persons in Poverty	2.0
Persons Age 65 or Over	2.0
Persons with a Self-Care or Stay at Home Disability	1.5
Occupied Housing Units with No Automobiles	1.5
Minonity Population	1.0
Population Density	0.5

While the goal of the transit need index is to identify places where the population may have a greater need fortransit, regardless of the size of the population, the quantity of service would be greaterfor areas with a high need index and high population densities. For this reason, population size classes were used within the indexto provide a slightly higher score for those areas with greater population. Table 4.2 identifies the population size classes used within the index.

Table 5.15 - Population Size Classes

Population Density (Persons per Square Mile)	Size Class
0 to 500	1
500.1 to 1000	2
1000.1 to 3000	3
3000.1 to 6000	4
Over 6000	5

In constructing the transit need index, each population characteristic for each block group was compared to the averagesfor the entire region. The average for the Heart of Texas region was indexed at 1.0. Sc ores for individual block groups were based on a percentage of the regional average. Forinstance, the regional average forpercent of persons in poverty is 16.37%. A block group with a percentage of 32.74% (double the regional average) would a chieve a score of 2.0 for this population characteristic. For population density, the size class would be the score for the block group. Once a score
is determined, the score is multiplied by the weight for that population characteristic to determine the final, weighted score. The weighted scores are then added together to calculate the transit need index. Table 4.3 identifies the regional averages for the Heart of Texas Region.

Table 5.16 - Regional Averages and Weighted Sc ores

Population Charac teristic	Regional Average	Initial Score	Weighted Score
Median Household Income	$\$ 32,606$	1.0	1.0
Percent of Persons in Poverty	16.37%	1.0	2.0
Percent of Persons Age 65 or Over	14.47%	1.0	2.0
Percent of Persons with a Self-C are or Stay at Home Disability	10.16%	1.0	1.5
Percent of Occ upied Housing Units with No Automobiles	7.87%	1.0	2.0
Percent Minority Population	16.2%	1.0	1.0
Population Density	0.5	1	0.5
\begin{tabular}{c\|c			
\hline
\end{tabular} | Regional Score: | 10.0 | |

After the index scoreshad been determined for each block groups, the relative demand for transit was then determined based upon their score. Table 4.4 identifies the score classific ations. Map 4.1 shows the final transit need classific ations for the Heart of Texas Region.

Table 5.17 - Transit Need Classific ations

Classification	Very High	High	Above Average	Average	Below Average	Low
Index Score	Over	17.50 to	12.50 to	10.00 to	7.50 to	Below
22.50	22.49	17.49	12.49	9.99	7.50	

Analysis

In order to achieve an index classification of "High" or "Very High", a block group must have high scoresfor each of the population characteristics used within the transit need index. Conversely, to achieve a classific ation of "Low", a block group must have low scores foreach population characteristic. A mix of high and low scores generally results in a classific ation of "Average".

According to the transit need index, the most signific ant concentration of transit demand exists near Downtown Waco, East Waco and portions of South Waco (See Map 5.10). These areas are characterized by low incomes and high poverty rates, high percenta ges of persons with disabilities a nd rela tively low automobile accessibility. Other areas within the region with high demand can be found in the vicinity of McLennan Community College, TSTC and along the Sanger Ave comidor between Lake Air Dr and Valley Mills Dr. Most other a reas were generally classified as having "Average" or less transit need. The lowest scores were found in Woodway, which had the highest incomes and the lowest poverty rates. Low scores were also found in Hewitt, Robinson and the China Spring Areas. Map 5.6 shows the transit need index scores for the Waco Urbanized Area.

Transit need only measures ha lf of the equation for determining the location and type of public transportation service. Locating primary destination points (la rge employers, retail shopping center, doctors offices, etc.) a nd how to connect these to the high demand areas is the other half of the equation. Section 5.2.2 identifies the most important destinations within the region and provides this a nalysis.

5.2.2 Destination Analysis

The MPO staff a nalyzed the Waco Transit Fixed Route system to determine its effec tiveness in reaching primary destination points within McLennan County. The MPO identified 1,318 locations that are likely attractors of riders from the system. Of these destinations, 174 (13.2\%) were located outside of the Waco Urbanized Area. Of the destinations within the urbanized a rea, the MPO determined that 72.8\% of the destinations within the Waco Urbanized Area were within a reasonable walking distance of one of the fixed routes (defined as $1 / 4$ mile without signific ant ba miers to cross).

Of all destination classes, three stand out for being underserved by the fixed route service: Industrial / Manufacturing, Nursing Home / Assisted Living and Parks/ Recreation / Tourism. In each case less than 70\% of the destinations a re within walking distance, although only Nursing Home / Assisted Living had less than 70\% of destinations within the $3 / 4$ mile distance of one or more fixed routes.

Table 5.21 - Destination Analysis for Waco Transit Fixed Routes: Waco Unbanized Area

Destination	Total in Urban Area	Percent within $\mathbf{1 / 4}$ Mile	Percent within $\mathbf{3} / \mathbf{4}$ Mile
Apartment Complexes	123	73.2%	91.1%
Banks/ Financial	59	78.0%	88.1%
Child Day Care	79	72.2%	82.3%
Govemment/ Public Assistance	91	83.5%	89.0%
Hotels/ Motels	49	93.9%	98.0%
Industrial/ Manufacturing	103	58.3%	79.6%
Medic al/ Dental	105	83.8%	89.5%
Nursing Home / Assisted Living	104	51.9%	66.7%
Parks/ Rec reation / Tourism	135	85.9%	71.1%
Retail / Office Centers	281	67.7%	90.4%
All Others	1,144	72.8%	81.9%
All Destinations		85.5%	

Public transportation services from the surround ing rural counties make da ily trips into the Waco Metropolitan Area primarily formedical orschool trips. As these senvices are primarily demand response services, providing curb to curb service, access to other destinations within the Waco Metropolitan Area can only be accomplished through a transfer to one of the fixed routes for Waco Transit. Below is a disc ussion of the medical and educational servic es which serve as the primary destination points for these rural services and connectivity to the Waco Transit fixed route system.

Hospitals/ Medical Offices/ Kidney Dialysis

The Waco Metropolitan Area is served by 3 hospitals, Providence Medic al Center and Hillcrest Baptist Medical Center both of which are located along SH 6 / Loop 340 and the VA Medical Center located on New Rd near Beverly Hills. Although each rural county has some medic al services available, specialized treatments within the 6 county Heart of Texas region are generally only found in Waco. Medic al treatments are generally not optional and for those older than age 65 or with serious medical conditions and regularvisits to medical professionals can be a matter of life ordeath. For this reason, medical appointments dominate the trip purposes for rural public
transportation within the Heart of Texas region with between 45 and 75 percent of all current trips being medically related. A signific ant percentage of these trips are related to kidney dialysis, trips that must be made on a regular basis. The following are the more important medical destinations within the region, all of which are served by one or more Waco Transit fixed routes.

- VA Medical Center, Waco
- Hillcrest Baptist Medical Center, Waco
- Providence Medical Center, Waco
- Brazos Kidney Disease Center, Waco
- Bellmead Kidney Disease Center, Bellmead

Education

Three institutions of higher education exist within the Waco region. Baylor University in Waco is the only four-year university within the region. Texas State Technical College (TSTC) provides two-year degrees focusing on technical trades. Mc Lennan Community College providestwo-yearassociate degrees in a number of disciplines as well as the City College program which permits students to eam 4-year and graduate degrees through Tarleton State University and the University of Texas at Arlington. Waco Transit serves Baylor with a shuttle service that circulates through the campus and immediate vicinity. The Waco Transit Fixed Route Service serves all three schools with one or more fixed routes.

5.2.3 Sec urity of the System

Ever since the terrorist attacks of September 11 ${ }^{\text {th }}$, ensuring adequate security of the transportation system has been a top priority of the US Govemment. To emphasis this, SAFETEA-LU separated security into a stand alone planning consideration. In Waco, the public transportation system is the most obvious first line of defense in sec uring the transportation system, as this is the mode with the largest concentration of travelers in one place at one time. It is not terrorism, however, but crimes such as robbery, theft or a ssa ult that pose the most realistic, although uncommon, threat to users of Waco Transit. It is important to note, however, that due to the very nature of topic, some details regarding the security of the system cannot be discussed in a public forum. Both Waco Transit and the Heart of Texas Council of Govemments (rural and elderly \& disabled programs) coordinate with local first responders and McLennan County Emergency Management to minimize potential threats to their respective systems. The details provided below are such that a public discussion does not jeopardize their effectiveness in minimizing threats to the users of the system.

The first line of defense for users of Waco Transit are the buses themselves. In late 2007, Waco Transit began accepting delivery of new buses to replace the existing fleet (See project T-2). These new buses are equipped with an audio / video surveillance system to record all activities inside a nd outside of the bus aswell as all sound inside the bus.

This system can be monitored remotely in real time should the driver declare an emergency or a threat be made against the system. The buses also include Geographical Positioning System (GPS) technology which allows Waco Transit to track every movement the bus makes. Finally each bus is equipped with an emergency switch that can be activated by the driver that automatically sends an emergency signal to the Waco Police department and Waco Transit and activates an emergency indicator on the bus for easy identific ation.

The next line of defense are the facilities maintained by Waco Transit, including the Intermodal Center and the Maintenance \& Administration Facility. Both facilites have video surveillance to monitor activities in and around these buildings. In addition, electronic door locks have been installed to restrict access to certain a reas of each facility. Access to restricted areascan only be provided through magnetic ID cards which records the employees name, date, time, and area of the facility the employee is accessing. This system can also be programmed to restrict the access of employees to only those areas within each facility where access is necessary for their position.

Bus shelters (See project T-1) are a nother area being targeted by Waco Transit for additional sec urity measures. During the winter months, Waco Transit fixed route operations begin and end during darkness. To provide a level of comfort for system users, future shelters are proposed to be lit with solar powered lights. In addition to these measures, emergency call boxes are proposed for installation at each shelter. Once activated by a user being threatened, video and audio surveillance of the shelter would begin and then would connect to E-911 and to local first responders.

5.2.4 Coordination of Public Transportation Services

In November of 2006, the Heart of Texas Council of Govemments (HOTCOG), in cooperation with the Waco MPO, Waco Transit, TxDOT, and Central Texas Senior Ministries, developed a the Coordinated Regional Public Transportation Plan. This plan, which covers the 6 county region served by HOTCOG, identifies the long term public transportation needs for the region and strategies the region's govemments intend to implement to provide more service with the same resources. The Waco MPO Policy Board adopted and supported this plan in November, 2006 and by this reference incorporates the recommendations of this plan into the MTP.

5.3 Bicycle and Pedestrian

5.3.1 Bicycle Needs

Wilbur Smith Associates identified several comidors appropriate for bic ycle facilities within the Waco Urbanized Area in a draft document submitted in 2005. The MPO staff reviewed these comidors and made appropriate changes and prioritized the comidors in
order of importance. Sections 7.17 and 7.26 identify the top prionties identified by the staff and Map 7.9 identifies all coridors and prionties within the Waco Urbanized Area.

5.3.2 Pedestrian Needs

The City of Waco has produced a sidewalk plan to identify comidors where the construction or reconstruction of sidewalks are required when plans are submitted for new commercial or residential construction. This plan also serves as a guide for the construction of new sidewalks as city funds become a vailable. The MPO staff used the Waco plan asa starting point for the development of a regional sidewalk network and to prionitize comidors for project recommendations identified in sections 7.17 and 7.26 . Comidors identified by the staff would construct a sidewalk on one side of the roadway, unless otherwise noted, and would provide all other necessary infrastructure such as wheelc ha ir ramps, etc.

The MPO staff identified 3 levels of priority for pedestrian comidors. The top priorities were to connect elementary and some secondary schools to nearby neighborhoods, correct a safety problem or complete a short gap in the existing system. Sec ond priorities extend the system to connect to retail comidor and remaining secondary schools. Third priorities were to make final connections necessary to support an expanded public transportation network and to support the Altemative 2 la nd use scenario identified in section 3.1.4. The MPO staff did not identify all comidors identified within the Waco plan and focused on the most important connections. Maps 7.7 and 7.8 identify the priorities identified by the MPO staff.

5.4 Rail

The population of the Dallas/ Houston / San Antonio triangle is anticipated to nearly double during the MTP planning period putting signific ant stra ins on the highway and a viation systems. It is antic ipated that even with a wider IH-35, a separate toll road, and larger a irplanes that these systems will not be able to accommodate the mobility demands of the triangle. Two proposals have been made to introduce high speed rail into the modal mix in an attempt to meet these mobility needs.

Future Passenger Rail

Commuter rail uses self-propelled cars on existing freight rail tracks with travel speeds less than 60 mph . These systems are generally far less expensive than other forms of passenger rail and also make numerous stops. Commuter rail only been discussed asa possibility by govemments in the Heart of Texas and North Central Texas Regions. Mobility 2035, the Metropolitan Transportation Plan for the Dallas/ Fort Worth region identifies potential future extensions of commuter rail southward from the Fort Worth Intermodal Center into Clebume and further south. Additional service is also identified southward from Union Station in Dallasto Waxahatchie and could provide another possible southward connection. Conceptually a commuter rail line would run
approximately parallel to $\mathrm{IH}-35$ and connect to Austin and San Antonio via Waco. Such a system would compliment a ny high-speed system (see below) by providing stops to sma ller communities which could not be feasibly served by the high-speed system. It is envisioned that Waco would be a connection point between the two systems. Currently there are no substantive plans for development of such a system and no funding has been authorized.

High-speed passenger rail refers to any such equipment that has a nomal operating speed in excess of 150 mph . Due to their speed, these facilities are completely grade separated from other transportation facilities and make farfewerstopsthan other forms of rail transportation. The current proposed high speed rail concept is referred to as the "TexasT-Bone". This concept would create 2 high speed lines: the first line running from the Dallas/ Fort Worth Intemational Airport to San Antonio, the second line running from Houston a nd intersecting the first line in Temple. The Texas T-Bone is currently only conceptual and does not have funding for any phase of study.

Future Freight Concepts

The Texas Transportation Institute is currently developing a system to transport short to medium haul freights via a fully automated monorail based system. Called the 'Freight Shuttle', the system would use individual ca miers to transport a single 40 foot container distances of up to 500 miles. The system would be fully elevated, travel at speed sof 60 mph and use electricity at least partly generated by solar power. Due to the relatively low speeds, existing expressway right of way could be utilized thus keeping potential costs relatively low. The intent of the Freight Shuttle is to provide an energy effic ient, low emission and cost effective means of transporting goods which Class I railroads such as BNSF or Union Pacific cannot transport cost-effectively and to minimize the a mount of freight being transported long-distancesby truck. A conceptual model of the Freight Shuttle is currently being developed by 71 and could be implemented by as early as 2020. The IH-35 comidor has been disc ussed as one of the first lines on the system should the concept prove to be reliable and cost-effective. If implemented, freight tra nsfer stations would have to be developed and located to deliver freights from the shuttle to businesses and industries within the region.

5.5 Aviation

US Airlines are in the process of phasing out turbo-prop airc raft for their short distance and low volume routes in favor of regional jets. Regional jets are generally larger than the turbopropsthey are replacing with seating capacities in the range of 50 to 70. As a result they require more terminal space to accommodate the larger number of passengers and the larger aircraft require greater runway distances fortakeoff and landing. ACTis capable of handling regional jets both in terms of terminal space and runway length.

General aviation is also moving towardsa greater usage of corporate jets asthey are capable of traveling greater distancesbefore refueling and are fasterthan the
turboprop aircraft. These aircraft also require greater runway distances than their turboprop cousins for takeoff and landing. ACT, CNW and PWG all c urrently accommodate comorate jets with suffic ient runway length, parking a prons, refueling and powerplant services.

An opportunity to greatly expand a viation related industries at CNW hasgenerated a proposal to construct a 6500' x 150' taxiway extending eastward from the end of runway 35 R into property owned by the Waco Industrial Foundation. This taxiway will effectively force traffic accessing the L-3 plant at CNW to use Aviation Pkwy instead of Willia ms Road, which most plant traffic currently uses. Willia ms Road and Concord Road will both be closed to traffic at the point where the taxiway crosses. The resulting traffic increase at the intersection of Aviation Pkwy and US 84 will likely require the installation of a traffic signal short term and perhaps the construction of a grade separation long tem.

Section 6: Revenue Forecasts

Federal law requires projects identified within the Metropolitan Transportation Plan to be constrained by a reasonable projection of funds govemments within McLennan County anticipate receiving during the planning period. Project costs beyond the anticipated revenues are unfunded and cannot be identified as a recommended priority within the MTP. This section outlines the anticipated revenues for the Wa co Metropolitan Area through the year 2035.

6.1 Highways and Bridges

6.1.1 Federal and State Revenue Projections

The State of Texasdivides it'sfederal and state highway dollars into 12 separate categories of funding. Each category contains both state and federal dollars. Table 6.1 identifies each category and their intended use. The Waco Metropolitan Area is not eligible to receive funds from categories 2,5 or 7 . The Waco District of TxDOTreceives funds from seven of the remaining categories based on allocation formulas adopted by the Texas Transportation Commission. Category 3 funds are allocated specific ally for the Waco Metropolitan Area. Category 4 fundsare project specific and are determined by the Texas Transportation Commission. Category 10 includes all federal ea rmarks as well as funds for landsc a ping projects.

In 2009, TxDOTand the Texas Association of MPOs developed a model to estimate future state \& federal highway revenues based upon user defined assumptions. The model, called ‘TRENDS' (Transportation Revenue Estimation and Needs Determination System), forecasts revenues by TxDOTfunding categories and by year through the year 2035. In addition to requiring the user to estimate the magnitude and timing of various taxand revenue changes, the model also requires users to estimate possible population growth and fuel economy scenarios. To estimate revenues available for the Waco Metropolitan Area through the MTP planning period, the MPO utilized this model and identified 5 possible funding scenarios: Baseline, Low, Low Medium, Medium and High. The baseline scenario assumes no changes in tax rates or revenues through 2035 and is provided as a point of comparison. Similarly, the high scenario identifies the tax rates and revenues required to fully fund all priorities identified within the MTP regardless of political reality. As such, the high scenario is intended only to provide a point of comparison. The 'Low', 'Low Medium' and 'Medium' scenarios provide the most politic ally rea listic estimates of future revenues. The assumptions for each scena rio are identified in table 6.2.

Table 6.1- TxDOTHighway Funding Categories

Category	Purpose	Waco MPO Eligibility
1	Preventative Maintenance \& Rehabilitation	Yes
2	Metropolitan Mobility Projects (Urban Pop >200,000)	No
3	Urban Mobility Projects (Urban Pop between 50,000 and 200,000)	Yes
4	Statewide Mobility Projects	Conditiona *
5	Congestion Mitigation \& Air Quality (Air Quality Non-Atta inment Areas	No
6	Structures Replacement \& Rehabilitation	Yes
7	Surface Transportation Program Metropolitan Mobility \& Rehabilitation	No
9	Surface Transportation Program - Safety	Yes
10	Transportation Enhancements	Yes
11	Miscellaneous,	Yes
12	Congressional Ea marks and Landscaping	

*Conditional based upon project specific approval from the Texas Transportation Commission.

Table 6.2 - TRENDS Revenue Model Assumptions by Scenario

	Baseline	Low	Low Medium	Medium	High
State Population Growth Rate*	Low	Low	Low	Medium	Medium High
Fuel Effic iency Scenario**	High	High	High	Medium	Low
State Gas Tax	No Increases	$\$ 0.05$ increase in	$\begin{gathered} +\$.07 \text { in } 2012 \text { and } \\ +\$.05 \text { in } 2025 \end{gathered}$	$\$ 0.10$ increase in 2012 and 2025	$\begin{aligned} & \$ 0.25 \text { increase in } \\ & 2012 \end{aligned}$
State Diesel Tax	No Increases	$\$ 0.05$ increase in 2012	$\begin{aligned} & +\$.07 \text { in } 2012 \text { and } \\ & +\$.05 \text { in } 2025 \end{aligned}$	$\$ 0.10$ increase in 2012 and 2025	$\$ 0.25$ increase in 2012
Federal GasTax	No Increases	$\$ 0.10$ increase in 2011	$\begin{aligned} & +\$.10 \text { in } 2011 \text { and } \\ & +\$.05 \text { in } 2025 \end{aligned}$	$\$ 0.10$ increase in 2011 and 2025	$\$ 0.25$ increase in 2012
Federal Diesel Tax	No Increases	$\begin{gathered} \$ 0.10 \text { increase in } \\ 2011 \end{gathered}$	$\begin{aligned} & +\$.10 \text { in } 2011 \text { and } \\ & +\$.05 \text { in } 2025 \end{aligned}$	$\$ 0.10$ increase in 2011 and 2025	$\begin{gathered} \$ 0.25 \text { increase in } \\ 2012 \end{gathered}$
Texas Rate of Retum on Federal Funds	85\%	85\%	87\%	90\%	93\%
Indexing State Gas Tax	No	No	No	2020	2012
Percent of State GasTax Increase to Transportation	74\%	74\%	74\%	74\%	100\%
Vehicle Registration Fees	No Increases	10% increase in 2014	$\begin{gathered} +10 \% \text { in } 2014 \text { and } \\ +15 \% \text { in } 2025 \end{gathered}$	$\begin{aligned} & +20 \% \text { in } 2014, \\ & +30 \% \text { in } 2025 \end{aligned}$	50\% inc rease in 2014 and 2025
State Vehicle Mile Traveled Tax	No	No	No	$\begin{aligned} & \$ 0.01 \text { per mile in } \\ & 2030 \end{aligned}$	$\$ 0.015$ per mile in 2025
Eliminate Gastax	No	No	No	2035	2030
Eliminate State Gas Tax Diversions	None eliminated	50\% eliminated by 2018	75\% eliminated by 2018	75\% eliminated by 2014	100\%eliminated by 2012
Prop 12 Bonds***	None	$\$ 2$ billion over 3 years	$\$ 2$ billion over 3 years	\$4 billion over 5 years	\$10 billion over 10 years
Prop 14 Bonds***	None	$\$ 3$ billion over 5 years	$\$ 3$ billion over 5 years	$\$ 5$ billion over 5 years	$\$ 10$ billion over 10 years
Local Option Gas Tax	No	No	$\$ 0.03$ increase in 2012	$\$ 0.05$ increase in 2012	$\$ 0.10$ increase in 2012
Local Option Diesel Tax	No	No	$\$ 0.03$ increase in 2012	$\$ 0.05$ increase in 2012	$\begin{gathered} \$ 0.10 \text { increase in } \\ 2012 \end{gathered}$
Local Option Vehicle Registration Fee	No	No	\$10 per vehicle	\$10 pervehicle	\$20 per vehicle
Local Option Vehicle Mile Traveled Tax	No	No	No	No	$\begin{aligned} & \$ 0.0025 \text { per mile } \\ & \text { in } 2030 \end{aligned}$

*Follows the following projections from the Texas Data Center: UTSan Antonio - Low equals " 0.5 scenario", Medium equals "2000 to 2004 scenario", Medium High equals "2000 to 2007 scenario".
**Follows estimates generated by Cambridge Systematics in study titled "Accounting for Fuel Effic iency in Texas Fuel Tax Revenue Estimations" - J a na ury, 2007
***Payback through State General Fund. Assumes availability beginning in 2012.
****Payback through future transportation revenues. Assumes availability beginning in 2020 and payback beginning in 2021.

Revenue Distribution Assumptions

The TRENDS model provides revenue estimates for the State of Texas by TxDOTFunding Category and local option revenues by County. To estimate state and federal funds for the Waco Metropolitan Area, the MPO needed to make several assumptions on how funds would be distributed to Waco.

Maintenance, bridge replacement and safety funds (categories 1,6 and 8 respectively) are generally distributed based upon need. Since it is impossible to estimate the precise location of need for the entire state over a 25 yearperiod, the MPO made the assumption that overtime, the a mount of funds received by a region will generally equal the amount if distributed based upon population. For the period of 2010 to 2020, the population of McLennan County was estimated to be 0.93944% of the state population. Thus the Waco Metropolitan Area isestimated to receive this percentage of the estimated statewide total for categories 1 and 6. As the state population is estimated to grow at a much faster rate than the population of McLennan County, it is estimated that this percentage will decrease to 0.65482% for the period of 2021 to 2035.

To estimate mobility funds, the MPO first subtracted funds which are committed to Categories 5, 7, 910 and 12 which are statutorily determined by formulas or distributions from either the State Legislature or Congress. The MPO assumed that these amounts would increase each yearby the standard inflation rate accepted for the MTP, 4\% per year. The MPO also assumed that each district would continue to receive $\$ 2.5$ million per yearfrom Category 11 and that this amount would not change. The MPO assumed that the remaining funds (if any) would be distributed to Categories 2,3 and 4 based upon previously accepted formulas: 65% to category $2,10 \%$ to category 3 and 25% to category 4.

Of the 3 mobility categories (2,3 and 4) Wa co receives distributions of mobility funds only through category 3. The Texas Transportation Commission has adopted a formula which generally provides the Waco Region approximately 9.5% of category 3 funds. Although this level may fluctuate some based upon traffic and population levels, the MPO assumed that the average distribution would remain relatively constant near the 9.5\% level.

Table 6.3 identifies the estimate revenues by scenario the Waco region can expect during the MTP planning period.

Table 6.3 - Estimated Highway Revenues by Scenario in Millions

Short Range Revenues (2010 to 2020)					
Category	Baseline	Low	Low Medium	Medium	High
Maintenance	\$380.4	\$380.4	\$380.4	\$380.4	\$380.4
Mobility	\$39.4	\$99.3	\$121.2	\$253.7	\$841.1
Local Option	\$0.0	\$0.0	\$61.7	\$103.4	\$172.3
Total	\$419.8	\$479.7	\$563.3	\$737.5	\$1,393.8
Long Range Revenues (2021 to 2035)					
Category	Baseline	Low	Low Medium	Medium	High
Maintenance	\$30.6	\$104.0	\$416.8	\$670.1	\$670.1
Mobility	\$0.0	\$0.0	\$0	\$51.5	\$1,342.3
Local Option	\$0.0	\$0.0	\$88.3	\$135.9	\$430.6
Total	\$30.6	\$104.0	\$505.1	\$857.5	\$2,443.0
Total (2010 to 2035)					
Category	Baseline	Low	Low Medium	Medium	High
Maintenance	\$411.0	\$484.4	\$797.2	\$1,050.5	\$1050.5
Mobility	\$39.4	\$99.3	\$121.2	\$305.2	\$2,183.4
Local Option	\$0.0	\$0.0	\$150.0	\$239.3	\$602.9
Total	\$450.4	\$583.7	\$1,068.4	\$1,595.0	\$3,836.8

The MPO Technical Committee determined that the most reasonable financial scena io forthe Waco Region would be the 'Low Medium' scenario. When compared to previous inflation-adjusted spending, this scenario produces a somewhat lower level of spending for highways then the historic al trend.

Congressional Earmarks

The Waco Metropolitan Area has been the recipient of federal ea marks in the past in order to construct/ improve highways such as Loop 574, FM 1637 or Ritchie Rd. As with other earmarks, the amount was only a fraction of the amount necessary to complete these projects. It is expected that even with the anticipated increase in Congressional earmarks that these projects will by and large remain unfunded through the year 2035 unless funds from a nother source are identified. As a result of the inc rease in earmarking, it is anticipated that the Waco area will be the recipient of additional earmarks to partially fund important projects. The MPO estimates that this inc rease will
be between 100% to 200% of the amount seen previously. It is antic ipated that earmarks in the future will be provided for projects that have identified funds from other sources, thus reducing the potential of tying funds to projects with little or no chance of being constructed.

Table 6.4-Curent Federal Highway Earmarks - Waco Metropolitan

 Area| Project | Extent | Scope of
 Work | Earmark | Total Cost* | Earmark
 Percentage |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FM 1637** | FM 185 to
 FM 3051 | Widen to 4
 lanes divided | $\$ 1,600,000$ | $\$ 28,300,000$ | 5.7% |
| Ritchie Rd | US 84 to
 FM 1695 | Widen to 4
 lanes divided | $\$ 2,400,000$ | $\$ 19,000,000$ | 12.6% |
| Loop 574 | IH-35 to BU 77 | Construct 4
 lane divided
 highway | $\$ 1,600,000$ | $\$ 24,300,000$ | 6.6% |
| | | Total | $\$ 5,600,000$ | $\$ 71,600,000$ | 7.8% |

*Includes all phases of work - Engineering, Utility Relocation, Right of Way and Construction.

6.1.2 Local Revenue Projections

Most local revenue for highway construction and signific ant rehabilitation projects come from the various capital improvement programs (CIP) of the individual cities and McLennan County. Some cities do dedicate general fund revenues prima rily for highway maintenance puposes. In instances where local govemments must provide local match forstate orfederal highway projects, the local govemments usually provide funds from one of these two sources to meet the match requirements

At the time of publication, no major bond measures for highway construction were being considered by the MPO member cities or McLennan County. It is antic ipated that only revenues through the CIP programs, general funds, or revenues to meet local match requirements for state or federal projects will available for local highway projects.

Spending by local govemments on transportation has been consistently flat or with extremely modest increasesover the past decade. The City of Waco and many suburban cities have increased their spending at a rate fractionally higherthan that of other municipal govemments or McLennan County. For forecasting future revenues, an a nnual inflation rate of 1.0% has been used for spending by the City of Waco and suburban cities. For all other govemment entities, an annual rate of 0.5% per year has been used. The estimated revenues local and county govemments are projected to spend for highway maintenance can be found in Sections 7.1.1 and 7.2.1.

6.1.3 Engineering \& Right of Way Costs

Statewide, engineering costs for any given highway project are typic ally between 8% and 12% of the construction cost. For budgeting purposes, TxDOTtypic ally uses 10% of the construction cost to estimate engineering costs. Actual engineering costs for highway projects let within the past 10 years within the Waco District are reasonably close to this estimate. In addition, TxDOThastypic ally only funded engineering costs for projects which have sufficient funds for construction. For these reasons, the MPO has estimated engineering costs to be 10% of the construction cost and that if sufficient funds exist for construction, then suffic ient funds will exist to provide for the engineering costs.

Right of way costs, unlike engineening costs, are highly variable and dependent upon factors such as land usage, location, accessibility, and zoning. Statewide, right of way costs a verage 12% of the construction costs. This figure, however varies from no right of way costs for certa in projects to as much as 100% or more of the construction cost for projects in the Dallas or Houston districts. Similar to engineering costs, however, TxDOT has typically only funded right of way costs for projects which have sufficient funds for construction. For these reasons, the MPO has assumed that for federally and state funded projects, if suffic ient funds exist for construction, then suffic ient funds will exist to provide for the right of way costs. For locally funded projects, however, the total available revenues must also cover all necessary right of way \& engineering costs.

6.1.5 Toll Revenue

In an effort to increase the funding for highway mobility, in 2003 the Texas Legislature passed House Bill 3588 which permits the State and Local areas to exercise the option of tolling certa in highways. Individual counties, with the permission of the Texas Transportation Commission, may form Regional Mobility Authorities (RMA) to construct, operate and mainta in toll facilities within their specific county. In order to form an RMA, at least one toll fea sible comidor must be identified. Feasibility has been defined as a facility that can at least fund through toll revenue the annual cost of operating and mainta ining the facility and preferable at least one-third of the construction cost plus interest. In addition to HB 3588, the Texas Transportation Commission also implemented rules stating that all expressway projects adding capacity as well as certa in other types of added capacity projects must be studied for toll feasibility. This requirement impacts 5 comidors within the Waco Metropolitan Area which are listed within table 6.6.

Table 6.6 - Comidors for Which Toll Feasibility must be studied

Comidor	From	To
US 84	SH 317	SH 6/ Loop 340
SH 6 / Loop 340	FM 185	IH-35
Loop 574	IH-35	Spur 484
FM 185 Extension	SH 6	IH-35
IH-35	Falls County	Hill County

6.2 - Public Transportation

6.2.1 Projected Urban Public Transportation Revenues

The 'TRENDS' model, which the MPO used to estimate future highway revenues, also provides an estimate of federal funds a vailable to the State of Texas for Public Transportation. Shese funds are distributed to the various urban transit operators by formula. The MPO assumed that this formula would remain unchanged during the MTP planning period. Table 6.8 identifies the assumptions used to estimate future revenues by scenario for Wa co Transit.

Table 6.8 - Urban Public Transportation Revenue Assumptions by Scenario

	Baseline	Low	Low Medium	Medium	High
‘TRENDS' estimate of Federal Transit Funds to TX (\$Billions)*	\$1.73	\$2.37	\$2.43	\$3.19	\$5.04
Federal Gas/ Use Taxes Dedicated to Transit	Same as current	Same as current	Same as current	10% increase to transit	30% increase to transit
Year of Gas/ Use Taxes Increasesto Transit	N/A	N/A	N/A	2015	2011
Increase in State Transit Funds	None	None	1\% peryear	1\%peryear	4\%peryear
Farebox Revenues	Change at same percentage change of combined federal/ state / local revenues				
Local Revenues	4\% peryear	4\%peryear	4\% peryear	4\% peryear	4% per year plus increase to meet additional match obligations
Earmarks	\$6.2 million short range, $\$ 5.0$ long range ($\$ 11.2$ million total)				

*Does not include any changes to the percentage of federal gas/ use taxes dedicated to transit. See table 6.2 for assumptions used within the 'TRENDS' model.

Similar to highway scenarios, the MPO identified 5 possible funding scenarios: Baseline, Low, Low Medium, Medium and High. The baseline scenario assumes no changes in tax rates or revenues through 2035 and is provided as a point of comparison. Similarly, the high scenario identifies the tax rates and revenues required to fully fund all priorities identified within the MTP regardless of political reality. As such, the high scenario is intended only to provide a point of comparison. The most politically realistic scenarios are the 'Low', 'Low Medium' and 'Medium' scenarios.

Table 6.9 - Estimated Urban Public Transportation Revenues by Scenario in Millions

Short Range Revenues (2010 to 2020)					
Category	Baseline	Low	Low Medium	Medium	High
Federal	\$27.8	\$31.3	\$32.1	\$36.2	\$67.5
State	\$3.3	\$3.3	\$3.5	\$3.5	\$4.0
Farebox	\$5.2	\$5.7	\$6.9	\$7.7	\$11.4
Local	\$9.1	\$9.1	\$9.1	\$9.1	\$18.1
Total	\$45.4	\$49.4	\$51.6	\$56.5	\$101.0
Long Range Revenues (2021 to 2035)					
Category	Baseline	Low	Low Medium	Medium	High
Federal	\$25.1	\$36.5	\$43.9	\$67.4	\$133.6
State	\$4.5	\$4.5	\$5.4	\$5.4	\$9.3
Farebox	\$6.9	\$8.7	\$9.7	\$14.2	\$24.3
Local	\$20.7	\$20.7	\$20.7	\$20.7	\$36.6
Total	\$57.2	\$70.4	\$79.7	\$106.3	\$203.8
Total (2010 to 2035)					
Category	Baseline	Low	Low Medium	Medium	High
Federal	\$52.9	\$67.8	\$76.0	\$103.6	\$201.1
State	\$7.8	\$7.8	\$8.9	\$8.9	\$13.3
Farebox	\$12.1	\$14.4	\$16.6	\$21.9	\$35.7
Local	\$29.8	\$29.8	\$29.8	\$29.8	\$54.7
Total	\$102.6	\$119.8	\$131.3	\$164.2	\$304.8

Similar to highway revenues, the MPO Technic al Committee selected the 'Low Medium' scenario as the most reasonable future financial scenario for public transportation. Table 6.10 identifies the spending necessary by Waco Transit to maintain the same level of senvice provided during FY 2009 through the MTP planning period. When compared to the 'Low Medium' scenario of revenues, it is apparent that future state and federal revenues will be insuffic ient to maintain FY 2009 levels of service beyond 2020. Section 7.2.4 discusses the MPO recommendations to offset these projected shortfalls in revenues in order to mainta in existing levels of service for Waco Tra nsit.

Table 6.10 - Public Transportation Operating Expenses to maintain 2009 senvice levels (millions)

	Preventative Maintenance	ADA Expenses	Operating	Planning	Total
Short Range $(2010$ to 2020)	$\$ 9.4$	$\$ 3.4$	$\$ 29.7$	$\$ 1.4$	$\$ 43.9$
Long Range (2011 to 2035)	$\$ 21.6$	$\$ 7.7$	$\$ 67.8$	$\$ 3.1$	$\$ 100.2$
Total	$\$ 31.0$	$\$ 11.1$	$\$ 97.5$	$\$ 4.5$	$\$ 144.1$

Table 6.11 - Funding Gap: Urban Expenses vs. Revenues by Scenario (Millions)*

	Baseline	Low	Low Medium	Medium	High
Short Range (2010 to 2020)	$-\$ 4.7$	$-\$ 0.7$	$+\$ 1.5$	$+\$ 6.1$	$+\$ 50.9$
Long Range (2011 to 2035)	$-\$ 48.0$	$-\$ 35.0$	$-\$ 25.7$	$+\$ 1.1$	$+\$ 98.6$
Total	$-\$ 52.7$	$-\$ 35.7$	$-\$ 24.2$	$+\$ 7.2$	$+\$ 149.5$

*Revenues do not include Congressional ea marks which are assumed to be used only for capital expenses (see Table 6.4).

6.2.2 Projected Rural Public Transportation Revenues

The same scenarios used for urban public transportation were also used to estimate revenues for the rural public transportation services. As with their urban counterparts, the revenues for rural services identified with the 'Low Medium' scenario are projected to fall short of the a mounts necessary to mainta in FY 2009 levels of service beyond 2020. Section 7.2.4 disc usses the MPO recommendations to offset these projected shortfalls in revenues in order to mainta in existing levels of service for Waco Transit.

Table 6.8 - Estimated Rural Public Transportation Revenues by

Scenario

Short Range Revenues (2010 to 2020)					
Category	Baseline	Low	Low Medium	Medium	High
Section 5310	\$464,000	\$540,000	\$690,000	\$778,000	\$1,318,000
Section 5311	\$611,000	\$711,000	\$909,000	\$1,025,000	\$1,738,000
Total	\$1,075,000	\$1,251,000	\$1,599,000	\$1,803,000	\$3,056,000
Long Range Revenues (2021 to 2035)					
Category	Baseline	Low	Low Medium	Medium	High
Section 5310	\$433,000	\$678,000	\$943,000	\$1,448,000	\$2,763,000
Section 5311	\$570,000	\$893,000	\$1,244,000	\$1,908,000	\$3,642,000
Total	\$1,003,000	\$1,571,000	\$2,187,000	\$3,356,000	\$6,405,000
Total (2010 to 2035)					
Category	Baseline	Low	Low Medium	Medium	High
Section 5310	\$897,000	\$1,218,000	\$1,633,000	\$2,226,000	\$4,081,000
Section 5311	\$1,181,000	\$1,604,000	\$2,153,000	\$2,933,000	\$5,380,000
Total	\$2,078,000	\$2,822,000	\$3,786,000	\$5,159,000	\$9,461,000

Table 6.9 - Funding Gap: Rural Expenses vs. Revenues by Scenario*

	Baseline	Low	Low Medium	Medium	High
Short Range $(2010$ to 2020)	$-\$ 328,000$	$-\$ 152,000$	$+\$ 197,000$	$+\$ 400,000$	$+\$ 1,653,000$
Long Range $(2011$ to 2035)	$-\$ 2,203,000$	$-\$ 1,635,000$	$-\$ 1,019,000$	$+\$ 150,000$	$+\$ 3,200,000$
Total	$-\$ 2,531,000$	$-\$ 1,787,000$	$-\$ 822,000$	$+\$ 550,000$	$+\$ 4,853,000$

*Combined Sections 5310 and 5311

6.3 Rail Transportation

The State of Texas has little to no history in providing public funding for either passenger or freight rail services outside of the large metropolitan areas such as Dallas/ Fort Worth or Houston. Additionally, the federal govemment hastraditionally provided few resources for the rail mode outside of 'Amtrak', the national passenger rail service. Although recent discussions have proposed to provide substantial revenues to fund
various passenger rail services, at the time of publication of this document it is unclear as to what funding levels, if any, are realistic forpassenger rail beyond the nomal appropriations for Amtrak. As a result, the MPO haschosen to identify rail projects as unfunded needs untila more clearly defined state and national role for passenger rail is identified.

Section 7: Project Recommendations

This chapter conta ins those projects considered important in meeting the regional goals outlined in Chapter 2 and can be funded through the sources of funding identified via the "Medium Low" scenario of projected revenues through the year 2035. Federal funds may be used to develop each of these projects. Projects within this chapter are ranked in order of priority.

7.1 Short Term Prionities: 2010 through 2020

7.1.1 Categorical Highway Projects

These projects cover scopes of work dealing with the maintenance and operation of the highway system through the year 2020. These projects ensure continued satisfactory operation of the highway system and are thus the top prionity for the Waco Metropolitan Area. As with other projects identified in this plan, categorical projects have been adjusted for inflation.

Project ID: S-STY-S	
Project: Highway	Highway Safety Projects
Extent: Expressw	Expressway, Arterial, Urban Collector or Rural Major Collector Roads
Costs:	
Engineering:	\$3,800,000
Right of Way:	\$4,500,000
Construction:	\$29,200,000
Total Project Cost:	\$37,500,000
Project ID: S-LDSS	S-LDS-S
Project: State Hig	State Highway System Landsc a pe Development
Extent: State Hig	State Highway System
Costs:	
Engineering:	\$400,000
Right of Way:	\$0
Construction:	\$3,800,000
Total Project Cost:	\$4,200,000
Project ID: L-PMR-S	L-PMR-S
Project: Local \& C	Local \& County Highway Preventative Maintenance \& Rehabilitation
Extent: Localor	Local or County Roads
Costs:	
Engineering:	\$10,200,000
Right of Way:	\$0
Construction:	\$101,200,000
Total Project Cost:	\$111,400,000

7.1.2 Highway Mobility Projects

Projects identified in this section identify highways which will require additional capacity to either meet existing or projected traffic volumes. Reconstruction of existing lanes on these projects are assumed unless otherwise noted. Unless otherwise noted, all short term priority projects use the following years for determining year of expenditure costs: Engineering - 2014, Right of Way - 2015, Construction - 2017.

Priority 1

ProjectS-022 (Parts 1 \& 2)

Highway: In	Interstate 35
Extent: Fa	Falls County Line to FM 2063 / FM 2113
	North Loop 340 to Hill County Line
Current: 4	4 main lanes and two-way frontage roads
Scope of Work: W	Widen main lanes to 6 lanes, Convert frontage roads to one-way, reconstruct to existing Interstate standards
Costs:	
Engineering	g: \$30,100,000 Year: 2010
Right of Way	ay: \$81,500,000 Year. varies 2010 to 2012
Construction	on: \$550,000,000 Year. varies 2011 to 2013
Total Cost:	\$661,600,000

Note: Project funded through Proposition 12 bonds authorized by Texas Transportation Commission minute order 112036.

Priority 2

Project S-022 (Part 3)

Highway:
Extent:
Current: $\quad 6$ main lanes and discontinuous one-way frontage roads
Scope of Work: Reconstruct and widen main lanes to 8 lanes, reconstruct Frontage Roads, extend frontage roads where discontinuous, and realign on \& off ramps.
Costs:
Engineering: \$18,800,000 Year. 2011
Right of Way: $\$ 48,400,000$ Year. 2012
Construction: \$260,000,000 Year. 2015
Total Cost: $\quad \$ 327,200,000$
Funding Source: Category 4 funds - $\$ 296,200,000$
Category 3 and / orlocal option - \$31,000,000

Priority 3

ProjectS-004

Highway: FM 1695 (Hewitt Dr)
Extent: US 84 to FM 2063 (Sun Valley Rd)
Current: $\quad 4$ lanes with continuous center left tum lane
Scope of Work: Widen to 6 lanes
Costs:
Engineering: \$1,200,000
Right of Way: \$0
Construction: \$11,200,000
Total Cost: $\quad \$ 12,400,000$

Priority 4

ProjectS-034

Highway:
Extent:
Current:

Scope of Work: Widen to 6 lanes, extend frontage roads where discontinuous and realign on \& off ramps

Costs:
Engineering: $\quad \$ 3,100,000$
Right of Way: \$1,300,000
Construction: \$34,000,000
Total Cost: $\quad \$ 38,400,000$

Priority 5

ProjectS-036A

Highway: SH 6/ South Loop 340
Extent: \quad BrazosRiver to SH 6/ Loop 484
Current: 2 lane Principal Arterial
Scope of Work: Widen to 4 lanes divided
Costs:
Engineering: \$1,100,000
Right of Way: \$0
Construction: \$11,900,000
Total Cost: $\$ 13,000,000$

Prionity 6

ProjectS-035

Highway: SH 6/ South Loop 340
Extent: $\quad \mathrm{IH}-35$ to US 77 (Robinson Dr)
Current: 4 lane Principal Arterial
Scope of Work: Extend frontage roads and construct overpass at Old Robinson Rd Costs:

Engineering: Complete
Right of Way: \$0
Construction: \$18,400,000 Year: 2015
Total Cost: \$18,400,000
Note: Engineering work was completed at an approximate cost of $\$ 750,000$ prior to adoption of the MTP.

Priority 7

ProjectS-003

Highway: FM 1637 (China Spring Rd)
Extent: \quad FM 185 (North River Crossing) to FM 3051 (Steinbeck Bend Dr)
Current: 2 lane rural FM Road
Scope of Work: Widen to 4 lanes divided arterial
Costs:
Engineering: $\quad \$ 1,300,000$ Year: To be completed in 2010
Right of Way: $\quad \$ 13,700,000$
Construction: \$33,900,000
Total C ost: $\quad \$ 48,900,000$
Note: $\$ 1,600,000$ of cost is funded through a Congressional earmark.

Priority 8

ProjectS-005

Highway: FM 1695 (Hewitt Dr)
Extent: \quad Ritchie Rd to FM 2063 (Sun Valley Rd)
Current: 2 lane Principal Arterial
Scope of Work: Widen to 4 lanes divided
Costs:
Engineering: Complete
Right of Way: $\quad \$ 2,000,000 \quad$ Year: 2010
Construction: $\quad \$ 5,000,000 \quad$ Year: 2010
Total Cost: \$7,000,000
Note: Engineering work was completed at an approximate cost of \$260,000 prior to adoption of the MTP.

Priority 9

ProjectS-018
Highway: FM 3476 (Bagby Ave)
Extent: Texas Central Pkwy to FM 2063 (Sun Valley Rd)
Current: 2 lane Minor Arterial
Scope of Work: Widen to 4 lanes divided
Costs:
Engineering: Complete
Right of Way: \$0
Construction: \$3,700,000 Year. 2010
Total Cost: $\quad \$ 3,700,000$
Note: Engineering work was completed at an approximate cost of $\$ 900,000$ prior to adoption of the MTP.

Priority 10

ProjectS-026

Highway:
Loop 574
Extent:
IH-35 to East Loop 340
Current: IH-35 to LaSalle Ave (US Bus 77): 2 lane Collector La Salle Ave (US Bus 77) to UP RR: No Existing Facility UP RR to East Loop 340: 4 lane expressway
Scope of Work: Construct 4 lane divided facility, demolish interchange of Loop 484 \& US Bus 77, construct new interchange at Loop 574 \& La Salle Ave
Costs:
Engineering: \$1,000,000*
Right of Way: $\quad \$ 2,400,000$
Construction: \$23,700,000
Total Cost: $\quad \$ 27,100,000$
*Note: Engineering work was substantially completed in 2000. The estimated cost includes work necessary to update environmental studies. Additionally \$1,600,000 of cost is funded through a Congressional earmark.

Priority 11

ProjectS-046
Highway: US 84 (George W. Bush Pkwy)
Extent: Ritchie Rd to Ha mis Creek Rd
Current: $\quad 4$ lane divided arterial with discontinuous frontage roads
Scope of Work: Construct overpass at Speegleville Rd / Old Lorena Rd (FM 2837) interchange and extend frontage roads
Costs:
Engineering: Underway
Right of Way: \$13,100,000 Year. 2011
Construction: \$19,606,800 Year. 2013
Total Cost: $\$ 32,706,800$

7.1.3 Intelligent Transportation System Projects

These projects identify ITS project priorities through 2020. Unless otherwise noted, projects identified in this section are funded through local option funds identified in Table 6.3.

Priority 1

ProjectS-022-IS

Highway:	Interstate 35
Extent:	Falls County Line to Hill County Line
Scope of Work:	Install 3 Dyna mic Message Signs
Total Cost:	$\$ 920,000$
Year:	2015

Priority 2

ProjectS-061S
Project:
Scope of Work:
Mc Lennan County Traffic Information Ra dio
Establish and Operate low powered AM radio station providing realtime tra veler information for primary state highways within Mc Lennan County
Costs:
Capital: $\$ 150,000$
Operations: \$400,000
Total Cost: \$550,000
Year: 2015

7.1.4 Highway Mobility Projects - Engineering Phases Only

The following projects are studies for comidors for which funds are not anticipated to be a vailable for all phases of construction during the MTP planning period. Funds are, however, available for these studies with the hope that additional construction funds will be available in the nearfuture.

Project US 84
 ProjectID: SES-046
 Extent: \quad Ritchie Rd to SH 317 in McGregor

Scope of Study: Widen to 4 la ne expressway with frontage roads
Estimated Cost: \$4,000,000
Study Status: Underway
Funding Source: TxDOTstate funds

Project SH 6

ProjectID: SES-031
Extent: \quad Spur 412 to Compton Rd
Scope of Study: Widen to 4 lane divided arterial with grade separation and exit / entrance ramps at FM 185
Estimated Cost: \$3,000,000
Study Status: Underway
Funding Source: TxDOTstate funds

Project Memorial Dr

ProjectID: LES-015
Extent: South Valley Mills Dr to South New Rd
Scope of Study: Reconstruct road
Estimated Cost: \$350,000
Study Status: Underway
Funding Source: Federal earmarks

Project \quad MM 2837

ProjectID: SES-014
Extent: \quad Pilgrim Ln to $\mathrm{IH}-35$
Scope of Study: Study the realignment of FM 2837 and construction of railroad grade separation at Union Pacific RR crossing
Estimated Cost: \$335,000
Study Status: Sta it estimated in 2012
Funding Source: TxDOTstate funds
Project \quad RM 2837
ProjectID: SES-015
Extent: $\quad \mathrm{IH}-35$ to Bullhide Creek
Scope of Study: Study the realignment of FM 2837
Estimated Cost: \$460,000
Study Status: Sta it estimated in 2012
Funding Source: TxDOTstate funds

Project Managed Lane Study

Project ID: S-100
Scope of Study: Review possibility of constructing 4-lane toll facility through or a round Wa co Urbanized Area to relieve IH - 35 traffic
Estimated Cost: \$5,000,000
Study Status: Sta it estimated in 2020
Funding Source: TxDOTstate funds

7.1.5 Categoric al Public Transportation Projects

These projectscoverscopes of work dealing with maintenance and operations for Waco Transit for the period from 2010 through 2020. As these projects are necessary for the day to day operations of Waco Transit and the rural transportation program administered by the Heart of Texas Council of Govemments, these projects are funded first. Other projects are funded only if funds rema in after the categoric al, 5310 \& 5311 projects have been funded.

Project CT-1S

Scope of Work: Waco Transit Preventative Maintenance Expenses
Estimated Cost: \$9,400,000
Funding Source: FTA Section 5307 funds

Project CT-2S

Scope of Work: Waco Transit ADA Related Expenses
Estimated Cost: \$3,400,000
Funding Source: FTA Section 5307 funds

Project CT-3S

Scope of Work: Waco Transit Operating Expenses
Estima ted Cost: \$29,700,000
Funding Source: FTA Section 5307 funds

Project CT-4S

Scope of Work: Waco Transit Short Range Transportation Planning
Estimated Cost: \$1,400,000
Funding Source: FTA Section 5307 funds

Project CT-5S

Scope of Work: Elderly / Disabled Transportation Program
Estimated Cost: \$690,000
Funding Source: FTA Section 5310

Project CT-6S

Scope of Work: Rural Transportation Program
Estimated Cost: \$909,000
Funding Source: FTA Section 5311

7.1.6 Public Transportation Capital / Senvice Expansion Projects

Priority 1

Project 1

Facility / Service: Improvement of Passenger Amenities
Extent: Waco Urbanized Area
Scope of Work: Installation of bus cutouts, bus shelters and information centers at various locations along the fixed route service.
Estimated Cost: \$1,500,000
Funding Source: FTA Section 5307 funds

Priority 2

Project $\mathbf{T} 2$

Facility / Service: Replacement of Wa co Transit Bus Fleet
Scope of Work: Replace bus fleet for the fixed route service.
Estimated Cost: \$6,200,000
Funding Source: 80\%-Federal Ea marks
20% - Toll Credits or Local Funds

Priority 3

Project ${ }^{-5}$
Facility / Service:Replacement of Demand Response Vehicles
Scope of Work: Replace vehic les forADA demand response system.
Estimated Cost: \$1,425,000

Funding Source: FTA Section 5307 funds (American Recovery \& Reinvestment Act)

Priority 4

ProjectT-14

Facility / Service:Purcha se ADA paratransit \& Medic aid scheduling software a nd related hardware
Scope of Work: Purchase computer systems to provide more efficient scheduling of ADA paratransit and Medicaid trips
Estimated Cost: \$155,000
Funding Source: FTA Section 5307 funds (Americ an Recovery \& Reinvestment Act)
Priority 5

ProjectT-15

Facility / Service:Purchase mobile data terminal system
Scope of Work: Purchase MDTs and related software forfixed route buses
Estimated Cost: \$100,000
Funding Source: FTA Section 5307 funds (American Recovery \& Reinvestment Act)

7.1.7 Bicycle and Pedestrian Projects

These projects identify bicycle and pedestrian project priorities through 2020. Unless otherwise noted, projects identified in this section are funded through local option funds identified in Table 6.3.

Priority 1

ProjectSWK-S
Program: Metropolitan Area Sidewalk Program
Extent: \quad Priority One Comidors (see maps 7.7 \& 7.8)
Scope of Work: Construct sidewalks on one side of identified facility where none exist. Reconstruct sidewalks where necessa ry to a c commodate wheelchair access.
Costs:
Engineering: \$260,000
Right of Way: \$0
Construction: $\quad \$ 2,400,000$
Total Cost: \$2,660,000
Note: Project prionties will be determined at later date through future study.

Priority 2

Project BRW-1

Facility:
Brazos Riverwalk
Extent: Baylor Ferrell Activities Center to Baylor Intramural Fields
Current:
No existing facility
Scope of Work: Construct multi-pupose trail
Costs:
Engineering: \$50,000 Year: 2010
Right of Way: Acquired
Construction: \$750,000 Year: 2011
Total Cost: \$800,000
Funding Source: Transportation Enhancement Program

Priority 3

Project BRW-2

Facility:
Extent: Heming Ave to BrazosPark East
Current: No existing facility
Scope of Work: Construct multi-pupose trail Costs:

Engineering: $\quad \$ 250,000 \quad$ Year. 2010
Right of Way: Acquired
Construction: \$2,500,000 Year: 2012
Total Cost: $\quad \$ 2,750,000$
Funding Source: Transportation Enhancement Program

Priority 4

Project BRW-3

Facility: Brazos Riverwalk
Extent: BrazosPark East to Riverbend Park
Current: \quad No existing facility
Scope of Work: Construct multi-pupose trail
Costs:
Engineering: $\$ 250,000 \quad$ Year. 2012
Right of Way: $\quad \$ 250,000 \quad$ Year. 2013
Construction: \$5,000,000 Year. 2014
Total Cost: $\quad \$ 5,500,000$
Funding Source: Transportation Enhancement Program

7.2 Long Temm Prionties: 2021 through 2035

7.2.1 Categorical Highway Projects

These projectscoverscopes of work dealing with the maintenance and operation of the highway system through the year 2035. These projects ensure continued satisfactory operation of the highway system and are thus the top prionity for the Waco Metropolitan Area. As with other projects identified in this plan, categorical projects have been adjusted for inflation.

ProjectID: S-PMR-S	
Project: State	State Highway System Preventative Maintenance \& Rehabilitation
Extent: State	State Highway System
Costs:	
Engineering:	\$30,800,000
Right of Way:	None required
Construction:	\$277,100,000
Total Project Cost:	\$307,900,000
Project ID: S-BRI-S	S-BRI-S
Project: Bridge \&	Bridge \& Structure Replacement or Rehabilitation
Extent: Structura	Structurally Defic ient or Functionally Obsolete Bridges
Costs:	
Engineering:	\$6,400,000
Right of Way:	\$7,600,000
Construction:	\$49,400,000
Total Project Cost:	\$63,400,000
ProjectID: S-STY-S	S-STY-S
Project: Highway	Highway Safety Projects
Extent: Expressw	Expressway, Arterial, Urban Collector or Rural Major Collector Roads
Costs:	
Engineering:	\$4,100,000
Right of Way:	\$4,900,000
Construction:	\$32,100,000
Total Project Cost:	\$41,100,000

Project ID: S-LDS-S	S-LDS-S
Project: State Hig	State Highway System Landsc ape Development
Extent: State Hig	State Highway System
Costs:	
Engineering:	\$460,000
Right of Way:	\$0
Construction:	\$4,140,000
Total Project Cost:	\$4,600,000
Project ID: L-PMR-S	L-PMR-S
Project: Local\&	Local \& County Highway Preventative Maintenance \& Rehabilitation
Extent: Localor	Local or County Roads
Costs:	
Engineering:	\$26,400,000
Right of Way:	\$0
Construction:	\$264,200,000
Total Project Cost:	\$290,600,000

7.2.2 Highway Mobility Projects

Projects identified in this section identify highways which will require additional capacity to either meet existing or projected traffic volumes. Reconstruction of existing lanes on these projects are assumed unless otherwise noted. Unless otherwise noted, all long term priority projects use the following years for determining year of expenditure costs: Engineering - 2024, Right of Way - 2025, Construction - 2027.

Priority 12

ProjectS-039A

Highway:
Extent:
Current:
Scope of Work: Relocate main lanesto frontage roads, widen to 6 lanes divided, construct dual left tum lanesfor both Franklin Ave and New Rd and construct u-tum lanes for Franklin Ave at New Rd.

Costs:
Engineering: \$700,000
Right of Way: \$0
Construction: \$6,600,000
Total Cost: \$7,300,000

7.2.3 Intelligent Transportation System Projects

These projects identify ITS project priorities through 2035. Unless otherwise noted, projects identified in this section are funded through local option funds identified in Table 6.3.

Priority 3

Project L-TMC
Facility: McLennan County Traffic Management Center
Scope of Work: Construct and operate TMC to monitor traffic conditions on priority 1 ITS coridors and deploy resources for inc ident management
Costs:
Capital: \$1,300,000
Operations: \$8,750,000
Total Cost: \$10,050,000
Year: 2021
Prionity 4
ProjectS-061L
Project: McLennan County Traffic Information Radio
Scope of Work: Operate low powered AM radio station providing realtime tra veler information for primary state highways within Mc Lennan County
Costs:
Operations: \$1,600,000
Total Cost: \$1,600,000
Year: 2021 through 2035
Priority 5
ProjectS-022-IL
Highway: Interstate 35
Extent: Falls C ounty Line to Hill County Line
Scope of Work: Install 9 CCTV Cameras
Total Cost: \$800,000
Year: 2021

Priority 6

ProjectS-034-IL

Highway: SH 6

Extent: Speegleville Rd to IH-35
Scope of Work: Install 2 CCTV Cameras and 2 Dynamic Message Signs
Total Cost: \$920,000
Year: 2021

Priority 7

ProjectS-036-IL
Highway:
Loop 340
Extent: $\quad \mathrm{IH}-35$ in Bellmead to $\mathrm{IH}-35$ in Robinson
Scope of Work: Install 1 CCTV Camera, 2 Dynamic Message Signs and remote signal control for 2 traffic signals
Total Cost: \$850,000
Year: 2021

Priority 8

ProjectS-036-IL

Highway:	US84 (Waco Dr)
Extent:	Speegleville Rd to IH-35

Scope of Work: Install 3 CCTV Cameras, 1 Dynamic Message Sign and remote signal control for 24 traffic signa ls
Total Cost: \$900,000
Year: 2021

7.2.4 Categoric al Public Transportation Projects

These projects cover scopes of work dealing with maintenance and operations for Waco Transit for the period from 2021 through 2035. As these projects are necessary for the day to day operations of Waco Transit and the rural transportation program administered by the Heart of Texas Council of Govemments, these projects are funded first. Other projects are funded only if funds rema in after the categoric al, 5310 \& 5311 projects have been funded. It is important to note that revenues projections estimated in Tables 6.5 and 6.8 are insuffic ient to mainta in existing urban and rural services. The recommendation of this plan is to use local option funds, projected in Table 6.3 to offset the projected shortfalls in federal revenues to mainta in basic urban and rural public transportation services.

Project CT-1S

Scope of Work: Waco Transit Preventative Maintenance Expenses
Estimated Cost: \$21,600,000
Funding Source: FTA Section 5307 funds

Project CT-2S

Scope of Work: Waco Transit ADA Related Expenses
Estimated Cost: \$7,700,000
Funding Source: FTA Section 5307 funds

Project CT-3S

Scope of Work: Waco Transit Operating Expenses
Estimated Cost: \$67,800,000
Funding Source: FTA Section 5307 funds

Project CT-4S

Scope of Work: Waco Transit Short Range Transportation Planning
Estimated Cost: \$3,100,000
Funding Source: FTA Section 5307 funds

Project CT-5S

Scope of Work: Elderly / Disabled Transportation Program
Estimated Cost: \$940,000
Funding Source: FTA Section 5310

Project CT6S

Scope of Work: Rural Transportation Program
Estimated Cost: \$1,250,000
Funding Source: FTA Section 5311

7.2.5 Public Transportation Capital / Service Expansion Projects

Priority 6

Project 78

Facility / Service: Replacement of Wa co Transit Bus Fleet
Scope of Work: Replace bus fleet for the fixed route service.
Estimated Cost: \$5,000,000
Funding Source: 80\%-Federal Ea marks
20% - Toll Credits or Local Funds

Priority 7

ProjectT-9

Facility / Service: 30 minute service
Scope of Work: Provide 30 minute peak-hour service for 3 fixed routes
Costs:
Capital: \$2,100,000
Operating: \$23,700,000
Total Cost: \$25,800,000
Year: 2021 through 2035
Funding Source: Local option revenues (Table 6.3)

7.2.6 Bicycle and Pedestrian Projects

These projects identify bicycle and pedestrian project priorities through 2035. Unless otherwise noted, projects identified in this section are funded through local option funds identified in Table 6.3. Unless otherwise noted, all long term priority projects use the following years for determining year of expenditure costs: Engineering - 2024, Right of Way-2025, Construction - 2027.

Priority 5

ProjectSWK-L

Program: Metropolitan Area Sidewalk Program
Extent: \quad Priority One Coridors (see maps 7.7 \& 7.8)
Scope of Work: Construct sidewalks on one side of identified facility where none exist. Reconstruct sidewalks where necessary to accommodate wheelchair access.
Costs:
Engineering: \$940,000 Year. 2024
Right of Way: \$0
Construction: \$8,400,000 Year. 2027
Total Cost: $\quad \$ 9,340,000$
Note: Project prionties will be determined at later date through future study.

Priority 6

Project BP-6

Facility: $\quad 4^{\text {th }} \& 5^{\text {th }}$ Streets
Extent: Heming Ave to Dutton Ave
Curent: 4 lane arterial with on-street parking
Scope of Work: Restripe and sign road to include bicycle lanes
Costs:
Engineering: $\quad \$ 25,000$ Year: 2021
Right of Way: \$0
Construction: $\$ 245,000$ Year: 2021
Total Cost: \$270,000

Priority 7

Project BP-11
Facility: Austin Ave
Extent: $4^{\text {th }}$ Street to $38^{\text {th }}$ Street
Current: $\quad 2 \& 4$ lane collector with on-street parking
Scope of Work: Sign road asbicycle route
Costs:
Engineering: \$0
Right of Way: \$0
Construction: $\quad \$ 20,000$ Year: 2021
Total Cost: $\$ 20,000$

Priority 8

Project BP-20A
Facility:
East Heming Ave
Extent: JJ Flewellen St to M L King J r Dr
Current: 4 lane divided arterial
Scope of Work: Restripe and sign road to include bicycle lanes Costs:

Engineering: \$6,000
Right of Way: \$0
Construction: \$49,000
Total Cost: \$55,000

Priority 9

Project BP-20B
Facility:
Extent:
Heming / Lyle Avenues
Current:
$4^{\text {th }}$ Street to $30^{\text {th }}$ Street
4 lane divided one-way pairs
Scope of Work: Restripe and sign road to include bicycle lanes Costs:

Engineering: \$20,000
Right of Way: \$0
Construction: \$180,000
Tota I Cost: \$200,000

Priority 10

Project BP-23
Facility: University Parks Dr (FM 434)
Extent: $\quad \mathrm{HH}-35$ to Gurley Ln
Current:
IH-35 to La Salle Ave (US Bus 77): 6 lane divided arterial
La Salle Ave (US Bus 77) to Gurley Ln: 2 lane undivided arterial
Scope of Work: Restripe and sign road to include bic ycle la nes
Costs:
Engineering: $\$ 21,000$
Right of Way: \$0
Construction: \$184,000
Total Cost: \$205,000

Priority 11

Project BP-17

Facility:
Extent:
Current:
2 lane undivided artenal
Scope of Work: Restripe and sign road to include bicycle lanes Costs:

Engineering: \$13,000
Right of Way: \$0
Construction: \$117,000
Total Cost: \$130,000

Priority 12

Project BP-7
Facility:
$11^{\text {th }} \& 12^{\text {th }}$ Sreets
Extent:
Austin Ave to Primrose Dr
Current: 2 lane undivided arterial
Scope of Work: Restripe and sign road to include bicycle lanes
Costs:
Engineering: \$27,000
Right of Way: \$0
Construction: $\$ 243,000$
Tota I Cost: \$270,000

Priority 13

Project BP-12
Facility:
Bagby Ave
Extent:
University Parks Dr (FM 434) to $17^{\text {th }}$ St (US 77)
Current:
Univ Parks Dr to $12^{\text {th }}$ St: 2 la ne a rterial with center left tum lane
$12^{\text {th }}$ St to $17^{\text {th }}$ St: $\quad 2$ lane undivided collector
Scope of Work: Widen, restripe and sign road to include bicycle lanes Costs:

Engineering: $\$ 240,000$
Right of Way: \$0
Construction: \$2,400,000
Total Cost: $\$ 2,640,000$

Priority 14

Project BP-21

Facility:
30 th Street / Pine Ave / MacArthur Dr / Leland Ave
Extent: Lyle Ave to CobbsDr
Current: 2 lane local streets
Scope of Work: Sign road as bicycle route
Costs:
Engineering: \$0
Right of Way: \$0
Construction: \$12,000
Total Cost: \$12,000

Priority 15

Project BP-13
Facility: CobbsDr
Extent: Leland Ave to Fish Pond Rd
Current:
Leland Ave to New Rd: 2 lane local street
New Rd to Fish Pond Rd: 4 lane arterial with center left tum la ne
Scope of Work: Restripe and sign road to eliminate center left tum la ne and include bicycle lanes
Costs:
Engineering: \$13,000
Right of Way: \$0
Construction: \$117,000
Total Cost: \$130,000

Priority 16

Project BP-18

Facility:
Extent:
Current:
Scope of Work: Sign road as bic ycle route Costs:

Engineering: \$0
Right of Way: \$0
Construction: \$11,000
Total Cost: \$11,000
Priority 17
Project BP-19
Facility:
Extent: Elm Ave to Heming AveGa mison St / Faulkner Ln / J J Flewellen Street
Current:
Scope of Work: Sign road as bicycle routeCosts:
Engineering: \$0
Right of Way: \$0
Construction: \$14,000
Total Cost: \$14,000
Priority 18
Project BP-10

Facility:
Extent:
Current:

39th St / Sunset Blvd / 38 ${ }^{\text {th }}$ St Leland Ave to Austin Ave 2 lane undivided collectors
Scope of Work: Sign road as bicycle route Costs:
Engineering: \$0
Right of Way: \$0
Construction: \$21,000
Total Cost: $\$ 21,000$

Priority 19

Project BP-22

Facility: Park Lake Dr/ MacArthur Dr
Extent: $\quad 19^{\text {th }}$ St (FM 1637) to Lake Shore Dr
Current: 2 lane undivided arterial
Scope of Work: Restripe and sign road to include bicycle lanes Costs:
Engineering: \$10,000
Right of Way: \$0
Construction: \$86,000
Total Cost: \$96,000

Priority 20

Project BP-8
Facility:
15A Street / Clark Ave
Extent: Lyle Ave to 19th Street (FM 1637)
Current: 2 lane local streets
Scope of Work: Sign road as bicycle route
Costs:
Engineering: \$0
Right of Way: \$0
Construction: \$11,000
Total Cost: \$11,000

Priority 21

Project BP-9A
Facility:
19th Street (FM 1637)
Extent:
Clark Ave to Park Lake Dr
Current: $\quad 4$ lane divided a riterial with center tum lane
Scope of Work: Widen, restripe and sign road to include bicycle lanes Costs:

Engineering: \$60,000
Right of Way: \$0
Construction: \$620,000
Total Cost: \$680,000

Section 8: Public Involvement

This chapter identifies the efforts the Waco MPO undertook to solic it citizen input into the identific ation of goals, needs and priorities for the Metrop olitan Transportation Plan.

8.1 Land Use - Identific ation of Preferred Scenarios

The MPO began the development of the MTP through a study to estimate the impacts of future landuse trends on the transportation network and vice-versa. The MPO conducted 3 workshops to solicit input on altemative landuse pattems for the MPO to consider when identifying future priorities. 2 initial workshops were conducted in 2006 to identify possible altematives. These workshops were conducted on September 25, 2006 and December 6, 2006 at the Waco Transit Administration Building and the Heart of Texas Builders Association Offices respectively. The first meeting focused on partic ipation from community leaders and interested citizens and had 21 participants. The second meeting focused on participation from the business and development interests within McLennan County and had 86 partic ipants.

The MPO conducted 2 workshops on September 6, 2007 to provide the results and consultant recommendations regarding preferred altematives. The first workshop was conducted at 2:00 PM in the Waco Convention Center and had 13 participants. The second workshop wasconducted at 6:00 PM at the Waco Transit Administration Building and had 15 participants. Each of the landuse workshopswere advertised and noticed in accordance to procedures identified within the Waco MPO public participation plan.

8.2 Presentations to Boards, Commissions, Civic Interests

Upon receipt of the final la nduse study report from Wilbur Smith Associates, the MPO began addressing interested parties on discussions regarding several topics related to the development of a draft MTP. Once a draft MTP was developed and released to the public, the MPO staff conducted additional presentations to interested groups to highlight the recommended priorities and to solic it input. Table 8.1 identifies the presentationsmade and the topicscovered.

Table 8.1 - Presentations

Group	Date	Topic
Waco Transit Advisory Board	July 31, 2008	Passenger Rail, Public Transportation
Rotary Club of Waco	August 11, 2008	Future growth, impacts to future mobility
and cost		

In addition to the presentations, the MPO staff also partic ipated in two media events to provide information to the public on several issues related to the development of the MTP and to solic it input on those issues. The first event was an online question and answer session with the Waco Tribune-Herald conducted on March 2, 2009. This event was moderated by Tribune-Herald staff and permitted interested persons to submit questions. The MPO staff would then respond to those questions in real time. In addition to the questions from the public, the staff of the Tribune-Herald also submitted questions. An edited version of the Q \&A session was then published in the TribuneHerald on March 8, 2009.

The second event was an interview with the City of Waco office of Municipal Information conducted on September 23, 2009. The interview primarily covered passenger rail but also covered fiscal issues related to the development of the MTP. The interview was broadcasted on the ClearChannel operated radio stations within Waco on Sunday, September 27, 2009 and the City of Waco cable channel at various times for two weeks after the interview.

8.3 MPO Technical Committee Disc ussions and Recommendations

The MPO staff presented all a nalysis used in developing the MTP a nd identifying project prionity recommendations to the MPO Technic al Committee for their review and recommendations. The MPO Technical Committee also provided recommendations on
certa in policy decisions, as requested by the MPO Policy Board, as well as project priorities. Table 8.2 identifies the MPO Technical Committee meetings where aspects of the development of the MTP were discussed or where recommendations were made. All MPO Technical Committee meetings were advertised and announced in accordance with the MPO Public Participation Plan.

Table 8.2 - Technical Committee Meetings \& Disc ussions

Date	Topic
February 16, 2007	Revisions to Highway Project Eva luation Criteria
October 24, 2007	Socio-Ec onomic Forec asts
June 10, 2008	Bic yc le Suita bility Index
July 8, 2008	Public Transportation Needs
September 9, 2008	Review of Crash Pattems
January 13, 2009	Highway \& Public Transportation Project
Proposals	

8.4 MPO Policy Board Disc ussions

The MPO Polic y Board makes all decisions regarding transportation policies and adopts all plans and programs developed by the MPO. During the development of the MTP, several policy decisions were required. Table 8.3 identifies the decisions and disc ussions performed by the MPO Policy Board during the development of the MTP. All MPO Policy Board meetings were advertised and announced in accordance with the MPO Public Participation Plan.

Table 8.3 - Polic y Board Meetings \& Disc ussions

Date	Topic
September 30, 2008	Selection of MTP Guiding Princ iples
October 27, 2008	Bic yc le Suita bility Index
September 22, 2009	Review of Draft Highway Projects for Consideration
October 19, 2009	Review of Draft Public Transportation Projects for Consideration
January 6, 2009	Review of Project Priority Recommendations
January 15, 2009	Review of Project Priority Recommendations

8.5 MIP Adoption Process

The process of formally adopting the MTP began with the completion of the draft MTP in December, 2009. The MPO made the draft of the MTP publicly available via the MPO website and 6 locations where paper copies were available. Table 8.4 identifies these locations. A formal public comment period commenced on December 18, 2009 and was advertised and announced in accordance with the MPO Public Participation Plan. The comment period ended at 5:00 PM on February 1, 2010. The MPO staff received 6 formal comments regarding project recommendations which were forwarded to the MPO Policy Board prior to adoption of the MTP. Appendix H contains copies of the comments received.

Table 8.4 - Locations for Paper Copies of Draft MIP

Location	Physical Address	City
MPO Offices	401 Franklin Ave	Waco
TxDOT- Waco District	100 South Loop Dr	Waco / Bellmead
Waco Transit	301 South 8 ${ }^{\text {th }}$ St	Waco
Hewitt City Hall	105 Tampico	Hewitt
Robinson City Hall	111 West Lyndale St	Robinson
West City Hall	110 North Reagan St	West

The MPO conducted 5 public information meetingsto give interested persons an opportunity to review the draft MTP, ask questions of staff and to submit comments or concems regarding project recommendations. All meetings were advertised and announced in accordance with the MPO Public Participation Plan. Table 8.5 identifies the time and locations of these meetings.

Table 8.5 - Public Information Meeting Locations

Date	Time	Location	City	Attendance
J anuary 19, 2010	6:30 PM	Waco Transit Administration Building	Waco	12
J a nuary 21,2010	$6: 30$ PM	Lacy-Lakeview Community Center	Lac y-Lakeview	4
J anuary 25,2010	6:30 PM	Hewitt Community Center	Hewitt	7
January 26, 2010	12:00 PM	City of Waco Multi- Purpose Center	Waco	6
January 28,2010	6:30 PM	West Community Center	West	6

A formal public hearing was conducted at the February 3, 2010 meeting of the Waco MPO Policy Board to receive comments regarding the draft MTP and project recommendations. The public hearing was advertised and announced in accordance with the MPO Public Partic ipation Plan. A total of 8 persons addressed the Policy Board during the public hearing. Appendix H containsa transcript of the comments received during the public hearing.

Appendix A: Glossary of Terms

THE AMERIC ANS WITH DISABILTIES ACTOF 1990 (ADA): A federal la w mandating sweeping changes in building codes, transportation, and hiring practicesto prevent discrimination against persons with disabilities, not just in projects involving federal dollars, but all new public places, conveyances and employers. The signific ance of ADA in transportation is mainly felt in terms of transit operations, capital imp rovements and hiring.

ARTERIAL: A street c lassification for roadwa ys serving ma jor traffic volumes other than highways.
ATTAINMENTAREA: An a rea considered to have air quality at least as good as the U.S. Environmental Protection Agency (EPA) health standards used in the Clean Air Act. An area may be an Attainment Area for one pollutant and a Non-Attainment Area for others.

AVERAGE DAILY TRAFFIC (ADT): The average number of vehicles passing a fixed point in a 24 -hour time frame. A convention formeasuring traffic volume.

BASE YEAR: An analysis or study'sbaseline or lead off year. The year to which other years are compared.
BIKEWAY: A facility intended to accommodate bicycle travel for recreational or commuting purposes. Bikeways are not necessarily separate facilities; they may be designed and operated to be shared with other travel modes.

CENSUS BLOCK GROUP: Block groups are subdivisions of census tracts conta ining between 400 and 2,000 persons.

CENSUS TRACT: Census tracts are small, rela tively permanent subdivisions of a county which are delineated for all metropolitan a reas a nd other densely populated counties by local census statistic al a rea committees. Each census tract conta ins between 1,000 and 8,000 persons with an average of about 2,000 persons.

CENTRAL BUSINESS DISTRICT(CBD): The most intensely commercial sector of a city.
THE CLEAN AIR ACTAMENDMENTS OF 1990 (CAAA): Amendments which identify "mobile sources" (vehic les) as primary sources of pollution and call for stringent new requirements in metropolitan a reasand states where attainment of National Ambient Air Quality Sta ndards (NAAQS) is or could be a problem.

COШECTOR/DISTRIBUTOR STREET: A road which collects traffic from loc al streets and distributes it to a rterials or expressways. A collectormay also parallel an expressway to collect and distribute traffic at access points to the expressway involving through lanes.

CRASH: A collision of one vehicle with another object ortwo or more vehicles with each other or another object which results in damage to one or more vehicles. Formerly referred to as accidents.

DEMAND RESPONSE SERVICE: Term for a service type, usually considered para-transit, in which a user can access transportation services that can be variably routed and timed to meet changing needs on a semidaily basis. Frequently used to serve elderly a nd handic a pped persons. Compare with Fixed Route Service.

DEMOGRAPHY: Characteristics of a total population. Characteristics can include, but are not restricted to: ethnic makeup, age distribution, education levels, and occupation pattems.

DEPARTMENTOF TRANSPORTATION (DOT): C an refer to U.S. DOTor to a state DOT.

EISENHO WER INTERSTATE SYSTEM: See INTERSTA TE SYSTEM.
EMPLOYER TRIP REDUCTION (EIR) PROGRAM: An employer designed program which minimizes employee commuting levels. These programs are federally required in non-attainment areas.

EMPLOYMENTDENSITY: The number of jobs within a defined geographical area.
ENHANCEMENTACTIVITIES: Refers to activities conducted in relationship to a particular transportation project which "enhance" the existing or proposed project. Examples of such activities inc lude provision of facilities for pedestrians or cyc lists, landsc a ping other scenic beautific a tion projects, historic preservation, control and removal of outdoor advertising, archeological planning and research, a nd mitigation of water pollution due to highway runoff.

ENVIRONMENTAL IMPACTSTATEMENT(EIS) Report whic h deta ils a ny adverse economic, social and environmental effects of a proposed transportation project for which federal fund ing is being sought. Adverse effects could include air, water, or noise pollution; destruction or disruption of na tural resources; adverse employment effects; injurious displa cement of people or businesses; ordisuption of desirable community or regional growth.

ENVIRONMENTAL PROTEC TIO N AG ENCY (EPA): EPA is the source a gency of a ir quality control regulations affec ting transportation.

EXPRESSWAY: A divided limited access highway for through traffic with controlled access, the intersections of which are usually separated from other roadways by differing grades.

FEDERAL FUNCTIONAL CLASSIFICATION SYSTEM: Federal cla ssific ation of streets a nd highways into functional operating characteristics.

FEDERAL HIG HWAY ADMINISTRATION (FHWA): The agency of U.S. DOTwith jurisdiction over highways.
FEDERAL TRANSITADM INISTRA TION (FTA): The agenc y of U.S. DOT a dministration with jurisdic tion over transit. Formerly the Urban Mass Transit Administration.

FIXED ROUTE SERVICE: Term applied to transit service which is regularly scheduled and operates over a set route.

FREEWAY: Antiquated term refeming to a highway that is free of at-grade intersections and traffic signals. See expressway.

HEADWAYS: Public Transportation term refeming to the frequency of service for a fixed transit route.
HIGH SPEED RAIL: Ra il facilities where travel exceeds 150 miles per hour.
HIGHWAY: Tem applies to roads, streets, and parkways, a nd also includes rights-of-way, bridges, railroad crossings, drainage tunnels, drainage structures, signs, guard rails, a nd protective structures in connection with highways.

HOME-BASED WORK TRIP: A trip for the purpose of one's employment with the trip end being one'shome.
HOUSEHOLD DENSITY: The number of households within a defined geographical area.
INCENTIVE ZO NING: Flexible zoning techniques that give the munic ipality more control over the details of land development than zoning regulations usually allow through allocation of incentives such as tax breaks, etc.

INFILL DEVELOPMENT: The process of building homes, businesses, and public facilities on unused and underutilized lands within existing urban a reas. The primary goal of infill development is to keep resources where people already live and allow rebuilding to occur.

INFRASTRUC TURE: A term connoting the physic al underpinnings of society at large, including, but not limited to, roads, bridges, transit, waste system, public housing, sidewalks, utility installations parks, public buildings, and communication networks.

INTERMODAL: Refers to the connections between transportation modes.
INTERMODAL SURFACE TRANSPORTATION EFFICIENCY ACTOF 1991 (ISTEA): A federal mandate signed into law December 18, 1991, ISTEA proposed broad changesto the way transportation decisions are made by emphasizing diversity and balnce of modesand preservation of existing systems over contruction of new facilities, especially roads, a nd by proposing a series of social, environmental a nd energy factors which must be considered in transportation planning, programming and project selection.

INTERSTATE SYSTEM: That system of highwa ys which connec ts the principal metropolitan a reas, cities, a nd industrial centers of the United States. The interstate system also connects at suitable border points with routes of continental importance in Canada and Mexico. The routes of the interstate system were selected by joint action of the sta te highway department of each state and the adjoining states, subject to the approval of the U.S. Sec retary of Transportation.

JOB-HOUSING BALANCE: The development of a land use pattem offering a balance of jobs to housing opportunities.

LAND USE: The way in which specific portions of land or structures on them are used, i.e., commercial, residential, retail, industrial, and so on.

LOCAL STREET: A street intended solely for access to properties contiguous to it.

LONG-RANGE: Refers in transportation planning to a time span of more than five years. The Transportation Improvement Program (TIP), which is three years in scope, is typically regarded as a short-range program.

MAJ OR INVESTMENT STUDIES: A planning tool to provide the regional multimodal planning effort with more in-depth tec hnical a nalysis of various sub-area or comidor options.

MEIROPOUTAN PLANNING ORGANIZATION (MPO): The a gency designated by the Govemor (or Govemors in multi-state areas) to administer the federally required transportation planning process in the metropolitan area. An MPO must be in place in every urbanized area over 50,000 population. The MPO is responsible for the 25 -year long-range plan and the transportation improvement program. The offic ial na me for an MPO may also be Council of Govemments, Planning Association, Planning Authority, Regional or Area Planning Council, Regional orArea Planning Commission.

MEIROPOUTAN STA TISTICALAREA (MSA \& CMSA): The Census classific ations for a reas having a population over 50,000 . The MSA may contain several urbanized areas, but contains one or more central city or cities. The MSA also does not subdivide counties. For example the Waco MSA is the same as McLennan County. When the commuting pattems of two MSAs have caused them to merge, the result is a Consolidated Metropolitan Statistic al Area (CMSA).

MEIROPOUTAN TRANSPORTATION PLAN: A document, formerly known as the Long-Range Transportation Plan, which identifies existing and future transportation defic iencies and needs, as well as network improvements needed to meet mobility requirements over at least a twenty five year time period. To receive federal funding, a transportation project must be included in the MTP and the TIP.

MOBILTY: The ease with which desired destinations can be reached.
MODEL: A mathematic al and geometric projection of activity and the interactions in the transportation system in an area. This projection must be able to be evaluated according to a given set of criteria which typically include criteria perta ining to land use, economics, social values, and travel pattems.

MULTMODAL: Refers to the diversity of options for the same trip; an approach to transportation planning or programming which acknowledges the existence of or need for transportation options.

NATIONALAMBIENTAIR QUALTY STANDARD (NAAQS): Federally mandated maximum levels (i.e., federal health standards) for a ir pollutants such as ozone, carbon dioxide, partic ulate matter, sulfur dioxide, nitrous oxide, a nd lead.

NATIONAL ENVIRONMENTAL POUCY ACT(NEPA): Federal act requiring a study on any environmental impact a federally funded or pemitted project might cause.

NATIONAL HIG HWAY SYSTEM (NHS): A classific ation of roads authorized by ISTEA which are comprised of Interstate Highways and roads designated asimportant for interstate travel, national defense, intermodal connections, and intermodal commerce. Federal funds are designated for projects on the NHS system.

NEO-TRADITIONAL NEIG HBORHOO D DESIGN (NTND): Neighborhoods cha racterized by an interc onnecting street network, mixture of land uses, bike a nd pedestrian paths, grid pattem of land use, and resemblance to those areasdeveloped in America before World Warll.

NETWORK: A graphic and/or mathematical representation of multimodal paths in a transportation system.
NITROGEN OXIDES (Nox): A pollutant produced during fossil fuel combustion which contributesto groundlevel ozone.

NON-ATTAINMENTAREA: A designation by the Environmental Protection Agency of any place in the United States failing to meet national air quality standards (NAAQS).

ORIGIN: The point or locale where a trip begins.
ORIG IN-DESTINATION SURVEY (O-D Survey): A survey of tra velers (motorists or transit passengers) typic ally undertaken to identify travel pattems, habits, and needs.

OZONE: A gas which in excess quantities at ground-level is a pollutant and imitant. Ozone is created when nitrogen oxides (Nox) react with volatile organic compounds (VOCs) in sunlight, also known as smog.

PARA-TRANSIT: Altema tively known as special transportation when applied to social servic es systems. Applies to a variety of smaller, often flexibly scheduled and routed non-profit oriented transportation services using low capacity vehic les to operate within normal urban transit cooridors or rural areas. These servicesusua lly serve the needs of persons whom standard mass tra nsit servic es would serve with diffic ulty or not at all. Common patrons are the elderly and persons with disa bilities.

PARA-TRANSITVAN: A van specially modified to camy disables passengers.
PASS THROUGH TO LS: A funding mechanism where an entity such as a City, County or private comoration paysfor the initial construction of a transportation facility. That entity is then repaid from the State of Texas based on the usage of that facility.

PEAK HOUR: The sixty minute period in the a.m. or p.m. in which the la rgest volume of travel is experienced.

PEDESTRIAN-ORIENTED DEVELOPMENT(POD): Similar to a Neo-Traditional Neighborhood Design, exc ept that it often incomorates higher densities and is designed to encourage the walkability of the surrounding neighborhood.

PERSON-TRIP: A trip made by one person from one origin to one destination.
PHASE: Project Phase for Federal Funding ($\mathrm{E}=$ Preliminary Engineering, $\mathrm{R}=$ Right of Way Acquisition, and $\mathrm{C}=$ Construction).

PLANNER: In the transportation field, a title likely having to do with the management and a nalysis of data which directly supports qualitatively oriented, strategic, or "macro" decision making.

PRIVATIZATION: Concept having to do with for-profit business supplying goods and services for govemment, public programsorsystems, with intent of enhancing cost efficiency.

PROJ ECTIDENTIFICATION (Project ID): Code assigned by the MPO for local tracking and identification. Used to relate projects to the MTP.

PROVIDER: An agency that causes clients to be transported, a sopposed to an agency whose role is limited to funding programs.

PUBLIC INVOLVEMENT: The active involvement of the public in the development of transportation plans and improvements program. ISTEA requires that state departments of transportation and MPOs "shall provide citizens, affected public agencies, representatives of transportation agency employees, private providers of transportation a gency employees, private providers of transportation, and other interested parties with a reasonable opportunity to comment on the development of the long-range plan and the TIP.

PUBLC ROAD: Any road or street under jurisdiction of and maintained by a public authority and open to public traffic.

REVERSE COMMUTE: Tra vel from home to work or from work to home aga inst the main directions of traffic.
RIGHTOF WAY (ROW): Priority paths for the construction and operation of highways, light and heavy rail, railroads, etc.

SAFE ACC OUNTABLE FLEXIBLE EFFICIENTTRANSPO RATIO N EQ UITY ACT: A LEGACY FOR USERS (SAFEIEA-LU): The federal reauthorization act for TEA-21designed to support transportation ac ross the nation.

SURFACE TRANSPORTATION PROGRAM (STP): One of the key ca pital programs in Title I of ISTEA. It provides flexibility in expend itures of "roads" funds for non-motorized a nd transit modes and for a category of activities known as transportation enhancements, which broaden the definition of eligible transportation activities to include bicycle and pedestrian facilities and enhance community and environmental quality through ten categories of activity.

TELECOMMUTNG: Using a home computer or a neighborhood work center for work, effectively eliminating the need to travel to a conventional workplace.

TELECONFERENCING: Using audio, video, and/or computer connections among sites for meetings. Eliminating a ny need to travel to the meeting site.

TEMPORARY ASSISTANCE FOR NEEDY FAMILES (TANF): A state-administered block grant program apportioned to each state on a formula basis from the federal govemment. The funding is temporary in that rec ipients will have no more than sixty months total (some states have chosen shorter periods) to find employment. After sixty months of support, TANF benefits end.

TEXAS DEPARTMENTOF TRANSPORTATION (TxDOT): State a gency responsible for construction and maintena nce of all Interstate, U.S., and State Highways; and Farm-to-Market (FM) Roads within the state

TEXAST-BONE: A proposal by the Texas High Speed Rail a nd Transportation Corporation to construct high speed rail lines between the cities of Dallas and San Antonio and then Houston a nd Fort Hood.

TRAFFIC ANALYSISZONE: The smallest geographic ally designated a rea for analysis of transportation activity such asdata collection and travel movements within, into, and out of the urban area. A zone can be one to 10 square miles in area.

TRAFFIC DISTRICT: A geographic unit comprised of several serial zones which may be used for the same purposes as traffic analysis zones.

TRANSIT: Transportation mode which moves larger numbers of people than does a single automobile. Generally renders to passenger service provided to the general public along established routes with fixed or va riables sc hedules at published fares.

TRANSIT-ORIENTED DEVELOPMENT(TOD): Similar to a Neo-Traditional Neighborhood Design, except that it incomorates higher densities and possesses a distinct focus toward transit.

TRANSITDEPENDENT: Persons who must rely on public transit or para-transit services for most of their transportation. Typically refers to individuals without access to personal vehicles.

TRANSPORTATION: The act of getting persons or things from here to there, through personal or communal means. An integral and vital human need, behavior, and/or service.

TRANSPORTATION CONTROL MEASURE (TCM): Any measure designed to reduce congestion, emissions, and othertraffic problems.

TRANSPORTATION DEMAND MANAGEMENT (TDM): Strategies for easing or reducing transportation demand, specifically aimed at diverting people from driving alone. Programs used to improve air quality and congestion by decreasing vehicle miles tra veled and vehicle trips.

TRANSPORTATION EFFICIENCY ACTFOR THE $21{ }^{\text {ST }}$ CENTURY (TEA-21): The rea uthorization bill for ISTEA designed to support transportation across the nation.

TRANSPORTATION IMPROVEMENTPROGRAM (TIP): A three year transportation investment strategy, required at the metropolitan level, and a two yearprogram at the state level, which addresses the goals of the long-range plans a nd lists priority projects a nd activities for the region.

TRANSPORTATION MANAGEMENTAREAS (TMA): A reas subject to special requirements under ISTEA and in some cases benefiting from preferential treatment with regard to air quality needs, and local authority to select transp ortation projects. Any a rea over 200,000 population is a utomatic ally a transportation management area, which subjects it to additional planning requirements, but also entitles it to ea ma rked fundsfor large urba nized areas under the Surface Transportation Program. Additional areas may be designated TMAs if the Govemor and the MPO or affected local officials request designation. Such a designation would entitle them to greater local project selection authority through their MPOs, but would not, according to interim guidance issued by U.S. DOT, entitle them to the ea marked STP funds for large urban areas.

TRANSPORTATION SYSTEM MANAGEMENT(TSM): That element of the TIP which proposes non-capitalintensive steps toward the improvement of a transportation system, such as refinement of system and traffic management, the use of buspriority or reserved lanes, and parking strategies. It includes actions to reduce vehicle use, facilitate traffic flow, and improve intemal transit management.

TRANS TEXAS CORRIDOR: A proposal by the Govemor of Texas to create a network of coridors throughout Texas to provide rapid mobility options for through traffic. These comidors are proposed to include toll expressways, separate truck lanes, high speed rail facilities, freight rail facilities and a comidor for various utilities. User fees are antic ipa ted to pay for most of the costs associated with construction.

TRAVEL TIME: Customarily calculated as the time it takes to travel from "door-to-door." For transit service measures of travel time include time spent accessing, waiting, and transfeming between vehicles, as well as that time spent on board.

TRIP: A one-direction movement from an origin to destination.
TRIP END: Origin or destination of a trip.
TRIP PURPOSE: Rea son for a trip.
TEXAS DEPARTMENTOF TRANSPORTATION (TxDOT): Agency responsible for construction a nd maintenance of state highway facilities and also oversees the distribution and regulation of planning funds to the MPO's.

UNIFIED PLANNING WORK PROGRAM (UPWP): Annual report or budget document prepared by the Waco MPO describing transportation planning activities which will be performed by the MPO staff.

UNITED STATES DEPARTMENTOF TRANSPORTATION (USDOT): Principal federal funding a nd regulating agency for transportation facilities. FHWA and FTA are a gencies within USDOT.

URBANIZED AREA (UZA): A census classification for a rea having a population of 50,000 or more which meet certa in population density requirements. The 1990 Census identified thirty-five UZAs that newly qualify to have designated MPOs.

VEHICLE MILES TRAVELED (VMT): Term used for describing the total number of miles traveled by a vehicle in a given time. Most conventional VMTcalculation is to multiply average length of trip by the total number of trips.

WELFARE TO WORK (WTW): This program shares the same overall objectives of TANF, especially making welfare receipt temporary and changing the culture of welfare from one of cash benefits to one of work and self-sufficiency. The funding is intended to help states and localities meet their welfare reform objectives and the goals set forth under PRWORA by providing federal resources above and beyond the TANF block grant to move the least employable TANF recipients a nd non-custodial fathers of TANF children into long-term unsubsidized employment

Appendix B: Highway Project Evaluation Criteria

I. Reduction of Congestion
 (Existing Facilities Only)

A. Evaluation Factor: Present Level of Service

Score: -10 points if Level of Service is equal to "A"
-5 points if Level of Service is equal to "B"
0 points if Level of Service is equal to "C"
+10 points if Level of Service is between "D" and "E"
+20 points if Level of Service is equal to " F "
B. Evaluation Factor: Future Level of Service (No Build)

Score: -10 points if Level of Service is equal to " A "
-5 points if Level of Service is equal to " B "
0 points if Level of Service is equal to "C" +10 points if Level of Service is between "D" and "E"
+20 points if Level of Service is equal to "F"
C. Evaluation Factor: Change in Future Level of Service (Build vs. No Build)

Score: 0 points if no change in Level of Service +10 points if Level of Service dec reases by one letter +20 points if Level of Service dec reases by more tha n one letter

Maximum Points for Category: 60 (24\% of total)

II. Projected Traffic Volumes / Time Savings
 (New Highways on New Alignments Only)

A. Evaluation Factor: $\mathbf{2 5}$ year Level of Senvice

Sc ore: 0 points if future* Level of Service is "B" or less +30 points if future* Level of Service is "E" or greater
+45 points if future* Level of Service is equal to "D"
+60 points if future* Level of Service is equal to "C"
B. Evaluation Factor: Difference in forecast year travel time from one end of the project to the other vs. using existing highway network

Score: -5 points if forec ast year tra vel time is greater than with the existing network
0 points if forecast year travel time reduction is less than 10 minutes
+10 points if forecast year travel time reduction is between 10 and 20 minutes
+15 points if forec ast year tra vel time reduction is 20 minutes orgreater

Maximum Points for Category: 75 (23\% of total)

III. Existing Structural Condition

 (Existing Facilities Only)
Evaluation Factor: Construction date or years since last rec onstruction

Score: 0 points if all highway segments or all bridges age is less than 45 years by the forecast year
+10 points if one of the following conditions exist:
At least one highway segment was constructed or reconstructed 46 to 60 years prior to the forecast year

At least one bridge has a sufficiency score between 50.1 and 75.0
+15 points if one of the following conditions exist:
At least one highway segment was constructed or reconstructed greater than 60 years prior to the forecast year

At least one bridge has a sufficiency score of 50.0 or less
Maximum Points for Category: 15 (4.6\% of total)

IV. Future Impact on Adjacent Roads

A: Future Impact on Adjacent Roads

Evaluation Factor: Positive Level of Service Impacts

Sc ore: 0 points if Level of Service remains the same for all roads within one mile of the proposed project +10 points if Level of Service dec reases by one or more letters for one road within one mile of the proposed project
+15 points if Level of Service decreases by one or more letters for two ormore roads within one mile of the proposed project

Evaluation Factor: Negative Level of Service Impacts

Score: $\quad-5$ points if Level of Service increases by one or more letters for one road within one mile of the proposed project
-10 points if Level of Service inc reases by one or more letters for two ormore roads within one mile of the proposed project

An Additional 5 points will be subtracted if a ny of the above negative impacts occur on a road classified as a collector
*NOTE: Impacts will be evaluated only for functionally cla ssified roads within one mile of the proposed project.

Maximum Points for Category: 15 (4.6\% of total)

V. Benefits to Metropolitan Area

A. Evaluation Factor: Regional Connectivity

Score: 0 points if project is entirely within one incomporated city or entirely within uninc orporated portions of Mc Lennan County
+5 points if project connects two or more incorporated cities
+10 points if project completes a 4 lane divided or greater facility connecting the Waco Urba nized Area to a nother city with a population greater than 50,000
B. Evaluation Factor: Metropolitan Transportation Plan (MTP) Priority

Score: 0 points if project is not c urrently included in the MTP +5 points if project is currently included in the MTP

C. Evaluation Factor: EIS undenway or Complete

Score: +25 points if work producing an Environmental Impact Statement is either underway or complete.

D. Evaluation Factor: Multi-modal Benefits

Score: +5 points if one or more of the following are provided:
Upgrading Railroad Crossing (Includes installation of signals or 4-quad gates, channelization, or grade separation)

Road, Intersection, or Bridge provides or improves primary access to an intermodal facility (a imorts, bus teminals, motor freight temminal, railroad passenger teminals, or railroad freight facilities)

Road, Intersection, or Bridge provides or improves primary access to an existing orcommitted employer, industrial park or shopping center with greater than 1,000 employees

0 points if none of the above situations are applicable

E Evaluation Factor: Bicycle and Pedestrian Considerations

Score: -5 points if project includes no provision for bic ycles or pedestriansand a portion of the project is less than $1 / 2$ mile from a public or private elementary or secondary school.

0 points if project includes no provision for bic ycles or pedestrians
+5 points if provisions are made for bicycles or pedestrians. Work may include bike paths/ lanes, sidewalks, pedestrian overpasses, wheelc ha ir ramps (with connecting sid ewalks) or signa lized crosswalks.
+10 points if c rosswalk or wheelc hair ramp construction is combined with the construction of a raised median or intersection lane width reduction.

F. Evaluation Factor: Landscaping Provisions

Score: 0 points if no provisions for landscaping are made
+5 points if at least 1% of the project construction cost is devoted to landscaping

Maximum Points for Category: 60 (18.5% of total)

VI.Cost Factors

A. Evaluation Factor: Local Commitment

Score: 0 points if the minimum local share of the project cost is allocated by local sponsor(s)
+1 point foreach percent of the project cost above the minimum necessary allocated by the local sponsor(s) (Maximum of 20 points)
+15 points a dditional if either pass through financing or the state infrastructure bank used to finance at least 50% of total project cost.

B. Evaluation Factor: Total Project Cost

Sc ore: $\quad+20$ points if 100% of the total project cost is funded through a federal earmark, public / private partnership, tolls, or other state financing program or local funds

If project funding is not provided through above mechanism then the following applies:
-20 points if the total project cost is greater than 30% of total federal construction funds a vailable within TxDOT Categories $3 \& 11$
-10 points if the total project cost is between 20% and 29.9% of total federal construction funds availa ble within TxDOTC ategories 3 \& 11

0 points if the total project cost of project is between 15% and 19.9% of total federal construction funds available within TxDOTCategories 3 \& 11
+1 point foreach 0.5% below 15% of total funds a vailable within TxDOTCategories $3 \& 11$ (Maximum of 20 points)

Note: for projects where only a portion of the total cost is funded outside of Categories $3 \& 11$, that portion is subtracted from the total project cost and then reevaluated using the new cost.

VII. Classific ation System

A. Evaluation Factor: Functional Classific ation of Road

$$
\begin{array}{ll}
\text { Score: } & 0 \text { points for a collector or local road } \\
& +10 \text { points for a minor a rterial } \\
& +30 \text { points for a princ ipal arterial, freeway, expressway } \\
\text { or tollway }
\end{array}
$$

B. Evaluation Factor: State System or Non-State System

Score: -10 points for non-state system facilities +5 points for state system facilities

Maximum Points for Category: 35 (10.8% of total)

VIII. Safety

A. Highway Segments
 (Does not apply to intersections or new highways on new alignments)
 Evaluation Factor: Crashes per million vehicle miles traveled

Score: 0 points if crash rate is below the following rates +15 points if crash rate exceeds the following rates

Expressways: 0.7
Principal Arterials: 2.2
Minor Arterials: $\quad 3.1$
Urban Collectors: 4.5
Rural Collectors: 1.0
B. Intersections
(Does not apply to highway segments or new highways on new alignments)
Evaluation Factor: Crashes per million vehicles entering intersection
Score: 0 points if crash rate is below 0.9 crashes per million vehic les +15 points if crash rate exceeds 0.9 crashes per million vehicles

C. High Crash Locations
 (Does not apply to new highways on new alignments)

Evaluation Factor: Total Crashes on highway segment or in intersection
Score: 0 points if total crashes are less than 50 within a year +10 points if total crashes exceed 50 within a year
D. New Highways on New Alignments

All new highways on new a lignments will a utomatic ally receive +25 points from parts A \& B asa result that they will be built to existing safety standards.

E Project Effectiveness*

Evaluation Factor: Estimated Crash Reduction Factors**

Score: $\quad 0$ points if estimated crash reduction less than 10 +5 points if estimated crash reduction is 10 or greater but lessthan 20
+10 points if estimated crash reduction 20 or greater but less than 40
+25 points if estimated crash reduction is 40 or greater
*New Highways on New Alignments will be evaluated based upon the estimated impact they might have on the facilities they will relieve.
**Reduction if improvements were made in 2001

F. Fatal or Serious Injury Crashes*

Evaluation Factor: Total crashes involving a fatality or serious injury
Score: $\quad+5$ points for every crash involving a fatality +1 point for every crash involving either an incapacitating injury or non-inc a pacitating injury

Maximum Points for Category: 85 (26.2\% of total)
Maximum Total Points: 325

Appendix C - 2000 Census Data by Block Group

Tract	Block Group	Population	Non-Hispanic White	Non-Hispanic Black	Non-Hispanic Othel	Hispanic	Percent Black	Percent Hispanic	Per Capita Income	$\begin{array}{\|c\|} \hline \text { Persons } \\ \text { in Poverty } \\ \hline \end{array}$	Percent in Poverty
1.00	2	672	532	34	31	75	5.1\%	11.2\%	\$5,132	528	78.57\%
1.00	6	1,795	771	524	15	485	29.2\%	27.0\%	\$12,692	247	13.76\%
2.00	1	1,117	788	69	87	173	6.2\%	15.5\%	\$10,083	584	52.28\%
2.00	4	1,040	751	83	112	94	8.0\%	9.0\%	\$8,457	706	67.88\%
3.00	1	3,510	2,684	234	318	274	6.7\%	7.8\%	\$3,660	285	8.12\%
4.00	1	659	159	177	26	297	26.9\%	45.1\%	\$7,168	273	41.43\%
4.00	2	1,644	1,287	93	136	128	5.7\%	7.8\%	\$5,046	1,068	64.96\%
4.00	3	2,049	1,555	99	172	223	4.8\%	10.9\%	\$4,738	1,562	76.23\%
4.00	4	806	516	104	40	146	12.9\%	18.1\%	\$8,657	461	57.20\%
4.00	6	1,385	135	352	15	883	25.4\%	63.8\%	\$8,165	628	45.34\%
5.98	1	1,920	193	52	14	1,661	2.7\%	86.5\%	\$8,258	556	28.96\%
5.98	2	1,463	236	89	20	1,118	6.1\%	76.4\%	\$9,398	448	30.62\%
5.98	5	807	100	198	14	495	24.5\%	61.3\%	\$8,966	156	19.33\%
5.98	6	720	119	49	3	549	6.8\%	76.3\%	\$8,200	263	36.53\%
5.98	8	982	170	59	16	737	6.0\%	75.1\%	\$8,337	232	23.63\%
7.00	1	524	161	165	22	176	31.5\%	33.6\%	\$9,685	101	19.27\%
7.00	2	791	199	256	27	309	32.4\%	39.1\%	\$9,405	305	38.56\%
7.00	3	1,283	280	308	19	676	24.0\%	52.7\%	\$7,222	492	38.35\%
7.00	4	902	520	125	30	227	13.9\%	25.2\%	\$20,104	238	26.39\%
8.00	1	1,072	275	307	30	460	28.6\%	42.9\%	\$11,393	218	20.34\%
8.00	3	1,867	838	371	48	610	19.9\%	32.7\%	\$11,006	572	30.64\%
9.00	1	1,187	387	364	27	409	30.7\%	34.5\%	\$11,469	269	22.66\%
9.00	2	1,298	854	163	24	257	12.6\%	19.8\%	\$17,265	70	5.39\%
9.00	3	1,048	381	217	18	432	20.7\%	41.2\%	\$15,315	269	25.67\%
9.00	4	761	408	126	17	210	16.6\%	27.6\%	\$13,575	98	12.88\%
9.00	6	773	446	164	9	154	21.2\%	19.9\%	\$14,530	131	16.95\%
10.00	1	899	229	378	11	281	42.0\%	31.3\%	\$18,032	229	25.47\%
10.00	2	937	175	352	18	392	37.6\%	41.8\%	\$7,630	484	51.65\%
10.00	3	1,262	356	331	34	541	26.2\%	42.9\%	\$11,256	274	21.71\%
11.00	3	727	85	309	5	328	42.5\%	45.1\%	\$6,519	309	42.50\%
11.00	4	1,440	276	527	31	606	36.6\%	42.1\%	\$8,117	344	23.89\%
11.00	5	799	198	305	22	274	38.2\%	34.3\%	\$7,720	299	37.42\%
11.00	6	922	199	280	11	432	30.4\%	46.9\%	\$9,918	256	27.77\%
11.00	7	1,423	569	352	32	470	24.7\%	33.0\%	\$10,437	384	26.99\%
11.00	8	716	326	133	10	247	18.6\%	34.5\%	\$10,761	73	10.20\%
12.00	1	1,137	46	735	4	352	64.6\%	31.0\%	\$9,860	330	29.02\%

Tract	Block Group	Population	Non-Hispanic White	Non-Hispanic Black	Non-Hispanic Othe!	Hispanic	Percent Black	Percent Hispanic	PerCapita Income	Persons in Poverty	Percent in Poverty
12.00	2	719	9	485	8	217	67.5\%	30.2\%	\$4,219	590	82.06\%
12.00	3	1,801	94	1,095	12	600	60.8\%	33.3\%	\$8,078	649	36.04\%
13.00	2	828	568	136	16	108	16.4\%	13.0\%	\$13,037	50	6.04\%
13.00	3	497	35	304	7	151	61.2\%	30.4\%	\$13,100	106	21.33\%
13.00	5	1,045	343	204	9	489	19.5\%	46.8\%	\$9,587	156	14.93\%
14.00	1	1,635	710	703	24	198	43.0\%	12.1\%	\$11,671	323	19.76\%
14.00	2	1,488	459	836	16	177	56.2\%	11.9\%	\$8,836	358	24.06\%
14.00	4	1,022	49	818	19	136	80.0\%	13.3\%	\$4,919	668	65.36\%
14.00	5	1,200	222	917	26	35	76.4\%	2.9\%	\$9,240	644	53.67\%
14.00	7	1,460	13	1,400	13	34	95.9\%	2.3\%	\$10,768	316	21.64\%
15.00	1	853	7	816	1	29	95.7\%	3.4\%	\$7,555	399	46.78\%
15.00	3	1,362	199	888	39	236	65.2\%	17.3\%	\$8,109	392	28.78\%
15.00	7	818	26	724	7	61	88.5\%	7.5\%	\$12,698	176	21.52\%
16.00	1	1,753	1,079	317	55	302	18.1\%	17.2\%	\$15,617	204	11.64\%
16.00	2	936	555	101	32	248	10.8\%	26.5\%	\$13,991	189	20.19\%
16.00	3	1,239	773	68	20	378	5.5\%	30.5\%	\$15,184	170	13.72\%
16.00	4	885	407	153	17	308	17.3\%	34.8\%	\$8,453	433	48.93\%
16.00	6	796	479	49	26	242	6.2\%	30.4\%	\$12,362	205	25.75\%
17.00	1	847	671	59	16	101	7.0\%	11.9\%	\$13,272	133	15.70\%
17.00	2	1,367	669	458	18	222	33.5\%	16.2\%	\$14,354	197	14.41\%
17.00	3	1,610	1,073	315	25	197	19.6\%	12.2\%	\$15,098	102	6.34\%
17.00	4	1,308	722	176	28	382	13.5\%	29.2\%	\$12,157	282	21.56\%
18.00	1	732	549	60	9	114	8.2\%	15.6\%	\$23,173	25	3.42\%
18.00	4	763	531	122	12	98	16.0\%	12.8\%	\$13,951	97	12.71\%
19.00	1	1,261	684	226	122	229	17.9\%	18.2\%	\$7,802	805	63.84\%
19.00	2	1,656	303	751	27	575	45.4\%	34.7\%	\$8,311	803	48.49\%
20.00	2	1,192	1,055	15	13	109	1.3\%	9.1\%	\$23,996	68	5.70\%
20.00	4	1,954	1,684	27	39	204	1.4\%	10.4\%	\$22,738	104	5.32\%
21.00	1	817	430	118	39	230	14.4\%	28.2\%	\$9,141	334	40.88\%
21.00	2	1,704	459	769	35	441	45.1\%	25.9\%	\$11,396	513	30.11\%
21.00	3	722	399	87	24	212	12.0\%	29.4\%	\$12,694	181	25.07\%
21.00	4	1,395	822	177	33	363	12.7\%	26.0\%	\$13,355	255	18.28\%
22.00	1	965	483	60	18	404	6.2\%	41.9\%	\$12,462	148	15.34\%
22.00	9	326	213	64	3	46	19.6\%	14.1\%	\$10,806	34	10.43\%
23.01	1	1,403	488	229	15	671	16.3\%	47.8\%	\$10,324	356	25.37\%
23.01	2	1,595	695	185	18	697	11.6\%	43.7\%	\$10,795	188	11.79\%
23.01	3	900	363	49	24	464	5.4\%	51.6\%	\$11,419	92	10.22\%
23.01	5	1,665	792	230	34	609	13.8\%	36.6\%	\$13,046	194	11.65\%

Tract	Block Group	Population	Non-Hispanic White	Non-Hispanic Black	Non-Hispanic Otheı	Hispanic	Percent Black	Percent Hispanic	PerCapita Income	Persons in Poverty	Percent in Poverty
23.02	1	1,473	926	243	72	232	16.5\%	15.8\%	\$17,185	209	14.19\%
23.02	2	1,792	795	486	83	428	27.1\%	23.9\%	\$12,264	696	38.84\%
23.02	4	1,757	1,110	311	67	269	17.7\%	15.3\%	\$20,782	108	6.15\%
24.98	1	844	575	138	17	114	16.4\%	13.5\%	\$18,755	76	9.00\%
24.98	2	1,258	713	165	24	356	13.1\%	28.3\%	\$15,554	53	4.21\%
24.98	3	1,619	1,118	148	47	306	9.1\%	18.9\%	\$15,398	86	5.31\%
24.98	5	1,020	761	91	28	140	8.9\%	13.7\%	\$29,109	115	11.27\%
25.01	1	1,562	1,120	178	39	225	11.4\%	14.4\%	\$16,297	121	7.75\%
25.01	2	1,809	1,291	259	36	223	14.3\%	12.3\%	\$19,863	131	7.24\%
25.01	3	1,141	988	29	42	82	2.5\%	7.2\%	\$39,515	47	4.12\%
25.03	1	1,530	1,371	60	33	66	3.9\%	4.3\%	\$22,024	145	9.48\%
25.03	2	1,370	1,148	97	44	81	7.1\%	5.9\%	\$22,467	94	6.86\%
25.03	3	1,504	1,414	10	39	41	0.7\%	2.7\%	\$42,270	31	2.06\%
25.03	4	1,207	1,092	35	32	48	2.9\%	4.0\%	\$42,685	12	0.99\%
25.04	1	1,099	1,011	24	22	42	2.2\%	3.8\%	\$24,612	0	0.00\%
25.04	2	2,178	2,014	41	59	64	1.9\%	2.9\%	\$39,811	18	0.83\%
26.00	1	770	640	57	14	59	7.4\%	7.7\%	\$23,782	22	2.86\%
26.00	3	1,068	996	31	15	26	2.9\%	2.4\%	\$28,917	41	3.84\%
26.00	4	1,070	972	36	5	57	3.4\%	5.3\%	\$23,391	9	0.84\%
26.00	5	1,398	1,327	12	22	37	0.9\%	2.6\%	\$40,128	27	1.93\%
26.00	6	1,077	1,000	2	11	64	0.2\%	5.9\%	\$37,894	103	9.56\%
27.00	1	1,340	822	191	51	276	14.3\%	20.6\%	\$14,178	218	16.27\%
27.00	3	1,208	579	254	19	356	21.0\%	29.5\%	\$14,438	241	19.95\%
27.00	4	1,112	605	205	26	276	18.4\%	24.8\%	\$12,825	211	18.97\%
28.00	2	1,850	1,571	119	21	139	6.4\%	7.5\%	\$30,204	117	6.32\%
28.00	3	971	932	17	5	17	1.8\%	1.8\%	\$56,075	6	0.62\%
28.00	4	1,066	849	92	45	80	8.6\%	7.5\%	\$25,191	285	26.74\%
29.00	1	2,327	2,088	37	14	188	1.6\%	8.1\%	\$20,987	40	1.72\%
30.00	1	1,585	1,245	162	48	130	10.2\%	8.2\%	\$20,298	273	17.22\%
30.00	2	1,285	950	179	23	133	13.9\%	10.4\%	\$24,101	206	16.03\%
30.00	3	1,061	520	394	11	136	37.1\%	12.8\%	\$9,188	484	45.62\%
32.00	1	1,283	813	276	37	157	21.5\%	12.2\%	\$12,978	226	17.61\%
32.00	2	1,057	683	209	26	139	19.8\%	13.2\%	\$16,321	80	7.57\%
32.00	3	1,546	1,062	143	37	304	9.2\%	19.7\%	\$16,705	71	4.59\%
33.00	3	2,343	1,647	295	109	292	12.6\%	12.5\%	\$4,862	1,087	46.39\%
33.00	4	1,101	714	205	31	151	18.6\%	13.7\%	\$8,661	488	44.32\%
34.00	1	2,929	2,591	74	66	198	2.5\%	6.8\%	\$18,612	230	7.85\%
34.00	2	1,632	1,398	126	28	80	7.7\%	4.9\%	\$21,121	80	4.90\%

Tract	Block Group	Population	Non-Hispanic White	Non-Hispanic Black	Non-Hispanic Othel	Hispanic	Percent Black	Percent Hispanic	Per Capita Income	Persons in Poverty	Percent in Poverty
34.00	3	1,450	1,255	76	27	92	5.2\%	6.3\%	\$23,379	64	4.41\%
35.00	1	1,320	1,202	24	8	86	1.8\%	6.5\%	\$21,021	103	7.80\%
35.00	2	1,227	1,117	45	12	53	3.7\%	4.3\%	\$15,690	73	5.95\%
35.00	3	1,325	1,155	50	34	86	3.8\%	6.5\%	\$18,971	80	6.04\%
36.01	1	745	661	53	9	22	7.1\%	3.0\%	\$20,693	72	9.66\%
36.01	2	1,245	838	313	11	83	25.1\%	6.7\%	\$13,179	163	13.09\%
36.01	3	1,101	731	296	15	59	26.9\%	5.4\%	\$13,850	254	23.07\%
36.02	1	1,693	1,396	178	32	87	10.5\%	5.1\%	\$16,802	161	9.51\%
36.02	2	988	886	13	11	78	1.3\%	7.9\%	\$15,407	97	9.82\%
37.01	1	1,639	1,164	237	9	229	14.5\%	14.0\%	\$22,331	106	6.47\%
37.01	2	1,264	1,104	44	23	93	3.5\%	7.4\%	\$24,218	51	4.03\%
37.03	1	929	799	23	21	86	2.5\%	9.3\%	\$19,298	18	1.94\%
37.03	2	1,054	922	10	9	113	0.9\%	10.7\%	\$20,057	2	0.19\%
37.03	3	1,065	940	14	13	98	1.3\%	9.2\%	\$18,594	47	4.41\%
37.06	1	1,638	1,413	42	56	127	2.6\%	7.8\%	\$22,483	23	1.40\%
37.06	2	1,203	1,013	56	50	84	4.7\%	7.0\%	\$22,186	32	2.66\%
37.06	3	1,652	1,344	128	46	134	7.7\%	8.1\%	\$25,023	13	0.79\%
37.06	4	1,728	1,424	108	64	132	6.3\%	7.6\%	\$23,044	61	3.53\%
37.07	1	1,257	924	159	47	127	12.6\%	10.1\%	\$22,603	164	13.05\%
37.07	2	2,299	2,021	53	101	124	2.3\%	5.4\%	\$35,937	42	1.83\%
37.07	3	3,426	2,378	371	193	484	10.8\%	14.1\%	\$20,285	113	3.30\%
37.08	2	1,561	1,336	82	40	103	5.3\%	6.6\%	\$26,826	23	1.47\%
37.08	3	2,471	1,886	207	113	265	8.4\%	10.7\%	\$20,313	82	3.32\%
37.08	4	1,304	1,014	97	44	149	7.4\%	11.4\%	\$19,556	29	2.22\%
38.01	1	2,384	2,204	18	18	144	0.8\%	6.0\%	\$24,637	54	2.27\%
38.01	2	3,148	2,845	27	54	222	0.9\%	7.1\%	\$18,564	112	3.56\%
38.02	1	1,319	1,088	27	13	191	2.0\%	14.5\%	\$14,456	185	14.03\%
38.02	2	2,996	2,467	21	47	461	0.7\%	15.4\%	\$15,800	313	10.45\%
38.02	3	1,213	941	125	20	127	10.3\%	10.5\%	\$15,401	134	11.05\%
39.00	1	2,318	1,715	106	48	449	4.6\%	19.4\%	\$24,123	140	6.04\%
39.00	2	1,496	813	336	37	310	22.5\%	20.7\%	\$27,449	170	11.36\%
39.00	4	1,715	1,416	103	9	187	6.0\%	10.9\%	\$16,378	178	10.38\%
39.00	5	1,320	804	29	25	462	2.2\%	35.0\%	\$24,050	239	18.11\%
40.00	1	2,009	1,801	60	41	107	3.0\%	5.3\%	\$24,949	38	1.89\%
40.00	2	847	774	2	12	59	0.2\%	7.0\%	\$16,270	59	6.97\%
40.00	3	1,474	1,295	46	18	115	3.1\%	7.8\%	\$24,468	63	4.27\%
41.01	1	3,267	2,951	89	26	201	2.7\%	6.2\%	\$20,639	179	5.48\%
41.02	1	1,248	1,099	20	14	115	1.6\%	9.2\%	\$17,162	156	12.50\%

Tract	Block Group	Population	Non-Hispanic White	Non-Hispanic Black	Non-Hispanic Othel	Hispanic	Percent Black	Percent Hispanic	Per Capita Income	Persons in Poverty	Percent in Poverty
41.02	2	1,537	1,466	10	15	46	0.7\%	3.0\%	\$22,771	26	1.69\%
41.02	3	1,302	1,199	10	13	80	0.8\%	6.1\%	\$22,875	98	7.53\%
42.01	1	1,344	1,212	27	22	83	2.0\%	6.2\%	\$17,149	227	16.89\%
42.01	2	1,410	1,288	41	14	67	2.9\%	4.8\%	\$16,362	122	8.65\%
42.01	3	1,094	916	59	12	107	5.4\%	9.8\%	\$13,995	188	17.18\%
42.02	1	1,935	1,825	3	16	91	0.2\%	4.7\%	\$20,333	93	4.81\%
42.02	2	1,459	1,198	121	35	105	8.3\%	7.2\%	\$14,734	162	11.10\%
Total Metro Area:		213,517	138,007	32,065	5,212	38,233	15.0\%	17.9\%	\$17,174	35,977	16.85\%

Appendix C -

Tract	Block Group	Average Travel Time to Work (minutes)	Occ upied Housing Unit	HU with No Vehicle:	Percent with No Vehicle:	Persons OverAge 65	Percent Over Age 65	Persons with a Self-Care or Mobility Disability
1.00	2	11.0	331	21	6.3\%	8	1.2\%	38
1.00	6	16.4	255	117	45.9\%	338	18.8\%	112
2.00	1	13.5	530	121	22.8\%	59	5.3\%	78
2.00	4	14.6	446	19	4.3\%	7	0.7\%	27
3.00	1	12.0	146	31	21.2\%	32	0.9\%	6
4.00	1	16.4	220	23	10.5\%	53	8.0\%	74
4.00	2	12.3	800	120	15.0\%	18	1.1\%	51
4.00	3	9.6	861	90	10.5\%	26	1.3\%	15
4.00	4	12.2	361	20	5.5\%	38	4.7\%	0
4.00	6	18.1	507	199	39.3\%	107	7.7\%	153
5.98	1	22.6	509	98	19.3\%	137	7.1\%	369
5.98	2	14.5	412	25	6.1\%	119	8.1\%	87
5.98	5	19.8	258	45	17.4\%	107	13.3\%	85
5.98	6	18.3	197	47	23.9\%	79	11.0\%	91
5.98	8	15.5	344	35	10.2\%	78	7.9\%	107
7.00	1	16.3	180	28	15.6\%	30	5.7\%	70
7.00	2	20.8	229	40	17.5\%	39	4.9\%	66
7.00	3	13.9	367	28	7.6\%	86	6.7\%	215
7.00	4	12.3	423	36	8.5\%	80	8.9\%	83
8.00	1	19.6	332	46	13.9\%	62	5.8\%	113
8.00	3	18.8	662	40	6.0\%	180	9.6\%	291
9.00	1	15.5	386	35	9.1\%	98	8.3\%	92
9.00	2	22.5	351	13	3.7\%	362	27.9\%	146
9.00	3	20.2	316	36	11.4\%	89	8.5\%	163
9.00	4	21.5	271	24	8.9\%	88	11.6\%	107
9.00	6	20.8	295	32	10.8\%	90	11.6\%	88
10.00	1	16.5	254	45	17.7\%	249	27.7\%	154
10.00	2	17.1	288	63	21.9\%	47	5.0\%	82
10.00	3	27.9	397	48	12.1\%	78	6.2\%	139
11.00	3	15.2	215	46	21.4\%	54	7.4\%	61
11.00	4	27.0	431	83	19.3\%	112	7.8\%	116
11.00	5	17.7	240	19	7.9\%	54	6.8\%	89
11.00	6	20.9	286	61	21.3\%	55	6.0\%	148
11.00	7	19.1	501	28	5.6\%	156	11.0\%	92
11.00	8	17.9	226	9	4.0\%	69	9.6\%	129
12.00	1	25.9	341	45	13.2\%	106	9.3\%	266

Tract	Block Group	Average Travel Time to Work (minutes)	Occupied Housing Unit	HU with No Vehicle:	Percent with No Vehicle:	Persons Over Age 65	Percent Over Age 65	Persons with a Self-Care or Mobility Disability
12.00	2	21.2	222	124	55.9\%	37	5.1\%	95
12.00	3	18.8	616	263	42.7\%	127	7.1\%	295
13.00	2	16.5	225	0	0.0\%	118	14.3\%	56
13.00	3	15.8	179	14	7.8\%	64	12.9\%	112
13.00	5	18.6	331	50	15.1\%	105	10.0\%	93
14.00	1	20.2	582	96	16.5\%	272	16.6\%	245
14.00	2	35.7	455	48	10.5\%	264	17.7\%	142
14.00	4	15.3	415	243	58.6\%	70	6.8\%	220
14.00	5	22.0	533	98	18.4\%	171	14.3\%	381
14.00	7	20.7	613	151	24.6\%	351	24.0\%	387
15.00	1	30.4	335	99	29.6\%	176	20.6\%	124
15.00	3	15.7	508	109	21.5\%	105	7.7\%	178
15.00	7	32.1	309	61	19.7\%	185	22.6\%	108
16.00	1	21.2	904	23	2.5\%	142	8.1\%	150
16.00	2	16.2	367	21	5.7\%	136	14.5\%	102
16.00	3	19.2	396	6	1.5\%	158	12.8\%	130
16.00	4	13.2	326	57	17.5\%	118	13.3\%	124
16.00	6	16.8	285	26	9.1\%	103	12.9\%	198
17.00	1	24.2	306	13	4.2\%	83	9.8\%	103
17.00	2	19.8	532	50	9.4\%	128	9.4\%	109
17.00	3	18.6	607	25	4.1\%	222	13.8\%	171
17.00	4	27.7	460	34	7.4\%	126	9.6\%	144
18.00	1	25.0	285	18	6.3\%	154	21.0\%	130
18.00	4	29.1	275	22	8.0\%	134	17.6\%	127
19.00	1	13.1	666	59	8.9\%	72	5.7\%	102
19.00	2	17.1	592	126	21.3\%	173	10.4\%	232
20.00	2	18.2	436	8	1.8\%	195	16.4\%	114
20.00	4	17.8	711	24	3.4\%	281	14.4\%	261
21.00	1	16.8	333	13	3.9\%	64	7.8\%	27
21.00	2	15.9	640	102	15.9\%	104	6.1\%	186
21.00	3	17.4	347	46	13.3\%	105	14.5\%	46
21.00	4	21.3	535	34	6.4\%	229	16.4\%	198
22.00	1	15.8	362	23	6.4\%	155	16.1\%	144
22.00	9	25.0	0	0	\#DIV/0!	116	35.6\%	78
23.01	1	13.0	443	20	4.5\%	149	10.6\%	134
23.01	2	19.2	586	52	8.9\%	224	14.0\%	228
23.01	3	15.3	317	42	13.2\%	130	14.4\%	175
23.01	5	17.0	574	35	6.1\%	209	12.6\%	247

Tract	Block Group	Average Travel Time to Work (minutes)	Occupied Housing Unitx	HU with No Vehicle:	Percent with No Vehicle:	Persons OverAge 65	Percent Over Age 65	Persons with a Self-Care or Mobility Disability
23.02	1	12.8	804	48	6.0\%	220	14.9\%	198
23.02	2	14.9	1006	252	25.0\%	118	6.6\%	274
23.02	4	17.2	726	18	2.5\%	436	24.8\%	158
24.98	1	17.1	411	45	10.9\%	162	19.2\%	86
24.98	2	15.9	444	33	7.4\%	164	13.0\%	119
24.98	3	15.5	689	46	6.7\%	327	20.2\%	297
24.98	5	15.5	484	40	8.3\%	172	16.9\%	109
25.01	1	16.2	694	44	6.3\%	353	22.6\%	120
25.01	2	13.9	937	85	9.1\%	305	16.9\%	123
25.01	3	13.8	483	30	6.2\%	260	22.8\%	87
25.03	1	18.4	599	100	16.7\%	535	35.0\%	205
25.03	2	13.5	560	22	3.9\%	374	27.3\%	121
25.03	3	13.8	576	6	1.0\%	298	19.8\%	37
25.03	4	18.0	562	17	3.0\%	201	16.7\%	130
25.04	1	15.7	403	8	2.0\%	175	15.9\%	28
25.04	2	15.4	780	0	0.0\%	188	8.6\%	52
26.00	1	14.8	316	25	7.9\%	174	22.6\%	62
26.00	3	23.1	488	26	5.3\%	629	58.9\%	178
26.00	4	13.9	492	17	3.5\%	368	34.4\%	88
26.00	5	27.8	602	8	1.3\%	430	30.8\%	125
26.00	6	14.4	495	0	0.0\%	352	32.7\%	69
27.00	1	19.4	599	23	3.8\%	182	13.6\%	153
27.00	3	20.0	445	38	8.5\%	129	10.7\%	149
27.00	4	16.0	465	35	7.5\%	169	15.2\%	187
28.00	2	15.8	793	3	0.4\%	520	28.1\%	168
28.00	3	16.4	573	66	11.5\%	427	44.0\%	152
28.00	4	13.7	586	15	2.6\%	33	3.1\%	81
29.00	1	22.3	841	0	0.0\%	210	9.0\%	167
30.00	1	17.5	848	187	22.1\%	502	31.7\%	232
30.00	2	14.2	597	62	10.4\%	291	22.6\%	68
30.00	3	15.4	448	70	15.6\%	267	25.2\%	117
32.00	1	19.8	511	30	5.9\%	132	10.3\%	99
32.00	2	19.0	417	18	4.3\%	128	12.1\%	105
32.00	3	16.1	583	37	6.3\%	174	11.3\%	211
33.00	3	19.4	619	62	10.0\%	4	0.2\%	231
33.00	4	26.1	303	16	5.3\%	7	0.6\%	68
34.00	1	23.3	1071	51	4.8\%	269	9.2\%	233
34.00	2	22.9	560	11	2.0\%	162	9.9\%	126

Tract	Block Group	Average Travel Time to Work (minutes)	Occupied Housing Unitx	HU with No Vehicle:	Percent with No Vehicle:	Persons Over Age 65	Percent Over Age 65	Persons with a Self-Care or Mobility Disability
34.00	3	25.0	522	18	3.4\%	164	11.3\%	146
35.00	1	28.8	493	19	3.9\%	190	14.4\%	137
35.00	2	25.2	451	7	1.6\%	141	11.5\%	116
35.00	3	33.3	461	22	4.8\%	129	9.7\%	68
36.01	1	29.8	276	17	6.2\%	103	13.8\%	75
36.01	2	23.6	454	50	11.0\%	312	25.1\%	139
36.01	3	27.3	406	43	10.6\%	171	15.5\%	117
36.02	1	26.7	613	38	6.2\%	208	12.3\%	185
36.02	2	23.4	371	23	6.2\%	155	15.7\%	72
37.01	1	25.9	610	15	2.5\%	191	11.7\%	194
37.01	2	18.6	445	0	0.0\%	154	12.2\%	45
37.03	1	16.9	324	7	2.2\%	185	19.9\%	68
37.03	2	17.2	342	0	0.0\%	72	6.8\%	41
37.03	3	21.3	392	0	0.0\%	148	13.9\%	102
37.06	1	17.2	586	7	1.2\%	165	10.1\%	179
37.06	2	19.9	415	16	3.9\%	77	6.4\%	110
37.06	3	18.6	572	9	1.6\%	105	6.4\%	100
37.06	4	22.7	575	15	2.6\%	140	8.1\%	119
37.07	1	16.4	568	27	4.8\%	104	8.3\%	60
37.07	2	16.8	777	8	1.0\%	162	7.0\%	93
37.07	3	19.4	1580	50	3.2\%	256	7.5\%	185
37.08	2	18.9	559	9	1.6\%	121	7.8\%	69
37.08	3	19.3	827	21	2.5\%	114	4.6\%	135
37.08	4	21.8	494	11	2.2\%	96	7.4\%	102
38.01	1	22.6	803	5	0.6\%	193	8.1\%	114
38.01	2	23.6	1100	37	3.4\%	316	10.0\%	173
38.02	1	28.7	489	22	4.5\%	141	10.7\%	124
38.02	2	28.7	1044	47	4.5\%	282	9.4\%	168
38.02	3	29.1	465	46	9.9\%	238	19.6\%	136
39.00	1	23.4	773	58	7.5\%	249	10.7\%	244
39.00	2	21.2	537	75	14.0\%	186	12.4\%	178
39.00	4	25.5	599	19	3.2\%	406	23.7\%	62
39.00	5	18.4	535	31	5.8\%	265	20.1\%	246
40.00	1	23.2	719	23	3.2\%	243	12.1\%	156
40.00	2	22.0	311	4	1.3\%	116	13.7\%	50
40.00	3	20.9	521	21	4.0\%	162	11.0\%	96
41.01	1	21.7	1143	26	2.3\%	440	13.5\%	271
41.02	1	21.1	432	14	3.2\%	139	11.1\%	31

Tract	Block Group	Average Travel Time to Work (minutes)	Occupied Housing Unite	HU with No Vehicle:	Percent with No Vehicle:	Persons OverAge $\mathbf{6 5}$	Percent Over Age 65	Persons with a Self-Care or Mobility Disability
41.02	2	26.1	521	19	3.6%	130	8.5%	72
41.02	3	29.6	446	25	5.6%	73	5.6%	45
42.01	1	24.4	516	44	8.5%	231	17.2%	171
42.01	2	29.9	530	35	6.6%	420	29.8%	79
42.01	3	25.4	447	29	6.5%	228	20.8%	189
42.02	1	27.2	687	23	3.3%	200	10.3%	126
42.02	2	27.7	532	34	6.4%	155	10.6%	152
Total Metro Area:								20.0

Appendix C -

Tract	Block Group	Percent with Disability
1.00	2	5.7%
1.00	6	6.2%
2.00	1	7.0%
2.00	4	2.6%
3.00	1	0.2%
4.00	1	11.2%
4.00	2	3.1%
4.00	3	0.7%
4.00	4	0.0%
4.00	6	11.0%
5.98	1	19.2%
5.98	2	5.9%
5.98	5	10.5%
5.98	6	12.6%
5.98	8	10.9%
7.00	1	13.4%
7.00	2	8.3%
7.00	3	16.8%
7.00	4	9.2%
8.00	1	10.5%
8.00	3	15.6%
9.00	1	7.8%
9.00	2	11.2%
9.00	3	15.6%
9.00	4	14.1%
9.00	6	11.4%
10.00	1	17.1%
10.00	2	8.8%
10.00	3	11.0%
11.00	3	8.4%
11.00	4	8.1%
11.00	5	11.1%
11.00	6	16.1%
11.00	7	6.5%
11.00	8	18.0%
12.00	1	23.4%
	2	
10		

Tract	Block Group	Percent with Disability
12.00	2	13.2%
12.00	3	16.4%
13.00	2	6.8%
13.00	3	22.5%
13.00	5	8.9%
14.00	1	15.0%
14.00	2	9.5%
14.00	4	21.5%
14.00	5	31.8%
14.00	7	26.5%
15.00	1	14.5%
15.00	3	13.1%
15.00	7	13.2%
16.00	1	8.6%
16.00	2	10.9%
16.00	3	10.5%
16.00	4	14.0%
16.00	6	24.9%
17.00	1	12.2%
17.00	2	8.0%
17.00	3	10.6%
17.00	4	11.0%
18.00	1	17.8%
18.00	4	16.6%
19.00	1	8.1%
19.00	2	14.0%
20.00	2	9.6%
20.00	4	13.4%
21.00	1	3.3%
21.00	2	10.9%
21.00	3	6.4%
21.00	4	14.2%
22.00	1	14.9%
22.00	9	23.9%
23.01	1	9.6%
23.01	2	14.3%
23.01	3	19.4%
23.01	5	14.8%
1		

Tract	Block Group	Percent with Disability
23.02	1	13.4%
23.02	2	15.3%
23.02	4	9.0%
24.98	1	10.2%
24.98	2	9.5%
24.98	3	18.3%
24.98	5	10.7%
25.01	1	7.7%
25.01	2	6.8%
25.01	3	7.6%
25.03	1	13.4%
25.03	2	8.8%
25.03	3	2.5%
25.03	4	10.8%
25.04	1	2.5%
25.04	2	2.4%
26.00	1	8.1%
26.00	3	16.7%
26.00	4	8.2%
26.00	5	8.9%
26.00	6	6.4%
27.00	1	11.4%
27.00	3	12.3%
27.00	4	16.8%
28.00	2	9.1%
28.00	3	15.7%
28.00	4	7.6%
29.00	1	7.2%
30.00	1	14.6%
30.00	2	5.3%
30.00	3	11.0%
32.00	1	7.7%
32.00	2	9.9%
32.00	3	13.6%
33.00	3	9.9%
33.00	4	6.2%
34.00	1	8.0%
34.00	2	7.7%
2		

Tract	Block Group	Percent with Disability
34.00	3	10.1%
35.00	1	10.4%
35.00	2	9.5%
35.00	3	5.1%
36.01	1	10.1%
36.01	2	11.2%
36.01	3	10.6%
36.02	1	10.9%
36.02	2	7.3%
37.01	1	11.8%
37.01	2	3.6%
37.03	1	7.3%
37.03	2	3.9%
37.03	3	9.6%
37.06	1	10.9%
37.06	2	9.1%
37.06	3	6.1%
37.06	4	6.9%
37.07	1	4.8%
37.07	2	4.0%
37.07	3	5.4%
37.08	2	4.4%
37.08	3	5.5%
37.08	4	7.8%
38.01	1	4.8%
38.01	2	5.5%
38.02	1	9.4%
38.02	2	5.6%
38.02	3	11.2%
39.00	1	10.5%
39.00	2	11.9%
39.00	4	3.6%
39.00	5	18.6%
40.00	1	7.8%
40.00	2	5.9%
40.00	3	6.5%
41.01	1	8.3%
41.02	1	2.5%
3		

Tract	Block Group	Percent with Disability		
41.02	2	4.7%		
41.02	3	3.5%		
42.01	1	12.7%		
42.01	2	5.6%		
42.01	3	17.3%		
42.02	1	6.5%		
42.02	2	10.4%		
Total Metro Area:				9.8%

MTP ID	Facility	Alternate Name	From	To	Existing	Proposed	Project Type	$\begin{aligned} & \text { Sroposaal } \\ & \hline \text { Yoar } \end{aligned}$ Year	Proposer
S025	Loop 396	Valley Mills Dr	Cobbs Dr	Bagby Ave	$6 \& 8$ lane arterial	raised median with left turn bays	Operations	2005	TxDOT
${ }^{5053}$	US 84	West Waco Dr	N 8 th St	Valley Mills Dr	lane divided arterial	6 lane divided arterial	Mobility	1966	Waco
S004	FM 1695	Hewitt Dr	US 84 (George W Bush Pkwy)	FM 2063 (Sun Valley Dr)	4 lane arterial with center turn lane	6 lane arterial with raised median and left turn bays	Mobility	1987	DOT / MPO
S034B		W Loop 340		US 84 (West Waco Dr)	lane freeway with discontinuous 1 -way frontage road	6 lane freeway			
S036A	SH6	South Loop 340	Brazos River	SH $6 /$ Spur 484	2 lane arterial	4 lane divided arterial	Mobility	2005	TxDOT
S037	SH6	n/a	Roadrunner Trail	McLennan / Falls County Line	One-way pairs through Riesel	Construct grade separation and frontage rds at FM 1860 and relocate NB tratic	Mobility	2005	TxDOT
S035	SH6	South Loop 340	IH-35	US 77 (Robinson Dr)	4 lane arterial with grade separation at US 77	4 lane freeway with frontage roads	Mobility	1987	TxDOT
S003A	FM 1637	China Spring Rd	FM 3051 (Steinbeck Bend Dr)	FM 2490 (Wortham Bend Rd)	2 lane FM road	4 lane divided arterial	Mobility	1987	TxDOT
S026	Loop 574	M L K King Jr Dr	$1 \mathrm{H}-35$	Spur 484	no existing facility	4 lane divided with grade separation at US Business 77	Mobility	1966	TxDOT
S005	FM 1695	Hewitt Dr	FM 2063 (Sun Valley Rd)	Ritchie Rd	2 lane FM road	4 lane divided arterial	Mobility	1987	TxDOT
S018	FM 3476	Old Temple Road	FM 2063 (Sun Valley Rd)	Texas Central Pkwy	2 lane FM road	4 lane divided arterial	Mobility	2000	TxDOT
S039A	Spur 298	Frankiin Ave	New Rd	Lake Air Dr	4 lane divided arterial with frontage roads	ve frontage roads, widen to 6 lanes, add u-turn bays, reconstruct New Rd inter	Mobility	2005	Waco
	FM 1637	China Spring Rd	FM 2490 (Wortham Bend Rd)	FM 185 (North River Crossing)	2 lane FM road	4 lane divided arterial	Mobility	1987	TxDOT
S054	US 84	East Waco Dr	Dallas St	N 3rd St	4 lane divided arterial	66 ane divided arterial	Mobility	1966	Waco
S034A	SH_{6}	W Loop 340	1H-35	US 84 (West Waco Dr)	lane freeway with discontinuous 1 -way frontage road	Construct frontage road bridges over UP RR \& UP RR Spur \& realign ramps	Mobility	2009	T×00T
L012	M L King Jr Dr	n/a	Lake Shore Dr / FM 3051	Herring Ave	2 lane arterial	4 lane divided arterial	Mobility	1987	TxDOT
${ }^{2} \mathbf{0 1 3}$	Mars Dr	n/a	Hewitt Dr (FM 1695)	Texas Central Pkwy	2 lane local road	4 lane divided arterial with traftic circle at Texas Central Pkwy	Mobility	2005	MPO
S001A	East Loop 340	n/a	SH $6 /$ Spur 484	Wililias Rd	2 lane arterial	4 lane divided arterial	Mobility	1966	TxDOT
L030	Texas Central Pkwy	n/a	Imperial Dr (FM 3223)	UP Railroad Spur	2 lane arterial	4 lane divided arterial	Mobility	2009	MPO
L015	Memorial Drive	n/a	Loop 396 (Valley Mills Dr)	New Rd	2 lane arterial	reconstruct road	Maintenance / Rehab	1987	everly Hills
${ }^{\text {L006 }}$	Gateway Blvd	Formerly Flat Creek Pkwy	${ }_{1}^{1 /-35}$	FM 3476 (Bagby Ave)	no existing facility	4 lane divided arterial with RR grade separation	Mobility	2000	MPO
S0488	US 84	George W Bush Pkwy	SH 6 (W Loop 340)	FM 1695 (Hewitt Dr)	4 lane freeway	Widen to 6 lane freeway	Mobility	2000	TxDOT
5017	FM 3051	Steinbeck Bend Dr	FM 1637 ((China Spring Rd)	Lake Shore Dr / M L K Jing Jr Dr	2 lane FM road	4 lane divided arterial	Mobility	2000	TxDOT
S021	FM 933	Gholson Rd	FM 308 ((Elm Mott Dr)	Fort Graham Rd	2 lane FM road	4 lane divided arterial	Mobility	2000	TxDOT
S010	FM 2113	Spring Valley Road	FM 2837 (Old Lorena Rd)	FM 1695 (Hewitt Dr)	2 lane FM road	4 lane divided arterial		2005	TxDOT
S048A	US 84	George W Bush Pkwy	SH 6 (L Loop 340)	FM 1695 (Hewitt Dr)	4 lane freeway	Realign on \& off ramps	Operations	2000	TxDOT
5031A	SH6	n/a	Lady Bird Rd	Spur 412 / Dosher Ln	2 lane arterial	lane freeway with frontage roads	Mobility	2000	TxDOT
S043	US 77	n/a	FM 2837 (Rosenthal Pkwy)	Falls / McLennan County Line	2 lane arterial	4 lane divided arterial	Mobility	1987	TxDOT
L022B	$\frac{\text { Ritchie Rd }}{\text { SHe }}$	n/a	Panther Way	US 84 (George W Bush Pkwy)	2 lane local road	4 lane divided arterial	M obility	2000	Woodway
S0318	SH6	n/a	Compton Rd	Lady Bird Rd	2 lane arterial	4 lane divided a arterial	Mobility	2000	${ }_{\text {TxDOT }}$
S029	SH317	N Lone Star Pkwy	US 84 (George W Bush Pkwy)	FM 3047 (New Windsor Pkwy)	2 lane arterial	4 lane divided arterial	Mobility	2000	TxDOT
S042	US 77	Robinson Dr	SH $6 / \mathrm{S}$ Loop 340	FM 3148 (Moonlight Dr)	4 lane arterial with center turn lane	Construct raised median with left turn bays	Operations	2005	MPO
S002	FM 1637	China Spring Rd	FM 185 (North River Crossing)	Spur 1637	2 lane FM road	4 lane divided arterial	Mobility	2005	TxDOT
L016	N 18th St/ $/ 19$ 9th St	n/a	Homan Ave	Vivian Ave	ane undivided atterial	Construct raised median with left turn bays	Operations	2005	MPO
L003A	Chapel 17	n/a	Woodgate Dr	Ritchie Rd	2 lane local road	4 lane divided arterial	Mobility	1987	Waco
S041	US 77	Robinson Dr	Waco Traftic Circle	SH $6 /$ S Loop 340	4 lane arterial with center turn lane	Construct raised median with left turn bays	Operations	2005	MPO
S059	US 84	Bellmead Dr	Intersection at Aviation Pkwy	n/a	At grade intersection with trafic signals	Construct grade separation	Mobility	2009	TxDOT
S038A	Speegleville Rd	FM 2837 Extension	US 84 (George W Bush Pkwy)	Midale Bosque River	2 lane local road	Widen to 4 lane divided arterial	Mobility	2009	MPO
S011	FM 2113	Spring Valley Road	FM 2063 (Sun Valley Rd)	FM 1695 (Hewitt Dr)	2 lane FM road	4 lane divided arterial	Mobility	1987	TxDOT
5023	Loop 396	Bosque Blvd	Rambler Dr	Valley Mills Dr	4 lane undivided arterial	Construct raised median with left turn bays	Operations	2005	MPO
S055	US 84	n/a	SH31	FM 1330 (Longhorn Pkwy)	2 lane arterial	4 lane divided arterial	Mobility	2005	TxDOT
L031	Bosque Blvd	n/a	N 32nd St	N V Valley Mills dr (Loop 396)	4 \& 6 lane arterial with center turn lane	Construct raised median with left turn bays	Operations	2009	MPO
S012	FM 2490	Wortham Bend Rd	FM 1637 ((hina Spring Rd)	Garett Lane	2 lane FM road	4 lane divided arterial	Mobility	2005	TxDOT
S058	US 884	Eldat Waco Dra	$\frac{\text { FM } 933 \text { (Gholson Rd) }}{1 \mathrm{H}-35}$	$\frac{\text { Spur } 299 \text { (Bellmead Dr) }}{\text { Pilgrim }}$	$\frac{4 \text { lane freeway with } 1 \text {-way frontage roads }}{2 \text { lane } \mathrm{FM} \text { road }}$	$\frac{6 \text { lane arterial with raised median and left turn bays }}{4 \text { In arterial, reaign, } R \text { grade separation }}$	$\frac{\text { Mobility }}{\text { Mobily }}$	2009	${ }_{\text {T }}^{\text {T } \times \text { DOT }}$
L024	Sanger Ave	n/a	Valley Mills Dr	Melrose Dr	4 lane undivided arterial	Construct raised median with left turn bays	Operations	2005	MPO
S045	US 84	George W Bush Pkwy	FM 2188 (Cotton Belt Pkny)	SH317	4 lane divided arterial	4 lane freeway with frontage roads	Mobility	2000	TxDOT
S009A	FM 2113	Spring valley Road	FM 2416 (Cotton Belt Pkny)	FM 2837 (OId Lorena Rd)	2 lane FM road	4 lane divided arterial	Mobility	2005	TxDOT
5030	SH6	n/a	Bosque / McLennan County Line	Compton Rd	2 lane arterial	nstruct passing lanes and left turn bays	Satety	2009	MPO
5046	US 84	George W Bush Pkwy	Ritchie Rd	Bosque Lane	4 lane divided arterial	4 lane freeway with frontage roads	Mobility	2000	TxDOT
L011	Lake Shore Dr	n/a	N 19 hth	Mount Carmel Dr	4 lane arterial with center turn lane	Construct raised median with left turn bays	Operations	2005	MPO
S028	SH317	S Lone Star Pkwy	W 11th St	FM 2671 (Mother Neff Pkwy)	2 lane arterial	4 lane divided arterial	Mobility	2000	TxDOT
S044	US 84	n/a	N Johnson Dr	Coryell / McLennan County Line	2 lane arterial	Construct passing lanes and left turn bays	Safety		MPO
S046A	US 84	George W Bush Pkwy	Bosque Lane	FM 2188 (Cotton Belt Pkwy)	4 lane divided arterial	4 lane treeway with frontage roads	Mobility	2000	TxDOT
S051	US Business 77	n/a	US 84 (E Waco Dr)	$1 \mathrm{H}-35$ (At Elm Mott)	4 lane $\mathrm{W} /$ cntr turn In and discontinuous fitge rds	Remove frontage roads and construct rasied center median	Operations	2005	TxDOT
L007	Franklin Ave	n/a	Valley Mills Dr	S 174 St	4 lane arterial with center turn lane	Construct raised median with left turn bays	Operations	2000	MPO
L003B	Chapel Rd	n/a	Ritchie Rd	FM 2837 (Old Lorena Rd)	2 lane local road	4 lane divided arterial	Mobility	2005	MPO
S019	FM 434/FM 3400	S Univ Parks Dr	US Bus 77 (LaSalle Ave)	SH6/S Loop 340	2 lane FM road	4 lane divided arterial	Mobility	1987	Waco
L028	Karl May Dr	n/a	FM 3051 (Steinbeck Bend Dr)	Waco Reg. Airport Terminal	2 lane local road	Add landscaping, reconstruct road, realign intersection with Skeet Eason Rd	Maintenance / Rehab	2005	WRA
S036B	SH6	South Loop 340	Intersection at SH $6 /$ Spur 484	n/a	Standard Diamond Interchange	Construct Loop 340 bridge over Spur 484	Mobility	2005	TxDOT
L019	Old Temple Rd	n/a	${ }^{1 H-35}$	FM 2113 (Spring Valley Rd)	2 lane local road	4 lane divided arterial	Mobility	2000	MPO
L022A	Ritchie Rd	n/a	Panther Way	US 84 (George W Bush Pkwy)	2 lane local road	reconstruct road, eliminate offset at Panther Way	Maintenance / Rehab	2008	Waco
S006	FM 185	North River Crossing	SH6	FM 1637 (China Spring Rd)	2 lane FM road	4 lane divided arterial	Mobility	2000	TxDOT
S036C	SH6	South Loop 340	Brazos River	SH6	No existing direct connection ramps	sstruct direct connection ramp from NB SH 6 to NB LP 340 \& SB LP 340 to SB	Mobility	2005	TxDOT
L018	Old McGregor Rd	n/a	FM 1695 (Hewitt Dr)	Ritchie Rd	2 lane local road	4 lane divided arterial	Mobility	2000	Woodway
S0388	Speegleville Rd	FM 2837 Extension	Middle Bosque River	SH6	2 lane local road	Reconstruct existing road, realign with FM 185	Maintenance / Rehab	2005	TxDOT
S038C	Speegleville Rd	FM 2837 Extension	Middle Bosque River	SH6	2 lane local road	Widen to 4 lane divided arterial		2000	TxDOT
S0478	US 84	George W Bush Pkwy	Intersection at Wickson Rd	n/a	partial at-grade intersection	Construct grade separation	Mobility	1995	Woodway
S047A	$\frac{\text { US } 84}{\text { Newland }}$	George W Bush Pkwy	FM 1695 (Hewit Dr)	Ritchie Rd	4 lane freeway	6 lane freeway with frontage rd \& ramp improvements	Mobility	2000	${ }^{\text {TxDOT }}$
L021	Ritchie Rd	n/a	FM 1695 (Hewitt Dr)	Panther Way	2 lane local Ioad	$\frac{\text { reconstruct road }}{4 \text { lane divided arterial }}$	$\frac{\text { Mantenancel }}{\text { Moehab }}$	1987	Robinson
L026	Williams Rd	n/a	FM 2837 ((Od Lorena Rd)	Country Spring Rd	2 lane local road	reconstruct road, add left turn lane from Old Lorena Rd to Leopard Lr	Maintenance / Rehab	2000	Lorena
S007	FM 185 Extension	n/a	FM 1637 (China Spring Rd)	FM 933 (Gholson Rd)	no existing facility	2 lane FM road	Mobility	1987	Mclennan County
S032B	SH6	n/a	Spur 412 / Dosher Ln	US 84 (West Waco Dr)	4 lane freeway	6 lane freeway	Mobility	2000	TxDOT
L002	Beverly Dr	n/a	New Rd	SH6/W Loop 340	2 lane local road	2 lane arterial	Maintenance / Rehab	1987	MPO
L005B	Craven Ave	n/a	FM 933 (Gholson Rd)	US Bus 77	2 lane local road	reconstruct road	Maintenance / Rehab	1966	Lacy-Lakeview
S008	FM 185 Extension	n/a	FM 933 (Gholson Rd)	${ }_{1+35}$	2 lane local road	2 lane FM road	Maintenance / Rehab	1987	Mclennan County
S057 1014 0	$\frac{\text { US Business } 77}{\text { McGregor Industrial Road }}$	$\frac{\text { North Loop D } / \text { / South Loop D }}{\text { N/a }}$	US 84 (E Waco Dr)	Brazos River	lane freeway with 1 -way discontinuous frontage road	6 lane arterial with raised median and left turn bays	Mobility	2009	MPO
Soo9b	$\frac{\text { FM } 2113}{}$	Spring Valley Road	fersection at FM 2837 (Old Lorena ${ }^{\text {F }}$	n/a	At grade intersection with traffic signals	Construct grade sepearation	Mobility	2005	T TxDot

MTP ID	Facility	Alternate Name	From	To	Existing	Proposed	Project Type		Proposer
S060	FM 107 Bypass	n/a	Blue Cut Rd	Doss Ln	no existing facility	Construct 2 lane FM Road	Mobility	2009	MPO
L029	McGregor South Bypass	n/a	US 84	SH317	No existing facility	Construct 2 lane arterial	Mobility	2000	McGregor
S056	FM 1858	Tokio Rd/ S Main St	${ }_{1+35}$	FM 2114 (Oak St)	2 lane local road	2 lane FM road, construct overpass at UP RR	Maintenance / Rehab	2009	MPO
S032A	SH6	n/a	Spur 412 / Dosher Ln	Lake Waco	4 lane freeway with 2 -way frontage roads	Convert 2 -way frontage rds to 1 -way \& replace Lk Waco Bridges	Maintenance / Rehab	2009	MPO
L009	Hatch Rd	n/a	$1 \mathrm{H}-35$	Old Bethany Rd	2 lane unpaved road	Pave road, widen to 12 tt lanes, construct bridge over UP RR, reailg to $1 \mathrm{H}-3 \mathrm{SE}$	Mobility	2000	Lorena
${ }^{\text {L027 }}$	Panther Way	n/a	FM 1695 (Hewitt Dr)	Panther Run	2 lane local road	4 lane divided collector	Mobility	1995	Hewitt
S0018	East Loop 340	n/a	Orchard Ln	FM 2491	2 lane arterial	Construct grade separations at Orchard LN \& FM 2491	Mobility	1966	TxDOT
L004	Countr Spring Rd	n/a	FM 2113 (Spring Valley Rd)	Wililiams Rd	2 lane local road	rehabilitate road	Maintenance / Rehab	2000	Lorena
L025	Walnut St	n/a	FM 2417 (Crest Dr)	Craven Ave	2 lane local road	reconstruct road	Maintenance / Rehab	2000	Citizens
5015	FM 2837	Rosenthal Pkwy	IH-35	Southwinds Dr	2 lane FM road	reaign to elminate offset at $\mathrm{H}-35$	Mobility	2000	TxDOT
${ }^{\text {L023 }}$	$\frac{\text { S } 12 \text { tht }}{\text { Gte }}$	S 16 th St	Gurley Ave		$\frac{2 \text { lane local road }}{2 \text { lane loal road }}$	4 l lane divided arterial, realign with S 18 Sth St			Waco
L008	Greig Drive	n/a	${ }_{1+}+3$	US 77 (Robinson Dr)	2 lane local road	4 lane divided arterial, extend to US 77 , realign at $\mathrm{H}-35$	Mobility	2000	Robinson

Appendix D

MTP II	Faciily	Notes	Existing los	score	Future Los	score	Los change	score	Facility Age	score	Future Los	score	Travel Time Change	score	$\xrightarrow{\text { Regional }}$ Comectivit	Score	мтр
							${ }_{\text {n/a }}^{\text {na }}$			0	${ }^{8}$						No
-			$\xrightarrow{\text { na }}$	\bigcirc	${ }_{\text {na }}^{\substack{\text { na }}}$	\bigcirc	${ }_{\text {na }}^{\text {na }}$	0	${ }_{\text {na }}^{\text {na }}$	0	B	${ }_{10}$		0	$\frac{\text { No }}{\text { No }}$	0	Yes No No
S032A			na	${ }^{-10}$	${ }^{\text {B }}$. 5	No Change	0	${ }_{45}^{45}$	10	${ }^{\text {n/a }}$		${ }_{\text {na }}$	0	${ }^{\text {No }}$	0	Yes
	${ }_{\text {Hatach }}^{\text {Padrer }}$	Oiginaly exended of Tx Cental Pkm	${ }_{\text {A }}^{\text {A }}$	-10	B	$\stackrel{-5}{0}$	$\frac{\text { No change }}{\text { No Change }}$	0			$\frac{\mathrm{n} / \mathrm{a}}{\text { n/a }}$	\bigcirc	$\frac{\mathrm{n} \text { /a }}{\text { naa }}$	\bigcirc	$\frac{\text { No }}{\text { No }}$	\bigcirc	¢ Yes
${ }^{\text {SOOO1B }}$	East Loop 340				${ }^{\text {A }}$		No change								No	0	
L004 L025			A	${ }_{-10}^{10}$	B	- -10	${ }^{\text {No change }}$ No change	0	50 45	${ }_{10}^{10}$	$\stackrel{\text { n/a }}{\text { n/a }}$	0	${ }_{\text {n/a }}^{\text {na }}$	0	$\frac{\text { No }}{\text { No }}$	0	¢ Yes
- 5015	$\frac{\text { FM } 2837}{\text { S } 123}$	orignally exerended to US 77	B	$\frac{.10}{10}$		0	No change		45	10	na	0	na	0	No	0	Yes
[003			${ }^{\text {A }}$	$\stackrel{.10}{.5}$	$\stackrel{\text { a }}{\text { C }}$	$\stackrel{10}{0}$	$\xrightarrow{\text { No change }}$ No. Change	0	45	$\frac{0}{10}$	${ }_{\text {n/a }}^{\text {naa }}$		$\stackrel{\text { n/a }}{\text { n/a }}$	0	$\xrightarrow{\text { No }}$		Yes

Appendix D

MTP ID	Facility	Score	Work Begun	Score	Multi-Modal	Score	Bike / Ped	Score	Landscaping	Score	Commitment	Score	Funding Source	Score	Allocation	Score	Classification	Score	State System
S025	Loop 396	5	No	0	Yes	5	No	0	No	0	\$0	0	Unknown	0	7.51\%	15	Principal A Aterial	30	Yes
S053	US 84	5	No	,	No	0	No	0	No	0	\$0	0	Unknown	0	15.35\%	0	Principal Arterial	30	Yes
S004	FM 1695	5	No	0	Yes	5	No-School	-5	No	0	\$0	0	Unknown	0	12.31\%	5	Principal A Arterial	30	Yes
S034B	SH6	5	No	0	Yes	5	No	0	No	0	\$0	0	Unknown	0	20.45\%	-10	Other Expressway	30	Yes
S036A	SH6	5	Yes	25	No	0	No	0	No	0	\$0		Unknown	0	10.80\%	4	Principal A Aterial	30	Yes
${ }^{5037}$	SH 6	5	Yes	25	No	0	No	0	No	0	\$0	0	Category 4	20	n/a	n/a	Principal A Aterial	30	Yes
S035	SH6	5	Yes	25	No	0	No	0	No	0	\$0	0	Unknown	0	22.11\%	-10	Principal A Aterial	30	Yes
S003A	FM 1637	5	Yes	25	No	0	No	0	No	0	\$0	0	Unknown	0	8.99\%	12	Minor Arterial	10	Yes
S026	Loop 574	5	Yes	25	No	0	No	0	No	0	\$0	0	Unknown	0	21.81\%	-10	Principal Arterial	30	Yes
S005	FM 1695	5	Yes	25	No	0	No-School	-5	No	0	\$0	0	ARRA	20	n/a	0	Principal Afterial	30	Yes
S018	FM 3476	5	Yes	25	Yes	5	No	0	No	0	\$0	0	ARRA	20	n/a		Minor Atrerial	10	Yes
S039A	Spur 298	5	Yes	25	No	0	No	0	No	0	\$0	0	Unknown	0	4.07\%	11	Principal A Aterial	30	Yes
S003B	FM 1637	5	Yes	25	No	0	No	0	No		\$0	0	Unknown		15.35\%	0	Minor Atrerial	10	Yes
S054	US 84	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	7.01\%	8	Principal A Aterial	30	Yes
S034A	SH6	5	No	0	Yes	5	No	0	No	0	\$0	0	Unknown	0	11.49\%	4	Other Expressway	30	Yes
L012	M L K King Jr Dr	5	No	0	No	0	Yes	5	No	0	\$0	0	Unknown	0	9.70\%	11	Principal Arterial	30	No
$\mathrm{L}^{0} 213$	Mars Dr	5	No	0	Yes	5	No	0	No	0	\$0	0	Unknown	0	4.69\%	20	Urban Collector	0	No
S001A	East Loop 340	5	No	0	No	0	No		No	0	\$0	0	Unknown	0	13.31\%	3	Principal A Arterial	30	Yes
L030	Texas Central Pkwy	5	No	0	Yes	5	No	0	No	0	\$0	0	Unknown	0	1.43\%	20	Minor Atrerial	10	No
L015	Memorial Drive	5	Yes	25	Yes	5	No	0	No		\$0	0	Unknown	0	3.14\%	20	Minor Arterial	10	No
L006	Gateway Blvd	5	No	0	Yes	5	No	0	No	0	\$0	0	Unknown	0	9.79\%	10	Minor Atterial	10	No
S0488	US 84	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	12.26\%	3	Other Expressway	30	Yes
S017	FM 3051	5	No	0	Yes	5	No	0	No	0	\$0	0	Unknown	0	10.95\%	8	Minor Atrerial	10	Yes
S021	FM 933	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	7.14\%	16	Rural Major Collector	0	Yes
S010	FM 2113	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	9.72\%	11	Rural Major Collector	0	Yes
S048A	US 84	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	3.84\%	11	Other Expressway	30	Yes
S031A	SH6	5	Yes	25	No	0	No		No	0	\$0	0	Unknown	0	18.19\%	0	Principal Arterial	30	Yes
5043	US 77	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	11.86\%	3	Principal A Aterial	30	Yes
${ }^{\text {L022B }}$	Ritchie Rd	5	Yes	25	No	0	No	O	No	0	\$0	0	Unknown	0	3.70\%	20	Urban Collector	0	No
S0318	SH 6	5	Yes	${ }^{25}$	No	0	No	0	No	0	S0	0	Unknown	0	$\frac{10.76 \%}{4.88 \%}$	${ }^{20}$	$\frac{\text { Principal Arterial }}{\text { Minor Arterial }}$	30	Yes
S042	US 77	5	No	0	No	0	No - School	-5	No	0	\$0	0	Unknown	0	7.58\%	7	Principal Anterial	30	Yes
S002	FM 1637		No	0	No	0	No-School	-5	No	0	\$0	0	Unknown	0	12.62\%	5	Rural Major Collector	0	Yes
L016	N 18 th St $/ \mathrm{N} 19$ th St	5	No	0	No		No	0	No	0	\$0	0	Unknown	0	8.26\%	13	Minor Arterial	10	No
L003A	Chapel Rd	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	4.79\%	20	Minor Arterial	10	No
S041	US 77	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	4.335\%	11	Principal Arterial	30	Yes
S059	US 84	0	No	0	Yes	5	No	0	No	0	\$0	0	Unknown	0	11.65\%	3	Principal Arterial	30	Yes
S038A	Speegleville Rd	5	Yes	25	No	0	No-School	-5	No	0	\$0	0	Unknown	0	${ }^{6.81 \%}$	8	Rural Major Collector	0	No
S011	FM 2113		No	0	No	0	No-School	-5	No	0	\$0	0	Unknown	0	12.75\%	5	Minor Atrerial	10	Yes
S023	Loop 396	5	No	0	No	0	No	0	No		\$0	0	Unknown	0	2.44\%	20	Minor Arterial	10	Yes
S055	US 84	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	13.86\%	1	Minor Arterial	10	Yes
L031	Bosque Blvd	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	5.72\%	19	Minor Arterial	10	No
S012	FM 2490	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	19.48\%	0	Rural Major Collector	0	Yes
5058	US 84	5	No	0	No	0	No	0	Yes	5	\$0	0	Unknown	0	11.73\%	3	Other Expressway	30	Yes
S 5	FM 2837	5	No	0	No	0	No-School	-5	No	0	\$0	0	Unknown	0	7.98\%	14	Rural Minor Atreial	10	Yes
[${ }_{\text {L024 }}$	$\frac{\text { Sanger Ave }}{\text { US } 84}$	5	No	0	No	0	No	0	No	0	${ }_{\text {\$0 }}$	0	Unkkown	0	4.73\% 6.38%	-20	$\frac{\text { Minor Arterial }}{\text { Prinipal Arterial }}$	$\frac{10}{30}$	No
S009A	FM 2113	5	No	0	No		No	0	No	0	\$0	0	Unknown	0	12.97\%	4	Rural Major Collector	0	Yes
S030	SH6	O	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	7.25\%	16	Principal Arterial	30	Yes
5046	US 84	5	Yes	25	No	0	No-School	-5	No	0	\$0	0	Unknown	0	25.53\%	-10	Principal Arterial	30	Yes
L011 S028	$\frac{\text { Lake Shore Dr }}{\text { SH }}$	5	No	0	No	0	No	0	Yes	5	\$0	0	Unknown	0	7.13\%	16	Principal Arterial	30	No
S044	US 84	5	No	0	No	0	No	O	No	0	\$0	0	Unknown	0	9.63\%	5	Minor Arterial	10	Yes
S046A	US 84	5	No	0	No	0	No		No	0	\$0	0	Unknown	0	53.88\%	-20	Principal A Arterial	30	Yes
S051	US Business 77	5	No	0	No	0	Yes	5	Yes	5	\$0	0	Unknown	0	20.12\%	-10	Minor Arterial	10	Yes
L007	$\frac{\text { Frankkin Ave }}{\text { Chapel }}$	5	$\frac{\text { No }}{\text { No }}$	0	No	0	No	0	No	0	\$0	0	Unknown	0	${ }_{\text {5 }}^{5.36 \%}$	19	$\frac{\text { Minor Arterial }}{\text { Rural Maior Collector }}$	10	No
S019	FM 434/ /FM 3400	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	${ }^{\text {9.95\% }}$	10	Minor Arterial	10	Yes
L028	Karl May Dr	5	No	0	Yes	5	No	0	No	0	\$0	0	PFC - Airport	20	n/a	0	Local Street	0	No
S036B	SH6	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	8.64\%	6	Principal Arterial	30	Yes
${ }^{\text {L019 }}$	Old Temple Rd	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	8.46\%	13	Urban Collector	0	No
${ }^{\text {L } 0222}$	Ritchie Rd	5	No	0	No	0	No	0	No	0	\$0	0	Fed Earmarks	20	n/a	0	Urban Collector	0	No
S006	FM 185	5	No	0	No	0	No-School	-5	No	0	\$0	0	Unknown	0	$\frac{33.82 \%}{24530}$	-20	Minor Arterial	$\frac{10}{30}$	Yes
L018	Old McGregor Rd	5	No	0	No	0	No	0	No	0	so	0	Unknown	0	- 6.250	18	Urban Collector	${ }^{3}$	No
S038B	Speegleville Rd	5	Yes	25	No	0	No	0	No	0	\$0	0	Unknown	0	30.56\%	-20	Rural Major Collector	0	No
S038C	Speegleville Rd	5	Yes	25	No	0	No		No	0	\$0	0	Unknown	0	30.09\%	-20	Rural Major Collector	0	No
S047B	US 84	5	No	0	$\frac{\text { No }}{\text { No }}$	0	$\frac{\text { No }}{\text { No }}$	0	No	0	$\frac{\$ 0}{\$ 0}$	0	Unknown	0	14.28\%	0	Other Expressway	30	Yes
L017	Newland Dr	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	4.09\%	20	Uriban Collestor	30	Yes
L021	Ritchie Rd	5	No		No	0	No	0	No	0	\$0	0	Unknown	0	10.14\%	10	Urban Collector	0	No
L026	Wililiams Rd	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	3.33\%	20	Local Street	0	No
	FM 185 Extension	5	No	0	No	0	No	0	No	0	\$0	0	Unknown	0	47.70\%	-20	Minor Arterial	10	Yes
	${ }_{\text {Beverly }}^{\text {Sr }}$ D	5	No	0	No	5	$\frac{\text { No }}{\text { No }}$	0	$\frac{\text { No }}{\text { No }}$	0	$\frac{\$ 0}{\$ 0}$	0	Unknown	0	$\frac{25.51 \%}{2.28 \%}$	-10	$\frac{\text { Other Expressway }}{\text { Minor Atrerial }}$	$\frac{30}{10}$	Yes
L005B	Craven Ave	5	No	0	No		No	0	No	0	\$0	0	Unknown	0	2.61\%	20	Minor Arterial	10	No
5008	FM 185 Extension	5	No		No	0	No	0	No	0	\$0		Unknown	0	23.30\%	-10	Minor Arterial	10	Yes
S057	US Business 77	5	No	0	No	0	No	0	Yes		\$0	0	Unknown	0	18.28\%	0	Other Expressway	30	Yes
L014	$\frac{\text { McGregor Industrial Road }}{\text { FM } 2113}$	5	$\frac{\text { No }}{\text { No }}$	0	$\frac{\text { Yes }}{\text { No }}$	${ }^{5}$	$\frac{\text { No }}{\text { No }}$	0	$\frac{\text { No }}{\text { No }}$	0	$\frac{\$ 0}{50}$	0	Unknown	0	9.06\%	$\frac{12}{8}$	Rural Majio Colle ctor	0	No

MTP ID	Facility	score	Work Begun	score	Multi-Modal	score	Bike $/$ Ped	score	Landscaping	score	Commitment	score	Funding Source	score	Allocation	score	Classifitation	score	State System
(0060	${ }_{\text {c- } 107 \text { Eypass }}^{\text {McGegor Suth }}$	5	$\frac{\text { No }}{\text { No }}$	\bigcirc	Yes Yes Yes		$\frac{\text { No }}{\text { No }}$	\bigcirc	$\frac{\text { No }}{\text { No }}$	0		\bigcirc	Unknown	0		6	$\frac{\text { Rural Major coliector }}{\text { Rural Maior coleror }}$	0	Yes
5056	${ }_{\text {F }}^{\text {FM } 1858}$	0	No	0	Yes	5		0	No				Unkrown	0			Rural Major coliector		
(so32A		5	${ }_{\text {No }}^{\text {No }}$	\bigcirc	$\frac{\text { No }}{\text { No }}$	0	$\frac{\text { No }}{\text { No }}$	0	$\xrightarrow{\text { No }}$ No	0	(0	Uukkown	0			$\xrightarrow{\text { Onter Expessway }}$ Localstreet	${ }^{30}$	
- ${ }_{\text {Le27 }}$	$\frac{\text { Panter }{ }_{\text {Way }} \text { Eastloop } 30}{}$	$\frac{5}{5}$	$\frac{\text { No }}{\text { No }}$	\bigcirc	$\frac{\text { Yes }}{\text { No }}$	5	$\frac{\text { No. School }}{\text { No. School }}$	-5 .5	$\frac{\text { No }}{\text { No }}$	\bigcirc	${ }_{\text {so }}^{50}$	0	Uukkown	\bigcirc	- $\frac{3.720 \%}{22.15 \%}$	- ${ }^{20}$	$\frac{\text { Local Steer }}{\text { Princiolal Alerial }}$	${ }_{30}$	${ }_{\text {Nos }}^{\substack{\text { Vos }}}$
${ }^{\text {L L }}$ L004	Country Spring Rd		${ }^{\text {No }}$		${ }_{\text {No }}$				No	0			Unknow	0	${ }^{\text {2,250\% }}$		Local Street	0	
${ }^{\text {LS015 }}$	${ }_{\text {FM }}^{\text {FM } 2387}$		${ }_{\text {No }}$ No	0	No		No		${ }^{\text {No }}$	0			Unkrow	0	${ }_{\text {L }}^{\text {13,980\% }}$		Ruual Major cololector	0	
(1023		5	No	\bigcirc	No	0	No	\bigcirc	$\xrightarrow{\text { No }}$	\bigcirc	${ }_{50}$	0	Unkrown	\bigcirc		${ }_{\text {15 }}^{1.10}$	Untan coliecor	\bigcirc	$\frac{\text { No }}{\text { No }}$

Appendix D

MTP ID	Facility	Score	$\begin{array}{\|c} \hline \begin{array}{c} \text { Crashes per } \\ \mathrm{vMT} \end{array} \\ \hline \end{array}$	Score	Crash Total	Score	$\begin{gathered} \text { Crash } \\ \text { Reduction } \end{gathered}$	Score	Fatal Crashes	Score	Serious Injury Crashes	Score	Total Score
S025	Loop 396	5	8.10	15	192	10	>40	25	0	0	35	35	180
S053	US 84	5	4.00	15	114	10	10 to 20	5	1	5	21	21	166
S004	FM 1695	5	4.30	15	121	10	20 to 40	10	0	0	18	18	153
S034B	SH6	5	1.25	15	63	10	10 to 20	5	1	5	21	21	146
S036A	SH6	5	1.79	15	9			0	0	0		0	144
S037	SH6	5	1.97	15	16	0	<10	-	0	0	2	2	142
S035	SH6	5	1.64	15	${ }^{23}$	0	<10	0	0	0	8	8	138
S003A	FM 1637	5	1.66	0	12	0	<10	0	0	0	8	8	135
${ }^{5026}$	Loop 574	5	n/a	15	n/a	10	n/a	0	n/a	0	n/a	0	135
S005	FM 1695	5	3.81	15	11	0	≤ 10	0	a	0	2	2	132
S018	FM 3476	5	1.35	0	11	0	<10	0	0	0	3	3	128
S039A	Spur 298	5	3.81	15	23	0	<10	0	0	0	6	6	117
S003B	FM 1637	5	1.71	0	30	0	<10	0	0	0	1	1	116
S054	US 84	5	3.30	15	19	0	<10	0	0		7		115
S034A	SH6	5	2.42	15	26	0	10 to 20	5	1	5	2		111
${ }^{\circ} \mathrm{L012}$	ML K King Jr Dr	-10	3.28	15	17	0	<10	0	0	0	3	3	109
$\square^{0} 013$	Mars Dr	-10	6.00	15	14	0	<10	0	1	5	4	4	109
S001A	East Loop 340	5	1.15	0	15	0	<10	0	1	5	1	1	109
L030	Texas Central Pkwy	-10	0.64	0	1	0	<10	0	0		2	2	107
$\mathrm{L}^{0} 15$	Memorial Drive	-10	4.72	15	10	0	<10	0	0	0	1	1	106
L006	Gateway Blvd	-10	n/a	15	n/a	10	n/a	0	n/a	0	n/a	0	105
S0488	US 84	5	1.03	15	42	0	<10	0	0	0	5	5	103
${ }^{5017}$	FM 3051	5	2.13	0	19	0	<10	0	1	5	4	4	102
S021	FM 933	5	1.79	15	5	0	<10	0	0	0	1	1	102
S010	FM 2113	5	1.78	15	6	0	<10	0	0	0	0		101
S048A	US 84	5	1.03	15	42	0	<10	0	0	0	5	5	101
S031A	SH6	5	2.07	15	13	0	<10	0	0	0	0	0	100
5043	US 77	5	0.14	0	1	0	<10	0	0	0	0	0	98
L022B	Ritchie Rd	-10	1.27	0	2	0	<10	0	0	0	1	1	96
S0318	SH6	5	0.64	0	5	0	<10	0	0		3	3	96
S029	SH317	5	7.95	15	${ }^{13}$	0	<10	0	0	0	0	0	95
S042	US 77	5	1.53	0	34	0	10 to 20	5	0	0	7	7	94
S002	FM 1637	5	1.53	15	10	0	<10	0	1	5	2	2	92
L016	$\mathrm{N} 18 \mathrm{th} \mathrm{St} / \mathrm{N} 19$ th St	-10	5.85	15	66	10	10 to 20	5	0	0	9	9	87
L003A	Chapel Rd	-10	1.64	0	16	0	<10	0	0	0	1	1	86
${ }^{5041}$	US 77	5	2.57	15	26	0	<10	0	0	0	4	4	85
S059	US 84	5	0.92	0	8	0	<10	0	0	0	2	2	85
S038A	Speegleville Rd	0	0.50	0	1	0	<10	0	0	0	1	1	84
S011	FM 21113	5	2.32	0	11	0	<10	0	0	0	2	2	82
S023	Loop 396	5	3.02	0	17	0	<10	0	0	0	1	1	81
S055	US 84	5	0.28	0	3	0	<10	0	0	0	0	0	81
L031	Bosque Blvd	-10	5.23	15	70	10	20 to 40	10	0	0	11	11	80
S012 S058 S	FM 2490	5	0.76 4.28	${ }^{15}$	${ }_{30}$	0	$\stackrel{10}{ }{ }_{10}$	0	0	0	$\frac{0}{2}$	$\frac{0}{2}$	${ }_{80}^{80}$
S014	FM 2837	5	1.46	0	4	0	<10	0	0	0	0	0	79
$\mathrm{L}^{1} 2{ }^{4}$	Sanger Ave	-10	7.15	15	48	0	10 to 20	5	0	0	13	13	78
S045	US 84	5	0.88	0	18	0	<10	0	0	0	1	1	76
S009A	FM 2113	5	0.79	0	4	0	<10	0	0	0	1	1	75
S030	SH6	5	0.53	0	11	0	<10	0	0	0			74
5046	US 84	5	0.58	0	16	0	<10	0	0	0	3	3	73
L011	Lake Shore Dr	-10	1.32	0	31	0	<10	0	0	0	6	6	72
5028	SH317	5	0.59	0	3	0	<10	0	0	0	1	1	71
S044	US 84	5	0.91	0	11	0	<10	0	1	5	1		71
S046A	US 84	5	0.39	0	8	0	<10	0	1	5	1		71
S051	US Business 77	5	2.77	0	50	10	10 to 20	5	0	0	5	5	70
L007 ${ }^{\text {L003B }}$	Frankiin Ave	-10	8.91	15	64	10	<10	0	0	0	7		66
L003B	$\frac{\text { Chapel Rd }}{\text { FM }} 334 /$ M 3400	-10	3.46 2.41	${ }^{15}$	12	0	$\stackrel{10}{<10}$	0	0	0	2	$\frac{2}{2}$	$\frac{64}{62}$
L028	Karl May Dr	-10	2.60	0	2	0	<10	0	0		2	1	61
S036B	SH 6	5	5.45	15	6	0	<10	0	0	0	0	0	61
L019	Old Temple Rd	-10	1.58	0	3	0	<10	0	0	0	0	0	58
L022A	Ritchie Rd	-10	1.27	0	2	0	<10	0	0	0	1	1	56
S006	FM 185	5	0.59	0	6	0	<10	0		0			56
S036C	SH6	5	n/a	15	n/a	10	n/a	0	0	0	0	0	55
L018	Old McGregor Rd	-10	3.28	0	3	0	<10	0	0	0	0	0	53
${ }^{\text {S038B }}$	Speegleville Rd	0	0.35	0	2	0	<10	0	0	0	1	1	51
S038C	Speegleville Rd	0	0.35	0	2	0	<10			0	1	1	51
S0478	US 84	5	0.00	0	0	0	<10	0	0		0	0	50
S047A	US 84	5	1.50	15	23	0	<10	0	0	0	2	2	47
$\underline{0} 5$	Newland Dr	-10	0.00	0	0	0	<10	0	0	0	0	0	45
L021	Ritchie Rd	-10	0.00	0	0	0	<10	0	0	0	0	0	45
L026	Wililias Rd	-10	1.17	15	1	0	10	0	0		0	0	45
S007	FM 185 Extension	5	n/a	15	n/a	10	n/a	0	n/a	0	n/a		45
S032B	SH6	5	0.77	0	58	10	<10	0	3	15	0	4	44
L002	Beverly Dr	-10	0.80	0	1	0	0	0	0	0	0	0	40
L005B	Craven Ave	-10	5.11	15	2	0	<10	0	0		0	0	40
${ }_{5008}$	FM 185 Extension	5	n/a	15	n/a	10	n/a	0	n/a		n/a	0	40
S057	$\frac{\text { US Business } 77}{\text { McGrego Industial }}$	${ }_{-}^{5}$	1.60	15	18	0	${ }^{10}$	0	0	0	4	4	39
Le014	$\frac{\text { McGregor Industral Road }}{\text { FM } 2113}$	-10	n/a	15	$\frac{\text { n/a }}{2}$	10	$\stackrel{\text { n/a }}{\substack{10}}$	0	na	0	1	,	34

MTP 10	Facility	score	vas	score	Crash Total	score	${ }_{\text {Reatuction }}^{\text {Crash }}$	score	Fatal Crashes	score	Crashes	score	Total Score
		$\stackrel{5}{10}$	$\frac{\text { nla }}{\text { n/a }}$				$\frac{\text { nla }}{\text { na }}$		${ }_{\text {n/a }}$				
${ }^{\text {L029 }}$	Mcriegoor South evpass	-10	na										
S036		5	n/a 0.50 0.50	$\stackrel{15}{0}$	n/a 16 1	$\frac{10}{0}$	${ }_{c}^{\text {n/a }}$	0	$\frac{\text { na }}{2}$	10	$\frac{\text { na }}{2}$		
${ }^{1009}$	Hach Rd	- 10	${ }^{19,23}$	15	5	0	${ }^{10}$	0	0	0	1	1	26
-	${ }_{\text {Panter Way }}^{\text {East Loop } 30}$	5	3,77 0.24	0		0	${ }_{410}^{410}$	\bigcirc	\bigcirc	\bigcirc	0	0	
${ }^{\text {L004 }}$	County Spring Rd	-10	${ }_{2}^{220}$			0	${ }^{10}$		0		O		
+025	${ }_{\text {FW }}^{\text {Fl } 2387}$	5	\% 1.09 1.09				${ }_{610}$	$\frac{0}{0}$	0	0	0	0	
- ${ }_{\text {L023 }}$	$\frac{\text { S }}{\text { Slitht }}$ Stig	-	$\frac{11.11}{0.89}$	${ }^{15}$		\bigcirc	近	\bigcirc					

Appendix E: Highway Cost Calc ulation Methodology

Project Cost Estimations

The MPO has amended the methodology used to estimate construction costs to better reflect existing conditions. These costs reflect 2007 dollars. In addition to the following changes, each project has been given an estimated year of construction and the construction costs have been adjusted at a rate of 4% per year to reflect the effects of inflation.

Construction Costs

STEP 1 - RIGHTOF WAY PREPARATION

(Length / 100) * $\$ 1,250$

SIEP 2 - PAVEMENTREMOVAL (PERMANENT)

\{(Length * Current Width) / 9\}* $\$ 7.00$

STEP 3 - REMOVE CURB \& GUTIERS \& SEWERS

Length * $\$ 13.50$

STEP 4 - CONSTRUCTROADWAY (INCLUDES DRAINAGE) SECTION A - RRST 2 MILES

Add shoulders - $\$ 500,000$ per mile
Rec onstruction cost - $\$ 400,000$ per lane-mile
Widening - \$1,000,000 per mile for each new lane
Center Tum Lane - \$1,700,000 per mile
Widening from 2 lane to 4 lane with CTL - \$2,000,000 per mile
Replace Center Tum Lane with Median - $\$ 700,000$ per mile
Diamond Interchanges - $\$ 6,500,000$ each
New highways on new a lignments
2 la nes with shoulders - \$3,000,000 per mile
4 lanes with center tum lane - \$5,700,000 per mile
4 lanes with raised median - \$5,000,000 per mile
6 lanes with raised median - $\$ 6,000,000$ per mile
4 lane expressway, no frontage roads - $\$ 7,000,000$ per mile
4 lane expressway with frontage roads- $\$ 9,600,000$ per mile
6 lane expressway, no frontage roads - \$10,000,000 per mile
6 lane expressway with frontage roads - $\$ 12,000,000$ per mile

SECTION B - REMAINING MILES

Add shoulders - \$375,000 per mile
Rec onstruction cost - \$300,000 per lane-mile
Widening - \$750,000 per mile foreach new lane
Center Tum La ne - $\$ 1,275,000$ per mile
Replace Center Tum Lane with Median - \$525,000 per mile
New highways on new alignments
2 lanes with shoulders - \$2,250,000 per mile
4 la nes with center tum lane - \$4,275,000 per mile
4 lanes with raised median - $\$ 3,750,000$ per mile
6 lanes with raised median - \$4,500,000 per mile
4 lane expressway, no frontage roads - \$5,250,000 per mile 4 la ne expressway with frontage roads - $\$ 7,200,000$ per mile 6 lane expressway, no frontage roads - $\$ 7,500,000$ permile 6 la ne expressway with frontage roads - $\$ 9,000,000$ per mile

STEP 5 - DRAINAGE (Installation Only - No travel lane construction)

Storm Sewers
First 2 Miles
\$400,000 per mile
Remaining Miles
\$300,000 per mile
Bar Ditches- \$50,000 per mile

STEP 6 - CONSTRUCTBRIDGES AND CULVERIS

[\{(proposed width +2) * bridge length \}* 65] * number of waterfeatures Note: Bridge Length includes approaches

STEP 7 - CONSTRUCTSPECIAL BRIDGES

\{(proposed width +2) * bridge length \}* 100
Note: Bridge Length includes approaches

STEP 8 - INSTALCONTINUOUS LGHIING (URBAN)

\$140,000 per mile

STEP 9 - INSTALSAFETY UGHIING (RURAL)

\$12,000 per intersection

STEP 10-INSTAL TRA円TC SIGNALS

\$140,000 per intersection

STEP 11 - INSTAL SGGS

Arterials \& C ollec tors - \$12,500 per mile Rural Expressways - \$50,000 per mile Urban Expressways - \$100,000 per mile

STEP 12 - STRIPE ROADWAY

\$7,000 per lane-mile

STEP 13 - SW3P

$\$ 0.12$ * total of steps 1 through 12

STEP 14 - MOBILZATION

$\$ 0.12$ * total of steps 1 through 13

STEP 15-TCP

$\$ 8,000$ * construction time in months

Engineering \& Right of Way Costs

As mentioned previously, engineering costs have been estimated at 10% of the project's construction cost. Right of way, however, is signific antly more variable than engineering and requires a more refined estimation process. The following process was developed in cooperation with the Waco District of TxDOTand the results were compared to projects that have gone to construction within the last 2 years. As with construction costs, both engineering and right of way costs are adjusted by 4\% per year to reflect the effects of inflation.

STEP 1 - ESTIMATE NEC ESSARY RIGHTOF WAY WDTH

Facility Type	Area	Lanes	Median Type	Frontage Roads	Max Speed	Minimum ROW (Feet)
Collec tor Major	Rural	2	None	n/a	65	100
Collector Minor	Rural	2	None	n/a	60	100
Collector	Urban	2	None	n/a	30	60
Collector	Urban	4	CenterTum Lane	n/a	30	75
Arterial	Rural	2	None	n/a	65	100
Arterial	Urban	2	None	n/a	30	75
Arterial	Rural	4	Full Restric tive	n/a	70	150
Arterial	Urban	4	Center Tum Lane	n/a	40	90
Arterial	Urban	4	Full Restric tive	n/a	40	100
Arterial	Rural	6	Full Restric tive	n/a	70	175
Arterial	Urban	6	Full Restric tive	n/a	45	120
Arterial	Urban	8	Full Restric tive	n/a	45	150
Arterial	Urban	10	Full Restric tive	n/a	45	175
Expressway	Rural	4	Barrier	No	70	180
Expressway	Rural	4	Bamier	Yes	70	300
Expressway	Urban	4	Bamier	No	60	150
Expressway	Urban	4	Bamier	Yes	60	220
Expressway	Rural	6	Bamier	No	70	210
Expressway	Rural	6	Bamier	Yes	70	325
Expressway	Urban	6	Bamier	No	60	175
Expressway	Urban	6	Bamier	Yes	60	250
Expressway	Urban	8	Bamier	No	60	200
Expressway	Urban	8	Bamier	Yes	60	275

STEP 2 - IDENTIFY QUANIITY OF LAND USES 10 BE ACQUIRED

Assumption: Right of Way will be acquired equally from each side of the proposed centerline, unless an obvious physic al ba mier exists from acquiring right of way from one or the other side (i.e. railroad, water body, development on one side but none on the other, etc.)

STEP 3 - CALCULATE COSTS

Land Use	Cost per Square Foot
Residential	$\$ 5.00$
Office / Commercial / Industrial	$\$ 10.00$
Platted but und eveloped	$\$ 3.00$
Other development (schools, gov't, etc.)	$\$ 4.00$
Agric ultural within Urban Area	$\$ 1.00$
Agric ultural outside of Urban Area	$\$ 0.50$
All other Land Uses	$\$ 0.25$

MTP_ID	Facility	Alternate Name	From	To	Existing	Proposed	$\begin{gathered} \text { Proposal } \\ \text { Year } \end{gathered}$	Proposer	Notes
L002	Beverry Dr	n/a	New Rd	SH 6 /W Loop 340	2 lane local road	2 lane a aterial	1987	MPO	
L003A	Chapel Rd	n/a	Woodgate Dr	Ritchie Rd	2 lane local road	4 lane divided arterial	1987	Waco	
	Chapel Rd		Ritchie Rd	FM 2837 (OId Lorena Rd)	2 lane local road	4 lane divided arterial	2005	MPO	
L004	County Spring Rd	n/a	FM 2113 (Spring Valley Rd)	Wililams Rd	2 lane local road	rehabilitate road	2000	Lorena	
L005B	Craven Ave	n/a	FM 933 (Gholson Rd)	US Bus 77	2 lane local road	reconstruct road	1966	Lacy-Lakeview	High priority for Lacy-Lakeview
L006	Gateway Blvd	Formerly Flat Creek Pkwy	${ }^{1+-35}$	FM 3477 (Bagby Ave)	no existing facility	lane divided arterial with RR grade separation	2000	MPO	
L007	Frankin Ave		Valley Mills Dr	517 th St	4 lane arterial with center turn lane	Construct raised median with left turn bays	2000	MPO	Originally widened lanes to 12 fi
L008	Greig Drive	n/a	$1 \mathrm{H}-35$	US 77 (Robinson Dr)	2 lane local road	4 lane divided arterial, extend to US 77 , realign at $\mathrm{IH}-35$	2000	Robinson	
L009	Hatch Rd	n/a	${ }_{1 H-35}$	Old Bethany Rd	2 lane unpaved road	Pave road, widen to $12 \mathrm{ft} \mathrm{lanes}$,construct bridge over UP RR , realign to $\mathrm{H}-35$	2000	Lorena	
L011	Lake Shore Dr	n/a	N 19th St	Mount Carmel Dr	4 lane arterial with center turn lane	Construct raised median with left turn bays	2005	MPO	
L012	M L K ing Jr Dr	n/a	Lake Shore Dr / FM 3051	Herring Ave	2 lane arterial	4 lane divided arterial	1987	TxDOT	
	Mars Dr	n/a	Hewit Dr (FM 1695)	Texas Central Pkwy	2 lane local road	4 lane divided arterial with traffic circle at Texas Central Pkwy		MPO	New Midway HS has increased trafic
L014	McGregor IIdustrial Road	n/a	US 84	Bluebonnet Pkwy	no existing facility	4 lane divided arterial	2005	McGregor	Truck access to McGregor Industrial Park poor
L015	Memorial Drive	n/a	Loop 396 (Valley Mills Dr)	New Rd	2 lane arterial	reconstruct road	1987	Beverly Hills	Road condition very poor, important arterial
L016	18th St / 1 19th St	n/a	Homan Ave	Vivian Ave	4 lane undivided arterial	Construct raised median with left turn bays	2005	MPO	Originally added center turn lane
L017	Newland Dr	n/a	US 77 (Robinson Dr)	S 12th St Rd	2 lane local road	reconstruct road	1987	Robinson	
L018	Old McGregor Rd	n/a	FM 1695 (Hewitt Dr)	Ritchie Rd	2 lane local road	4 lane divided arterial	2000	Woodway	
L019	Old Temple Rd	n/a	$1 \mathrm{H}-35$	FM 2113 (Spring Valley Rd)	2 lane local road	4 lane divided arterial	2000	MPO	
L021	Ritchie Rd	n/a	FM 1695 (Hewewit Dr)	Panther Way	2 lane local road	4 lane divided arterial	2000	MPO	Necessary for N/S traftic between Hew \& WWy
L022A	Ritchie Rd	n/a	Panther Way	US 84 (George W Bush Pkwy)	2 lane local road	reconstruct road, eliminate offset at Panther Way	2008	Waco	
L022B	Ritchie Rd	n/a	Panther Way	US 84 (George W Bush Pkwy)	2 lane local road	4 lane divided arterial	2000	Woodway	Necessary for N/S trafic between Hew \& WWy
L023	S 12th St	S16th St	Gurley Ave	SH6/S Loop 340	2 lane local road	4 lane divided arterial, realign with S 18 th St	1987	Waco	
$\mathrm{L}^{2} 2$	Sanger Ave	n/a	Valley Mills Dr	Melrose Dr	4 lane undivided arterial	Construct raised median with left turn bays	2005	MPO	Originally added center turn lane
L025	Walnut St	n/a	FM 2417 (Crest Dr)	Craven Ave	2 lane local road	reconstruct road	2000	Citizens	
${ }^{\text {L026 }}$	Wiliams Rd	n/a	FM 2837 ((lad L Lorena Rd)	Country Spring Rd	2 lane local road	reconstruct road, add left turn lane from Old Lorena Rd to Leopard Lr	2000	Lorena	
L027	Panther Way	n/a	FM 1695 (Hewitt Dr)	Panther Run	2 lane local road	4 lane divided collector	1995	Hewitt	Originally extended to Tx Central Pkwy
L028	Karl May Dr	n/a	FM 3051 (Steinbeck Bend Dr)	Waco Reg. Airport Terminal	2 lane local road	Add landscaping, reconstruct road, realign intersection with Skeet Eason Ro	2005	WRA	Funded through Passenger Facility Charge
L029	McGregor South Bypass	n/a	US 84		No existing facility	Construct 2 lane arterial	2000	McGregor	
L030	Texas Central Pkwy	n/a	Imperial Dr (FM 3223)	UP Railraad Spur	2 lane arterial	4 lane divided arterial	2009	MPO	
L031	Bosque Blvd	n/a	N 32 nd St	N Valley Mills Dr (Loop 396)	4 \& 6 lane arterial with center turn lane	Construct raised median with leff turn bays	2009	MPO	
S001A	East Loop 340	n/a	SH6 $/$ Spur 484	Wililiams Rd	2 lane arterial	4 lane divided arterial	1966	TxDOT	Originally a full freeway section
S001B	East Loop 340	n/a	Orchard Ln	FM 2491	2 lane arterial	Construct grade separations at Orchard LN \& FM 2491	1966	TxDOT	
S002	FM 1637	China Spring Rd	FM 185 (North River Crossing)	Spur 1637	2 lane FM road	4 lane divised a arerial	2005	$\mathrm{TXDOT}^{\text {TVOT }}$	
S003A	FM 1637	China Spring Rd	FM 3055 (Steinbeck Bend Dr)	FM 2490 (Vortham Bend Rd)	2 lane FM road	4 lane divided arterial	1987	TxDOT	
S003B	FM 1637	China Spring Rd	FM 2490 (Wortham Bend Rd)	FM 185 (North River Crossing)	2 lane FM road	4 lane divided arterial	1987	TxDOT	
S004	FM 1695	Hewitt Dr	US 84 (George W Bush Pkwy)	FM 2063 (Sun Valley Dr)	4 lane arterial with center turn lane	6 lane arterial with raised median and left turn bays	1987	T×DOT/MPO	
S005	FM 1695	Hewitt Dr	FM 2063 (Sun Valley Rd)	Ritchie Rd	2 lane FM road	4 lane divided arterial	1987	TxDOT	
S006	FM 185	North River Crossing	SH 6	FM 1637 (China Spring Rd)	2 lane FM road	4 lane divided arterial	2000	TxDOT	
S007	FM 185 Extension	n/a	FM 1637 ((China Spring Rd)	FM 933 (Gholson Rd)	no existing facility	2 lane FM road	1987	McLennan County	High priority for McLennan County
S008 S009A	FM 185 Extension	n/a	FM 933 (Gholson Rd)	${ }^{1+-35}$	2 lane local road	2 lane FM road	1987	McLennan County	High priority for McLennan County
S009A	FM 2113	Spring Valley Road	FM 2416 (Cotton Belt Pkwy)	FM 2837 (Old Lorena Rd)	2 lane FM road	4 lane divided arterials	2005	TxDOT	
S0098	FM 2113	Spring Valley Road	tersection at FM 2837 (OId Lorena -	n/a	At grade intersection with traftic signals	Construct grade separation	2005	TxDOT	
S010	FM 2113	Spring Valley Road	FM 2837 ((OId Lorena Rd)	FM 1695 (Hewitt Dr)	2 lane FM road	4 lane divided arterial	2005	TxDOT	
S011 S012	FM 2113	Spring Valley Road	FM 2063 (Sun Valley Rd)	FM 1695 (Hewitit Dr)	2 lane FM road	4 lane divided arterial	1987	TXDOT	
5012	FM 2490	Wortham Bend Rd	FM 1637 (China Spring Rd)	Garrett Lane	2 lane FM road	4 lane divided arterial	2005	TxDOT	
S014	FM 2837	Old Lorena Road	1H-35	Pilgrim Ln	2 lane FM road	4 In arterial, realign, RR grade separation	2005	TxDOT	
S015 S017	FM 2837	Rosenthal Pkwy	${ }_{1+35}^{1+35}$	Southwinds Dr	2 lane FM road	realign to elminate offset at $11-35$	2000	TxDOT	orignially extended to US 77
S017 S018	FM 3051	$\frac{\text { Steinbeck Bend Dr }}{\text { Old Temple Road }}$	$\frac{\text { FM } 1637 \text { (China Spring Rd) }}{\text { FM } 2063 \text { (Sun Valley Rd) }}$	$\frac{\text { Lake Shore Dr / M L K king Jr Dr }}{\text { Texas Central Pkwy }}$	$\frac{2 \text { lane FM road }}{2 \text { lane FM road }}$	$\frac{4}{4}$ ane divided arterial	2000 2000	${ }_{\text {T }}^{\text {T } \times \text { DOT }}$	
5019	FM 434/ FM 3400	S Univ Parks Dr	US Bus 77 (Lasalle Ave)	SH6/S Loop 340	2 lane FM road	4 lane divided arterial	1987	Waco	
S021	FM 933	Gholson Rd	FM 308 (W Elm Mott Dr)	Fort Graham Rd	2 lane FM road	4 lane divided arterial	2000	TxDOT	
S023	Loop 396	Bosque Blvd	Rambler Dr	Valley Mills Dr	4 lane undivided arterial	Construct raised median with left turn bays	2005	MPO	Originally added center turn lane
S025	Loop 396	Valley Mills Dr	Cobbs Dr	Bagby Ave	$6 \& 8$ lane arterial	Construct raised median with left turn bays	2005	TxDOT	
S026 S028	Loop 574	ML K King Jr Dr	${ }_{1}^{1 H-35}$	Spur 484	no existing facility	4 lane divided with grade separation at US Business 77	1966	TxDOT	
S028 S029	SH317	S Lone Star Pkwy	W 11th St	FM 2671 (Mother Neff Pkwy)	2 lane arterial	4 lane divided arterial	2000	TXDOT	
S029	SH 317	NLone Star Pkwy	US 84 (George W Bush Pkwy)	FM 3047 (New Windsor Pkwy)	2 lane arterial	4 lane divided arterial	2000	TxDOT	
S030	SH6	n/a	Bosque / McLennan County Line	Compton Rd	2 lane arterial	Construct passing lanes and left turn bays	2009	MPO	Originially construct 4 lane divided
S031A	SH6	n/a	Lady Bird Rd	Spur 412 / Dosher Ln	2 lane arterial	4 lane freeway with frontage roads	2000	TxDOT	
S031B	SH6	n/a	Compton Rd	Lady Bird Rd	2 lane arterial	4 lane divided arterial	2000	TxDOT	
S032A	SH6	n/a	Spur 412 / Dosher Ln	Lake Waco	4 lane freeway with 2 -way frontage roads	Convert 2 -way frontage rds to 1 -way \& replace Lk Waco Bridges	2009	MPO	
S0328	SH6	n/a	Spur $412 /$ D osher Ln	US 84 (West Waco Dr)	4 lane freeway	6 lane freeway	2000	TxDOT	
S033 S034A S03	SH6	W Loop 340	$\frac{\text { Intersection at US } 84 \text { \& Spur } 298}{1 H-35}$	US 84 (West Waco Dr)	multi-lvel limited access interchange	Construct direct connection ramp from NB SH 6 to WB US 84	$\frac{2009}{2009}$	T×DOT	
S034B	SH 6	W Loop 340	${ }_{1+-35}$	US 84 (West Waco Dr)	lane freeway with discontinuous 1 -way frontage road	6 lane freeway	2000	TxDOT	
S035	SH6	South Loop 340	$1 \mathrm{H}-35$	US 77 (Robinson Dr)	4 lane arterial with grade separation at US 77	4 lane freeway with frontage roads	1987	TxDOT	
S036A	SH6	South Loop 340	Brazos River	SH $6 /$ Spur 484	2 lane arterial	4 lane divided arterial	2005	TXDOT	Part 1 of 3
S036B	SH6	South Loop 340	$\frac{\text { Intersection at SH } 6 / \text { Spur } 484}{\text { Brazos River }}$	$\frac{\text { H/a }}{\text { SH6 }}$	$\frac{\text { Standard Diamond Interchange }}{\text { No existing direct connection ramps }}$	$\frac{\text { Construct Loop } 340 \text { bridge over Spur 484 }}{\text { 4struct }}$	$\frac{2005}{2005}$	$\frac{\text { TxDOT }}{\text { TxDOT }}$	Part 2 of 3
S038A	Speegleville Rd	FM 2837 Extension	US 84 (George W Bush Pkwy)	Middle Bosque River	2 lane local road	Widen to 4 lane divided arterial	2009	MPO	
0388	Speegleville Rd	FM 2837 Extension	Midalle Bosque River	SH6	2 lane local road	Reconstruct existing road, realign with FM 185	2005	TxDOT	Part 1 of 2
S038C	Speegleville Rd	FM 2837 Extension	Middle Bosque River	SH6	2 lane local road	Widen to 4 lane divided arterial	2000	TxDOT	Part 2 of 2
S039A	Spur 298	${ }_{\text {Frankin }}$ West Waco	$\xrightarrow{\text { New Rd }}$	Lake Air Dr	4 lane divided arterial with frontage roads	ve frontage roads, widen to 6 lanes, add u-turn bays, reconstruct New Rd interd	2005	Waco	
S0398	US 84	West Waco Dr	htersection at Spur 298 (Franklin Av	n/a	Partial grade separated interchange	Construct braided ramps with u-turn before SH 6	2000	TxDOT	
S040	SH 130	n/a	McLennan / Falls County Line	McLennan / Hill County Line	no existing facility	4 lane toll freeway with 2 additional dedicated truck lanes	2009	TxDOT	exact alignment not determined
S041	US 77	Robinson Dr	Waco Traffic circle	SH $6 / \mathrm{SLLOop} 340$	4 lane arterial with center turn lane	Construct raised median with left turn bays	2005	MPO	Originally widened to 6 lanes
S042 S043	US 77	$\frac{\text { Robinson Dr }}{\text { n/a }}$	$\frac{\text { SH } 6 / \text { L Loop 340 }}{}$	$\frac{\text { FM } 3148 \text { (Moonlight Dr) }}{}$	4 lane arterial with center turn lane 2 lane arterial	Construct raised median with left turn bays	$\frac{2005}{1987}$	${ }_{\text {Tx }}^{\text {MPOOT }}$	Originally widened to 6 lanes
S044	US 84	n/a	N Johnson Dr	Coryell / Mclennan County Line	2 lane arterial	Construct passing lanes and left turn bays	2009	MPO	Originilly construct 4 lane divided
S045	US 84	George W Bush Pkwy	FM 2188 (Cotton Belt Pkwy)	SH317	4 lane divided arterial	4 lane freeway with frontage roads	2000	TxDOT	

MTP ID	Facility	Alternate Name	From	то	Existing	Proposed	${ }_{\text {coser }}^{\substack{\text { Proposal } \\ \text { Year }}}$	Proposer	Notes
S046A	US 84	George W E Bus phay	Sosoue Lane		$\frac{4 \text { lane diviedea areial }}{4 \text { lane }}$	$\frac{4 \text { lane freeeay witht fornage roads }}{4 \text { ane }}$	${ }^{2000}$	$\frac{\mathrm{T} \times \text { OOT }}{\text { TVOOT }}$	
	US84	George W Wush phyy		FM 16959 (Hene	4 4anate teeney		$\stackrel{\text { 2000 }}{2000}$	${ }_{\text {T }}^{\text {T }}$ T \times OT	
¢5048	US 84	$\frac{\text { George W Buss phay }}{\text { Genge }}$		FM 1695 (Henitit ${ }^{\text {d }}$	Standard lane fieeweny	Wdien to 6 ane treeway ${ }^{\text {a }}$			
							${ }^{2009}$	$\underset{\text { TxPoot }}{\text { M }}$	
${ }^{\text {S052 }}$			Intersection at Lake Shore or	Valey ${ }_{\text {alils }}$	A A Craad iniersection	Consturctraficic irice	${ }^{2009}{ }_{1065}$	Waro	
S054	US 84	East Waco or	Dalas St		4 lane diviceda areial	$\frac{6 \text { lane divided areial }}{4 \text { ane divided aneeral }}$	${ }^{1966}$	Waco	
	${ }_{\text {FM } 1858}$	Tokio Rd/ / S Main St	${ }_{1}^{1+35}$		2 lane locat toad	2 lane FM read, constuctut overapass at UP RR	${ }^{20009}$	MPo	
	${ }^{\text {US }}$ Usuness 7	$\underset{\text { East Waco br }}{ }$						MPO	
${ }^{\text {S0059 }}$	$\frac{\mathrm{US} 84}{\text { FM } 107 \text { Prpass }}$	$\frac{\text { Belmead or }}{\text { na }}$	$\frac{\text { Inersection a a A Avaion Pruw }}{\text { Bue Cut }}$	${ }_{\text {Doss }}^{\text {din }}$		$\frac{\text { Construct gade separaion }}{\text { Constuct } 2 \text { ane }}$ FMRoad	$\xrightarrow{2009}$	$\frac{\text { Ixoor }}{\text { MPO }}$	

Appendix F

MTP_ID	Facility	Length (mi)	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Proposed } \\ \text { Lane-Miles } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \begin{array}{c} \text { Current Pavement } \\ \text { Width (tt) } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Urban } \\ \text { Rural } \end{array}$	$\begin{array}{\|c\|} \hline \text { ROW } \\ \text { Preparation } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Pavement } \\ \hline \text { Removal Cost } \end{array}$	$\begin{array}{\|c\|} \hline \text { Remove Curb } \\ \text { \& Gutter } \\ \hline \end{array}$	$\begin{aligned} & \text { Construct } \\ & \text { Rooad } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Construct } \\ \text { Storm Sewer } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Construct } \\ \text { Bridges } \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline \text { Construct } \\ \text { Special Bridges } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Urban Street } \\ \text { Lights } \end{array}$	$\begin{array}{c\|} \hline \text { Rural Safety } \\ \text { Lights } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Traffic } \\ & \text { Signals } \\ & \hline \end{aligned}$	Signs	Striping	Total (1-12)	sw3p	Total ($13+14$)	Mobilization	TCP	Total Construction Cost
L002	Beverly Dr	1.100	2.230	24	U	\$0	\$108,416	\$0	\$892,000	\$55,000	\$0	\$0	\$154,000	90	\$0		\$15,610	\$1,238,776	\$148,653	\$1,387,429	\$166,491	996,000	\$1,649,92
L003A	Chapel Rd	1.000	4.000	24	U	\$66,000	\$98,560	1,280	\$2,000,000	\$400,000	\$0	90	\$140,000	\$0	80,000	\$12,500	\$28,000	\$3,096,340	\$371,561	\$3,467,901	\$416,148	996,000	\$3,980,049
L003B	Chapel R d	2.310	9.240	24	R	\$152,460	\$227,674	\$164,657	\$4,620,000	\$115,500	\$0	\$0	\$0	\$72,000	\$0	\$28,875	\$64,680	\$5,445,845	\$653,501	\$6,09,347	\$731,922	\$144,000	\$6,975,268
L004	Ountr Spring Rd	4.000	8.000	24	R	\$0	\$394,240	\$0	\$3,200,000	\$200,000	\$0	\$0	\$0	\$60,000	\$0	\$50,000	\$56,000	\$3,960,240	\$475,229	\$4,435,469	\$532,256	\$96,000	\$5,063,725
L005B	Craven Ave	0.929	1.858	20	U	\$0	\$76,302	\$0	\$743,200	\$371,600	\$0	\$0	\$130,060	\$0	\$0	\$11,613	\$13,006	\$1,345,780	\$161,494	\$1,507,274	\$180,873	\$96,000	\$1,784,147
L006	Gateway Blvd	0.863		New	U	\$56,958		\$0	\$4,919,100	\$345,200	20,000	\$0	\$120,820	\$0	40,000				\$736,444		\$824,817		
L007	Frankiin Ave	1.778	7.112	52	,	\$117,348	\$87,620	\$126,736	\$1,244,600	\$88,900	50	\$0	\$248,920	So	\$0	\$0	\$49,784	\$1,963,908	\$235,669	\$2,19, 977	\$263,949	\$64,000	\$2,527,526
L008	Greig Drive	${ }^{3.538}$	14.152	24	U	\$233,508	\$348,705	\$0	\$9,621,500	\$1,415,200	\$520,000	\$0	\$224,000	\$24,000	\$140,000	\$44,225	\$99,064	\$12,670,202	\$1,520,424	\$14,190,627	\$1,702,875	\$192,000	\$16,085,502
L009	Hatch Rd	${ }^{1.1299}$	2.258	24	R	\$0	\$0	\$0	\$2,819,100	\$56,450	\$286,000	\$1,430,000	\$0	\$36,000	\$0	\$14,113	\$15,806	\$4,657,469	\$558,896	\$5,216,365	\$625,964	\$128,000	\$5,970,328
L011	Lake Shore Dr	${ }^{3.750}$	15.000	65	U	\$247,500	\$184,800	\$267,300	\$2,625,000	\$187,500	\$0	\$0	\$525,000	\$0	\$0	\$0	\$105,000	\$4,142,100	\$497,052	\$4,639,152	\$556,698	\$64,000	\$5,259,850
L012	M L K King Jr Dr	1.783			U	\$117,678	\$175,732	50	\$3,566,000	\$713,200	\$0	145,000	\$249,620	\$0	\$0			\$7,039,442		87,884,175	\$946,101		\$8,958,276
L013	Mars Dr	0.948	3.792	24	,	\$62,568	\$99,435	\$0	\$1,896,000	\$379,200	\$429,000	\$0	\$132,720	\$0	\$0	\$11,850	\$26,544	\$3,031,317	${ }^{\text {¢ }} 363,7588$	83,395,075	${ }^{\text {¢ } 407}$ 7,409	996,000	\$3,898,484
L014	McGregor Industrial Road	1.648	${ }^{3.296}$	New	R	\$108,768	\$0	\$0	\$4,944,000	\$82,400	\$143,000	\$0	\$0	\$48,000	40,000	\$20,600	\$23,072	\$5,509,840	\$661,181	\$6,171,021	\$770,522	\$96,000	\$7,007,543
L015	Memorial Drive	1.146	2.292	24	U	\$75,636	12,950	\$0	\$916,800	\$458,400	\$0	\$0	\$160,440	\$0	${ }^{\text {so }}$	\$14,325	\$16,044	\$1,754,595	\$210,551	\$1,965,146	\$235,818	\$96,000	\$2,296,964
L016	N 18 th St / N 19th St	1.916	7.664	48	U	\$126,456	\$0	\$0	\$3,257,200	\$766,400	\$0	\$0	\$268,240	\$0	\$0	\$23,950	\$53,648	\$4,495,894	\$539,507	\$5,035,401	\$604,248	996,000	${ }^{55,735,649}$
L017	Newland Dr	1.419	2.838		U	\$93,654	\$128,202	\$0	\$1,135,200	\$567,600	\$0	\$0	\$198,660	\$0	\$0		\$19,866	\$2,160,919	\$259,310	82,420,230	\$290,428		\$2,806,657
L018	Old McGregor Rd	1.246	4.984	22	U	${ }^{\$ 82,236}$	\$112,572	\$0	\$2,492,000	\$498,400	\$0	\$0	\$174,440	\$0	\$140,000	\$15,575	\$34,888	\$3,550,111	\$426,013	\$3,976,124	\$477,135	996,000	\$4,549,259
L019	Old Temple Rd	1.766	7.064	24	U	\$116,556	\$174,057	\$0	\$3,532,000	\$700,400	\$442,000	\$0	\$247,240	\$0	\$0	\$22,075	\$49,448	\$5,289,776	\$634,773	\$5,924,549	\$710,946	\$96,000	\$6,731,495
L021	Ritchie Rd	2.248	${ }^{8.992}$	${ }^{22}$	U	\$113,586	\$155,487	${ }_{\text {\$0 }}$	\$4,496,000	\$899,200	\$221,000	\$0	\$42,000	\$48,000	\$0	\$28,100	\$62,944	\$6,066,317	\$727,958	\$6,794,275	\$815,313	\$96,000	\$7,705,588
L022A	Ritchie Rd	1.836	3.672	22	U	\$121,176	\$165,876	\$0	\$2,093,600	\$734,400	\$0	\$0	\$257,040	\$0	40,00	\$22,950	\$25,704	\$3,560,746	\$427,290	\$3,988,036	\$478,564	\$96,000	\$4,562,600
L022B	Ritchie Rd	1.836	7.344	24	U	\$121,176	\$0	\$0	\$1,836,000	\$367,200	\$0	\$0	\$0	\$0		\$22,950	\$25,704	\$2,373,030	\$284,764	\$2,657,794	\$318,935	\$96,000	\$3,072,729
L023	S 12th St	1.495	5.980	24	U	\$98,670	\$67,218	\$0	\$2,990,000	\$598,000	\$221,000	\$0	\$56,000	\$12,000	\$280,000	18,6	\$41,860	\$4,383,435	\$526,012	\$4,909,448	\$589,134	\$96,000	\$5,594,581
L024	Sanger Ave	1.427	5.708	44	U	\$94,182	\$70,323	\$101,717	\$998,900	\$570,800	\$0	\$0	\$199,780	\$0	\$0	\$17,888	\$39,956	\$2,093,495	\$251,219	\$2,344,714	\$281,366	\$64,000	\$2,690,080
L025	Walnut St	${ }^{0.682}$	1.364	${ }^{36}$	U	${ }_{\text {\$45,012 }}$	\$100,827	\$48,613	\$545,600	\$272,800	\$0	\$0	\$95,480	\$0	${ }^{\$ 0}$	\$8,525	\$9,548	\$1,126,405	\$135,169	\$1,261,573	\$151,389	\$64,000	\$1,476,962
L026	Wililiams Rd	1.179	2.358	22	R	\$77,814	\$106,519	\$0	\$1,517,800	\$135,200	\$0	\$0	\$47,320	\$12,000	\$0	\$14,738	\$16,506	\$1,927,896	\$231,348	\$2,159,244	\$259,109	\$72,000	\$2,490,353
L027	Panther Way	0.585	2.340	24	U	\$38,610	\$57,658	\$0	\$1,170,000	\$234,000	\$442,000	\$0	\$81,900	\$0	\$0	\$7,313	\$16,380	\$2,047,860	\$245,743	\$2,293,603	\$275,232	\$96,000	\$2,664,836
L028	Kar May Dr	1.032	2.064	24	U	\$68,112	\$101,714	\$0	\$825,600	\$412,800	\$0	\$0	\$144,480	\$0	\$140,000	\$12,900	\$14,448	\$1,720,054	\$200,406	\$1,926,460	\$231,175	\$72,000	\$2,229,636
L029	McGregor South Bypass	2.082	4.164	New	R	\$137,412	\$0	\$0	\$6,246,000	\$104,100	90,000	\$0	\$0	\$48,000	\$140,000	\$26,025	\$29,148	\$7,720,685	\$926,482	\$8,647,167	\$1,037,660	\$128,000	\$9,812,887
L030 L031	Texas Central Pkwy	0.300 1934	${ }^{1.200}$	${ }_{73}^{24}$	U	\$19,800	\$29,568 $\$ 579787$	\$21,384	\$600,000	\$120,000	\$0	\$0	\$42,000 $\$ 270760$	\$0	\$0	${ }_{\text {¢ }}^{\text {¢ }}$ \$24,750	\$8,400	\$844,902	\$101,388	${ }_{\text {¢ }}^{\text {\$946,290 }}$	${ }_{\text {S1325 }}$ \$1355	${ }^{\text {\$128,000 }}$	\$1,187,845
S001A	East Loop 340	3.483	13.932	24	U	\$229,878	\$343,284	\$0	\$16,224,500	\$1,244,900	\$0	${ }_{\text {\$0 }}$	\$210,000	\$36,000	\$140,000	\#\#\#\#\#\#\#\#	${ }_{\text {S } 977,524}$	\$5,7,70,236	\$2,044,028	${ }_{\text {S } 9,744,265}$	${ }_{\text {S1, } 169,312}$	${ }^{\text {P144,000 }}$	${ }_{\text {¢11,057,577 }}$
S001B	East Loop 340	n/a	n/a	24	U	\$66,000	\$0	\$0	\$13,000,000	\$0	\$0	\$0	\$140,000	\$0	\$140,000	\#\#\#\#\#\#1)	\$17,500	\$13,463,500	\$1,615,620	\$15,079,120	\$1,809,494	\$192,000	\$17,080,614
S002	FM 1637	3.091	12.364	24	U	\$204,006	\$304,649	\$0	\$5,636,500	\$154,550	221,000	\$0	\$432,740	\$0	\$140,000	\$38,638	\$86,548	\$7,218,630	\$866,236	\$8,084,866	\$970,184	128,000	\$9,183,050
S003A	FM 1637	2.037	${ }^{8.148}$	24	U	\$134,442	\$200,767	\$0	\$4,000,000	\$800,000	0	\$0	\$285,180	\$0	\$140,000	\$25,463	\$57,036	\$5,642,887	\$677,146	\$6,320,034	\$758,404	\$144,000	\$7,222,438
S003B	FM 1637	3.228	12.912	24	U	\$213,048	\$318,152	\$0	\$7,342,750	\$1,468,400	\$221,000	S	\$451,920	\$0	${ }^{\$ 0}$	\$40,350	\$90,384	\$10,146,004	\$1,217,520	\$11,363,524	\$1,363,623	\$144,000	\$12,871,147
S004	FM 1695	2.650	15.900	60	U	\$174,900	\$652,960	\$0	\$4,975,000	\$995,000	\$741,000	\$0	\$371,000	\$0	\$0	\$33,125	\$111,300	\$8,054,285	\$966,514	\$9,020,799	\$1,082,496	8128,000	\$10,231,295
S005	FM 1695	${ }^{1.365}$	2.730 1745	24	U	\$90,090	\$134,534	\$0	\$2,730,000	\$546,000	\$331,500	\$0	\$191,100	\$0	\$140,000	\$17,063	\$19,110	\$4,199,397	\$503,928	\$4,703,325	\$564,399	\$96,000	\$5,363,723
S006	FM 185	4.363	17.452	24	R	\$287,958	\$430,017	\$0	\$7,544,500	\$218,150	\$442,000	\$12,614,000	\$168,000	¢60,000	\$0	\$54,5	\$122,164	\$21,941,327	\$2,632,959	\$24,574,286	\$2,948,914	192,000	\$27,715,200
5007	FM 185 Extension	7.490	14.980	New	R	\$494,340	\$0	\$0	\$18,352,500	\$374,500	\$286,000	\$10,252,000	\$0	\$96,000	\$140,000	\$93,625	\$104,860	\$30,193,82	\$3,623,259	\$33,817,084	\$4,058,050	8240,000	\$38,115,134
5008	FM 185 Extension	4.862	${ }^{1.724}$	New	R	\$320,892	\$0	\$0	\$12,439,500	\$243,100	\$286,000	\$0	\$0	\$84,000	\$140,0	\$60,775	\$68,068	\$13,642,3	\$1,637,080	15,279,415	1,833,530	5160,000	\$17,272,945
S009A	FM 2113	3.411	13.644	24	R	\$225,126	\$336,188	\$0	\$6,116,500	\$170,550	\$773,500	\$0	\$112,000	\$60,000	\$140,000	\$42,638	\$95,508	\$8,072,010	\$988,641	99,040,651	\$1,084,878	\$144,000	\$10,269,529
S009B	FM 2113	n/a	n/a	24	R	\$33,000	\$0	\$0	\$6,50,000	\$0	\$0	\$0	\$70,000	\$0	\$140,000	\$50,000	\$8,750	\$6,801,750	\$816,210	\$7,617,960	\$914,155	\$144,000	\$8,676,115
S010	FM 2113	2.097	8.388	24	U	\$138,402	\$200,680	\$0	\$4,194,000	\$838,800	\$331,500	\$0	\$293,580	\$0	\$0	\$26,213	\$58,716	\$6,087,891	\$730,547	\$6,818,438	\$818,213	\$96,000	\$7,732,650
5011	FM 2113	2.525	10.100	24	U	\$166,650	\$248,864	\$0	\$4,787,500	\$957,500	\$884,000	\$0	\$353,500	\$0	s0	\$331,563	\$70,700	\$7,50, 277	\$900,033	\$8,400,310	\$1,008,037	\$99,000	\$9,504,347
5012	FM 2490	5.508	22.032	24	R	\$363,528	\$542,868	\$0	\$9,262,000	\$275,400	\$1,215,500	${ }^{50}$	\$70,000	\$156,000	\$140,000	568,850	\$154,224	12,248,370	\$1,469,804	2181	\$1,646,181	\$144,000	\$15,508,356
S014	FM 2837	1.381	5.524	24	U	\$91,146	\$136,111	\$0	\$2,762,000	\$552,400	\$986,000	\$0	\$193,340	50	\$140,000	\$17,263	\$38,668	\$4,916,928	\$590,031	\$5,506,959	\$660,835	\$96,000	\$6,263,794
5015	FM 2837	$\underline{2.860}$	5.720	24	,	\$188,760	\$281,882	\$0	\$7,935,000	\$143,000	\$0	\$0	\$0	\$60,000	\$0	\$35,750	\$44,040	\$8,884,432	\$1,042,132	\$9,726,563	\$1,167,188	\$128,000	\$11,021,751
S017	FM 3051	2.774	${ }^{11.096}$	24	U	\$183,084	\$273,405	\$0	\$5,161,000	\$1,032,200	\$0	\$0	\$388,360	\$0	\$0	\$34,675	\$77,672	\$7,150,396	\$858,048	\$8,008,444	\$961,013	8128,000	\$9,097,457
5018	FM 3476	2.222	8.888	24	U	\$146,652	\$219,000	\$0	\$4,333,000	\$866,600	\$663,000	\$0	\$311,080	\$0	\$140,000	\$27,775	\$62,216	\$6,769,323	\$812,319	\$7,581,642	\$909,797	\$96,000	\$8,587,439
S019	FM 434/ FM 3400	2.205	8.820	24	U	\$145,530	\$217,325	\$0	\$4,307,500	\$861,500	\$442,000	\$0	\$308,700	\$0	\$140,00	\$27,563	\$61,740	\$6,511,857	\$781,423	87,293,280	\$875,194	\$96,000	\$8,264,474
5021	FM 933	1.616	6.464	24	U	\$106,656	\$159,273	\$0	\$3,232,000	\$80,800	\$221,000	\$0	\$0	\$84,000	\$0	\$20,200	${ }_{\text {\$45, 248 }}$	\$3,949,177	\$477,901	\$4,423,078	\$530,769	\$96,000	\$5,049,848
5023	Loop 396	${ }^{0.808}$	3.232	48	U	\$53,328	\$159,273	\$57,594	\$565,600	\$323,200	\$0	\$0	\$113,120	\$0	\$0	\$10,100	\$22,624	\$1,304,839	\$156,581	\$1,461,420	\$175,370	\$48,000	\$1,684,790
S025	Loop 396	3.860	${ }^{26.337}$	69	U	\$254,760	\$190,221	\$0	\$1,862,000	\$1,064,000	\$0	\$0	\$540,400	\$0	\$0	\$48,250	\$184,359	\$4,143,990	\$497,279	\$4,641,269	\$556,952	\$96,000	\$5,294,221
5026	Loop 574	${ }^{1.366}$	5.464	24	U	\$90,156	\$146,683	\$106,083	\$6,833,000	\$546,400	\$331,500	\$0	\$191,240	\$0	\$140,000	\$34,150	\$38,248	\$8,454,460	\$1,014,535	\$9,468,995	\$11,136,279	\$128,000	\$10,000,000
$\begin{array}{r}\text { S028 } \\ \hline 8029 \\ \hline\end{array}$	SH317	2.333	${ }^{9.332}$	24	U	\$155,978	\$229,940	${ }_{\text {\$0 }}$	\$4,499,500	\$116,650	${ }^{\$ 663,000}$	\$0	\$0	\$72,000	\$0	\$29,163	\$65,324	\$5,829,555	\$699,547	\$6,529,102	\$783,492	\$96,000	\$7,408,594
S029 S030	$\frac{\text { SH317 }}{\text { SH6 }}$	0.870 3.750	$\frac{3.480}{\text { n/a }}$	${ }_{24}^{24}$	U	$\frac{\text { ¢57,420 }}{\$ 247,500}$	$\xrightarrow{\$ 855,747}$	\$0	\$1,740,000 $\$ 3,750,000$	$\frac{\$ 348,000}{\$ 187,500}$	$\frac{\$ 221,000}{\$ 0}$	${ }_{\text {S0 }}{ }_{\text {So }}$	$\frac{\$ 121,800}{\$ 0}$	$\stackrel{\text { ¢0 }}{\text { ¢ }}$	$\frac{\text { \$140,000 }}{\text { So }}$	\$10,875	${ }_{\text {\$24,360 }}$	\$2,749,202	S329,904	\$3,079,106	${ }_{\text {\$369,493 }}$ \$640,312	\$64,000	\$3,512,599 $\$ 6,024,244$
S031A	SH6	${ }^{3} .5440$	6.160	24	R	${ }^{\text {¢ }}$	\$151,782	\$0	\$9,580,000	\$102,000	\$221,000	${ }_{\text {\$0 }}$	\$70,000	\$0	${ }^{\text {\$0 }}$	\$77,000	\$51,870	\$10,355,292	\$1,242,635	\$11,597,927	\$1,391,751	\$144,000	\$13,133,679
S031B	SH6	2.895	11.580	24	R	\$191,070	\$285,331	\$0	\$5,342,500	\$144,750	\$663,000	\$0	\$0	\$84,000	\$0	\$36,18	\$78,750	\$6,825,589	\$819,071	\$7,644,659	\$9917,359	\$144,000	\$8,706,018
S032A	SH6	5.024	37.321	96	R	\$331,584	\$0	\$0	\$3,156,500	\$177,100	\$0	\$20,808,000	\$0	\$216,000	\$140,00	\$44,275	\$24,794	\$24,898,253	\$2,987,790	\$27,886,043	\$3,346,325	\$192,000	\$31,424,369
${ }_{\text {S0323 }}$	SH6	7.462	71.749	96	R/U	\$492,492	\$1,470,909	\$0	\$12,193,000	\$373,100	\$975,000	\$0	\$0	\$0	\$0	\#\#\#\#\#\#\#	\$313,404	\$16,191,005	\$1,942,921	\$18,133,9	\$2,176,071	\$144,000	\$20,453,997
S033	SH6	nterchange	Interchange	New	U	\$99,000	\$0	$\frac{\$ 0}{50}$	\$0		\$0	\$8,190,000	\$210,000	\$0			\$21,000			$\frac{99,626,400}{\text { \$7720 }}$	${ }_{\text {S1,1,15, ,168 }}^{192}$	${ }^{\text {\$128,000 }}$	\$10,909,568
S034A	SH6	2.635 2.635	10.540 15.810	${ }_{48}^{48}$	U	$\underset{\text { \$173,910 }}{\$ 173,910}$	\$259,706 $\$ 519,411$	\$0	\$1,000,000	$\stackrel{\$ 0}{\$ 990,500}$	$\xrightarrow{\$ 4,704,000}$	\$0	\$368,900 $\$ 368,900$	\$0	$\frac{\$ 280,000}{\$ 0}$	S32,988	${ }_{\text {\$110, }}^{\text {\$780 }}$		${ }_{\text {¢ }}^{\text {\$827,1,1128 }}$	${ }_{\text {S }}^{\text {\$15,720,4821,678 }}$	${ }_{\text {\$1, }}^{\text {\$9604,451 }}$	\$128,000	
S035	SH6	1.721	13.768	48	U	\$113,586	\$339,244	\$0	\$10,326,000	\$688,400	\$2,268,000	\$0	\$240,940	\$0	\$280,000	\#\#\#\#\#\#	\$96,376	\$14,524,646	\$1,742,957	\$16,267,603	$\frac{\text { \$1,952,112 }}{}$	\$144,000	$\stackrel{\text { ¢18,363,715 }}{ }$
S036A	SH6	0.840	3.360	24	U	\$55,440	\$82,790	\$0	\$1,680,000	\$336,000	\$1,134,000	\$3,255,000	\$117,600	\$0	\$280,000	\$84,00	\$23,520	\$7,048,350	\$845,802	\$7,894,152	\$947,298	8128,000	\$8,969,451
S036B	SH6	${ }^{0.303}$	1.212	48	U	${ }_{\text {S19,998 }}$	\$599,727	\$0	\$0	\$121,200	334,000			\$0			\$8,484	\$5,616,129	\$673,936	\$6,290,065	\$754,808	\$128,000	\$7,172,873
S036C S038A	$\underset{\text { Speegleville }}{\text { Sd }}$	0.625 1.384	2.500 5.536 1	$\frac{\mathrm{New}}{24}$	U	¢ ${ }_{\text {¢41,250 }}^{\text {S91344 }}$	$\stackrel{\$ 0}{\$ 1136407}$	${ }_{\text {\$0 }}^{\text {so }}$	$\frac{\$ 0}{\$ 2} 768000$	$\stackrel{\$ 0}{\$ 553.600}$	$\frac{\$ 0}{\$ 240,500}$	${ }_{\text {\$15,750,000 }}^{\text {So }}$	$\stackrel{\text { ¢87,500 }}{\text { S193, } 760}$	${ }_{50}^{\text {s0 }}$	$\xrightarrow{\text { S140,000 }}$	\$62,500	${ }_{\text {\$17,500 }}$	$\frac{\$ 15,988,750}{\$ 4,17963}$	$\frac{\text { \$1,915,050 }}{\text { S50,560 }}$	${ }_{\text {\$17,873,800 }}{ }^{\text {S4,681,223 }}$	$\frac{\$ 2,144,856}{\$ 561747}$	${ }^{\text {\$128,000 }}$	$\frac{\$ 20,146,656}{\$ 5338969}$
S0388	Speegleville Rd	6.297	12.594	24	R	\$415,602	\$240,800	\$0	\$12,043,000	\$0	${ }_{\text {\$468, }}$	\$3,288,000	${ }_{\text {So }}$	\$180,000	\$140,000	\$78,713	\$88,158	\$16,942,273	\$2,033,073	\$18,975,345	\$2,277,041	\$144,000	${ }_{\text {\$21,396,38 }}$
S038C	Speegleville Rd	6.297	25.188	24	R	\$415,602	\$0	\$0	\$15,668,250	\$0	\$409,500	\$2,877,000	\$0	\$180,000	\$0	\$78,713	\$176,316	\$19,805,3	\$2,376,646	\$22,182,02	\$2,661,843	144,000	\$24,987,8
39A	Spur 298	0.724	4.344	96	U	\$47,784	\$285,430	\$0	\$1,737,600	\$289,600	\$0	\$0	\$101,360	${ }^{\$ 0}$	\$140,000	\$9,050	\$30,408	\$2,641,232	\$3176,948	\$2,958,180	\$354,982	\$64,000	\$3,377,161
S0398	US 84	${ }^{0.781} 30.080$	6.248 180.480	$\stackrel{96}{\text { New }}$	U	\$551,546	$\frac{\$ 106,400}{\$ 0}$	${ }_{\text {\$0 }}^{\$ 0}$	\$2,160,000	$\xrightarrow{\text { \$1,504000 }}$	\$3,892,000	$\xrightarrow{\$ 29.520 .000}$	\$109,340	${ }_{\text {S0 }}^{\$ 0}$	$\frac{\$ 0}{\$ 420.000}$	\$78,100		$\frac{\$ 6,441,122}{}$	$\stackrel{\text { \$772,935 }}{\$ 37,066,517}$	$\frac{87,214,057}{}$	$\stackrel{\text { ¢865,687 }}{\text { ¢41,514,499 }}$	\$96,000	$\begin{array}{r}\text { \$88,175,743 } \\ \$ 387,966,656 \\ \hline\end{array}$
S041	US 77	1.767	7.068	60	U	\$116,622	\$435,389	\$0	\$1,236,900	\$706,800	\$0	\$0	${ }_{\text {¢ } 247,380}^{\text {S }}$	\$0	\$0	\$22,088	\$49,476	\$2,814,654	\$337,759	\$3,152,413	\$378,290	\$64,000	¢ ${ }_{\text {S, }, 5954,702}$
S042	US 77	2.842	11.368	60	U	\$187,572	\$700,269	\$0	\$1,989,400	\$1,136,800	\$0	\$0	\$397,880	\$0	\$0	\$35,525	\$79,576	\$4,527,022	\$543,243	\$5,070,264	\$608,432	\$80,000	\$5,758,696
S043	US 77	2.904	11.616	24	R	\$191,664	\$286,218	\$0	\$5,356,000	\$145,200	\$858,000	\$0	\$0	\$96,000	\$0	\$36,300	\$81,312	\$7,050,694	\$846,083	\$7,896,778	\$947,613	\$96,000	\$8,940,391
S044	US 84	4.890	n/a	24	R	\$322,740	\$481,958	\$0	\$4,890,000	\$244,500		\$0	\$0	\$72,000	\$0	\$61,125	\$103,460	96,175,783	\$741,094	\$6,916,877	\$830,025	\$96,000	\$7,842,903
S045	US 84	4.070	32.560	48	R	\$268,620	\$802,278	\$0	\$34,104,000	\$203,500	\$4,812,000	\$0	\$140,000	\$0	\$0	\#\#\#\#\#\#\#	\$227,920	\$40,761,818	\$4,891,418	\$45,653,237	\$5,478,388	\$192,000	${ }_{\text {\$51,323,625 }}$

MTP ID	Facility	Length (mi)	${ }_{\substack{\text { Papoosed } \\ \text { Lanemies }}}^{\text {Pem }}$	Wirent pavem	Uuran	$\underset{\substack{\text { Reow } \\ \text { Prearation }}}{\text { a }}$	${ }_{\text {Removent }}^{\text {Post }}$	(emove Curb	Constuct	Construct Storm Sewer	Construct Bridge	Construct Special Bridges	Urban Street Lights	Rural Safety Lights	$\stackrel{\text { Traftic }}{\text { Signals }}$	Signs	striping	Total (1-12)	sw3P		ilization	TcP	
						210			732000	\$159,250											${ }^{5440035}$		
				${ }^{48}$							si, 764.000												
	US 84	2.116 2.116 		96	U			¢881,000		${ }_{\text {S }}^{\substack{\text { S4544.400 } \\ 5846400}}$	${ }_{\text {s2, } 28.500}^{50}$		${ }_{\text {s299,200 }}^{50}$									4,000	
	US 84	$\frac{2.166}{0.364}$ 0	${ }^{\frac{20.364}{0.064}}$	New	U	${ }_{\text {S }}^{524.024}$	¢	${ }_{\text {S13,500 }}$	so		50	\$5.460.000	${ }_{\text {S50,960 }}$	${ }^{\text {so }}$	${ }_{50}$	[36,400	${ }^{\text {S }}$	${ }^{55} 5$	${ }^{\text {S682.688 }}$	\%	S764.588	4.000	
${ }_{5052}$	$\frac{\text { business }}{\text { Fumsi }}$	4.907 0.300	-19.628	New	U		${ }_{\text {cilino.02 }}^{\text {S56.000 }}$	 so	ST.851.200	Si.962.800	¢0 ${ }_{\substack{\text { s0 } \\ 50}}$	${ }_{\substack{\text { so } \\ 50}}$		¢ 50	${ }^{\text {so }}$		${ }_{\text {S137, }}^{5630}$		$\frac{81.572 .510}{5103,716}$	${ }^{514.676,76}$		${ }^{548.000}$	¢16.65.59
	US 84	${ }_{\text {2795 }}^{2.95}$	${ }^{16,770}$			34,470			$\xrightarrow{\frac{855950.00}{10520}}$	$\frac{51.118 .000}{521000}$	S494,000				5140	S56,55	S21	${ }^{8} 4$	S1.04	S9,721	S1,166,	S200	$\frac{11.016}{10.026}$
${ }_{5}^{5054}$	US 84	${ }^{\text {a }}$		${ }^{48}$				¢	$\xrightarrow{\text { sit,192,000 }}$	${ }^{\text {Sil2,400 }}$	S1.30,0000	S2.880.000	${ }_{\text {cis }}^{50}$	¢90,000	S140,000	Stisil	${ }^{\frac{3}{59,}, 020}$			S9,839	${ }^{\text {51,180,777 }}$	S128,000	Sti.23,
S0056		$\frac{1.290}{2.267}$	-2.580 13.602	${ }_{96}$	U	${ }^{\frac{5859.140}{}}$	${ }_{\substack{\text { S90,881 } \\ \hline 8877172}}$	${ }_{\text {S100 }}^{50} 5$	${ }_{58504800}^{554080}$	${ }_{\text {S }}^{5516,000}$	$\frac{50}{51.44000}$	$\frac{\text { S1.392000 }}{\text { S2503800 }}$	${ }_{\text {Sl180.600 }}^{\text {S317380 }}$	${ }_{\text {so }}^{50}$	S $\frac{1440.000}{\text { Sun }}$	$\frac{516.125}{128388}$	$\frac{518.060}{50614}$	${ }^{512404029}$	${ }^{5163390}$				
	US84		${ }^{\frac{1}{6.540} 0}$			${ }^{\frac{8}{871,940}}$			${ }^{\frac{5}{22,616,00}}$														
							5, ${ }^{680}$	${ }^{50}$				510											
	FM 107 Bypass					${ }_{\text {S135,994 }}$				${ }^{\text {8823,600 }}$	\$130,000		¢35,00		\$140,000		510,50	\$4,95, ${ }^{\text {a }}$,	${ }^{\text {s593,471 }}$				

Appendix F

MTP_ID	Facility	$\begin{array}{\|l\|} \hline \text { Most Narrow Existing } \\ \text { Right of Way Width (tt) } \\ \hline \end{array}$	Proposed Right of Way Width (ft)	$\begin{array}{\|c\|} \hline \text { Max Additional } \\ \text { Right of Way (ft) } \\ \hline \end{array}$	Residential (sq ft)	$\begin{gathered} \text { Cost } \\ (\$ 5 / \mathrm{sq} \mathrm{ft}) \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { Comm I Office } \\ \hline \text { Ind (sq ft) } \end{array}$	$\underset{(\$ 10 / \text { sq ft })}{\text { Cost }}$	$\begin{array}{\|c} \begin{array}{c} \text { Undeveloped } \\ (\mathrm{sq} \mathrm{ft}) \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Cost } \\ 1 \text { sq ft) } \end{gathered}{ }^{(\mathrm{s} 3}$	$\begin{array}{\|c} \text { Other Development } \\ (\mathrm{sq} \mathrm{ft}) \end{array}$	$\left.\right\|_{\text {Isq ft) }}{ }^{\text {sst }} \mid$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Urban Agriculture } \\ \text { (sq ft) } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Cost } \\ (\$ 1 / \mathrm{sq} \mathrm{ft}) \end{gathered}$	$\begin{array}{\|c} \text { Rural Agriculture } \\ (\mathrm{sq} \mathrm{ft}) \end{array}$	$\begin{array}{\|c} \text { Cost } \\ \text { (} \mathrm{s} 0.50 / \mathrm{sq} \mathrm{ft}) \end{array}$	$\begin{array}{\|c\|} \hline \text { All Other Land } \\ (\mathrm{sq} \mathrm{ft}) \end{array}$	$\begin{gathered} \text { Cost } \\ \text { (} \$ 0.25 / \mathrm{sq} \mathrm{ft}) \\ \hline \end{gathered}$
L002	Beverly Dr	50	60	10	0	\$0	22,900	\$229,000	10,300	\$30,900	13,200	\$52,800	0	50	0	50	0	50
L003A	Chapel Rd	100	100										0	so	0	\$0	0	\$0
L003B	Chapel Rd	50	90	40	108,300	\$541,500	9,200	\$92,000	3,500	\$10,500	0	\$0	0	so	276,700	\$138,350	30,600	\$7,650
L004	Country Spring Rd	50	60	10	18,700	\$93,500	0	S0	0	\$0	0	${ }_{\text {\$0 }}^{9}$	0	S0	128,400	S64,200	5,800	${ }_{\text {S1,450 }}$
L005B	Craven Ave	50	75	25	82,100	\$410,500	2.500	\$25,000	8,000	\$24,000	0	${ }^{\text {so }}$	21,600	${ }^{\text {\$21,600 }}$		50	8.000	\$2,000
L006	Gateway Blvd	n/a	90	90	,	\$0		\$0	0	\$0	0	\$0	325,900	¢322,900	0	so	161,900	\$40,475
L007	Frankiin Ave	80	120	40	0	\$0	235,300	\$2,353,000	29,000	\$87,000	0	\$0	0	So	0	so	0	so
L008	Greig Drive	varies	100	varies	149,800	\$749,000	44,600	\$446,000	38,400	\$115,200	0	\$0	0	so	777,200	\$388,600	26,700	${ }_{66,675}$
L009	Hatch Rd	varies	100	varies	17,100	\$85,500	0	\$0	10,000	\$30,000	52,300	\$209,200	0	so	173,000	s86,500	128,900	\$332,225
L011	Lake Shore Dr	varies	100	varies	114,600	\$573,000	10.500	\$105,000	24,200	\$72,600	15,100	\$60,400	2,800	\$2,800		so	${ }^{18,000}$	\$21,500
L012	M L K ing Jr Dr			n/a											0	so		
L013	Mars Dr	100	100	n/a		\$0	0	\$0	0	\$0	0	\$0	0	${ }_{50}$	0	${ }_{50}$	0	${ }_{50}$
L014	McGregor Industrial Road	n/a	100	100	0	\$0	26,500	\$265,000	14,500	\$43,500	0	\$0	0	so	699,800	¢347,400	0	${ }^{50}$
L015	Memorial Drive	50	75	25	49,700	\$248,500	6,500	\$65,000	11,500	\$34,500	10,400	\$41,600	0	so	0	so	0	so
L016	N 18th St / N 19th St	60	90	30	79,600	\$388,000	88,200	\$882,000	26,500	\$79,500	16,100	\$64,400	0	so	0	${ }_{50}$	0	\$0
L017	Newland Dr	50	60	10	113,300	\$566,500	5.900	\$59,000	12,200	\$36,600		\$0	87,800	\$87,800	0	so	0	50
L018	Old McGregor Rd	50	100	50	32,600	\$163,000	46,500	\$465,000	38,900	\$116,700	1.800	\$7,200	64,500	\$66,500	0	so	1.300	${ }_{9} 925$
L019	Old Temple Rd	70	100	30	40,000	\$200,000	0	${ }^{\$ 0}$	8,000	\$24,000	${ }_{6}^{6,700}$	\$26,800	121,700	\$1212,700	0	s0	0	so
L021	Ritchie Rd	70	100	30	103,000	\$515,000	0	\$0	7,800	\$23,400	7,300	\$29,200	334,600	\$3334,600	0	${ }_{50}$	18,700	${ }_{46,675}$
L022A	Ritchie Rd	65	100	35	11,700	\$58,500	0	\$0	8,700	\$26,100	16,900	\$67,600	282,600	\$282, 000	0	${ }^{50}$	${ }^{5,9,90}$	\$13,975
L022B	Ritchie Rd	100	100	,	,	\$0	0	\$0	0	\$0		\$0	0	50	0	so	,	so
L023	S 12th St	65	100	35	7,200	\$36,000	12,900	\$129,000	67,600	\$202,800	0	\$0	443,700	\$443,700	0	so	8.400	${ }_{52,100}$
L024	Sanger Ave	60	100	40	119,700	\$598,500	91,100	\$911,000	3,500	\$10,500	11,800	\$47,200	0	so	0	s0	0	so
$\mathrm{L}^{2} 25$	Walnut St	50	60	10	25,100	\$125,500	1,000	\$10,000	7,500	\$22,500	0	\$0	0	so	0	so	0	\$0
$\underline{0} 26$	Wililiass Rd	50	60	10	41,900	\$209,500	6,600	\$66,000	5.600	\$16,800	8,600	\$34,400	0	so	39.500	\$19,750	0	\$0
$\llcorner 027$	Panther Way	50	100	50	30,000	\$150,000	27,800	\$278,000	27,400	\$82,200	4,300	\$17,200	11,100	\$11,100		S0	0	${ }_{50}$
L028	Karl May Dr	70	70	n/a	0	\$0	0	\$0	0	\$0	0	\$0	0	50	0	so		${ }^{50}$
L029	McGregor South Bypass	n/a	100	100	0	\$0	48,300	\$483,000	23,100	\$69,300		\$0	0	so	975,100	587,50	0	${ }^{50}$
L030	Texas Central Pkwy	110	110	n/a	0	\$0	0	\$0	0	\$0	0	\$0	0	so		50	0	\$0
L031	Bosque Blvd	65	100	35	99,000	\$495,000	149,100	\$1,491,000	23,600	\$70,800	7,200	\$28,800	0	so	0		0	\$0
S001A	East Loop 340	150	150	n/a	0	50	0	\$0	0	50	0	50	0	s0	0	s0	0	s0
S0018	East Loop 340	varies	varies	varies	18,100	\$90,500	15,400	\$154,000	300,100	\$900,300	22,600	\$90,400	0	so	868,200	\$433,100	30,900	$\frac{87,725}{}$
S002	FM 1637	100	150	50	183,700	\$918,500	46,000	\$460,000	40,100	\$120,300	3,600	\$14,400	,	50	267 ,800	\$133,900	0	50
S003A	FM 1637	100	150	50	52,200	\$261,000	24,500	\$245,000	35,300	\$105,900	14,700	\$58,800	226,600	\$226,600	0	so	41,200	\$10,300
S0038	FM 1637	100	150	50	125,300	\$626,500	2,300	\$23,000	33,400	\$100,200	0	\$0	105,800	\$105,800	0	S0	33,400	${ }^{58,350}$
S004	FM 1695	120	120	n/a	0	\$0	0	\$0	0	\$0	0	\$0	0	so	0	so	0	\$0
S005	FM 1695	85	100	15	0	\$0	0	\$0	0	\$0	108,100	\$432,400	0	so	0	so	0	\$0
S006	FM 185	100	150	50	${ }^{36,900}$	\$184,500	3,600	\$36,000	17,100	\$51,300	24,700	\$98,800	0	${ }_{50}$	161,700	${ }_{\text {s80,850 }}$	149,400	${ }_{\text {937,350 }}$
5007	FM 185 Extension	n/a	100	100	64,200	\$321,000	0	\$0	14,700	\$44,100	0	\$0	0	so	2.543,000	\$1,271,500	1,126,000	${ }^{\text {\$281,500 }}$
S008	FM 185 Extension	n/a	100	100	331,200	\$1,656,000	0	\$0	0	\$0	0	\$0	0	so	1,849,000	\$924,500	245,000	\$66,250
S009A	FM 2113	90	100	10	69,700	\$348,500	6,700	\$67,000	6,100	\$18,300	0	\$0	0	${ }^{50}$	417,300	\$208,650	0	${ }^{50}$
S009B	FM 2113	varies	varies	varies	53,700	\$268,500	0	\$0	0	\$0	2,700	\$10,800	0	50	366,900	\$183,450	0	\$0
S010 S011	FM 2113	100	120	20	49,200 161.600	$\frac{\$ 246,000}{\$ 808,000}$	$\frac{0}{21.500}$	$\frac{\$ 0}{\$ 215000}$	$\frac{0}{65,200}$	${ }_{\text {\$1905.600 }}$	0	\$0	157,700	${ }_{\text {¢ }}^{5157}$	368,100	S184,050	0	${ }_{\text {S }}^{50}$
S012	FM 2490	90	120	30	105,300		${ }_{14,300}$	\$2143,000	5,900	\$117,700	0	${ }_{\text {so }}$	$\frac{157,00}{0}$	$\underset{\text { So }}{\text { Sisf, }}$	294.800		${ }_{7}^{9,9,100}$	${ }_{\text {¢ }}^{\text {S2,475 }}$
S014	FM 2837	130	150	20	11,100	\$55,500	,	\$0	0	\$0	26,500	\$106,000	0	50	601,100	\$300,550	12,500	${ }_{53,125}$
S015	FM 2837	n/a	100	100	25,700	\$128,500	0	${ }^{\$ 0}$	0	\$0	0	\$0	0	50	1,250,200	\$625,100	3.100	S775
5017	FM 3051	230	230	n/a	0	\$0	0	\$0	0	\$0	0	\$0	0	so	0	50	0	${ }^{50}$
S018	FM 3476	150	150	n/a	0	\$0		\$0	0	\$0	0	\$0	0	so		\$0		\$0
S019	FM 434/ / M 3400	120	120	n/a	0	\$0	0	\$0	0	\$0	0	\$0	0	so	0	so	0	so
5021	FM 933	95	150	55	128,400	\$642,000	28,800	\$288,000	2,800	\$8,400	0	\$0	0	s0	35,400	167,700	49,900	12.475
S023	Loop 396	60	90	30	51,700	\$258,500	13,870	\$138,000	0	\$0	9,000	\$36,000	0	${ }_{50}$		so	0	\$0
S025	Loop 396	100	150	50	0	\$0	115,700	\$1,157,000	13,900	\$41,700	0	\$0	0	50	0	s0		s0
S028	SH317	100	150	50	23,400	\$117,000	66,800	\$667,000	-19,400	${ }_{\text {\$136,200 }}$	3,400	\$13,600	0	${ }_{50}$	222.100	${ }_{\text {S111.050 }}^{\text {S0 }}$	0	${ }_{50}^{50}$
S029	SH317	90	100	10	28,900	\$144,500	3,300	\$33,000	22,900	\$68,700	,	\$0	14,800	${ }_{\text {S14,800 }}$	22,100	${ }_{\text {so }}$	-	${ }_{50}$
S030	SH6	150	150	n/a	0	\$0	0	\$0	0	\$0	0	\$0	0	s0	0	\$0	0	\$0
S031A	SH6	120	varies	varies	12,800	\$64,000	225,900	\$2,259,000	0	\$0	13,800	\$55,200	0	so	2488.800	\$124,400	-	\$0
S0318	SH6	120	150	30	34,300	\$171,500	3,100	\$31,000	0	\$0	0	\$0	0	${ }^{50}$	177,200	\$88,600	0	\$0
S032A	SH6	300	325	25	19,000	\$95,000	46,600	\$466,000	18,300	\$54,900	12,800	\$51,200	0	s0	274,100	\$137,050	1.300	\$325
S0328	SH6	300	325	25	61,500	\$307,500	50,300	\$503,000	19,200	\$557,600	13,100	\$52,400		${ }^{50}$	0	50	10,800	\$2,700
S033	SH6	varies	varies	varies	0	${ }^{\text {so }}$	133,700	\$1,377,000	8,100	\$24,300	0	\$0	0	${ }^{\text {so }}$	0	${ }_{50}$	0	¢0
S034B	SH6	350	350	n/a	0	\$0	0	¢ ${ }_{\text {So }}$	-	$\frac{\text { S135,900 }}{50}$	$\frac{1.700}{0}$	$\frac{}{56,800}$	121,00		0	${ }_{50}$	15.000	$\frac{50}{50}$
${ }_{5035}$	SH6	290	290	n/a	0	\$0	0	\$0	0	\$0	0	\$0	0	50	0	S0	0	${ }^{50}$
S036A	SH6	400	400	n/a	0	\$0	0	\$0	0	\$0	0	\$0	0	so	0	so	0	so
S036B S036C	SH6	400	400	n/a	0	${ }^{\text {¢0 }}$	0	\$0	0	\$0	0	\$0	0	so	0	so	-	so
S033A	Speegleville Rd	$\frac{\text { n/a }}{}$	100	20	${ }^{27,300}$	${ }_{\text {S136 }}$	0	${ }_{\text {so }}$	28.100	\$84,300	0	${ }_{\text {so }}$	173000	- ${ }_{\text {S0 }}^{517300}$	68,300	$\frac{534,150}{50}$	$\frac{201,600}{45700}$	S50,400 91125
S038B	Speegleville Rd	70	150	80	635,900	\$3,179,500	24,400	\$244,000	74,200	\$222,600	1.000	${ }^{54,000}$,	S0	2,698,900	${ }_{\text {S1,349,450 }}$	176,800	\$44,200
S038C	Speegleville Rd	150	150	n/a	0	\$0	0	\$0	O	\$0	,	\$0	0	so		so	0	50
S039A	Spur 298	300	300	n/a	0	\$0	0	\$0	0	\$0	0	\$0	0	50		\$0	-	s0
S0398	US 84	500	500	n/a	0	\$0	0	\$0	0	\$0	0	\$0	0	s0	0	so	0	so
S040	SH 130	n/a	600 100	600	2,161,000	\$10,805,000	0	\$0	103,200	\$309,600	152,200	\$608,800	0	S0	99,199,200	\$49,599,600	8,489,600	\$2,122,400
S041 S042	US 77	100	100	n/a	0	\$0	0	\$0		\$0	,	\$0	0	${ }^{50}$		${ }^{50}$		50
S042	US 77	90	100	10	34,900 158.900	\$174,500	44,700	\$447,000	15,500	\$46,500	2,400	\$9,600	0	${ }^{50}$	0	S0	4.800	$\frac{\$ 1,200}{\$ 8200}$
S044	US 84	100	120	20	3,200	\$16,000	1,400	\$14,000	4,000	\$ ${ }^{\text {S12,000 }}$	10	¢0	0	${ }_{50}$	2988,600	S119,300	${ }_{4} 4,300$	$\stackrel{\$ 1,000}{\$ 1,075}$
S045	US 84	120	300	180	157,600	\$788,000	306,100	\$3,061,000	108,900	\$326,700	25,300	\$101,200	0	so	1,065,400	\$532,700	23,800	\$5,950

MTP ID	Facility		Proposed Right of Nay Width (ft)	Max Additional	Residential			${ }_{\text {(sios } \text { satt } \text { (t) }}$	(squt)	${ }_{\text {staqti) }}{ }_{\text {ssa }}$			an Agriculture (sq ti)		$\underbrace{\text { (sqti) }}_{\text {Rural Agriculture }}$	${ }_{\text {(50.50 }}^{\text {Cost }}$ sqfif)	${ }_{\substack{\text { Other tit) } \\ \text { (sand }}}^{\text {a }}$	${ }_{\text {(s0.25st }}^{\text {Cotfit }}$
	US 84	${ }^{120}$	${ }^{300}$	${ }^{140}$		${ }_{\text {S } 8450.500}^{\text {S62 }}$		S1000.000	${ }^{202800}$	$\frac{\text { S600.400 }}{\text { SiL5 }}$		${ }_{\text {S82000 }}^{\text {S }}$	${ }^{1.1 .190,700}$			So	${ }^{78} 800$	S19.500
${ }^{5046}$	US 84	na	n/a	n/a	${ }^{127,500}$		$\frac{54,60}{0}$	¢54.000	$\frac{0}{0}$		\%	-	6,500		0	${ }_{\text {so }}^{\text {so }}$	0	
¢ 5 S0488	US 84	290	${ }^{290}$	$\xrightarrow[\substack{\text { na } \\ \text { vaies }}]{ }$	0	¢	$\frac{0}{11,400}$		$\stackrel{0}{22800}$		0				\bigcirc	som	\bigcirc	
${ }^{\text {S0061 }}$	US Business 77	${ }_{1} 140$	140	na	0	${ }_{50}$	${ }^{11,400}$	S114,000	${ }^{22,800}$	$\xrightarrow{\text { S688.400 }}$	0			so	0	so	0	
${ }^{\text {Sose }}$	${ }_{\text {FM } 3051}^{\text {U } 54}$	${ }_{\text {n/a }}^{80}$	${ }_{\text {n/a }}^{120}$	40	$\frac{0}{43,500}$	${ }_{\text {S2217.500 }}^{\text {St }}$	$\frac{163.700}{}$	S1.637.000	$\frac{10}{110,700}$	${ }_{\text {S332, }}^{\text {Si00 }}$	0		0	${ }_{\substack{\text { so } \\ \text { so }}}$	0	${ }_{50}$	\bigcirc	
${ }^{\text {S }}$	US 84	${ }_{\text {coin }}^{100}$	$\frac{100}{120}$	20	$\frac{0}{0}$	${ }_{\text {S }}^{50} 5$	0	${ }_{50}^{50}$	0	${ }^{\text {so }}$	0	${ }_{\text {so }}^{50}$	0	${ }_{\text {so }}^{50}$	O	$\frac{50}{\text { siouso }}$	$\frac{0}{14200}$	$\frac{50}{\text { S }}$
	F-1 8 S58	${ }_{30}$	75	45	45,300	${ }_{\text {S }}^{\text {S226,500 }}$	2.900	${ }_{\text {S }}^{529,000}$	37.700	S113,100	43.80	${ }_{\text {S175,200 }}$			8, ${ }^{2}, 100$	${ }_{\text {S39,050 }}$	0	
${ }^{\text {S055 }}$	US Eusines ${ }^{\text {US }}$	${ }_{\text {lino }}^{150}$	${ }_{\substack{150 \\ 150}}$	${ }_{\text {naa }}^{\text {na }}$	\bigcirc	${ }_{5}^{50}$	\bigcirc	${ }_{\text {S0 }}^{50}$	\bigcirc		\bigcirc	¢0	0		\bigcirc	${ }^{\text {so }}$		
$\frac{50}{50}$	US 84	${ }^{250}$	${ }^{250}$	120	10	${ }_{\text {S }}^{5}$	500		$\frac{0}{2150}$	S0	200	S0	0	${ }_{\text {so }}^{\text {so }}$	\bigcirc	㖪	0	

Appendix F

			Preliminary	Construction	ingencie	Indirect Cost	al Project Co
	Beverly D	S812，700	\＄164，992	S82，496	I15，49	${ }^{\text {S74，246 }}$	
			90，005				
	apel Rd						
	ountrs Sprig Rd		约 500.373	${ }_{\text {cose }}^{5}$		${ }^{\text {Stana }}$	${ }^{505054}$
${ }^{\text {Lousb }}$	Caven Ave			${ }^{\text {cosen }}$			
L007	Frankitinve						
${ }^{2008}$	Greig Dive	S．475	S08，59				
	Hatch Rd	43，25	， 7.03	208，516			
＋011	Lake Shore or		5－989			36，693	
－012	ML Mag	so	边		－	¢	
L^{1014}	MCGiegor Industria Roor	${ }_{\text {S655，900 }}$	${ }_{\text {s700，754 }}$		${ }^{\text {S400，} 528}$	${ }_{\text {S315，339 }}$	
L0		${ }_{\text {cresebeo }}$		5114，	${ }_{\text {8160，787 }}$	363	
－	N 18 th Stit N 19\％h St		657，．565		${ }_{\text {sf01，}}^{5}$		
Loil	Nemanaor						
L019	Old Temple Rd	${ }_{\text {S372．500 }}$	667，3，49	336．575	${ }^{\text {s471，205 }}$	302，917	
			\％770．599			S	
		${ }^{\text {sata，}{ }^{\text {so }} \text { S }}$					
L020	S 12t st	${ }^{5813,600}$	559，458	¢ 8279,729	${ }^{\text {\＄331，} 621}$	${ }_{\text {S251，} 366}$	${ }_{\text {cr }}^{57,900,7}$
	Sanger Ave	S1．66，200	260，08	504	1888，309	21．054	
	俍	${ }_{\text {Slise．000 }}$			－		
	mmas	${ }^{\text {cosema }}$					
L02	Karl May or	so	222，964		${ }_{\text {¢ }}{ }_{\text {S156，064 }}$	${ }_{\text {S100，} 334}$	
－029	McGiregor South Bypas	${ }_{\text {sil }}^{598.850}$	81，283	${ }_{\text {S490．641 }}$	${ }_{\text {S668，} 988}$	${ }_{\text {s441，577 }}$	
	exas central Pmy	So	¢118，785				
5 S001A	${ }_{\text {East }}$ Eoop 340	S20		${ }_{\text {S552，}}$	${ }_{\text {¢ }}^{\text {S774，030 }}$	${ }_{5497 \text {［5911 }}$	Sineme
018	East Loop 340	${ }_{\text {sil } 67.025}$	${ }_{\text {¢ }}$		${ }_{\text {S }}{ }^{\text {P1，195，643 }}$	${ }^{\text {7788，628 }}$	
${ }^{5002}$	${ }^{\text {fr } 1637}$				（8642．84		
${ }^{\text {a }}$	${ }_{\text {en } 1637}$	${ }_{\text {cis63，500 }}$	${ }^{\text {¢1，}}$ ¢1287，115	${ }_{\text {¢643，557 }}$	${ }_{\text {S900，980 }}$	${ }_{\text {S5 } 59,202}$	17，145
	FM 1695	so	\＄1，023，130	${ }_{\text {¢ } 5111.565}$	${ }_{\text {s716，191 }}$	S460．008	12，942
	${ }_{\text {reli }}$			Sile	\％ 375,46	${ }_{\text {St24，}}^{\text {S }}$	
	Hilos	Stamen		Sti．385			
${ }^{\text {S008 }}$	${ }_{\text {FM } 1855 \text { Exension }}$	${ }^{\text {S22，641，} 50}$	${ }^{\text {¢ }}$	¢883，647	${ }_{\text {S1209，} 106}$	${ }_{\text {S777，} 28}$	24，4，
	${ }_{\text {FM } 2113}$	${ }^{\text {S662，} 450}$	S1．026，953	${ }^{513,476}$	5718，867	462，129	3，63304
S098	${ }^{2113}$	${ }_{\substack{\text { Sackerso }}}$	S87，612	Sta3．060		${ }_{\text {cke }}^{\substack{\text { S300．425 }}}$	11，43，
${ }_{5011}$	${ }_{\text {FM } 2113}$	Stiole					${ }^{3,40}$
012	${ }_{\text {en } 2490}$	${ }_{\text {s652 } 375}$		¢775．418	${ }_{\text {S1，} 085,585}$	${ }_{\text {¢697，876 }}$	
	2837	${ }^{\text {se6t，} 175}$	S26．399		退	281，81	
${ }_{\text {coib }}$	${ }^{\text {F－} 2837}$	${ }_{\text {S754，375 }}$		S40093			
${ }^{50018}$	${ }_{\text {FM } 3 \text { 3476 }}$	${ }_{\text {cose }}^{50}$	958，744				
	FM $434 / \mathrm{FM} 3400$	so	206，47	${ }_{5413,224}$	${ }_{\text {¢557．513 }}$	${ }_{\text {S3712．011 }}$	510．4
S021	${ }_{\text {FM }}$				¢		¢ ${ }_{\text {¢ }}^{8}$
	Loop 396		S529，422	${ }_{\text {¢ } 264,711}$	${ }_{\text {9370，595 }}$	${ }_{\text {S238，240 }}$	ction 8.859
5026	Oop 574	${ }_{\text {s1，} 877,200}^{\text {a }}$	000．000		${ }_{5700,00}$	50，000	4，527，200
	SH317	${ }_{\text {sio．05，550 }}$	${ }^{\text {8740，0，59 }}$	370，430	S18，60		
退 ${ }^{29}$	SH6	S626，				¢	－
	SH6	S22502，600	${ }_{\substack{\text { ¢ } \\ \hline 8.1313,368 \\ \hline}}$	${ }_{\text {¢ } 6656,684}$	${ }_{\text {S919，358 }}$	¢591，016	${ }^{1,9,116}$
	SH6	${ }^{\text {s291，100 }}$	${ }_{\text {S870，602 }}$	${ }_{\text {S435，301 }}$	${ }_{\text {s609，421 }}$	${ }_{\text {S391，771 }}$	
			退 12.437		¢ ${ }_{\text {s，2，19，706 }}$	120，07	
${ }^{\text {Sos36 }}$	${ }_{\text {SH }}$					¢	${ }_{815,16}$
S034A			崖7，487	438，744	${ }_{\text {S614，241 }}$	94，869	
S034B	H6	so	， 698.732	49，366	${ }_{\text {sp1，189，122 }}$	64，429	21，488，
	SH6	50			¢	退 886.367	退
	SH6	so	${ }_{\text {¢ }}^{5817,287}$	${ }_{\text {S358．643 }}$	${ }_{\text {S502，} 101}$	${ }_{\text {S322，779 }}$	${ }^{99,073}$
	Shb						
So388	Speegievilil Rd	${ }_{55,043}{ }^{\text {a }}$／50	${ }_{\text {S2，} 2139,639}$	${ }_{\text {Sli，069，819 }}$	${ }^{\text {S1，4，} 97,747}$	${ }_{5962,837}$	32.1
	$\frac{\text { Speegieville ed }}{\text { Spur } 298}$	${ }_{\text {so }}^{\text {so }}$					
	S 84	${ }_{50}$	S17，574				Sile．3
		S4540	${ }_{\text {S38，799，66 }}$	${ }_{\text {S1，}}^{\text {S1，399，}}$			（564．261．169
	US 77		575．870			${ }_{\text {S }}^{\text {S259，} 2141}$	57，06
	US84						

MTP ID	Facility	Right of Way	Preliminary Engineering Cost	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { Engineering Cost } \\ \hline \end{array}$	Contingencies Cost	Indirect Cost	$\begin{array}{\|c\|} \hline \text { Total Project } \\ \text { Cost } \end{array}$
S046A	US 84	\$3,351,100	\$4,210,200	\$2,105,100	\$2,947,140	\$1,894,590	\$56,610,133
S046	US 84	\$1,785.500	\$1,978,703	\$989,352	\$1,385,092	\$890,416	\$26,816,0,
S048A	US 84	so	\$319,171	\$159,586	\$223,420	\$143,627	\$4,037,514
S048B	US 84	${ }_{50}$	\$1,018,046	\$509,023	\$712, 632	\$458,121	\$12,878,285
S048C	US 84	\$182,400	\$720,015	\$360,008	\$504,011	\$324,007	\$9,290,59
S051	US Business 77	\$182,400	\$1,656,597	\$828,298	\$1,159,618	\$745,469	\$21,138,351
S052	FM 3051	so	\$113,218	\$56,609	\$79,252	\$50,948	\$1,432,205
S053	US 84	\$2,186,000	\$1,101,654	\$550,827	\$771,158	\$495,744	\$16,122,520
S054	US 84	50	\$582,322	\$291,161	\$407,625	\$262,045	\$7,366,375
${ }^{\text {S055 }}$	US 84	\$460,500	\$1,114,859	\$557,429	\$780,401	\$501, 686	\$14,563,4
5056	FM 1858	\$582,850	\$426,078	\$213,039	\$288,255	\$191,735	\$5,972,7
S057	US Business 77	\$0	\$1,518,119	\$759,059	${ }^{\text {\$1,062,683 }}$	\$683,153	\$19,204,200
S058	US 84	\$0	\$974,471	\$487,235	\$682,130	\$438,512	\$12,327,058
S059	US 84	\$0	\$967,421	\$483,710	\$677,195	\$435,339	\$12,237,875
S060	FM 107 Bypass	\$1,361,600	\$633,175	\$316,588	\$443,223	\$284,929	\$9,371,268
		\$134,304,875	\$130,284,644	\$65,142,322	\$91,199,250	\$58,628,090	\$1,782,405,615

		WEIGHT	0.5				1.0		1.0	
TRACT	BG	County	POPULATION	Area	Pop Density	Size Class	\% Minority	Index	Median HH Income	Index
HOTCOG Region			321,536	5,623.70	57.18	1	16.2\%	1.00	\$32,606	1.00
9501.00	1	Bosque	887	142.43	6.23	1	6.4\%	0.40	\$27,679	1.18
9501.00	2	Bosque	1,050	210.81	4.98	1	11.7\%	0.72	\$41,417	0.79
9501.00	3	Bosque	750	1.66	451.81	1	32.3\%	1.99	\$23,952	1.36
9501.00	4	Bosque	480	0.68	705.88	2	44.6\%	2.75	\$21,875	1.49
9501.00	5	Bosque	872	57.43	15.18	1	7.1\%	0.44	\$31,607	1.03
9502.00	1	Bosque	1,549	3.65	424.38	1	29.4\%	1.81	\$32,875	0.99
9503.00	1	Bosque	552	94.33	5.85	1	8.0\%	0.49	\$35,547	0.92
9503.00	2	Bosque	934	48.04	19.44	1	8.5\%	0.52	\$32,292	1.01
9504.00	1	Bosque	2,348	183.91	12.77	1	10.1\%	0.62	\$45,357	0.72
9504.00	2	Bosque	1,073	124.67	8.61	1	3.0\%	0.19	\$40,600	0.80
9505.00	1	Bosque	758	0.48	1,579.17	3	7.5\%	0.46	\$35,313	0.92
9505.00	2	Bosque	472	0.54	874.07	2	40.5\%	2.50	\$18,333	1.78
9505.00	3	Bosque	917	0.79	1,160.76	3	39.8\%	2.46	\$28,636	1.14
9505.00	4	Bosque	947	0.22	4,304.55	4	20.0\%	1.23	\$26,741	1.22
9506.00	1	Bosque	1,746	23.29	74.97	1	3.6\%	0.22	\$35,135	0.93
9507.00	1	Bosque	719	108.48	6.63	1	13.8\%	0.85	\$44,318	0.74
9507.00	2	Bosque	715	0.83	861.45	2	9.9\%	0.61	\$33,438	0.98
9507.00	3	Bosque	435	0.38	1,144.74	3	18.2\%	1.12	\$27,212	1.20
9901.00	1	Falls	802	89.80	8.93	1	8.1\%	0.50	\$34,423	0.95
9901.00	2	Falls	2,644	103.68	25.50	1	11.6\%	0.72	\$33,859	0.96
9902.00	1	Falls	1,735	113.58	15.28	1	19.1\%	1.18	\$36,950	0.88
9902.00	2	Falls	1,050	22.77	46.11	1	54.4\%	3.36	\$26,250	1.24
9903.00	3	Falls	4,101	2.51	1,633.86	3	50.7\%	3.13	\$27,255	1.20
9904.00	1	Falls	914	0.86	1,062.79	3	83.4\%	5.15	\$11,467	2.84
9904.00	2	Falls	446	0.20	2,230.00	3	97.5\%	6.02	\$17,614	1.85
9904.00	3	Falls	458	0.34	1,347.06	3	100.0\%	6.17	\$16,250	2.01
9904.00	4	Falls	220	1.36	161.76	1	84.1\%	5.19	\$13,365	2.44
9904.00	5	Falls	337	0.60	561.67	2	100.0\%	6.17	\$15,670	2.08
9904.00	6	Falls	123	1.16	106.03	1	53.7\%	3.31	\$9,327	3.50
9905.00	1	Falls	1,418	115.50	12.28	1	18.3\%	1.13	\$31,667	1.03
9905.00	2	Falls	662	0.78	848.72	2	39.1\%	2.41	\$25,536	1.28
9906.00	1	Falls	731	176.95	4.13	1	17.5\%	1.08	\$18,750	1.74
9907.00	1	Falls	1,337	141.72	9.43	1	14.6\%	0.90	\$34,813	0.94
9907.00	2	Falls	561	1.32	425.00	1	29.9\%	1.85	\$33,000	0.99
9907.00	3	Falls	826	0.29	2,848.28	3	56.7\%	3.50	\$21,042	1.55

		WEIGHT	0.5				1.0		1.0	
TRACT	BG	County	POPULATION	Area	Pop Density	Size Class	\% Minority	Index	Median HH Income	Index
HOTCOG Region			321,536	5,623.70	57.18	1	16.2\%	1.00	\$32,606	1.00
9907.00	4	Falls	211	0.23	917.39	2	88.2\%	5.44	\$15,000	2.17
9801.00	1	Freestone	1,924	154.99	12.41	1	23.7\%	1.46	\$28,523	1.14
9801.00	2	Freestone	2,174	126.99	17.12	1	12.7\%	0.78	\$39,583	0.82
9802.00	1	Freestone	521	1.66	313.86	1	14.6\%	0.90	\$39,000	0.84
9802.00	2	Freestone	557	1.04	535.58	2	14.4\%	0.89	\$42,656	0.76
9802.00	3	Freestone	217	0.38	571.05	2	16.1\%	0.99	\$24,250	1.34
9803.00	1	Freestone	755	1.61	468.94	1	17.6\%	1.09	\$23,125	1.41
9803.00	2	Freestone	632	1.06	596.23	2	95.3\%	5.88	\$30,833	1.06
9804.00	1	Freestone	1,033	100.11	10.32	1	17.2\%	1.06	\$40,000	0.82
9804.00	2	Freestone	217	0.92	235.87	1	18.9\%	1.17	\$19,531	1.67
9804.00	3	Freestone	905	4.93	183.57	1	21.2\%	1.31	\$23,421	1.39
9806.00	1	Freestone	775	71.13	10.90	1	8.3\%	0.51	\$51,583	0.63
9806.00	2	Freestone	1,568	162.08	9.67	1	9.7\%	0.60	\$29,702	1.10
9806.00	3	Freestone	774	59.70	12.96	1	32.9\%	2.03	\$30,750	1.06
9807.00	1	Freestone	916	2.01	455.72	1	51.5\%	3.18	\$29,632	1.10
9807.00	2	Freestone	1,959	0.79	2,479.75	3	48.7\%	3.01	\$39,063	0.83
9807.00	3	Freestone	402	1.13	355.75	1	78.4\%	4.84	\$18,553	1.76
9807.00	4	Freestone	607	1.12	541.96	2	10.2\%	0.63	\$24,904	1.31
9807.00	5	Freestone	509	0.76	669.74	2	16.5\%	1.02	\$49,531	0.66
9809.00	1	Freestone	570	94.53	6.03	1	34.7\%	2.14	\$28,942	1.13
9809.00	2	Freestone	852	105.02	8.11	1	48.6\%	3.00	\$29,917	1.09
9601.00	1	Hill	818	0.31	2,638.71	3	27.5\%	1.70	\$33,450	0.97
9601.00	2	Hill	498	0.39	1,276.92	3	79.3\%	4.90	\$23,750	1.37
9601.00	3	Hill	2,381	134.82	17.66	1	17.5\%	1.08	\$39,688	0.82
9602.00	1	Hill	1,153	44.93	25.66	1	6.6\%	0.41	\$40,395	0.81
9602.00	2	Hill	1,036	50.45	20.54	1	11.9\%	0.73	\$35,284	0.92
9602.00	3	Hill	1,580	60.39	26.16	1	3.5\%	0.22	\$38,542	0.85
9604.00	1	Hill	779	3.79	205.54	1	8.6\%	0.53	\$29,750	1.10
9604.00	2	Hill	841	1.07	785.98	2	5.8\%	0.36	\$30,250	1.08
9605.00	1	Hill	1,461	29.59	49.37	1	12.5\%	0.77	\$28,500	1.14
9605.00	2	Hill	2,138	49.49	43.20	1	6.7\%	0.41	\$33,214	0.98
9605.00	3	Hill	1,550	74.20	20.89	1	7.6\%	0.47	\$38,026	0.86
9606.00	1	Hill	1,309	0.81	1,616.05	3	19.3\%	1.19	\$23,462	1.39
9607.00	1	Hill	671	47.38	14.16	1	1.6\%	0.10	\$32,353	1.01
9607.00	2	Hill	784	58.77	13.34	1	15.7\%	0.97	\$31,923	1.02
9607.00	3	Hill	511	29.44	17.36	1	18.4\%	1.14	\$38,333	0.85
9608.00	1	Hill	982	1.49	659.06	2	14.0\%	0.86	\$40,169	0.81

		WEIGHT	0.5				1.0		1.0	
TRACT	BG	County	POPULATION	Area	Pop Density	Size Class	\% Minority	Index	Median HH Income	Index
HOTCOG Region			321,536	5,623.70	57.18	1	16.2\%	1.00	\$32,606	1.00
9608.00	2	Hill	1,167	0.48	2,431.25	3	35.3\%	2.18	\$31,786	1.03
9608.00	3	Hill	1,141	0.56	2,037.50	3	10.5\%	0.65	\$29,063	1.12
9609.00	1	Hill	588	1.82	323.08	1	53.2\%	3.28	\$26,696	1.22
9609.00	2	Hill	1,123	0.34	3,302.94	4	78.5\%	4.85	\$16,552	1.97
9609.00	3	Hill	393	1.28	307.03	1	60.3\%	3.72	\$14,813	2.20
9610.00	1	Hill	1,079	0.28	3,853.57	4	50.9\%	3.14	\$22,305	1.46
9610.00	2	Hill	824	0.69	1,194.20	3	65.7\%	4.06	\$21,838	1.49
9610.00	3	Hill	370	1.21	305.79	1	100.0\%	6.17	\$21,042	1.55
9611.00	4	Hill	1,494	70.75	21.12	1	21.9\%	1.35	\$36,131	0.90
9611.00	5	Hill	1,730	120.90	14.31	1	11.7\%	0.72	\$40,300	0.81
9612.00	1	Hill	1,170	103.19	11.34	1	20.9\%	1.29	\$30,357	1.07
9613.00	1	Hill	1,710	95.85	17.84	1	15.9\%	0.98	\$33,403	0.98
9613.00	2	Hill	568	0.84	676.19	2	32.0\%	1.98	\$22,273	1.46
9613.00	3	Hill	472	0.20	2,360.00	3	22.7\%	1.40	\$30,938	1.05
9701.00	1	Limestone	1,249	241.80	5.17	1	22.2\%	1.37	\$28,289	1.15
9701.00	2	Limestone	736	1.71	430.41	1	57.6\%	3.56	\$24,318	1.34
9702.00	1	Limestone	1,197	50.66	23.63	1	17.7\%	1.09	\$37,500	0.87
9702.00	2	Limestone	2,262	43.23	52.32	1	19.5\%	1.20	\$32,898	0.99
9702.00	3	Limestone	793	15.71	50.48	1	48.8\%	3.01	\$25,329	1.29
9703.00	1	Limestone	621	0.98	633.67	2	57.3\%	3.54	\$29,327	1.11
9703.00	2	Limestone	1,186	3.14	377.71	1	43.6\%	2.69	\$33,625	0.97
9703.00	3	Limestone	465	0.19	2,447.37	3	52.5\%	3.24	\$23,964	1.36
9704.00	1	Limestone	564	0.54	1,044.44	3	86.9\%	5.36	\$18,429	1.77
9704.00	2	Limestone	1,020	0.97	1,051.55	3	58.8\%	3.63	\$19,950	1.63
9705.00	1	Limestone	1,009	0.38	2,655.26	3	30.4\%	1.88	\$24,500	1.33
9705.00	2	Limestone	955	0.84	1,136.90	3	49.3\%	3.04	\$24,625	1.32
9706.00	1	Limestone	1,793	161.76	11.08	1	19.2\%	1.19	\$38,750	0.84
9706.00	2	Limestone	595	3.83	155.35	1	33.1\%	2.04	\$21,094	1.55
9706.00	3	Limestone	803	0.75	1,070.67	3	50.1\%	3.09	\$23,661	1.38
9706.00	4	Limestone	536	0.83	645.78	2	65.9\%	4.07	\$14,904	2.19
9706.00	5	Limestone	1,532	0.39	3,928.21	4	48.6\%	3.00	\$34,167	0.95
9706.00	6	Limestone	474	1.50	316.00	1	18.6\%	1.15	\$26,719	1.22
9707.00	1	Limestone	802	67.29	11.92	1	15.1\%	0.93	\$36,389	0.90
9707.00	2	Limestone	720	62.67	11.49	1	5.0\%	0.31	\$48,846	0.67
9708.00	1	Limestone	1,643	262.92	6.25	1	8.8\%	0.54	\$39,631	0.82
9708.00	2	Limestone	568	4.66	121.89	1	21.1\%	1.30	\$25,893	1.26
9708.00	3	Limestone	528	6.18	85.44	1	20.6\%	1.27	\$25,455	1.28

		WEIGHT	0.5				1.0		1.0	
TRACT	BG	County	POPULATION	Area	Pop Density	Size Class	\% Minority	Index	Median HH Income	Index
HOTCOG Region			321,536	5,623.70	57.18	1	16.2\%	1.00	\$32,606	1.00
1.00	2	McLennan	672	0.38	1,768.42	3	20.8\%	1.28	\$7,243	4.50
1.00	6	McLennan	1,795	0.78	2,301.28	3	57.0\%	3.52	\$21,708	1.50
2.00	1	McLennan	1,117	1.23	908.13	2	29.5\%	1.82	\$10,278	3.17
2.00	4	McLennan	1,040	0.08	13,000.00	5	27.8\%	1.72	\$10,213	3.19
3.00	1	McLennan	3,510	0.67	5,238.81	4	23.5\%	1.45	\$11,196	2.91
4.00	1	McLennan	659	0.18	3,661.11	4	75.9\%	4.69	\$12,801	2.55
4.00	2	McLennan	1,644	0.12	13,700.00	5	21.7\%	1.34	\$5,796	5.63
4.00	3	McLennan	2,049	0.12	17,075.00	5	24.1\%	1.49	\$6,099	5.35
4.00	4	McLennan	806	0.15	5,373.33	4	36.0\%	2.22	\$9,861	3.31
4.00	6	McLennan	1,385	0.26	5,326.92	4	90.3\%	5.57	\$18,750	1.74
5.98	1	McLennan	1,920	0.34	5,647.06	4	89.9\%	5.55	\$27,522	1.18
5.98	2	McLennan	1,463	0.23	6,360.87	5	83.9\%	5.18	\$27,045	1.21
5.98	5	McLennan	807	0.41	1,968.29	3	87.6\%	5.41	\$25,046	1.30
5.98	6	McLennan	720	0.17	4,235.29	4	83.5\%	5.15	\$25,859	1.26
5.98	8	McLennan	982	0.48	2,045.83	3	82.7\%	5.10	\$19,451	1.68
7.00	1	McLennan	524	0.14	3,742.86	4	69.3\%	4.28	\$25,972	1.26
7.00	2	McLennan	791	0.14	5,650.00	4	74.8\%	4.62	\$26,667	1.22
7.00	3	McLennan	1,283	0.17	7,547.06	5	78.2\%	4.83	\$23,333	1.40
7.00	4	McLennan	902	0.56	1,610.71	3	42.4\%	2.62	\$19,648	1.66
8.00	1	McLennan	1,072	0.16	6,700.00	5	74.3\%	4.59	\$27,500	1.19
8.00	3	McLennan	1,867	0.33	5,657.58	4	55.1\%	3.40	\$25,531	1.28
9.00	1	McLennan	1,187	0.20	5,935.00	4	67.4\%	4.16	\$25,956	1.26
9.00	2	McLennan	1,298	0.28	4,635.71	4	34.2\%	2.11	\$41,806	0.78
9.00	3	McLennan	1,048	0.18	5,822.22	4	63.6\%	3.93	\$24,550	1.33
9.00	4	McLennan	761	0.15	5,073.33	4	46.4\%	2.86	\$31,607	1.03
9.00	6	McLennan	773	0.16	4,831.25	4	42.3\%	2.61	\$37,697	0.86
10.00	1	McLennan	899	0.14	6,421.43	5	74.5\%	4.60	\$16,953	1.92
10.00	2	McLennan	937	0.13	7,207.69	5	81.3\%	5.02	\$19,554	1.67
10.00	3	McLennan	1,262	0.21	6,009.52	5	71.8\%	4.43	\$26,630	1.22
11.00	3	McLennan	727	0.13	5,592.31	4	88.3\%	5.45	\$25,426	1.28
11.00	4	McLennan	1,440	0.26	5,538.46	4	80.8\%	4.99	\$23,182	1.41
11.00	5	McLennan	799	0.13	6,146.15	5	75.2\%	4.64	\$17,679	1.84
11.00	6	McLennan	922	0.17	5,423.53	4	78.4\%	4.84	\$26,127	1.25
11.00	7	McLennan	1,423	0.28	5,082.14	4	60.0\%	3.70	\$22,575	1.44
11.00	8	McLennan	716	0.17	4,211.76	4	54.5\%	3.36	\$26,635	1.22
12.00	1	McLennan	1,137	0.23	4,943.48	4	96.0\%	5.93	\$23,563	1.38
12.00	2	McLennan	719	0.08	8,987.50	5	98.7\%	6.09	\$8,158	4.00

		WEIGHT	0.5				1.0		1.0	
TRACT	BG	County	POPULATION	Area	Pop Density	Size Class	\% Minority	Index	Median HH Income	Index
HOTCOG Region			321,536	5,623.70	57.18	1	16.2\%	1.00	\$32,606	1.00
12.00	3	McLennan	1,801	0.30	6,003.33	5	94.8\%	5.85	\$15,109	2.16
13.00	2	McLennan	828	1.25	662.40	2	31.4\%	1.94	\$41,534	0.79
13.00	3	McLennan	497	0.48	1,035.42	3	93.0\%	5.74	\$27,946	1.17
13.00	5	McLennan	1,045	0.21	4,976.19	4	67.2\%	4.15	\$27,963	1.17
14.00	1	McLennan	1,635	3.70	441.89	1	56.6\%	3.49	\$22,969	1.42
14.00	2	McLennan	1,488	0.73	2,038.36	3	69.2\%	4.27	\$16,912	1.93
14.00	4	McLennan	1,022	0.24	4,258.33	4	95.2\%	5.88	\$7,314	4.46
14.00	5	McLennan	1,200	0.34	3,529.41	4	81.5\%	5.03	\$10,875	3.00
14.00	7	McLennan	1,460	0.41	3,560.98	4	99.1\%	6.12	\$21,288	1.53
15.00	1	McLennan	853	0.34	2,508.82	3	99.2\%	6.12	\$13,443	2.43
15.00	3	McLennan	1,362	0.98	1,389.80	3	85.4\%	5.27	\$13,821	2.36
15.00	7	McLennan	818	0.72	1,136.11	3	96.8\%	5.98	\$22,679	1.44
16.00	1	McLennan	1,753	1.39	1,261.15	3	38.4\%	2.37	\$27,308	1.19
16.00	2	McLennan	936	0.39	2,400.00	3	40.7\%	2.51	\$24,487	1.33
16.00	3	McLennan	1,239	0.22	5,631.82	4	37.6\%	2.32	\$32,986	0.99
16.00	4	McLennan	885	0.85	1,041.18	3	54.0\%	3.33	\$19,677	1.66
16.00	6	McLennan	796	0.59	1,349.15	3	39.8\%	2.46	\$25,903	1.26
17.00	1	McLennan	847	0.69	1,227.54	3	20.8\%	1.28	\$32,750	1.00
17.00	2	McLennan	1,367	0.90	1,518.89	3	51.1\%	3.15	\$37,406	0.87
17.00	3	McLennan	1,610	5.57	289.05	1	33.4\%	2.06	\$30,462	1.07
17.00	4	McLennan	1,308	1.60	817.50	2	44.8\%	2.77	\$27,772	1.17
18.00	1	McLennan	732	0.84	871.43	2	25.0\%	1.54	\$35,893	0.91
18.00	4	McLennan	763	13.24	57.63	1	30.4\%	1.88	\$33,542	0.97
19.00	1	McLennan	1,261	0.23	5,482.61	4	45.8\%	2.83	\$10,605	3.07
19.00	2	McLennan	1,656	4.07	406.88	1	81.7\%	5.04	\$15,208	2.14
20.00	2	McLennan	1,192	2.18	546.79	2	11.5\%	0.71	\$39,318	0.83
20.00	4	McLennan	1,954	3.19	612.54	2	13.8\%	0.85	\$51,071	0.64
21.00	1	McLennan	817	0.37	2,208.11	3	47.4\%	2.93	\$13,700	2.38
21.00	2	McLennan	1,704	1.62	1,051.85	3	73.1\%	4.51	\$22,457	1.45
21.00	3	McLennan	722	0.78	925.64	2	44.7\%	2.76	\$21,989	1.48
21.00	4	McLennan	1,395	0.31	4,500.00	4	41.1\%	2.54	\$28,611	1.14
22.00	1	McLennan	965	0.24	4,020.83	4	49.9\%	3.08	\$27,276	1.20
22.00	9	McLennan	326	0.71	459.15	1	34.7\%	2.14	\$32,606	1.00
23.01	1	McLennan	1,403	0.33	4,251.52	4	65.2\%	4.02	\$29,643	1.10
23.01	2	McLennan	1,595	0.93	1,715.05	3	56.4\%	3.48	\$26,979	1.21
23.01	3	McLennan	900	0.20	4,500.00	4	59.7\%	3.69	\$30,300	1.08
23.01	5	McLennan	1,665	1.00	1,665.00	3	52.4\%	3.23	\$31,480	1.04

		WEIGHT	0.5				1.0		1.0	
TRACT	BG	County	POPULATION	Area	Pop Density	Size Class	\% Minority	Index	Median HH Income	Index
HOTCOG Region			321,536	5,623.70	57.18	1	16.2\%	1.00	\$32,606	1.00
23.02	1	McLennan	1,473	0.24	6,137.50	5	37.1\%	2.29	\$25,781	1.26
23.02	2	McLennan	1,792	1.08	1,659.26	3	55.6\%	3.43	\$17,386	1.88
23.02	4	McLennan	1,757	0.50	3,514.00	4	36.8\%	2.27	\$34,007	0.96
24.98	1	McLennan	844	0.20	4,220.00	4	31.9\%	1.97	\$29,345	1.11
24.98	2	McLennan	1,258	0.44	2,859.09	3	43.3\%	2.67	\$35,444	0.92
24.98	3	McLennan	1,619	0.40	4,047.50	4	30.9\%	1.91	\$37,699	0.86
24.98	5	McLennan	1,020	0.31	3,290.32	4	25.4\%	1.57	\$40,595	0.80
25.01	1	McLennan	1,562	0.38	4,110.53	4	28.3\%	1.75	\$33,188	0.98
25.01	2	McLennan	1,809	0.42	4,307.14	4	28.6\%	1.77	\$35,156	0.93
25.01	3	McLennan	1,141	1.30	877.69	2	13.4\%	0.83	\$46,625	0.70
25.03	1	McLennan	1,530	1.09	1,403.67	3	10.4\%	0.64	\$44,875	0.73
25.03	2	McLennan	1,370	0.77	1,779.22	3	16.2\%	1.00	\$43,242	0.75
25.03	3	McLennan	1,504	0.61	2,465.57	3	6.0\%	0.37	\$90,474	0.36
25.03	4	McLennan	1,207	0.49	2,463.27	3	9.5\%	0.59	\$45,662	0.71
25.04	1	McLennan	1,099	0.46	2,389.13	3	8.0\%	0.49	\$61,150	0.53
25.04	2	McLennan	2,178	2.46	885.37	2	7.5\%	0.46	\$92,758	0.35
26.00	1	McLennan	770	0.29	2,655.17	3	16.9\%	1.04	\$43,977	0.74
26.00	3	McLennan	1,068	0.39	2,738.46	3	6.7\%	0.41	\$38,667	0.84
26.00	4	McLennan	1,070	0.30	3,566.67	4	9.2\%	0.57	\$46,167	0.71
26.00	5	McLennan	1,398	1.03	1,357.28	3	5.1\%	0.31	\$73,571	0.44
26.00	6	McLennan	1,077	0.45	2,393.33	3	7.1\%	0.44	\$53,750	0.61
27.00	1	McLennan	1,340	0.24	5,583.33	4	38.7\%	2.39	\$28,628	1.14
27.00	3	McLennan	1,208	0.27	4,474.07	4	52.1\%	3.22	\$31,136	1.05
27.00	4	McLennan	1,112	0.56	1,985.71	3	45.6\%	2.81	\$21,760	1.50
28.00	2	McLennan	1,850	0.89	2,078.65	3	15.1\%	0.93	\$51,774	0.63
28.00	3	McLennan	971	0.46	2,110.87	3	4.0\%	0.25	\$50,708	0.64
28.00	4	McLennan	1,066	0.13	8,200.00	5	20.4\%	1.26	\$28,036	1.16
29.00	1	McLennan	2,327	36.32	64.07	1	10.3\%	0.64	\$51,462	0.63
30.00	1	McLennan	1,585	0.42	3,773.81	4	21.5\%	1.33	\$20,810	1.57
30.00	2	McLennan	1,285	0.62	2,072.58	3	26.1\%	1.61	\$35,500	0.92
30.00	3	McLennan	1,061	1.60	663.13	2	51.0\%	3.15	\$14,844	2.20
32.00	1	McLennan	1,283	2.66	482.33	1	36.6\%	2.26	\$34,489	0.95
32.00	2	McLennan	1,057	0.32	3,303.13	4	35.4\%	2.19	\$40,116	0.81
32.00	3	McLennan	1,546	2.11	732.70	2	31.3\%	1.93	\$32,386	1.01
33.00	3	McLennan	2,343	2.77	845.85	2	29.7\%	1.83	\$11,909	2.74
33.00	4	McLennan	1,101	0.29	3,796.55	4	35.1\%	2.17	\$24,318	1.34
34.00	1	McLennan	2,929	13.17	222.40	1	11.5\%	0.71	\$39,969	0.82

		WEIGHT	0.5				1.0		1.0	
TRACT	BG	County	POPULATION	Area	Pop Density	Size Class	\% Minority	Index	Median HH Income	Index
HOTCOG Region			321,536	5,623.70	57.18	1	16.2\%	1.00	\$32,606	1.00
34.00	2	McLennan	1,632	10.30	158.45	1	14.3\%	0.88	\$49,141	0.66
34.00	3	McLennan	1,450	22.16	65.43	1	13.4\%	0.83	\$46,667	0.70
35.00	1	McLennan	1,320	41.02	32.18	1	8.9\%	0.55	\$43,686	0.75
35.00	2	McLennan	1,227	20.41	60.12	1	9.0\%	0.56	\$39,861	0.82
35.00	3	McLennan	1,325	46.08	28.75	1	12.8\%	0.79	\$45,469	0.72
36.01	1	McLennan	745	36.06	20.66	1	11.3\%	0.70	\$37,396	0.87
36.01	2	McLennan	1,245	3.08	404.22	2	32.7\%	2.02	\$27,717	1.18
36.01	3	McLennan	1,101	2.93	375.77	2	33.6\%	2.07	\$26,793	1.22
36.02	1	McLennan	1,693	47.30	35.79	1	17.5\%	1.08	\$37,625	0.87
36.02	2	McLennan	988	9.33	105.89	1	10.3\%	0.64	\$34,338	0.95
37.01	1	McLennan	1,639	44.49	36.84	1	29.0\%	1.79	\$41,534	0.79
37.01	2	McLennan	1,264	6.74	187.54	1	12.7\%	0.78	\$52,708	0.62
37.03	1	McLennan	929	0.30	3,096.67	4	14.0\%	0.86	\$50,813	0.64
37.03	2	McLennan	1,054	10.22	103.13	1	12.5\%	0.77	\$54,702	0.60
37.03	3	McLennan	1,065	12.83	83.01	1	11.7\%	0.72	\$37,619	0.87
37.06	1	McLennan	1,638	5.61	291.98	1	13.7\%	0.85	\$61,413	0.53
37.06	2	McLennan	1,203	0.44	2,734.09	3	15.8\%	0.98	\$53,375	0.61
37.06	3	McLennan	1,652	2.19	754.34	2	18.6\%	1.15	\$68,889	0.47
37.06	4	McLennan	1,728	0.88	1,963.64	3	17.6\%	1.09	\$65,588	0.50
37.07	1	McLennan	1,257	3.57	352.10	1	26.5\%	1.64	\$37,123	0.88
37.07	2	McLennan	2,299	5.31	432.96	1	12.1\%	0.75	\$67,596	0.48
37.07	3	McLennan	3,426	0.98	3,495.92	4	30.6\%	1.89	\$41,616	0.78
37.08	2	McLennan	1,561	7.08	220.48	1	14.4\%	0.89	\$59,356	0.55
37.08	3	McLennan	2,471	1.04	2,375.96	3	23.7\%	1.46	\$52,295	0.62
37.08	4	McLennan	1,304	0.32	4,075.00	4	22.2\%	1.37	\$48,820	0.67
38.01	1	McLennan	2,384	21.10	112.99	1	7.6\%	0.47	\$60,114	0.54
38.01	2	McLennan	3,148	31.44	100.13	1	9.6\%	0.59	\$47,480	0.69
38.02	1	McLennan	1,319	45.47	29.01	1	17.5\%	1.08	\$32,634	1.00
38.02	2	McLennan	2,996	18.64	160.73	1	17.7\%	1.09	\$36,875	0.88
38.02	3	McLennan	1,213	18.52	65.50	1	22.4\%	1.38	\$32,083	1.02
39.00	1	McLennan	2,318	21.93	105.70	1	26.0\%	1.60	\$48,851	0.67
39.00	2	McLennan	1,496	21.01	71.20	1	45.7\%	2.82	\$50,536	0.65
39.00	4	McLennan	1,715	38.15	44.95	1	17.4\%	1.07	\$41,853	0.78
39.00	5	McLennan	1,320	0.74	1,783.78	3	39.1\%	2.41	\$28,750	1.13
40.00	1	McLennan	2,009	52.60	38.19	1	10.4\%	0.64	\$56,838	0.57
40.00	2	McLennan	847	69.75	12.14	1	8.6\%	0.53	\$39,063	0.83
40.00	3	McLennan	1,474	48.57	30.35	1	12.1\%	0.75	\$52,417	0.62

		WEIGHT	0.5				1.0		1.0	
TRACT	BG	County	POPULATION	Area	Pop Density	Size Class	\% Minority	Index	Median HH Income	Index
HOTCOG Region			321,536	5,623.70	57.18	1	16.2\%	1.00	\$32,606	1.00
41.01	1	McLennan	3,267	35.78	91.31	1	9.7\%	0.60	\$48,506	0.67
41.02	1	McLennan	1,248	9.32	133.91	1	11.9\%	0.73	\$36,450	0.89
41.02	2	McLennan	1,537	17.10	89.88	1	4.6\%	0.28	\$62,368	0.52
41.02	3	McLennan	1,302	26.22	49.66	1	7.9\%	0.49	\$53,125	0.61
42.01	1	McLennan	1,344	36.00	37.33	1	9.8\%	0.60	\$34,286	0.95
42.01	2	McLennan	1,410	0.84	1,678.57	3	8.7\%	0.54	\$41,042	0.79
42.01	3	McLennan	1,094	0.59	1,854.24	3	16.3\%	1.01	\$27,643	1.18
42.02	1	McLennan	1,935	39.96	48.42	1	5.7\%	0.35	\$45,903	0.71
42.02	2	McLennan	1,459	27.09	53.86	1	17.9\%	1.10	\$36,542	0.89

Appendix G

		WEIGHT	2.0		2.0		2.0		1.5	
TRACT	BG	County	\% Below Poverty	Index	\% over 65	Index	\% HU with no autos	Index	\% Disabled	Index
HOTCOG Region			16.37\%	1.00	14.47\%	1.00	7.87\%	1.00	10.16\%	1.00
9501.00	1	Bosque	13.19\%	0.81	20.52\%	1.42	2.37\%	0.30	9.58\%	0.94
9501.00	2	Bosque	11.43\%	0.70	15.62\%	1.08	1.03\%	0.13	9.43\%	0.93
9501.00	3	Bosque	29.80\%	1.82	11.33\%	0.78	8.30\%	1.05	9.60\%	0.94
9501.00	4	Bosque	27.71\%	1.69	11.25\%	0.78	10.43\%	1.33	15.42\%	1.52
9501.00	5	Bosque	15.25\%	0.93	15.60\%	1.08	2.92\%	0.37	13.88\%	1.37
9502.00	1	Bosque	13.17\%	0.80	20.08\%	1.39	5.84\%	0.74	9.49\%	0.93
9503.00	1	Bosque	13.41\%	0.82	25.91\%	1.79	1.67\%	0.21	7.07\%	0.70
9503.00	2	Bosque	9.21\%	0.56	21.95\%	1.52	2.08\%	0.26	11.56\%	1.14
9504.00	1	Bosque	6.60\%	0.40	19.38\%	1.34	2.31\%	0.29	8.94\%	0.88
9504.00	2	Bosque	6.62\%	0.40	17.99\%	1.24	2.80\%	0.36	13.89\%	1.37
9505.00	1	Bosque	6.86\%	0.42	42.08\%	2.91	5.88\%	0.75	13.85\%	1.36
9505.00	2	Bosque	29.66\%	1.81	15.89\%	1.10	10.18\%	1.29	8.90\%	0.88
9505.00	3	Bosque	19.30\%	1.18	14.83\%	1.02	5.21\%	0.66	4.03\%	0.40
9505.00	4	Bosque	3.17\%	0.19	34.21\%	2.36	12.89\%	1.64	6.86\%	0.68
9506.00	1	Bosque	12.49\%	0.76	24.40\%	1.69	3.31\%	0.42	8.99\%	0.88
9507.00	1	Bosque	11.96\%	0.73	8.90\%	0.62	8.45\%	1.07	6.68\%	0.66
9507.00	2	Bosque	6.99\%	0.43	19.58\%	1.35	6.55\%	0.83	8.81\%	0.87
9507.00	3	Bosque	10.80\%	0.66	27.36\%	1.89	6.62\%	0.84	8.51\%	0.84
9901.00	1	Falls	9.73\%	0.59	21.10\%	1.46	9.38\%	1.19	14.46\%	1.42
9901.00	2	Falls	7.22\%	0.44	9.46\%	0.65	10.23\%	1.30	6.69\%	0.66
9902.00	1	Falls	13.72\%	0.84	14.87\%	1.03	4.75\%	0.60	10.61\%	1.04
9902.00	2	Falls	32.67\%	2.00	13.14\%	0.91	10.26\%	1.30	12.57\%	1.24
9903.00	3	Falls	23.46\%	1.43	12.56\%	0.87	10.85\%	1.38	23.09\%	2.27
9904.00	1	Falls	23.74\%	1.45	13.79\%	0.95	15.91\%	2.02	11.49\%	1.13
9904.00	2	Falls	37.89\%	2.31	4.71\%	0.33	25.85\%	3.28	12.78\%	1.26
9904.00	3	Falls	41.92\%	2.56	17.90\%	1.24	28.78\%	3.66	26.64\%	2.62
9904.00	4	Falls	45.00\%	2.75	25.00\%	1.73	52.10\%	6.62	38.64\%	3.80
9904.00	5	Falls	43.62\%	2.66	10.09\%	0.70	42.90\%	5.45	8.01\%	0.79
9904.00	6	Falls	45.53\%	2.78	38.20\%	2.64	16.98\%	2.16	21.95\%	2.16
9905.00	1	Falls	13.26\%	0.81	16.93\%	1.17	5.59\%	0.71	8.53\%	0.84
9905.00	2	Falls	25.98\%	1.59	11.18\%	0.77	13.49\%	1.71	16.77\%	1.65
9906.00	1	Falls	24.49\%	1.50	21.48\%	1.48	6.84\%	0.87	9.85\%	0.97
9907.00	1	Falls	5.76\%	0.35	17.13\%	1.18	4.88\%	0.62	8.23\%	0.81
9907.00	2	Falls	15.51\%	0.95	28.88\%	2.00	9.91\%	1.26	13.37\%	1.32
9907.00	3	Falls	27.24\%	1.66	16.59\%	1.15	18.88\%	2.40	16.46\%	1.62

		WEIGHT	2.0		2.0		2.0		1.5	
TRACT	BG	County	\% Below Poverty	Index	\% over 65	Index	\% HU with no autos	Index	\% Disabled	Index
HOTCOG Region			16.37\%	1.00	14.47\%	1.00	7.87\%	1.00	10.16\%	1.00
9907.00	4	Falls	47.39\%	2.89	25.59\%	1.77	26.88\%	3.42	30.33\%	2.99
9801.00	1	Freestone	17.05\%	1.04	15.33\%	1.06	2.68\%	0.34	11.64\%	1.15
9801.00	2	Freestone	6.72\%	0.41	12.47\%	0.86	4.11\%	0.52	7.64\%	0.75
9802.00	1	Freestone	8.45\%	0.52	11.71\%	0.81	9.72\%	1.24	4.03\%	0.40
9802.00	2	Freestone	7.72\%	0.47	34.65\%	2.39	1.60\%	0.20	9.34\%	0.92
9802.00	3	Freestone	9.22\%	0.56	32.26\%	2.23	8.60\%	1.09	13.82\%	1.36
9803.00	1	Freestone	22.91\%	1.40	14.30\%	0.99	8.19\%	1.04	12.72\%	1.25
9803.00	2	Freestone	26.58\%	1.62	10.60\%	0.73	12.90\%	1.64	7.44\%	0.73
9804.00	1	Freestone	11.24\%	0.69	13.94\%	0.96	3.44\%	0.44	5.91\%	0.58
9804.00	2	Freestone	9.68\%	0.59	23.50\%	1.62	8.74\%	1.11	11.98\%	1.18
9804.00	3	Freestone	18.90\%	1.15	17.79\%	1.23	11.87\%	1.51	14.36\%	1.41
9806.00	1	Freestone	8.90\%	0.54	17.03\%	1.18	1.89\%	0.24	12.26\%	1.21
9806.00	2	Freestone	16.39\%	1.00	18.43\%	1.27	4.40\%	0.56	13.84\%	1.36
9806.00	3	Freestone	15.50\%	0.95	21.58\%	1.49	4.51\%	0.57	26.74\%	2.63
9807.00	1	Freestone	19.87\%	1.21	10.37\%	0.72	13.24\%	1.68	10.37\%	1.02
9807.00	2	Freestone	3.78\%	0.23	4.54\%	0.31	0.00\%	0.00	3.32\%	0.33
9807.00	3	Freestone	23.88\%	1.46	37.80\%	2.61	7.05\%	0.90	16.42\%	1.62
9807.00	4	Freestone	11.86\%	0.72	30.15\%	2.08	14.12\%	1.79	19.93\%	1.96
9807.00	5	Freestone	3.14\%	0.19	18.07\%	1.25	4.65\%	0.59	11.20\%	1.10
9809.00	1	Freestone	13.86\%	0.85	20.00\%	1.38	10.53\%	1.34	25.79\%	2.54
9809.00	2	Freestone	15.26\%	0.93	22.07\%	1.53	6.44\%	0.82	17.02\%	1.68
9601.00	1	Hill	11.00\%	0.67	22.98\%	1.59	6.93\%	0.88	10.27\%	1.01
9601.00	2	Hill	30.72\%	1.88	12.45\%	0.86	12.79\%	1.63	9.84\%	0.97
9601.00	3	Hill	13.48\%	0.82	12.14\%	0.84	3.98\%	0.51	6.55\%	0.64
9602.00	1	Hill	6.24\%	0.38	11.54\%	0.80	1.64\%	0.21	5.90\%	0.58
9602.00	2	Hill	14.86\%	0.91	11.97\%	0.83	1.52\%	0.19	6.85\%	0.67
9602.00	3	Hill	12.15\%	0.74	21.65\%	1.50	3.39\%	0.43	11.33\%	1.12
9604.00	1	Hill	17.20\%	1.05	22.21\%	1.53	2.59\%	0.33	10.53\%	1.04
9604.00	2	Hill	9.39\%	0.57	18.19\%	1.26	1.44\%	0.18	25.21\%	2.48
9605.00	1	Hill	16.77\%	1.02	16.84\%	1.16	5.28\%	0.67	8.62\%	0.85
9605.00	2	Hill	13.80\%	0.84	17.40\%	1.20	4.11\%	0.52	12.35\%	1.22
9605.00	3	Hill	11.10\%	0.68	14.58\%	1.01	3.04\%	0.39	11.61\%	1.14
9606.00	1	Hill	20.56\%	1.26	26.74\%	1.85	10.81\%	1.37	11.69\%	1.15
9607.00	1	Hill	2.98\%	0.18	13.71\%	0.95	1.18\%	0.15	6.71\%	0.66
9607.00	2	Hill	8.80\%	0.54	23.47\%	1.62	5.06\%	0.64	19.64\%	1.93
9607.00	3	Hill	7.24\%	0.44	15.46\%	1.07	4.62\%	0.59	5.68\%	0.56
9608.00	1	Hill	3.26\%	0.20	20.98\%	1.45	0.00\%	0.00	6.01\%	0.59

		WEIGHT	2.0		2.0		2.0		1.5	
TRACT	BG	County	\% Below Poverty	Index	\% over 65	Index	\% HU with no autos	Index	\% Disabled	Index
HOTCOG Region			16.37\%	1.00	14.47\%	1.00	7.87\%	1.00	10.16\%	1.00
9608.00	2	Hill	20.82\%	1.27	13.11\%	0.91	4.31\%	0.55	5.74\%	0.56
9608.00	3	Hill	10.25\%	0.63	35.06\%	2.42	2.95\%	0.37	8.76\%	0.86
9609.00	1	Hill	27.04\%	1.65	8.16\%	0.56	15.95\%	2.03	5.27\%	0.52
9609.00	2	Hill	24.10\%	1.47	10.77\%	0.74	15.04\%	1.91	10.24\%	1.01
9609.00	3	Hill	41.73\%	2.55	11.45\%	0.79	26.02\%	3.31	25.95\%	2.55
9610.00	1	Hill	30.40\%	1.86	9.45\%	0.65	13.65\%	1.73	15.01\%	1.48
9610.00	2	Hill	20.87\%	1.27	11.89\%	0.82	12.83\%	1.63	21.84\%	2.15
9610.00	3	Hill	24.32\%	1.49	6.22\%	0.43	26.15\%	3.32	19.46\%	1.92
9611.00	4	Hill	14.26\%	0.87	18.27\%	1.26	4.30\%	0.55	15.93\%	1.57
9611.00	5	Hill	11.04\%	0.67	20.29\%	1.40	3.78\%	0.48	10.58\%	1.04
9612.00	1	Hill	17.18\%	1.05	15.47\%	1.07	5.79\%	0.74	13.08\%	1.29
9613.00	1	Hill	13.51\%	0.83	17.31\%	1.20	7.85\%	1.00	9.53\%	0.94
9613.00	2	Hill	25.35\%	1.55	14.61\%	1.01	9.84\%	1.25	9.33\%	0.92
9613.00	3	Hill	17.16\%	1.05	27.97\%	1.93	9.76\%	1.24	8.90\%	0.88
9701.00	1	Limestone	24.74\%	1.51	18.57\%	1.28	7.63\%	0.97	10.89\%	1.07
9701.00	2	Limestone	25.82\%	1.58	11.14\%	0.77	11.65\%	1.48	8.02\%	0.79
9702.00	1	Limestone	6.10\%	0.37	18.80\%	1.30	4.63\%	0.59	14.20\%	1.40
9702.00	2	Limestone	17.73\%	1.08	17.60\%	1.22	5.61\%	0.71	15.21\%	1.50
9702.00	3	Limestone	4.04\%	0.25	4.29\%	0.30	6.10\%	0.78	3.53\%	0.35
9703.00	1	Limestone	10.79\%	0.66	23.03\%	1.59	9.17\%	1.17	16.10\%	1.58
9703.00	2	Limestone	26.14\%	1.60	20.57\%	1.42	13.45\%	1.71	7.00\%	0.69
9703.00	3	Limestone	6.67\%	0.41	7.96\%	0.55	11.41\%	1.45	18.71\%	1.84
9704.00	1	Limestone	29.79\%	1.82	18.97\%	1.31	18.14\%	2.30	26.42\%	2.60
9704.00	2	Limestone	26.47\%	1.62	12.35\%	0.85	9.81\%	1.25	9.02\%	0.89
9705.00	1	Limestone	14.17\%	0.87	11.79\%	0.81	14.21\%	1.81	13.38\%	1.32
9705.00	2	Limestone	22.41\%	1.37	18.64\%	1.29	3.38\%	0.43	11.41\%	1.12
9706.00	1	Limestone	6.25\%	0.38	14.84\%	1.03	1.86\%	0.24	8.59\%	0.85
9706.00	2	Limestone	32.27\%	1.97	16.64\%	1.15	17.42\%	2.21	11.26\%	1.11
9706.00	3	Limestone	19.93\%	1.22	18.31\%	1.27	10.21\%	1.30	10.96\%	1.08
9706.00	4	Limestone	38.25\%	2.34	15.67\%	1.08	13.50\%	1.72	16.98\%	1.67
9706.00	5	Limestone	7.05\%	0.43	15.54\%	1.07	10.37\%	1.32	2.42\%	0.24
9706.00	6	Limestone	4.85\%	0.30	12.45\%	0.86	2.69\%	0.34	6.75\%	0.66
9707.00	1	Limestone	13.47\%	0.82	13.84\%	0.96	7.52\%	0.96	9.45\%	0.93
9707.00	2	Limestone	7.50\%	0.46	24.17\%	1.67	2.20\%	0.28	10.97\%	1.08
9708.00	1	Limestone	11.20\%	0.68	18.87\%	1.30	3.40\%	0.43	12.36\%	1.22
9708.00	2	Limestone	16.20\%	0.99	14.44\%	1.00	4.95\%	0.63	12.15\%	1.20
9708.00	3	Limestone	23.67\%	1.45	21.59\%	1.49	12.38\%	1.57	21.21\%	2.09

		WEIGHT	2.0		2.0		2.0		1.5	
TRACT	BG	County	\% Below Poverty	Index	\% over 65	Index	\% HU with no autos	Index	\% Disabled	Index
HOTCOG Region			16.37\%	1.00	14.47\%	1.00	7.87\%	1.00	10.16\%	1.00
1.00	2	McLennan	78.57\%	4.80	1.19\%	0.08	6.34\%	0.81	5.65\%	0.56
1.00	6	McLennan	13.76\%	0.84	18.83\%	1.30	45.88\%	5.83	6.24\%	0.61
2.00	1	McLennan	52.28\%	3.19	5.28\%	0.36	22.83\%	2.90	6.98\%	0.69
2.00	4	McLennan	67.88\%	4.15	0.67\%	0.05	4.26\%	0.54	2.60\%	0.26
3.00	1	McLennan	8.12\%	0.50	0.91\%	0.06	21.23\%	2.70	0.17\%	0.02
4.00	1	McLennan	41.43\%	2.53	8.04\%	0.56	10.45\%	1.33	11.23\%	1.11
4.00	2	McLennan	64.96\%	3.97	1.09\%	0.08	15.00\%	1.91	3.10\%	0.31
4.00	3	McLennan	76.23\%	4.66	1.27\%	0.09	10.45\%	1.33	0.73\%	0.07
4.00	4	McLennan	57.20\%	3.49	4.71\%	0.33	5.54\%	0.70	0.00\%	0.00
4.00	6	McLennan	45.34\%	2.77	7.73\%	0.53	39.25\%	4.99	11.05\%	1.09
5.98	1	McLennan	28.96\%	1.77	7.14\%	0.49	19.25\%	2.45	19.22\%	1.89
5.98	2	McLennan	30.62\%	1.87	8.13\%	0.56	6.07\%	0.77	5.95\%	0.59
5.98	5	McLennan	19.33\%	1.18	13.26\%	0.92	17.44\%	2.22	10.53\%	1.04
5.98	6	McLennan	36.53\%	2.23	10.97\%	0.76	23.86\%	3.03	12.64\%	1.24
5.98	8	McLennan	23.63\%	1.44	7.94\%	0.55	10.17\%	1.29	10.90\%	1.07
7.00	1	McLennan	19.27\%	1.18	5.73\%	0.40	15.56\%	1.98	13.36\%	1.31
7.00	2	McLennan	38.56\%	2.36	4.93\%	0.34	17.47\%	2.22	8.34\%	0.82
7.00	3	McLennan	38.35\%	2.34	6.70\%	0.46	7.63\%	0.97	16.76\%	1.65
7.00	4	McLennan	26.39\%	1.61	8.87\%	0.61	8.51\%	1.08	9.20\%	0.91
8.00	1	McLennan	20.34\%	1.24	5.78\%	0.40	13.86\%	1.76	10.54\%	1.04
8.00	3	McLennan	30.64\%	1.87	9.64\%	0.67	6.04\%	0.77	15.59\%	1.53
9.00	1	McLennan	22.66\%	1.38	8.26\%	0.57	9.07\%	1.15	7.75\%	0.76
9.00	2	McLennan	5.39\%	0.33	27.89\%	1.93	3.70\%	0.47	11.25\%	1.11
9.00	3	McLennan	25.67\%	1.57	8.49\%	0.59	11.39\%	1.45	15.55\%	1.53
9.00	4	McLennan	12.88\%	0.79	11.56\%	0.80	8.86\%	1.13	14.06\%	1.38
9.00	6	McLennan	16.95\%	1.04	11.64\%	0.80	10.85\%	1.38	11.38\%	1.12
10.00	1	McLennan	25.47\%	1.56	27.70\%	1.91	17.72\%	2.25	17.13\%	1.69
10.00	2	McLennan	51.65\%	3.16	5.02\%	0.35	21.88\%	2.78	8.75\%	0.86
10.00	3	McLennan	21.71\%	1.33	6.18\%	0.43	12.09\%	1.54	11.01\%	1.08
11.00	3	McLennan	42.50\%	2.60	7.43\%	0.51	21.40\%	2.72	8.39\%	0.83
11.00	4	McLennan	23.89\%	1.46	7.78\%	0.54	19.26\%	2.45	8.06\%	0.79
11.00	5	McLennan	37.42\%	2.29	6.76\%	0.47	7.92\%	1.01	11.14\%	1.10
11.00	6	McLennan	27.77\%	1.70	5.97\%	0.41	21.33\%	2.71	16.05\%	1.58
11.00	7	McLennan	26.99\%	1.65	10.96\%	0.76	5.59\%	0.71	6.47\%	0.64
11.00	8	McLennan	10.20\%	0.62	9.64\%	0.67	3.98\%	0.51	18.02\%	1.77
12.00	1	McLennan	29.02\%	1.77	9.32\%	0.64	13.20\%	1.68	23.39\%	2.30
12.00	2	McLennan	82.06\%	5.01	5.15\%	0.36	55.86\%	7.10	13.21\%	1.30

		WEIGHT	2.0		2.0		2.0		1.5	
TRACT	BG	County	\% Below Poverty	Index	\% over 65	Index	\% HU with no autos	Index	\% Disabled	Index
HOTCOG Region			16.37\%	1.00	14.47\%	1.00	7.87\%	1.00	10.16\%	1.00
12.00	3	McLennan	36.04\%	2.20	7.05\%	0.49	42.69\%	5.42	16.38\%	1.61
13.00	2	McLennan	6.04\%	0.37	14.25\%	0.98	0.00\%	0.00	6.76\%	0.67
13.00	3	McLennan	21.33\%	1.30	12.88\%	0.89	7.82\%	0.99	22.54\%	2.22
13.00	5	McLennan	14.93\%	0.91	10.05\%	0.69	15.11\%	1.92	8.90\%	0.88
14.00	1	McLennan	19.76\%	1.21	16.64\%	1.15	16.49\%	2.10	14.98\%	1.47
14.00	2	McLennan	24.06\%	1.47	17.74\%	1.23	10.55\%	1.34	9.54\%	0.94
14.00	4	McLennan	65.36\%	3.99	6.85\%	0.47	58.55\%	7.44	21.53\%	2.12
14.00	5	McLennan	53.67\%	3.28	14.25\%	0.98	18.39\%	2.34	31.75\%	3.13
14.00	7	McLennan	21.64\%	1.32	24.04\%	1.66	24.63\%	3.13	26.51\%	2.61
15.00	1	McLennan	46.78\%	2.86	20.63\%	1.43	29.55\%	3.75	14.54\%	1.43
15.00	3	McLennan	28.78\%	1.76	7.71\%	0.53	21.46\%	2.73	13.07\%	1.29
15.00	7	McLennan	21.52\%	1.31	22.62\%	1.56	19.74\%	2.51	13.20\%	1.30
16.00	1	McLennan	11.64\%	0.71	8.10\%	0.56	2.54\%	0.32	8.56\%	0.84
16.00	2	McLennan	20.19\%	1.23	14.53\%	1.00	5.72\%	0.73	10.90\%	1.07
16.00	3	McLennan	13.72\%	0.84	12.75\%	0.88	1.52\%	0.19	10.49\%	1.03
16.00	4	McLennan	48.93\%	2.99	13.33\%	0.92	17.48\%	2.22	14.01\%	1.38
16.00	6	McLennan	25.75\%	1.57	12.94\%	0.89	9.12\%	1.16	24.87\%	2.45
17.00	1	McLennan	15.70\%	0.96	9.80\%	0.68	4.25\%	0.54	12.16\%	1.20
17.00	2	McLennan	14.41\%	0.88	9.36\%	0.65	9.40\%	1.19	7.97\%	0.78
17.00	3	McLennan	6.34\%	0.39	13.79\%	0.95	4.12\%	0.52	10.62\%	1.05
17.00	4	McLennan	21.56\%	1.32	9.63\%	0.67	7.39\%	0.94	11.01\%	1.08
18.00	1	McLennan	3.42\%	0.21	21.04\%	1.45	6.32\%	0.80	17.76\%	1.75
18.00	4	McLennan	12.71\%	0.78	17.56\%	1.21	8.00\%	1.02	16.64\%	1.64
19.00	1	McLennan	63.84\%	3.90	5.71\%	0.39	8.86\%	1.13	8.09\%	0.80
19.00	2	McLennan	48.49\%	2.96	10.45\%	0.72	21.28\%	2.70	14.01\%	1.38
20.00	2	McLennan	5.70\%	0.35	16.36\%	1.13	1.83\%	0.23	9.56\%	0.94
20.00	4	McLennan	5.32\%	0.32	14.38\%	0.99	3.38\%	0.43	13.36\%	1.31
21.00	1	McLennan	40.88\%	2.50	7.83\%	0.54	3.90\%	0.50	3.30\%	0.32
21.00	2	McLennan	30.11\%	1.84	6.10\%	0.42	15.94\%	2.03	10.92\%	1.07
21.00	3	McLennan	25.07\%	1.53	14.54\%	1.00	13.26\%	1.68	6.37\%	0.63
21.00	4	McLennan	18.28\%	1.12	16.42\%	1.13	6.36\%	0.81	14.19\%	1.40
22.00	1	McLennan	15.34\%	0.94	16.06\%	1.11	6.35\%	0.81	14.92\%	1.47
22.00	9	McLennan	10.43\%	0.64	35.58\%	2.46	0.00\%	0.00	23.93\%	2.36
23.01	1	McLennan	25.37\%	1.55	10.62\%	0.73	4.51\%	0.57	9.55\%	0.94
23.01	2	McLennan	11.79\%	0.72	14.04\%	0.97	8.87\%	1.13	14.29\%	1.41
23.01	3	McLennan	10.22\%	0.62	14.44\%	1.00	13.25\%	1.68	19.44\%	1.91
23.01	5	McLennan	11.65\%	0.71	12.55\%	0.87	6.10\%	0.78	14.83\%	1.46

		WEIGHT	2.0		2.0		2.0		1.5	
TRACT	BG	County	\% Below Poverty	Index	\% over 65	Index	\% HU with no autos	Index	\% Disabled	Index
HOTCOG Region			16.37\%	1.00	14.47\%	1.00	7.87\%	1.00	10.16\%	1.00
23.02	1	McLennan	14.19\%	0.87	14.94\%	1.03	5.97\%	0.76	13.44\%	1.32
23.02	2	McLennan	38.84\%	2.37	6.58\%	0.45	25.05\%	3.18	15.29\%	1.50
23.02	4	McLennan	6.15\%	0.38	24.82\%	1.72	2.48\%	0.32	8.99\%	0.88
24.98	1	McLennan	9.00\%	0.55	19.19\%	1.33	10.95\%	1.39	10.19\%	1.00
24.98	2	McLennan	4.21\%	0.26	13.04\%	0.90	7.43\%	0.94	9.46\%	0.93
24.98	3	McLennan	5.31\%	0.32	20.20\%	1.40	6.68\%	0.85	18.34\%	1.81
24.98	5	McLennan	11.27\%	0.69	16.86\%	1.17	8.26\%	1.05	10.69\%	1.05
25.01	1	McLennan	7.75\%	0.47	22.60\%	1.56	6.34\%	0.81	7.68\%	0.76
25.01	2	McLennan	7.24\%	0.44	16.86\%	1.17	9.07\%	1.15	6.80\%	0.67
25.01	3	McLennan	4.12\%	0.25	22.79\%	1.57	6.21\%	0.79	7.62\%	0.75
25.03	1	McLennan	9.48\%	0.58	34.97\%	2.42	16.69\%	2.12	13.40\%	1.32
25.03	2	McLennan	6.86\%	0.42	27.30\%	1.89	3.93\%	0.50	8.83\%	0.87
25.03	3	McLennan	2.06\%	0.13	19.81\%	1.37	1.04\%	0.13	2.46\%	0.24
25.03	4	McLennan	1.00\%	0.06	16.65\%	1.15	3.02\%	0.38	10.77\%	1.06
25.04	1	McLennan	0.00\%	0.00	15.92\%	1.10	1.99\%	0.25	2.55\%	0.25
25.04	2	McLennan	0.83\%	0.05	8.63\%	0.60	0.00\%	0.00	2.39\%	0.24
26.00	1	McLennan	2.86\%	0.17	22.60\%	1.56	7.91\%	1.01	8.05\%	0.79
26.00	3	McLennan	3.84\%	0.23	58.90\%	4.07	5.33\%	0.68	16.67\%	1.64
26.00	4	McLennan	0.84\%	0.05	34.39\%	2.38	3.46\%	0.44	8.22\%	0.81
26.00	5	McLennan	1.93\%	0.12	30.76\%	2.13	1.33\%	0.17	8.94\%	0.88
26.00	6	McLennan	9.56\%	0.58	32.68\%	2.26	0.00\%	0.00	6.41\%	0.63
27.00	1	McLennan	16.27\%	0.99	13.58\%	0.94	3.84\%	0.49	11.42\%	1.12
27.00	3	McLennan	19.95\%	1.22	10.68\%	0.74	8.54\%	1.09	12.33\%	1.21
27.00	4	McLennan	18.97\%	1.16	15.20\%	1.05	7.53\%	0.96	16.82\%	1.66
28.00	2	McLennan	6.32\%	0.39	28.11\%	1.94	38.00\%	4.83	9.08\%	0.89
28.00	3	McLennan	0.62\%	0.04	43.98\%	3.04	11.52\%	1.46	15.65\%	1.54
28.00	4	McLennan	26.74\%	1.63	3.10\%	0.21	2.56\%	0.33	7.60\%	0.75
29.00	1	McLennan	1.72\%	0.11	9.02\%	0.62	0.00\%	0.00	7.18\%	0.71
30.00	1	McLennan	17.22\%	1.05	31.67\%	2.19	22.05\%	2.80	14.64\%	1.44
30.00	2	McLennan	16.03\%	0.98	22.65\%	1.57	10.39\%	1.32	5.29\%	0.52
30.00	3	McLennan	45.62\%	2.79	25.16\%	1.74	15.63\%	1.99	11.03\%	1.09
32.00	1	McLennan	17.61\%	1.08	10.29\%	0.71	5.87\%	0.75	7.72\%	0.76
32.00	2	McLennan	7.57\%	0.46	12.11\%	0.84	4.32\%	0.55	9.93\%	0.98
32.00	3	McLennan	4.59\%	0.28	11.25\%	0.78	6.35\%	0.81	13.65\%	1.34
33.00	3	McLennan	46.39\%	2.83	17.00\%	1.17	10.02\%	1.27	9.86\%	0.97
33.00	4	McLennan	44.32\%	2.71	0.64\%	0.04	5.28\%	0.67	6.18\%	0.61
34.00	1	McLennan	7.85\%	0.48	9.18\%	0.63	4.76\%	0.60	7.95\%	0.78

		WEIGHT	2.0		2.0		2.0		1.5	
TRACT	BG	County	\% Below Poverty	Index	\% over 65	Index	\% HU with no autos	Index	\% Disabled	Index
HOTCOG Region			16.37\%	1.00	14.47\%	1.00	7.87\%	1.00	10.16\%	1.00
34.00	2	McLennan	4.90\%	0.30	9.93\%	0.69	1.96\%	0.25	7.72\%	0.76
34.00	3	McLennan	4.41\%	0.27	11.31\%	0.78	3.45\%	0.44	10.07\%	0.99
35.00	1	McLennan	7.80\%	0.48	14.39\%	0.99	3.85\%	0.49	10.38\%	1.02
35.00	2	McLennan	5.95\%	0.36	11.49\%	0.79	1.55\%	0.20	9.45\%	0.93
35.00	3	McLennan	6.04\%	0.37	9.74\%	0.67	4.77\%	0.61	5.13\%	0.50
36.01	1	McLennan	9.66\%	0.59	13.83\%	0.96	6.16\%	0.78	10.07\%	0.99
36.01	2	McLennan	13.09\%	0.80	25.06\%	1.73	11.01\%	1.40	11.16\%	1.10
36.01	3	McLennan	23.07\%	1.41	15.53\%	1.07	10.59\%	1.35	10.63\%	1.05
36.02	1	McLennan	9.51\%	0.58	12.29\%	0.85	6.20\%	0.79	10.93\%	1.08
36.02	2	McLennan	9.82\%	0.60	15.69\%	1.08	6.20\%	0.79	7.29\%	0.72
37.01	1	McLennan	6.47\%	0.40	11.65\%	0.81	2.46\%	0.31	11.84\%	1.17
37.01	2	McLennan	4.03\%	0.25	12.18\%	0.84	0.00\%	0.00	3.56\%	0.35
37.03	1	McLennan	1.94\%	0.12	19.91\%	1.38	2.16\%	0.27	7.32\%	0.72
37.03	2	McLennan	0.19\%	0.01	6.83\%	0.47	0.00\%	0.00	3.89\%	0.38
37.03	3	McLennan	4.41\%	0.27	13.90\%	0.96	0.00\%	0.00	9.58\%	0.94
37.06	1	McLennan	1.40\%	0.09	10.07\%	0.70	1.19\%	0.15	10.93\%	1.08
37.06	2	McLennan	2.66\%	0.16	6.40\%	0.44	3.86\%	0.49	9.14\%	0.90
37.06	3	McLennan	0.79\%	0.05	6.36\%	0.44	1.57\%	0.20	6.05\%	0.60
37.06	4	McLennan	3.53\%	0.22	8.10\%	0.56	2.61\%	0.33	6.89\%	0.68
37.07	1	McLennan	13.05\%	0.80	8.27\%	0.57	4.75\%	0.60	4.77\%	0.47
37.07	2	McLennan	1.83\%	0.11	7.05\%	0.49	1.03\%	0.13	4.05\%	0.40
37.07	3	McLennan	3.30\%	0.20	7.47\%	0.52	3.16\%	0.40	5.40\%	0.53
37.08	2	McLennan	1.47\%	0.09	7.75\%	0.54	1.61\%	0.20	4.42\%	0.44
37.08	3	McLennan	3.32\%	0.20	4.61\%	0.32	2.54\%	0.32	5.46\%	0.54
37.08	4	McLennan	2.22\%	0.14	7.36\%	0.51	2.23\%	0.28	7.82\%	0.77
38.01	1	McLennan	2.27\%	0.14	8.10\%	0.56	0.62\%	0.08	4.78\%	0.47
38.01	2	McLennan	3.56\%	0.22	10.04\%	0.69	3.36\%	0.43	5.50\%	0.54
38.02	1	McLennan	14.03\%	0.86	10.69\%	0.74	4.50\%	0.57	9.40\%	0.93
38.02	2	McLennan	10.45\%	0.64	9.41\%	0.65	4.50\%	0.57	5.61\%	0.55
38.02	3	McLennan	11.05\%	0.68	19.62\%	1.36	9.89\%	1.26	11.21\%	1.10
39.00	1	McLennan	6.04\%	0.37	10.74\%	0.74	7.50\%	0.95	10.53\%	1.04
39.00	2	McLennan	11.36\%	0.69	12.43\%	0.86	13.97\%	1.78	11.90\%	1.17
39.00	4	McLennan	10.38\%	0.63	23.67\%	1.64	3.17\%	0.40	3.62\%	0.36
39.00	5	McLennan	18.11\%	1.11	20.08\%	1.39	5.79\%	0.74	18.64\%	1.83
40.00	1	McLennan	1.89\%	0.12	12.10\%	0.84	3.20\%	0.41	7.77\%	0.76
40.00	2	McLennan	6.97\%	0.43	13.70\%	0.95	1.29\%	0.16	5.90\%	0.58
40.00	3	McLennan	4.27\%	0.26	10.99\%	0.76	4.03\%	0.51	6.51\%	0.64

		WEIGHT	2.0		2.0		2.0		1.5	
TRACT	BG	County	\% Below Poverty	Index	\% over 65	Index	\% HU with no autos	Index	\% Disabled	Index
HOTCOG Region			16.37\%	1.00	14.47\%	1.00	7.87\%	1.00	10.16\%	1.00
41.01	1	McLennan	5.48\%	0.33	13.47\%	0.93	2.27\%	0.29	8.30\%	0.82
41.02	1	McLennan	12.50\%	0.76	11.14\%	0.77	3.24\%	0.41	2.48\%	0.24
41.02	2	McLennan	1.69\%	0.10	8.46\%	0.58	3.65\%	0.46	4.68\%	0.46
41.02	3	McLennan	7.53\%	0.46	5.61\%	0.39	5.61\%	0.71	3.46\%	0.34
42.01	1	McLennan	16.89\%	1.03	17.19\%	1.19	8.53\%	1.08	12.72\%	1.25
42.01	2	McLennan	8.65\%	0.53	29.79\%	2.06	6.60\%	0.84	5.60\%	0.55
42.01	3	McLennan	17.18\%	1.05	20.84\%	1.44	6.49\%	0.82	17.28\%	1.70
42.02	1	McLennan	4.81\%	0.29	10.34\%	0.71	3.35\%	0.43	6.51\%	0.64
42.02	2	McLennan	11.10\%	0.68	10.62\%	0.73	6.39\%	0.81	10.42\%	1.03

Appendix G

		WEIGHT	
TRACT	BG	County	Transit Need Index
HOTCOG Region			10.00
9907.00	4	Falls	29.25
9801.00	1	Freestone	9.71
9801.00	2	Freestone	6.82
9802.00	1	Freestone	7.95
9802.00	2	Freestone	10.17
9802.00	3	Freestone	13.15
9803.00	1	Freestone	11.73
9803.00	2	Freestone	17.03
9804.00	1	Freestone	7.42
9804.00	2	Freestone	11.76
9804.00	3	Freestone	13.11
9806.00	1	Freestone	7.38
9806.00	2	Freestone	9.91
9806.00	3	Freestone	13.56
9807.00	1	Freestone	13.54
9807.00	2	Freestone	6.92
9807.00	3	Freestone	19.45
9807.00	4	Freestone	15.09
9807.00	5	Freestone	8.39
9809.00	1	Freestone	14.71
9809.00	2	Freestone	13.65
9601.00	1	Hill	11.97
9601.00	2	Hill	17.95
9601.00	3	Hill	7.71
9602.00	1	Hill	5.36
9602.00	2	Hill	7.03
9602.00	3	Hill	8.57
9604.00	1	Hill	9.51
9604.00	2	Hill	10.19
9605.00	1	Hill	9.41
9605.00	2	Hill	8.85
9605.00	3	Hill	7.68
9606.00	1	Hill	14.76
9607.00	1	Hill	5.16
9607.00	2	Hill	11.00
9607.00	3	Hill	7.52
9608.00	1	Hill	6.86

		WEIGHT	
TRACT	BG	County	Transit Need Index
HOTCOG Region			10.00
1.00	2	McLennan	19.49
1.00	6	McLennan	23.39
2.00	1	McLennan	19.94
2.00	4	McLennan	17.26
3.00	1	McLennan	12.90
4.00	1	McLennan	19.72
4.00	2	McLennan	21.82
4.00	3	McLennan	21.59
4.00	4	McLennan	16.58
4.00	6	McLennan	27.53
5.98	1	McLennan	20.99
5.98	2	McLennan	16.17
5.98	5	McLennan	18.39
5.98	6	McLennan	22.32
5.98	8	McLennan	16.46
7.00	1	McLennan	16.61
7.00	2	McLennan	18.90
7.00	3	McLennan	18.75
7.00	4	McLennan	13.75
8.00	1	McLennan	16.63
8.00	3	McLennan	15.59
9.00	1	McLennan	14.78
9.00	2	McLennan	12.01
9.00	3	McLennan	16.75
9.00	4	McLennan	13.39
9.00	6	McLennan	13.59
10.00	1	McLennan	22.99
10.00	2	McLennan	23.04
10.00	3	McLennan	16.36
11.00	3	McLennan	21.63
11.00	4	McLennan	18.47
11.00	5	McLennan	18.15
11.00	6	McLennan	20.10
11.00	7	McLennan	14.34
11.00	8	McLennan	12.84
12.00	1	McLennan	20.95
12.00	2	McLennan	39.47

		WEIGHT	
TRACT	BG	County	Transit Need Index
HOTCOG Region			10.00
12.00	3	McLennan	29.15
13.00	2	McLennan	7.43
13.00	3	McLennan	18.11
13.00	5	McLennan	15.68
14.00	1	McLennan	16.53
14.00	2	McLennan	17.18
14.00	4	McLennan	39.32
14.00	5	McLennan	27.92
14.00	7	McLennan	25.79
15.00	1	McLennan	28.27
15.00	3	McLennan	21.10
15.00	7	McLennan	21.63
16.00	1	McLennan	9.52
16.00	2	McLennan	12.88
16.00	3	McLennan	10.68
16.00	4	McLennan	20.82
16.00	6	McLennan	16.14
17.00	1	McLennan	9.93
17.00	2	McLennan	12.15
17.00	3	McLennan	8.93
17.00	4	McLennan	12.41
18.00	1	McLennan	11.01
18.00	4	McLennan	11.82
19.00	1	McLennan	19.94
19.00	2	McLennan	22.53
20.00	2	McLennan	7.37
20.00	4	McLennan	7.96
21.00	1	McLennan	14.36
21.00	2	McLennan	17.65
21.00	3	McLennan	14.62
21.00	4	McLennan	13.89
22.00	1	McLennan	14.19
22.00	9	McLennan	13.37
23.01	1	McLennan	14.25
23.01	2	McLennan	13.93
23.01	3	McLennan	16.24
23.01	5	McLennan	12.67

		WEIGHT	
TRACT	BG	County	Transit Need Index
HOTCOG Region			10.00
41.01	1	McLennan	6.10
41.02	1	McLennan	6.39
41.02	2	McLennan	4.30
41.02	3	McLennan	5.23
42.01	1	McLennan	10.54
42.01	2	McLennan	10.51
42.01	3	McLennan	12.87
42.02	1	McLennan	5.39
42.02	2	McLennan	8.48

Appendix H - Public Comments

Transcript of Public Hearing - February 3, 2010

Speaker. Tommy Brashier
Address: $\quad 900$ N. Valley Mills Dr
City: Waco

Comments: The purpose of thisthing has not been made clear. There was an accident on Valley Mills Dr 4 years ago but those pedestrians were jaywalking. Need to use the money to build sidewalks on Va lley Mills and crosswalks. Police patrols are needed in the a rea to reduce speed, especially at night. The growth on Valley Mills was a result of commerce. All we have to do is go back to 1967, where the City of Waco adopted urban Renewal-killed pedestrian traffic and businesses moved to Valley Mills Drive.

Speaker: Stephanie Lambring
Address: 824 Horseshoe Dr
City: Beverly Hills
Comments: I've been a resident of Beverly Hills since 1958. I do business up and down Valley Mills Drand Hewitt Dr and putting in a median on Valley Mills Dr really is not feasible and will do no good. The traffic study needs to directed to speed on VMD. I agree with Mr. Brashear regarding pedestrian c rosswalks. The only sidewalk on VMD is in front of the CVS Pharmacy on Valley Mills Dr. Hewitt Dr is much the same thing. I witnessed a traffic accident in front of Goodwill - once again, speed wasthe issue, not a median.

```
Speaker: Andy Sheehy
Address: 6700 SangerAve
City: Waco
Comments: I'm representing ReMAX realty speak specifically regarding the proposed
medians on Valley Mills Dr and Hewitt Dr. Restricting traffic in front of a business will reduce the
appraisal of the building. This is a bad long-tem policy. Don't even give a committee the
power to study this. Strongly urge you just to drop this. I think it's a bad idea all the way through.
Speaker. Dale Mathews
Address: \(\quad 1106\) S. Valley Mills Dr
City: Beverly Hills
Comments: I own Champion Fast Lube and CarWash. I agree with the previouscomments on Valley Mills Drive. I suggest the study be made available to the merchants so that we have a chance to meet and prepare for the next meeting.
```

Speaker. John Wessler
Address: 6801 SangerAve, Suite 180
City: Waco
Comments: Iown a business on Sanger, if you put in a median, this will give pedestrians a safe-haven which will encourage pedestrians to cross. Second thing I see is you have less space
for cars to go, which will start disc ussions about widening Valley Mills Dr. We need to focus on altemative safety.

Speaker: Da niel Palmer
Address: $\quad 510$ N. Valley Mills Dr, Suite 600
City: Waco
Comments: I'm an attomey from Haley \& Olson speaking on behalf of Bush's Chicken \& Schlotsky's. I strongly recommend that the Board follow the staff's recommendation to do the study and not priority \#3.

Speaker: Kyle Nielsen
Address: $\quad 916$ N. Valley Mills Dr
City: Waco
Comments: I own Genie Carwash. I agree with what has been said, I drive up and down Valley Mills to the Bank down towards Cobbs. The median on Valley Mills Dr causes more problems; the existing median does nothing to solve the problems. I am adamantly opposed to the medians on both Valley Mills Dr and Hewitt Dr. Letstake some time to look at speed. In 15 years on Valley Mills, we have had 1.2 million cars pull out of Genie CarWash. That'sa lot of cars going both ways. I would like to recommend that you take some time and really think about this.

Speaker. Wes Shriber
Address:
City: Waco
Comments: I have interests on both Hewitt Dr \& Valley Mills Dr. I wondered about how you are going to put a median on a 6 lane highway. You're going to have to close some lanes. Valley Mills into Beverly Hills, you're going to lose all your left handstums. Speed is the problem. The Traffic is absolutely absurd, reduce the speed limit to 30 mph .

Received from: Waco City Secretary's Office
Caller:
Joyce White
Keep valley mills the way it is
Suggested contact Longview, TX about their exp. re: medians

Dear Chris Evilla and members of the Waco Metropolitan Planning Organization,

I respectfully object to building of traffic medians on Valley Mills Drive. I'm sure there are valid reasons for supporting such a move, I think they are heavily outweighed by the disruption of commerce this will cause on Waco's number-one commercial street. The end result would be that of turning Valley Mills Drive into a one-way street, as far as accessing businesses is concerned.

I would respectfully request an opportunity to address your group at the 2 p . m. meeting on Wednesday, if possible. I will keep my comments brief and directly to the point.

Thank you for your consideration.

Sincerely,

Tommy Brashier
Tommy B's
900 N. Valley Mills Drive
Waco, Texas 76712
254.717.3333

Visitor contact from the Waco-Texas.com web site

Name: Skip Londos

Address:

City:
State:
Phone: 254-776-1572
Email: slondos@aol.com

Message:

Just a quick note to make Chris Evilia and city staff aware that I fully support MPO plan to create raised medians on Valley Mills Drive. This will make that stretch Waco safer for pedestrians and more aesthetically pleasing. I hope the city will also consider lowering the speed limit on Valley Mills -- 40 MPH is much too fast to permit safe and comfortable pedestrian activity.

Waco Metropolitan Planning Organization

Proposed Priorities to the 2035 Metropolitan Transportation Plan

Your Name: Address:
$\frac{\frac{\text { Bianca Valentine }}{800 \text { Lewis } 5 t}}{\text { waco, Texas } 76705}$

The Waco Metropolitan Transportation Plan (MTP) outlines the transportation needs for the metropolitan area through the year 2035 and the projects required to address those needs. Recommended priorities within the MTP must be constrained to a realistic estimate of future revenues. The MTP is updated every 5 years. The MPO has identified fiscally constrained transportation priorities to address the regional transportation needs and is soliciting public comment regarding these priorities.

All comments will be presented to the MPO Policy Board and given full consideration prior to adoption. You may return this form by mailing it to the address on the back, faxing it to (254) 750-1605 or e-mailing us at mpo@ci.waco.tx.us. Comments must be received by February 1, 2010 to be included as part of the official record. Thank you for your participation.
(To mail, please fold in half with this page on the inside and affix a postage stamp. The postal service will not deliver without proper postage. Please tape closed, do not staple.)

General Comments, Concerns or Suggestions:

Waco Metropolitan Planning Organization

Proposed Priorities to the 2035 Metropolitan Transportation Plan

Your Name: Address:

The Waco Metropolitan Transportation Plan (MTP) outlines the transportation needs for the metropolitan area through the year 2035 and the projects required to address those needs. Recommended priorities within the MTP must be constrained to a realistic estimate of future revenues. The MTP is updated every 5 years. The MPO has identified fiscally constrained transportation priorities to address the regional transportation needs and is soliciting public comment regarding these priorities.

All comments will be presented to the MPO Policy Board and given full consideration prior to adoption. You may return this form by mailing it to the address on the back, faxing it to (254) 750-1605 or e-mailing us at mpo@ci.waco.tx.us. Comments must be received by February 1, 2010 to be included as part of the official record. Thank you for your participation.
(To mail, please fold in half with this page on the inside and affix a postage stamp. The postal service will not deliver without proper postage. Please tape closed, do not staple.)

General Comments, Concerns or Suggestions:

\qquad M-GRE50R.

Waco Metropolitan Planning Organization

Proposed Priorities to the 2035 Metropolitan Transportation Plan

Your Name: Address:
 GI/ len

The Waco Metropolitan Transportation Plan (MTP) outlines the transportation needs for the metropolitan area through the year 2035 and the projects required to address those needs. Recommended priorities within the MTP must be constrained to a realistic estimate of future revenues. The MTP is updated every 5 years. The MPO has identified fiscally constrained transportation priorities to address the regional transportation needs and is soliciting public comment regarding these priorities.

All comments will be presented to the MPO Policy Board and given full consideration prior to adoption. You may return this form by mailing it to the address on the back, faxing it to (254) 750-1605 or e-mailing us at mpo@ci.waco.tx.us. Comments must be received by February 1, 2010 to be included as part of the official record. Thank you for your participation.
(To mail, please fold in half with this page on the inside and affix a postage stamp. The postal service will not deliver without proper postage. Please tape closed, do not staple.)

General Comments, Concerns or Suggestions:

Visitor Sign In
Public Comment Period
2035 Metropolitan Transportation Plan

Visitor Sign In
Public Comment Period
2035 Metropolitan Transportation Plan

Name			
Sildress	Zip Code		
		7016 Couklin	
		$767 / 0$	

Visitor Sign In Public Comment Period

2035 Metropolitan Transportation Plan

January 21, 2010

Visitor Sign In Public Comment Period

2035 Metropolitan Transportation Plam

Name		Cip Code	

Visitor Sign In Public Comment Period

2035 Metropolitan Transportation Plan

Visitor Sign In Public Comment Period

2035 Metropolitan Transportation Plan

Visitor Sign In Public Comment Period 2035 Metropolitan Transportation Plan

[^0]: IMPORTANT! - Structures indic ated do not necessa rily equal ta kings!

[^1]: Source: Federal Railroad Administration
 *Does not include proposed grade separations.
 **Does not include 8 local trains that run between the Bellmead yards and the Texas Central Industrial Park.
 ***Represents the average number of tra ins perintersection in McLennan County.

