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gate is planar in the  ordinary case,  Fig. l(f ), 
with a uniform  oxide  thickness a, whereas 
in  the proposed structure, Fig. l(g),  the  gate 
has  a circular front of radius r .  Assuming a 
built-in charge  density Qat  the surface and 
neglecting the space charge  in  the  bulk, ex- 
pressions of I ,  V,, and g, can  be  found in 
the low v d  region. The results are shown in 
the  table,  where eo is the  permittivity of the 
insulator, b =  d a i  and  again X = l - - 8  
with 8=0 as  the cutoff condition. For  the 
case (g), g,, has the following complicated 
form 

width a t  the space  charge boundary is zero. 
I t  is seen in the Figure,  however, that  the 
proposed structures will give notably higher 
g, than  the  ordinary  structures  at  compara- 
ble gate  capa~itance.~ 

The Z- v d  relation cannot be  readily de- 
rived, but is  expected to follow the general 
behavior. That is, as vd increases I increases 
with a decreasing slope, and finally becomes 
saturated  as V d  reaches its "pinch-off " value. 
The pinch-off voltage,  probably  fairly close 
to Vgc-  Vu shown in  Fig. 2, is  smaller  in the 
cases (e)  and  (g)  than  (a)  and ( f )  a t  the same 

which, as 8 4 ,  is simplified to 

Equation (4) is seen to be  similar to ( 2 )  in 
that g, varies  reciprocally  with 4. 

The  features of the proposed structures 
are  demonstrated in  Fig. 2 where Z is plotted 
vs. V,  near the cutoff condition  for both  the 
unipolar and  the surface FETs using L = 2a 
and r = a / 2 .  The scales are normalized and 
the cut-off gate voltage V,, is chosen as  the 
origin of the abscissa. At  a given Vu from 
its cutoff value,  the  current is  higher  in the 
cases (e)  and  (g)  than  (a)  and ( f ) ;  and a t  
the origin, the slopes are finite in  the cases 
(a)  and  (f)  but approach  infinity  in (e)  and 
(g).  The infinite g,,, arises  mainly  from our 
consideration of an infinitesimal  signal and 
a t  T=O"K so that  the Debye transition 
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Fig. 2. Calculated c w t e r i s t i c a  ,of sourcedrain 

current vs the deviation of apphed gate  voltage 
from cutoff gate  voltage. The current  and  voltage 
des are normalized, for unipolar FETs, cases 

FETs. cases (f) and (g), in Q@Vd/2a and 2a/m. 
(a)  and  (e). in p ~ V d  and ,mt/Zc,; and for surface 

(saturated)  current.  This  feature of low+ 
voltage saturation is favorable in  most  de- 
vice operations. 

Our analyses were based  on simplified 
assumptions in  order to  bring  out  the main 
features of the proposed structures.  The  gate 
actually  may be  placed anywhere between 
source and  drain  and  may  have  other geo- 
metrical  shapes  (elliptical,  for  example). 
Furthermore,  this  type of gate  may be com- 
bined in use with  auxiliary planar  gates to 
achieve  various characteristics.  In  any case, 
the proposed  devices  should  be operated 
near the cutoff condition so that  a small 
signal a t  the  gate would give a large  varia- 
tion  in Z and  a small  voltage a t  the  drain 
would saturate  the  current. These features 
together  with the obvious feature of the 
minimal  channel  resistance to charge the 
gate  capacity would promise  their use in 
high-speed operations. 
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comparable to  that of the ordinary planar structure. 
9 The  capacitance  can be shown to be finite  and 

On the  Statistics of the Product of a 
Gaussian  Noise  Process and a 
Pseudorandom Binary Code 

In dealing  with  pseudorandom  code 
ranging  systems, used to  track deep-space 
probes,  one encounters a mechanism  wherein 
a band-limited  Gaussian  channel noise 
process  is  multiplied  by a pseudorandom 
binary ranging code. Since the  statistics of 
the code and  the noise are  independent,  the 
autocorrelation function of the  product is 
the  product of the  autocorrelation  functions 
of the two  processes, and  the noise spectral 
density of the  product is  easily derivable 
using the  Fourier  transform. However, a 
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question  remains as  to whether the  statistics 
of the  product remain  Gaussian. The follow- 
ing demonstration is intended  to show that 
the  statistics of the product are indeed 
Gaussian. 

The  product is  defined to be a stationary 
stochastic  process, Z(t) given by 

Z(t) = C(l)X(t) (1) 

where X ( t )  is a  stationary random  Gaussian 
noise process, and C(t)  is a pseudorandom 
binary  waveform, taking on  only  values plus 
or minus  one  in a pseudorandom  sequence, 
and having a fixed binary element length. 

The function of interest is the  probability 
distribution of the  product, defined as 

Fz(z) = P[Z  221; z = cx (2) 

where Z, C and X are random variables  and 
e is a real  number. The  probability, P is 
viewed as  the  probability of the  "event'  that 
the random variable Z is less than or equal 
to  the real  number z .  The  event is a Boolean 
combination of events given as 

[z I z] = [z I 21. [c = + l]V[Z I z] 
.[c = - 11 (3) 

where " *  is the Boolean "and," " V" is the 
Boolean "or."  Then, 

Fz(2) = P( [z < 21. [c = + 1]v[z I z] 

.[c = - 111. (4) 

Since the  events C= + 1  and C= - 1  are 
mutually exclusive, 

Fz(2) = P{ [z < 21. [c = + 11) 
+ P ( [ z I Z ] . [ C =  - I ] } .  (5) 

Substituting from ( l ) ,  

F&) = P { [ X  < z]*[C = + l ]}  
+ P { [ - X I Z ] . [ C =  - 1 1 ) .  (6) 

The variables X and  Care statistically  inde- 
pendent so that 

F z ( z )  = P[X < Z]P[C = + 11 
+ P [ - x  5 Z]P[C = - 11. (7)  

Now the random variable X is Gaussian and 
the  probability  that X < z  is the Gaussian 
distribution  function, defined as @ ~ ( z ) .  

P[X I z] @x(z) (8) 
P [ - x  < z] = P [ X  1 - 21 

= 1 - @x(-z). 

Then 

F z ( z )  = *X(Z)P[C = + 11 
+ [ l  - @x(-z)]P[C = - 11. (10) 

Now,  the Gaussian distribution function 
may be related  to  the "error function"  as 

Then 

P[C = - 11. (12) 
Since 

erf ( - U )  = - erf ( U )  (13) 
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But 
P[C = + 11 + P[C = - 11 = 1. (15) 

Then 

Fz(e)  = &%(-(e). (17) 

It  is  seen that  the  probability  distribu- 
tion function of the  product process Z ( t )  is 
identically that of the  Gaussian noise 
process, X ( t ) .  

J. H. PAINTER 
Motorola  Inc. 

llilitary Electronics Division 
Scottsdale.  Ark. 

A Circuit Model of the Step- 
Recovery Diode 

The charge-storage  or  step-recovery di- 
ode described by Moll et al. [ l ]  has become 
a device of great  interest,  particularly  in  the 
generation of microwave power by high- 
order  harmonic  multiplication [2],  [3]. For 
purposes of analysis  and  experimental scal- 
ing, it is useful to  hare a simple circuit 
model available which can  accurately pre- 
dict  the  performance of devices using these 
diodes. I t  is the  purpose of this correspon- 
dence  to  present such a representation, which 
utilizes conventional  capacitance  and re- 
sistance  in a piecewise linear model. 

One of the basic characteristics of the 
step-recovery  diode is its  ability  to  store sig- 
nificant charge under forward bias. This 
stored  charge is recoverable, and,  hence, 
under forward bias  the  diode  behaves much 
like a relatively large capacitance. But  there 
is also a steady-state  current  under  forward 
bias, as in a conventional  diode, which  re- 
quires  the presence of a resistive com- 
ponent. -4 possible circuit model for a step- 
recovery diode under forward  bias  or  charge 
storage  conditions is, therefore, a simple 
parallel combinatim of a resistor  and a ca- 
pacitor. The  validity of this  approach  can be 
checked by  comparing  the  results  obtained 
from the proposed model with (23) and (24) 
of Moll et al.  These  two  equations  pertain to 
the  charge-storage  phase of a diode which 
has been in forward  conduction for time 
Tf ,  with a constant  forward  current I f .  At 
time t = O ,  the  current is reversed in direction 
and held a t  magnitude I,. The  analogous 
situation for the proposed piecewise linear 
model is  the  circuit shown  in Fig. l(a). 
Under the condition of Rl<<R,, the forward 
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Fig. 1. A circuit representation of the step-recovery diode for V,  >O. In (a), ionvard 
current I! = L.l/Rg flows; in (b). reverse current I ,  =V?iR,, flows. 

current will be  constant at the  value If 
= V1/Ro. Assuming a t  time t = O  there is no 
charge  on  the  capacitor,  the  voltage of the 
capacitor as a function of time will be of the 
form 

V, = IjRl(1 - e+’‘) (1) 

where r=RlCl. The  stored  charge Q o ,  a t  
time Tf ,  is  given  by  the  product of capaci- 
tance  and  voltage: 

Q o  = C1JTC = Z p ( 1  - (2) 

This is identical  with (24) of Moll et al. I t  is 
interesting  to  note  the physical identification 
of the  time  constant RtCl of the model with 
the  minority  carrier lifetime of the  step- 
recovery diode. The model resistance RI can 
also be identified with the  forward  resistance 
of the  diode in the  absence of parasitic series 
resistance. 

\Vhen the  applied  bias is reversed, the 
model becomes as shown in Fig. l(b),  as 
long as  the  charge Q is greater than zero. 
Since Q becomes zero when V, reaches zero, 
we can  compute  the  duration of charge  stor- 
age  by  determining  the  time when V,=O. 
Xgain assuming R1<<R,, and  an initial condi- 
tion of VC=Qo/C1 when t =0, the expression 
for I’, as a function of time  is 

T’, = (Qo/Cl + Z,Rl)e-f ‘ - I,R1 (3) 

where I ,  = V?/R7. The  charge-storage  time  is 
obtained by solving (3) for the  time T,  xhen 
V,=O. The result is 

T. = 7 In (1 + Qo/Z,r). (4) 
Equation (4)  is identical with (23) of Moll 
et al. 

I f  current  due  to residual charge is  ne- 
glected [ l ] ,  a t  time T8 the model becomes 
simply a capacitance C?, and  remains so as 
long as V,<O. This  capacitance C? can  be 
identified with  the  depletion-layer capaci- 
tance of a reverse-biased diode. The  circuit 
model can  be  further refined by including the 
effects of diode  contact  potential VO, and 
parasitic series resistance R,. The resulting 
circuit model is indicated in Fig. 2. 

This piecewise tinear model was checked 
both by  programming an analog  computer 
and  constructing a model from  linear re- 
sistors  and  capacitors  and an electronic 
switch. Typical  step-recovery  diode wave- 
forms were obtained  in  each case. One  such 
waveform is shown in Fig. 3. This  is  the  cur- 
rent  through a model “diode”  in response to 
a sinusoidal voltage. For  this model, R1 

=1.5 kn, c1=0.5 pf, C?=.OOO5 pf, and 
VO = O .  The  input  frequency is 2 0 0  c/s.  Note 
that r=0.75 ms, which is considerably 

SWITCH  CLOSED FOR Vc>Vo 

SWITCH OPEN FOR VcCVo 

Fig. 2. A piecewise linear model of the step-recove,ry 
diode, including contact  potential and serles 
resistance. 

Fig. 3. Typical current waveform obtained Fith 
expetirnental piecewise linear model with anus- 
oidal applied voltage at 2 0 0  c/a 

greater than  the lifetime in a typical  step- 
recovery diode, which is on  the  order of 100 
ns. This scaling latitude makes possible the 
experimental  investigation of steprecovery 
diode  action at frequencies much lower 
than  that which must  be employed with  the 
actual diode. 

On the basis of this model of the  step- 
recovery diode, an interesting  comparison 
can  be made between the  step-recovery 
diode  and  the  varactor diode. In  the  varactor 
case, the model is a constant series resistance 
and a voltage-dependent  capacitance. The 
curve of capacitance vs. voltage is smooth, 
and  contains no discontinuities.  Under re- 
verse bias, the model of a step-recovery 
diode is identical to  that of the  varactor  (not 
withstanding  the  fact  that we have  here 
chosen to  treat  the depletion layer capaci- 
tance of a step-recovery  diode as constant 
in  our linearized model). Forward  bias 
operation of a varactor  is  often  ignored; at 
other  times some consideration  is given to 
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