
A KNOWLEDGE-BASED CONTROL PARADIGM
FOR

REAL-TIME SYSTEMS

John H. Painter, Shih K. Lin, and Emily Glass

Department of Electrical Engineering
Texas A&M University

College Station, Texas 77843-3128

ABSTRACT

This paper examines the application of knowledge-
based symbolic control to the management of execution
and configuration of a complex numerical control system.
Symbolic processing is used to implement inference of sys-
tem ’statme’ and internal communication for inference and
control. The Flavor System provides an object-oriented
programming environment in which the inference engine
and knowledge base for the Symbolic Controller are re-
alized. System communication is accomplished by asyn-
chronous message passing using mailbox facility.

INTRODUCTION

Knowledge-based Control may be defined as the
integration of symbolic processing with procedural nu-
merical control. This paper examines its application
to the management of execution and configuration of
a complex numerical control system, such as a guid-
ance system. Here, symbolic processing is used to im-
plement inference of system ‘state’ and to implenient
internal communication for inference and control.

The concept of Intelligent Controls was first pro-
posed by K.S. Fu, to link Artificial Intelligence (AI)
and Automatic Control [l]. An important contem-
porary example application is industrial automation,
where machines (robots) function without complete
a priori knowledge of the work environment. Current
implementations are rudimentary in terms of some
previous promises of AI [2]. This paper’s approach is
pragmatic, however, following the suggestion of [3] :

“... treating AI as an engineering discipline hav-
ing a new set of software tools and techniques
that can create more powerful and natural sys-
tems, regardless of any similarity to human solu-
tion techniques.” [3]

This research was supported, in part, by E-
SYSTEMS, Inc., Garland Division, of Dallas Texas,
under Contract 4901 EP-40169

A ‘hands-on’ approach has been employed in the
present work. A specific application has been chosen
as a target around which to develop general results.
The particular target is a ‘software-intensive radio,’
which is envisioned as being digitally implemented.
Symbolic processing is used to internally control the
radio down to the module level. Testing is T . ria com-
puter emulation (Monte Carlo). The symbolic pro-
cessing architecture so developed is held to be generic
and not dependent on the target application, per se.

A GENERAL SYSTEM ARCHITECTURE

An architecture is presented for integrated sym-
bolic/numeric processing, similar to one postulated
by Saridis [4], but developed independently thereof.
Saridis viewed such an architecture as a hierarchy, ac-
cording to his tenet, ‘Principle of Increasing Precision
with Decreasing Intelligence.’

Our architecture (See Figure l., below) is four-
level and is inverted from Saridis’ view, in that the
upper levels are high precision (numerical process-
ing), corresponding to the target application. Sen-
sory input to the application is at the top level. The
top two levels comprise numerical processing, with
the topmost level being the prime ‘Application’ level
and the next level down being numerical ‘Support’
modules. These latter modules may support the
top level or the third level down. The third level
contains symbolic processing modules, functioning
to draw inferences and to provide control (gener-
alized) for the top levels. The final, fourth level
comprises the ‘Data-base,’ or library, which supports
the‘Inference/Control’ level.

This paper is concerned primarily with the third
(‘Inference/Control‘)level. This level generally has
two different types of modules serving different pur-
poses. The purpose of one type is restricted to real-
time (‘decision- directed’) control (management) of
the target application. Control tactics are imple-
mented here. which may not be compatible with an
inflexible, ‘hard-wired,’ direct encoding of algorithms

0-81 86-201 2-9/89/0000/0227$01 .OO 0 1989 IEEE 227

Authorized licensed use limited to: Texas A M University. Downloaded on February 18,2010 at 14:46:01 EST from IEEE Xplore. Restrictions apply.

I ’ I
I I I
I
I I C

0
M
M
U
I
C

I

I
I
I
I
I
I
I
I
I
I
I

GP-CPU.
Prop. DSPa

Figure 1. Total System Architecture

in the target system, itself. Such control tactics are,
for example, those depending on heuristic ‘rules,’ such
as might be used by a human operator. The second
type of symbolic module at this level is that which in-
terprets, not the state of the numerical processor, but
the data flowing through the processor. This second
type of symbolic inference module is not dealt within
the present paper.

Due to the ‘real-time’ requirement for control,
there is a tradeoff between which control functions
can be implemented in symbolic processing and which
functions must be implemented in directly encoded
numerical algorithms. In order to differentiate the
two, the first are characterized as ‘Expert Control,’
while the latter are called ‘Hard-wired.’ Those con-
trol functions requiring ezecution speeds beyond the
capabilities of symbolic processing must be hard-wired.
Here, we consider only symbolic processing for Expert
Control.

The symbolic module, which is to infer ‘state’
and to control the target system, is simply called the
‘CONTROLLER.’ This controller gathers from the
target system such indications of performance as are
required to infer the ‘operational state’ of the con-
trolled system. Note that an implicit assumption is
made that the targeted applications are not of such
large scale that distributed (‘democratic’) control is
required. Rather, control responsibility and authority
is concentrated in a single module.

THE INDIRECT CONTROL STRATEGY

STATE : It is conceived that some of the applica-
tion system’s modules are sdiciently complex that
their ’states’ may change from time to time, and that
these changes are mode dependent. That is, an oper-
ational mode change may imply a state change, and
vice versa. For example, consider a module which im-
plements a tracking loop, or some other synchroniza-
tion module, in the target application. As this mod-
ule is activated, de-activated, and re-activated dur-
ing operation, various internal ‘signals’ (waveforms),
when observed, indicate the module’s instantaneous
operational status. Rudimentary sensing algorithms
may be implemented in the module which then indi-
cate module status to the external world. When au-
tomated, such indications take the form of (binary)
‘flags.’ The ‘state’ of a module may then be defined to
be the set of all its flags, indicated by a digital word.
By extension, the ‘state’ of the controlled system is
the superset of module states, indicated by an ordered
collection of words.

OPERATIONAL MODES : The operation of the
application system is conceived as consisting of a
sequence or set of a finite number of operational
‘MODES.’ Defining each operational MODE then
spawns sets of describing ‘characteristics’ which are
true for the controlled system, mode-by-mode. These
characteristics describe the dynamic architecture of
the controlled system, defined as the set of modules,
each of which actively processes data during the in-
dicated mode of operation.

The first describing characteristic of the con-
trolled system, for any particular mode, is ‘PATH.’
PATH implies a set of instructions indicating where
each numerical processing system module is to pass
its output data. The second describing characteristic
is ‘SEQUENCE.’ This spawns a set of instructions de-
scribing the sequence in which the various numerical
processing modules are to execute in a given mode,
as data passes through the architecture. SEQUENCE
is essentially the instantaneous ‘connection diagram’
of the numerical system’s modules, mode by mode.
Now, SEQUENCE and PATH may seem to be re-
dundant. However, this definition makes provision for
dealing with a synchronous application system, hav-
ing explicit parallel internal structure, by using sep-
arate, independent (unsynchronized) hardware mod-
ules, wherein the synchronization burden is carried
by inter-module communication. A final describing
characteristic for the application system is ‘PARAM-
ETER.’ This spawns sets of numerical coefficients

Authorized licensed use limited to: Texas A M University. Downloaded on February 18,2010 at 14:46:01 EST from IEEE Xplore. Restrictions apply.

which each module uses as it performs numerical pro-
cessing, mode by mode.

Control is imposed on the application system in
an indirect way. CONTROLLER reads STATE and,
consulting data-bases of rules, determines MODE,
SEQUENCE and PARAMETER. SEQUENCE is
used internal to CONTROLLER to further determine
PATH. CONTROLLER then communicates PATH
and PARAMETER to each active module. Each pro-
cessing module comniunicates to the modules in its
path the fact that it has produced data (buffers)
which are available for further processing. Thus,
CONTROLLER does not intervene (directly) in the
flow of data through the application system.

COMMUNICATION: Inter-module communication
is implemented asynchronously, to give a control
strategy which is generally applicable to synchronous
or asynchronous applications) which may also be dis-
tributed. The communication method which corre-
sponds to the control described above is called ‘mes-
sage-passing.’ [5,6,7]. Space does not here allow cita-
tion of the extensive recent literature concerning this
subject, which is associated with distributed process-
ing, concurrent systems, and threads of control.

CONTROLLER IMPLEMENTATION

The Symbolic Controller, shown in Figure 2., is
being developed in an object-oriented Common Lisp
environment [8], called the Flavor System. The rea-
son for employing this particular programming tech-
nique will become evident in subsequent discussion.
Another important feature which is indispensable to
the symbolic control system is the Foreign Function

r - - - - - - 1
User

I User Interactive
Input/ I

I
I
I
I
I
I

output

I I

Interface Unit

Symbolic Controller

I
T-
I
I
I
I
I
I L - - - - - - ,

Figure 2. The Symbolic Controller

-
C
0
M
M
U
N
I
C
A
T
I
0
N
B
U
S
S
E
S
-

Interface services supported by the same program-
ming environment. This int er-language interface al-
lows a LISP program to link with compiled C, FOR-
TRAN, and PASCAL images to support cooperation
with ‘foreign processes’ in those languages. Commu-
nication channels between the emulated Controller
(LISP) and numerical processor (FORTRAN) are ini-
plemented using a \.‘AX/VMS interprocess commu-
nication utility, “MAILBOX” [9,10,11]. Communi-
cations internal t,o Controller are, however, accom-
plished by sharing instance variables in the Flavor
System.

FUNCTIONAL DESCRIPTION: Figure 2. shows
the architecture of the Symbolic Controller, consist-
ing of five functional modules. These are the primary
Control module, plus four additional modules. These
are now explained. Note, however, that the ordering
of functional modules does not correspond to their
operating sequence in the controller.

In the total system simulation, the Symbolic
Controller first conducts a series of initialization
tasks before interacting with the numerical proces-
sor. These initialization activities are sponsored by
the Interface Unit shown in the Controller architec-
ture. Therefore, this functional module is first de-
scribed.

Three foreign functions are defined for the Con-
troller in the initialization stage. They are each re-
sponsible for designated tasks: SYSACCS spawns the
numerical processor for the Controller as its attached
concurrent subprocess. Then it creates two mailbox
facilities) to which all concurrent processes in the sys-
tem can have access. WRTATTN-READ is a function
that queues an unsolicited read request to a mailbox,
where messages sent from the numerical processor are
received. Finally, WRT-TO is responsible for trans-
mitting messages from the Controller to the proces-
sor. System-defined routines are available to support
these operations [lo]. The detailed communication
mechanism for the concurrent processing system is
explained below. For more information on system
concurrency and inter-process communication, see [5,

The User Interactive module is the interface to
the external world. It deals with possible human op-
erators and provides user I/O. In the initial system
emulation mode, t,his module queries the user for data
to initialize the numerical processor. This is both an
initial operational mode and a pre-sin1ulatioIl step,
since it also sets UP the simulated ‘signal generator’
for the target application. Parameter initialization is
accomplished interactively, and the procedure is man-

12-15].

229

Authorized licensed use limited to: Texas A M University. Downloaded on February 18,2010 at 14:46:01 EST from IEEE Xplore. Restrictions apply.

ual driven. The user can change internal parameters
such as numer of data bits, carrier amplitude, signal
to noise ratio, and so on. The user can also ignore
the query, in which case, a set of previously defined
parameters are used instead.

The Control module uses two supporting mod-
ules, being the Flavor System and the Knowledge
Base. (Note that in Figure l., the Knowledge Base
was shown separately, for clarity.) The Flavor System
is actually the object-oriented programming environ-
ment, which supports AI techniques for symbolic ma-
nipulation of knowledge (161. As related earlier, the
Controller makes decisions on the numerical system’s
current and succeeding operation modes in order to
achieve symbolic control. These decision making rou-
tines are implemented individually as objects, or in
our case, by flavors. Functions associated with var-
ious decision specifications are then represented as
‘methods,’ which the flavors may perform. Another
feature of the programming environment, called ‘in-
heritance,’ allows the combining of methods and pro-
vides internal (to the controller) communications as
a side effect. An example of this concept is provided
below in discussion of the internal communication de-
sign for the Symbolic Controller.

The Knowledge Base is a collection of symbolic
representations of the numerical processor’s internal
states. They are library-like data structures, which
are implemented in ‘Hash Tables’ [17]. Each table en-
try consists of a pair of associated objects, a key and
a value. Desired values of some objects are obtained
by searching for matches of their corresponding keys.
For example, in the target application, the Hash Ta-
ble MODLIB is the data base corresponds to the de-
cision routine MODEID that determines the current
operation mode for the numerical processor. Each
key entry is a fixed number representation of the sys-
tem’s current state, and the corresponding value is the
symbolic representation of that state. The system’s
current operating mode is, therefore, determined by
matching the received binary string value with the
keys in the Table. The operating mode is found if
there exists a perfect match. For no match, ‘Mode
Unknown’ is returned.

The Control module thus realizes the control
paradigm, and together with the Flavor System, they
form the Inference Engine of the symbolic control
system. Rule Matching is implemented inside the
Control module. The actual rules are defined within
the various methods assigned to the flavors. Meta-
knowledge [18] concepts can be applied to shorten the
search paths to determine the succeeding mode (se-
quence of module operations) for the numerical sys-

230

tem. With meta-rule implementation, the Inference
Engine will not exhaustively search through irrelevant
rule sets, because they will be effectively excluded
from the search list. It is evident at this point that
the Symbolic Controller possesses the basic structural
elements of an Expert System, namely, the Infer-
ence Engine, Knowledge Base, and User Interactive.
Moreoever, the architecture can be characterized as a
Flavor-based Expert Controller because the bottom
three functional modules, including the Hash Tables,
of Figure 2. are developed mostly inside the Flavor
System programming environment.

COMMUNICATIONS: Two communication mech-
anisms are employed by the symbolic control sub-
system. They are inter-process and intra-process
communications. Inter-process communication is ac-
complished through message passing channels estab-
lished for the Controller and the numerical proces-
sor. Two virtual mailbox devices are created to ac-
commodate the memory volume anticipated during
message exchanges. VAX/VMS System Queue In-
put/Output (QIO) functions implements the 1/0 rou-
tines for the inter-process communication. The spe-
cific input function, called “set write-attention asyn-
chronous system trap (SWAAST) ,” allows concur-
rent processes to individually queue ‘read-message’
requests without halting process executions, if a new
message is currently unavailable. The process exe-
cution will be suspended, however, when the expect-
ing message becomes available, and immediately af-
ter SWAAST has retrieved the message, the process
resumes running. Using these VMS system services
allows simulation of multi-processor architectures in
a multi-user VAX environment.

Inter-process communication is simulated as fol-
lows. First, a Command/Status (CS) word data
structure is designed, which transports system infor-
mation such as module identifier, message type, and
status block between the two processors. CS-word
is implemented as a binary string data type. The
current CS-word construct only incorporates the sta-
tus block. Binary strings, representing the running
numerical processor’s current states are sent to Con-
troller via the mailbox utility. The binary strings
are then converted to symbolic equivalents inside a
Hash Table where the key is the received binary value,
which maps to its symbolic equivalent, an operational
mode. Then, the inference engine, mainly the con-
trol module, does a sequence of rule-matcliings on
the received messages, to determine the present and
succeeding states of the entire numerical processor.
Then, Controller sends instructions back to the nu-
merical processor, via another mailbox utility, for the

Authorized licensed use limited to: Texas A M University. Downloaded on February 18,2010 at 14:46:01 EST from IEEE Xplore. Restrictions apply.

next period (mode) of operation.
As a specific example, in the Radio Proces-

sor a five-digit binary word represents each state,
such as ‘STANDBY,’ ‘STARTUP,’ ‘FILTER,’ ‘RUN,’
‘POWERUP,’ ‘POWERDOWN,’ and ‘EXIT,’ respec-
tively. The most significant bits of the word iden-
tify the module sending the message. Thus, upon
receiving ‘00001,’ Controller finds, from the Hash Ta-
ble, that the Automatic Gain Control Module is in
STARTUP State. When all modules have signalled
‘STARTUP,’ the Controller declares ‘STARTUP,’ and
passes instructions back to the modules to move the
receiver into the next operational mode, which is ‘RE-
SET.’

Internal to Controller, communication between
objects (individual flavors) is realized by sharing in-
stance variables. This results as flavors are combined
so that shareable instance variables are properly in-
cluded in the methods of individual flavors within the
communication network. The network is currently a
hierarchical ‘Flavor Tree.’ The flavor at the top of the
hierarchy inherits all the instance variables below it.
The flavors at the bottom of the Flavor Tree are con-
sidered basic, and are never instantiated alone. This
Flavor Tree structure can be recognized as an inverted
family tree.

For example, the current Flavor Tree for the Con-
troller consists of four individual flavors, each of which
represents a functional module, internal to the Con-
trol module of Figure 2. . From the top down, these
are ‘MODLMGR,’ ‘MODESEQ,’ ‘MODEMGR,’ and
‘MODEID.’ For each flavor (module), methods (func-
tions) and instance variables (attributes) are defined,
with a predefined message, :msg, common to all meth-
ods in the tree. This allows combining methods in the
Flavor Tree in a way that the methods executed from
the bottom flavor of the Tree to the top. This means
that when the instances corresponding to the numer-
ical processor’s states, defined as ‘cs-word,’ are input
to Controller and passed via :msg, its modules exe-
cute sequentially, to identify the mode, manage the
mode, sequence the (numerical processor) modules,
and manage the (numerical processor) modules.

CONCLUSION

The indirect method of control, detailed above,
formalizes and exploits a discipline which occurs nat-
urally in the design of complex numerical systems.
That discipline is ‘moding,’ wherein design of control
for a complex system focuses on its natural modes of
operation. The formal relating of the system’s local
states to its global modes then yields the symbolic
method of control.

-

23 I

Several interesting issues have heen sliai ply de-
fined during pursuit of this work. First. continuing
design of the Symbolic Controller should support a
broad range of requirements from the numerical ap-
plication system. That is, the design approach should
be to develop a general purpose Controller Shell, to
which, a multi-tasking application system can be at-
tached. A necessary feature of such a Controller Shell
is its ability to reconfigure its internal ‘wiring’ of con-
trol paths to meet specific needs of the attached multi-
tasking processor.

An associated concern about the general purpose
Controller Shell archit,ecture relates to the concur-
rency of the controller. Since the multiple tasks of
the numerical application system are requesting con-
trol services simultaneously with the Symbolic Con-
troller, it must be able to allocate proper execution
quantum to individual tasks. This leads to the idea of
developing a concurrent processing environment for
the controller should such ability be lacking in the
programming language [19].

At the present stage of development, true ‘intel-
ligence,’ corresponding to Saridis’ Organization Level
[4], has yet to be implemented. Such implementa-
tion requires augmentation of the Controller archi-
tecture, which has been done, plus design and coding
of the corresponding symbolic algorithms, which re-
mains to be done. This will require incorporating
uncertainty management capability in the Controller
Shell, by which Symbolic Control can operate under
conditions where insufficient or fuzzy information are
encountered [20]. This last issue defines the next step
in design of the symbolic controller, which is one of
the core issues in the arena of so-called Intelligent
Control.

In summary, the next stage of system implemen-
tation will focus on developing Controller’s organiza-
tion level where intelligent reasoning is emphasized.
Features supported should include autonomous recon-
figuration of control path, total system concurrency,
and intelligent inference ability. Work continues to
accomplish all these goals.

REFERENCES

[I] K.S. Fu, “Learning Control Systems and In-
telligent Control System: An .Intersection of
Artificial Intelligence and Automatic Control,”
IEEE Trans. on Automatic Control, vol. AC-
16, no. 1, pp. 70-72, 1971.

[a] Howard Anderson, ‘(Why Artificial Intelligence
Isn’t (>-et),” AI EXPERT, vol. 2, no. 7 , pp.
36-44, July. 198 i .

Authorized licensed use limited to: Texas A M University. Downloaded on February 18,2010 at 14:46:01 EST from IEEE Xplore. Restrictions apply.

[3] R.H. Anderson and R.B. Greenberg, “UNIX and
AI, A Beautiful Marriage,” UNIX WORLD, pp.
26-33, August, 1986.

[4] G.N. Saridis, “Knowledge Implementation: Struc-
tures of Intelligent Control Systems,” IEEE
International Symposium on Intelligent Control,
Philadelphia, Penn., January, 1987.

[5] C.A.R. Hoare, “Communicating Sequential Pro-
cesses,” Communications of the ACM, vol. 21,
no. 8, pp. 666-677, August, 1978.

[6] Carl Hewitt, “Concurrency in Intelligent Sys-
tems,” AI EXPERT, Premier Issue, pp. 44-50,
1986.

[?I W.A. Mason, “Distributed Processing: The
State of the Art,” BYTE, pp. 291-297, Novem-
ber, 1987.

[8] Lucid Common Lisp : User’s Guide for the VAX,
Lucid, Inc., Menlo Park, CA., 1986.

[9] Guide to Programming on VAX/VMS, Digital
Equipment Corp., Maynard, MA., 1986.

[lo] VAX/VMS System Services Reference Manual,
DEC, opxit., 1986.

[ll] VAX/VMS 1/0 User’s Reference Manual, DEC,
op. cit., 1986.

-121 P.H. Enslow Jr., “Multiprocessor Organization:
A Survey,” Computing Surveys, vol. 9, no. 1,

[13] P.B. Hansen, “Distributed Process: A Con-
current Processing Concept,” Communication of
the ACM, vol. 21, no. 11, pp. 934-941, 1978.

[14] J.A. Stankovic, “Software Communication Mech-
anisms: Procedure C A Versus Messages,”
Computer, vol. 15, no. 4, pp. 19-25, 1982.

[15] S.M. Shatz, “Communication Mechanisms of
Programming Distributed Systems ,” Computer,
vol. 17, no. 6, pp. 21-27, 1984.

[16] M. Stefik and D.G. Bobrow, “Object-Oriented
Programming: Themes and Variations,” The AI
Magazine, vol. 6, no. 4, pp. 40-62, 1986.

[17] G.L. Steele, Jr., Common Lisp, The Lanpage,
Digital Press, Digital Equipment Corp., Biller-
ica, MA., pp. 282-285, 1984.

[18] R. Davis and B.G. Buchanan, “Meta-Level
Knowldege: Overview and Applications,” The
5th IJCAI, Cambridge, MA., August, 1977.

[19] A.P. Bernat, “Multitasking for Common LISP,”
AI EXPERT, Premier Issue, pp. 68-79, 1986.

[20] L.A. Zadeh, “The Role of Fuzzy Logic in The
Management of Uncertainty in Expert Systems,”
Fuzzv Sets and Systems, vol. 11, no. 7, pp. 199-
227,1983.

pp. 103-129, March 1977.

Authorized licensed use limited to: Texas A M University. Downloaded on February 18,2010 at 14:46:01 EST from IEEE Xplore. Restrictions apply.

