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Disclaimer 
 

This report was prepared by the Energy Systems Laboratory (ESL) of the Texas 
Engineering Experiment Station (TEES) under contract to Lawrence Berkley National 
Laboratory.  Neither the ESL nor TEES nor any of their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, 
or represents that its use would not infringe on privately-owned rights. 

Reference herein to any specific commercial product, process or service by trade 
name, trademark, manufacturer or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation or favoring by the ESL or TEES or any agency thereof.  
The views and opinions of the authors expressed herein do not necessarily state or reflect 
those of the ESL or TEES or any agency thereof. 
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Executive Summary 
 

The individual commissioning lessons learned from this study of the advanced system in the 

Intelligent Workplace may be summarized and generalized as follows. 

1. Advanced systems are likely to have very important design characteristics that must be 

thoroughly considered during the design process to achieve expected performance, 

illustrated by the need to consider the characteristics of mullion design, and the 

importance of contact resistance to radiant panel performance. 

2. Advanced systems may require unconventional control techniques to achieve optimum 

performance, and this may not be obvious to the design engineer.  This is illustrated by 

the imperative to use operative temperature as the control variable instead of space air 

temperature for mullion type radiant heaters. 

3. Proper sizing of systems is critical for optimum energy performance of many advanced 

systems, just as it is for conventional systems.  This may be even more important with 

advanced systems where limited size options may exist.  This is illustrated by the 

oversized desiccant system in the building studied. 

4. Expected energy performance of advanced systems can depend critically on proper 

commissioning of the entire system, as illustrated by the higher than expected infiltration 

in the case study building resulting in the advanced desiccant system having higher 

energy consumption than a conventional single duct VAV system. 
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Introduction 
A detailed study has been conducted of the performance of several innovative aspects of the 

Intelligent Workplace (IW) at Carnegie Mellon University, a low energy consumption building 

that uses radiant heating, cooling and a desiccant ventilation unit. The following aspects have 

been studied in detail: the heat transfer process of radiant mullions and overhead radiant panels, 

the impact of the radiator position on heating load and thermal comfort, the influence of 

infiltration on indoor humidity in a radiantly cooled office with a solid desiccant ventilation unit, 

and an energy consumption comparison of the sensible heating and cooling systems with a single 

duct VAV system. This report summarizes the conclusions and observations relevant to 

commissioning of such buildings. 

Simulation and Verification Study of the Radiant Mullions 
The IW radiant mullion system is one type of façade heating and cooling system. No detailed 

study of such systems was found in the available literature. The heat transfer process of window 

mullion radiators was studied and a group of models were developed to simulate the performance 

of radiant mullions. The simulation results were compared with ten days of measured data. The 

comparison found that the heat transfer models predicted the measured temperatures with root 

mean square errors (RMSE) of the hot water return temperature, mullion surface temperature, and 

window surface temperature of 0.90°F, 0.98°F and 1.15°F, respectively: 

The performance study of radiant mullions showed that hot water and chilled water supply 

temperatures are the primary factors affecting the heating or cooling capacity of radiant mullions 

and the mullion surface temperature. The window surface temperature distribution is affected by 

the mullion surface temperature and the inside and outside air temperatures. The temperature 

gradient on the glazing surface within one foot from the mullions is much higher than in the 

central part of the window. The temperatures in the central 2 feet of a 4-foot window show almost 

no influence from the mullion surface temperature.  

The conductive thermal resistance of the mullion double tubes and gap filling plays a decisive 

role in controlling the mullion and window frame temperatures. An increased mullion tube 

conductive resistance results in a lower surface temperature for heating and a higher surface 

temperature for cooling. The higher surface temperature for cooling may be intended to lower the 

risk of moisture condensation on the surface of the mullion in the cooling condition. However, 
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the enhanced thermal resistance decreases the heating and cooling capacity of the mullion. If the 

mullions are only used for heating, a single tube structure would provide better performance. 

From the design perspective, the window width or spacing between the mullions has little 

impact on the heating capacity or mullion surface temperature. However, the space between the 

mullions will somewhat affect the window inner surface temperature distribution and average 

window temperature.  

This portion of the study provided little of direct relevance to commissioning, except the 

observation that a mullion used only for heating should use a single tube designs – information 

that would be useful in design phase commissioning of a building that will use such systems. 

Simulation Study of the Overhead Radiant Panels 
The heat transfer principles of the overhead radiant panels were studied and a heat transfer 

model set up.  The model can be solved for the supply water outlet temperature, average panel 

surface temperature and overall panel surface heat transfer coefficient. The study found that the 

heating and cooling capacity of the overhead panel without top insulation is a semi-linear 

function of the supply water temperature when the flow rate is fixed.  

The cooling capacity of the overhead radiant panel is around 45 Btu/(hr-°F) at a chilled water 

supply temperature of 55ºF; it is greatly affected by the room air temperature and slightly affected 

by the water flow rate. The heating capacity of the overhead radiant panel is around 144 Btu/(hr-

°F) at the hot water supply temperature of 120°F. Room air temperature and supply water flow 

rate affect the heating input of the overhead radiant panels. The heating capacity increases by 

8.5% when the room air temperature drops from 72ºF to 68ºF, and it decreases 14.2% if the hot 

water flow rate is reduced to half of the design flow rate. 

The thermal contact resistance between the water tubes and the aluminum radiant panels has 

a significant impact on the thermal performance of the overhead radiant panels. When the thermal 

contact resistance increases to 0.2 Btu/(hr-°F), the cooling capacity drops 18.6% and the heating 

capacity drops 20.6%. The thermal contact resistance should be reduced to be as small as possible 

in the design processes. 

This part of the study indicates that contact resistance between the water supply tubes and 

aluminum radiant panels used in this building has a major impact on panel performance – a factor 

that should be carefully considered by the commissioning authority in the design process.  
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The Impact of the Radiator Position on Heating Load and 
Thermal Comfort 

The position of the radiators in a radiantly heated office has been shown to impact the heating 

load and the thermal comfort distribution inside the room. When radiators are close to the 

window, the increase of window surface temperature is higher than when the radiator is located in 

the center of the ceiling. The energy savings relative to the convective air system depend on the 

outside air supply rate. When the outside air supply rate and the rate of infiltration increase, the 

energy savings of the radiant system also increase.  

The control device used also affects the energy consumption of a radiant heating system. If 

the dry bulb temperature thermostat is used instead of an operative temperature thermostat in a 

radiantly heated space and the air temperature is set at the same point as that which is used for air 

heating, radiant heating will increase the heating load as much as 11.5% higher compared to the 

air heating for the cases studied. 

On the basis of thermal comfort, radiators located close to the window can reduce down draft, 

prevent cold penetration inside a room and make the operative temperature distribution much 

more uniform than when the radiator is located in the center of the ceiling.  

This portion of the study found that it is imperative to use operative temperature as the 

control variable instead of space air temperature or mullion type radiant heaters will significantly 

increase the heating load in a space.  This is an important consideration for both design 

commissioning and for the operational commissioning of such a system. 

Indoor Humidity Analysis and the Desiccant Ventilation Units 
The indoor humidity study found that the active desiccant ventilation system dries a space 

deeply and continuously, while a passive desiccant ventilation system dries a space more energy 

efficiently. The moisture removal capacity of a passive desiccant system depends on the dryness 

of the exhaust air. When a passive ventilation system is the only source of dehumidification, the 

system cannot remove moisture without post-desiccant cooling.  

High infiltration is one of the main causes of condensation in a radiantly cooled space during 

summer. Radiant panels cannot work without condensation in a leaky space, even if the supply air 

is conditioned to 52oF, 0.008lb/lb. Pressurizing the space with ventilation air is one possible 

solution available for avoiding water condensation on the surface of radiant cooling panels in a 

leaky building. The infiltration and ventilation rate has a significant impact on energy 

consumption. The primary energy consumption was simulated to increase by 36% when the 

infiltration rate increases from 0.0 to 0.45 air changes per hour in the space studied as might be 
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expected; at the same infiltration condition of 0.45 ACH, the primary energy consumption 

increases by 42% when the ventilation rate increases from 650 CFM to 1600 CFM (as is the case 

in the IW). 

The commissioning lesson from this study is that, as is often the case, proper sizing of 

systems is critical for optimum energy performance. 

Comparison of IW Radiant System with a Single Duct VAV 
System  

The IW used radiant heating and cooling with a passive desiccant ventilation unit before the 

winter of 2005. The passive desiccant ventilation system was replaced by an active desiccant 

ventilation system during the winter of 2005. A group of fan coil units are planned for installation 

in the southern zone to offer additional cooling in the future. The sensible heating and cooling 

system of mullions, radiant panels, “cool wave” chilled beams (with a slowly oscillating fan) and 

fan coils in the IW has been simulated. The daily and monthly thermal, electricity and primary 

energy consumption of the IW sensible heating and cooling system was compared with a single 

duct VAV air heating and cooling system. The results showed that the current system with an 

integrated active desiccant ventilation unit consumes about 28.5% more thermal energy, 2.8% 

less electricity and 5.6% more primary energy than a single duct VAV air heating and cooling 

system. The current system with a presumed integrated passive desiccant ventilation unit 

consumes 21.0% less thermal energy, 2.3% less electricity and about 11.4% less primary energy 

than a single duct VAV system. On the basis of thermal comfort, the current integrated active 

desiccant ventilation system can easily control the relative indoor humidity ratio below 50% 

(0.009lb/lb, 73°F) in the summer, while the integrated passive desiccant system and the air 

heating and cooling system cannot control the indoor humidity ratio very well. The relative 

indoor humidity ratio varies between 45% and 70% (0.0012lb/lb, 73°F) in the summer when 

using these two types of systems.  

By assuming that the infiltration is close to zero and the ventilation is a value of 650CFM (a 

value that meets ASHRAE Standard 62) for the three systems, it was found that the primary 

energy consumption of all three systems would be substantially reduced as expected: 17.3%, 

34.0%, and 29.8% for the air, integrated active, and passive systems, respectively.  The primary 

energy consumption of the integrated passive desiccant system would be 24.8% less than the 

single duct VAV air system. The primary energy consumption of the integrated active desiccant 

system would be 15.7% less than the single duct VAV air system, and provides much better 

indoor humidity control. 
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The critically important commissioning lesson from this study is that the superior energy 

performance expected from the desiccant systems is critically dependent upon a low infiltration 

rate, and hence upon careful commissioning of the system after installation.  Otherwise, the 

additional expense of the advanced system may result in no savings, or in the system as currently 

operated, uses more energy than a conventional system. 

Summary of Commissioning Lessons from the Advanced 
Systems at the Intelligent Workplace 
 

The individual commissioning lessons learned from this study of the advanced system in the 

Intelligent Workplace may be summarized and generalized as follows. 

5. Advanced systems are likely to have very important design characteristics that must be 

thoroughly considered during the design process to achieve expected performance, 

illustrated by the need to consider the characteristics of mullion design, and the 

importance of contact resistance to radiant panel performance. 

6. Advanced systems may require unconventional control techniques to achieve optimum 

performance, and this may not be obvious to the design engineer.  This is illustrated by 

the imperative to use operative temperature as the control variable instead of space air 

temperature for mullion type radiant heaters. 

7. Proper sizing of systems is critical for optimum energy performance of many advanced 

systems, just as it is for conventional systems.  This may be even more important with 

advanced systems where limited size options may exist.  This is illustrated by the 

oversized desiccant system in the building studied. 

8. Expected energy performance of advanced systems can depend critically on proper 

commissioning of the entire system, as illustrated by the higher than expected infiltration 

in the case study building resulting in the advanced desiccant system having higher 

energy consumption than a conventional single duct VAV system. 
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