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ABSTRACT 

 

Implementing Rainwater Harvesting Systems on the Texas A&M University Campus for 
Irrigation Purposes: A Feasibility Study. (April 2009) 

 

William Hall Saour 
Department of Civil Engineering 

Texas A&M University 

Research Advisor: Dr. Emily Zechman 
Department of Civil Engineering 

Increasing population and increasing urbanization threatens both the health and 

availability of water resources.  The volume and timing of water that is readily available 

may not be sufficient to supply the demand for potable water in urban areas.  Rainwater 

harvesting is a water conservation strategy that may help alleviate water scarcity and 

protect the environment.  The benefits of collecting rainwater and utilizing it as irrigation 

water are both tangible and non-tangible.  Through collecting and reusing rainwater, grey 

water may be utilized as a practical resource.  Although grey water is not safe to drink, it 

is safe for other uses such as toilet water, cleaning water, and irrigation.  By utilizing 

rainwater harvesting, a facility saves the cost of purchasing potable water from the local 

water supply, and the local water supply is not as stressed.  In addition, the volume of 

runoff that flows into local rivers will be reduced, and as a result, the erosion of river 

banks will be lessened, and ecosystem health may be sustained.  The use of rainwater 

harvesting contributes to the sustainability of building design, calculated using LEED 

points.  This study investigates the water conservation, economic, LEED design, and 

stormwater benefits of rainwater harvesting for the Texas A&M Campus.  With tangible 
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and non-tangible benefits, rainwater harvesting should prove to be a viable and 

appropriate solution to the conserving and sustaining of natural resources on Texas A&M 

University’s campus. 



 

 

v

ACKNOWLEDGMENTS 

 

The author’s sincerest gratitude to Dr. Emily Zechman for allowing me to join TAMU’s 

P^3 team and conduct this research.  Without her guidance and tireless effort, none of this 

would have been possible. 

 

Although the research described in this thesis has been funded wholly or in part by the 

United States Environmental Protection Agency through Grant #SU833944, it has not 

been subjected to the Agency’s required peer and policy review and therefore does not 

necessarily reflect the views of the Agency and no official endorsement should be 

inferred. 

 

The author expresses thanks and appreciation to  the Texas A&M Physical Plant, 

Engineering Design Services (TAMU PP/EDS), College Station, Texas, Gary Struzick of 

Klotz Associates, and Anthony Holder of Turner, Collie and Braden, both of Houston, 

Texas for their help and sharing of valuable storm water, rainfall, survey, and data base 

information.  This additional information was gathered in a separate project funded by 

Texas A&M Utilities, College Station, Texas and managed by TAMU PP/EDS.  I must 

mention Chris Matus of the Texas A&M University Campus Mapping Office and Frank 

Wurbs of Texas A&M Utilities Plant Office for allowing me to use their data to pursue 

this study. 

 



 

 

vi

NOMENCLATURE 

 

LEED Leadership in Energy and Environmental Design 

USGBC United States Green Building Council 

RHS  Rainwater Harvesting System 

TAMU  Texas A&M University 



 

 

vii

TABLE OF CONTENTS 

Page 

ABSTRACT……………………………………………………………………………...iii 

ACKNOWLEDGMENTS…………………….…………………………………………..v 

NOMENCLATURE……………………………………………………………………...vi 

TABLE OF CONTENTS………………………………………………………………. vii 

LIST OF FIGURES……………………………………………………………………..viii 

LIST OF TABLES……………………………………………………………………......ix 

CHAPTER 

I   INTRODUCTION………………………………………………...………1 

II  THE RAINWATER HARVESTING SYSTEM..........………………...…4 

III  RHS DESIGN FOR TAMU CAMPUS………………………………..….8 

IV HYDROLOGIC IMPACT……………………………………………….16 

V  LEED POINTS…………………………………………………………..22 

VI CONCLUSION…………………………………………………………..26 

REFERENCES…………………………………………………………………………..27 

APPENDIX A……………………………………………………………………………29 

CONTACT INFORMATION……………………………………………………...…….34 



 

 

viii

LIST OF FIGURES 

FIGURE              Page 

2-1 First Flush System on the collection system……………………...…….…………4 

2-2 RHS with storage tank below ground……………………………..………………5 

2-3 RHS with the detention basin or storage tank above ground…...…………………6 
 

2-4 RHS with multiple buildings attached to a single storage tank………………...…7 
 

3-1 Location of Texas A&M University, West Campus Watersheds C and D, 
and the locations of erosion problems (AECOM)…………...……………..……..8 

 
3-2 Location of buildings highligted in blue in Watershed D.………………………...9 

4-1 Representing RHS using a curve number of 65………...….………………….....17 
 

4-2 Hydrograph for present conditions and RHS Scenario 1 for a 
2-yr 24-hr storm……………………………………………………………….....19 

 
4-3 Hydrograph for present conditions and RHS Scenario 1 for a 

10-yr 24-hr storm.......………………….………………………………….……..20 
 

4-4 Hydrograph for present conditions and RHS Scenario 1 for a  
100-yr 24-hr storm….............................................................................................21 

 

  



 

 

ix

LIST OF TABLES 

TABLE              Page 

3-1 Darco, Inc. underground water tanks (Eisenman 2009).....................…...………11 

3-2 RHS water conservation savings and cost……….…..…………………..………13 

4-1 Land use and curve number information for present conditions (no RHS)  
and for RHS design for RHS Scenario 1 (2-year storm)………………….....…..18 

 
5-1 RHS LEED points for Scenarios 1 and 2………………………………...………25 

 

 



 

 

1

CHAPTER I 

INTRODUCTION 

Traditional urban development increases the imperviousness of land, which alters the 

natural hydrologic processes.  Urbanization results in an increase of total runoff volume, 

increased peak runoff flow, decreased time to concentration, and deteriorated water 

quality (Dietz et al. 2007).  Best Management Practices (BMPs) are a set of techniques, 

measures, or structural controls that are used to prevent or reduce the degradation of 

runoff water quality and/or quantity (U.S. EPA 2004).  BMPs for stormwater control are 

typically designed to reduce alterations in runoff volumes based on a peak flow value.  

Some BMPs includes bio-retention areas, green roofs, permeable pavements, and 

rainwater harvesting systems.  

 

Rainwater harvesting is an ancient practice that has been increasingly receiving attention 

in the world, fueled by water shortages from droughts, pollution and population growth 

(Nolde 2007; Meera and Ahameed 2006).  While originally used to collect water in 

depressions for irrigation, the practice of collecting rainfall from rooftops was later 

adapted for domestic water supply in rural areas and islands (Kahinda et al. 2007; 

Michaelides and Young 1983).  Recently, environmental concerns have increased the 

appeal of green building practices, including rainwater harvesting systems, in urban 

areas.  Rainwater harvesting is especially appealing as it combines the benefits of water  

 ___________________ 
This thesis follows the format and style of the Journal of Water Resources Planning and 
Management. 
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reuse with runoff reduction and groundwater recharge.   

 

Rainwater harvesting systems (RHS) have been proposed to conserve rainwater  

and reuse it for landscaping.  Although RHS have not been fully implemented in most 

residential areas, it has been accepted as a proper means to conserve water by cities and 

counties around Texas and may eventually appear in residential neighborhoods.  In the 

eyes of the public, “Storing and reusing rainwater not only cuts down on utility bills and 

saves treated city water for drinking and bathing… it also helps reduce stormwater runoff 

into streets- recently listed by the U.S. Environmental protection agency as one of the 

major sources of water pollution in the country” (Sewell 2008).  Thus, companies and 

neighborhoods that utilize RHS contribute to the conservation of local resources in a 

cost-effective approach. 

 

The main Texas A&M University (TAMU) campus has become increasingly urbanized, 

resulting in areas of imperviousness that generate higher rates of runoff.  This growth has 

proceeded unchecked, and significant growth and development are planned for the future.  

Both increased rates of runoff from previous development and the impact of anticipated 

development should be addressed through mitigation efforts.  RHS may prove a useful 

strategy for the TAMU campus. 

 

The objective of this research is to determine the feasibility of implementing rainwater 

harvesting systems on TAMU’s existing buildings located in West Campus and using the 



 

 

3

collected water to irrigate the local landscape.  Pumps may be necessary for irrigation 

purposes, and storage facilities, such as detention basins, must be considered to provide a 

convenient means of holding and distributing the water to the landscape.  These issues 

will be investigated to determine a plan for the implementation of RHS on campus.  This 

study will determine the efficiency of RHS in conserving potable water, reducing 

irrigation costs, reducing the amount runoff flowing into White Creek, and contributing 

to LEED points. 
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CHAPTER II 

THE RAINWATER HARVESTING SYSTEM 

The three components of a RHS are the catchment, the detention basin, and the 

conveyance system.  The most important element in the RHS is the catchment, which is 

used to collect rainfall.  Typical RHS use building roofs as catchments.  The detention 

basin holds rainwater and must be sized and shaped for the amount of rainwater directed 

from the building.  Detention basins are evaluated based on the capacity to store the 

necessary amount of water for irrigation.  Fiberglass underground storage tanks will be 

used as the detention basins for the purpose of this study.  With these two elements of the 

system determined, the conveyance systems can be situated.  The conveyance system 

serves as a conduit to allow the collected rainwater to travel from one point to another.  

TAMU’s RHS include three conveyance systems: (1) collection, (2) irrigation, and (3) 

wastewater.  

 

The collection system carries the water from the catchment to the detention basin, which 

allows the water to be stored for future irrigation use.  A First Flush System and filter 

should be applied in the collection system to eliminate any debris or waste that may flow 

into the system, as illustrated in Figure 2-1.   

 
Figure 2-1. First Flush System on the collection system. 
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The irrigation system carries water from the detention basin to the irrigation system; this 

system allows the surrounding landscape to be properly irrigated.  Pumps may be 

necessary for the irrigation system so the water will reach its specified destination at a 

specified flowrate.   The wastewater system directs overflowing water to the storm sewer 

so that other parts of the system will not sustain damages.  The elements of the RHS are 

shown in Figure 2-2. 

 
 

Figure 2-2. RHS with storage tank below ground. 
 

The placement of the detention basin or storage tank between the conveyance systems 

can be designed using several options.  In Figure 2-2, the tank is placed underground.  

The advantages of placing the storage tank below ground consist of the tank’s visual 

absence, safety, and the value of land; however, underground storage may not be 

appropriate for larger tanks and may cause maintenance problems as the tank is not easily 

accessible.  Alternatively, the tank may be placed above ground as shown in Figure 2-3.   
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Figure 2-3. RHS with the detention basin or storage tank above ground. 

 

The advantages to an above ground storage tank are more cost-effective installation and 

easy access for maintenance.  Since the tank is above ground, the tank becomes an 

obstruction to its surroundings and may be damaged based on exposure to the elements or 

vandalism.  For the TAMU case study, underground storage tanks will be designed. 

 
In designing an RHS, multiple buildings may be connected to one tank, as illustrated in 

Figure 2-4.  Since tanks have a limited number of sizes in order to be more economical, 

 

Figure 2-4. RHS with multiple buildings Attached to a single storage tank. 
 

multiple buildings feed their collected water into the same tank.  This method of 

adjoining buildings to the same storage tank is both efficient and cost effective, but it is 

only applicable to certain scenarios.  Although both cases present problems and benefits, 
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the RHS will have all the same elements and same objective.  For the purpose of this 

study we will be using underground tanks due to the usage of land and the redirection of 

the irrigation systems, which will be explained in Chapter III. 
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CHAPTER III 

RHS DESIGN FOR TAMU CAMPUS 

A comprehensive RHS is designed here for a Watershed D on the West Campus of Texas 

A&M University.  Watershed D encompasses 786 acres and contributes flow to White 

Creek, shown in Figure 3-1.  Both Tributary D and White Creek have experienced 

erosion due to increased flow velocities.   

 

Figure 3-1. Location of Texas A&M University, West Campus Watersheds C and D,  
and the locations of erosion problems (AECOM). 

 

In Watershed D, there are a total of 240 buildings with approximately 89 acres of roof 

area that can serve as catchments (Figure 3-2).  One hundred thirteen buildings, with a 

total roof area of 60.5 acres, have been selected for installation of a RHS, based on 

building groupings, rooftop area, and proximity to landscaped areas. 
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Figure 3-2. Location of buildings highligted in blue in Watershed D. 

 

A total of 43 RHS have been designed to store and release runoff from these 113 

buildings.  Since the average annual rainfall is 39 inches in College Station, the 113 
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buildings have the potential to collect about 60,850,000 gallons of water per year if 100% 

of the rainfall is collected over the entire year.  Based on the potential amount of rainfall 

to be collected, this would save over $406,000.00 per year at $ 2.44 per 1,000 gallons 

(City of College Station 2008).  The locations of the RHS can be found in the Appendix.  

Figure A-1 gives a general view of the watershed with the buildings underlined RHS 

number, while the landscape displays its circled RHS number.  Figures A-2 through A-5 

give a clearer view of RHS based their regional location in Watershed D. 

 

To design the detention basin for the RHS, the amount of water needed for irrigation and 

the amount of rainwater collected for typical storms should be calculated.  The area of the 

catchment (AreaR) is calculated as follows:  

2( ) ( )* ( )RArea ft Length ft Width ft=      (1) 

The amount of water that is supplied by rainfall (SUPPLY) and the water demand for the 

landscaped area that is near to the building (DEMAND) are calculated in gallons:  

2( ) ( )* ( )* *0.623RSUPPLY gallons P in Area ft C=    (2) 

2( ) ( )* ( )*0.623IDEMAND gallons I in Area ft=    (3) 

where P is the amount of annual rainfall that falls in the specific location the RHS will be 

implemented.  The parameter C is a runoff coefficient that relates rainfall to runoff, based 

on runoff coefficients used for the Rational Method, and is based on the material and 

inclination of the roof.  The conversion factor 0.623 allows the supply to be calculated in 

gallons with the listed units for each variable.  The amount of irrigation water the 

landscape requires per year to be properly watered is I, and AreaI is the designated 

landscape that will be irrigated (Persyn, Porter, Silvy 2008). 
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The tanks that will be used are manufactured and priced by Darco, Inc.  In Table 3.1, the 

listed sizes, diameters, length, and estimated prices are shown for different sized 

underground tanks.   

Table 3.1. Darco, Inc. underground water tanks. 
 

DARCO, INC. UNDERGROUND WATER TANKS 

Size of Tanks (gal) Diameter of Tanks (ft) Length (ft) Price of Tanks ($) 

10,000* 10  12,676.00 
20,000 10 35 27,589.00 
30,000* 12 48.53 38,027.00 
40,000 12  49,712.00 
50,000 12 60.42 59,023.00 

 

It should be noted that these tanks include: “one of the 30”Dx24”T manway collar with 

riser to grade; one of the 6” PVC vent head-screened; two of the 8” diameter PVC pipe 

stubs each with flexible pipeline coupling (for inlet & overflow); one of the 4” flanged 

discharge nozzle with flexible pipeline coupling; shipping pads; heavy duty lifting lugs” 

(Eisenman 2009).  Darco, Inc. has also stated, “freight and current fuel surcharge have 

been ESTIMATED and delivery to College Station, TX, is included in this quote” 

(Eisenman 2009).  Please note the asterisk next to the 10,000 and 30,000 gallon tanks in 

Table 3.1; these tanks have not been estimated by Darco, Inc., yet these estimations are 

necessary to complete the feasibility study of RHS.   

 

Two scenarios are compared for their efficiency in conserving water and meeting 

irrigation demands.  Both scenarios have the potential to conserve millions of gallons of 

water.  In RHS Scenario 1, the tanks are sized to store a 2-year 24-hour storm (2-year 
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storm), which is the equivalent of 4.42 inches of rainfall.  For RHS Scenario 2, the tanks 

are designed to collect 3 inches of rainfall for each storm.  The maximum amount of 

storage achieved by each design is 60 million gallons per year, based on the assumption 

that all the rain that falls can be held in the RHS.  This assumption, however, would only 

be true in years in which there were no rain events exceeding 4.42 inches for RHS 

Scenario 1, and 3 inches for RHS Scenario 2.  A more in-depth analysis is necessary to 

predict the amount of water that would actually be stored using each system for a typical 

annual rain series.  For the purpose of this study, it is assumed that RHS Scenario1 would 

be more likely to store the maximum amount of annual rain and RHS Scenario 2 would 

be less likely to reach this maximum.  The total cost for the RHS tanks of RHS Scenario 

1 and RHS Scenario 2 are $8,530,000 and $5,800,000, respectively.  The return period, or 

the time it takes to recover the initial costs through water savings, is 20 years for RHS 

Scenario 1 and 14 years for RHS Scenario 2.  The data supporting these values are listed 

in Table 3-2. 
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Table 3-2. RHS Water Conservation Savings and Cost. 

 

 

Once the sizes of the tanks are completed, the conveyance system must be designed.  

Since the conveyance system consists of three parts: the collection system, wastewater 

system, and irrigation system, the system’s pipes must be sized separately. 
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The collection system’s pipes will encounter heavy flow from the catchment into the 

water tank; thus, the pipes must be large enough to handle this kind of flow.  Since the 

inlets of the tanks are all 8 inches in diameter, the collection system’s pipes will be sized 

at 8 inches in diameter.  This will allow for all the potentially collected water from heavy 

rainfall to be directed to the water tanks at an efficient flow rate.  The same will be for the 

wastewater system that leads to the storm sewer.  Its stub is also 8 inches in diameter; 

thus, the wastewater system’s pipe should be sized at 8 inches to send the overflowing 

water to the storm sewer at an appropriate flow rate.  In order to correctly arrange the 

distribution system, the available options for integrating the irrigation systems must be 

studied. 

 

There are a couple of options in determining how to distribute the collected rainwater to 

the landscape.  One option is creating an entirely new irrigation system.  The drawbacks 

to creating a new system are that the old system must still be available if there is not 

sufficient rainfall to irrigate the landscape.  With a new irrigation system, there will be 

problems with the amount of available space for another system and the cost of designing 

and constructing an entirely new irrigation system.  The other option is tying the 

collected rainwater into the existing irrigation system.  This option is easy and 

economical, but the systems must be properly managed.  It is understood that collected 

rain water is identified as grey water; therefore, it is not allowed to be redistributed in 

potable water pipe lines unless it has been properly treated to fit the standards of potable 

water (Wurbs 2008).  TAMU’s irrigation water comes from TAMU’s local water supply, 
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so the irrigation water is identified as potable.  The collected grey water is not to be 

mixed with potable water in case of backflow.  However, potable water is allowed to be 

mixed with grey water, so potable water can be pumped from the local water supply into 

the tanks of the RHS if extra water is necessary for irrigation.  By rerouting the irrigation 

water pipes to flow into the RHS and inserting a backflow prevention device on the 

redirected irrigation water pipe, the current irrigation system is used rather than creating a 

new irrigation system.  The RHS irrigation system leads from the water tank to the 

current irrigation system.  
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CHAPTER IV 

HYDROLOGIC IMPACT 

One benefit of installing a RHS is that the amount of runoff from the watershed will be 

reduced.  The area considered in this study is located in TAMU’s Watershed D, and the 

buildings that affect the amount of runoff are all located in this particular area as seen in 

Figure 3-2.  Hydrologic modeling of the watershed is completed as part of this 

investigation to observe the effects of the RHS on the amount of runoff that leads into 

White Creek.   

 

A hydrologic and hydraulic model of Watersheds C and D in West Campus for current 

conditions was developed by AECOM (AECOM 2008). Geographical, hydrologic, and 

meteorological information were incorporated within HEC-HMS (US Army Corps of 

Engineers 2008) for hydrologic simulation. Watershed D was divided into sub-

watersheds, delineated corresponding to storm sewer manholes, culverts, channel 

junctions, buildings, and streets. Curve numbers for the watershed, specified in the 

Bryan-College Station Unified Design Guidelines (2007), are specified as 77 for 

landscaped areas. Streets, building roofs, and parking lots contribute to the percentage 

imperviousness for each sub-catchment. The Storm Water Management Model (SWMM) 

(U.S. EPA 2008) was used for hydraulic simulation. SWMM is a dynamic rainfall-runoff 

simulation model for both flow and water quality of a single storm event or a long-term 

continuous storm event. SWMM extracts the flow hydrograph information from HEC-

HMS at sub-basins to route hydrographs through sewers, conduits, and open channels 

(AECOM 2008). The hydraulic model consists of a combination of links and nodes 
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representing the storm water infrastructure, composed of box and circular storm sewers 

and open channels. 

 

The curve number for a RHS is calculated using an approach for calculating the curve 

number for pervious pavements (Leming 2007). This method approximates the initial 

abstraction as the volume of water stored by the RHS, based on the storage capacity of 

the system.  This initial abstraction is then used to calculate the curve number.  This 

approach was modified to provide a more conservative estimate, by assuming that once 

the RHS is full, the runoff will mimic runoff from a conventional rooftop, with a curve 

number of 98.  We conducted regression to identify the curve number that best 

approximates this behavior and found a curve number of 65 (Figure 4-1).  We replaced 

rooftops in Watershed D with a curve number of 65. 

 

Figure 4-1. Representing RHS using a curve number of 65. 
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Using a curve number of 65 for RHS implementations, the composite curve number of 

the watershed is changed from 85.6 to 84.6.  The land use information and corresponding 

curve numbers are shown in Table 4-1. 

 

Table 4-1. Land use and curve number information for present conditions (no RHS)  
and for RHS design for RHS Scenario 1 (2-year storm) 

 
Designs Pervious Land Cover Impervious Land Cover

Present (no RHS) 59% Land : CN ‐ 77 41% Land : CN ‐ 98

RHS for Scenario 1
59% Land  : CN ‐ 77
3% Land  : CN ‐ 65

38 % Land  : CN ‐ 98

 

 

The hydrologic model was changed to reflect the new curve numbers for each sub-basin 

based on the amount of roof area that was used to collect rainwater for an RHS. 

Three rain events, including a 2-yr, 10-yr, and 100-yr 24-hr storms, were simulated under 

both current conditions (no RHS) and RHS Scenario 1 (Figures 4-2, 4-3, and 4-4).  The 

peak flow for the 2-year storm is reduced slightly from 21.7 to 20.6 cubic meters per 

second.  The implementation of RHS does not affect the discharge of runoff of 

Watershed D into White Creek significantly for the 10 year-storm and 100-year storm.  

The limited affect of the RHS on Watershed D’s curve number is due to the amount of 

undeveloped land in the watershed.  RHS have a limited impact on managing stormwater 

for TAMU campus due to the small amount of area of roof compared to the total area of 

Watershed D.   
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Figure 4-2. Hydrograph for present conditions and RHS Scenario 1 for a  
2-yr 24-hr storm. 
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Figure 4-3. Hydrograph for present conditions and RHS Scenario 1 for a  
10-yr 24-hr storm. 
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Figure 4-4. Hydrograph for present conditions and RHS Scenario 1 for a  
100-yr 24-hr storm. 

 



 

 

22

CHAPTER V 

LEED POINTS 

United States Green Building Council (USGBC) is an organization of engineers who 

address conservation problems in realistic and practical ways.  In order to encourage 

engineers to use conservation tactics, USGBC has created Leadership in Energy and 

Environmental Design (LEED), which “is a benchmark for the design, construction and 

operation of high- performance green buildings” (Sewell 2008).  Green buildings that are 

LEED certified help protect the environment while saving the owner money through both 

tangible and non-tangible benefits.  Although the initial cost of constructing a LEED 

certified green building may not seem attractive, the cost benefits over time are much 

more lucrative.  President Barack Obama supports USGBC’s efforts in creating LEED 

certified green buildings by proposing “the expansion of federal grants to assist states and 

localities in building more efficient public buildings through the use of LEED” (USGBC 

November 2008).  Through LEED, USGBC is investigating the implementation of cheap 

and environmentally friendly ways to reuse rainwater runoff from gutters in residential 

areas (USGBC 2006). 

 

The purpose of USGBC’s LEED points is to create a rating system that defines a green 

building based on a set of standards of sustainability.  In reference to this, the USGBC 

states, “A sustainable building maximizes operational efficiency while minimizing 

environmental impacts” (USGBC September 2008).  In order to accomplish the task of 

creating a sustainable building, the USGBC will rank the building based on LEED points 

to classify the building’s level of sustainability.  There are many creative ways to receive 
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LEED points, and rainwater harvesting is one of the applicable methods to obtain them.  

The accumulation of LEED points through the implementation of RHS on TAMU 

campus for irrigation purposes falls into 2 categories: SS-Credit 6: Stormwater 

Management and WE Credit 3.1-3.3: Water Efficient Landscaping.  The requirements of 

the SS-Credit 6: Stormwater Management is listed below and will receive 1 LEED point 

for each building to which it is applied. 

During the performance period, implement a stormwater management plan 
that infiltrates, collects and reuses runoff or evapotranspirates runoff from 
at least 15% of the precipitation falling on the whole project site both for 
an average weather year and for the two-year, 24-hour storm.  Implement 
an annual inspection program of all stormwater management facilities to 
confirm continued performance.  Maintain documentation of inspection, 
including identification of areas of erosion, maintenance needs, and 
repairs.  Perform all routine required maintenance, necessary repairs or 
stabilization within 60 days of inspection. (USGBC September 2008). 

In theory, all of the buildings involved in this study should receive at least one point for 

this credit for the RHS Scenario 1.  For RHS Scenario 2, however, no points would be 

awarded.  The requirements to receive the WE Credit 3.1-3.3: Water Efficient 

Landscaping is listed below and allows up to 3 points per building. 

Reduce potable water or other natural surface or subsurface resource 
consumption for irrigation compared with conventional means of 
irrigation.  If the building does not have separate water metering for 
irrigation systems, the water-use reduction achievements can be 
demonstrated through calculations.  Points are earned according to the 
following schedule: 

• WE Credit 3.1 (1 point): 50% reduction in potable water or other 
natural surface or subsurface resource use for irrigation over 
conventional means of irrigation. 

• WE Credit 3.2 (2 points): 75% reduction in potable water or other 
natural surface or subsurface resource use for irrigation over 
conventional means of irrigation. 

• WE Credit 3.3 (3 points): 100% reduction in potable water or other 
natural surface or subsurface resource use for irrigation over 
conventional means of irrigation. (USGBC September 2008). 
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There are only a few buildings from this study that meet the criteria for this credit.  For 

both scenarios, the buildings listed in RHS numbers 4, 10, 17, 20, 25, 26, 30, and 32 will 

receive one point, while the buildings listed in RHS numbers 1, 2, 19, and 29 will receive 

two points.  Unfortunately, no buildings in this study will meet the criteria to receive 

three points from this credit alone, but all the credits for each RHS are listed in Table 5-1.  

Although there are not any points befitting the WE Credit 3.3, the total amount of points 

for the Water Efficient Landscaping category comes to 36.  For RHS Scenario 1 and RHS 

Scenario 2, the total amount of LEED points received from both WE Credit 3.1-3.3 and 

WE Credit 3.1-3.3 credits comes to 149 and 36, respectively.  With the LEED points 

found for the implementation of RHS to existing buildings on TAMU campus, other 

advantages should ensue such as possible tax reductions and benefits. 
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Table 5-1. RHS LEED points for Scenarios 1 and 2. 
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CHAPTER VI 

CONCLUSION 

The implementation of RHS on TAMU campus for irrigation purposes proves to have 

numerous beneficial aspects.  Although it does not have a large hydrologic impact on the 

amount of runoff flowing from Watershed D into White Creek, the water conservation 

RHS produce is remarkable.  RHS have the potential to save 60,850,000 gallons of water 

per year spent on irrigation alone.  Even though this practice is expensive, the cost for 

storage tanks will be repaid from the savings on water payments in 20 years for RHS 

Scenario 1 and 14 years for RHS Scenario 2.  Along with the tangible benefits of the 

RHS, the non-tangible benefits contribute to the overall reward of using the rainwater 

harvesting.  The achievement of 149 LEED points for RHS Scenario 1 and 36 LEED 

points for RHS Scenario 2 contribute not only to the community, but also to the tax 

breaks TAMU will receive.  RHS are a long term investment that demonstrates how 

effectively they conserve water and money on an annual basis.   Water continues to be 

the most important resource and rainwater harvesting is the perfect solution to aid in the 

conservation of potable drinking water.  The implementation of RHS for irrigation 

purposes prove to be a valuable practice that should be implemented on TAMU campus.  
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APPENDIX A 

Figure A-1. Watershed D’s RHS numbered by buildings and landscapes.
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Figure A-2. Central Region of TAMU’s Watershed D RHS. 
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Figure A-3. West Region of TAMU’s Watershed D RHS. 
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Figure A-4. North Region of TAMU’s Watershed D RHS. 
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Figure A-5. East Region of TAMU’s Watershed D RHS. 
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