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ABSTRACT 
 

The Effect of Supercritical String Cosmology 
on the Relic Density of Dark Matter. (April 2009) 

 

Phuongmai N. Truong 
Department of Physics 

Department of Mathematics 
Texas A&M University 

 

Research Advisor: Dr. Bhaskar Dutta 
Department of Physics 

 

Supercritical String Cosmology (SSC) introduces a time-dependent dilaton and a central 

charge deficit into the history of the development of the universe. To balance the effect 

of the dilaton and the central charge deficit, the so-called exotic matter, which includes 

any type of matter but baryonic and dark matters, is also introduced. These three 

quantities inadvertently alter the relic density of all particles, including dark matter 

candidates. In this work, we are interested in the correlation between the dark matter 

density and the equation of state of exotic matter. Using numerical method, we show that 

there can only be a dilution of dark matter, which ranges approximately between 0.02 – 

0.1, depending on how strictly we require the various constraints to be satisfied.  
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CHAPTER I 

INTRODUCTION 

 

In astronomy, there is overwhelming evidence that most of the mass in the universe is 

some nonluminous ``dark matter,'' of yet unknown composition. The two most 

convincing evidences for the existence of dark matter are: the Bullet cluster, which 

shows the separation of dark matter from luminous matter; and the rotation curves of 

spiral galaxies, which indicates that the density of luminous matter is not large enough to 

account for the observed galactic dynamics. Furthermore, recent observational results, 

such as those obtained from the Wilkinson Microwave Anisotropy Probe (WMAP) [1,2], 

indicate that baryonic matter comprises only 4% of the universe, while 22% is composed 

of dark matter. There are many candidates for the composition of dark matter, among 

which the most probable ones are nonbaryonic, that is, that they are some new 

elementary particles. Among the nonbaryonic candidates, an important categorization 

scheme is the “hot” versus “cold” classification. A dark matter candidate is called “hot” 

if it was moving at relativistic speeds at the time galaxies could just start to form, and it 

is called “cold” if it was moving nonrelativistically at the time. Simulations of structure 

formation in a universe dominated by hot dark matter, however, do a poor job of 

reproducing the observed structure. The cold dark matter candidates are basically 

elementary particles which have not yet been discovered, such as weakly interacting 

_______________ 
This thesis follows the style of Physics Letter B. 
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massive particles (WIMPs). These are stable particles which arise in extension of the 

standard model of electroweak interactions. WIMP masses are typically in the range 

from 10 GeV to a few TeV, and they have characteristic of weak interactions with 

ordinary matter. The most promising WIMP candidate is the neutralino [3]. 

 

In particle physics, supersymmetry (SUSY) asserts the existence of a hypothetical 

symmetry between bosons and fermions, such that every particle in the standard model 

would have a supersymmetric partner. SUSY predicts that the lightest supersymmetric 

particle (LSP) is stable, having a mass less than a few TeV and having weak interactions 

with ordinary matter. This particle is named the neutralino, a linear combination of the 

SUSY partners of the photon, Z0, and Higgs boson [3]. If such a WIMP exists, then it 

has a cosmological abundance of almost 1 as required to fit with the observational data 

mentioned above, and could therefore account for dark matter in the universe.  

 

At present, there is no direct accelerator evidence to confirm the existence of neutralinos. 

However, if SUSY models are correct, then the Large Hadron Collider (LHC), which 

will begin operating in September 2009, is expected to produce the lightest neutralino 

particles. Many models have been developed in order to provide a parameter space, 

which can be detected at the LHC and satisfies the constraint placed by WMAP data on 

dark matter content. Dissipative Liouville Cosmology, or Q-Cosmology, is among those 

various models.  
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As various type Ia supernovae projects [4,5] and the WMAP data [1,2] have continually 

confirmed the existence of dark energy, the cause of universe expansion, Supercritical 

String Cosmology (SSC) [6,7] arises as a model attempting to formulate correctly an 

expanding Robertson-Walker-Friedman (RWF) Universe. In both SSC and its sister 

model, the dissipative Super-noncritical (Liouville) String Cosmology, the dilaton field 

is time-dependent, which inadvertently introduces new terms in the Bolztmann equation 

describing relic abundances and the associated particle-physics phenomelogy. In fact, 

the changes in the Boltzmann equation lead to a factor of 10 difference in the neutralino 

density. Nonetheless, the baryonic matter density is unaffected, which does not 

contradict with observational data. Hence, the SSC model provides a wider range in the 

parameter space for the dark matter search at the LHC [8,9]. 

 

 In our work we will further explore the behavior of the observables such as the Hubble 

parameter and the densities of different particle species under the effect of the time-

dependent dilaton. Chapter II is a review of SSC and its affect on the Boltzmann 

equation, also a presentation of our method of solving the modified cosmological 

equations. Chapter III shows the result of our work. A conclusion and discussion of 

future directions for this research are provided in chapter IV. 
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CHAPTER II 

SOLVING FOR THE NEW RELIC DENSITY 

 

Overview of Supercritical String Cosmology and the modified Boltzmann equation 

In supercritical string cosmology, after identifying the Liouville mode with the target 

time, including matter background into the solution, and compactifying the dimensions 

of the string world volume into four target-space dimensions, one arrive at the following 

modified Einstein equations [10]: 

 
3𝐻2 − 𝜌 − 𝜌𝜙 =

𝑒2𝜙

2
 𝒢 𝜙  

2𝐻 + 𝜌 + 𝜌𝜙 + 𝑝 + 𝑝𝜙 =
𝒢 𝑖𝑖
𝑎2

 

𝜙 + 2𝐻𝜙 +
1

4

𝜕𝑉𝑎𝑙𝑙
𝜕𝜙

+
1

2
 𝜌 − 3𝑝 = −

3

2
 
𝒢 𝑖𝑖
𝑎2
−
𝑒2𝜙

2
 𝒢 𝜙  

(1)  

Where 𝒢 𝜙  and 𝒢 𝑖𝑖  are the noncritical string off-shell terms: 

 𝒢 𝜙 = 𝑒−2𝜙(𝜙 − 𝜙 2 + 𝑄𝑒𝜙𝜙 ) 

𝒢 𝑖𝑖 = 2𝑎2  𝜙 + 3𝐻𝜙 + 𝜙 2 +  1 − 𝑞 𝐻2 + 𝑄𝑒𝜙 𝜙 + 𝐻   
(2)  

Here 𝑞 = −
𝑎 

𝑎 2
  is the standard deceleration parameter. In the above equations, 𝜙 and 𝑄 

denote the dilaton and the central charge deficit, respectively. H denotes the Hubble 

parameter, 𝜌 and 𝑝 are the density and pressure, respectively, of all matter and radiation 

except the dilaton, for which is accounted by 𝜌𝜙  and 𝑝𝜙 . The dotted quantities are 

derivatives with respect to the dimensionless Einstein time. We will later explain these 
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notations in more details before we discuss solving the equations. The scalar potential 

𝑉𝑎𝑙𝑙  is dependent on the central charge deficit 𝑄: 

 𝑉𝑎𝑙𝑙 = 2𝑄2𝑒2𝜙 + 𝑉0 (3)  

Although we have assumed a spatially flat universe, the terms on the right hand side of 

(3), which manifest departure from the criticality, act similarly to curvature terms since 

they are non-zero at certain epochs. The dilaton energy density and pressure are defined 

as follows: 

 
𝜌𝜙 =

1

2
  2𝜙 2 + 𝑉𝑎𝑙𝑙   

𝑝𝜙 =
1

2
 2𝜙 2 − 𝑉𝑎𝑙𝑙   

(4)  

For the renormalizability of the theory, the dependence of the central charge deficit on 

the cosmic time, to leading order of the Regge slope, is expressed via the Curci-Paffuti 

equation [11]: 

 𝑑𝒢 𝜙

𝑑𝑡𝐸
= −6𝑒−2𝜙 𝐻 + 𝜙  

𝒢 𝑖𝑖
𝑎2

 (5)  

For completeness, we shall also display the continuity equation of the energy stress 

tensor here which can be obtained from the set of Einstein equations: 

 𝑑𝜌

𝑑𝑡𝐸
+  3𝐻 𝜌 + 𝑝 +

𝑄 

2

𝜕𝑉𝑎𝑙𝑙
𝜕𝑄

− 𝜙  𝜌 − 3𝑝 =
6 𝐻 + 𝜙  𝒢 𝑖𝑖

𝑎2
 (6)  

In Hamiltonian mechanics, the Boltzmann equation is often written in general form as: 

 𝐋  𝑓 = 𝐂[𝑓] (7)  

where L is the Liouville operator, describing the evolution of a phase space volume, and 

C is the collision operator. After careful derivation [9] of the dilaton source and 
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noncritical string induced modifications, for a given species 𝜒, the new Boltzmann 

equation for a 4-dimensional effective field theory after string compactification (or 

restriction on the D3 brane), in the presence of off-shell string background, differs from 

the standard cosmological Boltzmann equation just by the contribution of the graviton: 

 𝑑𝑛

𝑑𝑡
+ 3𝐻𝑛 − 𝜙 𝑛 =

1

2
𝜂 𝑒−𝜙  𝑔𝜇𝜈𝛽 𝜇𝜈

𝐺𝑟𝑎𝑣  𝑛 +  
𝑑3𝑝

𝐸
𝐂 𝑓  (8)  

with 𝛽 𝜇𝜈𝐺𝑟𝑎𝑣  denoting the graviton Weyl anomaly coefficient. Let us consider only the 

physical scheme, in which 𝜂 = −1, and define Γ 𝑡 ≡ 𝜙 + 1

2
 𝑒−𝜙𝑔𝜇𝜈𝛽 𝜇𝜈

𝐺𝑟𝑎𝑣 , then 

 
𝑛 + 3𝐻𝑛 = Γ 𝑡 𝑛 +  

𝑑3𝑝

𝐸
 𝐂[𝑓] = Γ 𝑡 𝑛 −  𝜍𝑣 (𝑛2 − 𝑛𝑒𝑞

2 ) (9)  

Before the freeze-out time, i.e. when 𝑡 < 𝑡𝑓 , equilibrium is maintained and the number 

density 𝑛 = 𝑛𝑒𝑞 . Assume that 𝑛 = 𝑛𝑒𝑞
 0  at a very early epoch 𝑡0. Then the solution of the 

modified Boltzmann equation at all times 𝑡 < 𝑡𝑓  is: 

 
𝑛𝑎3 = 𝑛 0 𝑎3 𝑡0 exp  𝛤𝑑𝑡

𝑡

𝑡0

  (10)  

We can further assume, reasonably, that 𝑡0 is the time right after the inflationary period 

[9], since soon after the exit from inflation, all particles are in thermal equilibrium. Let 

𝑥 ≡ 𝑇/𝑚𝜒  be the rescaled dimensionless temperature for the specific particle 𝜒, which 

for our purpose would be the neutralino. We will also assume the usual correlation 

between the redshift z and the temperature T 

 
𝑧 + 1 =  

𝑔 𝑇 

𝑔 𝑇𝐶𝑀𝐵 
 

1
4 𝑇

𝑇𝐶𝑀𝐵
 (11)  
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where g is the relativistic degrees of freedom and 𝑇𝐶𝑀𝐵 = 2.725𝐾 is the measured 

temperature of cosmic microwave background. Detailed derivation from this point 

would lead to the modified relic density caused by an effect of the dilaton and noncritical 

string background: 

 
Ω𝜒 =  Ω𝜒 𝑛𝑜  𝑠𝑜𝑢𝑟𝑐𝑒

×  
𝑔 ∗
𝑔∗
 

1
2

  1 +   
Γ𝐻−1

𝜓 𝑥 
𝑑𝑥 

𝑥𝑓

𝑥0

  (12)  

where Ω denotes the relic abundance of a particular species, 𝑔∗ is the number of 

relativistic degrees of freedom of particles at their freeze-out temperature, 

 
𝜓 𝑥 = 𝑥 exp − 

𝛤𝐻−1

𝑥
𝑑𝑥

𝑥

𝑥0

  (13)  

The relic abundance without the source term caused by string effect is: 

 
Ω𝜒 𝑛𝑜  𝑠𝑜𝑢𝑟𝑐𝑒

=
1.066 × 109 𝐺𝑒𝑉−1

𝑀𝑃𝑙 𝑔∗     𝜍𝑣 𝑑𝑥
𝑥𝑓
𝑥0

  
(14)  

And finally, the freeze-out temperature is: 

 
𝑥𝑓
−1 = ln  0.03824 𝑔𝑠

𝑀𝑃𝑙𝑚𝜒 

 𝑔∗
  𝑥𝑓   𝜍𝑣 𝑓 +

1

2
ln  

𝑔∗
𝑔 ∗
 

+  
Γ𝐻−1

𝑥
𝑑𝑥

𝑥𝑖𝑛𝑓𝑙

𝑥𝑓

 
(15)  

which differs from the standard equation by the last term, and for all practical purpose, 

the last term with the source has a very small contribution to the value of 𝑥𝑓 , therefore 

can be omitted during calculation. 

 

We also denote the ratio between the string-effected relic density and the no-source one 

by R: 
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𝑅 =  

𝑔 ∗
𝑔∗

exp  
Γ𝐻−1

𝑥
𝑑𝑥

𝑥𝑓

𝑥0

   

Γ =  𝜙 +
1

2
 𝑒−𝜙𝑔𝜇𝜈𝛽 𝜇𝜈

𝐺𝑟𝑎𝑣  ~ 𝜙  

𝑔 ∗
𝑔∗

=
3𝐻∗

2

𝜌𝑟∗
 

(16)  

where again, the stars denote quantities measured at freeze-out temperature. 

 

Solving the equations numerically 

In order to solve for the multiplication factor R, we need to solve for the Hubble 

parameter H, the rate of change of the dilaton, and the evolution of radiation density 

from the freeze-out time to present. The behavior of cosmological parameters, such as 

the Hubble parameter and different energy densities, are again given by the dynamical 

equations [8]: 

 
𝜙 = −2𝐻 2 − 3𝐻𝜙 − 𝑒𝜙𝑄 𝜙 + 𝐻 +

1

2
  𝜌 + 𝑝  (17)  

 
3𝐻 = −𝐻2 − 2𝜙 2 + 𝑒𝜙𝑄 𝜙 + 𝐻 −

1

2
  3𝜌 + 𝑝  (18)  

 𝜌 + 2𝑄𝑄 𝑒2𝜙 = −3𝐻 𝜌 + 𝑝 + 𝜙  𝜌 − 3𝑝 

+  4 𝐻 + 𝜙   −𝐻2 + 𝜙 2 + 𝑒𝜙𝑄 𝜙 + 𝐻 + 𝑝  
(19)  
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  𝑒𝜙𝑄 + 𝐻 𝑒𝜙𝑄 

=  
𝑝 

2
+
𝜌

2
  𝑒𝜙𝑄 − 2𝐻 +

1

6
  𝑒𝜙𝑄 + 22𝐻 + 18𝜙  𝑝

−
1

3
 𝑒2𝜙𝑄2 𝜙 + 𝐻 + 𝑒𝜙𝑄  

23

3
 𝜙 2 + 8𝐻2 +

47

3
𝜙 𝐻 

+ 10𝜙 3 +
62

3
𝜙 2𝐻 + 12𝜙 𝐻2 +

4

3
 𝐻3 

(20)  

Recall that in the above equations, H denotes the rescaled Hubble parameter, 𝜌 and 𝑝 are 

the rescaled density and pressure, respectively, of all matter and radiation except the 

dilaton. Rescaling means these quantities differ from the usual ones by a factor of 

𝜌𝑐 = 3𝐻0
2/(8𝜋𝐺𝑁), where 𝐻0 = 1.022 × 10−10𝑕0 𝑦𝑟−1 is the Hubble constant of today, 

and 𝜌𝑐  is the critical density of the universe, the determine factor of whether the universe 

will contract or keep expanding. Also, 𝜙 and 𝑄 denote the dilaton and the central charge 

deficit, respectively. The dotted quantities are derivatives with respect to the 

dimensionless Einstein time 𝑡𝐸 ≡  3 𝐻0 𝑡, with 𝑡 being the cosmic time in the RWF 

metric. In this system of units, one year of cosmic time corresponds to 𝑡𝐸 = 1.292 ×

10−10 and one second corresponds to 𝑡𝐸 = 4.097 × 10−18 . This means with 𝑡 ~ 2 we 

can encompass the whole history of the universe. Thus, when solving the differential 

equations numerically with respect to the Einstein time, we would need very fine time 

steps to get a reliable result. To get around this complication, we convert the quantities 

to functions of redshift, via the following relation: 

 𝑑𝑡𝐸
𝑑𝑧

=  −
1

 1 + 𝑧 𝐻
 (21)  
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We also have to separate the density and pressure into different densities of baryonic 

matter (including dark matter and all non-relativistic matters), radiation, and the so-

called exotic matter, which is any kind of matter not grouped with baryonic matter, and 

is assumed to be effected by the dilaton. The reason for doing so is that these 

components develop differently throughout the course of the universe, and combining 

them together would lead to loss of information on how each component evolves. The 

densities and pressures are related to each other in the following way: 

 𝑝𝑏 = 0 

𝑝𝑟 =
1

3
𝜌𝑟  

𝑝𝑒 = 𝑤𝑒𝜌𝑒  

(22)  

where 𝑤𝑒  is our control parameter, to be determined numerically. Quite trivially, 

𝜌𝑏 , 𝜌𝑟 , 𝜌𝑒  denote baryonic matter, radiation, and exotic matter densities. In previous 

work by Lahanas et al [8], the evolution of baryonic matter and radiation are: 

 𝜌 𝑏 =  𝜙 − 3𝐻 𝜌𝑏  (23)  

 𝜌 𝑟 = −4𝐻𝜌𝑟  (24)  

It is interesting to note that the dilaton does not have any direct effect on the radiation 

density. Upon using (21) to change the dependence on Einstein time to redshift, we find 

that radiation is completely independent of dilaton or any other string cosmological 

quantity: 

 𝑑𝜌𝑟
𝑑𝑧

= 𝜌 𝑟
𝑑𝑡𝐸
𝑑𝑧

=
4

1 + 𝑧
 𝜌𝑟  (25)  
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This independence is a useful tool to check the reliability of our numerical solver, since 

one can solve the system of differential equations analytically in the case of normal 

cosmology (the usual RWF metric) and obtain: 

 𝜌𝑟 ∝  1 + 𝑧 4 (26)  
Also note that the effect of the dilaton on the matter density, demonstrated in (23), 

causes the dilution of dark matter species, which is the motivation of our research.  

We now need to find the rate of change of exotic matter density and the central charge 

deficit as functions of 𝜙,𝐻, 𝜌 and Q. From equations (19) and (20), we have:  

 𝜌 𝑒 + 2𝑒2𝜙𝑄𝑄 = 𝐿 

−
𝑤𝑒
2

 𝜌 𝑒 +   𝑒𝜙𝑄 + 𝐻 𝑒𝜙𝑄 = 𝑀 (27)  

where: 

 𝐿 = −3 1 + 𝑤𝑒 𝐻𝜌𝑒 +   1 − 3𝑤𝑒 𝜙 𝜌𝑒 +  4(𝜙 + 𝐻)(−𝐻2

+ 𝜙 2 + 𝑒𝜙𝑄 𝜙 + 𝐻 +
1

3
𝜌𝑟 + 𝑤𝑒𝜌𝑒) 

𝑀 =  −
2

3
𝐻𝜌𝑟 +

1

2
 𝑒𝜙𝑄 − 2𝐻  𝜌𝑟 + 𝜌𝑏 + 𝜌𝑒 

+
1

6
 𝑒𝜙𝑄 + 22𝐻 + 18𝜙   

1

3
𝜌𝑟 + 𝑤𝑒𝜌𝑒 

−
1

3
𝑒2𝜙𝑄2 𝜙 + 𝐻 

+ 𝑒𝜙𝑄  
23

3
𝜙 2 + 8𝐻2 +

47

3
𝐻𝜙  + 10𝜙 3

+
62

3
𝜙 2𝐻 + 12𝜙 𝐻2 +

4

3
𝐻3 

(28)  

Therefore, we obtain: 
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𝜌 𝑒 =

 𝑒𝜙𝑄 + 𝐻 𝐿 − 2𝑒𝜙𝑄𝑀

 1 + 𝑤𝑒 𝑒𝜙𝑄 + 𝐻
 (29)  

 
𝑄 =

𝑤𝑒
2  𝐿 + 𝑀

𝑒−𝜙    1 + 𝑤𝑒 𝑒𝜙𝑄 +𝐻 
 (30)  

Now that we are equipped with differential equations of all the necessary quantities 

(equations (17), (18), (23), (24), (28), and (29)), let us look at the initial condition. From 

observational WMAP data, we know the following present day values: 𝐻0 = 1/ 3, 

𝜌𝑏0
= 0.238, 𝜌𝑟 0

= 7.826603 × 10−5. We assume that there is no dilaton and exotic 

matter in our current universe. To find the present day values of 𝜙  and Q, we employ the 

following equations, which are also derived from the dynamical equations of the theory: 

 
2𝑄2 − 𝑒−𝜙𝑄𝐻 + 𝑒−2𝜙  𝜙 2 − 8𝐻2 − 3𝐻𝜙 +

5

2
𝜌 +

1

2
𝑝 = 0 (31)  

 
𝑞 =  −

1

𝐻2
  

2

3
𝐻2 −

2

3
𝜙 2 +

𝑒𝜙𝑄

3
  𝐻 + 𝜙  −

𝜌

2
−
𝑝

6
  (32)  

Recall that q is the deceleration parameter, and 𝑞0 = −0.61. Upon solving (30) and (31), 

we get 𝑄0 = 1.066747 and 𝜙 0 = −0.211678. Notice that the quadratic equation (30) 

gives two sets of solution, only one of which provides a physically plausible solution of 

the quantities in question. The mentioned solution is checked by various constraints, 

which we will discuss in chapter III.  

Combining equations (16) and (21), we have the density factor to be: 

 
𝑅 =

3𝐻∗
2

𝜌𝑟∗
 𝑒𝜙∗ (33)  
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Again, the star denotes quantities measured at freeze-out. The variable of integration is 

redshift z, which goes from 𝑧0 = 0 to 𝑧𝑓  ~ 1016 . The value of redshift at freeze-out 

temperature is calculated like in standard cosmology, using (11).  

The system of equations is extremely sensitive to the input value of 𝑤𝑒 , the constant in 

the equation of state of exotic matter. This constant is also our only controlled 

parameter. 

 

Method of integration 

The algorithm presented in this section is adapted from [12] and [13]. The equations 

(17), (18), (23), (24), (28) and (29) are numerically solved using the embedded Runge-

Kutta pair algorithm. Although software such as Matlab and Mathematica employ such 

algorithms in their ODE solver, the system of equations we have proves to be too stiff to 

be solved by the software. Hence, we constructed a numerical solver in Fortran 90 for 

this work. Consider the equations in the form: 

 𝐲  𝑧 = 𝑓 𝑧, 𝐲 𝑧   (34)  

where 𝐲 =  𝜙, 𝜙 , 𝐻, 𝜌𝑏 , 𝜌𝑟 , 𝜌𝑒 , 𝑄  is the phase space vector.  

A Runge-Kutta algorithm estimates the values 𝐲𝑛 ≈ 𝐲(𝑧𝑛) for a finite set of values of z. 

The finite step size of step n is defined to be 𝑘𝑛 = 𝑧𝑛+1 − 𝑧𝑛 , which changes 

accordingly to produce the most precise approximation possible with a fixed tolerance. 

Thus, the initial step size does not really matter, and we choose 𝑘0 = 1. The non-

autonomous equations can be expressed in the form: 
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𝐲𝑛+1 = 𝐲𝑛 +  𝑘𝑛 𝑏𝑖𝑓𝑖

𝑠

𝑖=1

 (35)  

where 

 𝑓1 = 𝑓 𝑧𝑛  

𝑓𝑖 = 𝑓 𝑧𝑛 + 𝑑𝑖𝑘𝑛 +  𝑘𝑛 𝑎𝑖𝑗𝑓𝑗

𝑖−1

𝑗=1

 ,     𝑖 = 2,3, … , 𝑠 (36)  

and s is the number of stages of evaluating the derivatives, 𝑎𝑖𝑗 , 𝑏𝑖 , and 𝑑𝑖  are parameters 

of the algorithm. The values of these coefficients are given in a Butcher table (Table 1). 

When we allow adaptive step size for each step, we need a method to determine their 

appropriate values. The Runge-Kutta algorithm of higher order usually gives better 

accuracy, but is less efficient because it has more stages. So we can choose between 

accuracy and efficiency by measuring the difference between the calculation in 

algorithm of order 𝑝 and that in algorithm of order 𝑝 + 1, and compare that difference 

with the tolerance level T. This procedure would also determine which appropriate step 

size to use. To avoid evaluating the derivatives 𝑓𝑖  with 2 sets of values of 𝑎𝑖𝑗  for the two 

orders, we use a Runge-Kutta embedded pair: 

 
𝐲 𝑛+1 = 𝐲 𝑛 +  𝑘𝑛 𝑏 𝑖  𝑓𝑖

𝑠

𝑖=1

 

𝐲𝑛+1 = 𝐲𝑛 + 𝑘𝑛 𝑏𝑖𝑓𝑖

𝑠

𝑖=1

 

𝑓𝑖 = 𝑓  𝐲 𝑛 + 𝑘𝑛 𝑎𝑖𝑗𝑓𝑗

𝑖=1

𝑗=1

 ,     𝑖 = 1,2, … , 𝑠 

(37)  
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The hat indicates that the quantities are calculated using the higher order method (order 

𝑝 + 1), and quantities without the hat is calculated using the 𝑝𝑡𝑕  order algorithm. We 

take the norm of the local error of step n, which is defined as: 

 𝛿𝑛+1 = 𝐲𝑛+1 − 𝐲 𝑛+1 (38)  
to check against the specified tolerance T. Any norm can be used, and we use the max 

norm here. If  𝛿𝑛+1 ≤ 𝐓, then the step is successfully calculated within tolerance, and 

the step size for the next step is: 

 
𝑘𝑛+1 = min 10𝑘𝑛 , 0.9𝑘𝑛  

𝐓

 𝛿𝑛+1 
 

1
𝑝+2

  (39)  

If  𝛿𝑛+1 > 𝐓, then the step is rejected and recalculated using a smaller step size, which 

is determined by: 

 
𝑘𝑛
𝑁𝐸𝑊 = 0.9 𝑘𝑛

𝑂𝐿𝐷   
𝐓

 𝛿𝑛+1 
 

1
𝑝+2

 (40)  

In our work, we find that the program with 𝐓 = 1 × 10−13 gives the best performance. 

We also use 𝑝 = 4, i.e. the algorithm RK5(4) for non-autonomous equations. 
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  𝑎𝑖𝑗     𝑏 𝑖  𝑏𝑖  𝑑𝑖  

      35

384
 

5149

57600
 

 

1

5
 

     0 0 1

5
 

3

40
 

9

40
 

    500

1113
 

7571

16695
 

3

10
 

44

45
 −

56

15
 

32

9
 

   125

192
 

393

640
 

8

10
 

19372

6561
 −

25360

2187
 

64448

6561
 −

212

729
 

  
−

2187

6784
 −

92097

339200
 

8

9
 

9017

3168
 −

355

33
 

46732

5247
 

49

176
 −

5103

18656
 

 11

84
 

187

2100
 

1 

35

384
 

0 500

1113
 

125

192
 −

2187

6784
 

11

84
 

0 1

40
 

1 

 

Table 1 – Embedded Runge-Kutta pairs for RK5(4). 
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CHAPTER III 

RESULTS 

 

The w-R correlation and cosmological constraints  

After various calculations, we observed that the reduction factor R (equation 33) is very 

sensitively dependent on the exotic matter ratio 𝑤𝑒  (Table 2). This is true for both 

hadronic matter (with typical mass of 1GeV, freeze-out redshift 𝑧 ~ 6 × 1010) and the 

neutralino as the lightest supersymmetric particle (LSP) candidate. The value of 𝑅𝑕𝑎𝑑𝑟𝑜𝑛  

(reduction factor of hadron density) provides a stringent constraint on what value of 𝑤𝑒  

is physically plausible, as we know from cosmological data that the dilaton should not 

affect the relic density of baryonic matter. Hence the values 𝑤𝑒  ~ 0.38, which gives 

𝑅𝑕𝑎𝑑𝑟𝑜𝑛  ~ 1, are the most preferable choices. From that, we obtain a range of acceptable 

values of 𝑅𝐿𝑆𝑃 , the reduction factor of the neutralino density:  

𝑅𝐿𝑆𝑃 = 0.027 − 0.116 

This result is certainly not a fixed range, since various fine tunings can be made to 

improve the precision. The seemingly random values of 𝑤𝑒  were chosen for inspection 

as we were looking for the values of which one can find an enhancement in the relic 

density of dark matter, to suit the new discovery by PAMELA [14]. But obviously from 

the calculation, such enhancement from the rolling dilaton is made impossible by the 

constraint of 𝑅𝑕𝑎𝑑𝑟𝑜𝑛 . For the same reason, we stopped the calculation at 𝑤𝑒 = 0.4, 

where 𝑅𝑕𝑎𝑑𝑟𝑜𝑛  ~ 0.1. 
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w_e R_LSP R_hadron

0.2 1.49E+08 1.34E+06

0.3 8927 2226

0.3185 1046 549.2

0.319 984.7 528.0

0.32 872.7 488.1

0.35 17.71 38.97

0.36 4.158 15.32

0.37 0.881 5.666

0.38 0.165 1.938

0.382 0.116 1.546

0.383 9.69E-02 1.379

0.385 6.75E-02 1.093

0.39 2.67E-02 0.598

0.4 3.97E-03 0.159  

Table 2 – Values of reduction factors R of LSP and hadron for corresponding 𝑤_𝑒. 𝑅𝑕𝑎𝑑𝑟𝑜𝑛  is 
measured at 𝑧 = 1016. 𝑅𝐿𝑆𝑃  is measured at 𝑧 = 6 × 1010 . 
 
 
Another constraint given by cosmological data is that at primordial nucleosynthesis 

(𝑇 ~ 1𝑀𝑒𝑉), radiation must significantly dominate matter. Hence, using equation (11), 

we need to check if 𝜌𝑏 ≪ 𝜌𝑟  at 𝑧 ~ 109. A quick look at the behavior of the densities 

revealed that all 𝑤𝑒’s in the displayed range in Table 1 satisfy this condition in 

acceptable degree.  

 

We do not examine negative values of 𝑤𝑒  since that would imply that exotic matter has 

negative pressure, acting like a dark energy term. Also, notice that the factor R increases 

as 𝑤𝑒  decreases. When 𝑤𝑒 = 0, 𝑅𝐿𝑆𝑃 = 3.8 × 1014 . Such high enhancement factor is 

obviously ruled out by observational data, so exotic matter cannot have zero pressure 

like normal matter. 
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The behavior of various quantities in specific cases of 𝒘𝒆 

First case: 𝑤𝑒 = 0.382  

As motivated by Lahanas et al, we started this project with the intention to look for a 

reduction factor of 10 of dark matter density. Hence we shall first pay attention to the 

case where 𝑤𝑒 = 0.382, and correspondingly, 𝑅𝐿𝑆𝑃 = 0.116.   

 

Here we have reproduced the result from Lahanas et al., with perfect agreement up to 

𝑧 = 2 (Figure 1). In figures 2 and 3, we show the behavior of the dilaton 𝜙, Hubble 

parameter H, and central charge deficit Q as a function of redshift from today to 

freezeout time of neutralino (𝑧 ~ 1 × 1016). As these quantities differ drastically from 

one another, it is most convenient to plot them separately to observe their behavior. One 

can see that the dilaton stays relatively constant although its small change leads to 

significant growth of the central charge deficit as one goes further back in time. In figure 

4, it is clear that radiation becomes predominant over matter at 𝑧 ~ 1 × 104, which 

satisfies the primordial nucleosynthesis constraint.  
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Figure 1 – The behavior of 𝜙, H, and Q up to 𝑧 = 2, for the case of 𝑤𝑒 = 0.382. 

 

Figure 2 – The behavior of the dilaton 𝜙 with respect to redshift from today to neutralino 
freezeout temperature. Notice that the x-axis is measured in logarithm of z. 
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Figure 3 – The behavior of Hubble parameter H and central charge deficit Q with respect to 
redshift from today to neutralino freezeout temperature. Notice that both axes are measured in 

logarithmic scale. 

Figure 4 – The behavior of matter density 𝜌𝑏  and radiation density 𝜌𝑟  with respect to redshift 
from today to neutralino freezeout temperature. Both axes are measured in logarithmic scale. 
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Second case: 𝑤𝑒 = 0.385 

For completeness, we should look at the case where 𝑅𝑕𝑎𝑑𝑟𝑜𝑛  is closest to unity. Again, 

we examine the behavior of 𝜙,𝐻, 𝑄, 𝜌𝑏 , 𝜌𝑟  with respect to redshift (Figure 5). 

Surprisingly, there is not much visible difference between this case and the previous, as 

the quantities grow to approximately the same order of magnitude in both cases. We can 

deduce that the drastic change in 𝑅𝐿𝑆𝑃  must come from the tiny fluctuations of 𝜙 (see 

equation (33)). This reaffirms the sensitivity of the reduction factor on the equation on 

state of exotic matter, shown in Table 2.  

 

Figure 5 – The behavior of 𝜙, H, Q, 𝜌𝑏 , and 𝜌𝑟  with respect to redshift up to neautralino 
freezeout temperature for 𝑤𝑒 = 0.385. Notice that all quantities, except 𝜙, are measured in 

logarithmic scale. 
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Third case: 𝜌𝑒 = 0 at all times 
 
This case is an experiment on the importance of exotic matter in this model. When we 

set the rate of change of exotic matter density to zero at all time, i.e. prevent exotic 

matter to enter the picture altogether, the program does not work for large value of z. 

The set of differential equations becomes too stiff to be solved, as 𝜙 and Q grow to large 

negative values too quickly. Thus, one can see that exotic matter plays a vital role of 

balancing the effect of the dilaton and the central charge deficit on the behavior of other 

observables in the universe.   

 
 
Error analysis 

From equation (26), we see that theoretically 𝜌𝑟  ~ 𝒪(60) at the freeze-out redshift 

𝑧𝑓 = 1016  (since 𝜌𝑟 0
 ~ 𝒪 −5 . Our calculation does satisfy this condition.  

Furthermore, equation (31), which must hold at all time, provides a way to check the 

precision of our calculation. Let us call the right hand side of (31) E (for “error”), then 

theoretically 𝐸 = 0 for all z in the range of interest. At each step of our numerical 

calculation, we calculate E. The more E deviates from zero, the less precise our result 

becomes. For 𝑤𝑒 = 0.385 and 𝑤𝑒 = 0.382, E grows to as large as 𝒪(44) in order of 

magnitude.. Since in both cases, the calculated quantities and their products, such as 

radiation density 𝜌𝑒 , are as large as 𝒪(60), we can say that the error is relatively small 

(16 orders of magnitude smaller). Thus, the result is reliable. 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

In our work we have investigated the effect of the established theory of Supercritical 

String Cosmology (SSC) [6, 8, 9] on the relic density of dark matter in our universe. 

Currently, the Einstein model with the Robertson-Walker-Friedmann metric does not 

explain the so-called cosmological constant Λ. Thus, SSC introduces new quantities, i.e. 

the scalar field dilaton, the central charge deficit, and exotic matter, into the theoretical 

picture to explain Λ. SSC also allows the dilaton to be time-dependent; and we have 

shown that the time-dependent dilaton, which indeed has a profound effect on the 

changing of matter density, can be manipulated by a fine tuning of the equation of state 

of exotic matter. More specifically, using the same assumptions made by Lahanas et al 

[8, 9], such as the effect of SSC on the freeze-out temperature of a type of particle is 

negligible, we have produced a more precise measurement of the density factor R 

corresponding to the ratio 𝑤𝑒  between the density and pressure of exotic matter. We 

require that SSC does not alter the density of hadronic (normal) matter, as this quantity 

can be measured via astronomical observations. This requirement provides a constraint 

on physically acceptable values of R and 𝑤𝑒 . Therefore, we have shown here that the 

neutralino, a strong candidate for dark matter composition, can only be diluted, as 

enhancement factors of 𝑅𝐿𝑆𝑃  are not allowed. Given that the numerical calculation is 

only to a good approximation, and with various assumptions, we can accept values of 𝑤𝑒  

which give 𝑅𝑕𝑎𝑑𝑟𝑜𝑛  ~ 𝒪(1). Correspondingly, the range of acceptable values of 
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𝑅𝐿𝑆𝑃  (~ 0.026 − 0.116) opens a new window in the parameter space for direct detection 

and LHC detection of dark matter. Nonetheless, we are currently investigating different 

possibilities to obtain an enhancement factor of neutralino density. One can have a time-

dependent, and/or dilaton-dependent 𝑤𝑒 , or a time-dependent CP-violation to 

counterbalance the enhancement factor of hadron density. There are many interesting 

routes to continue this study on SSC and what makes our universe today. 
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