Agriculture is Life!

Water Loss Test Results for the West Main Pipeline United Irrigation District of Hidalgo County

Eric Leigh
Texas AgriLife Extension Associate, Biological and Agricultural Engineering, College Station
Guy Fipps
Texas AgriLife Extension Professor and Extension Agricultural Engineer, Biological and Agricultural Engineering, College Station

March 20, 2007

Water Loss Test Results for the West Main Pipeline United Irrigation District of Hidalgo County

Report Prepared by:
Eric Leigh and Guy Fipps, P.E. ${ }^{1}$
March 20, 2007

IRRIGATION TECHNOLOGY CENTER
 Texas Cooperative Extension - Texas Agricultural Experiment Station Texas A\&M University System

[^0]
Table of Contents

Summary 1
Pipeline Test Procedures 4
Appendix A: Survey Measurements 6
Appendix B: Water Level Measurements 7
Appendix C: Other Reported Seepage Rates and Water Loss Test Results 10
Acknowledgements 13
Pipeline Diagram (Foldout) 14
List of Figures
Figure 1. Photo of tested section of the West Main Canal 1
Figure 2. Photo of new pipeline with visible leaks shown after construction 1
Figure 3. District map showing the location of the West Main Pipeline test segment 3
Figure 4. Photo: Askar measuring the water with sounding meter 4
Figure 5. Photo: Inside view of a 12 inch standpipe and box structure 4
Figure 6. Photo: Showing exposed box structure 5
Figure 7. Pipeline Diagram (Foldout) 14
List of Tables
Table 1. Water Loss Test Results for the West Main Canal 2
Table 2. Water Loss Test Results for the West Main Pipeline 2
Table 3. Water Loss Results with Estimated Error Range 2
Table 4. Structure Measurements and Elevations 6
Table 5. Test 1 - Water Level Measurements (March 24, 2004) 7
Table 6. Test 2 - Water Level Measurements (May 21, 2004). 7
Table 7. Test 3 - Water Level Measurements (July 30, 2004) 8
Table 8. Test 5 - Water Level Measurements (May 20, 2005) 8
Table 9. Test 6 - Water Level Measurements (August 4, 2006) 9
Table 10. Results of seepage loss tests in the Lower Rio Grande River Basin 10
Table 11. Results of total loss tests in lined canals in the Lower Rio Grande River Basin. 11
Table 12. Results of total loss test in unlined canals in the Lower Rio Grande River Basin 12
Table 13. Canal seepage rates reported in published studies 12

Water Loss Test Results for the West Main Pipeline United Irrigation District of Hidalgo County

Summary

In 2004, United Irrigation District of Hidalgo County (United) replaced 1.7 miles of their West Main Canal with underground reinforced concrete pipeline (Figure 3). The West Main, a concrete lined canal (Figure 1), meanders northward for approximately 10 miles, beginning at the district's $3^{\text {rd }}$ re-lift pump station at 2 Mile Road and just east of Inspiration Road. Over this stretch, the canal reduces in capacity and narrows in top width from 24 to 3.5 feet.

Figure 1. West Main Canal

Prior to the pipeline installation, water loss tests were conducted on three segments of the canal using the ponding test method to measure seepage. The ponding tests took place during July 2001 and February 2002, respectively.

The water loss rates for the West Main Canal were measured between $2.11-2.29$ $\mathrm{gal} / \mathrm{ft}^{2} / \mathrm{day}$, or 132.2 - $214.3 \mathrm{ac}-\mathrm{ft} / \mathrm{mi} / \mathrm{yr}$. Table 1 summarizes the test results using methods commonly used for characterizing water loss from canals.

After completion of the new pipeline and at the district's request, we started a series of water loss tests to evaluate the performance of the pipeline and document the water savings. Currently, six tests have been conducted between March 2004 and August 2006. Table 2 summarizes the test results.

The first two tests were conducted in March and May of 2004 with water losses measured at 26,402 and $40,990 \mathrm{gal} / \mathrm{mile} /$ day, or projected annual losses of 30.0 and $46.0 \mathrm{ac}-\mathrm{ft} / \mathrm{mi} / \mathrm{yr}$, respectively. When compared to losses measured from the original canal we see an average water savings of 78%. While this would be considered much improvement, the district's expectations for their new pipeline were higher.

Following minor repairs, due to the apparent leakage occurring along side of the pipeline (shown in figure 2); we retested the pipeline in July 2004 and again in May 2005 and August 2006. Test results found that losses were reduced on average by $1448 \mathrm{gal} / \mathrm{mile} /$ day or a projected annual loss of $1.6 \mathrm{ac}-\mathrm{ft} / \mathrm{yr}$; a 95.7% water loss reduction compared with Test 2 , and as much as $\mathbf{9 9 \%}$ savings when compared to the original canal losses.

Figure 2. Visible leaks shown after construction

Table 1. Water Loss Test Results for the West Main Canal.

Test	ID	Test Date	Top Width (ft)	Water Loss Rates		
				gal/mi/day	ac- $\mathrm{ft} / \mathrm{mi} / \mathrm{yr} *$	
UN1	July 2001	11.79	2.29	192,252	214.3	
UN2	July 2001	8.17	2.11	117,306	132.2	
UN3	Feb. 2002	18.46	2.11	149,891	167.8	
Average			2.17	153,150	171.4	

* Annual water amounts given are based on an in-service of 365 days.

Note: For further information on these three tests, the complete report is posted at http://idea.tamu.edu

Table 2. Water Loss Test Results for the West Main Pipeline

Test	Test Date	Avg. Δ in Total	Total Volume	Water Loss Rates	
No.		Depth (ft)	Loss $\left(\mathrm{ft}^{3}\right)$	$\mathrm{gal} / \mathrm{mi} / \mathrm{day}$	$\mathrm{ac}-\mathrm{ft} / \mathrm{mi} / \mathrm{yr}^{*}$
1	Mar. 2004	1.71	367	26,402	30
2	May 2004	2.53	580	40,940	46
The following tests were conducted after the segment was patched.					
3	July 2004	0.11	18	1,119	1.3
5	May 2005	0.16	27	1,839	2.1
6	August 2006	0.12	20	1,407	1.6
Average					

* Annual water amounts given are based on an in-service of 365 days.

Note: Data from Test \#4 was not used as it was inconsistent, indicating measurement problems/errors.

Table 3 shows an estimated error range of the rate of drop in water level per hour and seepage loss rates. Error range is calculated by $\pm 1 / 2$ inch of the beginning and ending measurements or $\mathrm{a} \pm 1$ inch total change in depth.

Table 3. Water Loss Results with Estimated Error Range [Total Δ Depth ± 0.083 (ft)]

Test No.	Error Range	Seepage Loss Rate			
		(gal/mile/day)		(ac-ft/mile/year)	
	Avg. Δ Depth(ft/hour)	Low	High	Low	High
1	1.166 ± 0.057	25101	27702	28	31
2	1.693 ± 0.056	39604	42278	44	47

The following tests were conducted after the segment was patched.

3	0.063 ± 0.050	232	2006	0.3	2.3
5	0.104 ± 0.054	890	2805	1.0	3.1
6	0.080 ± 0.055	431	2481	0.5	2.8
Average	0.082 ± 0.053	518	2431	0.6	2.7

[^1]
United Irrigation District of Hidalgo County

Figure 3. United Irrigation District map shows the location of the new West Main Pipeline section.

Pipeline Testing Procedures

The West Main Pipeline was tested using the ponding method, measuring the total water loss rate. The total loss test accounts for all leaks occurring from gates, valves, and pipeline joints that are either undetectable or are difficult to measure.

These tests were performed under the district's normal operating water levels. Once the pipeline was filled, all downstream checkgates and turnout valves were inspected for leaks.

After the head gate was shut, water surface elevations were measured at selected standpipe stations with a water sounding meter shown in Figure 4 and referenced to the inside top rim of the standpipe. Each test lasted between 2.5 to 4 hours, taking a measurement at 30 minute intervals (6-9 measurements per test).

Our team was provided with basic design and attribute information on the new pipeline from the assigned engineering firm. Based on their

Figure 4. Askar is shown here measuring the drop in water level with the sounding meter. data, we assumed several parameters:

- All box structure walls and ceilings are one foot thick;
- The 12 inch standpipe nor the box structure at station $1+20$ was consider in the test segment due to the location of the head gate within the box structure;
- That all 12 inch standpipes due not extend past the inside ceilings of the box structures. Once the water level drops below the bottom of the standpipe the surface area and volume of the box structure as assumed (Figure 5).

Figure 5. Inside view of a 12 inch standpipe and box structure.

The box structures and selected standpipes were surveyed and referenced using a survey grade GPS instrument and a transit unit. The box structure elevations are based on an average of the GPS measurements on 3 or more corners (see Figure 6). Table 4 provides the survey measurements in Appendix A, and a foldout diagram of the pipeline is provided at the back of the report.

Figure 6. Showing an exposed box structure

Appendix A: Survey Measurements and Pipeline Diagram

Table 4. Structure Measurements and Elevations

Structure	Station	Top Elevation	Ceiling Elevation	Interior Dimensions	Surface Area (ft ${ }^{2}$)
Upstream Canal	0+00	196.717	-	-	-
Box Structure	1+20	193.769*	192.769	6.417 x $8.875 \mathrm{ft}^{*}$	56.95
12" Standpipe	1+20	No survey	-	12" Diameter	0.79
30" Standpipe	2+07	201.927	-	30" Diameter	4.91
30" Standpipe	2+92	No survey	-	30" Diameter	4.91
30" Standpipe	$8+00$	No survey	-	30" Diameter	4.91
30" Standpipe	16+25	202.044	-	30" Diameter	4.91
30" Standpipe	17+25	No survey	-	30" Diameter	4.91
Box Structure	26+38	195.847*	194.847	$5.000 \times 8.083 \mathrm{ft} *$	40.42
12" Standpipe	26+38	201.784	-	12" Diameter	0.79
30" Standpipe	54+47	No survey	-	30" Diameter	4.91
30" Standpipe	55+47	No survey	-	30" Diameter	4.91
Box Structure	60+50	197.033*	196.033	$5.385 \times 8.063 \mathrm{ft} *$	43.42
12" Standpipe	60+50	205.054	-	12" Diameter	0.79
48" Standpipe	62+18	202.517	-	48" Diameter	12.57
30" Standpipe	65+62	No survey	-	30" Diameter	4.91
Box Structure	$77+45$	197.727*	196.727	$7.400 \times 9.000 \mathrm{ft}^{*}$	65.46
12" Standpipe	77+45	204.456	-	12" Diameter	0.79
30" Standpipe	84+45	No survey	-	30" Diameter	4.91
Box Structure	90+00	194.121*	193.121	$5.210 \times 8.000 \mathrm{ft} *$	41.67
12" Standpipe	90+00	200.646	-	12" Diameter	0.79

* Elevations and interior dimensions are based on averages

Appendix B: Water Level Measurements

Table 5. Test 1 - Standpipe Water Level Measurements for the West Main Pipeline (March 24, 2004)

Reading \#	STA: 2+07		STA: 16+25		STA: 62+18		STA: 77+45		STA: 84+45		STA: 90+00	
	Time	Water Level										
1	-	-	9:26	13.74	9:31	13.72	9:44	13.56	9:36	12.61	09:38	12.55
9:50 Shut Upstream Gate												
2	10:20	12.53	10:31	12.18	10:41	11.87	10:48	11.57	10:56	11.41	10:54	11.43
3	11:54	10.53	11:59	10.47	11:40	8.77	-	-	-	-	-	-
4	-	-	-	-	13:14	6.77	-	-	13:37	8.79	13:41	8.72
5	14:51	7.16	14:51	7.09	-	-	-	-	15:10	6.75	15:06	6.78

Note: Water levels zeroed at elevation 182.000 (ft) from survey.

Table 6. Test 2 - Standpipe Water Level Measurements for the West Main Pipeline (May 21, 2004)

Reading \#	STA: 16+25		STA: 17+25		STA: 62+18		STA: 65+62		STA: 84+45		STA: 90+00	
	Time	Water Level										
1	9:26	12.27	9:29	12.27	9:38	11.91	9:40	11.91	9:44	11.61	9:46	11.48
2	9:57	11.25	9:58	11.30	10:07	10.92	10:09	10.94	10:13	10.63	10:16	10.51
3	10:26	10.35	10:29	10.40	10:36	10.13	10:38	10.14	10:42	9.86	10:45	9.74
4	10:51	9.72	10:59	9.66	11:08	9.37	11:11	9.37	11:15	9.13	11:17	9.03
5	11:26	9.00	11:29	9.04	11:36	8.80	11:41	8.79	11:45	8.50	11:48	8.43
6	11:55	8.41	11:59	8.48	12:10	8.04	12:13	8.00	12:17	7.69	12:20	7.57

Note: Water levels zeroed at elevation 182.000 (ft) from survey.

Table 7. Test 3 - Standpipe Water Level Measurements for the West Main Pipeline (July 30, 2004)

Reading \#	STA: 16+25		STA: 17+25		STA: 62+18		STA: 65+62		STA: 84+45		STA: 90+00	
	Time	Water Level										
1	10:00	13.52	10:03	13.58	10:06	13.50	10:08	13.54	10:10	13.34	10:12	13.30
2	10:30	13.35	10:33	13.41	10:35	13.36	10:38	13.41	10:40	13.20	10:42	13.17
3	11:00	13.26	11:03	13.34	11:05	13.27	11:07	13.34	11:10	13.15	11:12	13.11
4	11:30	13.23	11:32	13.31	11:35	13.26	11:37	13.31	11:40	13.12	11:42	13.09
5	12:00	13.22	12:02	13.30	12:05	13.26	12:07	13.31	12:09	13.12	12:12	13.09
6	12:30	13.23	12:32	13.30	12:35	13.25	12:37	13.31	12:39	13.11	12:42	13.09

Note: Water levels zeroed at elevation 182.000 (ft) from survey.

Table 8. Test 5 - Standpipe Water Level Measurements for the West Main Pipeline (May 20, 2005)

Reading \#	STA: 16+25		STA: 17+25		STA: 62+18		STA: 65+62		STA: 84+45		STA: 90+00	
	Time	Water Level										
1	13:00	13.43	13:00	13.36	13:03	13.31	13:05	13.30	13:07	13.10	13:08	13.44
2	13:30	13.13	13:31	13.26	13:33	13.11	13:35	13.20	13:37	13.00	13:38	12.94
3	14:00	13.04	14:02	13.07	14:04	13.01	14:06	13.10	14:08	12.90	14:09	12.84
4	14:30	12.93	14:31	13.07	14:34	12.97	14:35	13.06	14:37	12.86	14:39	12.80
5	15:00	12.89	15:00	12.96	15:03	12.91	15:04	13.00	15:06	12.80	15:08	12.80
6	15:30	12.83	15:31	12.86	15:38	12.87	15:39	12.90	15:44	12.80	15:45	12.74
7	16:00	12.83	16:01	12.86	16:04	12.87	16:06	12.90	16:08	12.76	16:10	12.70
8	16:30	12.79	16:31	12.86	16:33	12.81	16:34	12.90	16:36	12.71	16:38	12.65

Note: Water levels zeroed at elevation 182.000 (ft) from survey.

Table 9. Test 6 - Standpipe Water Level Measurements for the West Main Pipeline (August 4, 2006)

Reading\#	STA: 16+25		STA: 17+25		STA: $\mathbf{6 2 + 1 8}$		STA: $\mathbf{6 5 + 6 2}$		STA: 84+45		STA: 90+00	
	Time	Water Level										
1	9:00	13.04	9:03	13.12	9:07	13.11	9:10	13.13	9:13	12.96	9:15	12.90
2	9:30	13.01	9:34	13.07	9:38	13.04	9:42	13.06	9:45	12.90	9:47	12.85
3	10:00	12.97	10:02	13.03	10:06	13.00	10:08	13.02	10:12	12.86	10:14	12.81
4	10:30	12.93	10:33	12.99	10:36	12.96	10:39	12.98	10:42	12.82	10:44	12.77
5	11:00	12.89	11:02	12.95	11:06	12.92	11:08	12.94	11:11	12.78	11:13	12.73
6	11:30	12.85	11:32	12.91	11:37	12.88	11:39	12.90	11:42	12.74	11:44	12.69
7	12:00	12.81	12:02	12.87	12:06	12.84	12:08	12.86	12:11	12.70	12:13	12.65
8	12:30	12.75	12:33	12.81	12:37	12.78	12:40	12.80	12:43	12.64	12:45	12.59
9	13:00	12.69	13:04	12.75	13:08	12.72	13:13	12.74	13:16	12.58	13:18	12.53

Note: Water levels zeroed at elevation 182.000 (ft) from survey.

Appendix C: Other Reported Seepage Rates and Water Loss Test Results

Texas Cooperative Extension has conducted approximately 50 total loss tests and seepage loss tests in the Lower Rio Grande River Basin since 1998. The results are summarized in Tables $10-12$. Table 13 gives seepage rates versus lining type as reported in the scientific literature.

Table 10. Results of seepage loss tests conducted by Texas Cooperative Extension in the Lower Rio Grande River Basin.

Test ID	Year	Canal Width (ft)	Canal Depth (ft)	Class*	Loss Rate
gal/ft2/day ac-ft/mi/yr					

Lined

16HC2	03			M		
LF1	03	12	5	M	1.77	152.9
LF2	03	10	6	M	4.61	369.1
MA4	03	12	5	S	8.85	529.7
SJ4	00	15	4	M	1.17	111.2
SJ5	02	14	5	M	1.38	145.5
UN1	01	12	6	M	2.32	217.7
UN2	01	8	3	M	2.09	121.2

Unlined

BR1	03	60	11	M	3.14	794.6
MA3	03	19	5	S	13.9	1690.1
RV1	03	38	4	M	0.15	23.0
SB4	02	16	4	S	0.64	68.3
SB5	02	18	3	S	1.67	188.3
SB6	02	20	5	S	1.44	189.0
SB7	02	16	4	S	0.42	47.4
SB8	02	20	5	S	0.83	104.0

*Classification of canal: $\mathrm{M}=$ main, $\mathrm{S}=$ secondary

Table 11. Results of total loss tests in lined canals (leaking gates and valves may have contributed to measured loss rates) conducted by Texas Cooperative Extension in the Lower Rio Grande River Basin.

Test ID	Year	Canal Width (ft)	Canal Depth (ft)	Class*	Loss Rate gal/ft2/day ac-ft/mi/yr

Lined

16HC1	03	14	5	M	1.89	192.4
BV1	99	10	5	M	7.97	510.5
BV2	99	9	4	M	8.53	451.5
DL1	00	20	6	M	0.16	18.8
DL2	00	7	4	S	4.12	236.2
DO1	03	5	3	S	1.68	65.2
DO2	03	6	4	S	2.18	121.5
DO3	03	6	3	S	2.71	107.2
ED1	00	6	4	S	34.32	1519.6
ED2	00	6	4	S	21.5	858.2
ED3	00	3	2	T	10.22	308.2
ED4	00	4	3	S	18.72	567.7
ED6	99	9	4	M	8.53	451.5
HA2	00	10	4	M	2.26	135.2
HA3	98	15	2	S	0.64	45.5
ME1	98	38	7	M	1.26	281.9
ME2	98		4	M	1.88	163.5
SJ1	99	12	5	M	2.58	126.8
SJ6	03	12	3	M	1.88	1.63
SJ7	03	19	4	M	1.98	227.1
UN3	02	12	6	M	2.02	154.3

*Classification of canal: M = main, S = secondary, $\mathrm{T}=$ tertiary

Table 12. Results of total loss tests in unlined canals (leaking gates and valves may have contributed to measured loss rates) conducted by Texas Cooperative Extension in the Lower Rio Grande River Basin.

Test ID	Year	Canal Width (ft)	Canal Depth (ft)	Class*	Loss Rate Gal/ft2/day ac-ft/mi/yr	
BV3	99	55	8	M	0.15	53.4
ED5	02	105	7	M	2.39	1213.2
MA1	99	50	10	M	1.98	227.1
MA2	99	20	5	S	4.32	371.4
SB1	00	29	7	S	1.27	215.5
SJ2	00	23	6	M	2.74	293.2
SJ3	00	30	5	S	0.95	132.6

*Classification of canal: $\mathrm{M}=$ main, $\mathrm{S}=$ secondary

Table 13. Canal seepage rate reported in published studies.

Lining/soil type	Seepage rate (gal/ft²/day)
Unlined 1	$2.21-26.4$
Portland cement 2	0.52
Compacted earth 2	0.52
Brick masonry lined 3	2.23
Earthen unlined 3	11.34
Concrete 4	$0.74-4.0$
Plactic 4	$0.08-3.74$
Concrete 4	$0.06-3.22$
Gunite 4	$0.06-0.94$
Compacted earth 4	$0.07-0.6$
Clay 4	$0.37-2.99$
Loam 4	$4.49-7.48$
Sand 4	$4.0-19.45$

${ }^{1}$ DeMaggio (1990). Technical Memorandum: San Luis unit drainage program project files. US Bureau of Reclamation, Sacramento. ${ }^{2}$ U.S. Bureau of Reclamation (1963). Lining for Irrigation Canals. ${ }^{3}$ Nayak, et al. (1996). The influence of canal seepage on groundwater in Lugert Lake irrigation area. Oklahoma Water Resources Research Institute. ${ }^{4}$ Nofziger (1979). Profit potential of lining watercourses in coastal commands of Orissa. Environment and Ecology 14(2):343-345.

Acknowledgements

This material is based upon work supported by the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture, under Agreement No. 2005-4504803208. For program information, see http://riogrande.tamu.edu.

The following persons contributed to this study:
Biological and Agricultural Engineering Department
2117 Texas A\&M University
College Station, 77843-2117
Guy Fipps, Professor and Extension Agricultural Engineer
Eric Leigh, Extension Associate
Yanbo Huang, Extension Associate (former)
Texas A\&M Research and Extension Center
2401 US Highway 83
Weslaco, 78596-8398
Askarali Karimov, Extension Associate
Martin Barroso, Extension Agricultural Technician (former)
Noemi Perez, Extension Agricultural Technician (former)
Web Address: http://idea.tamu.edu

United Irrigation District

Helpful planning and assistance in the pipeline tests was provided by the District office personnel and canal riders.

IRRIGATION TECHNOLOGY CENTER
A center of the Texas Water Resources Institute
Texas Cooperative Extension - Texas Agricultural Experiment Station
Texas A\&M University System
http://itc.tamu.edu

[^0]: ${ }^{1}$ Extension Associate, and Professor and Extension Agricultural Engineer, respectively, Biological and Agricultural Engineering, 2117 Texas A\&M University, College Station, TX 77843-2117

[^1]: Note: Data from Test \#4 was not used as it was inconsistent, indicating measurement problems/errors.

