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ABSTRACT 

 

 

 

A Framework for Digital Watercolor. 

 

(August  2008) 

 

Patrick O’Brien, B.B.A., University of St. Thomas 

 

Chair of Advisory Committee: Dr. Donald House 

 

 

This research develops an extendible framework for reproducing watercolor in a digital 

environment, with a focus on interactivity using the GPU. The framework uses the 

lattice Boltzmann method, a relatively new approach to fluid dynamics, and the 

Kubelka-Munk reflectance model to capture the optical properties of watercolor. The 

work is demonstrated through several paintings produced using the system. 
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CHAPTER I 

INTRODUCTION 

 

 

 

Simulating paint digitally is an exciting area of research. Digital painting brings together 

the advantages of computers with the beauty of traditional media. Computers offer a key 

advantage over traditional media. They can be much more forgiving when users make 

mistakes. Most computer programs allow a user to undo previous actions. Removing an 

errant paint stroke is as easy as pushing a button. Painters can also save their work at any 

time while painting. Another key feature of digital painting is the ability to manipulate 

the painting using controls. For example, adjusting the rate at which paint dries. Digital 

painters use controls to achieve effects not possible in traditional media. Digital 

painting’s properties offer artists more freedom to experiment in their work.  

Watercolor is a popular painting technique known for several unique 

characteristics. The combination of water and pigments, applied to paper, creates 

interesting patterns and shapes common only to watercolor. The medium is also quite 

distinctive due to its vibrant colors and transparent luminous quality. Perhaps the most 

distinctive quality of watercolor is its spontaneity. Putting brush to paper often creates 

unpredictable results as water, pigments and paper interact. This property of watercolor 

makes the medium fascinating, but also difficult for beginners.  

 

 

____________ 

This thesis follows the style of IEEE Transactions on Visualization and Computer 

Graphics. 
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Unlike other media, watercolor is not very forgiving to mistakes. Watercolor’s unique 

properties make creating a digital watercolor tool a challenge. 

There have been many attempts at creating digital watercolor tools using both 

image-based and physically-based methods. Image-based methods use image operations 

and textures to re-create the look of watercolor. Physically-based modeling accounts for 

physical dynamics and is a way to create realistic appearing digital models of physical 

phenomena. The non-photorealistic community generally agrees physically-based 

approaches provide the best results [1, 2]. Research has demonstrated fluid movement, 

brush and paper interaction, and light and surface interaction in the computer with fairly 

convincing results. For example, Curtis et al. [3] developed an offline physically-based 

watercolor tool, and more recently Chu and Tai [10] introduced a physically-based 

eastern ink tool that offers several new advancements in fluid modeling. However the 

interaction of water, pigments, and paper is complex and slow to compute. Thus, there is 

still work to be done in capturing the complex nature of watercolor within an interactive 

painting tool. 

The goal of this thesis is to develop and demonstrate a real-time watercolor tool 

that is easily extendible. The Graphics Processing Unit (GPU) holds promise of making 

real-time watercolor a possibility. Many new research developments in watercolor have 

used the GPU, however all of these tools use the mathematically complex Navier-Stokes 

equations [5] for simulation of fluid flow. A different set of equations, called the lattice 

Boltzmann method (LBM) [5], offers a simpler mathematical model of that flow. The 

LBM is a cellular based model, making it ideal for GPU implementation, which itself 
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has a spatially distributed parallel processing architecture. In addition to mapping well to 

the GPU, the LBM also makes it easy to add new physics that are hard to describe 

macroscopically, and therefore directly supports the goal for an extensible interactive 

tool.  
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CHAPTER II 

BACKGROUND 

 

 

 

Reproducing watercolor digitally requires knowledge of how traditional watercolor 

effects form and prior research on computer-generated watercolor. 

 

A. Characteristics of Watercolor 

Physically, the behavior of watercolor includes the interaction of pigments flowing in 

water, the absorption of pigments and water into paper, and the evaporation of water 

from the paper [3]. Watercolor paper is typically made from cotton or linen rags to avoid 

buckling. It can be described as being mostly air laced with a web of tangled rag fibers, 

that creates a highly absorbent material. Usually watercolor paper is treated with sizing 

to slow water absorption and diffusion. Watercolor pigment is made of finely ground 

particles. The particles are mixed with gum for body and glycerin for viscosity. The 

glycerin also binds colorant to the paper. Pigments have four important properties that 

determine their behavior: density, staining power, granulation, and flocculation. Density 

determines how long a pigment stays suspended in the water and consequently how far it 

will spread. Staining power is an estimate of a pigment’s tendency to adhere to the 

paper. Granulation describes whether a pigment settles into spaces in rough paper. 

Finally, flocculation accounts for electrical effects drawing pigments together into 

clumps.  
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The size and bristle structure of the watercolor brush play an important role in 

watercolor. Watercolor brushes tend to be softer and hold more water than brushes used 

for other painting methods. The size of a brush and its bristles determine its footprint. A 

brush footprint is the contact area between the brush and paper. The footprint determines 

how much water and pigment are deposited onto the paper. Typical brush techniques 

include dry-brush, wet-on-dry and wet-in-wet.  Wet-in-wet is a technique where a 

paintbrush loaded with water and pigment is applied to paper saturated with water so 

that the paint can spread freely on the paper [2]. Dry-brush involves applying a brush 

with paint and a small amount of water to dry paper [2]. Wet-on-dry is a typical painting 

technique using a wet brush loaded with paint on dry paper. Fig. 1 shows the effects that 

can be produced using these techniques. Dry-brush (Fig. 1a) will only leave paint on 

raised portions of rough paper. Wet-on-dry creates an effect known as edge darkening. 

Edge darkening (Fig. 1b) happens as water at the edge of a brushstroke dries faster than 

the inside. Water at the inside migrates towards the outside carrying pigments to create 

more pigment deposition at the outside of the brushstroke. Wet-in-wet creates effects 

such as back-runs (Fig. 1c), granulation (Fig. 1d), and flow patterns (Fig. 1e). Back-runs 

occur when a puddle of water spreads back into a damp region. Granulation occurs as 

pigments settle into the hollows of the paper. While this effect is not strictly related to 

wet-in-wet, it is strongest when the paper is very wet. Flow patterns are a result of 

brushstrokes spreading freely on the paper. The effect creates soft feathery shapes that 

follow the direction of water flow. A final technique is glazing (Fig. 1f) which is the 

process of painting thin washes of paint one over the other after each one dries. 
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Fig. 1: Watercolor Effects from Curtis et al. [3] (a) dry-brush, (b) edge darkening, (c) 

back-runs,  (d) granulation, (e) flow patterns (f) glazing. 

 

The result is a luminous appearance as the layers mix optically.  

 

B. Computer Generated Watercolor 

There have been several contributions in reproducing watercolor on the computer. Small 

was probably the first to suggest using a cellular automata method for simulating 

watercolors [7]. The simulation attempted to predict the behavior of pigment and water 

when applied to paper. While not a real-time tool, it served as a basis for future 

watercolor tools. Building on Small’s work, Curtis et al. [3] suggested a physically based 

model capable of producing several real watercolor effects including dry brush, edge 

darkening, back runs, granulation, flow effects and glazing. The model uses three layers. 

A shallow water layer is used to move the water and pigment across the paper. Pigment 

is then deposited in the pigment-deposition layer. The final layer represents water 

absorbed into the paper and diffused by capillary action. The simulation solves a form of 

the shallow water equations for fluid flow. Curtis uses the Marker-And-Cell (MAC) [8] 

method to solve the shallow water equations [5] based on Foster and Metaxas [9] work. 
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The final painting consists of washes or glazes composited using the Kubelka-Munk [10] 

diffuse reflectance model. The model proposed by Curtis is mostly suited for automatic 

rendering, as opposed to interactive rendering, due to computational complexities. 

Laerhoven and Reeth [11] further the work done by Curtis by making a more 

interactive watercolor system. They suggest a physically based model similar to the one 

proposed by Curtis. The main difference in their method is the use of the Graphics 

Processor Unit (GPU) and the way the fluid is computed. Laerhoven and Reeth use 

Stam’s [12] approach to fluid-flow on the GPU. Stam’s method uses an implicit 

backwards-Euler integration, making the simulation more stable at higher viscosity and 

allowing larger time steps to speed up the simulation. Like Curtis, they use the Kubelka-

Munk reflectance model for rendering, however they solve the model’s equations on the 

GPU. 

Burgess et al. [13] suggest a different non-physically based approach to 

watercolor rendering. The system takes 3D models and makes them look like they were 

painted with watercolor. Burgess et al. use three layers of paint to achieve a watercolor 

look: a diffuse layer which is the pigment color in uniform thickness, a shadow layer, 

and a texture layer where pigments have varying thickness. Post-processing is used to 

create edge darkening and imperfect object shape. 

More recently, Chu and Tai [10] present a new physically based method for 

simulating Eastern Ink. Eastern Ink shares many qualities similar to watercolor as 

demonstrated in Fig. 2. Flow patterns (Fig. 1e and Fig. 2a) and edge darkening  
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Fig. 2: Ink Effects from Chu and Tai [4] (a) dry-brush, (b) edge darkening, (c) back-runs,  

(d) granulation, (e) flow patterns (f) glazing. 

 

(Fig. 1b and Fig. 2d) are effects common to both eastern ink and watercolor. 

Additionally, branching patterns (Fig. 2b) combined with boundary roughening (Fig. 2c) 

are similar to back-runs (Fig. 1c). Their simulation uses the lattice-Boltzmann method 

[5] for solving fluid flow. Chu and Tai’s work provides several contributions to previous 

work including parallel GPU processing, shape evolution of fluid flow, and medium 

permeability. Like Curtis, Chu and Tai use a three-layer paper model: a surface layer for 

pigment deposition onto the paper, a flow layer for pigment and water flow on the paper 

and a fixture layer for pigment deposited in the paper as ink dries. The system makes use 

of the GPU for the fluid simulation. The lattice Boltzmann method is ideal for the GPU 

due to its use of simple local operations at each lattice site.  

 

C. Lattice Boltzmann Method 

The lattice Boltzmann method has its roots in the Boltzmann equation [14], proposed in 

1872 by Ludwig Boltzmann. The Boltzmann equation describes the behavior of gas on a 

microscopic level using kinetic theory [5]. It gives a statistical distribution of particles in 
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a single-particle phase space. In 1976, Hardy, Pomeau, and Pazzis [15] proposed the 

Lattice Gas Cellular Automata Method (LGCA) as depicted in Fig. 3. The LGCA was 

introduced as a conceptual model for the microscopic behavior of fluid, capable of 

solving the Navier Stokes equation [5]. The model is composed of a lattice where each 

site is a boolean value indicating the particle state as shown in Fig. 3. In Fig. 3, a site 

occupied by particles has a value of 1 and a site with no particles has a value of 0. Two 

processes occur at a site, propagation and collision of particles. In propagation particles 

move in the direction of their velocity to the neighboring site. The collision step resolves 

sites that receive multiple particles after streaming. As Fig. 3 illustrates, the particles’ 

velocity vectors are rotated 90 degrees to avoid the collision. A main issue  

 

 

Fig. 3: Lattice Gas Cellular Automata 
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with the LGCA is it is highly anisotropic due to rotational invariance. This simply means 

vortices produced by the model are square shaped [5]. In 1986, Frisch et al. [16] 

introduced the hexagonal Lattice Gas Cellular Automata Method (LGCA), which solved 

some of the anisotropy issues. However despite Frisch’s efforts, several problems still 

plagued the Lattice Gas Cellular Automata method. The problems included large 

fluctuations in the fluid flow (statistical noise), an inability to simulate in three 

dimensions, and simulations were limited to highly viscous fluids [5]. The lattice 

Boltzmann method (LBM) arose in response to the limitations of the LCGA. First 

proposed by McNamara and Zanetti [17], the lattice Boltzmann method replaced the 

boolean particle number in a lattice direction with the density distribution function to 

reduce statistical noise. Unfortunately, the LBM still suffered from problems when 

simulating 3D flow and could only simulate viscous fluids. The practical viability of 

simulating in three dimensions came with Higuera and Jimenez [18]. They suggest 

changes to the collision process turning the nonlinear collision operator into a linear 

operation. These changes made fluid simulations perform faster allowing 3D 

simulations.  Higuera et al. [19] suggest enhanced collisions for the LBM that allow 

simulations with low viscous fluids. They eliminate collisions from the LBM so that 

only the consequence of collisions matters. Quian et al. [20] suggest a final improvement 

to the collision operator known as the Bhatnagar-Gross-Krook approximation. This 

version of the LBM is known as the lattice-BGK model (LBGK) and provides a single 

time relaxation. The LBGK is the most popular LBM used today due to its simplicity 

and efficiency [5]. The LBM is inherently compressible [5]. Consequently, it models the 
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compressible Navier-Stokes equation. Fluid compressibility is a main feature of the 

LBM and is what gives it a performance advantage over other methods [4]. However, He 

and Luo [21] recognized there is also a need for incompressible fluid and introduced an 

incompressible variant of the lattice Boltzmann model. One limitation that comes with 

the incompressible LBM is the fluid speed must be kept low in order to minimize the 

compressibility effect. 

The lattice Boltzmann methods work on a lattice, and are a type of cellular 

automaton. Fig. 4 shows that in a cellular automaton model all cells are updated at each 

time step according to rules that take into account the surrounding cells. The interaction 

of the cells determines the complex behavior of the automaton. Several variations of the 

LBM exist, and are named DXQY, where X is the dimension and Y is the number of 

lattice velocities or vectors [22]. Fig. 5 depicts a cell from a D2Q9 lattice. A lattice 

vector is referred to as ei where i is the lattice vector number. In Fig. 5 the lattice vectors 

are e0 – e8. At each lattice site x and time t, fluid particles moving at  

 

 

Fig. 4: A Cellular Automata : Lattice Boltzmann Method 
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Fig. 5: D2Q9 Lattice Cell Based on Fig. from N. Thurey [22] 

 

arbitrary velocities are modeled by particle distribution functions fi(x,t) [4]. Each fi(x,t) is 

the expected number of particles moving along a lattice vector ei. Each side of the cell 

has lattice unit equal to 1. The magnitude of velocity vectors e1 through e4 is 1 lattice 

unit per time step. The magnitude of velocity vectors e5 through e8 is 2  lattice units 

per time step
 
[23]. The magnitude of vector e0 is 0, because it represents particles at rest. 

Resting particles do not move in the next time step, but may be accelerated due to 

collisions. As a result, the number of resting particles can change. 

The cell density and overall speed and direction that the particles in the cell move 

are calculated using a cell’s particle distribution functions. The density  

            
    

= fi
i=0

8

                                                   (1) 

is the sum of all particle distribution functions. The velocity   
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u =
1

0

ei
i=1

8

fi                                        (2) 

is the sum of the lattice vectors ei times the corresponding distribution function fi(x,t). 

The initial density 
  0

 is usually set to 1. 

A simulation consists of two steps: streaming and collision. These two steps 

simulate the convection and diffusion phenomena that occur on a macroscopic level in 

physics. During the streaming step, the particles move from one cell to the next. For 

instance, celli,j ‘s distribution function for the lattice vector pointing downwards would 

be copied to celli+1,j ‘s distribution function for the lattice vector pointing downwards. 

The lattice vector in the center does not point anywhere and so the “at rest” particles are 

not copied. Fig. 6 graphically displays the streaming step. The streaming step is 

described mathematically as 

  fi x + ei t, t + t( ) ,     (3) 

where ei is the lattice vector pointing in the opposite direction of the distribution  

 

 

Fig. 6: Streaming Step from N. Thurey [22] 
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Fig. 7: Collision Step from N. Thurey [22] 

 

function. For example, if the distribution function is f1, then the lattice vector would be 

e3 or (-1,0). The lattice Boltzmann method requires interfacial boundary conditions to 

determine the distribution functions at boundary sites. A variety of boundary conditions 

exist for determining the distribution functions including periodic, Von Neumann, 

Dirichlet, and bounceback [5]. The most common boundary conditions for the lattice 

Boltzmann method are “no-slip” walls such that fluid close to the boundary does not 

move [22].  This amounts to each cell next to a boundary having the same amount of 

particles moving into the boundary as moving in the opposite direction.  

 In the collision step, particles arrive at a lattice site and collide with other 

particles. Fig. 7 depicts this step graphically. As Fig. 7 demonstrates, the collision step 

does not change the density or velocity of a cell. It only changes the distribution of 

particles for all particle distribution functions in a cell [22]. For instance, consider a celli,j 

where the fluid moves along the positive x-axis. The cell will not lose any particles 

during collision. However the movement will be scattered to other cells’ lattice vectors 

that point in the direction of the positive x-axis. Lattice vectors pointing in the opposite 
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direction will become smaller. This is illustrated in Fig. 7. In the next stream step, 

neighboring cells with an xi+1 coordinate will receive a slightly larger particle 

distribution function from celli,j, while neighboring cells with an xi-1 coordinate will 

receive smaller distribution functions. To model this behavior, the equilibrium 

distribution function, fi
(eq)

  and new distribution functions must be calculated. He and 

Luo [21] suggest that the equilibrium distribution function  

             

    

fi
(eq )

= wi + 0

3

c 2
ei u +

9

2c 4
(ei u)

2 3

2c 2
u u 

 
 

 

 
 

 

 
 

 

 
 
            (4) 

works well in reproducing incompressible flow behavior. Each lattice vector has an 

equilibrium distribution function. The weights wi can be interpreted as different masses 

of the particles moving along the different lattice directions [5]. The weights for a D2Q9 

lattice are 4/9 for i=0, 1/9 for i=1,2,3,4 and 1/36 for i=5,6,7,8. The basic speed on the 

lattice is denoted by c [23]. In basic implementations c = 
  0   = 1. The LBM has built in 

advection and the term 
  

3

c 2
ei u +

9

2c 4
(ei u)

2 3

2c 2
u u 

 
 

 

 
  in the equilibrium distribution 

function is responsible for the advection. The new distribution functions are 

    
 f i = 1( ) f i +  f i

(eq ).                                   (5) 

The relaxation rate  determines the viscosity of the fluid and affects how quickly the 

fluid reaches equilibrium. For  < 1 the fluid will be more viscous like honey while  > 

1 will produce less viscous fluids like water. 

In the literature, the streaming and collision steps are often combined into one 

formula known as the lattice Boltzmann equation, 

                       fi x + ei t, t + t( ) = 1( ) f i x,t( ) + f i
(eq ) x,t( )              (6) 
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The left side of the lattice Boltzmann equation describes the streaming step, while the 

right side describes the current distribution function and local equilibrium [22]. 

 

D. Kubelka-Munk Reflectance Model  

The Kubelka-Munk Reflectance model is a physically based model that simulates the 

scattering and absorption of light by materials. The model assumes that light scatters at a 

single point, and the resulting subsurface scattering is either diffuse or shaped by the 

scattering properties of the material [25]. The KM model uses an absorption coefficient 

K and scattering coefficient S to model light scattering. Theses coefficients can be 

derived experimentally using spectral measurements or set interactively in an 

application. Interactively deriving the two coefficients is more convenient, because there 

is no need for equipment measuring spectral properties. Curtis suggests using the 

following equations for K and S:  

                                             

  

S =
1

b
coth

1
b2 (a Rw )(a 1)

b(1 Rw )

 

 
 

 

 
 
                   (7) 

                                                                K = S(a 1)                                     (8) 

where 

  

a =
1

2
Rw +

Rb Rw +1

Rb

 

 
 

 

 
 
,     b = a2 1 .                 (9) 

Rw represents a “unit thickness” of a pigment over white and Rb represents a “unit 

thickness” of a pigment over black. Both Rw and Rb are specified as RGB triples.  Curtis 
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requires 0 < Rb < Rw < 1. The computations of K and S are performed on each of the R, 

G and B color channels independently.  

 Once K and S are found, a layer’s reflectance R and transmittance T are given by 

                   
  

R = sinhbSx /c

T = b /c                  where    c = asinhbSx + bcoshbSx
 .        (10) 

The thickness of a pigment layer is denoted by x. Given two layers with reflectance R1 

and R2 and transmittances T1 and T2, the overall reflectance and transmittance is  

                              

  

R = R1 +
T1

2R2

1 R1R2

                T =
T1T2

1 R1R2

 .                   (11)   

Note that in general R1R2  R2R1. 

 While Kubelka-Munk theory has been discussed in computer graphics, Haase 

and Meyer [23] are the first to use the theory to solve color synthesis problems. Their 

work derives the equations for modeling Kubelka-Munk theory in computer graphics 

and shows why the Kubelka-Munk reflectance model is necessary for capturing the 

optical effects that occur when mixing pigments. Haase and Meyer prove additive 

(RGB) and subtractive (CMY) color spaces are inadequate for modeling pigmented 

materials, as shown in Fig. 8. This is because pigmented materials are opaque particles 

in a transparent medium. Fig. 8 demonstrates the importance of wavelength samples in 

the accuracy of the Kubelka-Munk model. However, even the 3 sample model works 

better than the RGB color space. 

 Recently Donner and Jensen [25] made improvements to Kubleka-Munk theory 

by making a variant of the Kubelka-Munk model in frequency space. This variant 

produces more realistic results in layered translucent materials. Donner and Jensen [25]  
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Fig. 8: Comparison of Kubelka-Munk to RGB based on Baxter et al. [29] 

 

introduce a multipole diffusion approximation to scattering of light at a surface. 

Diffusion approximation is a way to solve the Bidirectional Scattering Surface 

Reflectance Distribution function (BSSRDF) [26] used in physically based calculations 

of subsurface scattering.  

 Many paint programs [3,27,13,27,11,29,30 ] use Kubelka-Munk theory to 

reproduce the optical effects of paint. Baxter et al. [30] were the first to introduce an 

interactive version of the Kubelka-Munk model by solving the equations on the GPU. 

Most current paint programs [27,11,29,30] now use the GPU to solve the Kubelka-Munk 

equations since it allows for interactive programs. 
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E. Fluid Simulation on the GPU 

There are two types of GPU programs typically used in GPU processing [31], vertex and 

fragment programs. The vertex program involves operations occurring at the vertex such 

as lighting and transformations. The fragment program, involves operations like reading 

from texture memory and applying texture values at fragments, which is a per-pixel data 

structure created by the rasterization of graphics primitives [31]. Both types of programs 

are compiled and linked into executable code that runs on the GPU.  

A typical GPU based approach to fluid dynamics involves integrating shaders 

written in some shading language with a high level programming language. A Graphics 

Application Programming Interface (API) provides the bridge between the high level 

programming language and the shading language. The API allows the program to pass 

data to and from the shaders.   

Physically Based Simulations performed on the GPU are typically referred to as 

General Purpose Computation on GPU (GPGPU). Most fluid simulations on the GPU 

use a grid of cells. Ideally, each fragment should be a cell in the grid. This is 

accomplished using a screen size quad with a one to one mapping between pixels and 

texels. Current GPUs do not allow both reading and writing to the same texture, because 

the reading and writing mechanisms are independent of each other. Allowing reading 

and writing to the same buffer would require a highly synchronized approach to avoid 

overwriting values, which would reduce the efficiency of the GPU [32]. An approach 

called Ping Pong is used to circumvent this limitation. Ping Pong uses two textures to 

represent one set of data. During one iteration or pass of a shader, one texture is used as 
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the read texture and the other is used as the write texture. After the shader finishes 

execution, the textures are swapped, making the write texture the read texture the next 

time the shader runs. This process is repeated until the shader is disabled.  

Harris et al. [33] discuss the many advantages of using the Graphics Processing 

Unit for simulations. They also discuss common operations a GPU can perform, such as 

computing directional forces, convection, and boiling. They point out that GPUs are well 

suited for simulations, due to their parallel nature, the speed of performing imaging 

operations compared to Central Processing Units (CPU), and the ability to balance the 

many processing tasks in a simulation between the CPU and GPU for interactive 

simulations. A GPU does have disadvantages, most notably low precision. Currently, 

GPUs use 8-bit integer precision, which is only one quarter of the precision offered in a 

CPU. 

 Wei et al. [34] implement the lattice Boltzmann equations on the GPU. They 

suggest placing all packet distributions with the same direction in one texture to avoid 

the overhead of switching between textures. Another trick is to pack four packet 

distributions from different directions into one RGBA texel which reduces the memory 

requirement of distributions by one-fourth. They overcome the precision limitations of 

GPUs by using range scaling. Range scaling avoids clamping errors and takes full 

advantage of the hardware precision by mapping all variables to between [-1, 1] [34]. 
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CHAPTER III 

METHODOLOGY 

 

 

 

A modular design is used in the watercolor program so that the program can be easily 

improved upon in the future. The program is separated into models of how the brush, 

pigment, paper, and water behave. The individual models are designed so that a change 

to one will require little change in the others. The following sections describe these 

models and provide a detailed discussion of how the watercolor program is structured. 

The structure is broken down into three major sections: Graphical User Interface (GUI), 

Fluid Simulation, and Watercolor. The GUI section discusses the interfaces that are used 

and the motivation for primarily using a proprietary interface. Fig. 9 shows the  

 

 

Fig. 9: The Watercolor Program 
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program’s interface. Additionally the palette, brush, and canvas interfaces are discussed. 

In the fluid simulation section, fluid movement using the lattice Boltzmann method is 

explained. The section gives a detailed explanation of how the method works on the 

GPU. Finally, the watercolor section explains the brush, paper and pigment models. This 

section also describes how all the models interact with each other to recreate watercolor.  

 

A. Graphical User Interface  

 

The watercolor tool uses two different Graphical User Interfaces for interacting with the 

program. There are several choices when choosing a GUI, however the program uses 

GLUI [54], a free GUI for OpenGL, and GLUE, a proprietary GUI. These GUIs are used 

for simplicity and their ability to integrate with OpenGL’s shading language GLSL. 

GLUE is the main interface used and is a custom interface that provides components not 

available in GLUI. The main component GLUE provides is a color picker. A color 

picker requires several interface components such as buttons to allow user interaction. 

While GLUI does have buttons, it is not easy to change their appearance or behavior to 

work with GLUE. The lack of customization in GLUI requires GLUE provide buttons, 

radio buttons, sliders and menus so that the color picker will work. GLUE is similar in 

its appearance to Apple OSX 10.4 tools as seen in Fig. 10. GLUE uses GLUT [36] 

functions for window management. The color picker shown in Fig. 10 is similar in 

functionality and layout to Photoshop CS3’s color picker tool and uses its design as a 

reference. Fig. 8 also demonstrates GLUE buttons and sliders. Sliders let the user pick  
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Fig. 10: GLUE Color Picker 

 

the current color and let the user know what the current color is in terms of hue, 

saturation and value. If the user selects the cancel button, the current color will remain 

the color at the time the window opened, ignoring all changes. Fig. 10 shows both button 

states: blue when the mouse clicks or is over the button and white when the mouse is not 

over the button. The final component of GLUE is a radio button. Radio buttons are blue 

when selected and white if not selected. While GLUE provides most of the interface 

components, GLUI is used to provide interface components too time-consuming to 

implement using GLUE. The program uses GLUI’s text box input to capture filenames 

for saving and loading files. The next sub-sections describe the palette and brush 

interfaces. 
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1. Palette 

 

The watercolor tool provides a palette interface so an artist can create, modify, and select 

pigments. The palette consists of three windows as shown in Fig. 11. The palette uses 

GLUE for the entire interface, except for palette loading and saving. The left window is 

the primary interface for managing a pigment’s name and color. A palette can hold up to 

12 pigments. The pigments are displayed using the Kubelka-Munk Model. The program 

loads a default palette with 12 common watercolor pigments based on K and S values 

defined in Curtis et al [3]. However, the user is not limited to the 12 provided pigments. 

Clicking on a pigment loads the pigment into the top right window in Fig. 11 where it 

can then be modified using a color wheel. As in Curtis, a pigment is defined by two 

RGB colors, Rw and Rb, which represent the pigment’s appearance in “unit thickness” 

over white and black. Two radio buttons allow the user to choose whether they are 

modifying Rw or Rb. Modified pigments can be saved back to the palette using the save 

pigment button. A palette menu in the left window of Fig. 11 allows users to create a 

blank palette, load a palette from file, and save a palette to file. The bottom right window 

in Fig. 9 opens when the load or save palette button is clicked and makes use of the 

GLUI text box to capture filenames. It also uses GLUI buttons, because GLUE buttons 

will not integrate with the GLUI textbox. 
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Fig. 11: Palette Interface 

 

2. Brush 

The brush interface consists of a visual representation and movement. Visually the brush 

is represented as a black circle outline and the size is changed using keyboard shortcuts. 

There are two main choices for controlling brush movement on the canvas. The simplest 

form of input is a mouse. However a mouse only provides a 2D position on screen. Chu 

and Tai [4] and Baxter et al. [29] both use a physical pen and tablet for input, which 

offers more control than a mouse.  Their systems can capture brush tilt, pressure, and 



26 

position. A disadvantage of using a pen and tablet is the program must use an application 

programming interface (API) to obtain data from the hardware which can be difficult to 

implement. While a pen and tablet would provide more control, the brush interface uses 

a mouse for its simplicity. 

 

3. Canvas 

The canvas interface provides controls for the brush and simulation. Fig. 9 shows the 

canvas interface in the right side of the Fig.. The interface uses 2 sliders, which allow the 

artist to adjust the pigment and water concentrations in the brush. A button allows the 

artist to instantly dry the canvas. Often artists first sketch a painting first in order to get 

proportions and layout correct. A menu and radio button provides the option to load a 

sketch onto the canvas. The menu opens a file open dialog using GLUI, and then 

overlays the loaded sketch on the canvas. A radio button toggles the sketch’s visibility 

on and off. 

 

B. Fluid Simulation 

A common approach to fluid dynamics is to solve the Navier-Stokes equations [5]. 

Curtis et al. [3] and Laerhoven et al. [11] use this approach in their watercolor tools. 

However, as discussed by Chu and Tai [4], the lattice Boltzmann method seems to be a 

better choice because operations are local and simple, it does not need to solve Poisson 

equations, and it is easy to incorporate physics that are hard to describe macroscopically. 
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The watercolor program uses the lattice Boltzmann method for its simplicity and 

efficient mapping to the GPU.  

The lattice-Boltzmann method requires the program to keep track of 9 particle 

distribution functions fi, density
  

, and velocity v for each cell. There are 3 textures for 

the 9 particle distribution functions. Fig. 12 shows the relationship of the particle 

distribution functions and the texture data. The fi are grouped according to direction. 

This is an arbitrary choice, as the fi could be grouped differently.  The velocity and 

density are stored in a texture with the x and y components in the red and green channels 

and the density in the blue channel. 

A basic lattice-Boltzmann method implementation consists of four sets of 

operations: streaming, velocity and density computation, boundary detection, and 

collision. The operations are implemented as fragment shaders. The lattice Boltzmann 

method requires interfacial boundary conditions to determine the distribution functions 

 

Fig. 12: Particle Distribution Function Texture Storage  
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Fig. 13: Half-way Bounce-back Boundary Conditions 

 

at boundary sites. This is accomplished using the half-way bounce-back scheme [5] 

depicted in Fig. 13. The half-way bounce-back scheme works by reflecting particle 

distribution functions that enter the boundary cells back in the opposite direction. For 

example, in Fig. 13, particle distribution functions f7, f4, and f8 stream into the boundary 

cell in the current timestep. The particle distribution functions are then reversed and will 

stream back into the cell they came from in the next timestep. On the GPU, the bounce-

back step equates to swapping texture channels. So for distribution functions 1-4, the red 

(f1) and blue (f3) channels are swapped and the green (f2) and alpha (f4) channels are 

swapped. Next the streaming step occurs. On the GPU, this is accomplished by 

swapping channels in a texture, as indicated in Fig. 14. For example, to stream f1 (the red 

arrow in Fig. 14) the following GLSL code is used 

(gl_TexCoord[0].st + vec2(-1.0, 0.0)).r. 
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Fig. 14: Streaming Step on the GPU 

 

distribution functions can be written out from a shader to a texture. Since f0 is stationary, 

we do not need to stream it. After streaming, the velocity and density shader calculates 

the new velocity and density based off the new streamed distribution functions. Velocity 

is calculated using 

    

u =
1

0

ei
i=1

8

fi  which is equation 2 from Chapter II. The density is 

given as 
    

= fi
i=0

8

. This is equation 1 from Chapter II. The final step in the fluid 

simulation is calculating the new distribution functions after collision. The collision 

shader uses the incompressible variant of the LBM,  

    

fi
(eq )

= wi + 0

3

c 2
ei u +

9

2c 4
(ei u)

2 3

2c 2
u u 

 
 

 

 
 

 

 
 

 

 
  ,  

which is equation 4 from Chapter II. The shader first calculates the equilibrium 

distribution function, then uses     
 f i = 1( ) f i +  f i

(0), which is equation 5 from Chapter 

II, to find the new distribution functions. Calculating the new fi is easy on the GPU using 



30 

linear interpolation. Finally the shader saves the new fi to the texture for use in the next 

timestep. As with streaming, several shaders are needed to save all the distribution 

functions.  

 

C. Watercolor 

The watercolor model consists of a brush model, paper model, fluid simulation, and 

pigment model. The following sub sections discuss the individual models and how they 

interact to create watercolor. 

 

1. Brush 

Like Curtis et al. [3], the program uses a circle to represent the brush. However, Chu and 

Tai [4] and Baxter et al. [29] show a more complex brush model can create more 

realistic paintings. By modeling brush bristles and their interaction with the paper, Chu 

and Tai are able to get brush strokes that mirror real-life brush strokes. While their 

model is a better method, it is also difficult to implement and beyond the scope of this 

thesis. Following Curtis, the brush is a circle, and the footprint is defined as any pixel 

inside the circle. Pixels only partially covered by the circle are not considered part of the 

footprint. A bounding box around the circle determines which pixels are in the footprint. 

A simple test comparing the radius of the circle to all pixels in the bounding box quickly 

determines which pixels are in the footprint. In addition to the footprint, the program 

also calculates how fast the brush is moving across the paper surface.  Speed is based on 

the distance traveled from the last brush footprint to the current brush footprint. First the 
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vector between the strokes is found. Then the magnitude of the vector is scaled to 

between [0.005, 0.01]. Scaling occurs because the fluid simulation requires small 

changes in velocity. Consequently, fast movements in the brush will break the 

simulation. Values between [0.005, 0.01] seem to work well in keeping the velocity and 

flow speed low. After calculating the speed and footprint, the data is passed to the fluid 

simulation.  

 

2. Paper  

The paper model consists of both a visual and a conceptual representation. Visually the 

paper is represented using a texture. Curtis et al.[3] suggest noise [38, 39] works well in 

re-creating watercolor paper textures. The texture is created by first generating an image 

using Perlin Noise [38]. The image is then applied as a bump map in Autodesk Maya 

[40].This is rendered in Maya and the resulting image is used as a texture to visually 

represent the paper. The conceptual representation is an abstraction of how the paper, 

pigment, and water interact with each other. The paper model is divided into three layers 

as shown Fig. 15. Like Chu and Tai [4], the paper contains a surface layer, flow layer, 

and fixture layer. The surface layer is where water and pigment are first deposited. 

The layer acts as a reservoir supplying water and pigment to the flow layer over time 

until all pigment and water are depleted. The flow layer advects water and pigment 

through the paper. Advection in fluid dynamics is a term for describing the transport or 

movement of material due to the velocity. Pigment is deposited into the fixture layer 

slowly until all water has evaporated. Some pigment in the fixture layer is absorbed back  
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Fig. 15: Paper Layers 

 

into the flow layer and re-deposited later. The paper layers are implemented as sets of 

shaders, which are described in further detail in the next two sections.  

 

3. Fluid Simulation 

Several modifications are made to the LBM to including variable permeability, evolving 

boundaries, and evaporation. These modifications are important in capturing the 

behavior of watercolor. As Chu and Tai [4] mention, variable permeability and evolving 

boundaries are responsible for creating interesting flow patterns.  Variable permeability 

is implemented by having a blocking factor at each site. The blocking factor is used to 

create a partial bounce-back of distribution functions during streaming. Evolving 

boundaries are handled by making sites with zero density boundaries. The boundary sites 

fully bounce-back all streaming distribution functions. Finally density is evaporated over 
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time by reducing distribution functions during streaming. Together these three 

modifications help to create edge darkening and flow patterns. 

In addition to tracking the state of the fi,   , and v for each cell, the modified 

lattice-Boltzmann method must also track the amount of water transferred from the 

surface to flow layer wf, the amount of water in the surface layer ws, the blocking factor 

   at each cell for variable permeability, and the height field of the paper h. These 

variables are stored in textures as shown in Fig. 16. In the modified LBM, the fluid 

density represents the amount of water in a cell in the flow layer. The height field is 

generated using Perlin Noise and scaled to the range [0,1]. To limit the number of 

textures used, the amount of water transferred to the flow layer wf is stored in the alpha 

channel of the velocity and density texture. The blocking factor   , amount of water in 

the surface layer ws, and the height field of the paper h are stored with f0. 

 

 

Fig. 16: Texture Storage for Watercolor LBM 
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 The main structure of the lattice-Boltzmann method remains the same. All four 

operations are performed, but with modifications. First the boundary shader is updated to 

handle evolving boundaries. The boundary shader is now responsible for setting the 

blocking factor and the new water amount in the surface layer. A boundary is formed 

when a cell with no water (
  

= 0 ) is surrounded by cells whose amount of water is less 

than some threshold
  

. In this case the boundary site’s blocking factor is set to infinity. 

When any of the dry cell’s neighbors’ density rises above threshold 
  

, the dry cell’s 

blocking factor is reset to the height field. Additionally non-boundary sites’ blocking 

factors are set to the height field. Finally the water on the surface, ws, is updated to 

max(ws – wf, 0). Next the streaming shaders stream all fi with bounce-back and lower the 

density at boundaries. Fig. 17 describes bounce back for fluid and boundary cells. At site 

x, the blocking factor 
  i

 is averaged with the blocking factor 
    i ei

to give
  a

. Streaming 

for both boundaries and fluid cells is described as 

                         
    
fi x,t +1( ) = a x( ) f i x, t( ) + 1 a x( )( ) f j x ei,t( ),                  (11) 

where fj is the distribution function pointing in the opposite direction of fi. Fig. 17 shows 

that the full bounce-back equates to streaming distribution functions back in the opposite 

direction. Evaporation at boundaries is handled by only evaporating when 
  a

 = 1. When 

this is true a small amount is taken away from the newly streamed distribution functions. 

In GLSL this is done using 
    

Max fi b b ,0
 

 
 

 

 
  where 

  
fi  is the new fi streamed, 

  b
is the 

evaporation rate specified by the user, and b is a Boolean flag  
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Fig. 17: Streaming with Bounce Back 

 

indicating if the cell is a boundary.  The program still uses two shaders for streaming. 

The velocity calculation remains unchanged, however the density calculation is 

modified. The density is calculated normally using equation 1 from Chapter II. Next the 

shader calculates how much water has evaporated from the flow layer using 

    
Max( s,0) , where 

  s
 is the evaporation rate for water. Next wf, the amount of water 

transferred from the surface to flow layer, is found using 
    
Clamp ws,0,Max ,0( )( ). 

Clamp(x, min, max) is a function that clamps a value x between two numbers min and 

max. If x > max, x is set to max. If x < min, x is set to min. The value x is left alone if it 
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is between min and max. 
  

is how much water the fibers in the paper can hold. In the 

simulation this is set to 1. The final value for the density is     + wf . The only change 

made to the collision shader is to add a variable   . The LBM was designed to fill the 

entire simulation domain [4]. By letting the fluid density represent water in a cell, there 

will be some cells with no density. As a result there will be cells with negative densities, 

because the advection built into the LBM carries density away from sites with near zero 

density. Recall from Chapter II.C, the term 
  

3

c 2
ei u +

9

2c 4
(ei u)

2 3

2c 2
u u 

 
 

 

 
  is 

responsible for advection in the LBM. Chu and Tai [4] suggest adding a parameter    to 

the term to reduce advection in areas with low densities. The new equilibrium 

distribution function is 

        

    

fi
(eq )

= wi + 0
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c 2
ei u +

9
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u u 

 
 

 

 
 

 

 
 

 

 
  .                     (13)       

The variable   is defined by 
  
Smoothstep(0, , ) where    is user specified. 

  Smoothstep e0,e1,x( ) is a function that provides a smooth transition between edge e0 and 

edge e1 based on the value of x. In Smoothstep(), x = 0 when x is < e0, x = 1 when x is > 

e1, and x is smoothly interpolated when e0 <= x  <= e1. Therefore Smoothstep() will set    

to 0 when there is no water, causing no advection to occur. Otherwise    will be greater 

than zero allowing partial to full advection. Typically,     0.1 0.6  works well for 

watercolor based on experimentation. Next pigment movement through the paper layers 

is described. 
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4. Pigment 

The pigment model is divided into pigment movement and pigment display. Pigment 

movement follows the model used by Chu and Tai [4] and is divided into three areas: 

pigment supply, pigment advection, and pigment fixture. Chu and Tai model eastern ink, 

which does not produce back-runs and granularity. The pigment movement is modified 

to handle these two effects. Like Curtis et al. [3], pigment display uses the Kubelka-

Munk reflectance model. The model is used for both mixing and glazing. As indicated 

by Curtis, the Kubelka-Munk model works very well for re-producing watercolor’s 

optical effects.  

Watercolor pigments behave differently when they are wet versus when they are 

dry. Wet pigments can still be moved around the canvas, while it is very difficult to 

move dry pigments. Typically granulation and back-runs occur only when the paper is 

wet. Therefore the pigment model makes a distinction between wet and dry pigments to 

allow the artist full control over the painting. Wet and dry pigments are stored in 

different layers. The layers are implemented as RGBA textures. Dry pigments can be  

 

 

Fig. 18: Pigment Layers 
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stored in one layer because dry pigments cannot be moved. Wet pigments however, 

require multiple wet layers because they are tracked as a group and adding more water 

may move them. Pigments are tracked as a group, and not individually, because it is 

computationally efficient. However, this presents some problems as Fig. 18 illustrates. If 

only one layer is used to track pigments, a problem occurs when two pigments of 

different color overlap (Fig. 18b). Recall the Kubelka-Munk model optically mixes color 

based on two layers’ light scattering and absorption properties. The model does not 

know how to optically mix the color of two different pigments if they are not in different 

layers. The problem is fixed by separating pigments into different layers according to 

color (Fig. 18d). Next a detailed description is given on the pigment movement in the 

wet and dry layers. 

Pigment movement tracks the concentration of pigments in the different paper 

layers. Pigment concentrations in the supply, flow, and fixture layers are denoted as Ps , 

Pf , and Px respectively. Concentrations are stored in the red, green, and blue channels of 

a texture as indicated in Fig. 19. As mentioned previously, the program stores pigment  

 

 

Fig. 19: Pigment Concentration Storage 
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concentrations according to their color. Hence a texture is required for every different 

pigment color. Three shaders model the movement of pigment through the paper layers 

as depicted in Fig. 20. Pigment is first deposited into the surface layer. The amount of 

pigment transferred from the surface to flow layer is determined by a ratio of the amount 

of water in the flow layer to the amount of water being transferred to the flow layer. 

Specifically,    

    

Pf =
Pf + Pswf

+ wf
 .        (14) 

After Pf is updated, the shaders advect pigment through the flow layer. There are two 

types of cells, cells that are already wet and cells that are becoming wet. The new  

pigment concentration at site x for cells already wet is found by tracing the velocity 

backwards. In this case  

                                                     
Pf
*(x) = Pf (x u(x)).         (15) 

The new pigment concentration at site x for cells becoming wet is given as 

    

Pf
*(x) =

1
f iPf

i=1

8

(x ei) .    (16) 
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Fig. 20: Pigment Movement in Paper Layers 

 

As pigments move through the flow layer, they are slowly deposited into the fixture 

layer. As Fig. 20 indicates, the pigment model allows pigment to deposit more when the 

paper is drier and less when wet. This is accomplished by basing pigment deposition on 

the amount of water at a site. The concentration in the fixture layer is updated using the 

following process. First the shader calculates the amount of water evaporated since the 

last time step. This quantity is denoted wl and it equals 
    

  , where 
    

   is the density in 

the last time step. The next step finds 
  

, the percent of water lost, using 
    

wl
  
 . After 

finding 
  

, the shader determines how much pigment to deposit based on the amount of 

water evaporated and density. The equation is  

               
Pfix = Max 1 Smoothstep(0, , )( ),( ) .       (17) 

Pfix is the amount of pigment to deposit, 
  

modulates Pfix by dryness and 
  

is a base rate 

of deposition.  
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Granularity occurs when pigments clump together in the valleys of the paper and 

is created using  

    
1 Smoothstep 0,μ,h( )( ) .       (18) 

Since granularity happens most in deep valleys of the paper, the equation only lets deep 

areas receive pigment. In the equation, 
  

is a weight for the strength of the granularity,   μ 

is a threshold value for which granularity occurs and h is the height field of the paper. 

The shader only allows granularity to occur when the velocity’s magnitude is below a 

user specified rate. At higher velocities the flow speed will be greater and it is less likely 

that pigments will settle. To account for back-runs, the shader checks if the velocity’s 

magnitude is greater than   , the settling speed of the pigments. Back-runs occur when 

water flows back into a damp region creating severe branching patterns. Hence, the 

water flow must be high enough to lift pigments from the paper and redeposit them. For 

damp regions, when the magnitude is greater than   , Pfix  is set to
    
Pfix ( Px ) . This 

removes pigment from the fixture layer and re-deposits it into the flow layer.   is a 

parameter for controlling the amount re-absorbed into the flow layer. Finally the shader 

updates Pf to Pf – Pfix and Px to Px + Pfix. In the case of back-runs, the signs are reversed. 

The pigment movement shaders are run for each texture in the wet layer. The program 

does not save pigment concentrations in the dry layer because they will not ever be 

moved. Rather the dry layer only saves reflectance information. When the user presses 

the “Dry Paper” button in the canvas interface, the pigments in the wet layers are 

composited together with the dry layer. Then the wet layers’ pigment concentrations are 

set to zero. Next the compositing process is discussed. 
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Fig. 21: Comparison of Kubelka-Munk Samples based on Baxter et al. [29] 

 

Pigments are displayed using the Kubelka-Munk reflectance model. The model is 

implemented using both the GPU and the CPU. The CPU calculates the absorption 

coefficient K and scattering coefficient S and the GPU produces the total reflectance R. 

Similar to Curtis et al. [3], the program uses a three-wavelength representation for the 

Kubelka-Munk model. This works well since the three wavelengths map to the red, 

green, and blue channels of a texture. Additional wavelengths add more accuracy as 

demonstrated in Fig. 21, but require special equipment to capture the spectral 

measurements. This equipment is not readily available, thus the program follows 

Curtis’s method of setting K and S interactively. After the user specifies Rw and Rb using 

the interface in Fig. 11, the program derives the absorption and scattering coefficients on 

the CPU. The GPU shader then finds the total reflectance of the pigments. The shader 
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takes the total reflectance R for the bottom layer and the absorption and scattering 

coefficients for the top layer as input. Then the top layer’s reflectance and transmittance 

are found and composited optically with the bottom layer producing a total reflectance 

for both layers. Since three wavelengths are used, the total reflectance becomes the RGB 

color of the pigments that is displayed on the screen. The shader must be run every 

timestep for both the dry and wet layers. The compositing of these layers is an iterative 

process. Starting with the dry layer, the layers are composited from bottom to top. The 

final reflectance from compositing two layers is used as the bottom layer’s reflectance in 

the next iteration of the shader. Pigment display uses only the diffuse reflectance from 

the Kubelka-Munk model. Since watercolor is fairly diffuse, there is no need for 

specular reflection.  
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CHAPTER IV 

 

EVALUATION 

 

 

The following evaluation is divided into two sections, the visual results and the 

program’s performance. The visual output section discusses how well paintings 

produced using the digital watercolor tool match real-life watercolor paintings. The 

performance section evaluates the speed and simulation size of the system.  

 

A. Visual Output 

Both watercolor effects and paintings produced using the system are examined in 

evaluating the visual output from the watercolor program. The watercolor tool simulates 

a variety of watercolor effects illustrated in Fig. 22. Comparing the results in Fig. 22, to 

their real-life counterparts in Fig. 23, shows the tool does a good job of re-producing 

watercolor effects. Like real watercolor (Fig. 23e), the tool accurately models flow 

effects (Fig. 22b) when a large amount of water is deposited on the paper. This tool 

handles this effect particularly well, betraying no signs of its digital origins. The tool 

also does a good job handling the edge darkening effect (Fig. 23b) as seen in Fig. 22b. 

As with real watercolor, the program allows pigments to deposit more when the paper is 

drier. The watercolor tool shows some weakness in reproducing backruns (Fig. 23c). As 

Fig. 22a shows, the backruns do form, but the severe branching is not as strong as in real 

watercolor. In this case the height field used to represent the papers fibers shows its 

limitations. This effect might be improved by using  
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Fig. 22: Digital Watercolor Effects 

 

 

 

a different more complex paper model. The tool does a moderately good job at 

reproducing granulation (Fig. 23d) as exhibited in Fig. 22a. Again, this effect would 

benefit from a more complex paper model that better describes the intricate 

 

 

Fig. 23: Real Watercolor Effects from Curtis et al. [3]. (a) dry-brush (b) edge darkening 

(c) back-runs (d) granulation (e) flow patterns (f) glazing  
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Fig. 24: Paintings From the Digital Watercolor Tool 

 

relation between fibers and air in the paper. The tool only handles wet-in-wet and wet- 

on-dry techniques. Dry-brush techniques were not attempted due to time constraints. 

The program’s use of the Kubelka-Munk reflectance model produces convincing 

results. As illustrated in Fig. 22d, the model helps in faithfully reproducing glazing  

 (Fig. 23f). The Kubelka-Munk model also does a good job at pigment mixing. Fig. 
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Fig. 25: Real Vs. Digital. (a) Real Watercolor (b) Digital Watercolor 

 

22c shows the difference between physical and optical mixing. In the top of the Fig., 

pigments mix together since the paper is still wet. This produces a cool green. However 

in the bottom, where pigments mix optically, a warmer green is produced. Overall the 

tool re-produces effects created by real watercolor well.  

Fig. 24 shows several paintings produced by the program. Fig. 24b makes use of 

the sketch-loading feature to aid in the painting. A comparison of a real watercolor 

painting (Fig. 25a) and a digital watercolor painting from the program (Fig. 25b) show 

the digital watercolor closely resembles the real watercolor painting. It becomes 

apparent from the comparison that having a better brush model and larger canvas would 

make adding detail easier. The digital watercolor painting can’t capture some of the 

small detailed brushstrokes and can’t vary the width of a stroke due to the program’s 

simple brush model. Fig. 26 shows an automated painting. In this painting  
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Fig. 26: An Automated Digital Watercolor Painting 

 

no brush strokes were created, instead the painting was driven by cells with a constant 

acceleration. The results support the finding that the brush is the limiting factor in 

producing small detailed paintings. This painting has a lot of small detail created by the 

fluid simulation running through the peaks and valleys of the paper. 
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B. Performance 

One of the goals of the thesis was to create real-time interaction between the program 

and artist. Real-time interaction begins at around 6 frames per second (fps) [41]. The 

digital watercolor tool runs at approximately 47 fps on a 256x256 simulation grid using 

an Nvidia Geforce 8600m graphics card.  When run on a 512x512 simulation grid, the  

program ran at 17 fps. While this qualifies as real-time, it did not produce feedback fast 

enough to paint effectively. The main bottleneck in performance is the need to write a 

large amount of data to and from the GPU in each timestep. Every timestep, there are 7 

shader calls for the lattice Boltzmann method, 25 shader calls for the pigment 

movement, and 13 calls for the compositing and display. Each shader call passes texture 

data to the GPU and receives back texture data after execution of the shader code. 

Eliminating the number of times this is done shows a significant increase in frame rate. 

The number of shader calls is a limitation of the technology, not the tool itself. As the 

technology matures, and GPUs can write out to an arbitrary amount of textures, 

performance will increase.  
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CHAPTER V 

 

CONCLUSIONS AND FUTURE WORK 

 

 

 

A. Conclusions 

The goal of this thesis was to create an extensible real-time watercolor tool using a 

combination of physically-based techniques and the GPU. The images produced by the 

watercolor program look very similar to traditional watercolor paintings. Additionally 

the tool behaves like real watercolor in the effects it reproduces. The framework 

presented in this paper lays a foundation for future work in digital watercolor and 

demonstrates the effectiveness of both the lattice Bolztmann method and Kubelka Munk 

Reflectance model using the GPU. 

 

B. Future Work 

The work presented here provides several directions for future work. An improved brush 

model would greatly increase the artist’s control when painting. Specifically, a 

physically based brush model combined with a pen and tablet would enable an artist to 

paint finer detail and would create more realistic brush strokes than are possible with a 

mouse. The pigment model would be another area that would be interesting to develop 

further. Tracking pigments in groups is efficient, however it greatly simplifies pigment 

characteristics. This simplification eliminates much of the pigments’ complexity in terms 

of their interaction with the paper and water. If pigments could be tracked individually, 

then each pigment could be given properties such as color, staining power, and density. 
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This would allow for more realistic pigment behavior. As computational power on the 

GPU increases and the technology matures, tracking pigments individually should 

become feasible. A final area of interest is the paper model. While the paper model 

presented is effective, a more complex model might produce better results. Finding a 

way to model the intertwining fibers of the paper should lead to more realistic back-runs, 

diffusion, and granulation. 
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