

A FRAMEWORK FOR DIGITAL WATERCOLOR

A Thesis

by

PATRICK O’BRIEN

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2008

Major Subject: Visualization Sciences

A FRAMEWORK FOR DIGITAL WATERCOLOR

A Thesis

by

PATRICK O’BRIEN

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Donald House

Committee Members, Richard Davison

 John Keyser

Head of Department, Tim McLaughlin

August 2008

Major Subject: Visualization Sciences

iii

ABSTRACT

A Framework for Digital Watercolor.

(August 2008)

Patrick O’Brien, B.B.A., University of St. Thomas

Chair of Advisory Committee: Dr. Donald House

This research develops an extendible framework for reproducing watercolor in a digital

environment, with a focus on interactivity using the GPU. The framework uses the

lattice Boltzmann method, a relatively new approach to fluid dynamics, and the

Kubelka-Munk reflectance model to capture the optical properties of watercolor. The

work is demonstrated through several paintings produced using the system.

iv

DEDICATION

I dedicate this thesis to my family and all those who have helped me throughout the

years.

v

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. House, and my committee members, Dr.

Keyser, and Prof. Davison, for their guidance and support throughout the course of this

research. I would especially like to thank Dr. House for his guidance both before and

during my time at A&M. He is an exceptional teacher, and a great person.

Thanks also go to my friends and colleagues and the department faculty and staff

for making my time at Texas A&M University a great experience. I extend a great

amount of gratitude to the faculty, staff, and students in the Visualization Sciences

program for making my time there an incredible experience. I would like to thank

Michael Losure, Seth Freeman, and Tony Piedra for their help and collaboration

throughout my time in the Visualization Sciences program. I also give thanks to Mayank

Singh, my GPU buddy.

Finally, thanks to my mother, father, brother, and wife for their encouragement,

patience and love.

vi

TABLE OF CONTENTS

CHAPTER Page

 I INTRODUCTION.. 1

 II BACKGROUND.. 4

 A. Characteristics of Watercolor .. 4

 B. Computer Generated Watercolor... 6

 C. Lattice Boltzmann Method .. 8

 D. Kubelka-Munk Reflectance Model ... 16

 E. Fluid Simulation on the GPU... 19

 III METHODOLOGY... 21

 A. Graphical User Interface ... 22

 1. Palette ... 24

 2. Brush .. 25

 3. Canvas .. 26

 B. Fluid Simulation .. 26

 C. Watercolor ... 30

 1. Brush .. 30

 2. Paper... 31

 3. Fluid Simulation... 32

 4. Pigment... 37

 IV EVALUATION.. 44

 A. Visual Output .. 44

 B. Performance... 49

 IV CONCLUSIONS AND FUTURE WORK .. 50

 A. Conclusions ... 50

 B. Future Work... 50

REFERENCES.. 52

VITA ... 56

vii

LIST OF FIGURES

FIGURE Page

 1 Watercolor Effects from Curtis et al. ... 6

 2 Ink Effects from Chu and Tai... 8

 3 Lattice Gas Cellular Automata ... 9

 4 A Cellular Automata : Lattice Boltzmann Method 11

 5 D2Q9 Lattice Cell Based on Figure from N. Thurey................................. 12

 6 Streaming Step from N. Thurey ... 13

 7 Collision Step from N. Thurey... 14

 8 Comparison of Kubelka-Munk to RGB based on Baxter et al................... 18

 9 The Watercolor Program.. 21

 10 GLUE Color Picker .. 23

 11 Palette Interface.. 25

 12 Particle Distribution Function Texture Storage ... 27

 13 Half-way Bounce-back Boundary Conditions ... 28

 14 Streaming Step on the GPU ... 29

 15 Paper Layers ... 32

 16 Texture Storage for Watercolor LBM.. 33

 17 Streaming with Bounce Back... 35

 18 Pigment Layers... 37

 19 Pigment Concentration Storage.. 38

viii

FIGURE Page

 20 Pigment Movement in Paper Layers .. 40

 21 Comparison of Kubelka-Munk Samples based on Baxter et al. 42

 22 Digital Watercolor Effects ... 45

 23 Real Watercolor Effects from Curtis et al. ... 45

 24 Paintings From the Digital Watercolor Tool.. 46

 25 Real Vs. Digital. (a) Real Watercolor (b) Digital Watercolor 47

 26 An Automated Digital Watercolor Painting... 48

1

CHAPTER I

INTRODUCTION

Simulating paint digitally is an exciting area of research. Digital painting brings together

the advantages of computers with the beauty of traditional media. Computers offer a key

advantage over traditional media. They can be much more forgiving when users make

mistakes. Most computer programs allow a user to undo previous actions. Removing an

errant paint stroke is as easy as pushing a button. Painters can also save their work at any

time while painting. Another key feature of digital painting is the ability to manipulate

the painting using controls. For example, adjusting the rate at which paint dries. Digital

painters use controls to achieve effects not possible in traditional media. Digital

painting’s properties offer artists more freedom to experiment in their work.

Watercolor is a popular painting technique known for several unique

characteristics. The combination of water and pigments, applied to paper, creates

interesting patterns and shapes common only to watercolor. The medium is also quite

distinctive due to its vibrant colors and transparent luminous quality. Perhaps the most

distinctive quality of watercolor is its spontaneity. Putting brush to paper often creates

unpredictable results as water, pigments and paper interact. This property of watercolor

makes the medium fascinating, but also difficult for beginners.

This thesis follows the style of IEEE Transactions on Visualization and Computer

Graphics.

2

Unlike other media, watercolor is not very forgiving to mistakes. Watercolor’s unique

properties make creating a digital watercolor tool a challenge.

There have been many attempts at creating digital watercolor tools using both

image-based and physically-based methods. Image-based methods use image operations

and textures to re-create the look of watercolor. Physically-based modeling accounts for

physical dynamics and is a way to create realistic appearing digital models of physical

phenomena. The non-photorealistic community generally agrees physically-based

approaches provide the best results [1, 2]. Research has demonstrated fluid movement,

brush and paper interaction, and light and surface interaction in the computer with fairly

convincing results. For example, Curtis et al. [3] developed an offline physically-based

watercolor tool, and more recently Chu and Tai [10] introduced a physically-based

eastern ink tool that offers several new advancements in fluid modeling. However the

interaction of water, pigments, and paper is complex and slow to compute. Thus, there is

still work to be done in capturing the complex nature of watercolor within an interactive

painting tool.

The goal of this thesis is to develop and demonstrate a real-time watercolor tool

that is easily extendible. The Graphics Processing Unit (GPU) holds promise of making

real-time watercolor a possibility. Many new research developments in watercolor have

used the GPU, however all of these tools use the mathematically complex Navier-Stokes

equations [5] for simulation of fluid flow. A different set of equations, called the lattice

Boltzmann method (LBM) [5], offers a simpler mathematical model of that flow. The

LBM is a cellular based model, making it ideal for GPU implementation, which itself

3

has a spatially distributed parallel processing architecture. In addition to mapping well to

the GPU, the LBM also makes it easy to add new physics that are hard to describe

macroscopically, and therefore directly supports the goal for an extensible interactive

tool.

4

CHAPTER II

BACKGROUND

Reproducing watercolor digitally requires knowledge of how traditional watercolor

effects form and prior research on computer-generated watercolor.

A. Characteristics of Watercolor

Physically, the behavior of watercolor includes the interaction of pigments flowing in

water, the absorption of pigments and water into paper, and the evaporation of water

from the paper [3]. Watercolor paper is typically made from cotton or linen rags to avoid

buckling. It can be described as being mostly air laced with a web of tangled rag fibers,

that creates a highly absorbent material. Usually watercolor paper is treated with sizing

to slow water absorption and diffusion. Watercolor pigment is made of finely ground

particles. The particles are mixed with gum for body and glycerin for viscosity. The

glycerin also binds colorant to the paper. Pigments have four important properties that

determine their behavior: density, staining power, granulation, and flocculation. Density

determines how long a pigment stays suspended in the water and consequently how far it

will spread. Staining power is an estimate of a pigment’s tendency to adhere to the

paper. Granulation describes whether a pigment settles into spaces in rough paper.

Finally, flocculation accounts for electrical effects drawing pigments together into

clumps.

5

The size and bristle structure of the watercolor brush play an important role in

watercolor. Watercolor brushes tend to be softer and hold more water than brushes used

for other painting methods. The size of a brush and its bristles determine its footprint. A

brush footprint is the contact area between the brush and paper. The footprint determines

how much water and pigment are deposited onto the paper. Typical brush techniques

include dry-brush, wet-on-dry and wet-in-wet. Wet-in-wet is a technique where a

paintbrush loaded with water and pigment is applied to paper saturated with water so

that the paint can spread freely on the paper [2]. Dry-brush involves applying a brush

with paint and a small amount of water to dry paper [2]. Wet-on-dry is a typical painting

technique using a wet brush loaded with paint on dry paper. Fig. 1 shows the effects that

can be produced using these techniques. Dry-brush (Fig. 1a) will only leave paint on

raised portions of rough paper. Wet-on-dry creates an effect known as edge darkening.

Edge darkening (Fig. 1b) happens as water at the edge of a brushstroke dries faster than

the inside. Water at the inside migrates towards the outside carrying pigments to create

more pigment deposition at the outside of the brushstroke. Wet-in-wet creates effects

such as back-runs (Fig. 1c), granulation (Fig. 1d), and flow patterns (Fig. 1e). Back-runs

occur when a puddle of water spreads back into a damp region. Granulation occurs as

pigments settle into the hollows of the paper. While this effect is not strictly related to

wet-in-wet, it is strongest when the paper is very wet. Flow patterns are a result of

brushstrokes spreading freely on the paper. The effect creates soft feathery shapes that

follow the direction of water flow. A final technique is glazing (Fig. 1f) which is the

process of painting thin washes of paint one over the other after each one dries.

6

Fig. 1: Watercolor Effects from Curtis et al. [3] (a) dry-brush, (b) edge darkening, (c)

back-runs, (d) granulation, (e) flow patterns (f) glazing.

The result is a luminous appearance as the layers mix optically.

B. Computer Generated Watercolor

There have been several contributions in reproducing watercolor on the computer. Small

was probably the first to suggest using a cellular automata method for simulating

watercolors [7]. The simulation attempted to predict the behavior of pigment and water

when applied to paper. While not a real-time tool, it served as a basis for future

watercolor tools. Building on Small’s work, Curtis et al. [3] suggested a physically based

model capable of producing several real watercolor effects including dry brush, edge

darkening, back runs, granulation, flow effects and glazing. The model uses three layers.

A shallow water layer is used to move the water and pigment across the paper. Pigment

is then deposited in the pigment-deposition layer. The final layer represents water

absorbed into the paper and diffused by capillary action. The simulation solves a form of

the shallow water equations for fluid flow. Curtis uses the Marker-And-Cell (MAC) [8]

method to solve the shallow water equations [5] based on Foster and Metaxas [9] work.

7

The final painting consists of washes or glazes composited using the Kubelka-Munk [10]

diffuse reflectance model. The model proposed by Curtis is mostly suited for automatic

rendering, as opposed to interactive rendering, due to computational complexities.

Laerhoven and Reeth [11] further the work done by Curtis by making a more

interactive watercolor system. They suggest a physically based model similar to the one

proposed by Curtis. The main difference in their method is the use of the Graphics

Processor Unit (GPU) and the way the fluid is computed. Laerhoven and Reeth use

Stam’s [12] approach to fluid-flow on the GPU. Stam’s method uses an implicit

backwards-Euler integration, making the simulation more stable at higher viscosity and

allowing larger time steps to speed up the simulation. Like Curtis, they use the Kubelka-

Munk reflectance model for rendering, however they solve the model’s equations on the

GPU.

Burgess et al. [13] suggest a different non-physically based approach to

watercolor rendering. The system takes 3D models and makes them look like they were

painted with watercolor. Burgess et al. use three layers of paint to achieve a watercolor

look: a diffuse layer which is the pigment color in uniform thickness, a shadow layer,

and a texture layer where pigments have varying thickness. Post-processing is used to

create edge darkening and imperfect object shape.

More recently, Chu and Tai [10] present a new physically based method for

simulating Eastern Ink. Eastern Ink shares many qualities similar to watercolor as

demonstrated in Fig. 2. Flow patterns (Fig. 1e and Fig. 2a) and edge darkening

8

Fig. 2: Ink Effects from Chu and Tai [4] (a) dry-brush, (b) edge darkening, (c) back-runs,

(d) granulation, (e) flow patterns (f) glazing.

(Fig. 1b and Fig. 2d) are effects common to both eastern ink and watercolor.

Additionally, branching patterns (Fig. 2b) combined with boundary roughening (Fig. 2c)

are similar to back-runs (Fig. 1c). Their simulation uses the lattice-Boltzmann method

[5] for solving fluid flow. Chu and Tai’s work provides several contributions to previous

work including parallel GPU processing, shape evolution of fluid flow, and medium

permeability. Like Curtis, Chu and Tai use a three-layer paper model: a surface layer for

pigment deposition onto the paper, a flow layer for pigment and water flow on the paper

and a fixture layer for pigment deposited in the paper as ink dries. The system makes use

of the GPU for the fluid simulation. The lattice Boltzmann method is ideal for the GPU

due to its use of simple local operations at each lattice site.

C. Lattice Boltzmann Method

The lattice Boltzmann method has its roots in the Boltzmann equation [14], proposed in

1872 by Ludwig Boltzmann. The Boltzmann equation describes the behavior of gas on a

microscopic level using kinetic theory [5]. It gives a statistical distribution of particles in

9

a single-particle phase space. In 1976, Hardy, Pomeau, and Pazzis [15] proposed the

Lattice Gas Cellular Automata Method (LGCA) as depicted in Fig. 3. The LGCA was

introduced as a conceptual model for the microscopic behavior of fluid, capable of

solving the Navier Stokes equation [5]. The model is composed of a lattice where each

site is a boolean value indicating the particle state as shown in Fig. 3. In Fig. 3, a site

occupied by particles has a value of 1 and a site with no particles has a value of 0. Two

processes occur at a site, propagation and collision of particles. In propagation particles

move in the direction of their velocity to the neighboring site. The collision step resolves

sites that receive multiple particles after streaming. As Fig. 3 illustrates, the particles’

velocity vectors are rotated 90 degrees to avoid the collision. A main issue

Fig. 3: Lattice Gas Cellular Automata

10

with the LGCA is it is highly anisotropic due to rotational invariance. This simply means

vortices produced by the model are square shaped [5]. In 1986, Frisch et al. [16]

introduced the hexagonal Lattice Gas Cellular Automata Method (LGCA), which solved

some of the anisotropy issues. However despite Frisch’s efforts, several problems still

plagued the Lattice Gas Cellular Automata method. The problems included large

fluctuations in the fluid flow (statistical noise), an inability to simulate in three

dimensions, and simulations were limited to highly viscous fluids [5]. The lattice

Boltzmann method (LBM) arose in response to the limitations of the LCGA. First

proposed by McNamara and Zanetti [17], the lattice Boltzmann method replaced the

boolean particle number in a lattice direction with the density distribution function to

reduce statistical noise. Unfortunately, the LBM still suffered from problems when

simulating 3D flow and could only simulate viscous fluids. The practical viability of

simulating in three dimensions came with Higuera and Jimenez [18]. They suggest

changes to the collision process turning the nonlinear collision operator into a linear

operation. These changes made fluid simulations perform faster allowing 3D

simulations. Higuera et al. [19] suggest enhanced collisions for the LBM that allow

simulations with low viscous fluids. They eliminate collisions from the LBM so that

only the consequence of collisions matters. Quian et al. [20] suggest a final improvement

to the collision operator known as the Bhatnagar-Gross-Krook approximation. This

version of the LBM is known as the lattice-BGK model (LBGK) and provides a single

time relaxation. The LBGK is the most popular LBM used today due to its simplicity

and efficiency [5]. The LBM is inherently compressible [5]. Consequently, it models the

11

compressible Navier-Stokes equation. Fluid compressibility is a main feature of the

LBM and is what gives it a performance advantage over other methods [4]. However, He

and Luo [21] recognized there is also a need for incompressible fluid and introduced an

incompressible variant of the lattice Boltzmann model. One limitation that comes with

the incompressible LBM is the fluid speed must be kept low in order to minimize the

compressibility effect.

The lattice Boltzmann methods work on a lattice, and are a type of cellular

automaton. Fig. 4 shows that in a cellular automaton model all cells are updated at each

time step according to rules that take into account the surrounding cells. The interaction

of the cells determines the complex behavior of the automaton. Several variations of the

LBM exist, and are named DXQY, where X is the dimension and Y is the number of

lattice velocities or vectors [22]. Fig. 5 depicts a cell from a D2Q9 lattice. A lattice

vector is referred to as ei where i is the lattice vector number. In Fig. 5 the lattice vectors

are e0 – e8. At each lattice site x and time t, fluid particles moving at

Fig. 4: A Cellular Automata : Lattice Boltzmann Method

12

Fig. 5: D2Q9 Lattice Cell Based on Fig. from N. Thurey [22]

arbitrary velocities are modeled by particle distribution functions fi(x,t) [4]. Each fi(x,t) is

the expected number of particles moving along a lattice vector ei. Each side of the cell

has lattice unit equal to 1. The magnitude of velocity vectors e1 through e4 is 1 lattice

unit per time step. The magnitude of velocity vectors e5 through e8 is 2 lattice units

per time step

[23]. The magnitude of vector e0 is 0, because it represents particles at rest.

Resting particles do not move in the next time step, but may be accelerated due to

collisions. As a result, the number of resting particles can change.

The cell density and overall speed and direction that the particles in the cell move

are calculated using a cell’s particle distribution functions. The density

= fi
i=0

8

 (1)

is the sum of all particle distribution functions. The velocity

13

u =
1

0

ei
i=1

8

fi (2)

is the sum of the lattice vectors ei times the corresponding distribution function fi(x,t).

The initial density
 0

 is usually set to 1.

A simulation consists of two steps: streaming and collision. These two steps

simulate the convection and diffusion phenomena that occur on a macroscopic level in

physics. During the streaming step, the particles move from one cell to the next. For

instance, celli,j ‘s distribution function for the lattice vector pointing downwards would

be copied to celli+1,j ‘s distribution function for the lattice vector pointing downwards.

The lattice vector in the center does not point anywhere and so the “at rest” particles are

not copied. Fig. 6 graphically displays the streaming step. The streaming step is

described mathematically as

 fi x + ei t, t + t() , (3)

where ei is the lattice vector pointing in the opposite direction of the distribution

Fig. 6: Streaming Step from N. Thurey [22]

14

Fig. 7: Collision Step from N. Thurey [22]

function. For example, if the distribution function is f1, then the lattice vector would be

e3 or (-1,0). The lattice Boltzmann method requires interfacial boundary conditions to

determine the distribution functions at boundary sites. A variety of boundary conditions

exist for determining the distribution functions including periodic, Von Neumann,

Dirichlet, and bounceback [5]. The most common boundary conditions for the lattice

Boltzmann method are “no-slip” walls such that fluid close to the boundary does not

move [22]. This amounts to each cell next to a boundary having the same amount of

particles moving into the boundary as moving in the opposite direction.

 In the collision step, particles arrive at a lattice site and collide with other

particles. Fig. 7 depicts this step graphically. As Fig. 7 demonstrates, the collision step

does not change the density or velocity of a cell. It only changes the distribution of

particles for all particle distribution functions in a cell [22]. For instance, consider a celli,j

where the fluid moves along the positive x-axis. The cell will not lose any particles

during collision. However the movement will be scattered to other cells’ lattice vectors

that point in the direction of the positive x-axis. Lattice vectors pointing in the opposite

15

direction will become smaller. This is illustrated in Fig. 7. In the next stream step,

neighboring cells with an xi+1 coordinate will receive a slightly larger particle

distribution function from celli,j, while neighboring cells with an xi-1 coordinate will

receive smaller distribution functions. To model this behavior, the equilibrium

distribution function, fi
(eq)

 and new distribution functions must be calculated. He and

Luo [21] suggest that the equilibrium distribution function

fi
(eq)

= wi + 0

3

c 2
ei u +

9

2c 4
(ei u)

2 3

2c 2
u u

 (4)

works well in reproducing incompressible flow behavior. Each lattice vector has an

equilibrium distribution function. The weights wi can be interpreted as different masses

of the particles moving along the different lattice directions [5]. The weights for a D2Q9

lattice are 4/9 for i=0, 1/9 for i=1,2,3,4 and 1/36 for i=5,6,7,8. The basic speed on the

lattice is denoted by c [23]. In basic implementations c =
 0 = 1. The LBM has built in

advection and the term

3

c 2
ei u +

9

2c 4
(ei u)

2 3

2c 2
u u

 in the equilibrium distribution

function is responsible for the advection. The new distribution functions are

 f i = 1() f i + f i

(eq). (5)

The relaxation rate determines the viscosity of the fluid and affects how quickly the

fluid reaches equilibrium. For < 1 the fluid will be more viscous like honey while >

1 will produce less viscous fluids like water.

In the literature, the streaming and collision steps are often combined into one

formula known as the lattice Boltzmann equation,

 fi x + ei t, t + t() = 1() f i x,t() + f i
(eq) x,t() (6)

16

The left side of the lattice Boltzmann equation describes the streaming step, while the

right side describes the current distribution function and local equilibrium [22].

D. Kubelka-Munk Reflectance Model

The Kubelka-Munk Reflectance model is a physically based model that simulates the

scattering and absorption of light by materials. The model assumes that light scatters at a

single point, and the resulting subsurface scattering is either diffuse or shaped by the

scattering properties of the material [25]. The KM model uses an absorption coefficient

K and scattering coefficient S to model light scattering. Theses coefficients can be

derived experimentally using spectral measurements or set interactively in an

application. Interactively deriving the two coefficients is more convenient, because there

is no need for equipment measuring spectral properties. Curtis suggests using the

following equations for K and S:

S =
1

b
coth

1
b2 (a Rw)(a 1)

b(1 Rw)

 (7)

 K = S(a 1) (8)

where

a =
1

2
Rw +

Rb Rw +1

Rb

, b = a2 1 . (9)

Rw represents a “unit thickness” of a pigment over white and Rb represents a “unit

thickness” of a pigment over black. Both Rw and Rb are specified as RGB triples. Curtis

17

requires 0 < Rb < Rw < 1. The computations of K and S are performed on each of the R,

G and B color channels independently.

 Once K and S are found, a layer’s reflectance R and transmittance T are given by

R = sinhbSx /c

T = b /c where c = asinhbSx + bcoshbSx
 . (10)

The thickness of a pigment layer is denoted by x. Given two layers with reflectance R1

and R2 and transmittances T1 and T2, the overall reflectance and transmittance is

R = R1 +
T1

2R2

1 R1R2

 T =
T1T2

1 R1R2

 . (11)

Note that in general R1R2 R2R1.

 While Kubelka-Munk theory has been discussed in computer graphics, Haase

and Meyer [23] are the first to use the theory to solve color synthesis problems. Their

work derives the equations for modeling Kubelka-Munk theory in computer graphics

and shows why the Kubelka-Munk reflectance model is necessary for capturing the

optical effects that occur when mixing pigments. Haase and Meyer prove additive

(RGB) and subtractive (CMY) color spaces are inadequate for modeling pigmented

materials, as shown in Fig. 8. This is because pigmented materials are opaque particles

in a transparent medium. Fig. 8 demonstrates the importance of wavelength samples in

the accuracy of the Kubelka-Munk model. However, even the 3 sample model works

better than the RGB color space.

 Recently Donner and Jensen [25] made improvements to Kubleka-Munk theory

by making a variant of the Kubelka-Munk model in frequency space. This variant

produces more realistic results in layered translucent materials. Donner and Jensen [25]

18

Fig. 8: Comparison of Kubelka-Munk to RGB based on Baxter et al. [29]

introduce a multipole diffusion approximation to scattering of light at a surface.

Diffusion approximation is a way to solve the Bidirectional Scattering Surface

Reflectance Distribution function (BSSRDF) [26] used in physically based calculations

of subsurface scattering.

 Many paint programs [3,27,13,27,11,29,30] use Kubelka-Munk theory to

reproduce the optical effects of paint. Baxter et al. [30] were the first to introduce an

interactive version of the Kubelka-Munk model by solving the equations on the GPU.

Most current paint programs [27,11,29,30] now use the GPU to solve the Kubelka-Munk

equations since it allows for interactive programs.

19

E. Fluid Simulation on the GPU

There are two types of GPU programs typically used in GPU processing [31], vertex and

fragment programs. The vertex program involves operations occurring at the vertex such

as lighting and transformations. The fragment program, involves operations like reading

from texture memory and applying texture values at fragments, which is a per-pixel data

structure created by the rasterization of graphics primitives [31]. Both types of programs

are compiled and linked into executable code that runs on the GPU.

A typical GPU based approach to fluid dynamics involves integrating shaders

written in some shading language with a high level programming language. A Graphics

Application Programming Interface (API) provides the bridge between the high level

programming language and the shading language. The API allows the program to pass

data to and from the shaders.

Physically Based Simulations performed on the GPU are typically referred to as

General Purpose Computation on GPU (GPGPU). Most fluid simulations on the GPU

use a grid of cells. Ideally, each fragment should be a cell in the grid. This is

accomplished using a screen size quad with a one to one mapping between pixels and

texels. Current GPUs do not allow both reading and writing to the same texture, because

the reading and writing mechanisms are independent of each other. Allowing reading

and writing to the same buffer would require a highly synchronized approach to avoid

overwriting values, which would reduce the efficiency of the GPU [32]. An approach

called Ping Pong is used to circumvent this limitation. Ping Pong uses two textures to

represent one set of data. During one iteration or pass of a shader, one texture is used as

20

the read texture and the other is used as the write texture. After the shader finishes

execution, the textures are swapped, making the write texture the read texture the next

time the shader runs. This process is repeated until the shader is disabled.

Harris et al. [33] discuss the many advantages of using the Graphics Processing

Unit for simulations. They also discuss common operations a GPU can perform, such as

computing directional forces, convection, and boiling. They point out that GPUs are well

suited for simulations, due to their parallel nature, the speed of performing imaging

operations compared to Central Processing Units (CPU), and the ability to balance the

many processing tasks in a simulation between the CPU and GPU for interactive

simulations. A GPU does have disadvantages, most notably low precision. Currently,

GPUs use 8-bit integer precision, which is only one quarter of the precision offered in a

CPU.

 Wei et al. [34] implement the lattice Boltzmann equations on the GPU. They

suggest placing all packet distributions with the same direction in one texture to avoid

the overhead of switching between textures. Another trick is to pack four packet

distributions from different directions into one RGBA texel which reduces the memory

requirement of distributions by one-fourth. They overcome the precision limitations of

GPUs by using range scaling. Range scaling avoids clamping errors and takes full

advantage of the hardware precision by mapping all variables to between [-1, 1] [34].

21

CHAPTER III

METHODOLOGY

A modular design is used in the watercolor program so that the program can be easily

improved upon in the future. The program is separated into models of how the brush,

pigment, paper, and water behave. The individual models are designed so that a change

to one will require little change in the others. The following sections describe these

models and provide a detailed discussion of how the watercolor program is structured.

The structure is broken down into three major sections: Graphical User Interface (GUI),

Fluid Simulation, and Watercolor. The GUI section discusses the interfaces that are used

and the motivation for primarily using a proprietary interface. Fig. 9 shows the

Fig. 9: The Watercolor Program

22

program’s interface. Additionally the palette, brush, and canvas interfaces are discussed.

In the fluid simulation section, fluid movement using the lattice Boltzmann method is

explained. The section gives a detailed explanation of how the method works on the

GPU. Finally, the watercolor section explains the brush, paper and pigment models. This

section also describes how all the models interact with each other to recreate watercolor.

A. Graphical User Interface

The watercolor tool uses two different Graphical User Interfaces for interacting with the

program. There are several choices when choosing a GUI, however the program uses

GLUI [54], a free GUI for OpenGL, and GLUE, a proprietary GUI. These GUIs are used

for simplicity and their ability to integrate with OpenGL’s shading language GLSL.

GLUE is the main interface used and is a custom interface that provides components not

available in GLUI. The main component GLUE provides is a color picker. A color

picker requires several interface components such as buttons to allow user interaction.

While GLUI does have buttons, it is not easy to change their appearance or behavior to

work with GLUE. The lack of customization in GLUI requires GLUE provide buttons,

radio buttons, sliders and menus so that the color picker will work. GLUE is similar in

its appearance to Apple OSX 10.4 tools as seen in Fig. 10. GLUE uses GLUT [36]

functions for window management. The color picker shown in Fig. 10 is similar in

functionality and layout to Photoshop CS3’s color picker tool and uses its design as a

reference. Fig. 8 also demonstrates GLUE buttons and sliders. Sliders let the user pick

23

Fig. 10: GLUE Color Picker

the current color and let the user know what the current color is in terms of hue,

saturation and value. If the user selects the cancel button, the current color will remain

the color at the time the window opened, ignoring all changes. Fig. 10 shows both button

states: blue when the mouse clicks or is over the button and white when the mouse is not

over the button. The final component of GLUE is a radio button. Radio buttons are blue

when selected and white if not selected. While GLUE provides most of the interface

components, GLUI is used to provide interface components too time-consuming to

implement using GLUE. The program uses GLUI’s text box input to capture filenames

for saving and loading files. The next sub-sections describe the palette and brush

interfaces.

24

1. Palette

The watercolor tool provides a palette interface so an artist can create, modify, and select

pigments. The palette consists of three windows as shown in Fig. 11. The palette uses

GLUE for the entire interface, except for palette loading and saving. The left window is

the primary interface for managing a pigment’s name and color. A palette can hold up to

12 pigments. The pigments are displayed using the Kubelka-Munk Model. The program

loads a default palette with 12 common watercolor pigments based on K and S values

defined in Curtis et al [3]. However, the user is not limited to the 12 provided pigments.

Clicking on a pigment loads the pigment into the top right window in Fig. 11 where it

can then be modified using a color wheel. As in Curtis, a pigment is defined by two

RGB colors, Rw and Rb, which represent the pigment’s appearance in “unit thickness”

over white and black. Two radio buttons allow the user to choose whether they are

modifying Rw or Rb. Modified pigments can be saved back to the palette using the save

pigment button. A palette menu in the left window of Fig. 11 allows users to create a

blank palette, load a palette from file, and save a palette to file. The bottom right window

in Fig. 9 opens when the load or save palette button is clicked and makes use of the

GLUI text box to capture filenames. It also uses GLUI buttons, because GLUE buttons

will not integrate with the GLUI textbox.

25

Fig. 11: Palette Interface

2. Brush

The brush interface consists of a visual representation and movement. Visually the brush

is represented as a black circle outline and the size is changed using keyboard shortcuts.

There are two main choices for controlling brush movement on the canvas. The simplest

form of input is a mouse. However a mouse only provides a 2D position on screen. Chu

and Tai [4] and Baxter et al. [29] both use a physical pen and tablet for input, which

offers more control than a mouse. Their systems can capture brush tilt, pressure, and

26

position. A disadvantage of using a pen and tablet is the program must use an application

programming interface (API) to obtain data from the hardware which can be difficult to

implement. While a pen and tablet would provide more control, the brush interface uses

a mouse for its simplicity.

3. Canvas

The canvas interface provides controls for the brush and simulation. Fig. 9 shows the

canvas interface in the right side of the Fig.. The interface uses 2 sliders, which allow the

artist to adjust the pigment and water concentrations in the brush. A button allows the

artist to instantly dry the canvas. Often artists first sketch a painting first in order to get

proportions and layout correct. A menu and radio button provides the option to load a

sketch onto the canvas. The menu opens a file open dialog using GLUI, and then

overlays the loaded sketch on the canvas. A radio button toggles the sketch’s visibility

on and off.

B. Fluid Simulation

A common approach to fluid dynamics is to solve the Navier-Stokes equations [5].

Curtis et al. [3] and Laerhoven et al. [11] use this approach in their watercolor tools.

However, as discussed by Chu and Tai [4], the lattice Boltzmann method seems to be a

better choice because operations are local and simple, it does not need to solve Poisson

equations, and it is easy to incorporate physics that are hard to describe macroscopically.

27

The watercolor program uses the lattice Boltzmann method for its simplicity and

efficient mapping to the GPU.

The lattice-Boltzmann method requires the program to keep track of 9 particle

distribution functions fi, density

, and velocity v for each cell. There are 3 textures for

the 9 particle distribution functions. Fig. 12 shows the relationship of the particle

distribution functions and the texture data. The fi are grouped according to direction.

This is an arbitrary choice, as the fi could be grouped differently. The velocity and

density are stored in a texture with the x and y components in the red and green channels

and the density in the blue channel.

A basic lattice-Boltzmann method implementation consists of four sets of

operations: streaming, velocity and density computation, boundary detection, and

collision. The operations are implemented as fragment shaders. The lattice Boltzmann

method requires interfacial boundary conditions to determine the distribution functions

Fig. 12: Particle Distribution Function Texture Storage

28

Fig. 13: Half-way Bounce-back Boundary Conditions

at boundary sites. This is accomplished using the half-way bounce-back scheme [5]

depicted in Fig. 13. The half-way bounce-back scheme works by reflecting particle

distribution functions that enter the boundary cells back in the opposite direction. For

example, in Fig. 13, particle distribution functions f7, f4, and f8 stream into the boundary

cell in the current timestep. The particle distribution functions are then reversed and will

stream back into the cell they came from in the next timestep. On the GPU, the bounce-

back step equates to swapping texture channels. So for distribution functions 1-4, the red

(f1) and blue (f3) channels are swapped and the green (f2) and alpha (f4) channels are

swapped. Next the streaming step occurs. On the GPU, this is accomplished by

swapping channels in a texture, as indicated in Fig. 14. For example, to stream f1 (the red

arrow in Fig. 14) the following GLSL code is used

(gl_TexCoord[0].st + vec2(-1.0, 0.0)).r.

29

Fig. 14: Streaming Step on the GPU

distribution functions can be written out from a shader to a texture. Since f0 is stationary,

we do not need to stream it. After streaming, the velocity and density shader calculates

the new velocity and density based off the new streamed distribution functions. Velocity

is calculated using

u =
1

0

ei
i=1

8

fi which is equation 2 from Chapter II. The density is

given as

= fi
i=0

8

. This is equation 1 from Chapter II. The final step in the fluid

simulation is calculating the new distribution functions after collision. The collision

shader uses the incompressible variant of the LBM,

fi
(eq)

= wi + 0

3

c 2
ei u +

9

2c 4
(ei u)

2 3

2c 2
u u

 ,

which is equation 4 from Chapter II. The shader first calculates the equilibrium

distribution function, then uses
 f i = 1() f i + f i

(0), which is equation 5 from Chapter

II, to find the new distribution functions. Calculating the new fi is easy on the GPU using

30

linear interpolation. Finally the shader saves the new fi to the texture for use in the next

timestep. As with streaming, several shaders are needed to save all the distribution

functions.

C. Watercolor

The watercolor model consists of a brush model, paper model, fluid simulation, and

pigment model. The following sub sections discuss the individual models and how they

interact to create watercolor.

1. Brush

Like Curtis et al. [3], the program uses a circle to represent the brush. However, Chu and

Tai [4] and Baxter et al. [29] show a more complex brush model can create more

realistic paintings. By modeling brush bristles and their interaction with the paper, Chu

and Tai are able to get brush strokes that mirror real-life brush strokes. While their

model is a better method, it is also difficult to implement and beyond the scope of this

thesis. Following Curtis, the brush is a circle, and the footprint is defined as any pixel

inside the circle. Pixels only partially covered by the circle are not considered part of the

footprint. A bounding box around the circle determines which pixels are in the footprint.

A simple test comparing the radius of the circle to all pixels in the bounding box quickly

determines which pixels are in the footprint. In addition to the footprint, the program

also calculates how fast the brush is moving across the paper surface. Speed is based on

the distance traveled from the last brush footprint to the current brush footprint. First the

31

vector between the strokes is found. Then the magnitude of the vector is scaled to

between [0.005, 0.01]. Scaling occurs because the fluid simulation requires small

changes in velocity. Consequently, fast movements in the brush will break the

simulation. Values between [0.005, 0.01] seem to work well in keeping the velocity and

flow speed low. After calculating the speed and footprint, the data is passed to the fluid

simulation.

2. Paper

The paper model consists of both a visual and a conceptual representation. Visually the

paper is represented using a texture. Curtis et al.[3] suggest noise [38, 39] works well in

re-creating watercolor paper textures. The texture is created by first generating an image

using Perlin Noise [38]. The image is then applied as a bump map in Autodesk Maya

[40].This is rendered in Maya and the resulting image is used as a texture to visually

represent the paper. The conceptual representation is an abstraction of how the paper,

pigment, and water interact with each other. The paper model is divided into three layers

as shown Fig. 15. Like Chu and Tai [4], the paper contains a surface layer, flow layer,

and fixture layer. The surface layer is where water and pigment are first deposited.

The layer acts as a reservoir supplying water and pigment to the flow layer over time

until all pigment and water are depleted. The flow layer advects water and pigment

through the paper. Advection in fluid dynamics is a term for describing the transport or

movement of material due to the velocity. Pigment is deposited into the fixture layer

slowly until all water has evaporated. Some pigment in the fixture layer is absorbed back

32

Fig. 15: Paper Layers

into the flow layer and re-deposited later. The paper layers are implemented as sets of

shaders, which are described in further detail in the next two sections.

3. Fluid Simulation

Several modifications are made to the LBM to including variable permeability, evolving

boundaries, and evaporation. These modifications are important in capturing the

behavior of watercolor. As Chu and Tai [4] mention, variable permeability and evolving

boundaries are responsible for creating interesting flow patterns. Variable permeability

is implemented by having a blocking factor at each site. The blocking factor is used to

create a partial bounce-back of distribution functions during streaming. Evolving

boundaries are handled by making sites with zero density boundaries. The boundary sites

fully bounce-back all streaming distribution functions. Finally density is evaporated over

33

time by reducing distribution functions during streaming. Together these three

modifications help to create edge darkening and flow patterns.

In addition to tracking the state of the fi, , and v for each cell, the modified

lattice-Boltzmann method must also track the amount of water transferred from the

surface to flow layer wf, the amount of water in the surface layer ws, the blocking factor

 at each cell for variable permeability, and the height field of the paper h. These

variables are stored in textures as shown in Fig. 16. In the modified LBM, the fluid

density represents the amount of water in a cell in the flow layer. The height field is

generated using Perlin Noise and scaled to the range [0,1]. To limit the number of

textures used, the amount of water transferred to the flow layer wf is stored in the alpha

channel of the velocity and density texture. The blocking factor , amount of water in

the surface layer ws, and the height field of the paper h are stored with f0.

Fig. 16: Texture Storage for Watercolor LBM

34

 The main structure of the lattice-Boltzmann method remains the same. All four

operations are performed, but with modifications. First the boundary shader is updated to

handle evolving boundaries. The boundary shader is now responsible for setting the

blocking factor and the new water amount in the surface layer. A boundary is formed

when a cell with no water (

= 0) is surrounded by cells whose amount of water is less

than some threshold

. In this case the boundary site’s blocking factor is set to infinity.

When any of the dry cell’s neighbors’ density rises above threshold

, the dry cell’s

blocking factor is reset to the height field. Additionally non-boundary sites’ blocking

factors are set to the height field. Finally the water on the surface, ws, is updated to

max(ws – wf, 0). Next the streaming shaders stream all fi with bounce-back and lower the

density at boundaries. Fig. 17 describes bounce back for fluid and boundary cells. At site

x, the blocking factor
 i

 is averaged with the blocking factor
 i ei

to give
 a

. Streaming

for both boundaries and fluid cells is described as

fi x,t +1() = a x() f i x, t() + 1 a x()() f j x ei,t(), (11)

where fj is the distribution function pointing in the opposite direction of fi. Fig. 17 shows

that the full bounce-back equates to streaming distribution functions back in the opposite

direction. Evaporation at boundaries is handled by only evaporating when
 a

 = 1. When

this is true a small amount is taken away from the newly streamed distribution functions.

In GLSL this is done using

Max fi b b ,0

 where

fi is the new fi streamed,

 b
is the

evaporation rate specified by the user, and b is a Boolean flag

35

Fig. 17: Streaming with Bounce Back

indicating if the cell is a boundary. The program still uses two shaders for streaming.

The velocity calculation remains unchanged, however the density calculation is

modified. The density is calculated normally using equation 1 from Chapter II. Next the

shader calculates how much water has evaporated from the flow layer using

Max(s,0) , where

 s
 is the evaporation rate for water. Next wf, the amount of water

transferred from the surface to flow layer, is found using

Clamp ws,0,Max ,0()().

Clamp(x, min, max) is a function that clamps a value x between two numbers min and

max. If x > max, x is set to max. If x < min, x is set to min. The value x is left alone if it

36

is between min and max.

is how much water the fibers in the paper can hold. In the

simulation this is set to 1. The final value for the density is + wf . The only change

made to the collision shader is to add a variable . The LBM was designed to fill the

entire simulation domain [4]. By letting the fluid density represent water in a cell, there

will be some cells with no density. As a result there will be cells with negative densities,

because the advection built into the LBM carries density away from sites with near zero

density. Recall from Chapter II.C, the term

3

c 2
ei u +

9

2c 4
(ei u)

2 3

2c 2
u u

 is

responsible for advection in the LBM. Chu and Tai [4] suggest adding a parameter to

the term to reduce advection in areas with low densities. The new equilibrium

distribution function is

fi
(eq)

= wi + 0

3

c 2
ei u +

9

2c 4
(ei u)

2 3

2c 2
u u

 . (13)

The variable is defined by

Smoothstep(0, ,) where is user specified.

 Smoothstep e0,e1,x() is a function that provides a smooth transition between edge e0 and

edge e1 based on the value of x. In Smoothstep(), x = 0 when x is < e0, x = 1 when x is >

e1, and x is smoothly interpolated when e0 <= x <= e1. Therefore Smoothstep() will set

to 0 when there is no water, causing no advection to occur. Otherwise will be greater

than zero allowing partial to full advection. Typically, 0.1 0.6 works well for

watercolor based on experimentation. Next pigment movement through the paper layers

is described.

37

4. Pigment

The pigment model is divided into pigment movement and pigment display. Pigment

movement follows the model used by Chu and Tai [4] and is divided into three areas:

pigment supply, pigment advection, and pigment fixture. Chu and Tai model eastern ink,

which does not produce back-runs and granularity. The pigment movement is modified

to handle these two effects. Like Curtis et al. [3], pigment display uses the Kubelka-

Munk reflectance model. The model is used for both mixing and glazing. As indicated

by Curtis, the Kubelka-Munk model works very well for re-producing watercolor’s

optical effects.

Watercolor pigments behave differently when they are wet versus when they are

dry. Wet pigments can still be moved around the canvas, while it is very difficult to

move dry pigments. Typically granulation and back-runs occur only when the paper is

wet. Therefore the pigment model makes a distinction between wet and dry pigments to

allow the artist full control over the painting. Wet and dry pigments are stored in

different layers. The layers are implemented as RGBA textures. Dry pigments can be

Fig. 18: Pigment Layers

38

stored in one layer because dry pigments cannot be moved. Wet pigments however,

require multiple wet layers because they are tracked as a group and adding more water

may move them. Pigments are tracked as a group, and not individually, because it is

computationally efficient. However, this presents some problems as Fig. 18 illustrates. If

only one layer is used to track pigments, a problem occurs when two pigments of

different color overlap (Fig. 18b). Recall the Kubelka-Munk model optically mixes color

based on two layers’ light scattering and absorption properties. The model does not

know how to optically mix the color of two different pigments if they are not in different

layers. The problem is fixed by separating pigments into different layers according to

color (Fig. 18d). Next a detailed description is given on the pigment movement in the

wet and dry layers.

Pigment movement tracks the concentration of pigments in the different paper

layers. Pigment concentrations in the supply, flow, and fixture layers are denoted as Ps ,

Pf , and Px respectively. Concentrations are stored in the red, green, and blue channels of

a texture as indicated in Fig. 19. As mentioned previously, the program stores pigment

Fig. 19: Pigment Concentration Storage

39

concentrations according to their color. Hence a texture is required for every different

pigment color. Three shaders model the movement of pigment through the paper layers

as depicted in Fig. 20. Pigment is first deposited into the surface layer. The amount of

pigment transferred from the surface to flow layer is determined by a ratio of the amount

of water in the flow layer to the amount of water being transferred to the flow layer.

Specifically,

Pf =
Pf + Pswf

+ wf
 . (14)

After Pf is updated, the shaders advect pigment through the flow layer. There are two

types of cells, cells that are already wet and cells that are becoming wet. The new

pigment concentration at site x for cells already wet is found by tracing the velocity

backwards. In this case

Pf
*(x) = Pf (x u(x)). (15)

The new pigment concentration at site x for cells becoming wet is given as

Pf
*(x) =

1
f iPf

i=1

8

(x ei) . (16)

40

Fig. 20: Pigment Movement in Paper Layers

As pigments move through the flow layer, they are slowly deposited into the fixture

layer. As Fig. 20 indicates, the pigment model allows pigment to deposit more when the

paper is drier and less when wet. This is accomplished by basing pigment deposition on

the amount of water at a site. The concentration in the fixture layer is updated using the

following process. First the shader calculates the amount of water evaporated since the

last time step. This quantity is denoted wl and it equals

 , where

 is the density in

the last time step. The next step finds

, the percent of water lost, using

wl

 . After

finding

, the shader determines how much pigment to deposit based on the amount of

water evaporated and density. The equation is

Pfix = Max 1 Smoothstep(0, ,)(),() . (17)

Pfix is the amount of pigment to deposit,

modulates Pfix by dryness and

is a base rate

of deposition.

41

Granularity occurs when pigments clump together in the valleys of the paper and

is created using

1 Smoothstep 0,μ,h()() . (18)

Since granularity happens most in deep valleys of the paper, the equation only lets deep

areas receive pigment. In the equation,

is a weight for the strength of the granularity, μ

is a threshold value for which granularity occurs and h is the height field of the paper.

The shader only allows granularity to occur when the velocity’s magnitude is below a

user specified rate. At higher velocities the flow speed will be greater and it is less likely

that pigments will settle. To account for back-runs, the shader checks if the velocity’s

magnitude is greater than , the settling speed of the pigments. Back-runs occur when

water flows back into a damp region creating severe branching patterns. Hence, the

water flow must be high enough to lift pigments from the paper and redeposit them. For

damp regions, when the magnitude is greater than , Pfix is set to

Pfix (Px) . This

removes pigment from the fixture layer and re-deposits it into the flow layer. is a

parameter for controlling the amount re-absorbed into the flow layer. Finally the shader

updates Pf to Pf – Pfix and Px to Px + Pfix. In the case of back-runs, the signs are reversed.

The pigment movement shaders are run for each texture in the wet layer. The program

does not save pigment concentrations in the dry layer because they will not ever be

moved. Rather the dry layer only saves reflectance information. When the user presses

the “Dry Paper” button in the canvas interface, the pigments in the wet layers are

composited together with the dry layer. Then the wet layers’ pigment concentrations are

set to zero. Next the compositing process is discussed.

42

Fig. 21: Comparison of Kubelka-Munk Samples based on Baxter et al. [29]

Pigments are displayed using the Kubelka-Munk reflectance model. The model is

implemented using both the GPU and the CPU. The CPU calculates the absorption

coefficient K and scattering coefficient S and the GPU produces the total reflectance R.

Similar to Curtis et al. [3], the program uses a three-wavelength representation for the

Kubelka-Munk model. This works well since the three wavelengths map to the red,

green, and blue channels of a texture. Additional wavelengths add more accuracy as

demonstrated in Fig. 21, but require special equipment to capture the spectral

measurements. This equipment is not readily available, thus the program follows

Curtis’s method of setting K and S interactively. After the user specifies Rw and Rb using

the interface in Fig. 11, the program derives the absorption and scattering coefficients on

the CPU. The GPU shader then finds the total reflectance of the pigments. The shader

43

takes the total reflectance R for the bottom layer and the absorption and scattering

coefficients for the top layer as input. Then the top layer’s reflectance and transmittance

are found and composited optically with the bottom layer producing a total reflectance

for both layers. Since three wavelengths are used, the total reflectance becomes the RGB

color of the pigments that is displayed on the screen. The shader must be run every

timestep for both the dry and wet layers. The compositing of these layers is an iterative

process. Starting with the dry layer, the layers are composited from bottom to top. The

final reflectance from compositing two layers is used as the bottom layer’s reflectance in

the next iteration of the shader. Pigment display uses only the diffuse reflectance from

the Kubelka-Munk model. Since watercolor is fairly diffuse, there is no need for

specular reflection.

44

CHAPTER IV

EVALUATION

The following evaluation is divided into two sections, the visual results and the

program’s performance. The visual output section discusses how well paintings

produced using the digital watercolor tool match real-life watercolor paintings. The

performance section evaluates the speed and simulation size of the system.

A. Visual Output

Both watercolor effects and paintings produced using the system are examined in

evaluating the visual output from the watercolor program. The watercolor tool simulates

a variety of watercolor effects illustrated in Fig. 22. Comparing the results in Fig. 22, to

their real-life counterparts in Fig. 23, shows the tool does a good job of re-producing

watercolor effects. Like real watercolor (Fig. 23e), the tool accurately models flow

effects (Fig. 22b) when a large amount of water is deposited on the paper. This tool

handles this effect particularly well, betraying no signs of its digital origins. The tool

also does a good job handling the edge darkening effect (Fig. 23b) as seen in Fig. 22b.

As with real watercolor, the program allows pigments to deposit more when the paper is

drier. The watercolor tool shows some weakness in reproducing backruns (Fig. 23c). As

Fig. 22a shows, the backruns do form, but the severe branching is not as strong as in real

watercolor. In this case the height field used to represent the papers fibers shows its

limitations. This effect might be improved by using

45

Fig. 22: Digital Watercolor Effects

a different more complex paper model. The tool does a moderately good job at

reproducing granulation (Fig. 23d) as exhibited in Fig. 22a. Again, this effect would

benefit from a more complex paper model that better describes the intricate

Fig. 23: Real Watercolor Effects from Curtis et al. [3]. (a) dry-brush (b) edge darkening

(c) back-runs (d) granulation (e) flow patterns (f) glazing

46

Fig. 24: Paintings From the Digital Watercolor Tool

relation between fibers and air in the paper. The tool only handles wet-in-wet and wet-

on-dry techniques. Dry-brush techniques were not attempted due to time constraints.

The program’s use of the Kubelka-Munk reflectance model produces convincing

results. As illustrated in Fig. 22d, the model helps in faithfully reproducing glazing

 (Fig. 23f). The Kubelka-Munk model also does a good job at pigment mixing. Fig.

47

Fig. 25: Real Vs. Digital. (a) Real Watercolor (b) Digital Watercolor

22c shows the difference between physical and optical mixing. In the top of the Fig.,

pigments mix together since the paper is still wet. This produces a cool green. However

in the bottom, where pigments mix optically, a warmer green is produced. Overall the

tool re-produces effects created by real watercolor well.

Fig. 24 shows several paintings produced by the program. Fig. 24b makes use of

the sketch-loading feature to aid in the painting. A comparison of a real watercolor

painting (Fig. 25a) and a digital watercolor painting from the program (Fig. 25b) show

the digital watercolor closely resembles the real watercolor painting. It becomes

apparent from the comparison that having a better brush model and larger canvas would

make adding detail easier. The digital watercolor painting can’t capture some of the

small detailed brushstrokes and can’t vary the width of a stroke due to the program’s

simple brush model. Fig. 26 shows an automated painting. In this painting

48

Fig. 26: An Automated Digital Watercolor Painting

no brush strokes were created, instead the painting was driven by cells with a constant

acceleration. The results support the finding that the brush is the limiting factor in

producing small detailed paintings. This painting has a lot of small detail created by the

fluid simulation running through the peaks and valleys of the paper.

49

B. Performance

One of the goals of the thesis was to create real-time interaction between the program

and artist. Real-time interaction begins at around 6 frames per second (fps) [41]. The

digital watercolor tool runs at approximately 47 fps on a 256x256 simulation grid using

an Nvidia Geforce 8600m graphics card. When run on a 512x512 simulation grid, the

program ran at 17 fps. While this qualifies as real-time, it did not produce feedback fast

enough to paint effectively. The main bottleneck in performance is the need to write a

large amount of data to and from the GPU in each timestep. Every timestep, there are 7

shader calls for the lattice Boltzmann method, 25 shader calls for the pigment

movement, and 13 calls for the compositing and display. Each shader call passes texture

data to the GPU and receives back texture data after execution of the shader code.

Eliminating the number of times this is done shows a significant increase in frame rate.

The number of shader calls is a limitation of the technology, not the tool itself. As the

technology matures, and GPUs can write out to an arbitrary amount of textures,

performance will increase.

50

CHAPTER V

CONCLUSIONS AND FUTURE WORK

A. Conclusions

The goal of this thesis was to create an extensible real-time watercolor tool using a

combination of physically-based techniques and the GPU. The images produced by the

watercolor program look very similar to traditional watercolor paintings. Additionally

the tool behaves like real watercolor in the effects it reproduces. The framework

presented in this paper lays a foundation for future work in digital watercolor and

demonstrates the effectiveness of both the lattice Bolztmann method and Kubelka Munk

Reflectance model using the GPU.

B. Future Work

The work presented here provides several directions for future work. An improved brush

model would greatly increase the artist’s control when painting. Specifically, a

physically based brush model combined with a pen and tablet would enable an artist to

paint finer detail and would create more realistic brush strokes than are possible with a

mouse. The pigment model would be another area that would be interesting to develop

further. Tracking pigments in groups is efficient, however it greatly simplifies pigment

characteristics. This simplification eliminates much of the pigments’ complexity in terms

of their interaction with the paper and water. If pigments could be tracked individually,

then each pigment could be given properties such as color, staining power, and density.

51

This would allow for more realistic pigment behavior. As computational power on the

GPU increases and the technology matures, tracking pigments individually should

become feasible. A final area of interest is the paper model. While the paper model

presented is effective, a more complex model might produce better results. Finding a

way to model the intertwining fibers of the paper should lead to more realistic back-runs,

diffusion, and granulation.

52

REFERENCES

1. A. Gooch and B. Gooch, Non Photorealistic Rendering. A. K. Peters, 2001.

2. S. Schlechtweg and T. Strothotte, Non-Photorealistic Computer Graphics:

Modeling, Rendering, and Animation. Morgan Kaufmann Publishers, 2002.

3. C. J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleischer, and D. H. Salesin,

“Computer-Generated Watercolor,” SIGGRAPH '97: Proceedings of the 24th

Annual Conference on Computer graphics and Interactive Techniques, vol. 16,

no. 3, pp. 421-430, Aug. 1997.

4. N. S.-H. Chu and C.-L. Tai, “MoXi: Real-Time Ink Dispersion in Absorbent

Paper,” ACM Transactions on Graphics, vol. 24, no. 3, pp. 504-511, Jul. 2005.

5. C. B. Vreugdenhil, Numerical Methods for Shallow-Water Flow. Kluwer

Academic Publishers, 1994.

6. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond.

Oxford University Press, 2001.

7. D. Small, “Modeling Watercolor by Simulating Diffusion, Pigment, and Paper

Fibers,” Proceedings of SPIE, vol. 1460, pp. 140-146, Feb. 1991.

8. F. H. Harlow and J. E. Welch, “Numerical Calculations of Time-Dependent

Viscous Incompressible Flow of Fluid with Free Surface,” Physics of Fluids, vol.

8, no. 12, pp. 2182-2189, 1965.

9. N. Foster and D. Metaxas, “Realistic Animation of Liquids,” Graphical Models

and Image Processing, vol. 58, no. 5, pp. 471-483, 1996.

10. P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Zeitschrift

fur Technische Physik, vol. 23, pp. 593-601, 1931.

11. T. V. Laerhoven and F. V. Reeth, “Real-time Simulation of Watery Paint:

Natural Phenomena and Special Effects,” Computer Animation and Virtual

Worlds, vol. 16, no. 3-4, pp. 429-439, Jul. 2005.

12. J. Stam, “Stable Fluids,” Proceedings of Siggraph 1999, pp. 121-128, Aug. 1999.

53

13. J. Burgess, G. Wyvill and S. A. King, “A System for Real-Time Watercolor

Rendering,” Proceedings of the Computer Graphics International 2005, pp. 234-

240, Jun. 2005.

14. L. Boltzmann, Lectures on Gas Theory. Courier Dover Publications, 1995.

15. J. Hardy, O. de Pazzis and Y. Pomeau, “Molecular Dynamics of a Classical

Lattice Gas: Transport Properties and Time Correlation Functions,” Physical

Review A, vol. 13, no. 5, pp .1949-1961, May 1976.

16. U. Frisch, B. Hasslacher and Y. Pomeau, “Lattice Gas Automata for the Navier-

Stokes Equations,” Physics Review Letters, vol. 56, pp. 1505-1508, Apr. 7, 1986.

17. G. McNamara and G. Zanetti, “Use of the Boltzmann Equation to Simulate

Lattice-Gas Automata,” Physics Review Letters, vol. 61, pp. 2332-2335, Jul. 29,

1998.

18. F. Higuera and J. Jimenez, “Boltzmann Approach to Lattice Gas Simulations,”

Europhysics Letters, vol. 9, p. 663, Aug. 1989.

19. F. Higuera, S. Succi and R. Benzi, “Lattice Gas Dynamics with Enhanced

Collisions,” Europhysics Letters, vol. 9, p. 345, Jun. 1989.

20. Y. Quian, D. d’Humieres and P. Lallemand, “Lattice BGK Models for Navier-

Stokes Equation,” Europhysics Letters, vol. 17, p. 79, Feb. 1992.

21. X. He and L.-S. Luo, “Lattice Boltzmann Model for the Incompressible Navier-

Stokes Equation,” Journal of Statistical Physics, vol. 88, nos. 3,4, pp. 927-944,

1997.

22. N. Thurey, “A Single-Phase Free-Surface Lattice Boltzmann Method,” Masters

Thesis, University of Erlangen-Nuremberg, 2003.

23. M. C. Sukop and D. T. Thorne Jr., Lattice Boltzmann Modeling An Introduction

for Geoscientists and Engineers. Springer, 2005.

24. C. S. Haase and G. W. Meyer, “Modeling Pigmented Materials for Realistic

Image Synthesis,” ACM Transactions on Graphics, vol. 11, no. 4, pp. 305–335,

Oct. 1992.

25. C. Donner and H. W. Jensen, “Light Diffusion in Multi-Layered Translucent

Materials,” ACM Transactions on Graphics, vol. 24, no. 3, pp. 1032- 1039, Jul.

2005.

54

26. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg and T. Limperis,

“Geometrical Considerations and Nomenclature for Reflectance,” National

Bureau of Standards, pp. 3-9, 1977.

27. C. S. Oh and Y.-H. Nam, “GPU-based 3D Oriental Color-Ink Rendering,” ACM

International Conference Proceeding Series, vol. 157, pp. 142-147, Dec. 2005.

28. J. S. Scott, “GPU Programming for Real-Time Watercolor Simulation,” Masters

Thesis, Dept. Arch., Texas A&M Univ., 2004.

29. W. Baxter, J. Wendt and M. C. Lin, “IMPaSTo: A Realistic, Interactive Model

for Paint,” Proceedings of the 3rd International Symposium on Non-

Photorealistic Animation and Rendering NPAR '04, pp. 45-148, Jun. 2004.

30. W. Baxter, Y. Liu and M. C. Lin, “A viscous paint model for interactive

applications,” Computer Animation and Virtual Worlds, vol. 15, no. 3-4, pp. 433-

441, Jul. 2004.

31. R. J. Roost, OpenGL Shading Language Second Edition. Addison-Wesley, 2006.

32. General Purpose Calculations on the GPU. [Online]. Available:

http://www.GPGPU.org.

33. M. J. Harris, G. Coombe, T. Scheuermann, and A. Lastra, “Physically-Based

Visual Simulation on Graphics Hardware,” SIGGRAPH/EUROGRAPHICS

Workshop On Graphics Hardware, pp. 109-118, Sept. 2002.

34. W. Li, X Wei, and A. Kaufman, “Implementing Lattice Boltzmann

Computation on Graphics Hardware,” The Visual Computer, vol. 19, no.7-8, pp.

444-456, 2003.

35. P. Rademacher. (1999, June 10). GLUI User Interface Library (2
nd

 ed). [Online].

Available: http://glui.sourceforge.net.

36. “GLUT Window System Toolkit,”

http://www.opengl.org/resources/libraries/glut/. Accessed March 12, 2008.

37. “Adobe Photoshop CS3,” http://www.adobe.com. Accessed March 12, 2008.

38. K. Perlin, “An Image Synthesizer,” SIGGRAPH '85: Proceedings of the 12th

Annual Conference on Computer graphics and Interactive Techniques, pp. 287-

296, July 1985.

55

39. S. P. Worley, “A Cellular Texturing Basis Function,” Siggraph ’96 Proceedings,

pp. 291-294, 1996.

40. “Maya 8.5,” http://usa.autodesk.com. Accessed March 12, 2008.

41. T. Akenine-Moller and E. Haines, Real-Time Rendering, A K Peters, 2002.

56

VITA

Name: Patrick O’Brien

Email Address: patrick@patrickobrienart.com

Web Site: www.patrickobrienart.com

Education: B.B.A., Management Information Systems with a Minor in

Mathematics, University of St. Thomas, 2001

 M.S., Visualization Sciences, Texas A&M University, 2008

