
A VISUAL SIMULATION PLAYGROUND FOR ENGINEERING DYNAMICS

A Thesis

by

DONALD BRIAN FONG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2008

Major Subject: Visualization Sciences

A VISUAL SIMULATION PLAYGROUND FOR ENGINEERING DYNAMICS

A Thesis

by

DONALD BRIAN FONG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Vinod Srinivasan
Committee Members, Donald House

Luciana Barroso
Head of Department, Tim McLaughlin

August 2008

Major Subject: Visualization Sciences

iii

ABSTRACT

A Visual Simulation Playground for Engineering Dynamics. (August 2008)

Donald Brian Fong, B.S., Northwestern University

Chair of Advisory Committee: Vinod Srinivasan

Past educational studies reveal that students have difficulty making the con-

nection between the mathematical and analytical models used to describe building

behavior and the behavior itself. This thesis examines the development and use of

visual simulation software as a tool to help students create connections between ab-

stract mathematical models and the real world. A framework for the software was

designed and implemented, enabling students to interactively construct, analyze, and

evaluate models within a single environment. The software was tested by students in

an undergraduate dynamics course to assess its effectiveness as a learning tool. Re-

sults are presented through scenarios that demonstrate the extensibility and flexibility

of the framework and an analysis of student responses from the Student Assessment

of Learning Gains instrument.

iv

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II PREVIOUS WORK . 3

III METHODOLOGY AND IMPLEMENTATION 7

A. The Physics Engine . 9

1. Building Blocks . 9

a. ConnectableObject 9

b. Force . 11

c. Connector . 11

2. Interfaces . 11

a. IIntegratable . 15

b. IForceable . 15

3. The Simulation System 16

B. The User Interface Engine 17

1. Interfaces . 18

a. IEditable . 18

b. IUnitConvertible 19

c. IGraphable . 21

C. The Rendering Engine . 24

1. IRenderable . 24

IV RESULTS . 25

A. The Framework . 25

1. Framework Flexibility 25

a. Spring-Mass System 26

b. Collision Detection and Response 28

c. Friction . 30

2. Framework Extensibility 30

a. Motors . 31

b. Rods . 31

c. Support Motion 34

B. Usability . 36

v

CHAPTER Page

1. User Testing . 36

2. Visual Hints . 37

a. Detached Connectors 37

b. Color-coded Springs 39

c. Highlighting . 41

3. Initial Conditions . 41

a. Initial Settings 42

b. Local Coordinate Systems 43

4. Exporting Data . 43

5. User Documentation 45

C. Impact on Student Learning 46

V CONCLUSION AND FUTURE WORK 49

REFERENCES . 51

APPENDIX A . 53

VITA . 55

vi

LIST OF FIGURES

FIGURE Page

1 Working Model graphical interface 5

2 BEST Dynamics graphical interface 6

3 Engine relationships diagram . 8

4 Object hierarchy and interface diagram 10

5 ConnectableObject hierarchy . 12

6 Force hierarchy . 13

7 Connector hierarchy . 14

8 User interface . 17

9 Properties in different unit systems 20

10 Example of a graph . 22

11 Additional graph options . 23

12 Spring-mass system . 26

13 Spring properties . 27

14 More complex spring-mass system 27

15 Collision with supports . 29

16 Collision with a rotated support . 30

17 Friction properties for a support . 30

18 Motor attached to a mass . 32

19 Motor properties . 32

vii

FIGURE Page

20 Rod connecting a mass and support 33

21 Support properties . 35

22 Detached spring and connected spring 38

23 Detached damper and connected damper 39

24 Warning message . 39

25 Color-coded springs . 40

26 Object highlighting . 41

27 Initial settings . 42

28 Offset from local coordinate system 43

29 Visual display of offset from local coordinate system 44

30 Comma-separated values in Excel . 45

31 Tutorial for spring-mass system . 47

viii

LIST OF TABLES

TABLE Page

I SALG Questions . 48

1

CHAPTER I

INTRODUCTION

The literature on student misconceptions of dynamics principles is quite extensive

[1]. Misconceptions are very enduring and cannot be easily debunked by standard in-

struction with lectures, textbooks, demonstrations or laboratories [2]. Students have

difficulties developing mathematical models and connecting the response of these

models to real system behavior [3]. As a result, students can often complete mathe-

matical calculations correctly without having any idea how their results relate to the

performance of a real building. Instead of being a learning exercise, the process begins

and ends as a mathematical exercise. Visualization can be used as a tool to create

connections between the physical world and more abstract physical and mathematical

models.

Since computers have become readily available, it has been widely accepted that

computer aided instruction can help students gain a better understand of the sub-

ject matter if implemented appropriately [4]. This is especially true for subjects that

involve moving objects, three-dimensional structures, or other significant visual com-

ponents that are not easily represented on a traditional black board. For example,

engineering dynamics is the study of motion, but traditional teaching tools, including

mathematical models, do not effectively this motion [5].

This thesis focuses on the development and use of visual simulation software

to help improve student learning in dynamics. A software framework containing a

set of “building blocks” for dynamics models was designed and implemented. The

software allows students to construct models of dynamics systems, tweak parameters,

The journal model is IEEE Transactions on Automatic Control.

2

and simulate and analyze their behavior.

The design of the framework is illustrated to show how it achieves modularity

and facilitates extensibility. In addition, issues encountered when students tested the

software are discussed, and improvements made to the software based on this feedback

are demonstrated. Lastly, the usefulness of integrating visual simulation software into

an undergraduate dynamics course is evaluated.

In summary, this thesis has the following goals:

1. Design and implement an extensible object-oriented framework for visual sim-

ulation software that supports undergraduate-level dynamics.

2. Enhance the software based on feedback from user testing sessions.

3. Assess the effectiveness of using the software as a tool for improving student

learning in dynamics.

3

CHAPTER II

PREVIOUS WORK

Using visualization to help improve student learning is not a new concept. The chal-

lenge lies in effectively utilizing visualization in the educational context. Guidelines

for effective use and evaluation of visualization were presented by an Association

for Computing Machinery working group on “Evaluating the Educational Impact of

Visualization,” consisting of members from several universities worldwide [6]. They

advocate that visualization for educational purposes (1) be designed for flexibility, (2)

capture larger concepts, and (3) map to existing teaching and learning resources. In

1990, an Association of Computing Machinery Special Interest Group on Graphical

Display panel consisting of members from academia and industry observed that real-

time interactive graphics are remarkably effective at enhancing learning by capturing

the dynamic nature of structures when part of a comprehensive teaching strategy [7].

Within the context of dynamics instruction, two previous studies are particularly

notable: the use of Working Model at the Georgia Institute of Technology [4] and the

development of BEST Dynamics at the University of Missouri-Rolla [5].

Working Model is a program that integrates advanced simulation techniques with

an easy-to-use graphical interface as shown in Figure 1. It enables users to design and

test prototypes of mechanical and structural systems, using two-dimensional anima-

tion to show the motion of the objects involved in the simulation. Although Working

Model allows students to design and visualize the working of mechanical systems, it

assumes an understanding of the underlying physical law of engineering [4] and has

a fairly steep learning curve [5]. The assumption that the user already knows and

understands dynamics makes Working Model a suitable design tool that is valuable

for tackling “what-if” design problems. However, this does not necessarily make it a

4

suitable teaching tool for students with little or no prior exposure to dynamics.

The objective of the “BEST” (Basic Engineering Software for Teaching) Dynam-

ics project was to improve the teaching and learning of engineering dynamics [5]. The

software contains a predefined set of problems ranging from particle systems to rigid

body kinematics and was designed to allow student use without supervision. Figure 2

shows an example of one of the predefined problems. Users are allowed to start, stop,

and reset a simulation, step through a simulation, and vary inputs to explore various

scenarios. Important variables in the simulation like position, velocity, forces, etc.

are output as numerical values. For some of the problems, solutions are available,

which include diagrams, vector directions, and step-by-step solution procedures. El-

ementary theory sections are also available for each class of problem. The predefined

problems are enhanced versions of textbook problems and prove useful to reflective

learners, who also learn well through traditional textbook and lecture format. How-

ever, active learners drew few benefits. In addition, the underlying misconceptions

could not be identified or addressed using this software, a key element in enhancing

the learning of all students.

5

F
ig

.
1.

W
or

k
in

g
M

o
d
el

gr
ap

h
ic

al
in

te
rf

ac
e

6

F
ig

.
2.

B
E

S
T

D
y
n
am

ic
s

gr
ap

h
ic

al
in

te
rf

ac
e

7

CHAPTER III

METHODOLOGY AND IMPLEMENTATION

This chapter focuses on the design methodology behind the framework for the visual

simulation software. The framework is designed to be very modular and easily ex-

pandable. To make the framework easier to understand, it can be broken down into

three major components, or “engines”: the physics engine, the user interface engine,

and the rendering engine.

The physics engine is in charge of simulating the objects based on the laws of

Newtonian physics. The rendering engine is responsible for drawing the objects on the

screen. And the user interface engine is in charge of taking user input and interacting

with the physics and rendering engines based on the input.

Figure 3 illustrates how the three engines communicate with each other. The

physics engine controls the scene objects by updating their positions and orientations

while the simulation is running. The user interface engine can communicate with

both the physics engine and the rendering engine. For example, if the user wants to

add a new object to the scene, the user interface engine relays the message to the

physics engine to add a new object. Similarly, if the user wants to toggle the display

of labels, the user interface engine will send a message to the rendering engine to

toggle the labels.

Figure 4 shows the object hierarchy and object relationships to the interfaces.

Almost every class inherits from a base Entity class as well as a number of interfaces.

An interface is a collection of method declarations without implementations. When a

class implements an interface, it promises to implement all of the methods declared in

that interface. The interfaces enforce essential functionality, which allow the objects

to be used in the physics, rendering, and user interface engines. The object hierarchy

8

Fig. 3. Engine relationships diagram

9

helps to organize the objects into logical groupings and to take advantage of the

benefits of inheritance. The following sections will examine the three engines and

explain how the classes and interfaces are used within each engine.

A. The Physics Engine

The physics engine is the heart of the visual simulation software framework. Its

purpose is to simulate the motion of the objects in the scene based on Newton’s laws

of motion. The physics engine updates the positions and orientations of objects in

the scene and notifies the rendering engine, which then updates the display with the

new states of the objects.

1. Building Blocks

The framework contains a set of “building blocks”, or objects, that can be connected

in various combinations to create dynamics models normally encountered in an un-

dergraduate dynamics course. These objects implement interfaces which enable them

to be used within the three engines. Within the framework, the “building blocks” are

grouped into three main classes: ConnectableObject, Force, and Connector.

a. ConnectableObject

A ConnectableObject is an object that can have forces applied to it. It is called

a connectable object because objects that apply forces can be connected to it. For

example, a spring can be attached to a connectable object. Each connectable object

has a force accumulator which is used to store the sum of all of the forces acting on

the object during a simulation step.

Figure 5 shows the ConnectableObject class hierarchy. The two “building

10

F
ig

.
4.

O
b

je
ct

h
ie

ra
rc

h
y

an
d

in
te

rf
ac

e
d
ia

gr
am

11

blocks” that derive from ConnectableObject are Mass and Support. The key differ-

ence between a mass and a support is that a support does not react to forces acting

upon it. A support remains fixed even if forces are acting on it.

b. Force

Figure 6 illustrates the Force class hierarchy. Objects that derive from the Force

class apply a single force to objects that implement the IIntegratable interface

(described in more detail in the next section). However, the number of objects that

the force affects may vary. In some cases, the force may only affect one object,

but in other cases, it may affect every object in the scene. To differentiate between

these two types of forces, we have two additional abstract classes, GlobalForce and

LocalForce.

A GlobalForce object will apply a force to every object in a scene. Gravity and

wind are examples of global forces. A LocalForce object will only apply a force to

the object that it is connected to. If we attach a motor to a mass, for example, the

force generated by the motor will only affect the mass it is attached to. It will not

affect other masses in the scene.

c. Connector

The Connector class contains objects that generate forces but must be connected to

two connectable objects to function properly. This includes springs, dampers, and

rods. Figure 7 shows these objects in the Connector class hierarchy.

2. Interfaces

The easiest way to understand what functionality an object has is by examining the

interfaces that it can implement. The interfaces that are important to the physics

12

Fig. 5. ConnectableObject hierarchy

13

Fig. 6. Force hierarchy

14

Fig. 7. Connector hierarchy

15

engine are IIntegratable and IForceable. The following sections outline the func-

tionality of these interfaces.

a. IIntegratable

Objects that implement the IIntegratable interface can be put into the physics

engine to be simulated. Three important methods must be defined by an object

that implements the IIntegratable interface. These methods ensure that every

“integratable” object defines how to update its state, how to set its initial conditions,

and how to reset itself to initial conditions. The code for the IIntegratable interface

is shown below.

public interface IIntegratable
{

void UpdateState(Vector2d pos, Vector2d vel);
void SetInitCondition();
void Reset();

}

b. IForceable

Objects that implement the IForceable interface can be put into the physics engine

to apply forces to “integratable” objects. An object that implements the IForceable

interface must define an ApplyForce() function that calculates a force and adds it

the appropriate force accumulator of the appropriate object or objects. The interface

definition for IForceable is shown below.

public interface IForceable
{

void ApplyForce(State objects, List<ConnectableObject>
objList, double t);

}

How the applied force is calculated depends completely on the object that im-

plements the interface. For example, a spring will apply a force proportional to the

16

distance between the two objects it is connected to, whereas a damper will apply a

force proportional to the relative velocity between the two objects it is connected to.

3. The Simulation System

Each time a timestep is taken, the SimSystem class is in charge of updating the

objects’ states based on the current state of the system. The simulation system does

this by using objects that implement the IIntegratable and IForceable interfaces

previously mentioned The two most important functions of the SimSystem class are

SystemDynamics() and RK4().

To calculate the correct accelerations for each “integratable” object, the simula-

tion system must determine all of the forces acting on the objects. This is done by

the SystemDynamics() function which loops through every IForceable object and

calls its ApplyForce() method. Since each IForceable object knows which object,

or objects, to apply forces to, each “integratable” object has accumulated all of the

forces acting on it by the end of the loop. Using the accumulated forces, accelerations

are computed for the “integratable” objects.

After the accelerations are calculated, RK4() uses fourth-order Runge-Kutta inte-

gration [8] to compute the next state for each object based on the timestep. After the

simulation system calculates the new state of each object, UpdateState() is called on

each IIntegratable object to ensure that all of its important information is updated

to the latest state. For example, this method updates the position and velocity for a

point mass. Once every “integratable” object has been updated to its new state, the

physics engine notifies the rendering engine, which updates the display.

17

Fig. 8. User interface

B. The User Interface Engine

The user interface is how the user communicates with the software and sees the results

of the simulation. The framework uses Windows Forms, which is part of Microsoft’s

.NET Framework, for its user interface.

Figure 8 shows a screenshot of the user interface. Because Windows Forms uses

native Microsoft Windows interface elements, the application looks and behaves like

a regular Windows application.

18

1. Interfaces

Similar to the physics engine, the easiest way to determine the functionality of an

object in the user interface engine is by examining the interfaces that it can implement.

The interfaces that the user interface engine uses are IEditable, IUnitConvertible,

and IGraphable. The following sections will examine these interfaces and how they

are used by the user interface engine.

a. IEditable

The IEditable interface is used by the user interface engine to handle mouse and

keyboard input from the user. Every object that can be edited by the user implements

the IEditable interface, which ensures that the object defines the following three

functions: Hit(), Move(), and MoveAbsolute(). The definition of the IEditable

interface is shown below.

public interface IEditable
{

bool Hit(Vector2d p, Converter conv);
void Move(Vector2d offset);
void MoveAbsolute(Vector2d p);

}

The Hit() method is used by user interface engine to determine whether an

object has been selected. Every time the user clicks a mouse button, the user interface

engine loops through all of the IEditable objects and calls their Hit() method

to determine whether or not the object has been selected. The Hit() function is

also used when a user is trying to connect one object to another object. While the

user drags the connection point around, the user interface engine runs hit tests to

determine whether or not the point is hitting an object. If the connection point is

hitting an object when the user releases the mouse, then user interface engine will

19

send this information to the physics engine so that it can connect the two objects in

the simulation.

When the user clicks on an object and drags it around the screen, the user

interface engine calls the Move() method of the object. This function defines how to

move an object by a specified offset from its current position. The MoveAbsolute()

method is similar except that it moves an object to an absolute position instead of a

relative position. This function is useful for user interface features like snapping to

the grid.

b. IUnitConvertible

An object that implements the IUnitConvertible interface can have its properties

displayed in different unit systems. This interface guarantees that the object de-

fines get and set methods for a UnitSystem property. When the user changes the

unit systems in the user interface, the user interface engine loops through all of the

IUnitConvertible objects and sets each one to the unit system that the user selected.

The code for the IUnitConvertible interface is displayed below.

public interface IUnitConvertible
{

UnitSystem UnitSystem { get; set; }
}

Internally, the values for each object are stored in SI units. However, when the

UnitSystem property is changed, the user interface engine will display the values in

the new unit system by converting the stored values. Figure 9 displays the properties

of a mass displayed in SI units and English units.

20

Fig. 9. Properties in different unit systems

21

c. IGraphable

The user interface engine uses the IGraphable interface to allow the user to add,

delete, and save graphs. An object that implements the IGraphable interface must

maintain a list of graphs associated with it, define how to create a new graph, and

define how to initialize graphs from a saved file. The IGraphable interface is defined

below.

public interface IGraphable
{

List<GraphWrapper> Graphs { get; set; }
GraphWrapper CreateGraph();
void InitializeGraphs();

}

An IGraphable object must define get and set methods for a list of its graphs.

While it is possible to store the graphs in a global list in the user interface engine,

storing them with each IGraphable object minimizes bookkeeping. In effect, this

simplifies the process of saving a scene file and reloading the graphs when the scene

file is opened again. When the user chooses an object and creates a graph, the user

interface engine calls the CreateGraph() method of the object. This method creates

a new graph associated with the object and brings it to the front of the drawing

canvas.

For graphs that have been saved in a scene file, the user interface engine calls the

InitializeGraphs() function on IGraphable objects when the file is loaded. This

function ensures that the graphs appear in the same state as they did when the file

was saved. This includes properties like the size and location of the graphs on the

drawing canvas.

To save development time, a preexisting graphing library called ZedGraph was

used to generate graphs. ZedGraph is an open source library written in C# for

creating 2D line and bar graphs of arbitrary datasets. Figure 10 shows an example

22

Fig. 10. Example of a graph

of a graph generated in the software using the ZedGraph library.

There are additional features that can be accessed by right-clicking on a graph

in the program. Figure 11 shows the menu that appears after you right-click on a

graph. Using this menu, the user can perform a variety of additional tasks. “Copy”

will allow the user to copy and paste the graph into another program, like a Word

document. “Save Image As” allows the user to save the graph as an image file. “Show

Point Values” enables the user to move the mouse over the curve in the graph, and

the point values will appear as the mouse hovers over a specific point on the graph.

“Export Values To File” lets the user saved the simulation data to a file that can be

used for more detailed analysis in an external program.

23

Fig. 11. Additional graph options

24

C. The Rendering Engine

The rendering engine is in charge of drawing objects on the screen. Because this

software is limited to 2D physics, a powerful rendering engine is not needed. The

software utilizes GDI+ for its rendering engine, which is the rendering engine used

for the Windows XP operating system.

1. IRenderable

Unlike the other engines in our framework, the rendering engine only relies on one in-

terface. The primary interface for displaying an object in the framework is IRenderable.

If an object implements this interface, then it must define a Render() function which

can be called to draw the object on the screen. The IRenderable interface is ex-

tremely simple and is displayed below.

public interface IRenderable
{

void Render(Graphics g, Converter conv);
}

How the object is rendered on the screen depends entirely on the object’s imple-

mentation of the Render() function. This makes it easy to render all of the objects in

the framework. The program simply loops through the list of objects that implement

the IRenderable interface and calls each renderable object’s Render() method.

The Graphics object that is passed to Render() is specific to GDI+. If we wanted

to switch to a more powerful rendering engine in the future, we would just pass a

different drawing context into the Render() function and redefine each renderable

object’s Render() function to work with the new rendering engine.

25

CHAPTER IV

RESULTS

We set out to accomplish a number of goals in this thesis. First, we wanted to design

and implement a framework for visual simulation software that can handle most of the

systems encountered in an undergraduate dynamics course. The framework should

be extensible, making it easy to improve the framework in the future. Second, we

wanted to use feedback from user testing to make the software more intuitive and

easy-to-use. Finally, we wanted to assess the effectiveness of using the software as a

tool for improving students’ understanding of dynamics.

A. The Framework

We successfully built a solid object-oriented framework for visual simulation software

which is robust enough to use in an undergraduate dynamics course. The framework

was implemented using the interfaces and classes described in chapter III. The soft-

ware contains a set of “building blocks” that the user can utilize to create models

of the systems that they encounter in class. This includes masses, supports, springs,

dampers, and rods.

1. Framework Flexibility

To be used as an educational tool, the software should be flexible enough to handle

most of the systems encountered in an undergraduate dynamics course. With the

set of building blocks implemented in the framework, students are able to construct

models of the majority of the systems they encounter in class. The software also has

additional features that make the simulation more believable.

26

Fig. 12. Spring-mass system

a. Spring-Mass System

A spring-mass system is an example of a system that a student usually encounters in

an undergraduate dynamics course. Using the software, a student is able to construct,

tweak and analyze a spring-mass system in a matter of minutes. Figure 12 shows a

spring-mass system visualized in the software.

This system is built using three building blocks: a support, a mass, and a spring.

Using the mouse, the user can easily connect a spring to other objects by clicking

and dragging the end points of the spring over a mass or support. When the mouse

button is released, the connection is made, and the end point turns into a red “x” to

show that it is now connected.

The user can also adjust the properties of objects by clicking on the object. When

an object is selected by the user, its properties are displayed in the properties box.

The properties box displays the relevant properties of the selected object. Figure 13

shows the properties box when a spring has been selected. The “Length” property is

27

Fig. 13. Spring properties

Fig. 14. More complex spring-mass system

grayed out to indicate to the user that it cannot be edited. However, the user can edit

the other two properties by entering new values in with the keyboard. Each building

block has a unique set of properties that the user can adjust.

A more complex spring-mass system can be created with little additional effort

by simply adding and connecting more objects together. Once a user knows how

to setup a simple system, they can use that knowledge to build more complicated

systems. Figure 14 demonstrates a more complex spring-mass system constructed in

the software.

28

b. Collision Detection and Response

To achieve more realistic simulations, the software includes rudimentary collision

detection and response. Because the software only handles point masses at the time,

a more robust collision detection and response scheme is not implemented. The

software’s current collision detection and response has many limitations.

The masses and supports are drawn as boxes and rectangles in the software to

emulate the look of the diagrams a student sees in class. However, they are not

simulated as rigid bodies. This was a deliberate design choice to accommodate the

fact that an undergraduate dynamics course typically starts by using point masses,

not rigid bodies.

The discrepancy between what gets drawn and what gets simulated presents an

interesting challenge for handling collision detection and response. Based on what is

drawn, it may appear as if the mass is rigid body, which has an orientation and the

ability to rotate. From the point of the view of physics engine, the mass is simply

a point with a position. Similarly, the support is drawn as a rectangle, which could

imply that it is a solid static mass. In the simulation system, it is simply seen as a

line segment.

Since the physics engine only sees the mass as a point the support as a line

segment, the collision detection and response is very limited. A mass will only collide

with a support if it hits from the “top” of the support. Figure 15 shows two scenarios

of a mass falling and colliding with a support, and it illustrates a limitation of our

collision detection and response. Notice how the support on side A is facing away

from the mass as it falls. As a result, the mass appears to go through the support

when it is simulated. The support on side B is facing opposite to the direction of the

mass, so the mass collides with the support as expected.

29

Fig. 15. Collision with supports

Another challenging issue arose when handling collision response. Because the

masses are drawn as boxes, one might expect the mass to spin or rotate after colliding

with a support. Since the masses are modeled as point masses in the simulation

system, this is not possible. The software does a couple of things to get around this

issue. First, the collisions are non-elastic, meaning a mass will not bounce when it

collides with a support. Second, if a mass collides with a rotated support, the box is

oriented to align with the support.

Figure 16 shows a mass before and after it collides with a support that has been

rotated. Notice how the mass sticks to the support after it has collided. While this

may not be a physically correct solution, it solves the issue of collision response from

a visual perspective.

30

Fig. 16. Collision with a rotated support

Fig. 17. Friction properties for a support

c. Friction

Friction is also implemented in the software to simulate realistic behavior when a mass

comes into contact with a support. After the mass collides with the support in Figure

16, one would expect it to slide down the support and stop or fall off, depending on

the amount of friction between the objects. The user is able to control the amount

of friction by selecting a support and setting the dynamic coefficient of friction and

the static coefficient of friction as shown in Figure 17.

2. Framework Extensibility

Another major goal of this thesis was to create a strong object-oriented framework

to make it easily extensible. Using the classes and interfaces described in chapter III,

31

a modular and extensible framework was implemented. During the development of

the software, additional building blocks and features were added to the framework,

validating the adaptability of the framework.

a. Motors

Motors were added to the software after the initial set of building blocks were already

functioning. A motor is an object that can be attached to a mass. When a motor is

attached to a mass, it applies a user-defined, time-varying force to the mass during

the simulation. A motor represented by an orange arrow as shown in Figure 18. The

arrow points in the direction of the applied force.

To add the Motor object into the framework, we created two new classes. The

first class, LocalForce, is an abstract class that can be used for any object that

applies a force and can be attached to a single object. Next, we added the Motor

class which inherits from LocalForce. The Motor class implements the IForceable

interface, so it must define an ApplyForce() function. For a motor, this function

uses the current time to calculate the force it is generating at that time and applies

this force to the force accumulator of the object it is connected to.

Figure 19 shows the properties that the user can change when a motor is selected.

The “Type” property allows the user to choose between a sine and cosine function.

The “Angle” property enables the user to specify the direction of the force. The

remaining properties can be used to adjust the amplitude and frequency of the time-

varying force function.

b. Rods

Rods were another building block added to the framework after the initial building

blocks were implemented. A rod maintains a fixed distance between two objects.

32

Fig. 18. Motor attached to a mass

Fig. 19. Motor properties

33

Fig. 20. Rod connecting a mass and support

Similar to springs and dampers, a rod can be attached to masses and supports.

Figure 20 demonstrates an example of how a rod can be used in a system to model a

pendulum.

To add rods into the framework, we implemented the constraint force method

described in [8] and [9]. Using this method, we define constraints and then compute

constraint forces which, added to the regular applied forces, cause the system to ac-

curately satisfy the defined constraints. In the context of our framework, a distance

constraint is defined for each rod in the system. During each step of the simulation,

constraint forces are computed for each rod and these forces are applied to the at-

tached objects. As a result, objects connected by a rod will remain a fixed distance

from each other throughout the simulation.

Because a rod can be connected to two objects, the Rod object derives from

34

the Connector class described in chapter III. However, since constraint forces not

only depend on the current state but also other applied forces, a new function

called ComputeConstraintForces() was created. This function is called in the

SystemDynamics() function after the regular applied forces have been computed.

It computes constraint forces for each rod in the system and adds them to the force

accumulators of the appropriate objects.

c. Support Motion

Ground motion is an important concept that students typically encounter in an un-

dergraduate dynamics course. While a support could be used to model the ground

in the initial version of the software, there was no way to make the support move

to simulate ground motion. To fix this issue, we extended the Support object by

adding the support motion feature. This feature gives the user the ability to define a

function that moves the support over the time.

To implement this feature, an ApplyMotion() function was added to the Support

object. This function takes the current simulation time and moves the support to the

correct position based on the user-defined motion function. ApplyMotion() is called

at the beginning of the SystemDynamics() function to ensure that the supports are

in the correct position before the forces in the system are computed.

Figure 21 shows the controls that the user has over the support motion function.

The “Type” property allows the user to choose between a sine and cosine function or

turn the motion off. The “Amplitude” and “Frequency” properties enable the user

to adjust the amplitude and frequency of the sine or cosine function.

35

Fig. 21. Support properties

36

B. Usability

Another major goal of this thesis was to create software that is intuitive and easy-to-

use. User testing is essential in the process of creating a usable product. The software

developed in this thesis was tested by actual students, providing very helpful feedback

on the usability of the software. Based on this feedback, a variety of improvements

were made to the software. These ranged from functional improvements to visual

enhancements that helped improve the overall usability of the software.

1. User Testing

Two rounds of user testing were conducted to get feedback on the software. The

purpose of this feedback was to identify aspects of the software that needed to be

improved to make it easier for the students to use it as a learning tool.

For both rounds of testing, the users consisted of students currently enrolled in

an undergraduate dynamics course in the civil engineering department. These user

testing sessions were held in a computer lab with fifteen computers. Each round of

testing included thirty students split into two sessions, because of the constraints

of the computer lab. During the first half of each session, students were allowed

to experiment with the software to get familiar with the interface. For the latter

half of the session, the students were given problems that they had encountered in

class and were asked to set these problems up using the software. Throughout the

session, we were able to walk around the computer lab and observe how the students

were using the software. Students were also able to ask us for help when they ran

into issues with the software. At the end of each session, the students filled out

an anonymous questionnaire where they were asked to leave their feedback on the

software and suggest improvements. A short open discussion was also held at the end

37

of each session where students could verbally express their opinions and suggestions

for the software.

The observations and feedback from the user testing sessions were used to help

identify aspects of the software that needed improvement. The testing sessions ex-

posed the need for certain features such as a snappable grid to enable the user to

precisely layout systems in the software. The testing sessions also aided in prioritiz-

ing enhancements to the software that would make it more effective and easier to use.

In the following sections, there are more detailed explanations of how the feedback

from user testing was used to make improvements to the software.

2. Visual Hints

To make the visual simulation software more intuitive, visual hints were employed so

that the user would know about the current state of the objects by simply looking at

the screen. Through the use of visual properties like color and line style, the software

strives to keep the user informed of the current state of the objects at all times. Dialog

boxes are used to notify the user when an action must be performed before they can

proceed. The following subsections will detail some of the visual hints employed in

the software.

a. Detached Connectors

As previously described in chapter III, a connector object must be connected to two

connectable objects to properly function. However, the user may not be aware of this.

If the connector appears exactly the same whether or not it has been connected, then

the user may not realize that it is not connected. To avoid this problem, the software

differentiates a detached connector from an attached connector by altering the color

and line style.

38

Fig. 22. Detached spring and connected spring

Figure 22 illustrates the visual difference between a detached spring and a con-

nected spring. The detached spring is drawn with a dashed line in a gray color to

indicate that it is not properly connected. This immediately informs the user that

the spring is in a detached state and clearly distinguishes between the two possible

states for a spring.

For consistency, all connector objects follow the same convention. Figure 23

illustrates this by showing a detached damper and a connected damper. Once again,

it is easy for the user to determine the state of the damper by simply looking at how

it is drawn on the screen. This is extremely useful for the user, because the simulation

cannot be run unless all of the connectors have been properly connected.

If the user tries to run the simulation when a connector is not attached properly,

a warning message will pop up as shown in Figure 24. This message tells the user that

one or more objects need to be connected before the simulation can run. Because the

39

Fig. 23. Detached damper and connected damper

detached connectors are distinctly rendered, the user can easily identify what needs

to be connected.

b. Color-coded Springs

To keep the user up to date on the state of a spring, the springs are color-coded. A

spring is rendered in different colors, depending on the current length of the spring.

Fig. 24. Warning message

40

Fig. 25. Color-coded springs

When a spring is compressed, it appears red. A spring at its rest length appears

black. Lastly, a spring that is stretched appears blue.

Figure 25 demonstrates how three springs with the same rest length are rendered

when they are at different lengths. The spring on the left has been compressed, so it

is red. The center spring has not been moved, so it is black. The spring on the right

has been stretched down, so it is blue.

This simple visual hint makes it possible for the user to know what state a spring

is in at all times. This is useful for setting up a system or analyzing the system when

the simulation is paused. It also removes the need to dig into the spring’s properties

to determine whether the spring is stretched or compressed.

41

Fig. 26. Object highlighting

c. Highlighting

Figure 26 demonstrates a visual hint that lets the user know when an object is con-

nectable. When the user drags a connection point from the end of a spring over a

mass or support, the mass or support gets highlighted. This informs the user that

a connection can be made if they drop the point there. The object will only remain

highlighted if the connection point is hovering over it. As soon as the connection

point is moved away, the highlighted object is drawn normally again.

This visual hint makes it easy for users to identify which objects they can attach

a connector to. It also serves as a notice to the user that they are about to make a

connection between two objects. This prevents the user from accidentally attaching

two objects without realizing it.

3. Initial Conditions

The first step to solving any dynamics problem is specifying the initial conditions. In

the context of an undergraduate dynamics course, students are often given the initial

conditions in the problem statement. This can include specifications such as the unit

42

Fig. 27. Initial settings

system, the initial position of an object, and the initial velocity of an object. During

the user testing sessions, students had difficulty specifying the initial conditions for

the systems they were trying to build. To address this issue, the software attempts

to simplify the input of the initial conditions by prompting to the user to enter initial

settings and giving the user the ability to modify local coordinate systems for each

object.

a. Initial Settings

Regardless of the problem at hand, there are certain settings that the user has to

define for every system that they build. Two settings that are essential for any

system are the unit system and the size of the canvas. To ensure that the user sets

these properties, a dialog box, as shown in Figure 27, pops up every time the user

creates a new file in the program. The user can choose the unit system and define

the maximum width needed for the canvas.

After the user clicks “OK”, the file is created with the specified settings. This

43

Fig. 28. Offset from local coordinate system

dialog box encourages the user to think about these initial conditions before they

even start constructing the system in the program. In case the user happens to make

a mistake, the user can switch between unit systems at a later time.

b. Local Coordinate Systems

Each connectable object has its own local coordinate system in the software. The

user can select it and move it around the canvas like any other object. While the

local coordinate system does not affect the behavior of the simulation, it is a crucial

tool for helping the user set the initial conditions of a system.

Local coordinate systems are valuable to a user when they are trying to setup

a problem where the initial conditions are given as an offset from a certain position.

For example, a problem might state that a spring is initially stretched 1 meter from

its undeformed length. Assuming that the spring is at its rest position, the user can

select the mass to which it is attached to access the mass’ properties. The user can

then enter an offset from the local coordinate system for the mass as shown in Figure

28. The visual result of entering the offset from the local coordinate system is shown

in Figure 29.

4. Exporting Data

While the software allows the user to graph and view values associated with objects,

the program is not very flexible when it comes to data analysis. Since there are already

44

Fig. 29. Visual display of offset from local coordinate system

programs, like Microsoft Excel, that are well suited for data analysis, we added a

feature that allows the user to export the simulation data to an external program

rather than implementing data analysis tools within the software. In addition to

reducing development time, relying on a program like Excel for data analysis makes

it easier for the user, because most undergraduate students are already familiar with

using a program like Excel.

As previously shown in Figure 11, the user has the option to “Export Values To

File” when a graph is right-clicked. When this option is selected, the user chooses a

name and location for the file to be saved. The data is then exported as a comma-

separated values (CSV) file, which can be opened in Excel for more detailed analysis.

Figure 30 shows an example of how the exported values from the program appear

when the file is opened in Microsoft Excel.

45

Fig. 30. Comma-separated values in Excel

5. User Documentation

With any software, there is expected to be a learning curve involved as the user gets

familiar with the program. During the user testing sessions, the students often asked

similar questions about the functionality of the software and how to use it. Based

on this feedback, we decided that the best solution was to consolidate the answers

to these common questions on a website. In addition to answering frequently asked

questions, the website also includes user documentation and tutorials, providing users

with a resource that is always available when they run into a roadblock while using

the software.

Figure 31 displays a screenshot of a step-by-step tutorial on how to create a

spring-mass system in the software. This basic tutorial walks users through the

basics of constructing a simple system in the software. After completing this tutorial,

the user will have the basic skills required to construct more complicated systems.

Additional tutorials teach the users how to use more advanced features like support

46

motion.

C. Impact on Student Learning

One of the goals of this thesis was to evaluate the effectiveness of using the software

to help improve student learning of dynamics concepts. To measure the impact of

the software on student learning, we collected feedback from the students at the end

of the user testing sessions. We also analyze results from the Student Assessment of

Learning Gains (SALG) instrument for the spring 2007 semester of an undergraduate

dynamics course. SALG is a web-based instrument consisting of statements about

the degree of “gain” (on a five-point scale) which students perceive they have made

in specific aspects of the class.

At the end of each user testing session, we held an open discussion where the

students could discuss issues they ran into while using the software and suggest im-

provements. Most of the issues that students reported while using the software relate

to the user interface. While students quickly learned how to connect objects, the pro-

cess of setting up an entire system proved to be very challenging. Students struggled

to set the initial conditions of the systems they were trying to build, because they

were unsure of how to change object properties and unaware of some features that

were available to them.

In the SALG survey, students were asked a series of questions about the software,

referred to as Tinker (Table 1). The first few questions asked the students to rate

how much the software helped them in the context of the course on a five-point scale.

The last question was open ended to allow students to comment on what they did

and did not like about the software.

The SALG results from the spring 2007 semester indicate that students did not

47

F
ig

.
31

.
T

u
to

ri
al

fo
r

sp
ri

n
g-

m
as

s
sy

st
em

48

Table I. SALG Questions

How much do you agree that the use of Tinker helped tie course concepts together?

How much do you agree that the use of Tinker helped clarify the mathematical model?

How much do you agree that Tinker helped you visualize the response?

Any specific comments on Tinker?

feel the software was effective at improving their understanding of dynamics. On

average, students did not feel that the software helped to tie course concept together,

clarify the mathematical model, or visualize the response of systems. A detailed

summary of the statistics from the SALG results is presented in Appendix A.

Based on the comments from the students, many expressed frustration with the

usability of the software in its current state. Students felt that the user interface did

not facilitate the process of modeling a system for their homework problems. They

also expressed difficulty in figuring out how to set the initial conditions of a system.

Improvements to the user interface are the key to making the software a more effective

learning tool.

49

CHAPTER V

CONCLUSION AND FUTURE WORK

This thesis details and describes the design of an extensible framework for software

that allows students to visually construct, simulate, and analyze systems typically

encountered in an undergraduate dynamics course. The framework supports point

masses and supports with collision detection, resting, and friction. Springs, dampers,

and rods can be used to connect masses and supports to each other. Users can graph

values, save files, and export data to use in other software for more advanced analysis.

During the development of the framework, new building blocks were easily added

to the framework. The extensibility of the framework was verified by the addition of

the Motor and Rod objects into the existing set of building blocks. The new building

blocks were integrated into the framework’s object hierarchy without difficulty. The

object-oriented design of the framework enables additional building blocks, such as

pulleys, to be integrated with ease.

Two rounds of user testing were conducted in which students currently enrolled

in an undergraduate dynamics course tested the software. These testing sessions

were used to identify ways to enhance the functionality of the software. Based on

the feedback from these sessions, features such as visual hints, tools to set initial

conditions, and tutorials were implemented to improve the usability and ease of use

of the software.

Student feedback and SALG results were analyzed to assess the effectiveness of

using the software as a tool to improve student understanding of dynamics concepts.

The analysis showed that the software in its current state is not as effective as we

would have liked when it comes to improving student learning. However, the frame-

work provides a solid foundation that can be built upon to create a more effective

50

learning tool because of its modularity and extensibility.1

Compared to existing 2D simulation software, the physics engine in our software

is rudimentary. The software does not have support for rigid bodies, joints, torsional

springs, or pulleys. Adding more advanced dynamics to the framework will help to

make the software a more useful learning tool, because students will be able to model

more systems. Since the framework is modular, an existing 2D physics engine could

be integrated into the framework to save development time. Improvements are also

needed in the collision detection and response of objects. This will result in more

realistic behavior when more complex systems are simulated.

The user interface can be improved to increase the usability of the software.

Although the point and click interface of a mouse is ubiquitous, it may not be the

best method of user input for this software. An alternative method of input, such as

the sketch-based interface developed in [10], could make the software more intuitive

and natural for students to use.

1A newer version of the software has already been developed, and preliminary
results are very promising.

51

REFERENCES

[1] D. L. Evans, G. L. Gray, S. Krause, J. Martin, C. Midkiff, et al. “Progress

on Concept Inventory Assessment Tools,” in Proceedings of 33rd Frontiers in

Education Conference, Boulder, CO, Nov. 5-8, 2003, pp. T4G-1–T4G-8.

[2] L.C. McDermott. “Improving Student Learning in Science,” LTSN (Learning

and Teaching Support Network) Physical Sciences News, vol. 4, no. 2, 2003, pp.

6-10.

[3] L. R. Barroso, J. Morgan, and N. Simpson, “Active Demonstrations for En-

hancing Learning,” in Proceedings of 37th ASEE/IEEE Frontiers in Education

Conference, Milwaukee, WI, Oct. 10-13, 2007, pp. S2A-1–S2A-5.

[4] K. Gramoll. “Using ‘Working Model’ to Introduce Design into a Freshman Engi-

neering Course,” in Proceedings of 1994 ASEE Conference, Edmonton, Alberta,

Canada, June 26-29, 1994, pp. 1628-1633.

[5] R. E. Flori, M. A. Koen, and D.B. Oglesby. “Basic Engineering Software for

Teaching (“BEST”) Dynamics,” Journal of Engineering Educations, January

1996, vol. 85, no. 1, pp. 61-67.

[6] T. Naps, S. Cooper, B. Koldehofe, C. Leska, G. Roessling, et al. “Evaluating

the Educational Impact of Visualization,” in Proceedings of ITiCSE-WGR ’03:

Working Group Reports from ITiCSE on Innovation and Technology in Com-

puter Science Education, Thessaloniki, Greece, 2003, pp. 124-136.

[7] D. Sandin, P. Trunfio., L. Yaeger, P. Hickman, and R.S. Wolff. “Visualization

technologies as a tool from science education,” in Proceedings of SIGGRAPH

’90, Dallas, TX, 1990, pp. 1301-1316.

52

[8] D. Baraff, A. Witkin, and M. Kass. “Physically Based Modeling,” SIGGRAPH

’99 Course Notes, 1999, pp. B1-B8, F1-F12.

[9] A. Witkin, M. Gleicher, and W. Welch. “Interactive Dynamics,” Computer

Graphics, vol. 24, no. 2, 1990, pp. 11-21.

[10] C. Alvarado. “A Natural Sketching Environment: Bringing the Computer into

Early Stages of Mechanical Design,” M.S. Thesis, MIT, Cambridge, MA. 2000.

53

APPENDIX A

SALG RESULTS

How much do you agree that the use of Tinker helped to tie course concepts together?

1 Strongly agree 0% (0)

2 Agree 12% (5)

3 Neutral 19% (8)

4 Disagree 33% (14)

5 Strongly disagree 37% (16)

Average = 3.95, S.D. = 1.01, N = 43

1 Strongly agree 2% (1)

2 Agree 15% (8)

3 Neutral 19% (10)

4 Disagree 37% (19)

5 Strongly disagree 27% (14)

Average = 3.71, S.D. = 1.08, N = 52

How much do you agree that the use of Tinker helped to clarify the mathematical

model?

1 Strongly agree 0% (0)

2 Agree 14% (6)

3 Neutral 21% (9)

4 Disagree 30% (13)

5 Strongly disagree 35% (15)

Average = 3.86, S.D. = 1.05, N = 43

54

1 Strongly agree 2% (1)

2 Agree 15% (8)

3 Neutral 19% (10)

4 Disagree 37% (19)

5 Strongly disagree 27% (14)

Average = 3.71, S.D. = 1.08, N = 52

How much do you agree that Tinker helped you visualize the response?

1 Strongly agree 5% (2)

2 Agree 26% (11)

3 Neutral 24% (10)

4 Disagree 17% (7)

5 Strongly disagree 29% (12)

Average = 3.38, S.D. = 1.27, N = 42

1 Strongly agree 6% (3)

2 Agree 21% (11)

3 Neutral 27% (14)

4 Disagree 27% (14)

5 Strongly disagree 19% (10)

Average = 3.33, S.D. = 1.17, N = 52

55

VITA

Name:

Donald Brian Fong

Address:

Department of Architecture

Langford C418

Texas A&M University

3137 TAMU

College Station, TX 77840-3137

Email Address:

dfong@viz.tamu.edu

Education:

B.S., Computer Science, Northwestern University, 2004

M.S., Visualization Sciences, Texas A&M University, 2008

