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ABSTRACT 

 

Aggregate Stability, Infiltration, and Glomalin in Eroded and Compacted Soils  

on Fort Hood Military Reservation. (August 2008) 

James Kenneth Applewhite IV, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. C.T. Hallmark 

 

 Fort Hood Military Reservation is a 900 km
2
 military installation located 

between Killeen, Copperas Cove, and Gatesville in central Texas.  It supports two full 

armored divisions which require year-round, live-fire maneuvers and training (Ft. Hood, 

2003).  As a result of the constant foot traffic and use of heavy equipment, the soils on 

the training ranges have become increasingly compacted, eroded, and stripped of 

vegetation.  This study evaluated the impact that selected soil amendments would have 

on soil aggregation, infiltration, and levels of glomalin.  A field study was done on plots 

located inside Fort Hood on a Nuff silty clay (fine-silty, carbonatic, thermic Udic 

Calciustoll).  The plots were amended with composted dairy manure, inorganic 

fertilizers, and native grass seed.  Aggregate stability was determined using a wet sieving 

procedure and total glomalin values were quantified using a Bradford assay.  Field 

measurements of infiltration rates were taken using a drip-type rainfall simulator. 

 Aggregate stability exhibited decreased values over time for all treatments but 

two (Site Prep / No Seed and Site Prep / Compost / Seed).  In addition, three treatments 

changed significantly over time (from before treatment application to after treatment 
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application).  These treatments were the Site Prep / Compost / No Seed, No Prep / No 

Seed, and No Prep / Seed treatments.  Levels of glomalin increased significantly over 

time for all treatments (p-value <0.001).  Glomalin was correlated to aggregate stability 

after treatments were applied (p-value <0.01) but not before (p-value 0.89).  In addition, 

infiltration rates were not related to glomalin (p-value 0.9) or aggregate stability (p-value 

0.09). 

 Additional sampling of Fort Hood beyond the plot study demonstrates significant 

differences in aggregate stability, infiltration rates, and levels of glomalin.  

Measurements taken from ten sites showed no correlations between aggregate stability, 

infiltration rates, or glomalin.  Organic C was correlated to percent water stable 

aggregates (%WSA) and levels of glomalin.  These results illustrate the relationship 

between organic C and aggregate stability as well as glomalin levels in maintaining 

infiltration rates and reducing soil loss by erosion. 
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INTRODUCTION 

 

 Reducing soil erosion can be accomplished by improving aggregate stability 

which is defined as the ability of the soil to maintain its structure when exposed to 

various forces such as wind and water.  Therefore, if the soil aggregates are better able to 

resist breakdown from these forces, then the soil is less likely to wash away or create a 

seal on the soil surface (USDA, 1996).  In addition, improving aggregation can increase 

infiltration rates which can significantly decrease runoff and erosion (USDA, 1998).   

The recent discovery of a soil protein known as glomalin, after Glomales (the 

order of fungi that produce this protein), has led to numerous studies linking this protein 

to improved aggregate stability (Wright and Upadhyaya, 1998; Rillig, 2004).  Hyphae 

from arbuscular mycorrhizal fungi (AMF) produce the glomalin which helps to bind 

particles of soil together along with physical entanglement by the actual hyphae.  The 

AMF contributions to plants include increasing uptake of nutrients, protection from 

pathogens, and increased drought tolerance.  In return the AMF receive a soluble source 

of C valuable for supplying energy (Paul and Clark, 1996).  Additionally, AMF have 

been shown to colonize about 80% of all plant taxa, including many grasses and crops, 

which make AMF an important component of aggregate stability (Allen, 1991).  

Knowing which plants AMF can colonize best could help determine what should be used 

to revegetate denuded areas to improve soil stability. 

 

 
This thesis follows the style of Soil Science Society of America Journal. 



 2 

  

Inorganic fertilizers and organic manures are both known to improve soil 

aggregation as well as other soil characteristics such as increases in porosity, infiltration 

capacity, hydraulic conductivity, and decreases in bulk density (Haynes and Naidu, 

1998).  However, Lovelock et al. (2004) showed that soils in old growth forests of Costa 

Rica that were higher in residual fertility correlated with lower levels of total glomalin 

(TG) and easily extractable glomalin (EEG).  This inconsistency suggests other factors 

are involved with applications of manure that compensate for any negative impact added 

fertility may have on AMF (Bittman et al., 2005).  Therefore, understanding which 

scenario would best improve aggregate stability and decrease erosion should be further 

evaluated.  Furthermore, discharge of excess nutrients from concentrated animal feeding 

operations on the North Bosque River has been a problem for many years (TCEQ, 

2003).  By utilizing compost from these Central Texas dairies, it may be possible to 

decrease nutrient loads into the North Bosque River watershed and potentially reduce 

erosion problems facing Fort Hood.  
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OBJECTIVES 

 

 

 Objectives of this study are to: 1) elucidate the effect that various soil fertility 

treatments have upon glomalin levels and aggregate stability, 2) determine the 

relationships between aggregate stability and total glomalin levels, 3) measure 

infiltration rates in order to evaluate the effectiveness of aggregate stability, and 4) 

sample sites across Fort Hood to discover the range of values for aggregate stability, 

glomalin, and infiltration rates throughout the training areas of Fort Hood.  

Understanding the relationships among these variables should suggest management 

actions for Fort Hood personnel to improve the soil stability and decrease erosion in 

areas impacted by training exercises. 



 4 

REVIEW OF LITERATURE 

 

Soil Aggregation 

 

 Soil aggregation is defined as the process whereby aggregates of various sizes 

join together by means of an array of organic and inorganic materials (Amézketa, 1999).  

It is a complex process with many components, both biotic and abiotic (Rillig, 2004).  

Furthermore, this property of soils is essential for reducing erosion, which can seriously 

alter the productivity of land (Franzluebbers et al., 2000; Amézketa, 1999).  The 

distribution of aggregates is typically differentiated between micro-aggregates (<250 m) 

and macro-aggregates (>250 m).  There exist different mechanisms of structure and 

stability for each size, as well as methods for quantifying each size class (Amézketa, 

1999, Tisdall and Oades, 1982).   

Arbuscular mycorrhizal fungi (AMF) are a group of fungi that form symbiotic 

relationships with many plant species and exist both inside the roots of plants and in the 

soil (Rillig, 2004).  Arbuscules produced by AMF function to exchange nutrients and C 

with their host.  In addition, AMF produce hyphae which explore the soil and absorb 

nutrients (Rillig, 2004).  An extracellular compound, glomalin, produced by AMF, has 

been shown to increase aggregate stability among various soil types (Wright and 

Upadhyaya, 1998; Rillig, 2004).  Rillig (2004) lists several characteristics of AMF that 

impact soil aggregation:  AMF are abundant and ubiquitous; AMF have intraradical 

access to plant C and therefore have no need to contend for organic C in the soil; and 
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hyphae from AMF that contribute to stabilizing structures, along with their byproducts, 

are quite resistant to microbial decomposition.   

Rillig and Steinberg (2002) showed that AMF can respond to the environment by 

producing more or less glomalin depending on the level of aggregation in the soil.  They 

used an artificial system to simulate both aggregated and non-aggregated soils and 

observed that AMF hyphae in non-aggregated soils were considerably shorter than 

hyphae in aggregated soils, but showed substantially higher levels of glomalin in the 

non-aggregated system.  Although this study suggests that AMF can respond and adapt 

to their environment, the specific mechanisms involved in the response are unknown.   

Additions of inorganic fertilizers as well as organic compost are known to 

enhance soil aggregation, mainly by increasing crop and pasture yields which, in turn, 

increases soil organic matter and biological activity compared to unfertilized fields 

(Haynes and Naidu, 1998).  This increase in organic matter is also of importance to 

forming water stable aggregates (Chaney and Swift, 1984).  Noyd et al. (1996) also 

showed an increase in native grass cover in taconite iron ore plots in Minnesota that 

were amended with fertilizer.  Additionally, animal manures have been utilized in the 

reclamation of mined lands to improve the soil ecosystem by lowering bulk density and 

increasing organic matter (Haering et al., 2000).  There are negative impacts to soils 

from the addition of too much inorganic fertilizers and/or organic amendments.  These 

include clay dispersion, surface crusting, and water repellency of soils (Haynes and 

Naidu, 1998).  These problems are most often associated with high rates of applications 
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and poor soil conditions, such as applications of high amounts of NH4
+
 to low pH soils 

or soils with low soil moisture (Haynes and Naidu, 1998). 

 An increase in organic material has been shown to improve the stability of 

aggregates in the soil.  Tisdall and Oades (1982) suggest a model of aggregate formation 

whereby organic matter is the main binding agent.  They further proposed that organic 

binding agents be defined in three groups depending on the age of the organic material.  

These groups include transient agents, temporary agents, and persistent agents.  

Transient agents are those that decompose rapidly such as polysaccharides from 

microbes and plant roots.  Temporary agents are the roots and hyphae themselves, in 

particular vesicular-arbuscular mycorrhizal hyphae.  These organic materials are more 

persistent than transient binding agents, but not as recalcitrant as persistent binding 

agents.  Persistent binding agents consist of material from amorphous iron, aluminum, 

and aluminosilicates which together form organomineral interactions.   

 

Glomalin 

 O‟Neill et al. (1991) suggested that AMF play an important role as „keystone 

mutualists‟ within the rhizosphere.  In return for C, AMF provide the host plant with 

supplemental water and nutrients and consequently produce the stable glycoprotein 

glomalin, which has not been found in any other group of fungi (Wright et al., 1996).  

Glomalin sloughs from the hyphae and helps to aggregate the soil by attaching to various 

mineral particles.  In addition, glomalin has been shown to be present and abundant in 

most soils (Wright and Upadhyaya, 1996).  Jastrow and Miller (1997) further suggested 
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that the hydrophobic properties of glomalin contribute to aggregate stability by 

dampening the disruptive force of water movement within the pores of aggregates.  

Wright and Upadhyaya (1998) showed that glomalin contains from 0.8–8.8% Fe and that 

cultures grown in Fe deficient media had little accumulation of glomalin.  This suggests 

that glomalin is not as abundant in high pH soils that may contain low amounts of 

available Fe.  Field sampling from selected Texas soils has proven that this is the case 

(Wright and Upadhyaya, 1998). 

Glomalin has been separated into fractions by an extraction process (Wright and 

Upadhyaya, 1998).  Total glomalin (TG) requires autoclaving at 121°C in 1 h increments 

using 50 mM Na-citrate (pH 8.0), while easily extractable glomalin (EEG) requires 30 

min of autoclaving at 121°C in 20 mM Na-citrate (pH 7.0).  These fractions are assayed 

using enzyme-linked immunosorbent assay (ELISA) to quantify immunoreactive easily 

extractable glomalin (IREEG) as well as immunoreactive total glomalin (IRTG).  

Similarly, a Bradford Assay is used to quantify TG and EEG.  Easily extractable 

glomalin is thought to be mostly recently deposited material, whereas TG is the older 

more recalcitrant material, including a fraction that is tightly bound to clay minerals 

(Lovelock et al., 2004). 

Recent discoveries suggest that the current methodology for extracting glomalin 

is not as precise as previously thought (Janos et al., 2007).  Problems arise when 

glomalin denatures under the high heat and pressure required to extract it.  This can be 

lessened to an extent by using equal amounts of extraction solutions, equal amounts of 
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extracting time, and centrifuging the extracts immediately after autoclaving (Janos et al., 

2007).   

Wright and Upadhyaya (1998) showed a positive correlation between IREEG 

and aggregate stability among various soils from Scotland and U.S. Mid-Atlantic States 

including Texas.  The soils ranged in vegetation, pH, and soil order, with Fe-deficient 

calcareous soils from Texas showing the lowest amounts of glomalin.  Rillig et al. 

(2001a) also found TG and EEG were correlated to water stable aggregates (WSA) in a 

clay loam sorghum field enriched with CO2.  However, Franzleubbers et al. (2000) 

studied the effects of grazing and conservation management strategies in the 

southeastern USA and concluded glomalin is not as strongly linked to aggregate 

stability.  Rillig et al. (2003) reported similar findings in a study whereby glomalin pools 

were negatively correlated with WSA.  The soils used in that study were rich in 

carbonates, which may suggest that glomalin is not an important stabilizer in calcareous 

soils.  Furthermore, increasing levels of fertilization can negatively affect AMF in soils 

(McGonigle et al., 1990), whereas the effect on AMF by manure applications is not as 

well documented, with studies showing varied results.  Kabir et al. (1997) did show that 

manure applications in clay soils in Canada increased hyphal density significantly more 

than clay soils amended with inorganic fertilizers containing only N and K.  In addition, 

they observed no difference among amendments in sandy loam soils.   

Few studies dealing with seasonal changes of glomalin within the soil are 

described in the literature.  Kabir et al. (1997) looked at seasonal variations of AMF 

hyphae over a growing season with different tillage practices and concluded that there is 
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a significant variation among tillage practices.  No tillage and reduced tillage practices 

showed higher amounts of fungal hyphae than did conventional tillage suggesting that 

soil disturbance has a negative impact upon AMF and ultimately glomalin levels.  In 

addition, abundance of hyphae fluctuated over the growing season for all tillage 

practices, with the lowest density found in the spring.  Glomalin appears to have a slow 

turnover rate in soils (6-42 years in tropical forests) and certain fractions will fluctuate 

more than others (Rillig et al. 2001b).  For example, Lutgen et al. (2003) showed 

significant seasonal variation in only two fractions of glomalin (TG and IREEG).  Due to 

the disparity in quantity among glomalin fractions, seasonal changes can be relatively 

small or large depending on the size of each glomalin pool. 

 

Infiltration 

When soil infiltration rates are slow, the movement of water is directed over the 

surface of the soil rather than into the soil.  As a result local flooding can increase along 

with erosion and sedimentation (USDA, 1998).  Infiltration rates are the product of 

numerous properties including texture, crusting, compaction, and soil aggregation 

(USDA, 1998).  If a soil has poor aggregate stability, then it is less able to resist 

disruptive forces such as wind and raindrop impact.  Small soil particles are broken from 

aggregates and clog pores to create a seal or crust on the surface which reduces the entry 

of water.  This type of seal is also known as a depositional seal.  Another type of seal 

known as a structural seal, is sometimes created by compaction from raindrop impact 

(Fox and Le Bissonnais, 1998).  According to McIntyre (1958) the soil crust is 
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collectively composed of both types of seals.  The upper seal is a structural seal, 0.1 mm 

thick, while the bottom seal is a depositional seal, 2 mm thick.  However, this may be 

true only on soils with exchangeable sodium percentages (ESP) > 1.0 (Gal et al., 1984).  

Agassi et al. (1981) suggested that the formation of crusts in soils is a result of physical 

disruption of the soil due to raindrop impact and chemical dispersion due to the 

electrolyte concentration of the applied water.  Furthermore, the permeability of the 

created seal depends in part on the rate of breakdown and the size of the particles 

involved (Roth and Eggert, 1994).   

Ben-Hur and co-workers (1985) showed that crust formation decreased with 

increasing amounts of clay above ~20%, due to more stable soil structure.  That study 

was done on calcareous and non-calcareous soils in Israel with varying textures and 

different water qualities (distilled and saline).  In addition, levels of CaCO3 were shown 

to have no effect on infiltration rates perhaps due to the release of electrolytes in 

amounts sufficient enough to prevent clay dispersion and clogging of soil pores (Ben-

Hur et al., 1985).  Roth and Eggert (1994) state that aggregates tend to be smaller and 

less stable with increasing intensity of tillage.  This is due to mechanical disruption of 

aggregates and the destruction of soil structure.  The main problems that managers at 

Fort Hood face are increases in runoff and erosion, therefore, improving infiltration rates 

could significantly reduce runoff and erosion. 
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MATERIALS AND METHODS 

 

This research was conducted in the Grand Prairie region of Texas on the Fort 

Hood Military Reservation in Coryell County on previously established study plots   

(30° 52.74‟ N 096° 26.78‟ W).  The dominant soil series for the chosen site was the Nuff 

series (fine-silty, carbonatic, thermic Udic Calciustoll) which is typified by high amounts 

of clay, organic matter, and calcium carbonate.  The study area is composed of a 

limestone plain underlain by hard limestone on ridges and marly clay on hills and 

plateaus (USDA, 1985).  Rainfall amounts are fairly constant throughout the year with a 

slight peak in the spring (Fig. 1). 

Research plots consisted of eight treatments with three replicates laid across a 

gentle slope (1-3%).  Treatment plots were 15.2 m by 9.14 m with treatments randomly 

assigned within each block (Fig. 2).  The various treatments differed by the addition of 

either inorganic fertilizer or composted dairy manure in addition to either being disked 

or not disked to a depth of 15 cm.  Some treatments included the addition of a native 

seed mix.  The rate of application for the inorganic fertilizer was 975 kg ha
-1 

of 36-16-0 

which supplied 351 kg ha
-1

 total N and 68 kg ha
-1

 total P.  The rate of application for the 

organic compost was 28 m
3
 ha

-1
 supplying 322 kg ha

-1
 total N and 211 kg ha

-1
 total P.  

At the time of purchase, the compost averaged approximately 801 kg m
-3

.  The seed 

blend was an experimental mix developed by the Natural Resources Conservation 

Service (NRCS) and contained a variety of native grasses and forbs (Table 1).  It was 

seeded at a rate of 8 kg ha
-1

. 
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Fig. 1.  Rainfall data for study sites at Fort Hood Military Installation.  Values are totals  

for the month and means are 12 year averages.  Rainfall data taken from 

http://www.wunderground.com. 
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Fig. 2.  Layouts of treatments for study area on Fort Hood Military Reservation.  Plots  

are 15.2 m by 9.1 m.
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Table 1.  Species names and percentages for the seed mix used in the study.  Percentage  

is based on volume. 

 

      Common Name                                               Scientific Name Mix 

  --%-- 

Grasses   

Sideoats grama Bouteloua curtipendula (Michx.) Torr. 25 

Little bluestem Schizachyrium scoparium (Michx.) Nash 10 

Big bluestem Andropogon gerardii Vitman 10 

Indiangrass Sorghastrum nutans (L.) Nash 10 

Buffalograss Bouteloua dactyloides (Nutt.) Columbus 25 

Tall dropseed Sporobolus compositus (Poir.) Merr. 5 

Switchgrass Panicum virgatum L. 10 

Forbs   

Illinois bundleflower 
Desmanthus illinoensis (Michx.) MacMill. ex B.L. Rob. & Fernald 2 

Awnless Bush Sunflower Simsia calva (A. Gray & Engelm.) A. Gray 2 

Partridge pea Chamaecrista fasciculata (Michx.) Greene 1 
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The study plots were established by researchers of the Blackland Research and 

Extension Center (BREC) and the Ecosystem Science and Management Department 

(ESSM) at Texas A&M University as part of an additional study evaluating the response 

of vegetation to the aforementioned soil amendments.  In addition, all treatment 

applications were administered by BREC. 

Soil samples for baseline measures of TG and percent water stable aggregates 

(%WSA) were taken prior to application of treatments to observe variations in soil 

properties by treatment.  Furthermore, approximately 10 sites encompassing nine soil 

series throughout training areas of Fort Hood Military Reservation were selected to 

broaden the range of values for soil properties in the study and include varying levels of 

soil compaction and erosion.  These sites were selected to include areas with visual 

indications of compaction and traffic.  All sites were well vegetated with the exception 

of sites 8 and 10 that were shallow rocky and sandy, respectively.  Additionally, the 

broader sampling also could contribute to understanding how much the soils of Fort 

Hood vary and allow for comparisons to values of infiltration rates reported by the 

NRCS (USDA, 1985).  The same methods and procedures performed for the plot study 

were implemented for the additional sites.  Information regarding the soils for the 

additional sites is summarized in Table 2.   

Total glomalin was extracted and quantified using a Bradford assay with bovine 

serum albumin standards according to procedures slightly modified from Wright and 

Upadhyaya (1996). Total glomalin is a measure of total protein in the soil and gives an 

estimate of glomalin.  However, Wright et al. (1999) showed that the percentage of  
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Table 2.  Soil series and family classification for each of the additional sites sampled at  

Fort Hood. 

 

Site Series Family Soil Classification
†
 

1 Nuff fine-silty, carbonatic, thermic Udic Calciustoll 

2 Lewisville fine-silty, mixed, thermic Udic Calciustoll 

3 Brackett loamy, carbonatic, thermic, shallow Typic Haplustept 

4 Topsey fine-loamy, carbonatic, thermic Udic Calciustoll 

5 Brackett loamy, carbonatic, thermic, shallow Typic Haplustept 

6 Evant clayey, smectitic, thermic, shallow Petrocalcic Paleustoll 

7 Slidell fine, smectitic, thermic Udic Haplustert 

8 Cho loamy, carbonatic, thermic, shallow Petrocalcic Calciustoll 

9 Doss loamy, carbonatic, thermic, shallow Typic Calciustoll 

10 Cisco fine-loamy, siliceous, superactive, thermic Typic Haplustalf 

 
†
Series as mapped in Soil Survey of Coryell County (USDA, 1985); family  

classifications as per the official soil series descriptions (Soil Survey Staff, 2008). 
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immunoreactive protein (the fraction associated with glomalin) found in crude extracts 

range from 81 to 100%.  In addition, a study by Bolliger et al. (2008) determined that the 

TG pool was quite “pure” and contained very little extraneous proteins other than 

glomalin.  This gives further confidence to using TG as an accurate estimate of glomalin 

levels in the soil.   

The extraction process included autoclaving 1 g of soil in 8 mL of 50 mM       

Na-citrate (pH 8.0) in rounds of 60 min at 121°C until the extract was a golden amber 

color.  After each extraction the sample was centrifuged at 3200 rpm for 20 min, and the 

supernatant was decanted into test tubes.  In order to read the samples within the linear 

portion of the standard curve, extracts were diluted 15:1 in phosphate buffered saline 

(PBS, pH 7.4).  Exactly 3.2 ml of each sample were added to 0.8 ml of Bradford protein 

dye reagent, mixed, and analyzed after 5 min.  Absorbance was determined using a 

Spectrophotometer 20 at 595 nm.   

The percentage of water stable aggregates (WSA) was quantified using a wet 

sieving process modified from methods described by Kemper and Rosenau (1986).  The 

procedure involved placing 10 g of soil (1-2 mm) on sheets of fully wet Whatman #1 

filter paper (24.0-cm diameter).  After the soil was wetted by capillary action, it was 

transferred to a single 60-mesh sieve (0.25-mm diameter openings) to be raised and 

lowered a vertical distance of 1.3 cm at 44 cycles min
-1

 for 3 min in distilled water.  Soil 

remaining on the sieve was rinsed into a beaker, oven dried, and weighed to give the 

stable aggregate mass (SA).  The soil was then shaken overnight in 5 mL of 5% sodium 

hexametaphosphate (50 g L
-1

) with approximately 250 mL distilled water and 
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subsequently passed through a 60-mesh sieve (0.25-mm diameter).  Any remaining 

material was collected, oven dried, and weighed to give the sand mass (SM).  The 

%WSA was calculated as: 

%WSA = [(SA-SM) / (Original soil mass-SM)]*100. 

Kemper and Rosenau (1986) indicate that using a single sieve is as well 

correlated to field phenomena as using nested sieves and requires less time (Kemper and 

Rosenau, 1986).  This study only measured the stability of macro-aggregates (>250 m) 

in the soil.  Tisdall and Oades (1982) suggest that polysaccharides and other organic 

materials from roots and fungi are closely associated with aggregates of this size range 

and would therefore be of interest in studying the effects of glomalin on aggregate 

stability.   

Water dispersible clays (WDC) were determined as described by Harris (1971).  

Water dispersible clays represent the clay content of the sample determined by analyzing 

particle size distribution (PSD) using the pipette method without pretreatment of a 

chemical dispersant such as sodium hexametaphosphate.  Total clay is similarly 

measured using the pipette method but with the addition of 5 mL of 10% sodium 

hexametaphosphate (pH 8.2) prior to running PSD.  An aggregation index (AI) is 

calculated using the formula:   

AI = 100 * [1 – (WDC / total clay)] 

The values of AI range from 0 to 100 with higher numbers indicating more stable 

aggregates. 
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  Infiltration rates were determined using a drip-type rainfall simulator similar to 

that described by Blackburn et al. (1974).  The simulator was placed 20 cm above the 

soil surface and allowed to drip at a rate of 0.11 cm min
-1

 until runoff occurred at a 

steady rate.  A flexible metal frame was pressed into the ground to contain any runoff 

under the simulator.  The runoff was collected in drip pans, pumped into a bucket, and 

weighed at intervals of about 5 min.  Total rainfall amount minus the runoff amount over 

intervals of time yielded the amount of infiltration over the time interval which was used 

to determine the infiltration rate.  The area of the frame was determined by placing a grid 

over the frame and drawing the outline of the frame on graph paper.  A polar 

compensating planimeter was used to determine the area. 

  The following equations were used to determine infiltration rates (Aydemir, 

1996): 

Infiltration Rate = [Application Rate – (Runoff (cm) / Time (min)] x 60 (min hr
-1

) 

    (cm hr
-1

)                  (cm min
-1

) 

 

Application Rate (cm min
-1

) = Simulated Rainfall Rate (cm hr
-1

) / 60 (min hr
-1

)    

   

Runoff (cm) = [(# lbs of runoff) x (453.6g lb
-1

) x (1 cm
3
 g

-1
)] / area of plot (cm

2
). 

 

The source water for all simulations was well water taken from the Blackland 

Research and Extension Center in Bell County, Texas.  Composition of the water is 

given in Table 3. 
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Table 3.  Analysis of water used for infiltration study at Fort Hood.
†
 

 

†
Analysis was performed by the Soil, Water and Forage Testing Laboratory of the Texas  

Agrilife Extension Service. 

 

 

 

 

 

 

 

 

 

Analysis Result 

Ca
+2 

60 mg L
-1 

Mg
+2 

7  mg L
-1

 

Na
+ 

11  mg L
-1

 

K
+ 

3  mg L
-1

 

B 0.01  mg L
-1

 

CO3
-2 

0  mg L
-1

 

HCO3
-1 

135  mg L
-1

 

SO4
-2

 39  mg L
-1

 

Cl
-
 31  mg L

-1
 

NO3
- 
- N 0.98  mg L

-1
 

P 0.03  mg L
-1

 

pH 7.57 

Conductivity 0.35 dS m
-1 

SAR 0.4 
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Characterization of the soils, including particle size distribution (PSD), total C, 

and CaCO3 equivalent (CCE), was done on all collected soil samples.  Particle size 

distribution was completed according to the methods of Kilmer and Alexander (1949).  

This involved shaking 10 g of air-dry soil (<2mm) with 5 mL 10% sodium 

hexametaphosphate (pH 8.2) and distilled water overnight in glass shaker bottles.  The 

samples were brought to 400-mL volume, stirred with a magnetic stir bar for 2 min and 

placed in a constant temperature water bath so separates could settle.  After the settling 

period (dependent on temperature) was completed, a 5-mL pipet was lowered 5 cm into 

the bottle, and an aliquot was removed and transferred to a pre-weighed crucible.  This 

first aliquot contained particles <20 µm in diameter which included total clay and fine 

silts.  After an additional settling period, another 5-ml aliquot was removed and 

transferred to another pre-weighed crucible to measure the amount of total clay (<2µm).   

To determine the amount of fine clays (<0.2µm), the samples were removed from 

the water bath and re-stirred for approximately 2 min followed by a 1.5-min settling 

period.  Afterwards, a 25-mL aliquot was removed 4 cm below the surface and placed in 

a 90-mL centrifuge tube.  Each aliquot was centrifuged at 2000 rpm for a period of time 

determined by the temperature of the aliquots.  The samples were removed from the 

centrifuge and a 5-mL aliquot from a depth of 4 cm was placed into a pre-weighed 

crucible.  The crucibles were placed in an oven at 105°C to dry then weighed to within 

0.1 mg.  Sediments remaining in the shaker bottles after all aliquots were removed were 

washed through a 300-mesh sieve (50-µm diameter) to retain the sands.  The sands 
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remaining on the sieve were transferred into a beaker using distilled water and placed in 

an oven at 105°C to dry.  The dried sands were placed into a nest of sieves in the 

following order: #18 (1.0-mm diameter), #35 (0.5-mm diameter), #60 (0.25-mm 

diameter), #140 (0.10-mm diameter), and #300 (0.05-mm diameter).  The sieves are 

placed in a mechanical shaker for 5 min.  Subsequent to shaking, the sand fraction 

remaining on each sieve was removed and weighed to within 0.01 g.   

Total C was quantified according to methods described by Nelson and Sommers 

(1982).  Briefly, a sample of air-dried and disk-mill ground soil was weighed (according 

to effervescence) and placed in a ceramic combustion boat along with 0.25 g of MnO2.  

The sample was inserted into a combustion chamber heated to 950-1000°C and sealed.  

Purified O2 was passed through the combustion chamber which oxidized the organic C 

to CO2.  Coincident, CO2 from calcite and dolomite (inorganic C) were evolved. The 

CO2 passed through a series of filters and traps which removed the water vapor, nitrogen 

oxides, and sulfur oxides.  At the end of the system was a pre-weighed adsorption bulb 

containing ascarite and Mg-perchlorate which collected any CO2 and water generated by 

the absorption of CO2 from gases passing through.  After the sample was combusted for  

12 min, it was removed, and the adsorption bulb was weighed.  The difference between 

the starting weight and ending weight of the adsorption bulb was the amount of CO2 

evolved which was expressed as the percentage of total C in the soil. 

The procedure for determining calcium carbonate equivalent (CCE) was the 

method of Dreimanis (1962) using a Chittick gasometric apparatus.  This involved 

weighing a sample of air-dried and disk-mill ground soil and placing it into a 
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decomposition flask along with a stir bar and 2 drops of amyl-alcohol.  The amount of 

sample used varied based upon the anticipated CCE as indicated by reaction of the 

sample to HCl.  A rubber stopper with an attached buret containing 20 mL of an  

HCl-FeCl2 solution was placed on the decomposition flask.  Another measuring buret 

containing displacement solution was leveled and the entire system was closed to the 

atmosphere.  The HCl-FeCl2 solution was added to the decomposition flask while the stir 

bar mixed the solution.  While the solution stirred, CO2 was evolved and forced the 

displacement solution down the measuring buret allowing for the volume of CO2 to be 

measured.  An initial reading was taken after 30 sec and subsequent readings were taken 

every 6 min for 30 min including readings for temperature and barometric pressure.  The 

volume of CO2 evolved during the initial 30-sec reaction was used to calculate the 

 % calcite, while the final volume of CO2 (after 30 min) was used for % dolomite.  All 

volumes of CO2 were corrected for temperature and atmospheric pressure.  The CCE 

was then calculated based upon the quantities of calcite and dolomite.   

All soil nutrient analyses were performed by the Soil, Water and Forage Testing 

Laboratory of the Texas Agrilife Extension Service (Appendix C).  Mehlich III 

extractant was used for P, K, Ca, Mg, S, and Na while Fe, Zn, Mn, and Cu were 

extracted using 0.005 M DTPA, 0.01 M CaCl2, and 0.10 M triethanolamine solution.  

(Mehlich, 1978; Mehlich, 1984).  All analytes were determined by ICP.  Nitrate-N was 

extracted using 1 N KCl and determined by reduction using a cadmium column followed 

by spectrophotometric analysis (Keeney and Nelson, 1982). 



 24 

All data were analyzed with ANOVA and compared by least significant 

difference (α=0.05) using SAS statistical software (SAS, 2002). 
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RESULTS AND DISCUSSION 

 

Plot Study 

Aggregate Stability 

Means for percent water stable aggregates (%WSA) before and after treatments 

were applied are shown in Table 4.  The plots with the highest %WSA before treatment 

application were the No Prep / No Seed plots (control) and the Site Prep / Compost / No 

Seed plots at 73% while the plots with the lowest %WSA were the Site Prep / Seed plot 

as well as the Site Prep / Fertilizer / Seed plots at 68%.  However, there were no 

significant differences among plots at a 95% confidence level (p-value 0.18) before the 

application of any treatments.  Twelve months after treatments were applied, the greatest 

values for %WSA were the Site Prep / No Seed treatment and the Site Prep / Compost / 

Seed treatment at 71% while the lowest value was the Site Prep / Fertilizer / Seed 

treatment at 65% (Table 4).  As before there were no significant differences among 

treatments for %WSA at the 95% confidence level (p-value 0.20).  Comparing the means 

for each treatment over time revealed three treatments with significant differences 

(p-value 0.03), the No Prep / Seed, No Prep / No Seed, and Site Prep / Compost / No 

Seed treatments (Fig. 3).  Furthermore, %WSA for every treatment but two decreased 

over time.  The only treatments with an increase in %WSA were the Site Prep / No Seed 

treatment and the Site Prep / Compost / Seed treatment, but these increases were not 

statistically significant.  With values only ranging from 65%-71% there was little 

possibility of observing major differences among treatments. 
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Table 4.  Water stable aggregate means for each treatment before application and after  

application of respective treatments.  Data are presented as mean ± one standard  

deviation. 

 

 
†
Site Prep = disking to a depth of 15 cm 

 Seed = application of seed mix containing native grasses and forbs 

 Compost = application of composted dairy manure 

 Fertilizer = application of inorganic fertilizer. 

Treatments
† 

Before (July 06) After (July 07) 

 ---------------%-------------- 

Site Prep / Seed 68 ± 0.1 67 ± 1.7 

Site Prep / No Seed 71 ± 2.1 71 ± 1.8 

Site Prep / Compost / Seed 70 ± 2.7 71 ± 3.3 

Site Prep / Compost / No Seed 73 ± 4.8 66 ± 4.2 

Site Prep / Fertilizer / Seed 68 ± 1.7 65 ± 1.1 

Site Prep / Fertilizer / No Seed 70 ± 1.8 67 ± 5.1 

No Prep / Seed 72 ± 3.4 67 ± 3.5 

No Prep / No Seed 73 ± 2.7 67 ± 1.2 
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Fig. 3.  Changes in percent water stable aggregates (%WSA) over time for each  

treatment.  Data are presented as mean ± one standard deviation. 
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As the determination of %WSA is time consuming, requires specialized 

equipment, and is somewhat dependent on the analyst, an attempt to identify an alternate 

measure of soil structure was sought.  A comparison was made between the means of 

%WSA for each post-treatment plot and aggregation index (AI) determined by WDC.  

The results are summarized in Fig. 4 and indicate a weak positive but nonsignificant 

relationship with a R
2
 of 0.04.  There have been significant correlations made between 

AI and a variety of soil parameters in the literature but none between %WSA and AI 

(Rhoton et al. 2007).  Based on the results of this research, there appears to be no 

significant relationship between AI and %WSA.   

Soil aggregate stability can be viewed as a hierarchial process by which silt and 

clay microstructures bind with fungal and bacterial debris to form microaggregates  

(2-20µm diameter).  These microaggregates in turn form larger microaggregates (20-

250µm diameter) by binding with plant remains (Jastrow and Miller, 1997).  Because 

microaggregates are vital to the formation of stable aggregates, it was important to 

measure and observe the relationships between %WSA, organic C, and total clays.  

There was a significant correlation between %WSA and organic C (Fig. 5) before 

treatments were applied (p-value 0.02).  This correlation has been observed in similar 

studies linking organic matter to increases in soil aggregation (Tisdall and Oades, 1982).   

After treatment application there was no statistical relationship between %WSA and 

organic C (p-value 0.7) (Fig. 6).  Organic C showed a significant increase over time (p-

value <0.001) for all treatments but one (No Prep / Seed) rising from means of 3.5% to 

4.0% over the twelve month period (Fig. 7).  The cause for the increase over time is  
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Fig. 4.  The relationship of percent water stable aggregates (%WSA) with aggregate  

index.  ns = not significant. 
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Fig. 5.  The relationship between organic C and percent water stable aggregates  

(%WSA) before treatments were applied. 

* Significant at the 0.05 probability level. 
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Fig. 6.  The relationship between organic C and percent water stable aggregates  

(%WSA) 12 months after treatments were applied.  ns = not significant. 
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Fig. 7.  Levels of organic C over time.  Data are presented as mean ± one standard  

deviation. 
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uncertain but may be a function of sampling and/or quantification of organic C.  While it 

seems unlikely that such a significant increase is due to rainfall patterns, the possibility 

does exist.  Further, there were no significant correlations between %WSA and total 

clays before and after application of treatments with R
2
 values of 0.001 and 0.001, 

respectively.  Additionally, there was a negative relationship between %WSA and total 

sands before treatments were applied (p-value 0.09).  One year later %WSA was still 

negatively related to total sands (p-value 0.053). 

The decrease in %WSA seems logical given the fact that tillage was administered 

which would break up aggregates.  Wright et al. (1999) examined the differences in no 

tillage systems and tillage systems and saw significantly higher values for aggregate 

stability with no-tillage.  This suggests that tillage can significantly decrease aggregate 

stability which was confirmed by this study.  It is well known that tillage systems 

contain less soil organic C compared to similar no-till systems.  This study showed an 

increase in organic C over time even under the application of a tillage practice.  This 

anomaly could be explained by the amount of precipitation received at the study site or 

sampling differences.  The initial soil sampling was done prior to creation of plots and 

treatment application during a hot, dry summer (Fig. 1).  Soil samples for %WSA and 

organic C were taken one year later during an unusually wet summer (Fig. 1).  The 

increase in precipitation could have spurred the growth of vegetation, creating more 

organic matter for the soil.  Additionally, there could be differences in how samples 

were taken between plots and years which could artificially inflate values for organic C.  

Because increases in organic C were observed among all treatments, it is not probable 
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that fertility treatments, either inorganic or organic, were responsible.  As %WSA and 

organic C were correlated before treatments but not after suggests that the increase in 

organic C and decrease in %WSA disrupted the relationship that previously existed.  

The lack of correlation between %WSA and total clays seems illogical but may 

be explained by the aggregate size measured.  As clays are important for developing 

strong aggregate stability, perhaps there exist better correlations between clay and 

%WSA of other size classes of aggregates besides the macroaggregate fraction 

measured. 

 

Soil Infiltration 

 The study plots were established and treatments applied prior to the 

commencement of this research project.  Therefore, infiltration rates were measured one 

year after treatments were applied.  Rates of infiltration were highest at 5 min and 

decreased until equilibrium was achieved, typically after 30 min with a few plots taking 

longer (Appendix E).  Therefore, discussions that follow will use the rate at 30 min as 

the determined rate.  The means and standard deviations for infiltration rates of each 

treatment are summarized in Table 5.  The treatment with the highest rate of infiltration 

was the Site Prep / Fertilizer / No Seed treatment at 4.9 cm hr
-1

 (Fig. 8) while the lowest 

rate was the Site Prep / Compost / No Seed treatment at 2.1 cm hr 
-1

 (Fig. 9).  The 

infiltration rates for the remaining treatments are illustrated in Figs. 10-15.  Statistically 

there were no significant differences among treatments for infiltration rates at a 95% 

confidence level (p-value 0.20). 
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Table 5.  Means and standard deviation of infiltration rates of soils one year after  

application of treatments. 

 
†
Rate at 30-min after runoff is observed. 

Treatments Infiltration Rates
†
 

  
------cm hr

-1
------ 

Site Prep / Seed 2.7 ± 0.48 

Site Prep / No Seed 2.4 ± 0.89 

Site Prep / Compost / Seed 2.2 ± 1.6 

Site Prep / Compost / No Seed 2.1 ± 1.2 

Site Prep / Fertilizer / Seed 4.0 ± 1.1 

Site Prep / Fertilizer / No Seed 4.9 ± 1.6 

No Prep / Seed 2.4 ± 1.9 

No Prep / No Seed 2.3 ± 1.0 
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Fig. 8.  Infiltration rate over time for the Site Prep / Fertilizer / No Seed treatment.  Each  

point is the mean for the three replicates ± one standard deviation. 
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Fig. 9.  Infiltration rate over time for the Site Prep / Compost / No Seed treatment.   

Each point is the mean for the three replicates ± one standard deviation. 
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Fig. 10.  Infiltration rate over time for the No Prep / No Seed treatment.  Each point is  

the mean of the three replicates ± one standard deviation. 
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Fig. 11.  Infiltration rate over time for the No Prep / Seed treatment.  Each point is the  

mean of the three replicates ± one standard deviation. 
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Fig. 12.  Infiltration rate over time for the Site Prep / Compost / Seed treatment.  Each  

point is the mean of the three replicates ± one standard deviation. 
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Fig. 13.  Infiltration rate over time for the Site Prep / Fertilizer / Seed treatment.  Each  

point is the mean of the three replicates ± one standard deviation. 
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Fig. 14.  Infiltration rate over time for the Site Prep / No Seed treatment.  Each point is  

the mean of the three replicates ± one standard deviation. 
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Fig. 15.  Infiltration rate over time for the Site Prep / Seed treatment.  Each point is the  

mean of the three replicates ± one standard deviation. 
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It was determined that infiltration rates were not correlated to levels of TG  

(p-value 0.9) nor %WSA (Fig. 16 and 17).  The %WSA after treatments were applied 

yielded a slightly negative relationship with infiltration rates that was not significant 

(p-value 0.09), but Fig. 17 shows how narrow the range in values for %WSA were.  

Similarly, the correlation between infiltration rates and organic C (Fig. 18) was not 

significant at the 95% confidence level (p-value of 0.09).  Total clays were not 

correlated to infiltration rates at a 95% confidence level (p-value 0.11).   

These results are contrary to those discussed in much of the literature regarding 

infiltration rates and aggregate stability (Bissonnais and Arrouays, 1997).  This 

inconsistency may be the result of other factors influencing infiltration rates.  Bissonnais 

and Arrouays (1997) suggest that specific portions of the organic pool might be the main 

agent in stabilizing soils and that the measurement of total organic C may not be 

discriminating enough.  Furthermore, the uniformity of organic C across the plots may 

explain the lack of differences in infiltration rates.  Figure 18 illustrates the relationship 

between infiltration rates and organic C, which was not significant (p-value 0.09).  

Organic C plays a direct role in aggregate stability thus an indirect role in infiltration 

(Bissonnais, 1996).  If there is a narrow range of values for organic C across the plots 

then it stands to reason that infiltration rates would not be significantly different either, 

especially since there were no significant differences in %WSA. 

The flexible metal frame used to contain the runoff beneath the rainfall simulator 

did not give a uniform area across all plots so it was necessary to determine if a bias 

existed between infiltration rates and the variability of the frame area.  A scatter diagram  
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Fig. 16.  Scatter diagram between total glomalin and infiltration rates. 

ns = not significant. 
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Fig. 17.  Scatter diagram between aggregate stability (%WSA) and infiltration rates. 

 ns = not significant. 
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Fig. 18.  Scatter diagram between organic C and infiltration rates one year after  

treatments were applied.  ns = not significant. 



 48 

of area with infiltration rate is presented in Fig. 19.  The grid size frame area was not 

correlated to infiltration rate at the 95% confidence level but a weak relationship did 

exist (p-value 0.07).  Additionally, there were no significant differences between 

treatments for grid size (p-value 0.65).  This indicates that while the frame was not of 

uniform size across plots, its size was not a significant consideration. 

 

Glomalin 

 Levels of total glomalin (TG) were measured before treatments were applied and 

one year after application of treatments.  Before treatments were applied the highest 

values were the No Prep / Seed treatments with a concentration of 1820 mg kg
-1

 while 

the lowest value was 1530 mg kg
-1

 on the Site Prep / Compost / No Seed treatment 

(Table 6).  One year after treatments were applied, the plot with the highest quantity of 

glomalin was the Site Prep / Compost / Seed treated plot while the lowest concentration 

of TG was found on the Site Prep / Fertilizer / Seed plot.  The concentrations were 2630 

mg kg
-1

 and 2030 mg kg
-1

 respectively (Table 6).  Total glomalin concentrations before 

treatments were significantly different at a 95% confidence level (p-value 0.035); 

however, there was no significant difference among treatments one year after treatments 

were applied (p-value 0.14).  Comparing TG levels before and after treatments were 

applied showed highly significant changes (p-value <0.001) with every treatment 

showing a significant increase over time (Fig. 20). 

 Previous studies have shown significant correlations between glomalin and a 

variety of soil properties including organic C and %WSA (Wright et al., 1999).  Wright  
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Fig. 19.  Scatter diagram between the area used for infiltration that was enclosed in the  

flexible frame (grid size) and infiltration rate.  ns = not significant. 
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Table 6.  Glomalin means and standard deviations for plots of each treatment before and  

after application of amendments. 

  

 
†
Superscripts within a column indicate means that are the same group at the 95%  

confidence level.  ns = not significant. 

Treatments 
Before (July 06) After (July 07) 

  Mean           Std Dev   Mean           Std Dev 

 ----------------------mg kg
-1

---------------------- 

Site Prep / Seed 1580
b†

 71 2090
ns 

391 

Site Prep / No Seed 1690
ab

 203 2280
ns 

27 

Site Prep / Compost / Seed 1770
a
 148 2630

ns 
385 

Site Prep / Compost / No Seed 1530
b
 110 2230

ns 
389 

Site Prep / Fertilizer / Seed 1640
ab

 44 2030
ns 

395 

Site Prep / Fertilizer / No Seed 1790
a
 80 2260

ns 
161 

No Prep / Seed 1820
a
 88 2210

ns 
163 

No Prep / No Seed 1780
a
 139 2440

ns 
26 
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Fig. 20.  Changes in total glomalin over time for each treatment.  Data are presented as  

mean ± one standard deviation. 
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and Upadhyaya (1998) demonstrated TG was positively correlated to aggregate stability 

using 37 different soils with varying cropping histories.  Additionally, Franzluebbers et 

al. (2000) showed that soil organic C was highly correlated to TG in the Southern 

Piedmont on soils that varied by grazing regime and land management practices.  The 

results of this study also confirm these relationships.  Total glomalin values from before 

and after treatment applications combined were significantly correlated to combined 

organic C values (p-value <0.001)(Fig. 21).  The slopes from before treatments and after 

treatments were statistically the same (p-value <0.001), indicating that the relationship 

between organic C and TG remained the same over time.  However, the relationships 

between glomalin and %WSA changed over time (Fig. 22 and 23).  Before the 

treatments were applied, there was no correlation (Fig. 22) (p-value 0.89), but one year 

after treatments were applied, there was a significant positive correlation (Fig. 23) 

(p-value <0.01).  The correlation between aggregate stability and glomalin after 

treatments were applied is verified in much of the literature; however, it is unclear why 

this relationship was not observed before treatments were applied (Franzluebbers et al., 

2000; Wright et al., 1999; Wright and Upadhyaya, 1998).  The aggregates measured in 

this study were all >250µm which may suggest that TG was not associated with these 

larger aggregates but perhaps with another aggregate size class.  Furthermore, Wright 

and Upadhyaya (1998) found that %WSA was better correlated to IREEG rather than 

TG which was the fraction measured in this study.  

The values observed for TG are similar to values reported in the literature.  

Wright and Upadhyaya (1998) found TG levels as high as 2000 mg kg
-1

 in soils from  
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Fig. 21.  The relationship between organic C and levels of total glomalin using combined  

data from before and after treatments were applied.   

** Significant at the 0.01 probability level. 
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Fig. 22.  The relationship between glomalin and aggregate stability (%WSA) before  

treatments were applied.  ns = not significant. 
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Fig. 23.  The relationship between glomalin and aggregate stability (%WSA) after  

treatments were applied.  

* Significant at the 0.05 probability level. 
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Texas.  These soils were similar to the Fort Hood soils in amount of carbonates and pH, 

but had less organic C.  Additionally, they observed TG levels in excess of 14,000  

mg kg
-1

 on soils taken from Scotland that had similar organic C levels but lower pH 

values.  The increase in glomalin over time may be a function of precipitation.  Samples 

for TG from before application of treatments were taken during a dry summer compared 

to the subsequent year which was wetter.  The increase in rainfall over time could have 

increased vegetation, which theoretically would create the potential for increased 

glomalin production, given that glomalin is a product of AMF that colonize the roots of 

plants.  However, current literature does not address the time-scale for glomalin 

production and direct response to rainfall patterns. 

 

Soil Fertility 

 The main factor in this study was the kind and amount of soil amendment being 

applied.  Some treatments included organic composted dairy manure while others 

received inorganic fertilizer.  Therefore, it was vital to measure the level of nutrients in 

the soil to determine if there were any antecedent deficiencies and to understand the role 

that these amendments may have played in altering levels of glomalin.  Soil samples 

gathered from the plots before treatments were applied and samples taken one year later 

were analyzed for a number of soil nutrients (Table 7).  These nutrients included nitrate-

N, P, K, Ca, Mg, S, Na, Fe, Zn, Mn, and Cu.  Only nitrate-N, P, and Fe were analyzed 

statistically because all other nutrient levels were deemed acceptable for adequate 

agronomic plant growth. 
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Table 7.  Means for available P and Fe before treatments were applied. 

 

 

†
 Superscripts within a column indicate means that are the same group at the 95%     

confidence level. 

 

 

Treatments Nutrients 

 
P Fe 

 
-----------mg kg

-1
----------- 

Site Prep / Seed 
          6.7

ab†
           8.2

ab†
 

Site Prep / No Seed 
          6.0b

c
           9.3

a
 

Site Prep / Compost / Seed 
          5.7

bcd
           8.6

a
 

Site Prep / Compost / No Seed 
          4.7

d
           6.7

c
 

Site Prep / Fertilizer / Seed 
          5.3

cd
           7.2

bc
 

Site Prep / Fertilizer / No Seed 
          7.3

a
           6.8

bc
 

No Prep / Seed 
          4.7

d
           6.5

c
 

No Prep / No Seed 
          5.0

cd
           7.0

bc
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Statistically there were no differences in nitrate-N levels across all plots before 

treatments were applied (p-value 0.42) or after (p-value 0.85).  However, both P and Fe 

had significant differences among the plots before any treatments were applied with p-

values of 0.002 and 0.005 respectively (Table 7).  This might suggest that there were 

differences to begin with that may have masked any real changes observed during the 

study.  However, one year later the differences among the plots were non-significant for 

any nutrient.  This indicates that levels of nutrients probably did not hinder or alter any 

differences that were observed for aggregate stability, infiltration rates, or TG.  Over 

time only three treatments showed significant changes in levels of nutrient for P.  These 

treatments included Site Prep / Fertilizer / Seed, Site Prep / Compost / Seed, and Site 

Prep / Compost / No Seed (Fig. 24).  For Fe there were also three treatments with 

significant changes, which included Site Prep / Compost / Seed, Site Prep / Fertilizer / 

Seed, and No Prep / No Seed treatments (Fig. 25).  Statistically NO3-N did not change 

over time with a p-value of 0.73. 

 Since Wright and Upadhyaya (1998) found that glomalin was not as abundant in 

high pH soils with low Fe levels, the relationship of extractable Fe and TG was 

considered.  Statistically there was no correlation (p-value 0.37) in this study across all 

treatment plots and all levels of TG.  It appears initially that glomalin is unaffected by Fe 

levels in these soils.  However, the range in extractable Fe was rather narrow in the 

study, and all of the soils were calcareous. 
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Fig. 24.  Levels of available P over time.  Data are presented as mean ± one standard  

deviation. 
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Fig. 25.  Levels of available Fe over time.  Data are presented as mean ± one standard  

deviation . 
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Given the amount of nutrients that were applied during this study, it is surprising 

how low some of the nutrient levels were.  Phosphorus levels across all plots averaged 

9.3 mg kg
-1

 for samples taken one year after application while nitrate-N averaged 6.5  

mg kg
-1

 and Fe averaged 11.0 mg kg
-1

.  The values for N and P are low considering 322 

kg ha
-1

 of total N and 211 kg ha
-1

 of total P were applied with organic compost and 351 

kg ha
-1

 total N and 68 kg ha
-1

 total P were applied with the inorganic fertilizer.  These 

soils appear to be so deficient in available P that even when high amounts are added the 

soil reacts with the P and buffers it against changes in available P levels to the point that 

there is little extra P to aid in plant growth.  The high amounts of Ca as both 

exchangeable Ca and as calcite in the soils are reacting with the applied P to make it 

unavailable.  This is possibly a reversion to forms of P similar to apatite (Appendix D).   

Nitrogen levels were also quite low given the amount of nutrient that was 

applied.  Potential explanations for these low levels are losses from NH3 volatilization, 

leaching of NO3
-
, and denitrification.  Applying NH4

+
-containing fertilizers to calcareous 

soils like the ones on Fort Hood can result in volatilization of NH3.  This is generally 

greater with liquid fertilizers and with urea fertilizers.  Additionally, NO3
-
 is susceptible 

to leaching especially during periods of high water movement as was the case 

throughout this study.  Lastly, losses of N from denitrification are possible when soils 

are waterlogged creating anaerobic conditions.  While the losses from any one of these 

cases are probably not great, collectively the potential for losses of N are plausible which 

may explain the low N levels found on these soils.  
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Additional Sites 

 In an effort to expand the soil base studied on Fort Hood, a variety of compacted 

soils were included for aggregate stability, infiltration, and glomalin from other training 

areas.  These sites were chosen to illustrate the range of compaction and degradation that 

is found throughout Fort Hood. The same procedures and techniques utilized for the plot 

study were used for the ten supplemental sites which included nine major soil series.  In 

addition, rates of infiltration were compared against values reported by NRCS (USDA, 

1985).  Such values are commonly used for modeling runoff and erosion. 

The additional soils evaluated showed differences in many soil properties 

including texture, organic C, bulk density, and CCE (Appendix D).   Textural classes 

varied from a silt loam to a silty clay.  Organic C ranged from 0.55% at site 10 to 3.55% 

at site 8.  Additionally, bulk density (0.33 bar) ranged from 1.07 g cm
-3

 at site 6 to 1.52 g 

cm
-3

 at site 5, while CCE varied between 6.5% and 64.3% at sites 10 and 5, respectively.   

Measured rates of infiltration were within the ranges reported by NRCS in four of the 

soils (2,3,5,8) and was of a greater infiltration rate for five of the soils (1,4,6,7, and 9) 

(Table 8).  In only case (Cisco series) was the infiltration rate determined to be lower 

than the range reported by NRCS.   

Values for %WSA (Table 9) ranged from a minimum of 37% at site 10 to a 

maximum of 73% at sites 7 and 8.  This difference was to be expected given the 

differences in soil characteristics among sites including texture, organic C, and bulk  
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Table 8.  Reported rates of infiltration from the Natural Resources Conservation Service  

(NRCS) and observed rates of infiltration.  NRCS rates were taken from the soil  

survey for Coryell County (USDA, 1985).  

 

  ---------------------NRCS Values--------------------- -----Observed Values----- 

Sites Map Unit Major Series 

Infiltration 

Rate 

Infiltration 

Rate Std Dev 

   ----------------------cm hr
-1

---------------------- 

1 NuC Nuff 0.51-1.52 4.5 0.71 

2 LeB Lewisville 1.52-5.08 2.3 1.9 

3 BtC2 Brackett 1.52-5.08 2.6 1.4 

4 TpC Topsey 1.52-5.08 6.1 0.70 

5 BtC2 Brackett 1.52-5.08 3.6 0.12 

6 EvB Evant 0.51-1.52 2.4 0.85 

7 SlB Slidell <0.15 3.5 0.69 

8 ChB Cho 1.52-5.08 4.8 0.42 

9 DrC Doss 0.51-1.52 2.7 1.5 

10 CoB2 Cisco 5.08-15.24 1.3 0.81 
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Table 9.  Aggregate stability, infiltration rates, and total glomalin values for the  

additional sites at Fort Hood.  Each value represents the mean value for the site. 

 

Site # WSA Infiltration Glomalin 

 ---%--- ---cm hr
-1

--- ---mg kg
-1

--- 

1 70 4.5
abc†

 710 

2 64 2.3
cd

 2420 

3 66 2.6
cd

 570 

4 65 6.1
a
 2680 

5 57 3.6
bc

 1600 

6 65 2.4
cd

 670 

7 73 3.5
bcd

 3420 

8 73 4.8
ab

 4700 

9 64 2.7
bcd

 2930 

10 37 1.3
d
 380 

 

†
 Superscripts within a column indicate means that are the same group at the 95%  

confidence level. 
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density.  Values of %WSA were highly correlated to organic C (p-value <0.001) as 

shown in Fig. 26.  This suggests that organic C plays a major role in the stability of soil 

peds or that it can be used to predict %WSA.  Published research supports both increases 

and decreases in %WSA with corresponding increases in organic C (Amézketa, 1999).  

This research indicates a positive correlation between the two.  However, a relationship 

did not exist between %WSA and total clays (p-value 0.11). 

Infiltration rates were significantly different across the sites (p-value 0.02).  The 

greatest rate was 6.1 cm hr
-1

 and the lowest rate was 1.3 cm hr
-1

 for sites 4 and 10 

respectively (Table 9).  Aggregate stability was correlated to infiltration rates (Fig. 27) 

using data across all the additional sites (p-value 0.03).  Infiltration rates were also 

correlated to organic C levels (Fig. 28) but not total clays (p-value 0.03 and 0.77, 

respectively).  This would suggest that organic C accounts for more of the variability in 

infiltration rates as opposed to total clays.  Similar to the plot study, an ANOVA was 

used to compare changes in the grid size and rates of infiltration.  There were no 

significant differences between sites for grid size (p-value 0.96), and grid size was not 

effecting infiltration rate.  This supports the assumption that differences in infiltration 

rates were not a factor of changes in the size of the grid used for measurements. 

The additional sites studied showed a wide range in values of TG from 380 mg 

kg
-1

 at site 10 to 4700 mg kg
-1

 at site 8 (Table 9).  Further, there was a positive 

correlation between %WSA and TG across all sites with a p-value of 0.02 (Fig. 29).  

Similarly, the relationship between log transformed TG and infiltration rates (Fig. 30) of 

all sites was significant (p-value 0.04).   Also, TG was positively correlated to organic C  
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Fig. 26.  The relationship between organic C and aggregate stability for the additional  

study soils.   

** Significant at the 0.01 probability level. 
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Fig. 27.  The relationship between infiltration rates and aggregate stability for the  

additional sites study.   

* Significant at 0.05 probability level. 
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Fig. 28.  Scatter diagram between organic C and infiltration rates for all additional sites. 

      * Significant at the 0.05 probability level. 
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Fig. 29.  The relationship of aggregate stability to glomalin for the additional sites  

study.   

* Significant at the 0.05 probability level. 
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Fig. 30.  The relationship of infiltration rate and log transformed glomalin for the  

additional sites study.   

* Significant at the 0.05 probability level. 
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(p-value <0.001) including the plot data (Fig. 31), but not to total clays (p-value 0.4).  

The relationship between TG and organic C is no surprise considering TG is a product of 

AMF that colonize plant roots.  Therefore, if there is more root biomass there should be 

more glomalin present and similarly there should be higher levels of organic C.  
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Fig. 31.  A comparison between glomalin and organic C including both the study plots  

and the additional sites.   

** Significant at the 0.01 probability level.   
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CONCLUSIONS 

 

 Attempting to improve soil properties with soil amendments is a common and 

often effective practice (Haynes and Naidu, 1998; Celik et al., 2004).  This study was 

designed to assess the efficacy of soil amendments in improving soil infiltration rates 

through increased aggregate stability. Additionally, glomalin has been extensively 

studied and shown to be correlated to aggregate stability which suggests that increasing 

levels of glomalin could alter aggregate stability and improve infiltration rates.  

Therefore, it was important to determine what effect, if any, the prescribed soil 

amendments would have upon glomalin. 

 The results from this research project indicate that none of the treatments 

significantly altered soil physical conditions.  Aggregate stability overall decreased over 

time with the exception of two treatments.  This suggests that the treatments were not 

beneficial in improving aggregate stability.  The decrease in values is probably due to 

the effects of tillage administered to the plots.  Furthermore, all treatments had 

significant increases in levels of TG but were not significantly different from one 

another, indicating that the treatments themselves were not influential in changing TG 

over time.  Observed increases in TG could be a result of rainfall and/or sampling 

techniques over time.  Furthermore, aggregate stability as measured by %WSA was not 

correlated to AI.  This relationship has not been evaluated in the literature and was not 

significant in this study. 
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 Organic C plays an important role in the formation and stabilization of soil 

aggregates (Jastrow and Miller, 1997).  As the major binding agent in aggregates, it is 

important to understand how organic C related to the soil properties measured in this 

study.  Organic C increases were observed for all treatments except the No Prep / Seed 

plot.  However, these increases were not correlated to infiltration rates or %WSA after 

treatments were applied.  They were positively correlated to TG, which is no surprise 

given the origin of TG. 

There were few significant correlations among soil parameters in this study.  

Perhaps extending the study might improve relationships between soil characteristics by 

allowing more time for soil processes to respond to the soil amendments.  Infiltration 

rates showed no significant correlations with any soil physical properties measured.  

Total glomalin was positively correlated to aggregate stability one year after treatments 

were applied but not before treatments were applied.  Overall, a time frame of only one 

year may not be long enough for biotic and abiotic processes to differentiate among 

treatments.  Future sampling and analyses may reveal correlations that are now too 

subtle to detect. 

Examining the results from the additional sites indicates positive correlations 

between TG, %WSA, and organic C.  This suggests that organic C is vital to the stability 

of the soils of Fort Hood.  The values of organic C observed are probably responsible for 

the relatively „normal‟ rates of infiltration.  Given the amount of compaction observed 

visually and use the soils of Fort Hood receive, it would seem that lower infiltration rates 

would have been observed, however this was not the case.  Therefore, by maintaining 
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high levels of organic C, Fort Hood may sustain levels of TG and %WSA which could 

reduce runoff and erosion problems that might otherwise occur.  Additionally, the 

observed rates of infiltration were either similar or slightly higher than rates reported by 

NRCS with the exception of a couple of sites.  This gives confidence that NRCS is 

utilizing proper values of infiltration rates for creation of runoff and erosion models. 
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APPENDIX A 

 

 

SOIL CHARACTERIZATION DATA FOR STUDY PLOTS 

 

(BEFORE TREATMENTS) 
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 Particle Size Distribution (mm)    

 ---------------------Sand-------------------- -------Silt-------- ---------Clay---------    

 VC C M F VF Total Fine Total Fine Total Texture Coarse  Organic 

 (2.0- (1.0- (0.5- (0.25- (0.10- (2.0- (0.02- (0.05-   Class Fragments C 

 1.0) 0.5) 0.25) 0.10) 0.05) 0.05) 0.002) 0.002) (<0.0002) (<0.002)    

Treatments ----------------------------------------------------%---------------------------------------------------------   % % 

Site Prep / No Seed 1.1 1.2 1.1 1.8 3.7 8.9 31.2 46.2 16.9 44.9 SiC 1 3.37 

Site Prep / No Seed 0.8 0.9 1.0 1.7 3.6 8.0 31.9 49.1 13.7 42.9 SiC 1 3.36 

Site Prep / No Seed 1.1 1.0 1.0 1.9 4.2 9.2 34.9 49.7 12.7 41.1 SiC 2 3.01 

Site Prep / Seed 0.4 0.6 1.0 1.8 4.2 8.0 33.0 48.2 15.9 43.8 SiC 0 3.36 

Site Prep / Seed 0.5 0.7 0.9 1.8 3.7 7.6 31.8 48.6 13.3 43.8 SiC 1 3.66 

Site Prep / Seed 0.8 1.0 1.3 2.5 4.7 10.3 29.7 46.2 11.7 43.5 SiC 3 3.25 

Site Prep / Fertilizer / No Seed 0.5 0.9 1.1 2.1 4.2 8.8 32.6 49.6 13.0 41.6 SiC 1 3.68 

Site Prep / Fertilizer / No Seed 1.2 1.0 1.0 1.7 3.7 8.6 33.4 47.9 13.4 43.5 SiC 2 3.73 

Site Prep / Fertilizer / No Seed 0.6 1.4 1.5 3.1 5.0 11.6 35.4 47.2 12.5 41.2 SiC 3 2.85 

Site Prep / Fertilizer / Seed 0.6 1.4 1.4 2.5 4.4 10.3 32.4 46.4 15.8 43.3 SiC 1 3.54 

Site Prep / Fertilizer / Seed 1.0 1.2 1.3 2.6 4.7 10.8 33.0 44.4 13.7 44.8 SiC 1 3.24 

Site Prep / Fertilizer / Seed 0.9 1.4 1.9 3.7 6.0 13.9 37.7 49.0 11.0 37.1 SiCL 1 2.92 

Site Prep / Compost / No Seed 0.7 1.2 1.5 2.5 3.8 9.7 32.6 45.3 15.5 45.0 SiC 0 3.81 

Site Prep / Compost / No Seed 0.9 1.2 1.2 2.3 4.0 9.6 32.1 42.4 18.3 48.0 SiC 1 3.45 

Site Prep / Compost / No Seed 1.5 1.4 1.3 2.5 4.4 11.1 31.3 45.5 13.2 43.4 SiC 3 3.24 

Site Prep / Compost / Seed 0.7 0.9 1.0 1.7 3.6 7.9 31.6 42.6 19.4 49.5 SiC 1 3.75 

Site Prep / Compost / Seed 0.5 0.6 0.8 1.6 3.6 7.1 32.5 49.2 13.0 43.7 SiC 1 3.65 

Site Prep / Compost / Seed 0.4 0.8 0.8 2.1 4.8 8.9 35.0 52.1 10.2 39.0 SiCL 1 3.35 

No Prep / No Seed 0.7 0.8 0.8 1.6 3.5 7.4 31.6 45.2 18.5 47.4 SiC 1 3.81 

No Prep / No Seed 0.4 0.7 0.8 1.7 4.0 7.6 32.2 46.1 16.0 46.3 SiC 1 3.75 

No Prep / No Seed 0.5 0.8 1.0 2.0 3.8 8.1 32.7 46.1 11.7 45.8 SiC 2 3.37 

No Prep / Seed 0.5 0.9 1.5 2.8 5.3 11.0 33.2 49.6 13.5 39.4 SiCL 1 3.60 

No Prep / Seed 0.3 0.7 0.9 2.0 4.2 8.1 33.6 50.0 12.3 41.9 SiC 1 3.80 

No Prep / Seed 0.7 0.7 0.9 2.0 4.0 8.3 31.2 48.5 13.6 43.2 SiC 2 4.46 
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  pH NH4OAc EXTR BASES NaOAc BASE   Calcite Dolomite CCE 

 (H2O) Ca Mg Na K Total CEC SAT ESP    

Treatments 1:1 ---------------------Meq 100 g
-1

 ------------------------ -------%-------- ---------------%------------- 

Site Prep / No Seed 7.7 66.9 2.2 0.0 1.2 70.3 53.0 100 0 20.2 3.4 23.9 

Site Prep / No Seed 7.7 66.4 2.9 0.1 1.2 70.6 52.0 100 0 22.9 2.3 25.4 

Site Prep / No Seed 7.8 65.8 2.9 0.1 0.9 69.7 45.2 100 0 28.1 2.1 30.4 

Site Prep / Seed 7.8 66.8 1.8 0.0 1.0 69.6 48.2 100 0 24.4 2.4 27.0 

Site Prep / Seed 7.8 67.9 3.1 0.1 1.1 72.2 53.6 100 0 20.3 2.0 22.5 

Site Prep / Seed 7.8 70.9 2.9 0.1 1.1 75.0 53.4 100 0 20.6 1.9 22.7 

Site Prep / Fertilizer / No Seed 7.8 71.0 1.9 0.1 1.3 74.3 49.6 100 0 20.2 3.2 23.7 

Site Prep / Fertilizer / No Seed 7.7 72.9 3.2 0.1 1.2 77.4 51.9 100 0 23.5 2.0 25.8 

Site Prep / Fertilizer / No Seed 7.9 69.3 2.5 0.1 0.9 72.8 43.7 100 0 27.1 2.1 29.5 

Site Prep / Fertilizer / Seed 7.8 70.5 1.8 0.0 1.2 73.5 47.8 100 0 24.1 1.8 26.1 

Site Prep / Fertilizer / Seed 7.8 71.3 3.0 0.1 1.1 75.5 47.7 100 0 25.5 1.9 27.6 

Site Prep / Fertilizer / Seed 7.9 60.0 2.1 0.1 0.9 63.1 40.0 100 0 32.2 1.2 33.5 

Site Prep / Compost / No Seed 8.0 70.5 2.2 0.1 1.4 74.2 52.3 100 0 18.8 2.1 21.1 

Site Prep / Compost / No Seed 7.7 72.0 2.7 0.1 1.0 75.8 50.2 100 0 24.0 2.2 26.4 

Site Prep / Compost / No Seed 7.8 71.2 2.9 0.2 1.1 75.4 51.3 100 0 21.5 1.7 23.3 

Site Prep / Compost / Seed 7.7 69.5 2.7 0.1 1.1 73.4 51.9 100 0 19.9 2.2 22.3 

Site Prep / Compost / Seed 7.7 72.5 3.2 0.1 1.3 77.1 51.0 100 0 18.3 3.6 22.2 

Site Prep / Compost / Seed 7.8 70.7 2.7 0.1 1.0 74.5 46.7 100 0 23.8 3.1 27.1 

No Prep / No Seed 7.6 72.5 3.0 0.1 1.2 76.8 52.9 100 0 19.3 3.4 23.0 

No Prep / No Seed 7.7 73.0 2.6 0.1 1.3 77.0 53.5 100 0 19.3 2.2 21.7 

No Prep / No Seed 7.8 73.4 3.0 0.1 1.2 77.7 54.3 100 0 18.4 2.5 21.1 

No Prep / Seed 7.8 69.5 1.5 0.0 1.1 72.1 42.7 100 0 29.0 1.8 31.0 

No Prep / Seed 7.8 71.6 3.0 0.1 1.2 75.9 50.8 100 0 21.7 2.6 24.5 

No Prep / Seed 7.6 72.2 3.4 0.1 1.3 77.0 57.2 100 0 13.8 2.8 16.9 
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APPENDIX B 

 

SOIL CHARACTERIZATION DATA FOR STUDY PLOTS 

 

(AFTER TREATMENTS) 
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 Particle Size Distribution (mm)    

 ---------------------Sand-------------------- -------Silt-------- ---------Clay---------    

 VC C M F VF Total Fine Total Fine Total Texture Coarse  Organic 

 (2.0- (1.0- (0.5- (0.25- (0.10- (2.0- (0.02- (0.05-   Class Fragments C 

 1.0) 0.5) 0.25) 0.10) 0.05) 0.05) 0.002) 0.002) (<0.0002) (<0.002)    

Treatments -------------------------------------------------------%------------------------------------------------------   % % 

Site Prep / No Seed 0.6 1.0 1.1 1.8 3.8 8.3 33.1 48.0 14.3 43.7 SiC 1 3.92 

Site Prep / No Seed 0.9 0.9 1.1 1.9 3.6 8.4 34.7 50.3 10.5 41.3 SiC 3 4.61 

Site Prep / No Seed 0.6 0.8 0.8 1.8 4.0 8.0 35.3 51.1 10.9 40.9 SiC 1 3.52 

Site Prep / Seed 0.3 0.8 1.0 1.9 4.2 8.2 33.6 51.4 12.2 40.4 SiC 0 4.03 

Site Prep / Seed 1.0 0.9 0.9 2.1 4.1 9.0 32.2 45.8 13.1 45.2 SiC 1 3.87 

Site Prep / Seed 1.0 0.9 1.0 2.5 5.8 11.2 30.5 46.2 14.0 42.6 SiC 3 3.21 

Site Prep / Fertilizer / No Seed 0.6 0.8 1.0 1.9 3.7 8.0 34.1 47.8 12.7 44.2 SiC 1 3.77 

Site Prep / Fertilizer / No Seed 0.5 0.5 0.9 1.8 3.9 7.6 35.1 51.9 13.6 40.5 SiC 0 4.19 

Site Prep / Fertilizer / No Seed 0.6 1.0 1.1 2.4 5.0 10.1 34.0 49.0 8.6 40.9 SiC 1 2.90 

Site Prep / Fertilizer / Seed 0.3 0.8 1.2 2.8 5.7 10.8 33.6 49.7 12.0 39.5 SiCL 0 4.35 

Site Prep / Fertilizer / Seed 0.6 0.6 0.6 1.6 3.8 7.2 34.0 50.0 12.1 42.8 SiC 1 3.67 

Site Prep / Fertilizer / Seed 0.4 0.9 1.1 2.5 5.1 10.0 36.3 49.7 9.1 40.3 SiC 1 2.98 

Site Prep / Compost / No Seed 0.6 1.1 1.2 2.8 5.7 11.4 33.0 48.3 11.2 40.3 SiC 1 3.19 

Site Prep / Compost / No Seed 0.3 0.7 1.1 2.3 4.4 8.8 33.7 48.7 15.9 42.5 SiC 1 4.95 

Site Prep / Compost / No Seed 0.4 0.8 1.2 2.7 4.5 9.6 32.8 44.6 15.4 45.8 SiC 1 3.87 

Site Prep / Compost / Seed 0.3 1.0 1.5 3.1 4.3 10.2 31.4 45.8 15.0 44.0 SiC 1 4.99 

Site Prep / Compost / Seed 0.3 0.7 0.9 2.0 3.9 7.8 30.8 47.8 14.2 44.4 SiC 1 4.80 

Site Prep / Compost / Seed 0.6 0.9 1.1 2.5 4.3 9.4 35.0 48.7 9.7 41.9 SiC 1 3.46 

No Prep / No Seed 0.4 0.9 1.0 2.0 3.7 8.0 30.4 45.5 18.2 46.5 SiC 1 4.34 

No Prep / No Seed 0.7 0.8 1.0 2.2 4.5 9.2 31.3 47.6 17.0 43.2 SiC 2 4.41 

No Prep / No Seed 0.7 0.9 1.0 2.1 4.1 8.8 33.9 49.0 13.2 42.2 SiC 1 4.81 

No Prep / Seed 0.4 0.6 0.9 1.9 3.9 7.7 31.3 48.2 17.0 44.1 SiC 1 4.15 

No Prep / Seed 0.2 0.9 1.8 3.9 6.6 13.4 32.4 50.4 12.7 36.2 SiCL 1 4.20 

No Prep / Seed 0.4 0.4 0.6 1.7 4.2 7.3 32.3 48.7 14.9 44.0 SiC 1 3.90 
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        Bulk Density   Water Content 

 Calcite Dolomite CCE 0.33 Bar Oven Dry COLE 0.33 Bar 

Treatments -----------------%--------------- --------g cm
-3

------- cm cm
-1

 -------Wt%------- 

Site Prep / No Seed 23.4 1.1 24.6 1.07 1.66 0.16 47.4 

Site Prep / No Seed 24.2 0.4 24.6 0.89 1.38 0.16 59.8 

Site Prep / No Seed 21.8 2.1 24.2 1.01 1.55 0.15 48.3 

Site Prep / Seed 22.3 1.8 24.2 0.91 1.44 0.17 60.5 

Site Prep / Seed 19.1 2.3 21.6 1.06 1.71 0.17 48.1 

Site Prep / Seed 20.3 2.5 23.0 1.10 1.60 0.13 44.2 

Site Prep / Fertilizer / No Seed 21.5 3.1 24.9 1.01 1.55 0.15 52.5 

Site Prep / Fertilizer / No Seed 23.1 2.1 25.4 1.00 1.49 0.14 48.8 

Site Prep / Fertilizer / No Seed 23.2 3.0 26.5 1.03 1.49 0.13 45.9 

Site Prep / Fertilizer / Seed 23.7 0.9 24.6 1.00 1.50 0.15 49.5 

Site Prep / Fertilizer / Seed 22.1 2.8 25.1 1.10 1.59 0.13 42.9 

Site Prep / Fertilizer / Seed 26.4 3.3 30.0 1.09 1.52 0.12 42.2 

Site Prep / Compost / No Seed 22.9 2.3 25.4 1.11 1.62 0.13 43.5 

Site Prep / Compost / No Seed 16.7 3.1 20.0 0.97 1.43 0.14 50.5 

Site Prep / Compost / No Seed 23.1 0.9 24.1 1.12 1.63 0.13 44.1 

Site Prep / Compost / Seed 19.4 2.6 22.2 0.99 1.56 0.16 52.4 

Site Prep / Compost / Seed 18.3 2.0 20.5 1.00 1.57 0.16 54.5 

Site Prep / Compost / Seed 23.7 0.5 24.2 1.05 1.57 0.14 46.4 

No Prep / No Seed 19.6 2.3 22.1 1.04 1.62 0.16 49.1 

No Prep / No Seed 17.8 1.0 18.9 1.00 1.56 0.16 48.8 

No Prep / No Seed 20.7 2.4 23.3 0.92 1.42 0.16 55.7 

No Prep / Seed 18.5 1.9 20.5 1.06 1.65 0.16 47.1 

No Prep / Seed 30.6 1.6 32.3 1.13 1.52 0.10 40.2 

No Prep / Seed 19.2 3.4 22.9 1.17 1.68 0.13 42.0 
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APPENDIX C 

 

SOIL CHARACTERIZATION DATA FOR ADDITIONAL SITES 



 

 

 
8
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 Particle Size Distribution (mm)    

 ---------------------Sand-------------------- -------Silt-------- ---------Clay---------    

 VC C M F VF Total Fine Total Fine Total Texture Coarse  Organic 

 (2.0- (1.0- (0.5- (0.25- (0.10- (2.0- (0.02- (0.05-   Class Fragments C 

 1.0) 0.5) 0.25) 0.10) 0.05) 0.05) 0.002) 0.002) (<0.0002) (<0.002)    

Site -------------------------------------------------------%------------------------------------------------------------   % % 

1 0.2 0.4 0.7 3.0 4.8 9.1 31.2 43.9 10.8 47.0 SiC 1 1.87 

2 0.7 1.4 2.1 8.4 8.5 21.1 24.3 37.3 16.0 41.6 C 3 2.10 

3 1.7 2.2 3.9 6.5 6.5 20.8 32.1 42.7 9.6 36.5 CL 13 1.18 

4 0.7 2.2 4.1 7.9 10.0 24.9 26.1 43.2 6.5 32.0 CL 2 2.28 

5 1.6 2.3 2.2 3.4 5.4 14.9 46.2 59.3 10.3 25.8 SiL 3 1.61 

6 0.7 0.9 1.0 1.9 3.5 8.0 27.9 42.1 8.0 49.9 SiC 2 1.95 

7 0.8 1.3 1.6 2.9 4.6 11.2 36.3 48.6 9.7 40.2 SiC 2 2.65 

8 2.5 3.1 3.6 5.5 6.3 21.0 29.7 46.6 7.7 32.4 CL 15 3.55 

9 1.3 3.4 5.7 9.2 8.5 28.1 33.5 50.3 4.8 21.6 SiL 12 2.48 

10 0.5 0.5 1.1 37.8 24.6 64.5 6.2 12.7 16.6 22.8 SCL 2 0.55 
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  pH NH4OAc EXTR BASES NaOAc BASE Calcite Dolomite CCE Bulk Density   

 (H2O) Ca Mg Na K Total CEC SAT    0.33 Bar Oven Dry COLE 

Treatments 1:1 ---------------------Meq 100 g
-1

 ------------------------ ---%--- ---------------%------------- --------g cm
-3

------- cm cm
-1

 

1 7.9 48.4 1.4 0.1 1.1 51.0 51.7 99 18.5 3.2 22.1 1.09 1.56 0.13 

2 7.9 47.3 1.6 0.1 1.3 50.3 40.9 100 18.2 3.3 21.8 1.11 1.52 0.11 

3 8.1 35.3 0.8 0.1 0.4 36.6 19.5 100 60.4 0.7 61.3 1.25 1.37 0.03 

4 8.0 35.3 1.1 0.1 0.5 37.0 25.6 100 52.4 1.4 53.9 1.17 1.40 0.06 

5 8.0 35.2 1.0 0.1 0.3 36.6 15.3 100 62.8 1.3 64.3 1.52 1.68 0.03 

6 7.9 61.7 2.5 0.1 1.0 65.3 60.7 100 7.3 1.8 9.2 1.07 1.60 0.14 

7 7.8 47.5 1.6 0.1 0.7 49.9 37.7 100 42.4 1.4 43.9 1.27 1.63 0.09 

8 7.9 48.3 3.0 0.1 0.7 52.1 48.6 100 22.2 3.5 26.0 1.23 1.65 0.10 

9 8.0 35.3 0.9 0.2 0.4 36.8 18.4 100 58.3 0.8 59.2 1.49 1.61 0.03 

10 8.1 36.0 1.3 0.1 0.5 37.9 16.5 100 5.2 1.1 6.5 1.40 1.65 0.06 
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APPENDIX D 

 

NUTRIENT DATA FOR STUDY PLOTS 

 

(BEFORE AND AFTER TREATMENTS) 
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Treatments pH Conductivity NO3
-
N P K Ca Mg S Na Fe Zn Mn Cu 

Before   µmhos cm
-1 

-------------------------------------------------mg kg
-1

------------------------------------------------- 

Site Prep / Seed 7.9 426 3 7 334 14044 277 19 179 8.4 0.32 6.08 1.09 

Site Prep / Seed 7.8 418 8 6 387 13663 338 21 196 9.2 0.37 5.00 1.00 

Site Prep / Seed 8.0 412 9 7 373 14323 309 24 184 6.8 0.48 4.31 0.79 

Site Prep / No Seed 7.9 422 7 5 311 15171 209 18 192 9.2 0.26 4.56 1.01 

Site Prep / No Seed 7.9 429 5 6 378 14959 229 19 189 9.0 0.32 4.95 1.20 

Site Prep / No Seed 7.9 454 8 7 307 13889 239 16 185 9.7 0.31 4.05 1.01 

Site Prep / Compost / Seed 8.0 465 8 6 364 11898 206 16 168 7.1 0.30 6.48 0.85 

Site Prep / Compost / Seed 7.9 402 3 6 378 12890 244 16 160 9.1 0.23 6.05 0.98 

Site Prep / Compost / Seed 8.0 387 4 5 277 12945 251 12 148 9.7 0.17 3.84 0.93 

Site Prep / Compost / No Seed 7.9 412 2 5 344 12481 174 16 160 6.8 0.32 6.94 0.84 

Site Prep / Compost / No Seed 8.0 388 9 4 354 12761 193 16 164 6.8 0.40 5.68 0.85 

Site Prep / Compost / No Seed 7.9 397 7 5 365 12734 192 16 143 6.4 0.30 5.78 0.85 

Site Prep / Fertilizer / Seed 8.0 394 4 5 377 14087 321 16 212 7.0 0.22 4.71 0.71 

Site Prep / Fertilizer / Seed 8.0 376 5 5 348 14540 320 19 227 7.8 0.21 3.81 0.62 

Site Prep / Fertilizer / Seed 7.9 472 10 6 352 14295 307 19 198 6.7 0.17 4.19 0.57 

Site Prep / Fertilizer / No Seed 8.0 374 6 7 321 13441 298 23 198 6.4 0.50 4.46 0.67 

Site Prep / Fertilizer / No Seed 8.0 432 6 8 356 14140 338 21 229 6.8 0.24 4.50 0.75 

Site Prep / Fertilizer / No Seed 7.9 437 1 7 368 12468 305 18 185 7.4 0.30 7.36 0.91 

No Prep / Seed 7.9 445 8 4 301 15041 271 20 174 7.1 0.27 4.22 0.66 

No Prep / Seed 8.0 391 9 5 263 14084 248 18 172 6.7 0.17 3.46 0.60 

No Prep / Seed 8.0 456 11 5 270 15159 236 17 201 5.8 0.18 3.11 0.44 

No Prep / No Seed 7.9 474 6 5 347 14146 325 18 162 7.9 0.22 3.74 1.05 

No Prep / No Seed 7.9 416 3 6 366 12406 304 20 164 6.2 0.28 4.68 0.83 

No Prep / No Seed 7.9 457 5 4 267 14513 285 14 142 7.0 0.19 3.95 0.71 
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Treatments pH Conductivity NO3
-
N P K Ca Mg S Na Fe Zn Mn Cu 

After   µmhos cm
-1

 ------------------------------------------------mg kg
-1

--------------------------------------------------- 

Site Prep / Seed 7.9 395 7 6 352 14304 197 21 171 9.2 0.42 5.88 0.89 

Site Prep / Seed 8.0 341 6 6 288 14387 293 17 157 7.4 0.25 4.80 0.70 

Site Prep / Seed 7.9 451 10 6 371 15119 350 19 146 8.3 0.36 6.03 0.81 

Site Prep / No Seed 7.9 401 7 6 367 14984 215 21 169 10.6 0.55 6.98 1.36 

Site Prep / No Seed 7.9 368 6 6 353 13149 290 20 148 7.6 0.61 4.49 0.74 

Site Prep / No Seed 7.7 418 6 5 360 14919 373 18 174 13.1 0.38 7.30 0.91 

Site Prep / Compost / Seed 7.8 398 5 21 392 14124 274 25 178 13.8 1.09 7.68 1.38 

Site Prep / Compost / Seed 7.9 395 5 8 381 13793 282 22 146 14.3 0.53 6.05 1.10 

Site Prep / Compost / Seed 7.8 368 4 10 415 16689 410 20 170 13.2 0.71 7.16 0.87 

Site Prep / Compost / No Seed 7.9 419 10 15 428 12892 243 23 188 8.2 0.93 7.69 0.89 

Site Prep / Compost / No Seed 8.0 369 4 8 360 14408 297 20 161 7.7 0.39 4.79 0.68 

Site Prep / Compost / No Seed 7.7 400 8 14 439 14466 384 23 203 18.2 0.85 7.37 1.54 

Site Prep / Fertilizer / Seed 7.8 372 6 19 353 12305 176 21 174 11.3 0.52 8.40 0.89 

Site Prep / Fertilizer / Seed 7.8 396 8 15 378 16009 372 18 177 14.2 0.51 7.44 1.10 

Site Prep / Fertilizer / Seed 8.0 366 3 7 313 17132 263 16 183 12.8 0.30 5.95 0.73 

Site Prep / Fertilizer / No Seed 7.9 455 4 6 310 13760 280 17 165 8.2 0.31 4.79 0.86 

Site Prep / Fertilizer / No Seed 7.9 415 11 13 397 14103 188 22 198 8.4 0.71 7.94 0.75 

Site Prep / Fertilizer / No Seed 7.8 365 4 6 388 16781 323 16 173 11.7 0.25 6.17 0.71 

No Prep / Seed 7.8 363 4 7 311 12672 203 22 190 7.3 0.63 7.70 0.65 

No Prep / Seed 7.9 498 7 9 380 15115 368 21 161 7.7 0.41 7.74 1.03 

No Prep / Seed 7.7 401 11 6 387 14840 357 21 163 15.2 0.45 8.44 1.04 

No Prep / No Seed 7.8 431 5 5 365 14895 275 20 154 11.1 0.64 9.28 1.51 

No Prep / No Seed 7.9 444 7 8 375 13599 312 20 149 5.7 0.34 6.83 0.67 

No Prep / No Seed 7.5 430 9 11 571 16389 354 25 183 18.2 0.73 9.81 1.27 
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APPENDIX E 

 

INFILTRATON RATES FOR STUDY PLOTS AND ADDITIONAL SITES 
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Time Infiltration Rate 
Mean SD 

min Rep 1 Rep 2 Rep 3 

 ---------------------------------------cm hr
-1

----------------------------------------- 

Site Prep / Seed 

5 6.4 4.5 4.8 5.2 1.0 

10 5.6 3.3 3.7 4.2 1.2 

15 4.6 2.9 3.2 3.6 0.92 

20 4.1 2.6 2.8 3.2 0.77 

25 3.6 2.5 2.6 2.9 0.61 

30 3.3 2.4 2.5 2.7 0.48 

Site Prep / No Seed 

5 5.5 5.0 5.9 5.5 0.45 

10 3.8 3.3 3.7 3.6 0.28 

15 3.2 2.6 2.8 2.9 0.30 

20 2.8 2.1 2.3 2.4 0.34 

25 2.6 1.8 1.9 2.1 0.39 

30 2.2 1.7 1.7 1.9 0.33 

Site Prep / Compost / Seed 

5 4.7 6.6 4.2 5.2 1.3 

10 2.9 6.3 2.6 3.9 2.1 

15 2.2 5.5 2.0 3.2 2.0 

20 1.8 4.9 1.7 2.8 1.8 

25 1.5 4.4 1.4 2.5 1.7 

30 1.3 4.1 1.2 2.2 1.6 

Site Prep / Compost / No Seed 

5 4.2 2.7 6.6 4.5 2.0 

10 3.1 1.8 5.5 3.4 1.9 

15 2.7 1.5 4.7 3.0 1.7 

20 1.9 1.2 4.1 2.4 1.5 

25 1.8 1.1 3.7 2.2 1.4 

30 1.8 1.0 3.4 2.1 1.2 
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Time  Infiltration Rate 
Mean SD 

min Rep 1 Rep 2 Rep 3 

  ------------------------------------cm hr
-1

------------------------------------------ 

Site Prep / Fertilizer / Seed 

5  6.2 5.7 6.0 0.38 

10 6.2 5.1 5.2 5.5 0.62 

15 5.4 4.2 4.9 4.8 0.60 

20 5.1 3.6 4.8 4.5 0.81 

25 4.8 3.1 4.7 4.2 0.96 

30 4.7 2.7 4.5 4.0 1.1 

Site Prep / Fertilizer / No Seed 

5 6.3 6.6 6.1 6.3 0.26 

10 4.9 6.5 5.8 5.7 0.85 

15 3.8 6.5 5.5 5.3 1.4 

20 3.4 6.5 5.3 5.0 1.6 

25 3.3 6.4 5.2 5.0 1.6 

30 3.1 6.4 5.1 4.9 1.6 

No Prep / No Seed 

5 6.1 5.0 5.6 5.6 0.54 

10 4.3 3.3 4.6 4.1 0.70 

15 3.5 2.4 4.0 3.3 0.83 

20 3.2 1.9 3.7 2.9 0.94 

25 2.6 1.5 3.4 2.5 0.98 

30 2.3 1.2 3.2 2.3 1.0 

No Prep / Seed 

5 2.8 4.9 6.2 4.6 1.7 

10 1.6 3.8 5.7 3.7 2.0 

15 1.1 3.4 5.3 3.2 2.1 

20 0.7 3.2 4.7 2.9 2.1 

25 0.4 3.1 4.3 2.6 2.0 

30 0.2 3.0 3.9 2.4 1.9 
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Time  Infiltration Rate 
Mean SD 

min Rep 1 Rep 2 Rep 3 

  ------------------------------------cm hr
-1

------------------------------------------ 

Site 1 

5 6.6 6.4 6.5 6.5 0.11 

10 6.4 5.9 5.7 6.0 0.34 

15 6.1 5.2 5.3 5.5 0.47 

20 5.9 4.7 5.0 5.2 0.58 

25 5.7 4.4 4.7 4.9 0.67 

30 5.4 4.0 4.5 4.6 0.69 

Site 2 

5 4.6 6.0 2.4 4.3 1.8 

10 4.0 5.2  4.6 0.85 

15 3.5 4.6 0.83 3.0 2.0 

20 3.2 4.2 0.45 2.6 1.9 

25 3.1 3.9 0.25 2.4 1.9 

30  3.6 0.13 1.9 2.5 

Site 3 

5 2.8 6.1  4.5 2.3 

10 2.3 5.0 4.4 3.9 1.4 

15 2.0 4.4 3.3 3.2 1.2 

20 1.7 4.2 2.7 2.9 1.3 

25 1.4 4.1 2.4 2.6 1.3 

30 1.3 4.0  2.6 1.9 

Site 4 

5 6.6 6.6  6.6 0.0 

10 6.6 6.3  6.5 0.18 

15 6.6 6.2  6.4 0.27 

20 6.6 6.0  6.3 0.46 

25 6.6 5.8  6.2 0.58 

30 6.6 5.6  6.1 0.71 
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Time  Infiltration Rate 
Mean SD 

min Rep 1 Rep 2 Rep 3 

  ------------------------------------cm hr
-1

------------------------------------------ 

Site 5 

5 4.7 4.6 4.6 4.6 0.06 

10 4.3 4.1 4.2 4.2 0.13 

15 4.1 3.8 4.0 4.0 0.20 

20 4.0 3.7 3.8 3.8 0.22 

25 3.8 3.5 3.7 3.7 0.20 

30 3.7     

Site 6 

5 4.5 6.0 5.5 5.3 0.72 

10 3.5 4.9 4.6 4.3 0.73 

15 2.8 4.2 4.0 3.7 0.76 

20 2.3 3.6 3.5 3.1 0.75 

25 2.0 3.2 3.1 2.8 0.68 

30 1.6 2.9 2.9 2.5 0.72 

Site 7 

5 6.2 5.4 5.3 5.6 0.48 

10 5.3 4.7 4.9 4.9 0.31 

15 4.8 3.8 4.5 4.4 0.51 

20 4.5 3.3 4.3 4.0 0.65 

25 4.1 2.9 4.2 3.8 0.70 

30 3.9 2.7 4.1 3.6 0.72 

Site 8 

5 6.5   6.5  

10  6.2  6.2  

15 6.4 5.8  6.1 0.38 

20 5.9 5.5  5.7 0.28 

25 5.6 5.3  5.5 0.20 

30 5.3 5.1  5.2 0.18 
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Time  Infiltration Rate 
Mean SD 

min Rep 1 Rep 2 Rep 3 

  ------------------------------------cm hr
-1

------------------------------------------ 

Site 9 

5 5.8 4.8 4.9 5.1 0.55 

10 5.4 3.6 3.9 4.3 0.95 

15 5.1 2.9 3.0 3.7 1.2 

20 4.8 2.4 2.5 3.3 1.4 

25 4.5 2.0 2.1 2.9 1.4 

30 4.4 1.8 1.9 2.7 1.5 

Site 10 

5 4.5 5.9  5.2 1.0 

10 3.1 3.8  3.5 0.48 

15 2.5 2.6  2.5 0.08 

20 2.1 1.9  2.0 0.16 

25 1.9 1.4  1.6 0.34 

30  0.95  0.95  
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