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ABSTRACT

A Nuclear Magnetic Resonance Probe

of Group IV Clathrates. (August 2008)

Weiping Gou, B.S., Lanzhou University, China;

M.S., Academy of Science of China;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Joseph H. Ross, Jr.

The clathrates feature large cages of silicon, germanium, or tin, with guest atoms

in the cage centers. The group IV clathrates are interesting because of their ther-

moelectric efficiency, and their glasslike thermal conductivity at low temperatures.

Clathrates show a variety of properties, and the motion of cage center atoms is not

well understood.

In Sr8Ga16Ge30, we found that the slow atomic motion in the order 10−5 s is

present in this system, which is much slower than what would be expected for standard

atomic dynamics. NMR studies of Sr8Ga16Ge30 showed that Knight shift and T1

results are consistent with low density metallic behavior. The lineshapes exhibit

changes consistent with motional narrowing at low temperatures, and this indicates

unusually slow hopping rates. To further investigate this behavior, we made a series

of measurements using the Carr-Purcell-Meiboom-Gill NMR sequence. Fitting the

results to a hopping model yielded an activation energy of 4.6 K. We can understand

all of our observations in terms of non-resonant atomic tunneling between asymmetric

sites within the cages, in the presence of disorder.

For Ba8Ga16Ge30, the relaxation behavior (T1) deviates from the Korringa re-

lation, and the Knight shift and linewidth change with temperature. Those results
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could be explained by carrier freezout, and the development of a dilute set of mag-

netic moments due to these localized carriers. For Ba8Ga16Ge30 samples made from

Ga flux, we observed different T1 and Knight shift behavior as compared to n type

material. This is due to the differences in carrier type among these different samples.

The p type sample has a smaller Knight shift and a slower relaxation rate than n

type samples made with the stoichiometric ratio, which is consistent with a change

in orbital symmetry between the conduction and valence bands.

WDS study for Ba8Al10Ge36 showed the existence of vacancies in the Al-deficient

samples, which results in some degree of ordering of Al occupation on the framework

sites. In Al NMR measurements on Ba8AlxGe40−x with x = 12 to 16, we found that

T1 of all Al samples follows the Korringa relation. The broadening of the single NMR

central peak of Ba8Al16Ge30 is due to the inhomogeneous Knight shifts for occupation

of different framework sites. For Ba8Al12Ge34 and Ba8Al13Ge33, we observed two

peaks, and NMR results show that they are from distinct Al sites, while for each

peak, the inhomogeneous broadening is much smaller. The difference in lineshapes

we attributed to the existence of vacancies which we detected in the Al-deficient

materials, and we assign one of the two Al peaks to Al adjacent to a vacancy.
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CHAPTER I

INTRODUCTION

A. Background

Clathrate, which comes from a Greek word meaning “locked”, is defined in the

Merriam-Webster dictionary as “relating to or being a compound formed by the

inclusion of molecules of one kind in cavities of the crystal lattice of another”. In

1811 Humphrey Davy gave the first evidence of a compound of water and chlorine

gas which is now commonly known as a hydrate clathrate. Hydrate clathrates are a

class of solids in which gas molecules occupy “cages” made up of hydrogen-bonded

water molecules. Normally these “cages” are unstable when empty, collapsing into the

conventional ice crystal structure, but they are stabilized by the inclusion of the gas

molecule inside of them. Most low molecular weight gases such as H2, O2, CO2, and

CH4, will form a hydrate under some pressure-temperature conditions [1, 2]. Hydrate

clathrates are promising candidates for energy storage applications. The amount of

methane potentially trapped in natural methane hydrate deposits may be significant,

which makes them of major interest as a potential energy resource for the future.

Group IV elements such as silicon, germanium and tin can also form the same

cage structures as hydrate clathrates. In general the term “clathrates” now refers

to these open framework structure materials containing guest atoms inside the cages

and atoms such as silicon, germanium, or tin in a crystalline framework of the cages.

The cage center atoms are normally alkali metal, alkali earth or rare earth elements.

The journal model is IEEE Transactions on Automatic Control.
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B. Structure of Some Clathrates

There are many types of group IV clathrates [3], and in this study we are interested in

type-I and type-VIII. Type I clathrate, such as Ba/Sr8Ga16Ge30 and β-Eu8Ga16Ge30

[4], has the general formula A8T46 (A = guest atom; T = Si, Ge, and Sn, plus group

III or other framework elements) and is built up by 2 smaller T20 (dodecahedra) and

6 larger T24 (tetrakaidecahedra) polyhedra per cell. This structure contains three

framework sites, 6c, 16i and 24k in Wyckoff notation, and belongs to space group

Pm3n, No.223 as shown in Fig. 1 and Fig. 2(b).

Type VIII clathrate, such as Ba8Ga16Sn30, and α-Eu8Ga16Ge30 [4], has the same

general formula as type I, but is built up by 20-hedral cages, formed by three 5-rings,

three 6-rings and three 7-rings. This structure contains four framework sites, 8c, 12d,

2a and 24g in Wyckoff notation, and belongs to space group I43m, No.217 as shown

in Fig. 2(a) and Fig. 3.

C. Various Properties of Group IV Clathrates

Clathrates are cage structure materials, and the cage center atoms are loosely bonded,

in some versions known as “rattler” atoms, which make the clathrates very special.

Si, Ge and Sn clathrates with Sr, Ba, Eu or alkali earth as guest atoms exhibit a

variety of properties.

One of the most important properties is poor thermal conductivity and relatively

high electric conductivity due to their special cage structure [5, 6, 7, 8, 9, 10, 11],

which makes these clathrates good candidate for thermoelectric applications. Those

clathrates often exhibit heavily doped semiconductor properties. At room temper-

ature, resistivity is roughly 800µΩ·cm and 600µΩ·cm for typical Ba8Ga16Ge30 and

Sr8Ga16Ge30 respectively [5]. At room temperature the thermal conductivity is about
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Fig. 1. Crystal structure of type-I clathrate
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Fig. 2. (a) Crystal structure of type-VIII (α-Eu8Ga16Ge30) clathrate; (b) Crystal struc-

ture of type-I (β-Eu8Ga16Ge30) clathrate. ( Eu is the cage center atom. Ge

and Ga are the framework atoms) (Figure from ref. [4])
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Fig. 3. Crystal structure of type-VIII clathrate and the structure of a single cage (at

the bottom)
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1.3 W/(m·K) for Ba8Ga16Ge30 which is about the same as the room temperature

value for vitreous silica [5].

Ferromagnetism was observed in Eu8Ga16Ge30 clathrate. There exist two phases

for Eu8Ga16Ge30, the type-I structure known as β phase and the type-VIII structure

known as α phase. TC is found to be 10.5 K for α-Eu8Ga16Ge30 and 36 K for

β-Eu8Ga16Ge30 [4]. Studies on Ba8MnxGe46−x show that the structure is not stable

with x > 2, and the spontaneous magnetization is approximately linearly proportional

to the amount of Mn introduced and is maximized at x = 2 with TC around 10 K

[12]. Magnetization measurements also showed a large diamagnetic response in the

Ba8Ge40Cu6 clathrate [13].

A large magnetocaloric effect was observed in Eu8Ga16Ge30 clathrates. Large

entropy changes of 6 and 9.3 J /kg K were observed for the type-I and type-VIII

phases, respectively [14].

Superconductivity was observed in Ba8Si46 with TC = 8 K due to strong sp3

hybridization of s-electrons of Ba with the Si46 conduction-band states [15, 16].

The superconducting critical temperature in Ba8Si46−x(Cu/Ga)x is shown to decrease

strongly with Cu and Ga content increasing [17, 18].

Density of states (DOS) calculations [7] show that Ba8Ga16Ge30, Sr8Ga16Ge30

and Eu8Ga16Ge30 are semiconductors with a small band gap around 0.7 eV, and the

Ba clathrate has a slightly larger band gap than Eu and Sr clathrates.

Specific heat measurements indicate an Einstein contribution from each of the

rattler atoms, with a characteristic temperature of 60, 53, and 30 K for Ba, Sr, and

Eu atoms respectively for type-I Ga-Ge clathrates [5].
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Fig. 4. Lattice thermal conductivity vs. temperature for the five clathrate specimens.

The dashed and dotted curves are for a-SiO2 and a-Ge, and the solid curve is

the calculated minimum thermal conductivity of Ge [19]

D. Present Problems of Type-I Ga-Ge Base Clathrates

Although Ba8Ga16Ge30, Sr8Ga16Ge30 and Eu8Ga16Ge30 have the same structure and

behave similar in many ways, there are some key differences among them. One

of the novel characteristics of the Eu and Sr clathrates is their very low, glasslike

thermal conductivity. Although n-type Ba clathrate also exhibits very low thermal

conductivity, it does not have a glasslike behavior, instead it has a behavior similar

to a normal metal Fig. 4 [19, 5]. Single-crystal neutron-diffraction data (Fig. 5) show

that Sr and Eu atoms in the larger cages of the type-I structure can move off the center

position to one of four crystallographically equivalent positions, while Ba atoms can

only stay at the cage center [5, 6]. This provides a connection between the thermal

response and atomic displacement within the cages.

Low temperature ultrasonic attenuation measurements on a Sr8Ga16Ge30 single

crystal [20] provided direct evidence of a relatively high concentration of tunneling
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Fig. 5. Nuclear density at large-cage Ba, Sr, and Eu sites for Ba8Ga16Ge30 and

Sr8Ga16Ge30 (15 K) and Eu8Ga16Ge30 (40 K) from neutron-diffraction data

[5]
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Fig. 6. Temperature dependence of lattice thermal conductivity for

Sr8Ga16Si30−xGex [22]

states, a feature normally associated with bulk glasses like SiO2. A paper by Zerec et

al. [21] posed a specific model for tunnel barriers between four-well tunneling states

for Eu clathrate, and proposed that the resonant ultrasound behavior of Sr clathrate

corresponds to transitions between quantized Einstein modes of Sr atoms in the cages.

The Einstein temperature has been measured to be about 50 K in Sr clathrate [5].

However the thermal behavior observed at much low temperatures indicates that a

set of disordered oscillator states with smaller barrier heights must also be important.

The relative cage size seems to play an important role for understanding the

thermal conductivity. By growing homogeneous single crystals of Sr8Ga16Si30−xGex

in the full range of 0<x<30, systematic control of cage size without changing the

guest ion or the charge carrier type was achieved [22]. The lattice parameter expands

by up to 3% with increasing Ge content, and as a consequence the free space for

guest excursion increases in the cage. As a result, the lattice thermal conductivity

in the low-temperature range from 10 K to 20 K is suppressed in such a way that
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the crystallinelike peak found for Sr8Ga16Si30 evolves into the well-known glasslike

behavior of Sr8Ga16Ge30 (see Fig. 6). Studies on the substitution of In atoms for Ga

atoms in Ba8Ga16Ge30 show that it leads to a decrease in thermal conductivity [23].

Because a In atom has larger atomic radius than a Ga atom, the substitution of In

atoms for Ga atoms will result in a larger cage size.

However, thermal conductivity measurements [8, 24] on p-type Ba8Ga16Ge30 gave

results which are similar to Sr8Ga16Ge30 and have a dip/plateau region near 15 K and

T 2 behavior at very low T (see Fig. 7). According to various recent experiments, in

addition to the guest atom tunneling explanation [21, 19], researchers have proposed

several alternative explanations for the low T temperature dependence of the lattice

thermal conductivity in the clathrates, such as phonon charge-carrier scattering [8,

25], off-center rattler-phonon scattering [26, 27], a soft potential model based on

tunneling of two level system [24], and the interaction and hybridization of the low-

energy rattling modes with the propagating acoustic modes of the framework [28].

The research community has not reached an agreement on this matter.

The carrier type (n- or p-type) and its concentration depend on the deviation

from the ideal stoichiometry. To my knowledge, all samples of Sr8Ga16Ge30 and

Eu8Ga16Ge30 reported so far are of the n-type, while Ba8Ga16Ge30 can be p-type or

n-type metallic depending the sample preparation process [8, 29, 24, 30], and can

exhibit metal or semiconductor electronic properties. That is one of the reasons why

so many properties are sample dependent. Carrier localization and delocalization

was proposed for Na-Si clathrate to explain temperature dependent Knight Shift

data measured by NMR [31], and carrier localization will have a big impact on the

electronic properties. The defects responsible for this behavior are poorly understood.
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Fig. 7. Temperature dependence of lattice thermal conductivity for single-crystalline

p-type Ba8Ga16Ge30 and n-type Sr8Ga16Ge30 [24]



12

E. Purpose of This Study

To understand the motion of cage center atoms, and investigate the electronic and

magnetic properties among clathrates, we applied the nuclear magnetic resonance

(NMR) technique. NMR is a local probe, which can tell us local electronic and

magnetic information. The long coherence times allow NMR to be used to study

relatively low-frequency atomic dynamics.
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CHAPTER II

INTRODUCTION TO SOLID STATE NMR

Nuclear Magnetic Resonance, or NMR as it is usually called, was developed in its

present form in 1945 by the physicists Bloch and Purcell. In this chapter, I briefly

review the basic concepts of NMR related to the electronic and magnetic properties in

solids. Thorough discussions are covered in textbooks by Slichter [32] and Abragam

[33].

A. Basic Theory

The idea of NMR is not very complicated. A nucleus may consist of many particles

coupled together so that in any given state, the nucleus possesses a total magnetic

moment ~µ and angular momentum h̄~I. We can write

~µ = γnh̄~I, (2.1)

where γn is called the nuclear gyromagnetic ratio, which is different for different types

of nuclei. Because of its having magnetic moment, the nucleus will interact with an

external magnetic field. The interaction energy between a nucleus and a magnetic

field ~H is -~µ· ~H. Then we have a simple Hamiltonian:

H = −~µ · ~H. (2.2)

Taking the field to be H0 along the z-direction, then

H = −γnh̄H0Iz. (2.3)

The eigenvalues of this Hamiltonian are simply multiples of the eigenvalues of

Iz, and the allowed values are
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E = −mγnh̄H0, m = I, I − 1, ...,−I. (2.4)

To detect the presence of such a set of energy levels, one can apply RF to the

system to see the spectral absorption. To make the transition happen, the frequency

ω0 of RF must satisfy

h̄ω0 = ∆E = γnh̄H0, (2.5)

where ∆E, the energy difference between two adjacent levels, is called the Zeeman

energy, and ω0 is called the Larmor frequency. When an RF field with frequency ω0

is applied to the sample, it will cause transitions between neighboring states with

the selection rule ∆m = ±1, or in other words, it gives rise to the nuclear magnetic

resonance.

However, in reality, the magnetic field seen by a nucleus may not simply be the

external field H0 applied. Interactions such as the dipole-dipole interaction and the

interaction between the electron and nucleus will modify the magnetic field seen by

a nucleus. In the end of this chapter, we will discuss the situation of interactions

between the free electron and nucleus.

B. Line Shape

Normally the NMR spectrum of a sample is not simply a narrow line with frequency

ω0. It has a certain shape due to the fact that different nuclei of the sample may

feel different magnetic fields, and the resonance frequency of an individual nucleus

is decided by the total magnetic field seen by that nucleus. The NMR line shape

depends on several different factors. Because of the inhomogeneity of the applied

magnetic field, there will be a spread of the Larmor frequencies, resulting in the

broadening of the lineshape. For a nucleus of I > 1/2 in a non-cubic environment,
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quadrupole effects can also broaden the lineshape. We will discuss this in the next

section. The dipole-dipole interaction between two nuclear spins is one of the most

common factors to cause the broadening of a line shape, and obscure the true NMR

pattern. The presence of magnetic impurities in diluted crystals will also cause the

NMR line broadening via dipolar couplings.

C. Electric Quadrupole Effects

Quadrupole effects in the NMR lines are caused by the interaction of the nuclear

quadrupole moment Q, with the electric field gradient (EFG) experienced by the

nucleus. For I ≤ 1
2

the average quadrupole interaction is zero in any crystallographic

environment so that no quadrupole effects are seen in the NMR spectra. Quadrupole

effects can only be seen for nuclei with I > 1
2
, where the electric field gradient seen by

the nucleus varies with orientation. The resulting lineshapes depend upon the relative

strength of the magnetic and quadrupole fields [32, 34]. In high magnetic field, it can

be shown that the first order quadrupole effect does not shift the central line (1
2
↔

-1
2
), but it will shift the frequency of other transitions. The second order quadrupole

effect will cause a shift and the splitting of all transitions. The shift of the central line

due to the second order quadrupole coupling is in the order of (e2qQ)2/γnh̄H0 [32],

where eq = ∂2V
∂z2 , the z component of the field gradient, which changes with orientation

in the filed. Thus quadrupole effects will cause the broadening the lineshape.

D. Relaxation Time

At equilibrium, the distribution of nuclei among the energy levels is given by the

Boltzmann distribution. When RF is applied to the nuclear system, the equilibrium

is disrupted, and the nuclear spin system has the tendency to return to equilibrium,
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or in other words to relax. When a relaxation process involves the energy change

between nuclear spin and the surroundings ( the “lattice”), it is called spin-lattice

relaxation, and characterized by a time T1, the spin-lattice relaxation time. During

the relaxation process, nuclear spins with the same energy can exchange orientations,

and this process does not involve the energy, it is called spin-spin relaxation, and

characterized by a time T2, the spin-spin relaxation time.

E. Nuclei in a Metal

Most of our samples show metallic behavior. In this section, we will discuss some

NMR results related to such situations where we consider the interactions of nuclei

with free electrons.

1. Knight Shift

The Hamiltonian of the interaction of a nucleus with a free electron can be written

as:

H = −8π

3
~µe · ~µnδ(r) + [

~µe · ~µn

r3
− 3( ~µe · ~r)( ~µn · ~r)

r5
]− e

m

~l · ~µn

r3
, (2.6)

where ~r is the radius vector of the electron with the nucleus at the origin, ~µe is

the electron spin moment, ~µn is the nuclear moment, and ~l is the orbital angular

momentum of the electron. In this formula, the first term is the Fermi contact

interaction term, which is non-zero only for s electrons. The next two terms describe

the magnetic dipole interaction between the electron and nucleus. The last term is

the interaction of angular momentum with the nucleus. When we average H over

an s-state electron wave function, the second and third terms will vanish in Eqn. 2.6

due to the spherical symmetry of the s-state wave function, and only the first term

survives. Assuming the applied field is along the z-axis, the effective Fermi contact
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interaction can be written as [32]

H = −γnh̄IZ [
8π

3
〈|Ψs(0)|2〉EF

χP H0], (2.7)

where χP is the Pauli paramagnetic spin susceptibility, and 〈|ψs(0)|2〉EF
relates to the

average over electrons at Fermi level.

The small energy in Eqn. 2.7 is entirely equivalent to the interaction with an

extra magnetic field ∆H, which aids the applied the applied field H0. It will cause a

resonance frequency shift, called the Knight Shift, and defined as

K =
∆H

H0

=
8π

3
〈|Ψs(0)|2〉EF

χP . (2.8)

From this formula, we can conclude certain properties of Knight Shift. First, it

is alway positive. Second, it is independent of the applied field. Finally, as long as

both 〈|ψs(0)|2〉EF
and χP are independent of the temperature, K is as well.

The interaction of an electron with the nucleus is also called hyperfine coupling,

and the hyperfine field is defined as

Hhf = µB
8π

3
〈|Ψs(0)|2〉EF

. (2.9)

Therefore, the Knight Shift due to the Pauli susceptibility in Eqn. 2.8, denoted as

Ks, can be written as

Ks =
Hhf

µB

χP . (2.10)

From the free electron model, the Pauli susceptibility χP can be found as

χP = µ2
Bg(EF ), (2.11)

where g(EF ) is the electronic DOS at the Fermi surface. Thus if the hyperfine field

is known, the Knight shift can be used to determine g(EF ).
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Besides the contribution to the Knight Shift from the contact interaction as we

have discussed earlier, there are several other sources of contribution to the Knight

Shift, such as core polarization, and orbital interaction. Normally the contact inter-

action contribution dominates [34].

2. Korringa Relation

In a metal, the relaxation of nuclei is mainly due to the interaction of nuclear spins

with conduction electrons. Such an interaction is a sum over all electron states able to

participate in the relaxation process, and only electrons at Fermi level can participate

in the relaxation process. For a paramagnetic metal, the Fermi contact interaction is

usually dominant, and the corresponding T1 is given by [32]

1

T1T
=

64

9
kBπ3h̄3γ2

eγ
2
n[〈|Ψs(0)|2〉EF

]2g2(EF ), (2.12)

where γe is the electron gyromagnetic ratio. Combining Eqn. 2.8, Eqn. 2.11, and

Eqn. 2.12, we can get

K2T1T =
h̄

4πkB

γ2
e

γ2
n

, (2.13)

where kB is the Boltzmann constant. This result is called the Korringa relation.

K2T1T is called the Korringa product, and its enhancement is indicative of the

strength of correlations [35, 36, 37, 38]. The Korringa relation tells that in a param-

agnetic metal system, T1T is independent of the temperature, which is an indication

of metallic properties of the sample. The presence of the dilute magnetic moments,

or a change of electronic structure with temperature could result in a deviation from

the Korringa relation.
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F. Relaxation in a Semiconductor

In a semiconductor, the relaxation rate may not obey the Korringa relation, because

the carrier density can depend on the temperature, and the susceptibility may not

follow the Pauli form. With an increase in the temperature for an intrinsic semicon-

ductor, more and more electrons are activated into the conduction band according to

an exponential function. It can be shown that in such a semiconductor T1 follows the

following relation [39]:

1

T1T
= CTe−∆ε/kBT , (2.14)

where C is a constant depending on the effective mass, as well as other factors, kB is

the Boltzmann constant, and ∆ε is the energy gap.
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CHAPTER III

BASIC PRINCIPLES AND TECHNIQUES OF NMR

A. Equations of Motion

To clearly see how pulsed NMR works, we will look at how the nuclear magnetic

moment responds to a static applied magnetic field and RF field.

In the equilibrium condition, a nuclear spin system will form a macroscopic

magnetization ~M with a total angular momentum ~L. The applied magnetic field, ~H

will produce the torque ~M × ~H on ~L, and force ~M to precess about ~H. Thus the

equation of the motion is

d ~M

dt
= γn( ~M × ~H). (3.1)

The frequency of ~M precessing about the field is γnH0. Viewed from the labora-

tory frame with consideration of the relaxation, we have the Bloch equations [32]:

dMx

dt
= γn( ~M × ~H)x − Mx

T2

, (3.2)

dMy

dt
= γn( ~M × ~H)y −MyT2, (3.3)

dMz

dt
= γn( ~M × ~H)z − Mz −M0

T1

, (3.4)

where M0 is the equilibrium magnetization of a sample in an external field which we

assume to be along the z-axis. T1 is spin-lattice relaxation time, which takes place

relative to the z-axis, and involves energy change. T2 is the spin-spin relaxation time,

which takes place relative to the x-y plane, and involves no energy change.

The pulsed NMR process is very clear and simple, if we look at the motion of

magnetization in the frame rotating with respect to the laboratory frame. The total
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time derivative of ~M and its partial time derivative can be related in this way:

(
d ~M

dt
)lab = (

∂ ~M

∂t
)rot + ~ω × ~M. (3.5)

where ~ω is the rotating frequency of ~M . Combining this with Eqn. 3.1, we obtain

(
∂ ~M

∂t
)rot = γn( ~M × ~H) + ~M × ~ω = γn

~M × ( ~H +
~ω

γn

) = γn( ~M × ~Heff ), (3.6)

where Heff , with ~Heff = ~H + ~ω
γn

, is the effective magnetic field seen by the nuclear

moment in the rotating frame of reference. If the rotating frame has an angular

frequency equal to −γn
~H, the effective field ~Heff vanishes, and ~M is invariant with

time in the rotating frame. If we apply an RF field with frequency ω to the coil which

is perpendicular to the static field H0, the RF will generate an H1 field perpendicular

to H0, and H1 will be static in the rotating reference frame if it is on resonance. Thus

the effective field in the rotating frame shown in Fig. 8(a) can be written as

~Heff = ~H0 +
~ω

γn

+ ~H1, (3.7)

At resonance, ω/γn will cancel the external field and leaves only ~H1 in the x′-y′

plane shown in Fig. 8(b). Therefore the angular nutation frequency about ~H1 is γnH1

and in a time period t, the angle θ through which ~M nutates is

θ = γnH1t. (3.8)

B. Pulse Sequences and Techniques

1. FID and Spin-Echo

In pulsed NMR experiments, an intense RF pulse in the laboratory frame is applied

to the sample to excite the nuclei whose resonance frequency is close to the pulse

frequency. Immediately following the pulse, the nuclear magnetic moment will relax
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Fig. 8. (a)Effective field in rotating frame reference, where Ω = γnH; (b) At resonance,

Heff is equal to H1, and in x′-axis for this case, ~M precesses about x′-axis in

(x′-z′) plane.
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to its equilibrium condition, or in other words, decay, and this process called the free

induction decay (FID) will induce a electric signal in the coil. The FID signal decays

with the behavior described by Eqn. 3.2 and Eqn. 3.3. The inhomogeneity of the

applied magnetic field can also causes nuclear spins in the x-y plane to defocus and

make the FID signal decay. The decay time constant T ?
2 can be found as

1

T ?
2

=
1

T2

+ γn∆H0, (3.9)

where ∆H0 is the width of the inhomogeneity of the applied magnetic field, and T2 is

the spin-spin relation time. By applying advanced pulse techniques, the defocusing

of the spin due to inhomogeneity of the external field can be refocused [32].

Normally, if an RF pulse makes the magnetic moment ~M rotate 90◦ around the

x′-axis in the rotating reference frame, the pulse is called a 90◦x pulse. After this

90◦x pulse, ~M will defocus in x′-y′ plane mainly due to the field inhomogeneity. In

the rotating reference frame, nuclear spins with a large local field will rotate faster,

and nuclear spins with a small local field will rotate more slowly. Thus we see the

defocusing of the nuclear spins in the x′-y′ plane (see Fig. 9). If we apply a 180◦y

pulse at time τ after 90◦x pulse, it will flip all nuclear spins by 180◦x around the y′-axis.

After that, again the nuclear spins will undergo defocusing. Because the local field

does not change, fast rotating spins remain fast and slow rotating spins remain slow.

Therefore a spin echo will form exactly at time τ after 180◦y pulse (see Fig. 9). This

pulse sequence is also called the Hahn spin-echo sequence, which is the most common

method to observe a spin echo.

2. T1 Measurement

If we first apply a 180◦ pulse to the sample in equilibrium, it will flip the magnetic

moment, ~M to the -z direction. By observing how fast ~M recovers to the +z direction,
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Fig. 9. Two pulse Hahn spin-echo sequence
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we can calculate the spin-lattice relaxation time T1. The sequence for T1 measurement

is 180◦ - Twait - 90◦ - τ - 180◦. The last two pulses are the same as Hahn spin-echo

sequence. By measuring the intensity of the spin echo, we can know what Mz is at

time Twait after first 180◦ pulse. In the measurement, τ is fixed, and we vary Twait

to get a recovery curve. The formulas to describe the magnetization recovery curve

are given in [40]. By fitting the recovery curve, we can obtain T1. Depending on the

size of the spin and transition measured, the expression will be different. For spin 3
2
,

for example as in Ga nuclei, the recovery curve for the central transition (1
2
↔ -1

2
) is

given as

M(t)

M(0)
= 0.1e

− τwait
T1 + 0.9e

− 6τwait
T1 . (3.10)

For spin 5
2

nuclei such as Al nuclei, the recovery curve for a central transition (1
2

↔ -1
2
) is given as

M(t)

M(0)
= 0.0286e

− τwait
T1 + 0.178e

− 6τwait
T1 + 0.793e

− 15τwait
T1 . (3.11)

3. CPMG Sequence

In spin echo measurement, we assume that the local field seen by each individual

nuclear spin does not change before the formation of the echo. After a 180◦ pulse,

fast-rotating spins remain fast, and slow-rotating spins remain slow. Therefore, spin

defocusing due to inhomogeneity of applied field can be refocused. However, due to

reasons such as atomic diffusion, atom jumping, or motion in liquids, the local field

seen by each individual spin may change fter the 180◦ pulse of a spin-echo experiment.

Due to these reasons spin defocusing due to these reasons can not be refocused by

the spin-echo sequence.
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Using a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence we can refocus some

diffusing spins despite the change of local field. The CPMG sequence is 90x-τ -[180y-

τ -(echo)-τ -]n, whereτ is half of the spacing between 180◦ pulses (see Fig. 10(a)). For

n cycles 2τ , we can observe a series of spin echos in a CPMG sequence, and the

intensity of a spin echo formed at time 2nτ is given as [32]

M(n2τ) = M0exp[−(γn
∂H

∂z
)2D(n2τ)

1

3
τ2]exp(−n2τ/T2), (3.12)

where D is the diffusion constant and ∂H
∂z

is the gradient of the static field. The

difference between spin echo and CPMG sequences is shown in Fig. 10(b). We can

observe a spin echo at time T for both the Hahn echo and CPMG sequences. Because

CPMG can refocus some spin-defocusing due to the change of the local field, while

the spin-echo sequence does not, the amplitude of the spin echo observed by CPMG

at time T is larger than the amplitude observed by the spin-echo sequence.

4. Magic Angle Spinning

Nuclear dipolar-dipolar coupling is orientation-dependent. It is proportional to P2(cosθ),

where P2(cosθ) = (3cos2θ-1)/2. This term becomes zero when (3cos2θ-1)/2 = 0, or θ

≈ 54.74◦. This is the so-called magic angle. Spinning a sample rapidly at this angle

with respect to the magnetic field can average the orientation dependence to zero.

This is called the Magical Angle Spinning (MAS) technique. If the spinning rate

is larger than the frequency range of the orientation dependent lineshape, a single

narrow line will result. If the spinning rate is less than the width of the lineshape,

only partial averaging occurs and a set of narrow spinning sidebands can show up as

well [32].
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Fig. 10. (a) Carr-Purcell-Meiboom-Gill (CPMG) sequence; (b) Comparison of Hah-

n-echo sequence with CPMG sequence. Phase loss for spin-echo sequence is

larger than phase loss of CPMG sequence. Thus when spin echo is observed

at time T for both Hahn echo and CPMG sequences, the amplitude of spin

echo seen by CPMG sequence is larger.
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CHAPTER IV

EXPERIMENTAL APPARATUS

In this chapter, I will briefly describe the instruments and computing program package

we used to perform NMR, resistivity, specific heat measurements and electric field

gradient (EFG) calculations for this study.

A. NMR Spectrometer

An NMR spectrometer is the major instrument we used for this study. NMR exper-

iments were performed at a fixed field of 9 T using a homebuilt pulse spectrometer

[41], and which could cover a temperature range from 1.9 K to 500 K. Our NMR in-

strument has several key components: a 9 T superconducting magnet, pulse sequence

generator (PSG), the transmitter, the receiver, the probe, and the cryostat system.

The PSG can produce a short duration pulse used to excite the nuclei whose res-

onance frequency is near the pulse frequency. It is controlled by a computer program-

mer written in the LabView language. Through executing a certain pulse sequence

by the programmer, the PSG is able to generate pulses with lengths as desired, time

the pulses, and switch on and off the decoupler.

The transmitter is used to deliver the RF to the sample to perturb the nuclear

spin system from its equilibrium state. RF is produced by a commercial frequency

synthesizer which can generate a frequency from 0.1 Hz to 160 MHz. The phase of

the RF can be adjusted to generate an H1 field in +x, -x, +y, or -y direction in the

rotating frame of reference.

The receiver detects, amplifies, and digitally records the data signal. After being

disturbed by RF, the magnetic moment of spin system will relax to its equilibrium

state. During that process, it will induce an electric signal in the pick-up coil sur-
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rounding the sample. Normally the voltage induced in the pick-up coil is as low as one

microvolt, and it has to be amplified before being digitally recorded by the computer.

The probe is used to contain the sample within the magnet and provides the

necessary hardware to measure the sample temperature. Also it couples the sample

to the transmitter and the receiver in order to permit the excitation and detection of

an NMR signal. The circuit of the probe is basically a tunable LC circuit, and the

sample coil serves as the inductor of the LC circuit.

A cryostat system is needed to perform low temperature NMR. Liquid Nitrogen

(LN2) and liquid Helium (LHe) are used to perform measurements from 77 K to 300 K,

and from 4 K to 77 K respectively. An electrical current provides power to a resistance

heater on the probe to achieve the desired temperature. By carefully adjusting the

vapor pressure of LHe, we can also perform measurements at temperature as low as

1.9 K.

The NMR field was calibrated using a Ga(NO3)3 dilute solution as 71Ga zero-

shift reference (frequency close to 115 MHz) for Ga NMR, and using a Al(Cl)3 dilute

solution as 27Al zero-shift reference (frequency close to 98 MHz) for Al NMR. The

samples for NMR measurements were several cubic millimeters, made into powder,

and mixed with KBr.

Magic Angle Spinning (MAS) measurements were performed on a Bruker Avance

400 MHz NMR instrument using Al2O3 as reference.

B. WIEN2k Calculations and Other Instruments

The Program Package WIEN2k allows us to perform electronic structure calculations

of solids using density functional theory (DFT). It is based on the full-potential

(linearized) augmented plane-wave ((L)APW) + local orbitals (lo) method, one of
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the most accurate schemes for band structure calculations. Ab initio calculation of

EFGs was carried out by using the WIEN2k package on PC with 512 Mb RAM.

The Physical Property Measurement System (PPMS) is a variable temperature-

field system, designed to perform a variety of automated measurements, including

transport, specific heat, etc. In this study, resistivity was measured by a 4 probe

method in the temperature range from 2 to 300 K, and the specific heat was measured

in the same temperature range, both using a Quantum Design PPMS system.

The research in this dissertation represents a part of a larger group effort. Be-

sides MAS measurements, I did all other NMR measurements myself. I also carried

out EFG calculations using the WIEN2k Package. Transport and specific heat mea-

surements were performed by Dr. Rathnayaka from Dr. Naugle’s group, using the

PPMM system, and MAS measurements were performed at the NMR Facility in the

Chemistry Department, while I analyzed the resulting data. I also synthesized many

of samples used, as described in the next chapter, performing in addition X-ray and

WDS measurements to analyze these samples.
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CHAPTER V

EXPERIMENTAL RESULTS AND DISCUSSIONS

Samples for this study are from different sources. Sr8Ga16Ge30 and the low carrier

density Ba8Ga16Ge30 sample were prepared in the Nolas group at the University of

South Florida. One Ba8Ga16Ge30 sample was prepared by Yang Li from our group.

I prepared the rest of samples, including Ba8Ga16Ge30 made by Ga flux method,

Ba8Ga16Sn30, and Ba8AlxGe40−x with a series of compositions.

A. Ba8Ga16Sn30

1. Sample Preparation

A Ba8Ga16Sn30 sample was prepared by arc-melting technique in an argon environ-

ment, following by annealing at 375 ◦C for four days. X-ray diffraction measure-

ments verified this sample to be pure Type-VIII clathrate with no additional phases.

WDS measurement confirmed that the main phase is type-VIII clathrate with a small

amount of pure Sn.

2. Measurements and Discussion

The temperature dependence of the electrical resistivity is shown in Fig. 11, which

shows semiconducting behavior. The small downturn for the resistivity at zero field

is due the small amount of Sn in the sample.

The specific heat was measured for Ba8Ga16Sn30 from 2 to 300 K. The data are

shown in Fig. 12 as a plot of C/T 3 vs T . It can be seen clearly that a broad peak

centered at 10 K exists. There are three contributions to specific heat, an electronic

contribution Cel, a phonon contribution which can be modeled at low temperature as
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Fig. 11. Temperature dependence of resistivity measured in Ba8Ga16Sn30

a Debye contribution CD, and an Einstein contribution CE. The Debye contribution

is constant at low temperatures in C/T 3 vs T , however the general T -dependent form

for CD was used in the fit. The electronic contribution to the specific heat is a small

portion of the total specific heat at low temperatures. Therefore the peak is mainly

from the Einstein oscillation modes. We fit the data to an expression for the specific

heat C/T 3 = γ/T 2 + NECE/T 3 + NDCD/T 3 in the temperature range from 2 to

20 K where CE and CD are the standard functions [42]. In the fitting, we fixed the

numbers of Einstein and Debye oscillators to NE = 8 and ND = 46, respectively, which

are the numbers of guest Ba atoms and framework atoms per unit cell respectively.

We found γ = 9 mJ/(mol·K2), a Debye temperature ΘD = 187 K, and an Einstein

temperature ΘE = 51 K. These values are similar to a previous report [43]. However,

in that paper, a metallic resistivity behavior was seen, whereas our sample shows

ordinary semiconductor behavior. Taking these low temperature fitting parameters,

we produced curves for the electronic contribution, Debye contribution, and Einstein
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Fig. 12. Temperature dependence of specific heat C of Ba8Ga16Sn30, where Ctotal =

Cd + Ce + Cel (See text for details)

contribution for the whole temperature range. The results are shown in Fig. 12. We

can see there is a good agreement between experimental and calculated results. As I

have described in the introduction, the “rattler” is a feature of Ba8Ga16Sn30 clathrate,

which is verified by the specific heat study.
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B. Sr8Ga16Ge30

1. Sample Preparation

The Sr8Ga16Ge30 sample was prepared by the Nolas group as follows [6]: stoichio-

metric quantities of the high purity constituent elements were mixed and reacted in

pyrolitic boron nitride (BN) crucibles for twenty-four hours at 950 ◦C then annealed

at 700 ◦C for twenty-four hours. The BN crucibles were themselves sealed inside a

fused quartz ampoule, which was evacuated and backfilled with nitrogen gas to a

pressure of two-thirds of an atmosphere. The ingots were composed of crystallites

with dimensions of one to three cubic millimeters. The ingots are stable in air and

water but were etched with aqua regia for metallographic analysis, which indicated

single-phase material. X-ray diffraction measurements were used for further charac-

terization, which verified the crystallinity and phase purity of the specimen.

2. Measurements and Discussion

NMR spectra of Sr8Ga16Ge30 at room temperature and 4.2 K are shown in Fig. 13,

measured by echo integration. A room-temperature search over a considerably wider

range of shifts verified this broadened line to be the only observable signal. Since it

is known [44] that Ga occupies all three crystallographic sites in Sr8Ga16Ge30, the

single NMR line observed at both temperatures is presumably due to a superposition

of signals from these three sites, with their individual powder patterns.

Measured signals correspond to the central-transition, (-1/2↔1/2), for I=3/2

71Ga, which was confirmed by comparing the pulse length for the Ga(NO3)3 solution

with those of the Sr8Ga16Ge30 sample [45]. This situation is not uncommon in alloy

samples, for which random quadrupole couplings can leave the satellite transitions

broadened into a featureless background, with the relatively narrow central transition
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affected only to second order in the quadrupole coupling. T1 measurements were

performed at the center of the lineshape. The data were fitted to a multi-exponential

relaxation curve by Eqn. 3.10 assuming magnetic relaxation for the central transition

to obtain T1. The data agreed well with these curves over the whole temperature

range. The T1 results are shown in Fig. 14. These data obey the Korringa relation,

a signature of metallic behavior [32], with T1T = 8.5 sK obtained by least squares

fitting. The Knight shift of the center of mass of the lineshape is almost independent

of temperature around K = 0.084% (Fig. 14 inset). These results indicate that T1 and

K are dominated by interactions with conduction electrons, and that Sr8Ga16Ge30 is

doped into the metallic regime. This is in agreement with electrical transport for this

material [5, 47, 9], which typically indicates n-type behavior, and carrier densities in

the range 1020 to 1021 cm−3, due apparently to intrinsic defects.

Combining the observed T1 and K to form the Korringa product yields K2T1T

= 5.9×10−6 sK. The free-electron value for 71Ga is 2.73×10−6 sK, obtained from

Eqn. 2.12. The observed Korringa product is enhanced by a factor of approximately

2.2, which is typical of ordinary metals, and indicative of normal metallic behavior.

By contrast the Korringa product in disordered systems containing localized electrons

will be strongly enhanced [35, 36], a signature of the effects of the strong correlations

[37, 38]. Note that in NaxBaySi46 clathrate, a similar modest Korringa enhancement

has been observed [46]. However, in that case, K is temperature dependent, indicating

possible sharp features in the electronic structure [31], for which there is no evidence

in the present case.

For further analysis, we used a parabolic band approximation to estimate K. We

assume a spherical Fermi surface, with a conduction band s-orbital fraction equal to

1/4 (corresponding to sp3 hybridization), m* = 3me, and n = 1.5×1020 cm−3, which

are typical values for samples of this material [47], and the hyperfine field for Ga,
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HHF =620 T [34]. These values yield K = 0.2%, which is slightly larger than observed.

Thus, the relatively small K is consistent with the accepted electrical properties of

Sr8Ga16Ge30. Note that the quantity which we identify as K is actually an average of

individual K values from among the three crystallographically inequivalent framework

sites, because of the overlapping of lines. NMR lines for these sites can be seen

individually in 29Si NMR [46] or possibly partially separated by magic angle spinning

in Ga NMR [48].

The second-order quadrupole coupling can give further line shifts for the central

transition, as well as broadening the line. To analyze for this effect, we performed

69Ga NMR measurements at room temperature. We found that the center shift is

0.085% for 69Ga, compared to 0.084% for 71Ga. 69Ga has a quadrupole moment

Q = 0.178×10−28 m2, compared to 0.112×10−28 m2 for 71Ga, and the second order

quadrupole shift is proportional to Q2 [32]. The small observed difference is com-

parable to the experimental error, and indicates that the second order quadrupole

contribution to this shift is very small. This justifies the approximation used above,

in which the center shift was interpreted as a Knight shift, of magnetic origin. Fur-

thermore, we found that the linewidth for 69Ga exceeds that of 71Ga, with a ratio

of the full-widths at half maximum equal to 2.34, which is slightly smaller than the

ratio, (Q(69)/Q(71))2 = 2.53, expected for broadening due entirely to the second order

quadrupole coupling. This indicates that the broadening can be attributed mostly to

quadrupole coupling, with a small additional anisotropic or inhomogeneous magnetic

contribution.

The temperature dependence of the 71Ga linewidth, obtained by calculating the

square root of the second moment of the measured line, is shown in Fig. 15. The

measured data for this calculation were obtained by Fast Fourier Transform (FFT) of

the spin echo, which was obtained using shortened pulses to enhance the observation
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range. There is a significant increase in the linewidth at low temperatures (above

4 K). This change is apparently not due to an electronic structure change since K

and K2T1T do not change. Instead, this change can be attributed to atomic motion.

For this mechanism, assuming that the reduced high-temperature width is due to

motional narrowing, the relevant timescale can be estimated by 1/linewidth, roughly

10−5 s, since this is the timescale for narrowing of an NMR line. This is very slow

compared to thermal vibration rates, for example 1012 Hz for the Einstein mode of

guest atoms in the relatively open type-I clathrate cages [5].

For random hopping, the linewidth can be related to a correlation time, which

will follow τ c=τ∞exp(Ea/kT) in the case of an activated process, where Ea is the
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activation energy of the system. Motions of atoms in the near vicinity of the Ga

nuclei being observed will cause changes in the electric field gradient, and thus shifts

in the NMR resonance position, due to the electric quadrupole effect. Because of

the superposition of many orientations, we can see only a broadening, rather than a

splitting or shift. In the motionally narrowed limit, the excess linewith is proportional

to τc, so that the linewidth can be fitted to Wc=W∞exp(Ea/kT) to find Ea. Fitting

this expression to the high-T tail we find that Ea is 7.2 K. This fitted curve is shown

in Fig. 15.

As a further measure of the dynamics, the spin-echo decay was measured by use

of the standard Hahn spin echo sequence. The results are shown by Fig. 16. The

data were fitted by

S = A{α exp(−t/T2e) + exp[−(t/T2g)
2]}. (5.1)

Generally, an exponential decay is observed where motion is important, while Gaus-

sian decay is characteristic of the static NMR line, dominated by the nuclear dipole-

dipole or pseudo-dipolar couplings [33]. Thus the ratio α is a measure of the relative

importance of motion.

The fitting results are shown in Table I. At low T, α is large, and the decay

curve is exponential, which indicates that the echo decay is dominated by motion.

However at high T, α is small, indicating that the motional contribution is averaged

out, leaving a Gaussian decay due to like-spin coupling [33]. At high T, fast motion

will cause more of the spin-spin coupling to be like-spin in character, which makes

T2g shorter. This is consistent with the observed behavior, and thus the picture

established above, whereby the NMR line is subject to progressive motional narrowing

as the temperature is raised, which agrees with the spin-echo decay results.

In order to further understand the motion process, we performed CPMG mea-
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Table I. Fitting result of the spin echo measurements.

Temperature (K) T2e (ms) T2g (ms) α

1.9 8.1±1.5 7.7±3.6 5.0±2.8

2.2 5.6±0.1 7.7±0.1 2.5±0.1

4.2 6.7±0.6 4.6±0.2 1.3±0.4

32 5.2±0.5 3.3±0.1 0.8±0.2

77 3.4±0.4 2.9±0.3 0.8±0.2

296 2.3±0.6 2.2±0.1 0.3±0.1

surements. The results at RT, 77 K, 32 K, and 4.2 K are shown by Fig. 17. We can

see that as τ decreases, the echo decay rate becomes smaller, at all temperatures.

One common mechanism for this type of decay in a CPMG experiment is diffusion of

the atoms under observation. However, since the Ga atoms are bonded to the frame-

work, low-temperature Ga motion seems very unlikely, and indeed we find that the

exp(−t3) behavior expected in this case [32] does not fit the data very well. Sr-atom

motions, however, can slowly modulate the Ga-site quadrupole shifts, providing a

decay similar to what we observed. We can not tell solely from these results whether

Sr atoms are hopping between cages or between sites within the same cage, however

since the energy barrier is evidently quite small, we will assume that these dynamics

are associated with the rattling-type motion of Sr within the large cage, as has been

discussed previously [5, 6, 9].

To interpret the data, we have invoked a simplified model in which Sr atoms

jump randomly between two positions, making nearby Ga nuclei change resonant

frequencies by a difference ∆ν ( See Fig. 18). ∆ν will have a range of values according

to Ga position and crystal orientation. If we assume the motion is very slow, so that
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at most only one jump occurs at time t between 180◦ pulses, or between 2τ , then the

signal at 2τ can be approximately written as

S = S0e
− 2τ

τc +
∫ 2τ

0
dt

S0

τc

e−
t

τc (e−
2τ−t

τc )cosψ(t), (5.2)

where τc is the correlation time, e−
2τ
τc is the probability of no jumping, and ψ(t)

= 4π∆νt is the coherence phase loss due to jumping. In this equation, we assume

2τ ¿ τc, which is reasonable assumption for the present case, because the motion

is slow as established. In Eqn. 5.2, the first term is the contribution from nuclei

which experience no jump, and the second term is the contribution from nuclei which

experiencing one jump. The integration in Eqn. 5.2 can be evaluated. If we further

assume 2πτ cνÀ1, to the firt order, we will get

S ≈ S0e
− 2τ

τc (1 +
2sin(2π∆ντ)

∆ντc

). (5.3)

Instead of single echo, we will make N echos as in the CPMG measurements. The

signal at time 2τN will be the power N of the right side of Eqn. 5.3. Now if we

assume ∆ν has an exponential distribution of the form P(∆ν)=exp(-∆ν/ν1)/ν1, we

find that the spin echo amplitude can be expressed as

S = A exp(
−t

T2

) exp(
−t

τc

)[1 +
arctan(2πν1τ)

πτcν1

]
t

2τ , (5.4)

where T2 is the spin-spin relaxation time, and A is constant. In the CPMG experi-

ments, the motion-free decay rate (1/T2 in Eqn. 5.4) in fact differs from the normal

spin-spin T2, since spin locking leads to a lengthened decay time close to T1 (it is essen-

tially T1ρ [32]). Spin-locking can be eliminated by the use of a phase-alternating pulse

sequence (PAPS) [49], however measurements using a PAPS in our case yielded ill-

formed echoes, due to the superposition of stimulated echoes [50]. Stimulated echoes

can be minimized by perfectly-set 180◦ pulse, however the large linewith makes this
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Table II. Fitting result of CPMG measurements.

Temperature (K) T2 (ms) τc (ms) ν1 (kHz)

4.2 100 9.2 0.15

32 44 3.6 0.15

77 18 3.2 0.15

difficult in the present case. Therefore, we used the standard CPMG sequence, mak-

ing the spin-locking T2 an adjustable variable.

We found that the RT data did not fit Eqn. 5.4 very well, presumably because

the high-temperature T1 is too short to develop complete spin locking. Therefore

we fit the data for the other three temperatures to Eqn. 5.4. The fitting results are

shown in Table II. The results show that the typical Ga Larmor frequency difference

ν1, which may vary due to the Ga atom’s distance from and orientation relative to the

moving Sr, is 0.15 kHz. We also fitted the resulting correlation times to the activation

energy formula τ c=τ∞exp(Ea/kT). Fig. 19 is the result for this fit, which yields an

activation energy Ea=4.6 K. This value is close to the Ea obtained from linewidth

measurements.

Zerec et al. [21] have examined a model of azimuthal four-well tunneling for the

Eu clathrate, and their experimental resonant ultrasonic data could be fit satisfacto-

rily by considering a four level tunnel system with well-defined barriers that are the

same for each cage. However for Sr clathrate, the model did not work well, and the

best fit was obtained assuming that the transitions took place between energy levels

of the overall harmonic potential well for the Sr atom in its cage. This corresponds

to a very large energy difference. In our experiment we find a small energy barrier

with value close to 5 K. This is consistent with the thermal conductivity experiments
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[19] observed at temperatures below 1 K, and confirms that transitions between small

energy levels play an important role. It is unclear whether this picture also provides

a good fit to the resonant ultrasound measurements [21], however clearly there must

be higher-energy excitations corresponding to the observed Einstein mode [5, 51, 10],

in addition to the lower-frequency fluctuations which have a more prominent effect on

the NMR measurements. Thus it seems possible that a model which combines these

pictures may be consistent with the resonant ultrasound as well as the NMR results.

A specific heat study has previously been done for Sr8Ga16Ge30 [5]. As in

Ba8Ga16Sn30, a “rattler” feature was observed for this Sr clathrate. A Fourier map

obtained from neutron diffraction measurements showed that each Sr atom has a

displacement roughly 0.3 Å from the center of the cage at low T [20]. In order to

approximate the tunneling rates, we first consider a simplified two level system con-

sisting of an infinite square well modified to have a square barrier at its center. For

an infinite square well having width 0.6 Å plus a barrier having width 0.2 Å and

height 60 K, there are eigenstates with energy 32.2 K and 38.1 K, giving a tunnel

splitting of 5.9 K. This is similar to the activation barrier we observed, however the

corresponding tunneling frequency is 1011 Hz (the splitting expressed in frequency

units). This certainly can not correspond to the situation in the Sr clathrate, for

which the dynamics include slow motions of the order 105 Hz, as evidenced by the

NMR. Thus we conclude that the activation energy observed by NMR cannot be a

tunnel splitting between symmetric well states.

An asymmetric well can dramatically reduce the tunnel rate [52, 53], and also

can explain the linewidth increase with temperature decrease because of different

Ga Lamor frequencies for Sr at different sites [32]. Consider a general situation of

an asymmetric double well potential with two low-lying states differing by energy

∆, and a potential barrier between them with a tunneling rate ∆0/h̄. Fig. 20 is a
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Fig. 20. Right: A two-level system modelled as a double well potential with an energy

difference ∆ between the two positions, and a tunnelling probability ∆0 for

crossing the barrier between the two metastable states. Left: Physical system

corresponding to this potential. Dark solid circles are framework atoms, Ge

and Ga. Open circle is cage center atom, Sr.

cartoon of this situation. It can be shown [54] that the energy splitting between the

two eigenstates is:

∆E =
√

∆2 + ∆2
0. (5.5)

This is the model often used for Two Level Systems (TLS) in glassy materials. For a

symmetric TLS, where ∆=0, the energy splitting of the two states will be the exact

tunneling energy. In our systems, we observed a barrier of roughly 5 K, in which

case the corresponding tunneling frequency will be 1011 Hz. Again this is not what

we observed in our experiments. However for an asymmetric TLS, where ∆ 6=0, from

the above expression, ∆0 can be much smaller than ∆E, so the tunneling rate can

be dramatically reduced. A broad range of asymmetry parameters is found in many

glassy systems, and this is the common way to understand the T 2 behavior of the

thermal conductivity.
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Thus, we can understand our observations in terms of non-resonant atomic tun-

neling between asymmetric sites within the cages, in the presence of disorder. There

are various possibilities for the source of this disorder. For example, it is known

that the Ga atoms are distributed among the different framework sites [44], which

will lead to asymmetric on individual cages. Furthermore, Sr vacancies or cage-cage

interaction might also contribute. It is true that neutron diffraction measurements

show 4 equivalent positions for each Sr atom [20], however this is not inconsistent

with an asymmetric well, as long as the asymmetry is randomly distributed, since the

scattering experiments do not distinguish static from transient disorder.

One thing that this model can not explain is the linewidth decrease at the lowest

temperatures (below 4 K, see Fig. 15). One possible explanation could be that at very

low temperatures the displacement of the guest atoms assumes an ordered configu-

ration. A similar result has been found for Si clathrates [55], in which cage-centered

sodium atoms are observed to dimerize at low temperatures. A configuration of this

type could result in a decreasing linewidth due to decreased strain in the lattice.

3. Summary

Now I would like to briefly summarize the results on Sr8Ga16Ge30. We observed

linewidth changes indicating slow atomic motion in the Sr clathrate. CPMG mea-

surements yielded results that are consistent with the linewidth changes. By a simple

model, we obtained an activation energy Ea=4.6 K for Sr hopping. This model as-

sumed a wide distribution of hopping rates, and an asymmetric well model worked

well to explain the data. The T1 of Sr8Ga16Ge30 obeys a Korringa relation, implying

normal metallic behavior for the Sr clathrate, as expected for a heavily doped n-type

semiconductor.
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C. Ba8Ga16Ge30

1. Sample Preparation

One of the Ba8Ga16Ge30 samples was prepared by the G. S. Nolas group in the same

way as Sr8Ga16Ge30 [6]. Other BaGaGe samples were prepared in our group by arc-

melting the elemental constituents, with subsequent solid-state reaction. Structural

refinement was carried out using the General Structure Analysis System (GSAS)

software package [56, 57]. Powder x-ray diffraction patterns show that samples are

single phase plus a small amount of unreacted Ge in some cases [58]. A Ga flux

sample was prepared by starting with Ba8Ga30Ge30, following by arc-melting and

annealing, after which the sample was put into HCl for 2 days to remove excess Ga.

For this sample, powder x-ray diffraction patterns show that the main phase is type-I

clathrate with a minority Ga metal phase. A EDS (energy dispersive spectroscopy)

measurement on the Ga flux sample is shown in Fig. 21. Analysis of the scans

confirmed the clathrate main phase.

2. Measurements and Discussion

All NMR spectra were measured by echo integration. We observed a generally fea-

tureless Ga NMR lineshape due to a superposition of signals due to the different Ga

sites [44], with their individual powder patterns. Measured signals correspond to the

central-transition, (-1/2↔1/2), for I=3/2 71Ga, which was confirmed by comparing

the pulse length for a Ga(NO3)3 aqueous solution with those of the samples [45]. Thus

the spectra are very similar to these observed in Sr8Ga16Ge30. T1 measurements were

done at the center of the lineshape. The data were fitted to a multi-exponential re-

laxation curve by Eqn. 3.10 assuming magnetic relaxation for the central transition

to obtain T1. The data agreed well with these curves over the whole temperature
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Fig. 21. EDS scan of Ba8Ga16Ge30 made by Ga flux method (Light grey is clathrate

phase, dark grey is Ga metal)

range.

Ba8Ga16Ge30 samples prepared with stoichiometric starting materials are always

n type [5, 60], while Ba8Ga16Ge30 samples prepared from Ga flux are always p type

[8, 29, 24]. We will first discuss NMR results for two n type Ba8Ga16Ge30 samples

prepared with stoichiometric starting materials. One sample labelled as sample GN

was prepared by the G. S. Nolas group and another labelled as sample YL was pre-

pared by our group. Sample GN has been carefully measured by the Nolas group, and

the measurements yield carrier density n = 8.7×1019cm−3, resistivity ρ = 41 mΩ·cm,

and Seebeck coefficient S = -141 µV/K. Since the Seebeck coefficient is negative, it

confirms that sample GN is n type. Sample YL proved to be too fragile for transport

measurement, but to have higher carrier density than sample GN based on the NMR

results.
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The temperature dependences of the linewidth results are shown in Fig. 22. The

linewidth was obtained by measuring the full width half maximum (FWHM) of the

spectra. At room temperature, the linewidth of sample GN is 54 KHz, which is

narrower than that of sample YL with the value of 67 KHz. In both samples, we

observed a linewidth increase with temperature decrease, and at 4.2 K the linewidth

of both samples reaches 78 KHz. The temperature dependence of the Knight shift

is shown in Fig. 23. The Knight shift was calculated from the peak position of the

spectra. We found that the Knight shift change with temperature is very similar to

that of the linewidth. The Knight shift of both samples increases with temperature

decrease, and reaches the same value at low temperature. Fig. 24 shows the temper-

ature dependence of T1T. Because the relaxation rate is related to the number of

electrons involved in the relaxation process, a higher carrier density results in a faster

relaxation process, which corresponds to a shorter T1. T1 of sample YL is shorter

than that of sample GN, which indicates that the carrier density of YL is higher than

that of sample GN. We found that T1T of both samples is not a constant over the

whole temperature range, a deviation from the Korringa relation. However, sample

YL has a small deviation, and sample GN has a larger deviation. Fig. 25 shows the

temperature dependence of K2T1T. K2T1T of sample YL is almost constant with a

value around 8×10−6 sK. Comparing to 5.9×10−6 sK for Sr8Ga16Ge30 in the previous

section, and 2.73×10−6 sK for 71Ga in a free-electron system (from Eqn. 2.13), we

see that there is a small enhancement for sample YL. The nearly constant T1T and

small enhancement of K2T1T are typical of normal metallic behavior [32]. However

for sample GN we found that not only is the K2T1T not constant, but it also has very

large value, around 40×10−6 sK at high temperatures.

Although sample YL deviates from the Korringa relation, it still shows rather

typical metal-like properties, such as small enhancement of K2T1T by a factor of 2.9.
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As to sample GN, the deviation from the Korringa relation is very large, and there is

more deviation from metal-like behavior. These NMR results could be explained by

carrier freezout in the Ba clathrates with temperature decrease. In the case of carrier

freezout, nuclear spins will relax faster due to the interactions localized carriers, which

will make T1 relatively shorter, thus deviating from the Korringa relation.

Considering the standard picture of a disordered band edge in a semiconductor

[59], there is a region near the band called the mobility edge, which is the dividing line

between localized and extended states. As the number of carriers is reduced, εf can

be lowered into this region. Ba8Ga16Ge30 typically has native donors (presumably due

to stoichiometry) [5, 60], which dope the material into the metallic region. However,

we see that a relatively high-quality sample such as sample GN is rather close to

the localization limit, and this indicates the relative importance of disorder in this

material. Sample YL is doped higher into the band due to a larger number of native
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defects, which gives behavior much closer to that of a simple metal as seen by NMR.

For sample GN, to examine the correlation of the temperature dependence of

the Knight-Shift and linewidth, we set room temperature value of linewidth equal

to the room temperature value of Knight-Shift, and then scaled the linewidth values

accordingly, and plotted them together, as shown in Fig. 26. The figure shows that

the temperature dependence of the Knight-Shift and linewidth are closely related,

which indicates an inhomogeneous spin susceptibility. With a tendency toward car-

rier freezout in the Ba clathrate, and the development of a dilute set of magnetic

moments due to these localized carriers, we could explain the linewidth and Knight

Shift behavior of both YL and GN samples.

For sample GN, we know the carrier density is n = 8.7×1019cm−3, the Seebeck

coefficient S = -141 µV/K, and the resistivity ρ = 41 mΩ·cm. For metals, the Seebeck

coefficient can be expressed approximately as [61]

S = N
π2k2T

3eEf

, (5.6)

where N is the number of minima at the band edge (e.g. N = 6 for silicon), e is

the charge of an electron, and Ef is the Fermi energy. Given the parabolic band

approximation, the Fermi energy can be written as

Ef =
1

2m∗
h̄2(3π2n)

2
3

N
2
3

, (5.7)

where m∗ is effective mass. From this we get

(
m∗

me

)N
5
3 = (4.985× 10−14Km2/V )n

2
3 S. (5.8)

Band calculations show that the conduction band minimum is in the 110 direction

for Ba8Ga16Ge30 [62], corresponding to N =6, so we use this value.

Given the measured values, and assuming N = 6, we obtain m∗/me = 0.07, and
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thereby the evaluation of Ef gives Tf = 3560 K. Thus it indeed appears that this ma-

terial is doped into the metallic regime, since T < Tf for our measurements. Also this

justifies using the metallic form of S quoted above (the semiconductor T -dependence

is different than the metallic). The values of m∗/me found here, and also the native

doping levels for samples prepared from stoichiometric starting compositions are in

rough agreement with what has been found elsewhere [4, 5].

Using these values, a simple Drude model [42] for resistivity gives a scattering

time of τ = 7×10−17 s at room temperature, given 41 mΩ·cm for resistivity. Also we

can derive vf = 1.3×106 m/s, and thus the scattering length l = vfτ=8.6×10−11 m.

Using this value, we can define a dimensionless quantity kf l = 0.065. Shastry and

Abrahams considered that kf l < 1 corresponds to the diffusive regime for a Fermi

liquid in the presence of disorder [36]; in this regime disorder dominates. Note that

the Ioffe-Regel criterion is kf l =1/(2π), according to which the GN sample would also

be in the localized regime as defined by Mott [64]. However disorder typically lowers

the conductivity at the metal-insulator transition below what is expected from the

Ioffe-Regel criterion; for example in Si:P the threshold value is lowered by a factor of

6 [64]. Thus most likely from the transport values we expect that this sample is just

on the metallic side, rather than being an insulator.

The above analysis shows that the established theory for metallic electrons, in-

cluding the effect of electron-electron interactions, can be applied to the observed

room-temperature shifts and relaxation times. The temperature-dependence also

is characteristic of a disordered metal, rather than that of a semiconductor going

through a metal-insulator transition. The latter behavior is exemplified by the be-

havior of P-doped Si, where generally K2T1T will increase as localization takes hold

[65, 66]. There is clearly some degree of carrier freezeout in BaGaGe, as can be seen

from the Curie-like behavior seen in Fig. 24. However, the strong decrease in K2T1T
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for the GN sample as T is lowered implies that most electrons remain metallic, and

the behavior corresponds to what is expected for metals in the presence of strong

disorder [36, 63]. Indeed, as identified above, transport properties indicate the GN

Ba8Ga16Ge30 sample to be in the diffusive metallic regime, consistent with the NMR

results. Thus it appears that the native defects in n-type Ba8Ga16Ge30 play a very

significant role in the transport behavior, which must be considered if these materials

are to be used in applications.

Ba8Ga16Ge30 is electrically very similar to Sr8Ga16Ge30, but diffraction mea-

surements indicate that the Ba atoms remain at the cage centers, in contrast to

the Sr behavior. From NMR measurement, we observed different behavior between

Ba8Ga16Ge30 and Sr8Ga16Ge30. In Sr clathrate, we observed slow atomic motion [67],

and no sign of carrier freezout. For the different samples we have studied, Ga NMR

in all Ba8Ga16Ge30 cases exhibits a larger linewidth than in Sr8Ga16Ge30, and the

T1 deviates from a Korringa relation at low temperatures, in contrast to the simple-

metallic behavior seen in Sr8Ga16Ge30. There is also a temperature-dependence to

the center shift of the Ba-clathrate resonance, not seen in the Sr clathrate. These

results are consistent with a tendency toward carrier freezout in the Ba clathrate, and

the development of a dilute set of magnetic moments due to these localized carriers,

or possibly the presence of narrow features in the electronic density of states, such

as exhibited in NaxBaySi46 clathrate [31]. This behavior unfortunately has precluded

the comparison of Sr motion to the corresponding behavior in the Ba clathrate.

Ba8Ga16Ge30 samples made from Ga flux are alway p type clathrates [8, 29,

24]. NMR measurements of the p type sample show different behavior from the n

type samples. Fig. 27 shows that the relaxation rates of both p type and n type

Ba8Ga16Ge30 samples deviate from the Korringa relation. 1/T1 for the n type sample

has a negative curvature, while 1/T1 for the p type sample has positive curvature.
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Fig. 28 shows that the linewidths for both p type and n type samples increase with

decrease temperature, but with different values. Fig. 29 shows that the Knight Shift

of the p type sample decreases with decreasing temperature, while the Knight Shift

of the n type sample increases with decreasing temperature.

As described in the introduction, we know that Knight shift is mainly due to

the interaction of s electrons with the nucleus. In the p type Ba8Ga16Ge30, the main

carriers are holes, and most of these holes could be in a p orbital state, like in GaAs,

where the valance band-edge states have p symmetry [68]. The contact interaction

of p states with the nucleus is zero. Thus it is reasonable to have a smaller Knight

shift in p type than in the n type material where the main carriers are electrons.

Indeed that is exactly what we observed, and results are shown in Fig. 29. In Fig. 27,

we can see that at low temperature, the T1 of n type deviates from the Korringa

law, and T1 of p type roughly follows the Korringa relation in contrast to the n type

case. The difference is due the fact that at low temperature carriers freeze out for n

type Ba8Ga16Ge30 as we have discussed early, and for p type sample, since the Fermi

energy stays inside of the valence band, carriers do not freeze out in this situation.

3. Summary

Now I would like to briefly summarize the results on Ba8Ga16Ge30. We observed that

the relaxation behavior (T1) deviates from the Korringa relation, and the Knight

shift and linewidth change with temperature. These results could be explained by

carrier freezout in the Ba clathrate, and the development of a dilute set of magnetic

moments due to these localized carriers. NMR studies on Ba8Ga16Ge30 made from

Ga flux show different behavior from samples made with a stoichiometric ratio, which

is due to the different carrier type among these samples. The sample made from Ga

flux is p type, while samples made with stoichiometric ratio are n type. Contact
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interaction in the n type is apparently stronger, and there is carrier freezout in the n

type, but not in the p type clathrates.
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D. Ba8AlxGe46−x

1. Sample Preparation

All Al samples were prepared by the arc-melting technique in an argon environment,

following by annealing at 500 ◦C for two days. X-ray diffraction measurements verified

the Al13 and Al16 samples to be pure Type-I clathrate with no additional phases, and

for Al12, the majority phase is Type-I clathrate with very small amount of Ge phase.

2. Measurements and Discussion

WDS (wavelength dispersion spectroscopy) was performed on Ba8Al10Ge36. The re-

sults showed that the actual composition is Ba8Al9.2Ge33.6[]3.2, where [] denotes a

vacancy. There are roughly 3 vacancies per unit cell, similar to the number of vacan-

cies in Ba8Ge46. Studies show that Ba8Ge43 is characterized as a defect clathrate of

type-I structure with three missing Ge atoms in the covalent Ge framework, where

the vacancies of Ba8Ge43[]3 ( space group Im3d ) show a full ordering [69, 70, 71].

Our WDS measurements show that Al-deficient samples retain a similar number of

vacancies as in Ba8Ge46. We do not know whether these vacancies are in an ordered

structure. The number of vacancies in Al10 sample should be approximately 1.5 as

required by the Zintl concept, so it appears that this result does not follow the Zintl

concept. Ba8Ge43[]3 does not follow the Zintl concept either, as there are 4 vacancies

instead of 3 required by Zintl concept. However. the latter may be explained as due

to reduced charge transfer from Ba to the framework. whereas in Ba8AlxGe46−x it is

not clear why the vacancy number is unchanged relative to Ba8Ge43.

27Al NMR spectra of Ba8AlxGe40−x with x = 12, 13, and 16 at room temperature

are shown in Fig. 30, measured by spin echo integration. A room temperature search

over a considerably wider frequency range verified the broadened lines to be the only
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observable signal. For type-I clathrates, there are three framework sites with different

symmetry and different local environment, and microstructure studies of Ba8Al14Si31

show that Al can occupy any of these three framework sites [73], thus the observed

NMR line of Al-Ge systems is presumably due to a superposition of signals from these

three sites, with their individual powder patterns. For x = 12 and 13 we observe two

obvious peaks, while for x = 16 a single, broader line is seen.

To further understand the origin of these peaks, we measured the frequency

dependence of T1 at room temperature, and the results are shown in Fig. 31 and
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Fig. 32. For the Al16 sample, T1 gradually changes with frequency, having a roughly

linear relation. The decrease in T1 with increasing shifts is in line with the Korringa

law, and indicates that a distribution of metallic shifts is largely responsible for the

broadening. A similar result was observed for 71Ga NMR in Sr8Ga16Ge30. For the

Al12 sample, T1 is relatively flat under each of the two peaks, and changes gradually

between the two peaks. Thus for this material the two peaks correspond to two

distinct sites with different T1, with little distribution of metallic shift within each

peak. Measurements on Al13 yielded similar results to those of Al12. With 3 vacancies

per formula cell, and each site having 4 neighbors, 12 framework sites will be adjacent

to vacancies. With random occupation, 3 out of 9 Al atoms will be located on these

sites. Given the valence, it seems reasonable that Al would prefer these sites. Thus we

assign the lower NMR peak, which appears in Al12 and Al13, to Al next to vacancies,

and we find that roughly 1/2 the Al are located on these sites.

We measured the temperature dependence of T1 and the Knight shift at the

peak positions of each lineshape, and the results are shown in Fig. 33, and Fig. 34.

T1 nearly follows the Korringa relation for all Al samples, which indicate that the

samples are metallic. The Knight shift of the Al16 sample decreases with decreasing

temperature, similar to the behavior of p type Ba clathrate which we have discussed

earlier. Former group member Yang Li and colleagues in Beijing did band structure

calculations for BaAlGe clathrates, and the results show that Ef of Ba8Al16Ge30 is

at the edge the valence band, while Ef of Al10 is at the edge of the conduction band

[72]. The calculation is consistent with the temperature dependence of the Knight

shift for a p type sample, such as the p type Ba clathrate. Knight shifts of the

low frequency peak of Al12 sample increase with decreasing temperature, but the

change is much smaller than in Al16. Since the high frequency peak for Al12 at low

temperature is suppressed, and becomes a shoulder, it is difficult to follow the Knight
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shift change with temperature for this peak. The Korringa product of the free-electron

value for 27Al is 2.33×10−6 sK obtained from Eqn. 2.13. At room temperature, the

enhancement of the Korringa product for Al16 sample is almost 11, and 5 for the Al12

sample.

The temperature dependence of the electrical resistivity of the Al12 sample is

shown in Fig. 35 in the temperature range 2 K to 300K. The resistivity of Ba8Al12Ge34

is roughly half of value of Ba8Al14Ge31 [73], and shows a metallic temperature depen-

dence, which is consistent with NMR measurements.

An NMR lineshape measurement for Ba8Al12Ge34 at 4.2 K is shown in Fig. 36.

Compared with the lineshape at room temperature, the high frequency peak at 4.2

K is suppressed, and becomes a shoulder. Furthermore, we could distinguish the

quadrupole satellite lines which were not observed at room temperature, due to the
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reduced signal/noise ratio at room temperature. Magic angle spinning (MAS) mea-

surements for Al12, shown later, confirmed that the broad quadrupole background

still is present at room temperature.

Only considering the first order quadrupole and anisotropic Knight shift effects,

the equation describing the experimentally observed NMR transition frequency be-

tween the mth and (m− 1)th level in a single crystal is given by [34]

ν(m ↔ m− 1) = ν0 + [
1

2
νQ(m− 1

2
) +

K1νref

2
](3µ2 − 1)

−1

2
[K2νref + (m− 1

2
)νQη](1− µ2)cos2φ, (5.9)

where ν0 is the frequency of true center of the resonance including the isotropic Knight

Shift, K1 is Knight Shift in axial direction, and K2 is the difference of Knight Shift

between the x and y directions. In Eqn. 5.9, νref is the frequency of zero shift for the

detected nucleus, η is the asymmetry parameter of the electric field gradient (EFG), φ

is the azimuthal angle, µ = cosθ, and νQ is proportional to the EFG in the z direction,

given by

νQ =
3e2qQ

2I(2I − 1)h
, (5.10)

where Q is nuclear quadrupole moment (0.150×10−28(m2) for Al), and I is the nuclear

spin (5
2

for Al). In Eqn. 5.10, eq is the z-direction EFG and given by

eq =
∂2V

∂z2
. (5.11)

I simulated the quadrupole lineshape according to Eqn. 5.9 by summing over the

contributions from m = 5
2
, 3

2
, -1

2
, and -3

2
, and assuming equal weight from each m.

The crystal orientation was assumed to be evenly distributed over all solid angles.

The best simulation results are shown in Fig. 37. In the calculation, νQ and νref were
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set to be a dimensionless value 1, and later converted to frequency after comparing

with the experimental data. Fitted K1 and K2 values are small and close to zero, and

in the calculation they have little effect on the overall lineshape. The most important

effect comes from η. The best result was obtained with η = 0.4, and for νQ around

210 KHz.

The central line (1
2
↔ -1

2
) broadening (∆ν) due to second order quadrupole effects

was calculated using [34]

e2qQ

h
= 5.7

√
ν0∆ν, (5.12)

where η is assumed to be zero. For η 6= 0, the values are very similar. This is appro-

priate for a nuclear spin 5
2
, like the Al nucleus. Calculation shows that ∆ν is less than

1 KHz, which is much less than the splitting of two main peaks in Ba8Al12Ge34. The

result confirms that two peaks of Ba8Al12Ge34 are not separated by the central line

splitting due to second order quadrupole effects. Indeed T1 measurements indicated

them to be from different framework sites, as we have described earlier. The splitting

of two main peaks is small enough that we cannot say from the simulation with which

peak the quadrupole line is associated. However, magic angle spinning (MAS) mea-

surement confirmed that the quadrupole line is associated with low frequency peak,

as shown next.

Magic angle spinning (MAS) measurements on the Ba8Al12Ge34 sample were

carried out at room temperature with spinning frequency 11 KHz and 14 KHz. The

result is shown in Fig. 38, which is a snapshot of the actual figure, since unfortunately

the computer in the chemistry facility could not give raw data files. We observed

two main peaks, the same as we obtained from the spin echo experiments, along

with a series of spinning sidebands. From the series of peak positions of the spinning

sidebands measured at two different spinning frequencies, we identified that the broad
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Fig. 38. MAS measurement of Ba8Al12Ge34 at room temperature

quadrupole background is centered at 240 ppm, which is underneath the low frequency

peak. The result is shown in Fig. 39. A similar MAS measurements were performed

on Ba8Al16Ge30. We observed a single peak for the Al16 sample around 300 ppm,

along with a series of spinning sidebands like in Al12 case. However, the spinning

sidebands analysis for Al16 sample shows that the broad quadrupole background is

centered at 330 ppm, which is a bit higher than the main peak frequency, a result

different from Al12. We also did MAS measurements on Al13 sample, we observed

two main peaks. However, the spinning sidebands for this sample are not so clean as

in the Al12 sample, so that it is difficult to do analysis on them.

From the various NMR measurements, we have a clear picture of the BaAlGe

clathrates. Al12 is not just a simple version of Al16 with less Al. Rather, the Al

deficient samples have a concentration of vacancies similar to that of Ba8Ge43[]3 [69,

70, 71], apparently resulting in an ordered Al occupation in these samples, with the Al

atom more likely to be the neighbor of a vacancy. For Al16, because of the disordered
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Fig. 39. Fitting of spinning sidebands from MAS measurement of Ba8Al12Ge34 at

room temperature

Al occupation of the 3 framework sites, we see a single broad NMR peak due to

the inhomogeneous Knight shift of the different sites. For Al12, we clearly see two

distinct peaks from two sites, which also indicates that Al occupation in this sample

has a degree of ordering. From the various NMR measurements, we know that at

least one Al site corresponds to the observed quadrupole background. For Al12, it is

clear that the main part of the observed quadrupole background is centered at the

low frequency peak which we assigned to Al neighboring the vacancies. For Al16, the

quadrupole background is spread out due to the disorder of the Al sites, so that no

distinct satellite peaks could be identified.

To further analyze the results, we carried out EFG calculations using the WIEN2k

ab initio package. There are three framework sites, and a total of 46 framework po-

sitions, and Al can occupy any one of them. Therefore, if we wanted to calculate the

EFG for Ba8Al12Ge34 assuming random occupancy, a large supercell structure would
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be required, which could be difficult or impossible to calculate. Since we are only

interested in the EFG of Al on three framework sites, to simplify the calculation,

we assumed that the Al completely occupies each of the three framework sites in

turn. We performed EFG calculations for Ba8Al6Ge40 assuming complete Al occu-

pancy on the 6c site, Ba8Al16Ge30 assuming complete Al occupancy on the 16i site,

and Ba8Al24Ge22 assuming complete Al occupancy on the 24k site. Even though the

repeating structure contains only one unit cell, there are still a total of 54 atoms in

each cell providing a reasonable approximation to the superstructure. It took 3 days

to finish one calculation. νQ was calculated from Eqn. 5.10 and Eqn. 5.11. The EFG

results for each Al site are shown Table III. The results show that η is not equal

to zero only when Al is on 24k site, with νQ = 174 KHz. These values are close to

what we have obtained from simulation of quadrupole lines, with η = 0.4 and νQ

≈ 210 KHz. Thus it may be that the low-frequency peak is dominated by 24k site,

although that site also has a vacancy neighbor. Another indication of this is that

the vacancies prefer to occupy the 6c site [69, 70, 71], for which the only neighbors

are the 24k site, and the low-frequency peak of Al12 is associated with a framework

site neighboring with vacancies. This result is different from what had been reported

earlier in refrence [74], where it was reported that in Ba8Al16Ge30 the 6c and 24k sites

are occupied completely by Al and Ge, respectively, whereas the 16i site is shared by

Al and Ge. However, due to the presence of the vacancies, the site occupation will

be different, since vacancies would naturally try to draw the Al close to them. To

confirm, we plan to calculate the vacancy induced EFG using a supercell approach,

now that we have installed the Wien2K package at the supercomputer center. We

note in Table III that EFG on 6c is not equal to zero, apparently contradictory to

the high symmetry of 6c. This was a surprise for which we do not yet have a physical

explanation.
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Table III. EFG and νQ of Al site of Ba8AlxGe40−x with x = 6, 16, and 24 assuming

completely Al occupancy of one of 6c, 16i, and 24k sites. (EFG is in units

1021V/m2, and η is dimensionless).

Vxx Vyy Vzz η νQ (kHz) Al site

Ba8Al6Ge40 -0.279 -0.279 0.558 0 304 6c

Ba8Al16Ge30 1.021 1.021 -2.04 0 1110 16i

Ba8Al24Ge22 -0.278 0.046 0.32 0.75 174 24k

3. Summary

Now I would like to briefly summarize the results on Ba8AlxGe40−x. With x = 12

and 13, we observed two peaks, with one attributed to vacancies, consistent with

WDS results. In Ba8Al16Ge30 we observed a single peak, and the broadening of this

peak we attribute is due to an inhomogeneous Knight shifts for Al nuclei located

on these framework sites. A broad quadrupole background exists for all Al samples.

The difference in broadening between Al12 and Al16 NMR is apparently due to the

ordering of Al site occupation in Al12, which is absent for Al16 sample.
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CHAPTER VI

CONCLUSIONS

I did studies for the clathrates Ba8Ga16Sn30, Sr8Ga16Ge30, Ba8Ga16Ge30, and Ba8AlxGe40−x

with x = 12, 13 and 16. Among these Ba8Ga16Sn30 is a type-VIII clathrate, while

others are type-I clathrates.

Resistivity measurement on Ba8Ga16Sn30 showed it to have semiconductor behav-

ior. Specific heat measurement indicates the existence of Einstein oscillator modes.

Fitting of the specific heat data yielded γ = 9 mJ/(mol K2), with a Debye temperature

ΘD = 187 K, and Einstein temperature ΘE = 51 K.

Sr and Ba clathrates exhibit different NMR results. The T1 of Sr8Ga16Ge30

obeys the Korringa relation, implying normal metallic behavior for the Sr clathrate,

as expected for a heavily doped n-type semiconductor. For Ba8Ga16Ge30 sample, the

relaxation behavior (T1) deviates from the Korringa relation, and the Knight shift

and linewidth change with temperature. These results could be explained by carrier

freezout in the Ba clathrate, and the development of a dilute set of magnetic moments

due to these localized carriers. On the other hand, in Sr clathrate, there was no sign

of carrier freezout in the system.

For Sr8Ga16Ge30, linewidth changes with temperature is one of the features that

indicates slow atomic motion. Fitting the lineshape changes yielded an activation

energy of about 7 K. CPMG measurements yielded results that are consistent with

the linewidth changes. By a simple model, we obtained an activation energy Ea=4.6

K for Sr hopping, which is similar to the value obtained from linewidth measurements.

This model assumed a wide distribution of hopping rates, and an asymmetric well

model worked well to explain the data.

NMR studies on Ba8Ga16Ge30 made from Ga flux shows behavior different from
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that of samples made with the stoichiometric ratio, which indicates a dramatically

different electronic structure in this sample. The p type sample has a smaller Knight

shift and a slower relaxation rate than n type samples made with the stoichiometric

ratio, which is consistent with a change in orbital symmetry between the conduction

and valence bands.

In Al NMR measurements on Ba8AlxGe40−x with x = 12 and 13, we found that T1

of all Al samples follows the Korringa relation. The broadening of the single peak of

Al16 is due to the inhomogeneous Knight shifts for occupation of different framework

sites. For Al12 and Al13, we observed two peaks, and NMR results show that they are

from distinct Al sites, while for each peak, the inhomogeneous broadening is much

smaller. The difference in lineshapes we attributed to the existence of vacancies which

we detected in the Al-deficient materials, and we assign one of the two Al peaks to

Al adjacent to a vacancy. The difference in broadening between Al12 and Al16 is

apparently due to the degree of ordering in Al12. For the Al12 sample, simulation of

the quadrupole background and WIEN2k calculations indicate that the low-frequency

peak is dominated by the 24k site, which is also consistent with crystal structure,

where 6c, which vacancies prefer to occupy, only has 24k site neighbors.
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