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ABSTRACT

Motion Planning Algorithms for a Group of Mobile Agents. (August 2008)

Mayank Lal, B.Tech, Indian Institute of Technology, Kharagpur;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Suhada Jayasuriya

Building autonomous mobile agents has been a major research effort for a while

with cooperative mobile robotics receiving a lot of attention in recent times. Motion

planning is a critical problem in deploying autonomous agents. In this research we

have developed two novel global motion planning schemes for a group of mobile agents

which eliminate some of the disadvantages of the current methods available. The first

is the homotopy method in which the planning is done in polynomial space. In this

method the position in local frame of each mobile agent is mapped to a complex

number and a time varying polynomial contains information regarding the current

positions of all mobile agents, the degree of the polynomial being the number of

mobile agents and the roots of the polynomial representing the position in local

frame of the mobile agents at a given time. This polynomial is constructed by finding

a path parameterized in time from the initial to the goal polynomial (represent the

initial and goal positions in local frame of the mobile agents) so that the discriminant

variety or the set of polynomials with multiple roots is avoided in polynomial space.

This is equivalent to saying that there is no collision between any two agents in going

from initial position to goal position. The second is the homogeneous deformation

method. It is based on continuum theory for motion of deformable bodies. In this

method a swarm of vehicles is considered at rest in an initial configuration with no

restrictions on the initial shape or the locations of the vehicles within that shape. A

motion plan is developed to move this swarm of vehicles from the initial configuration
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to a new configuration such that there are no collisions between any vehicles at

any time instant. It is achieved via a linear map between the initial and desired

final configuration such that the map is invertible at all times. Both the methods

proposed are computationally attractive. Also they facilitate motion coordination

between groups of mobile agents with limited or no sensing and communication.
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CHAPTER I

INTRODUCTION

Autonomous mobile agents have many potential applications, with a lot of research [1,

2, 3] being done to equip them with better capabilities. Groups of mobile agents which

engage in collective behavior have been of interest lately. There are several reasons

for this. The complexity of the task may make it infeasible or impossible for a single

mobile agent to accomplish or the performance of a single agent may be much worse

than a system of multiple agents. Also it would be much more economically viable to

build many cheap mobile agents to achieve sub tasks than a single sophisticated agent

for the overall task. Multiple mobile agents are advantageous in terms of flexibility and

fault tolerance too. Also multiple mobile agents which exhibit cooperative behavior

can yield insights into social and life sciences. Hence multiple mobile agents can

achieve tasks which cannot be done by single mobile agents, however powerful they

are because of the inherent spatial limitation of single mobile agents.

A. Cooperative Mobile Robotics and Motion Planning

Cooperative mobile robotics as the name indicates is the field of engineering in which

groups of mobile agents engage in accomplishing a common task. Motion planning

is one of the aspects of cooperative robotics. One of the key driving forces for the

development of cooperative robotics is the need to reduce human intervention in

dangerous applications. There is an element of danger in applications such as toxic

waste cleanup, fire fighting, search and rescue, border surveillance, decommission-

ing of nuclear plants, emergency management etc.. Groups of robots with sensors

The journal model is IEEE Transactions on Automatic Control.
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mounted on them can be dispatched to do these tasks autonomously. Thus with the

use of cooperative robotics the risk to humans can be considerably reduced. Other

potential applications include automated highway systems [12], [13], box pushing

[14, 15, 16, 17, 18, 19, 20, 21], foraging[22, 23, 24, 25, 26, 27, 28, 29, 30], ,scientific

data collection and industrial automation. Automated highway systems will help

reduce traffic congestion and accident rates while applications such as industrial au-

tomation eliminate fatigue to humans caused by monotonous and repetitive jobs. It

is also envisaged that autonomous mobile agents will play a big role in future warfare.

Cooperative robotics has it’s roots in some of the early works in 1940’s when Grey

Walter, Wiener and Shannon experimented with turtle-like robots having touch and

light sensors. These robots showed complex social behavior in response to each other’s

movement [4]. There was active interest in the study of coordination of multiple

intelligent agents in the field of distributed artificial intelligence in the 1970’s [5]

though it involved software agents. Towards the latter part of 1980’s there was a lot

of activity in the field of cooperative robotics. Numerous projects such as CEBOT

[6], SWARM [7], ACTRESS [8] and GOFER [9] were conducted. Most of these

projects were done mainly in simulation though more recent work [10], [11] have done

experimental work towards establishing cooperative robotic systems.

While cooperative robotics has a number of aspects such as group architecture,

resolving resource conflicts, origins of cooperation and learning, we cover the geo-

metric aspect in our work, i.e. motion planning for multiple mobile agents in two or

three dimensional world. In other words, fundamental to the creation of a coopera-

tive robotic system is the ability to move a group of mobile agents from a reference

configuration A to a goal configuration B. This requires many local processes and

decisions to be made. A mobile agent must be able to process data from onboard

sensors for motion planning through different, dynamic terrains by detecting and
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avoiding obstacles as required. Global motion planning is the first level of achieving

such a mission and we address this problem in this dissertation.

B. The Problem and Motivation

1. The Problem

We consider the problem of planning the motion of a group of mobile agents from an

initial configuration to a final configuration such that there is no collision between

the mobile agents and the mobile agents with stationary obstacles in the environ-

ment. We have considered both two dimensional and three dimensional cases. In

practical situations there could be instances when there are moving obstacles in the

environment but is outside the scope of our this work.

2. Motivation

The main motivation behind this work has been the development of algorithms that

are computationally attractive and require limited or no communication and sensing

between the mobile agents for their implementation. A reduction in computational

complexity helps minimize the computational cost. Minimizing communication and

sensing on the other hand helps reduce the cost involved to facilitate it and also the

issue of uncertainty and loss of communication. The developed methods in their cur-

rent form though have some limitations in that they do not incorporate mobile agent

failures and uncertainty in controlling the agents along the trajectories generated by

the methods. There is potential for removing these limitations with a certain amount

of communication between the agents and sensing of the current positions of the

agents for feedback. Despite the limitations the developed methods are very promis-

ing from a computational point of view and require limited or no communication and
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sensing between agents for their implementation.

C. Existing Work and Their Deficiencies

The motion planning problem of multiple mobile agents or the multimover’s problem

arose initially in an automated factory where mobile agents moved parts from the

warehouse to assembly stations. The mobile agents needed to avoid each other and

stationary obstacles in the factory. Developing an exact and efficient algorithm for

the generalized multimover’s problem is unlikely and several algorithms are available

for special cases. Centralized methods like the cell decomposition and potential field

methods were used initially to solve this problem. Centralized method is an approach

in which the group of mobile agents is treated as a composite robot and the mo-

tion plan of this composite robot is planned through obstacles. In [38] this problem

is solved for an arbitrary number of moving objects using the cell decomposition

method. The algorithm proposed in the paper has computational complexity which

is polynomial in the number of smooth surfaces of obstacles and exponential in the

number of degrees of freedom of the mobile agents. In [39] the problem was restricted

and solved in two dimension considering circular mobile agents while [40] analyzed

the same problem using the retraction method. Later in [41] the cell decomposition

approach was used for planning the coordinated motion of convex polygonal mobile

agents among polygonal obstacles. In [42] cell decomposition along with dynamic

programming was used to solve the problem. In [43, 44] a potential field approach

is taken to solve the problem. In [45] a combination of randomized searching and

potential fields is used to plan the motion of multiple translating robots. In recent

years motion planning algorithms which use random sampling, like the probabilis-

tic roadmap (PRM) planners [46, 47] have gained popularity due to their efficiency



5

and simplicity. Centralized methods using PRM have been developed for solving the

motion planning problem for multiple agents [48, 49]. The issue with centralized

planning is that the time complexity of the algorithms are exponential in the dimen-

sion of the composite configuration space. It’s been shown in [50, 51] that even the

supposedly simpler problem of motion planning of multiple rectangles is P-SPACE

complete. To resolve this issue methods were developed in which the path of each

robot was planned more or less separately and then interactions between the paths

were considered [52]. This approach is called the decoupled planning approach which

was introduced in [53] to solve the problem involving multiple moving objects. There

are two decoupled planning approaches, prioritized planning and path coordination.

In prioritized planning [54, 55] the motion planning of each robot is done one at a

time with the order of planning according to priority. Each robot needs to be assigned

a priority which may be done randomly or using motion constraints. In [56] the pri-

orities are assigned to the mobile agents in a way that the number of mobile agents

moving in straight lines from the initial to the final configuration is maximized. The

other decoupled approach, path coordination was proposed in [57, 58]. This method

is based on a scheduling technique for dealing with limited resources[59]. The no-

tion of coordination diagram was used in [57] and later analyzed for manipulators in

[60, 61]. On similar lines roadmap coordination [62, 63] was used to plan the motion

of multiple robots. The problem with decoupled approaches is that despite gains in

terms of computational complexity compared to centralized methods, there is loss of

completeness. We have developed two approaches for solving the motion planning

problem for multiple agents. The first is the homotopy approach and the second is

the continuum approach. Both these approaches are promising from a computational

point of view. The homotopy approach is based on finding roots of a polynomial and

since Newton Raphson method can you used to calculate the roots, it is promising
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from a computational point of view. The continuum approach on the other hand is

based on the idea of finding a motion map between the initial and final configura-

tion which is a homeomorphism. The time complexity of the continuum approach is

the complexity of calculating values of the polynomial and trigonometric functions

which are the elements of this map which transform the agents from one position

to another. The continuum approach has the added advantage of being completely

scalable. Apart from the potential advantage in terms of complexity, the homotopy

and the continuum approaches are attractive because of their inherent simplicity.

The planning using the homotopy approach is done in polynomial space rather than

complex composite configuration spaces. The trajectory planning of each agent is

done simply by calculating the roots of a time varying polynomial. Similarly the

continuum approach generates trajectories of the mobile agents simply through time

varying linear maps of the initial positions of the agents.

Another approach in literature for the motion coordination of multiple agents

is the distributed approach [65, 64, 66, 67, 68]. In this approach the mobile agents

sense and communicate with their neighbors and compute their paths individually.

There exist good techniques for modeling individual behavior within a group in virtual

environments such as Reynolds boids [69], based on each agent solely observing its

local environment. This concept is called flocking. Reynolds extended the idea so

as to include autonomous reactive behaviour [70]. Also there is the social potential

field technique in which the desired behavior of groups of mobile agents is created by

defining certain force fields between the agents [71]. The issue with the distributed

approach is that since agents are not assumed to have global information about the

environment, only very simple navigation and planning tasks can be handled, i.e.,

these methods cannot be used if complex navigation is required, such as in cities.

On the other hand global motion planning algorithms such as the methods we have
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developed in our this work can handle complex environments. Also since only local

information is available in the approaches developed in [69, 70, 71] the agents may get

stuck in cluttered environments and split up. In other words the agents do not move

as a coherent group. The homotopy and continuum approaches do not present issues

such as incoherence that is seen in distributed approaches such as flocking in which

the agents split when they encounter an obstacle. The agents move as a coherent

group. The distributed approaches also require the agents to sense and communicate

with neighboring agents with the computational load of the agents increasing with

increase in the number of neighbors. If each agent is given the polynomial and the

initial positions in the homotopy approach, they can generate and track their paths in

a distributed fashion with no communication and sensing .The continuum approach

has similar properties with the agents generating and tracking their paths with no

communication and sensing, given the homogeneous maps.

D. Our Contribution

Our contribution in this dissertation has been the development of two novel global

motion planning methods. These methods are novel as they require no communication

and sensing for their implementation and are very promising from a computational

point of view. The first is based on homotopy of polynomials while the second is

based on continuum theory. Both these methods are formation to formation motion

planning methods with deformation and translation of a group of mobile agents such

that collision between any two agents is avoided in going from an initial configuration

A to a final desired configuration B. In the developed methods it is assumed that the

global plan can be segmented in such a way that the required motion plan from a start

position to a goal position consists of a number of well defined configurations (position
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and possibly shape). For example, this can mean a set of intermediate configurations

Ci defining the motion AC1C2C3.....Ck....B (effectively combined spatial and temporal

waypoints). This necessarily means that all we have to be concerned is with the

motion from one given reference configuration A0 to a final configuration B0 with

minimal or no intermediate path constraints other than the motion plan being collision

free. We have also extended the methods to handle stationary obstacles. There has

been research related to motion planning in a road network environment [31, 32, 33,

34] which is essentially 1-D. In our work though we consider both 2-D plane and the

3-D space.

1. Homotopy Approach

This approach is based on homotopy of polynomials. The motion plan consists of

deformation and translation. The deformation of the group is brought about by

finding roots of a polynomial which does not have multiple roots. The translation of

the group is brought about by bounding the group by a disc and planning the motion

of the disc as a single agent through stationary obstacles. In [35] too polynomials

are used to represent configurations of robots in formations and the straight line

polynomial path has been used as a local planner for generating paths for robots. In

our work though we generate trajectories for robots by ensuring that the polynomial

stays away from the space of polynomials having multiple roots. We solve the cases

in which the mobile agents are moving in two dimensional and three dimensional

workspace using this approach. We also implement the motion plan generated using

the approach on a group of non holonomic agents using the controller proposed in

[36].



9

2. Continuum Approach

This approach is based on continuum theory according to which if we can find a

motion map between the start and goal configurations which is a homeomorphism,

the agents will occupy unique positions at all times. This will ensure that there is

no collision between the agents at any time. We extend the approach to the case in

which there are stationary obstacles in the environment by bounding the group by

a rectangular box which can deform, translate and rotate as has been done in [37].

Since we assume initially that the mobile agents are point objects, we develop a way

to handle finite sized agents using this approach. The motion plan is implemented

on a group of non holonomic agents using the controller proposed in [36].

E. Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter II we pose the motion

planning problem of moving a group of agents from an initial configuration to a final

configuration. In Chapter III we develop a homotopy approach for it’s solution. We

first consider a straight line path in polynomial space for planning the change of shape

of the group and show a way to check whether the polynomial path has multiple roots.

We then develop a potential field approach of finding this polynomial path. Next we

have developed a way to plan the motion of the group through stationary obstacles.

We have also implemented the motion plan on a group of non holonomic mobile agents

and extended the homotopy approach to handle agents moving in three dimension.

In Chapter III we solve the problem posed in Chapter II for moving a swarm

of agents from an initial configuration to a final configuration using the continuum

approach. The method is based on continuum theory which suggests that as long

the motion map between the initial to the final configuration is a homeomorphism,
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each agent will occupy a unique position in all the intermediate configurations. We

initially assume that the agents are point objects but we have also developed a way to

handle finite sized agents. We have also shown a way to handle stationary obstacles

in the environment and implemented the motion plan on a group of non holonomic

agents.

Concluding remarks and future work are in Chapter V.
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CHAPTER II

GLOBAL MOTION PLAN FOR SWARMS

Moving a group of mobile agents from an initial configuration to a final configuration

without collisions is fundamental to building cooperative robotic systems. In this

chapter we formulate the problem of moving a group or a swarm of mobile agents

from an initial configuration to a final configuration.

As stated in Chapter I there are a number of applications of cooperative robotic

systems such as foraging, box pushing, target tracking etc. Many of these applica-

tions are inspired by biological systems such as swarms of birds, bees and herds of

bisons which are quiet prevalent in nature. They all demonstrate swarming behavior

to maximize their chances of finding food and to avoid predators. To achieve the

applications stated above we need to plan the motion of swarms or groups of mobile

agents from an initial to final configuration such that there are no collisions between

agents. Also in a real world scenario, apart from avoiding collisions with each other

the mobile agents should avoid collisions with stationary obstacles in the environ-

ment. These obstacles could be like rocks, trees, cliffs, walls in the environment. Let

us consider a scenario in which a group of autonomous tanks needs to change from

a triangular formation to a line formation as illustrated in Fig. 1 to move through

a tunnel which is wide enough for just one tank. The tanks must sense and commu-

nicate with it’s neighbors, avoid rocks and other obstacles in the way to achieve this

objective. The tanks will have actuator constraints, in other words they have limits

on their velocities and accelerations and also will encounter disturbances such as un-

even ground, wind etc..Apart from this there will be uncertainty, time delay and loss

in communication, sensing and control of the tanks and the tanks will have limited

computational capabilities. Hence under all these limitations the desired objective is
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Stationary obstacle  

Autonomous tank 

Fig. 1. Typical scenario for motion planning of a group of agents

to be achieved. We are motivated by real world scenarios such as this and formulate

the problem below:

A. Problem Statement

Given n mobile agents:R1, R2, ..Rn , plan the motion of the n agents from an initial

configuration A to the final configuration B such that there is no collision between

the agents at any time instant and between the agents and stationary obstacles in

the workspace.

We develop two approaches for solving this problem, the homotopy and con-

tinuum approaches. Both these approaches require no communication and sensing

for their implementation except for sensing the positions of the mobile agents in the

initial and final configurations. Hence we minimize the high cost associated with com-

munication and sensing and the uncertainties, loss and time delays associated with it.

Also the developed methods are computationally promising and will help reduce the

high computational cost required for implementation of the existing methods. The

limitation of these approaches is that we assume that there is no uncertainty in con-

trol of the mobile agents along their planned trajectories and there is no agent failure.
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Despite the limitations the developed methods are very promising from a computa-

tional point of view and require no communication and sensing between agents for

their implementation. In the next two chapters we describe the approaches in detail.
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CHAPTER III

HOMOTOPY APPROACH

Motion planning of multiple mobile agents in the past has been done primarily in the

configuration space(the field of all possible robot locations) of the robots [46, 47]. In

this chapter we develop an approach to solve the problem formulated in Chapter II

for a group of mobile agents moving in two dimensional workspace. The planning

is done using homotopy of a polynomial. In Section A we give an overview of the

approach. In Section B we develop the algorithm for changing the shape of the group.

The approach consists of finding a time varying polynomial which has no multiple

roots at all times. We analyze a polynomial path which is a straight line in the space

of polynomials and the potential field approach of finding a polynomial path in this

section. It is to be noted that the straight line polynomial path does not imply that

the mobile agent trajectories are straight lines. In Section C we develop a way to

handle stationary obstacles in the environment and also the velocity and acceleration

constraints. In Section D we implement the approach on a group of non holonomic

agents and in Section E we extend the approach to the three dimensional case.

A. The Approach

The approach is based on homotopy of polynomials for solving the problem formu-

lated in Chapter II. The motion plan consists of deformation and translation. The

deformation of the group is brought about by finding roots of a polynomial which lies

in the complement of the discriminant variety space, the discriminant variety space

being the space of polynomials with multiple roots. The translation of the group is

brought about by bounding the group by a disc and planning the motion of the disc

as a single agent through stationary obstacles.
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The roots of the polynomial used for deformation, map to the positions of the

mobile agents in local frame. The local frame is a frame which translates(pure trans-

lation) along with the group. In the case in which the agents are moving in two

dimension, the real part of the roots represent the x positions of the agents and the

imaginary part represent the y positions w.r.t. the local frame. The polynomial itself

is a path parameterized in time between the initial and final polynomials. The roots

of the initial and final polynomials represent the initial and final positions of the

agents respectively. One such polynomial path is the straight line polynomial path

between the initial and final polynomials. We present a way to verify if the straight

line path intersects the discriminant variety. Apart from the straight line path, we

also generate paths in polynomial space using a potential field like approach. In this

approach a potential function is created such that as the time varying polynomial

moves towards the discriminant variety, the potential function increases in value and

as it moves away from the goal polynomial it again increases. This way a polyno-

mial path is generated which reaches the goal by avoiding the discriminant variety

by moving in the direction of negative gradient of the potential function. Once the

planning for deformation is done, we find a disc which bounds the agents at all times

and use this disc to plan the translational motion of the group through stationary

obstacles using any of the standard methods for motion planning of a single agent.

Since the positions, velocities and accelerations of the mobile agents can be found

owing to the polynomial being differentiable, we use a non-linear controller proposed

in [36] to implement the algorithm on a group of non holonomic agents moving in

two dimension. We also extend the approach to 3-D by mapping the 3-D coordinates

to 2-D. The idea is that we use a linear transformation for two of the coordinates to

map the 3-D coordinates to 2-D such that each map is unique. We then use these

new coordinates to generate a time varying polynomial which avoids the discriminant
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variety. Once we have this polynomial, we find out the new coordinates as a func-

tion of time from the roots of this polynomial. The 3-D coordinates are then found

out from these new coordinates by joining the initial and final values of one of the

transformed coordinates by a straight line and using an inverse map.

1. Assumptions

The key assumption for the 2-D case of the problem described in Chapter I is:

• The agents are represented as point masses.

It is to be noted that even though the mobile agents are assumed to be point objects,

the algorithm proposed can deal with finite sized agents. In particular finite sized

agents can be handled by using the potential field approach for homotopy of polyno-

mials developed in this work. This can be done by choosing an appropriate value for

the distance of influence of the discriminant variety.

B. Algorithm for Group Shape Change

We present the homotopy approach for deforming the group to the final shape in

this section. We first present the straight line path approach as this path is easy to

analyze. We show a way to verify if this path is feasible. Then we present a potential

field like homotopy approach.

1. Polynomial Construction

We construct a polynomial, the roots of which represent the current positions of the

mobile agents in local frame. The real part of the roots represent the x coordinate of

the mobile agents and the imaginary part represent the y coordinate. We construct,

initial and goal polynomials, the roots of which represent the initial and goal positions
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Fig. 2. Change of formation

of the mobile agents in local frame. Then we use these polynomials to construct a

time varying polynomial path which represents the current positions of the mobile

agents such that no two mobile agents are at the same position at a given time. Let us

define the discriminant variety space. The discriminant variety space
∑

n, is the set

of all complex polynomials of degree n with multiple roots. If we represent the set of

all polynomials of degree n by Pn then Pn−
∑

n represents the set of all polynomials

of degree n with distinct roots which we call the complement of the discriminant

variety space. There is a proposition in [78] according to which the discriminant

variety is connected. Also a method is described in [79] to parameterize curves in
∑

n. Utilizing these ideas if we can find parametric curves connecting the initial and

final polynomials, in Pn −
∑

n we ensure that no two mobile agents are at the same
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coordinates at any instant. The straight line polynomial path (1−λ)Pi+λPg,λ ∈ [0, 1]

could be one such path. Pi and Pg are the initial and goal polynomials which have

distinct roots ,λ = t
T

and time t ∈ [0, T ]. As an example, for the initial and final

configurations shown in Fig. 2, Pi(x) = (x−(x1i+jy1i))(x−(x2i+jy2i))......(x−(xni+

jyni)) and Pg(x) = (x− (x1f + jy1f ))(x− (x2f + jy2f ))......(x− (xnf + jynf )). Results

in [79] can be used to verify whether the straight line (1− λ)Pi + λPg ,λ ∈ [0, 1] lies

in Pn −
∑

n.

This method is developed below.

2. Verification of Intersection of Straight Line Path with Discriminant Variety.

We now show a way to parameterize the discriminant variety which has been devel-

oped in [79]. We use this parametrization to formulate a way to check if the straight

line path intersects the discriminant variety. The idea is to first find the spanning set

of the discriminant variety space using a matrix which is a function of the degree of

the polynomial n and the elements of (C∗)2. C is the set of complex numbers. We

then find two vectors which are orthogonal to the discriminant variety space from

this spanning set. The check for the intersection of the straight line polynomial path

with the discriminant variety is done by checking for the orthogonality of this path

with these two vectors.

First, we form a matrix A as described below and determine its kernel. The

result in [79] tells us that the kernel of A and elements of (C∗)2 parameterize
∑

n in

the manner described below.

A =




1 1 1 1 ..... 1

0 1 2 3 ..... n



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Let the kernel be:




x0

x1

.

.

xn




Therefore :




1 1 1 1 ..... 1

0 1 2 3 ..... n







x0

x1

.

.

xn




=




0

0




or equivalently,

x0 + x1 + ....... + xn = 0

x1 + 2x2 + ..... + nxn = 0

Using the above two equations we can say that the kernel is :

x2 ×




1

−2

1

0

.

.

.

0




+ x3 ×




2

−3

0

1

0

.

.

0




+ .....xn ×




n− 1

−n

0

.

.

.

0

1




The discriminant variety is then constructed out of the Kernel:
∑

n = [τ1(x2 + 2x3 + ....(n− 1)xn) : τ1τ2(−2x2− 3x3.....− nxn) : τ1τ
2
2 x2 : τ1τ

3
2 x3 :
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..... : τ1τ
n
2 xn]

= x2τ1 ×




1

−2τ2

τ 2
2

0

.

.

.

0




+ x3τ1 ×




2

−3τ2

0

τ 3
2

0

.

.

0




+ ..... + xnτ1 ×




n− 1

−nτ2

0

.

.

.

0

τn
2




where x2, x3, ..., xn are arbitrary complex numbers and τ1 and τ2 are nonzero complex

numbers. Let us denote,

w1 =




1

−2τ2

τ 2
2

0

.

.

.

0




, w2 =




2

−3τ2

0

τ 3
2

0

.

.

0




, ...
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wn−1 =




n− 1

−nτ2

0

.

.

.

0

τn
2




From this parametrization we see that
∑

n is the union of the spans of w1, ..., wn−1

for all nonzero complex numbers τ2. To check if a particular polynomial lies in
∑

n,

for each value of τ2, we construct two vectors s1 and s2 which are orthogonal to

w1, ..., wn−1. These vectors will lie in the complement of the discriminant variety

space. Hence if the polynomial path is not orthogonal to both these vectors, it will

not lie in the discriminant variety space. In other words, a polynomial,P lies in
∑

n

if and only if < P, s1 >= 0 and < P, s2 >= 0 for some τ2.

Explicitly we find s1 and s2 as follows to check the orthogonality of the polynomial

path with them. Let this vector be




v0

v1

.

.

vn




Therefore

v0 − 2τ2v1 + τ 2
2 v2 = 0

2v0 − 3τ2v1 + τ 3
2 v3 = 0.

.

.
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(n− 1)v0 − nτ2v1 + τn
2 vn = 0

Assigning two sets of values to the vectors v0 and v1 we get the vectors:

s1 =




0

1

2
τ2

3
τ2
2

.

.

n
τn−1
2




, s2 =




1

0

− 1
τ2
2

− 2
τ3
2

.

.

−n−1
τn
2




Using the above two vectors we construct two polynomial equations, correspond-

ing to < P (λ), s1 >= 0 and < P (λ), s2 >= 0.

(an+λ(bn−an))×0+(an−1+λ(bn−1−an−1))×1+......(a0+λ(b0−a0))×( n
τn−1
2

) = 0

(an +λ(bn−an))×1+(an−1 +λ(bn−1−an−1))×0+ ......(a0 +λ(b0−a0))×(−(n−1)
τn
2

) = 0

where a0, a1, ......an are the coefficients of Pi and b0, b1, ......bn are the coefficients of

Pg.

We can solve the above two equations for values of τ2 and λ and check whether λ

is a real number between 0 and 1. If it is not, that means the above two equations are

satisfied for no values of λ between 0 and 1 and the straight line connecting the two

polynomials does not intersect the discriminant variety. We also know that we can

eliminate λ from the two equations and obtain a polynomial in τ2. This polynomial

has only finite number of roots and corresponding to each root there is a value of

λ. This means that P (λ) lies in the discriminant variety
∑

n only for finitely many

λ ∈ F , say. Hence even if some value of λ lies in [0, 1] we can always find a path in

C, as F is finite. C is the complex space. In this case we will need to parameterize

the path in u(λ), a complex variable such that u(λ) ∈ C.
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3. Straight Line Path Algorithm

As developed in the previous section we can verify if the straight line path between

the initial and final polynomial avoids the discriminant variety space. The roots of

this polynomial can then be found out at each step to find the position of each mobile

agent in local frame with the current local frame (frame which translates with the

group) having undergone a translation from the initial frame. In other words each

mobile agent is translated by the same amount with deformation caused by homotopy

of the polynomial. The planning for translation can be done as described in Section

D. Given the initial and final polynomial to each mobile agent, it’s initial position

and the velocity of translation, using Newton Raphson algorithm the mobile agents

can calculate their position in the next time step in a distributed manner. Newton

Raphson method can be used as we have a good initial guess at each time step for

calculating the roots.

a. Example

We consider a scenario in which four mobile agents are initially arranged so that they

are at four corners of a square with the group objective of transforming the square con-

figuration to a straight line configuration. The initial coordinates of the mobile agents

in local frame are (−10,−10), (10,−10), (−10, 10), (10, 10) and the final coordinates in

local frame are (−11.25,−19.49), (−3.75,−6.50), (3.75, 6.50), (11.25, 19.49).Therefore

Pi = (x + 10 + 10i) × (x − 10 + 10i) × (x + 10 − 10i) × (x − 10 − 10i) and Pg =

(x + 11.25 + 19.49i)× (x + 3.75 + 6.50i)× (x− 3.75− 6.50i)× (x− 11.25− 19.50i).

Now P = (1− λ)× Pi + λ× Pg. Following the approach outlined above.

A =




1 1 1 1 1

0 1 2 3 4



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We let the kernel be l =




x0

x1

x2

x3

x4




Using < A, l >= 0 we get the kernel as:

x2 ×




1

−2

1

0

0




+ x3 ×




2

−3

0

1

0




+ x4 ×




3

−4

0

0

1




Therefore the discriminant variety

∑
n = x2τ1 ×




1

−2τ2

τ 2
2

0

0




+ x3τ1 ×




2

−3τ2

0

τ 3
2

0




+ x4τ1 ×




3

−4τ2

0

0

τn
2




Hence

w1 =




1

−2τ2

τ 2
2

0

0




, w2 =




2

−3τ2

0

τ 3
2

0




,
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w3 =




3

−4τ2

0

0

τ 4
2




and

s1 =




0

1

2
τ2

3
τ2
2

n
τ3
2




, s2 =




1

0

− 1
τ2
2

− 2
τ3
2

−n−1
τ4
2




Using < P, s1 >= 0 and < P, s2 >= 0 and solving for λ we get

λ = −0.0114−0.2896i,−3.8787+1.9637i, 0.2216+0.1532i−0.0114−0.2896i,−3.8787+

1.9637i, 0.2216 + 0.1532i, 1.7729e− 034 + 7.4219e− 050i

These values do not lie on the real line between 0 and 1 and hence the polynomial

P(λ) does not intersect the discriminant variety. Simulation of the example above in

which a group of robots move from a square configuration to a line configuration is

shown in Fig. 3. As expected the agents do not collide while moving from the initial

to the final configuration. Fig. 4 and Fig. 5 show results for other initial and final

shapes of the group of mobile agents.

4. Potential Field Approach for Homotopy

a. Potential Field Approach

In the potential field approach [72], the mobile agent is represented as a point in

configuration space under the influence of an artificial potential field U . This poten-

tial field comprises of an attractive and a repulsive component. The potential field
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is created in a manner that the mobile agent moves towards the goal configuration

and moves away from obstacles. Fig. 6 illustrates this. It can be seen in the figure

that where the obstacle is located, the potential field is high and where the goal is

located, there is a well. Hence the agent will move away from the obstacle and to-

wards the goal as it moves towards lower potential areas. The attractive potential

is a function of the distance from the goal while the repulsive potential is a function

of the minimum distance from the configuration space obstacle or C-Obstacle which

is the space of all configurations for which the mobile agents collide. The artificial

potential force is computed as
−→
F (q) = −∇U(q) where q is the current configuration.

The agent takes a step in the direction of the force and repeats till the goal is reached.

Following is an example of a potential function:
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Fig. 6. Potential field

The attractive potential, Uatt = 1
2
ξρ2(q, qgoal)

where ρ(q, qgoal) = ‖q − qgoal‖

ξ is a positive scaling factor,

‖q− qgoal‖ is the euclidean distance and qgoal is the goal configuration. The repulsive

potential

Urep =





{1
2
η( 1

ρ(q,qgoal)
− 1

ρ0
)2 if ρ(q, qgoal) ≤ ρ0

0 if ρ(q, qgoal) > ρ0

where (q, qgoal) is the minimum distance from the C-obstacle, ρ0 is the distance of

influence and ξ, η are positive scaling factors.

The total potential function is U = Uatt + Urep. Propagating q such that q̇ =
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−∇U . Hence the differential equation governing the variation in q with time is:

q̇ =





ξρ(q, qgoal) + η( 1
ρ(q,qgoal

− 1
ρ0

) 1
ρ(q,qgoal)2

∇qρ(q, qgoal), if ρ(q, qgoal) ≤ ρ0

ξρ(q, qgoal), if ρ(q, qgoal) > ρ0

We develop a method to find paths in polynomial space using the potential

approach below.

5. Homotopy Using Potential Field

We apply the potential field approach described above in an analogous fashion to

plan the parametric path in polynomial space [77]. By letting P (t) = an(t)xn +

an−1(t)x
n−1 + · · ·+ a1(t)x + a0 be a time varying polynomial and

a(t) =




an

an−1

.

.

.

a1

a0




we can interpret a(t) as analogous to the mobile agent configuration q(t). We in-

tend to generate the polynomial path P (t) by propagating a(t) in the polynomial

coefficient space in a manner that it has no multiple roots at any time. a(t) rep-

resents a point on the polynomial path P (t) which in turn represents the positions

of the mobile agents w.r.t. a local frame in 2-D at time t. The discriminant of the

polynomial ∆ which signifies the distance from the discriminant variety or in other



31

words the distance between the roots of the polynomial, can be treated as analogous

to the minimum distance from the C-Obstacle. As described above q(t) propagates

such that it moves away from the C-obstacle and towards the goal configuration qgoal.

In a similar fashion, the polynomial vector a(t) is made to propagate such that it

moves away from the discriminant variety and towards the goal polynomial vector

agoal. This is shown below.

An artificial potential field is created such that the change in the polynomial

coefficient vector a(t) is in the direction of the negative gradient of the potential.

The goal polynomial coefficients create an attractive potential while the discriminant

variety creates a repulsive potential. The attractive potential Uatt is constructed such

that it increases as a(t) moves away from agoal, the goal polynomial coefficient vec-

tor. The repulsive potential Urep is constructed in such a way that a(t) moves away

from the discriminant variety and is unaffected when it is far from it. An example

of the potential field and the differential equation governing the change in a(t) is

given below. We selected this potential field as it is the most commonly used one in

literature. The attractive potential is parabolic in shape while the repulsive potential

is a function of the inverse of the discriminant :

Uatt = 1
2
ξρ2(a, agoal)

where ρ(a, agoal) = ‖a− agoal‖

ξ is a positive scaling factor and

‖a− agoal‖ is the two norm in polynomial coefficient space.
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Urep =





{1
2
η( 1

∆
− 1

∆0
)2 if ∆ ≤ ∆0

0 if ∆ > ∆0

The total potential function is U = Uatt + Urep. We propogate a such that

ȧ = −∇U . Hence the differential equation governing the variation in a with time is:

ȧ =





ξρ(a, agoal) + η( 1
∆
− 1

∆0
) 1

∆2∇a∆, if ∆ ≤ ∆0

ξρ(a, agoal), if ∆ > ∆0

where,

∆0 is the distance of influence of the discriminant variety and ξ, η are positive con-

stants

Potential field approaches have an issue with the agent configuration getting

stuck in local minima. A lot of work has been done to counter this problem [72].

The problem of local minima for the potential field based homotopy approach can be

handled in a similar fashion.

a. Example.

We solve an example in which there are four mobile agents, using the method we

developed above. The agents move from an initial arbitrary configuration to a final

arbitrary configuration. Since there are four mobile agents, the polynomial is of fourth

order. We take the initial polynomial as Pi = x4+4x3+x2+x+2 and the final polyno-

mial as Pg = x4 +5x3 +x2 +4. The choice of the polynomial coefficients for the initial

and final polynomials has been on the basis of their simplicity and no other particular
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reason. For a fourth order polynomial equation a4x
4 + a3x

3 + a2x
2 + a1x + a0 = 0,

the discriminant is :

[(a2
1a

2
2a

2
3−4a3

1a
3
3−4a2

1a
3
2a4 +18a3

1a2a3a4−27a4
1a

2
4 +256a3

0a
3
4)+a0(−4a3

2a
3
3 +18a1a2a

3
3 +

16a4
2a4 − 80a1a

2
2a3a4 − 6a2

1a
2
3a4 + 144a2

1a2a
2
4) + a2

0(−27a4
3 + 144a2a

2
3a4 − 128a2

2a
2
4 −

192a1a3a
2
4)].

With the above discriminant and the values of the initial and final coefficient vectors

we construct the differential equations for the polynomial coefficient vector using :

ȧ =





ξρ(a, agoal) + η( 1
∆
− 1

∆0
) 1

∆2∇a∆, if ∆ ≤ ∆0

ξρ(a, agoal), if ∆ > ∆0

Figure 7 shows the results for this example. Each of the coefficients of the polynomial

path P (t) are shown as functions of time.

6. Other Polynomial Paths

Apart from the straight line polynomial path and the path generated by the potential

field approach we can also use other parametric paths P (t). These paths should be

such that at t = 0, P (0) = Pi, the initial polynomial and at t = T, P (T ) = Pg, the

final polynomial. Some examples of such paths are (1− ( t
T
)n)Pi +( t

T
)nPg, n = 1, 2....,

(1− ( t
T
)n + ( t

T
)2n− ( t

T
)4n)Pi + (( t

T
)n− ( t

T
)2n + ( t

T
)4n)Pg, n = 1, 2..... It is to be noted

that with the change in polynomial paths, velocities and accelerations of the mobile

agents change in addition to change in their positions. This is because the differential

of the polynomial paths change. The change in the positions of the mobile agents is
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illustrated in Fig. 8,9 and 10 for an example in which the agents go from a square

configuration to a line configuration and translate by 100 units in both X and Y

directions .
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Fig. 7. Potential field approach to homotopy

C. Planning the Translational Motion

In the previous section we developed the motion plan for the group shape change. In

this section we develop the translational motion plan of the group of mobile agents.

The translational motion is planned by finding a bounding disc for the group and

planning the motion of this disc as a single agent through stationary obstacles. This

bounding disc encloses the agents at all times. In [73] the following result is stated:

The roots of a polynomial can be bounded within a disc of radius:

r = 2max{|an−k

an
| 1k : k = 1, ....., n}

where ak are the coefficients of the polynomial P (t). We consider the straight line

polynomial path [74] in polynomial space with P (t) = (1 − t)Pi + tPg where Pi, Pg
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Fig. 8. Motion plan for the straight line polynomial path
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Fig. 9. Motion plan for the path (1− λ3)Pi + λ3Pg
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Fig. 10. Motion plan for the path (1− λ5)Pi + λ5Pg

are the initial and final polynomials respectively. If,

Pi = anix
n + ani−1x

n−1 + .....a0i and

Pg = angx
n + ang−1x

n−1 + .....a0g then

r = 2max{| (1−t)ani−k+tang−k

(1−t)ani+tang
| 1k : k = 1, ....., n}.

Since ani = ang = 1

⇒ r = 2max{|(1− t)ani−k + tang−k| 1k : k = 1, ....., n, t ∈ [0, 1]}

⇒ r = 2max{| ap | 1k : (p, k) = (0i, n), (1i, n − 1), · · · , (ni − 1, 1), (0g, n), (1g, n −
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1), · · · , (ng− 1, 1)} We support the theory developed in this section with an example

below.

1. Example for Finding Bounding Disc.

We consider an initial arbitrary formation in which the coordinates of the mobile

agents are:

(−9,−7), (−2,−3), (10,−8), (10, 0), (5, 4), (9, 7), (−8, 7)

, (−5, 2)

and a final square formation in which the mobile agents are at coordinates:

(−10,−10), (0,−10), (10,−10), (−10, 0), (10, 0), (−10, 10),

(0, 10), (10, 10).

We find a bounding disc for this initial and final configuration so that the disc can

be used to plan the motion of the mobile agents through stationary obstacles. The

initial and final polynomials using the above coordinates are: Pi = x8+(−10+2i)x7+

(−72− 14i)x6 +(838− 374i)x5 +(1.87× 104 +3.22× 103i)x4 +(−1.625× 105 +5.58×
104i)x3+(−6.38×105−1.66×105i)x2+(1.95×106−1.9×106i)x+7.86×106−2×107i

and,

Pg = x8 + 30000x4 − 400000000.

Using, r = 2max{| ap | 1k : (p, k) = (0i, n), (1i, n − 1), · · · , (ni − 1, 1), (0g, n), (1g, n −
1), · · · , (ng − 1, 1)} we get the bounding disc radius r = 26.32. Figure 11 shows the
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result for this example.

Once r is found, we can use any of the standard methods for motion planning

of a single agent through obstacles in 2-D for planning the motion of the bounding

disc. In this work we use the roadmap method [72]. The disc enclosing the mobile

agents is shrunk to a point and the C-obstacles grown accordingly. The roadmap is

constructed and the shortest path found between the initial and final configuration.

Figure 12 illustrates the result for an example in which a group of agents in

square formation need to change to a triangular formation while avoiding polygonal

obstacles on the way. The straight line polynomial path was used for group shape

change planning while a bounding disc was found to plan the motion of the group

through the polygonal obstacles. Some intermediate configurations have been shown

and it is seen that the agents do not collide with each other or with the obstacles.

The roadmap method was used for planning the motion of the bounding disc in this

example. Next we develop a way to handle velocity and acceleration constraints which

need to be incorporated due to the actuation limitations of real mobile agents.

2. Imposing Velocity and Acceleration Constraint

Since the actuators of the mobile agents have actuation limits, we must impose veloc-

ity and acceleration constraints on the motion plan. The velocities and accelerations

of the mobile agents have two components. One is the shape change component

and the other is the group translation component. The shape change components

are the velocities and accelerations of the mobile agents due to the deformation of

the group while the translational component is due to translation of the group as a

whole. We can impose velocity and acceleration constraints on each mobile agent by

reparameterizing P , the polynomial path to keep the shape change component within

bounds and by planning the translational velocity and acceleration component in a
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Fig. 11. Disc bounding the agents at all times

way that the resultant velocity and acceleration bounds are not violated. We define

P
′
(λ) = P (f(λ)) = (1 − f(λ))Pi + f(λ)Pg, f ∈ [0, 1]. This produces the same geo-

metric curves for shape change but the rate at which these curves are traversed by

each agent as λ varies will depend on the function f , a strictly increasing function.

The function f should be a strictly increasing function so that the polynomial path

does not retrace back to a previous state. For example since the speed dx
dt

= dx
df
× df

dt
,

we can chose f in a way that df
dt

is small when dx
df

is large to keep the modulus of the

velocity within bounds. Figure 13 and Fig. 14 show simulations with and without

velocity constraints for shape change of the form dx
dt

= dx
df
× df

dt
< γ, γ being a constant,

for the deformation of a square shaped group to a circle. The sparsely spaced dots

in Fig. 13 near the square shape indicate high velocities which are in violation of the

velocity bounds. By reparameterization of the polynomial path we were able to sat-

isfy the velocity constraint as indicated in Fig. 14 by the somewhat uniformly spaced

dots. Once the shape change velocities and accelerations are planned to satisfy the
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Fig. 12. Obstacle avoidance

constraints, we plan the translational velocities and accelerations of the entire group

such that the resultant velocities and accelerations are within bounds. In the next

section we implement the motion plan generated using the homotopy approach on a

group of non holonomic vehicles.

D. Implementation on a Group of Non Holonomic Vehicles

The roots of the polynomial and the plan for translational motion of the group gives

us the x and y positions of the mobile agents and their angle θ = arctan( ẏ(t)
ẋ(t)

) at each

time instant. Hence the desired pose pr =




xr

yr

θr




can be found at each time instant.

Similarly by differentiation of the polynomial path generated through the group shape

change algorithm and usage of the translational motion plan of the group, the vector
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qr =




vr

ωr


 can be found out at each time instant where v is the linear velocity and

ω is the angular velocity. Once we have the vectors pr(t) and qr(t) we can use the non

linear controller proposed in [36] to control any group of non holonomic [75] vehicles

along the trajectories generated by the homotopy algorithm proposed in this work.

The control law proposed in [36] is q =




v

ω


 =




vrcosθe + Kxxe

ωr + vr(Kyye + Kθsinθe)


.

pe =




xe

ye

θe




= pr − pc is the error pose, pc being the current pose. qe =




ve

ωe


 =

qr − qc is the error velocity vector, qc being the current velocity vector. Kx, Ky, Kθ

are the controller gains. We assume that we can measure the current positions of the

mobile agents using dead reckoning etc..
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Figure 15 illustrates an example in which there are eight non holonomic agents in

an initial square formation and a final circular formation. In this example we assume

there are no obstacles in the environment and that the entire group is translated by

100 units in the X and Y directions. As can be seen from the figure, the paths that

are planned using the homotopy approach are tracked though there is some deviation

from the reference path initially. In the next section we formulate and solve the 3-D

version of a global motion planning problem using the homotopy approach.

E. 3-D Problem

In the previous sections we have assumed that the mobile agents are moving in 2-

D. In this section we solve the 3-D version of the problem formulated in Chapter

II for the case in which there are no obstacles in the environment. There are a
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Fig. 15. Trajectory tracking

number of practical situations in which mobile agents move in the three dimensional

real world. As an example, a group of Unmanned Air Vehicles(UAVs) may need to

change formation to avoid being tracked by the enemy radar or for better surveillance

of the enemy installations. We are motivated by the need to develop an algorithm

which facilitates the mobile agents in situations like this to change formation with no

communication and sensing. Other applications could be change in the position of

satellites in deep space.

1. Assumptions

The key assumption for the 3-D problem is:

• The agents are represented as point masses.

2. Shape Change Algorithm

We approach the 3-D problem just like the 2-D problem by mapping the 3-D coordi-

nates of the mobile agents in local frame to 2-D.
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a. Mapping

If (x, y, z) are the coordinates of an agent in local frame then we map it to 2-D through

a linear map of two of the coordinates. This is done so that we can use the algorithm

that we used for the 2-D case. For example if we select the x and y coordinates for the

linear map, the 2-D map is (l(x, y), z) where l(x, y) = ax + by, a and b are constants.

We select the map l(x, y) in a way that the pair (l(x, y), z) corresponding to each

robot’s coordinates in the initial configuration is unique. We do the same for each

robot’s coordinates in the final configuration. There are a maximum of 2nC2 lines in

the XY plane such that atleast 2 mobile agents lie on them when their coordinates in

the initial and final configurations are mapped onto the XY plane through a linear

map, l(x, y). This is because there are 2n sets of coordinates in the initial and final

configurations which yield 2nC2 lines. If l(x, y) = 0 is such that it is not parallel to

any of these 2nC2 lines, the mapping l(x, y) will be unique for each agent. Hence we

can always find an (l(x, y), z) such that the pair is unique for each robot in the initial

and final configuration. Figure 16 shows an example of a feasible map l.

Once we have found the mapping l, we construct the polynomial as in the 2-D case

so that we can follow a similar approach. Therefore if (x1i, y1i, z1i), (x2i, y2i, z2i), ......,

(xni, yni, zni) are the coordinates of the mobile agents in the initial configuration

and (x1f , y1f , z1f ), (x2f , y2f , z2f ), ......, (xnf , ynf , , znf ) are the coordinates of the mobile

agents in the final configuration, the initial and final polynomials are constructed as

below:

Pi(x) = (x− (l(x1i, y1i)+ jz1i))(x− (l(x2i, y2i)+ jz2i))......(x− (l(xni, yni)+ jzni))

and Pg(x) = (x−(l(x1f , y1f )+jz1f ))(x−(l(x2f , y2f )+jz2f ))......(x−(l(x2f , y2f )+jznf ))

Using the initial and final polynomials we find a path in polynomial space which

avoids the discriminant variety. The path can be the straight line polynomial path
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Fig. 16. Feasible mapping

P (t) = (1 − λ)Pi + λPg,λ ∈ [0, 1] where λ = t
T

and time t ∈ [0, T ] or can be found

out using the potential field approach. This path generates l(t), the linear map and

z(t) for each robot. One of the coordinate paths x(t) or y(t) can be generated by

joining the corresponding initial and final coordinates by straight lines. Hence if we

chose y(t) then for the first robot, y(t) = (1 − λ)y1i + λy1g,λ ∈ [0, 1] where λ = t
T

and time t ∈ [0, T ] and so on for all robots. Please note that y1g is the y coordinate

corresponding to the final values that (l(x1i, y1i), z1i) end up at. The coordinate path

x(t) is then generated from l(t) and y(t) for each robot.

b. Example

We solve an example which has six mobile agents. The initial coordinates of the

mobile agents are (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1) and the final

coordinates are (0, 1√
3
, 0), (1

2
,− 1

2
√

3
, 0), (−1

2
,− 1

2
√

3
, 0), (0, 0, 0), (0, 0, 3), (0, 0,−3). We

take l(x, y) = 3x+2y. Therefore Pi = (x−3)×(x+3)×(x−2)×(x+2)×(x−i)×(x+i)
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and Pg = (x− 2√
3
)× (x− (3

2
− 1√

3
))× (x− (−3

2
− 1√

3
))× (x− 0)× (x− 3i)× (x + 3i).

We use the straight line polynomial path P (t) = (1 − λ) × Pi + λ × Pg as it avoids

the discriminant variety. Once we have l(t) and z(t) corresponding to each robot by

finding the roots of P (t), we generate y(t) by joining the corresponding initial and

final y coordinates of the robots by straight lines and then find x(t) for each robot

using x(t) = (l(t) − 2y(t))/3.Figure 17 illustrates the path of each robot for this

example.
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The translational planning can be done just as in the 2-D case to avoid stationary

obstacles by bounding the group by a sphere. Velocity and acceleration constraints

can be imposed by reparameterization as in the 2-D case.

In this chapter we have developed the homotopy approach for motion planning

of mobile agents. We first solved the two dimensional case and then the three dimen-

sional case. We have developed an algorithm to deal with stationary obstacles for the

2-D case and implemented the algorithm on a group of non holonomic vehicles. We

have imposed velocity and acceleration constraints using reparameterization of the

planned polynomial path.
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CHAPTER IV

CONTINUUM APPROACH

In this chapter we develop a novel motion planning approach to solve the problem

formulated in Chapter II for a swarm of mobile agents based on continuum theory. In

Section A we give an overview of the approach. In Section B we develop the continuum

approach. We have initially assumed that the agents are point sized but in Section

C we have developed a way to handle finite sized agents. We have implemented the

algorithm on a group of non holonomic agents in Section D. Finally in Section E we

develop a way to handle stationary obstacles in the workspace.

A. The Approach

The continuum approach consists of finding a motion map between the initial and

final configuration which is a homeomorphism. This will ensure no collision between

agents. We solve the case in which there are stationary obstacles in the environment

by bounding the group by a rectangular box which can deform, translate and rotate

as has been done in [37]. Since we assume initially that the mobile agents are point

objects, we show a way to handle finite sized agents using this approach. We also

implement the motion plan on a group of non holonomic agents using the controller

proposed in [36].

1. Assumptions

The main assumptions are :

• There are no restrictions on the initial shape or the locations of vehicles within

that shape provided no two vehicles occupy the same location at any given
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instant.

• Each vehicle knows it’s position with reference to a global coordinate system.

B. Continuum Approach

We consider a swarm of vehicles at rest in an initial configuration B0 at time t = t0 as

shown in Fig. 18. We are interested in moving this swarm of vehicles from the initial

configuration B0 to a new configuration, termed the current configuration Bt . The

current configuration differs from the initial configuration and we say that the swarm

has undergone a deformation from B0 to Bt. Again we assume that each vehicle knows

its current location with respect to a global reference frame which may be inferred by

data fusion, onboard sensing,inter-agent communications etc. It is further assumed

that the current configuration may be prescribed apriori so that the desired goal

configuration is achieved. For example, a typical scenario might be where a vehicle

swarm is originally in a square configuration of side a at t = t0 , that may be required

to deform into an elongated rectangular shape with a different orientation and location

so that the swarm may travel through a narrow passage. As long as the motion map

(path) is a homeomorphism between the reference and the current configuration, each

mobile agent is guaranteed to occupy a unique position in any of the configurations,

implying no two mobile agents can occupy the same place. One particular class of

feasible deformations is homogeneous deformations. A homogeneous deformation is

one that can be decomposed into a rigid body rotation and a special deformation

following the classic polar decomposition theorem of matrices according to which the

matrix can be decomposed into a unitary matrix and a positive semidefinite Hermitian

matrix.

We introduce a fixed Cartesian reference frame with origin O and basis vectors ei.
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Fig. 18. Formation change

All motion will be relative to this fixed frame and all vector and tensor components

are with respect to the base vectors ei. Let X be the position vector, relative to O,

of a typical vehicle Vo within B0 . Then the components XJ of X, in the chosen

coordinate system, are the coordinates of the position occupied by the vehicle in B0

at t = t0. Now suppose that the vehicle that occupies a position X at time t = t0

in the reference configuration moves so that at a subsequent time it occupies a new

position x at time t. Let us now denote the position x of the vehicle at time t

with respect to its reference position X at time t = t0 , by an equation of the form

X=x(X,t. We can think of this relationship specifying the locations of agents in a

given reference configuration with respect to a current configuration. The idea here is

that once we know the reference position of each agent and the mapping between the

reference configuration B0 and the current configuration Bt , the current locations of

the agents can be immediately determined. So the key idea then becomes to see if

the map defining the resulting motion can be determined in a meaningful way. This

is exactly what we propose to do.

To facilitate the above process we define the following quantities. The displace-

ment vector u of a typical vehicle from its position X in the reference configuration
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B0 to its position x at t in the current configuration Btis u=x-X . In the reference co-

ordinates u is regarded as a function of X and t so that, u(X,t)=x(X,t)-X and in the

current configuration u is regarded as a function of x and t, so that u(x,t)=x-X(x,t).

The velocity vector v of an agent is the rate of change of its displacement. Since

X is constant for an agent in its reference position, it is convenient to employ the

reference description so that v(X, t) = ∂u(X,t)
∂t

= ∂x(X,t)
∂t

, where the differentiations are

performed with X held constant. In component form the latter can be written as

vi(XJ , t) = ∂xi(XJ ,t)
∂t

. The result of performing the latter differentiation is to express

the velocity components as functions of XJ and t; that is, they give the velocity at

time t of the agent that was at X at time t = t0 . Similarly, we can describe the

acceleration in component form as ai(XJ , t) = ∂vi(XJ ,t)
∂t

= ∂2xi(XJ ,t)
∂t2

or in vector form

as a = v̇(X, t) = ẍ(X, t).

1. Dynamic Constraints

With expressions for velocity and acceleration available in terms of the reference

configuration, we need to find acceptable maps that satisfy the various dynamic con-

straints the vehicles must satisfy. These maps could be of the form xk =
2∑

i=0

αik(XJ)ti, xi =

2∑
i=0

αi(XJ)sin(wit) or xi =
2∑

i=0

αi(XJ)e−λit. Then we have a way of imposing bounds

on forces acting on each agent so that they do not grow with time. This facilitates

handling of kinematic constraints in a rather nice way. As an example, if agents

move according to the map given by the first form, then the accelerations become

ẍk = 2αk2(XJ), with velocity ẋk = αk1(XJ) + 2αk2(XJ)t. With this setup the forces

acting on an agent can be represented as Fk = mkẍk = 2αk2(XJ), where the vehicle

is simply treated as a particle. Now suppose each of the forces is constrained to be

|Fk| ≤ γk, which then leads to the requirements |Fk| =| mkẍk |=| 2αk2(XJ) |≤ γk ,
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from which constraints on αk2(XJ) can be obtained. For example, when the initial

configuration is known we can explicitly write down αk2(XJ) . Similarly, velocity

constraints may also be employed in defining the suitable motion map. In general the

maps αk(XJ) can be nonlinear to handle various constraints. In general maps could

be of the form αki(XJ) =
3∑

i=0

βiXi with βi constant parameters to be chosen or it is

even feasible to make the βi’s functions of time. The challenge of course is to find a

single map that will satisfy all the important constraints of each of the agents.

2. Example

We solve an example with B0 a square of side 4 units and BT a rectangle of sides 8

and 2 units where T is the final time. The whole group has to be translated by a

distance of 10 in the x direction and −20 in the y-direction The entries of Q and b are

quadratic functions of time t. This way the acceleration turns out to be independent

of time.

x(t) = Q(t)X + b(t)x,X ∈ R2

Let x(t) =




x1(t)

x2(t)


, X =




X1

X2


 ,

Let Q(t) =




q11(t) q12(t)

q21(t) q22(t)




=




α111 + α112t + α113t
2 α121 + α122t + α123t

2

α211 + α212t + α213t
2 α221 + α222t + α223t

2


 Let

b(t) =




b1(t)

b2(t)




=




b11 + b12t + b13t
2

b21 + b22t + b23t
2


 , t ∈ [0, T ]
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Since at time t = 0 the mobile agents are inside B0, Q is an identity matrix. Also

since the agents have had no translation b = 0.

Initial conditions :

q11(0) = 1 ⇒ α111 = 1 (4.1)

q22(0) = 1 ⇒ α221 = 1 (4.2)

q12(0) = 0 ⇒ α121 = 0 (4.3)

q21(0) = 0 ⇒ α211 = 0 (4.4)

b1(0) = 0 ⇒ b11 = 0 (4.5)

b2(0) = 0 ⇒ b21 = 0 (4.6)

The required translation and final formation shape determines the final condi-

tions. Therefore

Final conditions :

q11(T ) = 2 ⇒ α111 + α112T + α113T
2 = 2 (4.7)

q22(T ) =
1

2
⇒ α221 + α222T + α223T

2 =
1

2
(4.8)

q12(T ) = 0 ⇒ α121 + α122T + α123T
2 = 0 (4.9)
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q21(T ) = 2 ⇒ α211 + α212T + α213T
2 = 0 (4.10)

b1(T ) = 10 ⇒ b11 + b12T + b13T
2 = 10 (4.11)

b2(T ) = −20 ⇒ b21 + b22T + b23T
2 = −20 (4.12)

Since the entries in Q and b are quadratic functions of time t the acceleration of

the mobile agents are independent of time. The constraint is determined as follows.

Acceleration Constraint :


ẍ1

ẍ2


 =




2α113 2α123

2α213 2α223







X1

X2


+




2b13

2b23


 =




2α113X1 + 2α123X2 + 2b13

2α213X1 + 2α223X2 + 2b23




Therefore acceleration constraint :

√
Y 2

1 + Y 2
2 ≤ γ (4.13)

where Y1 = (2α113X1 + 2α123X2 + 2b13) & Y2 = (2α213X1 + 2α223X2 + 2b23)

To avoid two agents being at the same location at a given time instant we impose

the non-singularity condition. This ensures that the map is invertible at all times and

the locations of the agents are unique.The condition is determined as follows:

The Non-Singularity condition:
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det(Q(t)) 6= 0∀t ∈ [0, T ] (4.14)

⇒ (α111 + α112t + α113t
2)× (α221 + α222t + α223t

2)−
(α121 + α122t + α123t

2)× (α211 + α212t + α213t
2) 6= 0∀t ∈ [0, T ]

There are infinite solutions and we present two of the possible solutions below:

Solutions:

1)b13 = b23 = 0, αij3 = γ

4
√

2
satisfies condition 4.13

Using Eqns. 4.1− 4.12

α112 = ( 1
T
− γT

4
√

2
)

α222 = (− 1
2T
− γT

4
√

2
)

α122 = − γT

4
√

2

α212 = − γT

4
√

2

b12 = 10
T

b22 = −20
T

Condition 4.14 turns out to be :

γ2

32
t4 + (− γ

8
√

2T
− γ2T

16
)t3 + (− 1

2T 2 + 3γ

8
√

2
+ γ2T 2

32
)t2 + ( 1

2T
− γT

2
√

2
)t + 1 6= 0, t ∈ [0, T ]

If γ = 1 then condition 4.14 is satisfied for T<5. Similarly if γ = 2 then condition

4.14 is satisfied for T<2

2) b13 = b23 = − γ

4
√

2
, αij3 = γ

4
√

2
satisfies condition 4.13

Using Eqns. 4.1− 4.12

α112 = ( 1
T
− γT

4
√

2
)

α222 = (− 1
2T
− γT

4
√

2
)
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Fig. 19. Agents in circles and lines

α122 = − γT

4
√

2

α212 = − γT

4
√

2

b12 = 10
T

+ γT

4
√

2

b22 = −20
T

+ γT

4
√

2

Condition 4.14 turns out to be :

γ2

32
t4 + (− γ

8
√

2T
− γ2T

16
)t3 + (− 1

2T 2 + 3γ

8
√

2
+ γ2T 2

32
)t2 + ( 1

2T
− γT

2
√

2
)t + 1 6= 0, t ∈ [0, T ]

If γ = 1 then condition 4.14 is satisfied for T<5. Similarly if γ = 2 then condition

4.14 is satisfied for T<2

We support the above theory with results shown in Fig. 19 and Fig. 20. The

motion plan is done for a team of agents occupying a square shape in its reference

configuration and a rectangular shape in the goal configuration. The particles undergo

the homogeneous motion prescribed by the homeomorphism , Q : X −→ x, given by

x = Q(t)X + b(t) where x,X ∈ R2. Notably, due to the properties of the mapping, a

circle topology is mapped to an ellipse, and a line to a line, enabling motion planning

with topology control.
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Fig. 20. Agents in random positions

C. Finite Sized Agents for the 2-D Case

In the previous sections we had assume that the agents are point objects. On the

other hand all real world mobile agents are finite sized. Hence we develop a way to

handle finite sized agents using the continuum approach of motion planning in this

section. We illustrate the approach we have developed with the two dimensional case.

It is to be noted that the effect of multiplying a vector in two dimension, by a matrix

is a change in length of the vector and a rotation as illustrated in Fig. 21 . Hence if

we consider the vector joining the center of two mobile agents, it will contract and

change angles as the mobile agents move using the motion plan generated by the

continuum approach. This is because the motion plan generated using the continuum

approach is by the multiplication of a time varying matrix and addition of a time

varying vector. There is a relationship between the change in length of the vector

joining the centers of two agents and the eigenvalues of the matrix being multiplied.

The minimum length to which a vector can contract is the magnitude of the minimum

eigenvalue of the matrix times the original length of the vector. Hence if we ensure
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Fig. 21. Effect of matrix multiplication with a vector

that the minimum eigenvalue of the linear map used for planning the motion is at all

times such that the length of the vectors joining the centers of the mobile agents are

greater than the sum of the radii of the agents (each agent can be made to lie within

a disc of certain radius), the mobile agents will not collide with each other.

We consider a case in which the agents are circular with equal radius, say r. If

Dmin is the minimum distance between the centers of any two robots in the reference

configuration as shown in Fig. 22, then to ensure no collision between any two

robots at all times Dmin|λmin(t)| > 2r∀t. λmin(t) is the minimum eigenvalue of the

matrix Q(t) at time t. This bound for the minimum eigenvalue of the linear map

is conservative as the eigenvector directions have not been taken into consideration.

Also if we have already planned for Q(t) we can handle mobile agents of atleast a

size which fits within a disc of diameter Dmin × min|λmin(t)|∀t ∈ [0, T ] where T is

the final time such that there is no collisions between agents at any time. In the next

section we implement the motion plan generated using the continuum approach on a

group of non holonomic agents.
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D. Implementation on Non Holonomic Agents

We implement the motion plan generated using the continuum approach on a group

of non holonomic agents which move on a 2-D plane in this section. The motion map

gives us the x and y positions of the mobile agents and their angle θ = arctan( ẏ(t)
ẋ(t)

) at

each time instant. Hence the desired posture pr =




xr

yr

θr




can be found at each time

instant. Similarly by differentiation of the current position the vector qr =




vr

ωr




can be found out at each time instant where vr is the reference linear velocity and ωr is

the reference angular velocity. Once we have the vectors pr(t) and qr(t) we can use the

non linear controller proposed in [36] to control any group of non holonomic vehicles

along the trajectories generated by the homotopy algorithm proposed in [36]. The

control law proposed in this paper is q =




v

ω


 =




vrcosθe + Kxxe

ωr + vr(Kyye + Kθsinθe)


.
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Fig. 23. Implementation on non holonomic agents

pe =




xe

ye

θe




= pr − pc is the error pose, pc being the current pose. qe =




ve

ωe


 =

qr − qc is the error velocity vector, qc being the current velocity vector. Kx, Ky, Kθ

are the controller gains. We assume that we can measure the current positions of the

mobile agents using dead reckoning etc..

Figure 23 illustrates an example in which there are four non holonomic agents

arranged at the corners of an initial square formation and a final rectangular for-

mation. In this example we assume there are no obstacles in the environment. As

can be seen from the figure, the motion plan generated by the continuum approach

is tracked satisfactorily. In the next section we solve the motion planning problem

using the continuum approach for the case in which there are stationary obstacles in

the environment. The agents are assumed to move in two dimension.
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E. Obstacle Avoidance

We solve the two dimensional case of the motion planning problem of moving a

group of mobile agents through stationary obstacles using the continuum approach

in this section. The motion map is again assumed to be linear. To facilitate obstacle

avoidance we bound the agents at all times by a rectangular box as has been done

in previous work [37]. The box can translate, deform and rotate. If we make sure

that the box avoids collisions with the stationary obstacles, we will ensure that the

mobile agents do not collide with the obstacles. We can use the PRM approach

or we can simply place rectangles in the workspace to generate the intermediate

configurations which avoid the obstacles. The motion of the box can then be generated

by interpolating between the intermediate configurations. To use the PRM approach

we need to define the configuration space of the box. The configuration space of

the box is four dimensional if we assume that the rectangle is of constant area(

implies that the length is dependent on the width). Two of the dimensions are for

the position of the box and one each for the orientation and the width of the box.

Once the intermediate collision free configurations are generated we plan the motion

between the intermediate configurations using the continuum approach. Please note

that the change in the position of the box is brought about by the b(t) vector in

x = Q(t)X + b(t) while the change in orientation and the width of the box is brought

about by the Q(t) matrix. The Q(t) matrix is a product of a rotation matrix and

a diagonal matrix which causes the deformation and whose determinant remains

constant. The constant determinant ensures that the area of the rectangle is constant

at all times.

Figure 24 illustrates an example in which the agents are in an initial square con-

figuration and need to move through polygonal obstacles to a final rectangular con-
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Fig. 24. Avoiding stationary obstacles

figuration. We planned the intermediate configurations by placing rectangles which

do not intersect the obstacles. The continuum approach was then used to interpolate

between these intermediate configurations to generate the final motion plan. A linear

interpolation was used in this example to generate Q(t) and b(t) for motion between

the intermediate configurations.

In this chapter we developed a novel global motion planning approach for a

group of mobile agents. One of the important attributes of this approach is that each

particle or agent has a well defined path that is based solely on its reference position.

That necessarily means that an agent does not have to know the location of any

other agent once the common motion map is communicated by the central command

after the global motion plan is complete. We emphasize: (1) that no communication

between agents is required for its implementation, and (2) the method is independent

of the number of agents, meaning that it is completely scalable. These two attributes

we believe are a major advantage that is not present in any presently known motion

planner and we believe it is a significant breakthrough.
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CHAPTER V

CONCLUSIONS

Motion planning of multiple agents has been of increased interest in recent times.

There are a number of applications including emergency management, collection of

scientific data, space exploration etc.. In this work we have have developed two novel

motion planning approaches for multiple agents which require no communication and

sensing for their implementation and are promising from a computational point of

view.

A. Contributions

Our contribution in this work has been the development of two novel methods of

motion planning of multiple mobile agents which are computationally attractive and

require no communication and sensing for their implementation.

1. Homotopy Approach

In this dissertation we developed the homotopy approach for coordinated motion

planning of groups of mobile agents. In this approach the motion plan consists of

a plan for change of the group shape and a plan for the translational motion of the

entire group considering it as a single agent. We initially assume that the agents

are moving in two dimension and later on consider the three dimensional case. The

planning for change of the group shape was transformed to the problem of finding

a time varying polynomial which does not have multiple roots. This was done by

mapping the positions of the mobile agents to the roots of a polynomial. The concept

of discriminant variety was used to make sure the required polynomial was generated

by finding paths in polynomial space which do not intersect the discriminant variety.
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We developed two ways of finding the polynomial path. The first is the straight

line path between the initial and final polynomials. The second is the potential field

approach. We showed a way to verify whether the straight line polynomial path

intersects the discriminant variety. We also presented a potential field like approach

for finding parametric paths in the complement of the discriminant variety space. In

this approach a potential function was created such that the discriminant variety had

very high potential and the goal polynomial had minimum potential. Hence by moving

along the negative gradient of the potential function, a polynomial path was generated

which stayed away from the discriminant variety and reached the goal polynomial. In

this work we have assumed that the mobile agents are point objects though real life

robots are finite sized. It is to be noted though that using an appropriate potential

function which ensures that the polynomial stays away from the discriminant variety

by a certain distance, we can handle finite sized agents.

After we planned for the group shape change, we found a bounding disc for

the group such that the agents are inside the disc at all times. We used this disc

to plan the translational motion of the group through stationary obstacles. This

way we ensured that the agents did not collide with each other and also avoided

collisions with stationary obstacles in the environment. We imposed velocity and

acceleration constraints on the mobile agents using reparameterization of the time

varying polynomial. Also we implemented the 2-D algorithm on a group of non

holonomic vehicles using a non linear controller described in [36]. We also extended

the homotopy approach for planning the motion of a group of mobile agents moving

in three dimensional world. We mapped the 3-D coordinates of each agent to the

roots of a polynomial and used an approach similar to the 2-D approach for finding

the motion plan for each mobile agent.
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2. Continuum Approach

Apart from the homotopy approach we developed another novel global motion plan-

ning method, the continuum approach . In this approach if we made sure that the

motion map between the reference and current configurations is a homeomorphism, we

will ensure that each agent will occupy a unique position at all times. We presented an

example where the motion map is linear and is of the form x(t) = Q(t)X + b(t)x,X ∈
R2. As illustrated by this example, it is possible and beneficial to prescribe a single,

common feedback law x = x(X, T ) based on the reference states of the agents so

that the network topology may propagate with minimal communication with other

agents in the team or with no communication at all in the perfect scenario, where

each agent’s state is precisely known. We have shown that the dynamic constraints

can be handled in a rather nice way by using the motion map in certain forms. We

have initially assumed that the mobile agents are point objects but have shown a

way to deal with finite sized agents by putting restrictions on the eigenvalues of the

motion map. We have also shown that if we have decided on the motion map apriori,

what the maximum size of the mobile agents can be such that there are no collisions.

The bounds generated on the eigen values of the motion map though are conserva-

tive as we have not considered the eigenvector directions in this analysis. We have

implemented the motion plan generated using the continuum approach on a group of

non holonomic agents. The controller described in [36] was used. We have also devel-

oped a way to handle stationary obstacles using the continuum approach. We have

bounded the agents by a rectangular box which can deform, rotate and translate and

planned the motion of the box through obstacles. The position of the agents inside

the box is determined by using motion maps between the intermediate configurations

of the rectangular box.
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B. Future Work

1. Homotopy Approach

Further research effort can go into finding paths in the complement of the discrimi-

nant variety space which guarantee the maintenance of a certain minimum distance

between the roots. This will facilitate the usage of the proposed algorithm for any

finite sized mobile agents. Research can be done to find out an exact correlation

between the size of the discriminant and the minimum distance between the roots of

a polynomial. Once this is done we can use the potential field approach for avoiding

the discriminant variety by a certain amount which guarantees the maintenance of

a minimum distance between the roots. Also research needs to be done to find a

generalized method to parameterize all paths in the complement of the discriminant

variety so that the optimal path can be found. In this work we have proposed a way

to handle stationary obstacles using the homotopy approach. We need to extend the

proposed approach to handle moving obstacles.

2. Continuum Approach

In future research can be done to study homogeneous, area preserving, group defor-

mations for mission updates under three types of exploring behaviors. The first is a

covering behavior useful for the detection problem, in which each agent will explore

and try to reach each point in an area. In the second type each agent will first explore

a goal, the position of which is not known, and once it is found all the agents will

reach the goal. The third is shepherding, where a group is steered by one or more

external agents. We can study the deformation of the group shape to fit into vari-

ous constrained forms dictated by external agents possessing global knowledge. An

example is search and rescue, where a manned search and rescue vehicle shepherds a
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mobile agent group in an optimal sensing configuration. It appears feasible to exploit

the geometric aspects of the motion maps (especially homogeneous deformations) to

develop new communication/formation protocols related to the mobile network topol-

ogy. For example, under the correct map, any agents that initially lie on a straight

line will continue to stay on a straight line that can translate and rotate, and those

on a circle will lie on a precisely defined ellipse. Such topology control can be be

exploited for combat and sensing configurations that are invariant to group motion.

The method is amenable to analysis, and we can incorporate inter-agent communica-

tion ranges, as constraints on the maps and incorporate obstacles that are moving for

computationally efficient determination of the important motion maps. Study can

be done to consider nonlinear motion maps to address the same type of questions

alluded to earlier. Additionally, nonlinear maps provide the ability to change the

distribution of the mobile agents within an area, permitting precise control over the

spatial density of the mobile agents, a feature that can be exploited in cooperative

motion and distributed sensing. Also a way to counter the failure of mobile agents

needs to be studied. We need to come up with a strategy to replan the motion of the

group in the event of failure of some agents.
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