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ABSTRACT

Assessing EC-4 Preservice Teachers’ Mathematics Knowledge for Teaching
Fractions Concepts. (August 2008)
Kimberly Boddie WrightB.S., Texas A&M University

Co-Chairs of Advisory Committee: Dr. Dianne Goldsby
Dr. Yeping Li

Recognizing the need for U.S. students’ mathematics learning to be built on a
solid foundation of conceptual understanding, professional organizations such as the
National Council of Teachers of Mathematics (2000) and the Conference Board of the
Mathematical Sciences (2001) have called for an increased focus on building conceptual
understanding in elementary mathematics in several domains. This study focuses on an
exploration of two aspects of Hill, Schilling, and Ball's (2004) mathematics knowledge
for teaching: specialized content knowledge (SCK) and knowledge of content and
students (KCS) related to fractions concepts, an area that is particularly challenging at
the elementary level and builds the foundation for understanding more complex rational
number concepts in the middle grades. Eight grades early childhood through four
preservice teachers enrolled in a mathematics methods course were asked to create
concept maps to describe their knowledge of fractions and interpret student work with

fractions.



Results showed the preservice teachers to be mosiaiawiih the part-whole
representation of fractions. Study participants were faasliar with other fraction
representations, including fractions as a ratio, as amatgpeas a point on a number line,
and as a form of division. The ratio interpretatioradfaction presented the greatest
difficulty for study participants when asked to descrilbelsht misconceptions and

create instructional representations to change studéiriking.



DEDICATION

To my students whose curiosity about mathematics made

me want to become a better teacher through study. Tmank



Vi

ACKNOWLEDGEMENTS

| would like to thank my committee co-chairs, Dr. Diar@®oldsby and Dr.
Yeping Li, and my committee members, Dr. G. Donald Aded Dr. B. Stephen
Carpenter, Il, for their guidance, support, and inspiraghooughout the course of my
research.

Thanks also to my fellow members of the Math TEKS @ahions Project for
imparting wisdom in all areas of research and académiauld especially like to thank
Dr. Jackie Stillisano for being a mentor in every sewisthe word and Dr. Robert
Capraro for giving me a great research opportunity. AlsmKklyou to the EC-4
preservice teachers of Texas A&M University, whose wiliegs to share their thinking
made this research possible. | would also like to thardratluate students along the
way who imparted advice, experience, and deadline remital@edp me get through.

Finally, 1 would like to thank my family and friends. Tikayou to my wonderful
husband Terrell for love, understanding, and support. Thamkoyowy mom for
answering late night phone calls as | walked home frassclA final thank you is owed
to the faculty, staff, and students of Olmos Elemeratool in San Antonio, who

inspired me to become a better teacher.



vii

TABLE OF CONTENTS

Page

AB S T R A T i e e ii
DEDICATION. ..ttt e e e e e et et e e e e e eneenaes Y
ACKNOWLEDGEMENTS ..ot a e Vi
TABLE OF CONTENT S ..ot e e e e e e e eans Vil
LIST OF FIGURES ... oot e IX
LIST OF TABLES . ... ettt e e e e e e Xi
CHAPTER

I INTRODUCTION ...t ee e e 1

Statement of the Problem.........coooiiiii i, 3
Research QUESLIONS........ooi i e 5

Il BACKGROUND LITERATURE .......ooi e 7
Student Difficulties with Fraction Concepts ... 8
Preservice Teachers’ Subject Matter Knowledge obRatl
NUMDEIS ..o e et e e e e 11

Improving Preservice Teachers’ Subject Matter Knowledge.. 15
Preservice Teachers’ Pedagogical Content Knowledge of

RePresSentationsS...........vviiiuiiiiiiie et cemm et 17
Improving Preservice Teachers’ Pedagogical
Content KNowledge ..o 21
[ AV I ] PP 24
Theoretical Framework ..............iiccceem i 24
Study INSTIUMENTS ....eieeeiie e eee e 26
Study PartiCIPants ......coceeeeeieeiiie e eee e 28
SEUAY DESIGN ..t ceeee e 30

v ANALYSIS e 32



viii

CHAPTER Page

Analysis of Preservice Teachers’ SCK Using ConceggsMa.... 32
Analysis of Preservice Teachers’ KCS Using Fractiasks ....... 50
Comparison of Knowledge Rspntation on Concept Maps

and Fraction TASKS .......ccouuuiiiiii e et 85

Vv CONCLUSIONS ...t 89
Summary of FINAINGS...coeeeiiiii e 89
Implications of FINAINGS........coooiiiiiiiiii e 93
Limitations Of StUAY . cceenniiiiiiiii e 94
Issues for Further INV@atioN ............cooevvviiiiiiiiieeeie e 96
REFERENCES ... .ottt e e 98
APPENDIX A et 107
F o o = N[ G = U 108
Y o = N G U 112
APPENDIX D ..ttt s ettt e e e et e e e e e et a e e e e aan e e 117



LIST OF FIGURES

FIGURE Page
1  Study Framework for Assessing EC-4 Preservice Teachers’ Mathematics
Knowledge for Teaching Fractions CONCEPLS.......cceevuiveeiriiieiiiinieiiiiieeeennn, 25
2 Fractions Concept Map- S3 ... 34
3 Fractions Concept Map- S8 ... 35
4 Fractions Concept Map- S5 ... 37
5 Fractions Concept Map- S4 ... 38
6 Fractions Concept Map- S12 ... 39
7 Fractions Concept Map- SB6 ........iiiiiiiiiiiiii e 40
8 Fractions Concept Map- S2 ...t 0.. 4
9 Fractions Concept Map- S10 .......oviiiiiiiiiiii e 42
10  Fraction Terminology- S2........i i 47
11 Fraction Terminology- S3.....cou e 48
12 Fraction Terminology- S8.........o i 48
13  Fraction Terminology- S12.......co o 49
14 Fraction Terminology- S6........cooviiiiiiiiiiiiei e 50
15  Fraction Terminology- S10.......ooviiiiiiiiiiieee e 50
16  Hypothetical Learning TrajeCtory .........oveieuuiiieiiiieeiiieeeeie e 51
17 TASK ONE- SB....ieiiiiie et 57

18 T ASK ONE- Sd0 . e e 57



FIGURE

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Page
TasSK TWO- S3 .. 64
TaSK TWO- S5 .o 64
TaASK TWO- SB ...t 65
Task TRre@- S2 ... e 72
Task TRIEE- S3 ... i s 72
Task TRIEE- S5 ...t 73
TaSK TRIEE- SB ... . ociiiiiii et 73
Task TRIEE- S8 ... .o i 73
Task Three- SL1O ..o e e 74
TaSK FOU S2. .. eeem e 79
TasK FOUN S3.. . eeem e 79
TaSK FOU S ...t 80
TasK FOUP- S5, .. e 80
TaSK FOUN- SB....cciiiiiii et eeeem e 81
TaSK FOUM ST .. .coiiiiiiiiiieet s ettt e e e e e eeeenes 81



LIST OF TABLES

TABLE

Xi

1 Overview of Kieren’s Sub Constructs Present in CONBEES ..........occevvnnnnees

2 Overview of Emergent Themes from Fraction Tasks.



CHAPTER |
INTRODUCTION

With mathematics scores of U. S. elementary studehitsy behind those of
other industrialized nations (National Center for Educe8tatistics, 2005), professional
organizations such as the National Council of Teaabfeathematics (2000) and the
Conference Board of the Mathematical Sciences (2001)daesl for an increased
focus on building conceptual mathematics understandinigmnestary students in
several domains. An area that is particularly chaltengt the elementary level is that of
fraction concepts, which builds the foundation of un@eding more complex rational
number concepts in the middle grades. For both elemeaaryniddle school students,
the rational number system, “. . . constitutes whatidoubtedly the most challenging
number system of elementary and middle school mathesviatKilpatrick, Swafford, &
Findell; 2001, p. 231)

Many students in the U. S. understand fractions concepésms of a limited
store of representations and algorithmic procedures. BecdiRis, students are often
unsuccessful when asked to consider fractional congepiferent contexts. According
to the 2005 results of the National Assessment of EduneadtiRrogress (NAEP), 83% of

U.S. fourth graders were able to choose which of four pédtieepresentations correctly
showed% but only 53% were able calculate a student’s total numiapple pieces if

he had two apples cut into fifths (NAEP, 2005). Elemengtuglents’ difficulties with

This thesis follows the style gburnal for Research in Mathematics Education.



fraction concepts are well-documented in the resdaechture, with 20 years of
NAEP data highlighting the fact that only about one-thirdtodents up to the seventh
grade have been successful in determining fraction equiyadgmee the 1970s (Kamii
& Clark, 1995). With a significant body of literature doamting elementary students’
difficulties with fraction concepts, mathematics eahion research in the last 15 years
has begun to focus on the role teacher knowledge mightrp&ontributing to students’
limited understanding of fractions.

Beginning with Shulman’s (1986) conception of pedagogical cokteawledge,
early research focused on how teachers’ knowledge ofjpgglanight influence
instruction, including the most useful representationsaaradbgies to present content, as
well as student conceptions and misconceptions. Recgdroh has added additional
dimensions to Shulman’s early work, focusing more dyeaut the influence of teacher
knowledge of mathematics on instruction and how that lkedge might be
characterized and measured (Ball, 2003; Hill, Schilling, &,B4104; Ma, 1999).

Because teachers often possess the same limitedsfecedures and
representations for fractions concepts from their owmoaling, the problem becomes
one of “helping teachers transcend their own schoolreqees with mathematics in
order to create new practices of mathematical pedago@l, 92, p. 395). Teachers
are not likely to encourage conceptual understanding dfamedtics in students if they

do not possess conceptual understanding of mathematicsethrem



Statement of the Problem

If U.S. elementary students’ knowledge of fraction cpteés to move beyond
mainly procedural knowledge toward deep conceptual understatidit will allow
students to flexibly solve mathematics problems in a&etaof situations, U.S.
elementary teachers must enter the field prepared to festion concepts conceptually
and with an understanding of various uses and represastafidractions. It is
important elementary teachers be able to understand arichasons flexibly in various
constructs as elementary teachers are expected to cocateumiultiple representations
of concepts, including representing fractions as *“. .t.qfaa whole, as an expression of
division, as a point on a number line, as a rates @naoperator” (Conference Board of
the Mathematical Sciences, 2001, p. 19). In additiometeary teachers must be able
to communicate the various constructs of fractions usisiguctional representations
and contexts that both activate and challenge studentsntlyrheld fraction
understandings.

Preservice teacher preparation programs provide a clitikdbetween the
mathematics understanding that preservice teachers hetiddests and the types of
mathematics understanding they are responsible for conyé&yitheir students.
Preservice mathematics programs should help preservideetsdmild a conceptual
understanding of the mathematics concepts they wilhtaacluding various
interpretations of fractions and how students may corthesa. This type of multi-
faceted understanding often differs greatly from the mandcedural knowledge of

fraction concepts they bring with them to higher eduoaflthough many preservice



teachers do not enter teacher preparation programs equiggpezbnceptual
understandings of fraction concepts, teacher educatigngms remain a “. . .
strategically critical period in which change can be mé@tlia; 1999, p. 149) because
preservice teacher education programs provide preserviceteaakth opportunities to
consider mathematical knowledge in terms of how itlmasuccessfully conveyed to
students, linking preservice teachers’ knowledge of elemefitation concepts from
their own schooling and that learned in college-levehelgtary mathematics courses to
the best ways to transmit knowledge to students.

The purpose of this study was to determine the depth of rtamgeoreservice
teachers’ knowledge of fractions. The study conducted twiokgarviews with a group
of eight preservice teachers enrolled in a mathematéthods course at a large
university in the southern U. S. The teachers wereeakiag certification in grades pre-
kindergarten through four (EC-4). The primary purpose ofthdy was to capture the
depth and breadth of the preservice teachers’ speciatireent knowledge of the
concept of a fraction. During part one of the two-paterview, the preservice teachers
were asked to create a concept map representing their kiymadé fractions.

A secondary purpose of the study was to explore the g@service teachers’
knowledge of students and content related to student misgbmies of fraction concepts
including equivalence of part-whole fractions, ordering a¢tions on a number line,
interpreting a ratio, and a fraction as an operatorwhae number. Part two of the
interview was designed to elicit EC-4 preservice teachmderstanding of students’

fraction misconceptions in problem solving situations.



Participants were presented with student misconceptiorarious types of
fraction problems and were asked to create hypothetaadifey trajectories (Simon,
1995) for student. Thieypothetical learning trajectoris part of Simon’s (1995)
mathematics teaching cydieeory that attempts to explain the thinking process of
mathematics teachers as they diagnose, plan fdmlagerve student thinking.
Participants were asked to identify a mathematical fgoal student to help them
develop a more complete understanding of a particulaidraconcept and discuss
instructional representations they would use to helpttitest to facilitate deeper

understanding.

Research Questions

This study explored two aspects of Hill, Schilling, and BgR004)mathematics
knowledge for teachingpecialized content knowledge (SCK) and knowledge oeabnt
and students (KCS), in a group of EC-4 preservice teacheyliegl in a mathematics
methods course. These two aspects of mathematics ldgaMer teaching were the
focus of the study because they are most closely dligité the goal of teacher
preparation programs, which is to connect preservicéeesiccurrent mathematical
knowledge with a concern for how they will teach tmatthematics to students (Ma,
1999). The research questions were the following:

1. What specialized content knowledge (SCK) is present w4 p@service

teachers’ representations of their fractional knowl@dge



a. Which interpretations of fractions, such as part-whaigo, division,
operator, and point on a number line, are present in p@service
teachers’ representations of their fractional knowl@dge

b. What additional information, such as fractional modedgations, and
terminology, is present in EC-4 preservice teachemesentations of
their fractional knowledge?

2. What knowledge of content and students (KCS) is presdfCid preservice
teachers’ analysis of student misconceptions relatéd¢tions?

a. To what do EC-4 preservice teachers attribute studeobmisptions
when working with various interpretations of fractions?

b. What specific types of instructional representationsaztions content
do EC-4 preservice teachers identify to help students cdct

misconceptions with fractions?



CHAPTER II
BACKGROUND LITERATURE

It is typically at the elementary level where studdransition from operating
only with whole numbers to operating with rational nurnsiarthe form of fractions. At
this level, students are introduced to a new set of raggrding the relationship
between quantities represented by rational numbers andmec a new set of symbols
and representations for this set of numbers. Addinggedhnfusion of dealing with a
new type of number is the fact that many of these stadeachers learned about
fractions themselves according to a set of rote procedndespeerations and are ill-
equipped to provide a conceptual foundation for fraction uratedstg. Mathematics
education reform recommendations (CBMS, 2000; NCTM, 1991, 200®) call for
teachers to teach fraction concepts in ways oftedainentally different from the way
they learned them, in ways that cannot be successtidbnaplished without deep
understanding of the subject matter and the ability to septeand encourage
conceptually sound representations of fractions concepts.

This study sought to create a detailed picture of EC-4 piesdeachers’
fraction knowledge by exploring the preservice teach@exialized content knowledge
of the concept of fraction using a participant-createadepimap. The study also
explored the knowledge of content and students of thergreseéeachers through their

diagnosis of student misconceptions and choice of rept&sons to instruct students.



Student Difficulties with Fraction Concepts

In a study of third through sixth-grade students’ ratiooahlmer understanding,
Smith, Solomon, and Carey (2005) hypothesized that a fundahheck of
understanding of the properties of rational numbers byezitary students is what
makes rational number concepts so difficult for studéntslinical interviews with 50
elementary school students, researchers elicited studdatstanding about the infinite
nature of rational numbers through questions in two diftezeeas: the divisibility of
matter and the divisibility of numbers between zero and Alleough 62% of students
agreed there were numbers between zero and one, onlyc3éndedge the number of
numbers was infinite. Of those students who initiallyntdfed the infinite nature of
rational numbers, 50% of students said yes when askedevhetinite division would
eventually reach zero, revealing their rational nunuimelerstanding to be only partial.

The results of the Smith, Solomon, and Carey studg wensistent with those
found in a similar study with 16 ninth-grade students (V&wouasi & Vosniadou,
2004). Researchers considered students to have what thegddéeas “deep
understanding of rational numbers” if they were, “.bledo answer that between any
two different rational numbers, no matter of the wagytare represented, there are
infinitely many numbers” (p. 460). No students in the studyanable to maintain there
were an infinite number of rational numbers betweentanynumbers when presented
with different types of rational number problems.

In addition to exploring students’ understanding of thengeof rational

numbers, Smith, Solomon, and Carey (2005) also examinec&tudEasoning in



comparing fractions. When asked to comp%geandS—:LG, 46% of students chose 1/75

as the larger fraction because 75 was larger than 68eiss were using whole number
properties to reason about rational numbers, a forraasioning not uncommon for
students to employ when working with fractions. In jpyas work with third and fourth-
grade students, Mack (1995) also found a tendency in elemshtdgnts to over
generalize the meanings of symbolic whole number repisemd to fractions.

In the area of fraction equivalency, Kamii and Clar®95) interviewed 120 fifth
and sixth-grade students, asking them to compare two platepisentations of the
fraction one-half. Both representations showed re@&argf the same size divided into
two equal parts, however one was divided horizontally hadther divided diagonally.
Thirty-eight percent of fifth-graders said that the disgdmalf was greater. Forty-four
percent of fifth-graders correctly identified that thdicated pieces in both contexts
were halves. However, when questioned about which fedfgreater, 5% of students
who were initially correct said that even though bodtes were halves of the same-
sized whole, the amounts contained in each piece dviéeeent. The sixth-grade
students showed slightly more correct reasoning, with iitfally correct and 32% of
the remaining students changing their answer to correct gunestioned about whether
one half was greater than the other.

Niemi (1996) assessed 540 fifth-grade students’ conceptual vanttng of
equivalency through their interpretation, use, and cneatigraphic and symbolic

representations with both equivalent and non-equivélactions. Students were given
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the fractions%, : % % andg3/2 separately and asked to circle which of 18

INGEN)

representations were equivalent to the given frachtwst students showed only

moderate levels of fraction knowledge, with meansirgnfyom 13.5 out of 18 for the

easiest fraction;— to 10.55 forg. Equivalent representations of the fraction %2 were
found to be significantly easier (p<.01) than thosegofrhe same difference was found

in the level of student difficulty in identifying represations for% and%. In problem

solving and explanation tasks, the researcher found‘shatlents with higher levels of
representational knowledge produced more principled justidics and explanations
and were able to generate and use fractions more eflgatiyeroblem solving
contexts” (p. 355).

Though much of the research on rational number ance spacifically, fraction
knowledge of elementary students, has documented an iatj@antii often disconnected
understanding, instruction with different types of repnésgons for fractions has shown
to increase students’ understanding of fraction conceptkelr work with fourth and
fifth-grade students, Olive (2002) and Steffe (2004) found thatendumber knowledge
could be reorganized for rational number understandingelndhtext of commensurate
fractions, both researchers used computer softwarértmluce students to the concepts
of iterating and partitioning a unit into equal pieces. Tioeyd that the ability to iterate
or partition a unit to create and break apart wholesfiatdional pieces was a critical

component of students’ development of deep understandingobibns.
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In a longitudinal study with five classes of third throsgtih-grade students,
Lamon (2001) hypothesized that traditional fraction instonctwith its commong

part-whole representation of fractions, also note@égraher (1996), was a factor
limiting students’ development of rational number congeBuilding on Kieren’s work

(1976, 1980) with different interpretations of fractionamon provided each of the five
classes with a different initial interpretation oéttnaditional% part-whole

representation for fractions. The interpretationss@tad of part-whole comparisons
with unitizing, fractions as operators, fractions as satiod rates, fractions as quotients,
and fractions as measures. A control class receivddidrzal fraction instruction
focusing mainly on the part-whole interpretation of fimts. After four years in the
study, all experimental groups exceeded the control groupeanutinber of
interpretations shown in the representations giveoli@ graction problems.

Preservice Teachers’ Subject Matter Knowledge of Rational Numbers

In the last two decades, research has examined theagsleet knowledge might

play in contributing to students’ limited understanding atimematics. However well-
meaning they are, teachers are influenced by their askroleconceptual understanding
of the mathematics concepts they teach. Becausketeaare often products of
procedural instruction from their own schooling, a clmgke of teacher education
becomes, “helping teachers transcend their own sehxp@riences with mathematics in

order to create new practices of mathematical pedagogyl, 93, p. 395).
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In the mid-eighties, Leinhardt and Smith (1985) examineddlagionship
between the subject matter knowledge and teaching of nanetexpert elementary
teachers using semantic nets to describe teacher knoméglgethesizing high levels
of student achievement would correspond to high levels oliéeknowledge; they
found high levels of student achievement were not nedlyssquivalent to teacher
knowledge. In fact, there was great variability in teadmewledge, even among those
teachers labeled as experts. Researchers found timetihsts between teachers with
high and low levels of knowledge lay in the connectiogtsvben topics and forming
broad categories of knowledge. In other words, teachénshe ability to connect
topics to form broad categories of understanding were tkalg to have higher levels
of understanding of the mathematics they were teaching.

Building on this research, Ball (1988) charged teacher educaith the task of
becoming, “a more effective intervention in preparingreatary teachers to teach
mathematics” through examining “the influence of differeintls of teacher education
experiences on teacher candidates’ knowledge about ermlabions toward
mathematics and mathematics teaching and learning” (p.nBgr lwork with
developing preservice teachers’ understanding of ratiamabers, Tirosh (1992)
echoed this sentiment calling for, “more informationwtibe impact of focusing on
different forms of knowledge in teacher education” (p. 237).

Through a year-long case study, Borko et al (1992) aldeetbat the role teacher
preparation programs play in the knowledge developmemtddficult rational numbers

topic, division of fractions. Researchers followed preservice teacher from a
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mathematics methods course through student teaching intordiederstand the
development of her ability to teach division of fracs. Classroom observations showed
that the preservice teacher entered her student teachiegteemith “only a rote
understanding of the division of fractions algorithm” (p. 20¥hen asked by a student
why one must invert the divisor and multiply to divide fi@s, the preservice teacher
could not provide a correct answer. Though the topicadldsessed in the mathematics
methods course, researchers suspected that her pregotithatic knowledge of
“‘invert and multiply” from her own K-12 schooling may hawueerfered with her
construction of a more complete understanding of theeqin

With regard to preservice teachers’ understanding of freeio non-standard
representations, Khoury and Zaskis (1994) analyzed thewatid oral responses of
preservice elementary and secondary teachers to tagksrg teachers to compare

fractions and decimals in different bases. Preservazhtes were asked to compare
(0.2% to (0.2} and% in base 3 te% in base 5. Sixty-three percent of the elementary

preservice teachers and one hundred percent of the segctemiarers correctly noted
through various forms of representation that g (0.2 were not equivalent.
However, when asked whether the two fractions wersahee, only 26% of the
elementary teachers and 17% of the secondary teaclenges. Researchers noted that
an analysis of the strategies used to determine equiyadiowed a disconnected
knowledge of place value and rational number concepts.

Lubinski, Fox, and Thomason (1998) described the developmhenie student’s

reasoning about division of fractions in a mathematiethods course. Researchers
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traced a preservice teacher’s reasoning through firstreadgerson descriptions of how
the student arrived at conceptual understanding of dividifraations through a three-
week assignment that required preservice teachers to deweyplanation for how to
solve a division of fractions problem. Through her strugglhors illustrated common
difficulties many preservice teachers have explainiagtion concepts conceptually.
Like the teacher in Borko et al's study (1992), the presen@acher was able to provide
a correct pictorial model for multiplication of framts, but had a difficult time
developing a similar model to represent division of fraxstidn addition, the preservice
teacher could correctly apply the multiplicative inwersle to divide fractions by
inverting the divisor and multiplying, but she could not expiahy this procedure
worked.

Ma (1999) compared U. S. and Chinese elementary teachbyastsmatter
knowledge and found the U. S. teachers lacked “fundamemialstanding of
mathematics” (p. 118) largely because the teachers lackedlying connections
between topics that would allow for conceptual explanatitn a division of fractions
problem, 43% of the U.S. teachers studied provided a coretgure for solving the
problem, but only one teacher provided a conceptually dogrgdanation of division of
fractions (p. 83). Ma concluded that along with K-12 schoding professional
development for practicing teachers, teacher preparatagrgns are critical sites for
development of preservice teachers’ subject matter laugel According to Ma (1999),

teacher preparation programs are the point in a presete@cher’s education where
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“mathematical competence starts to be connected tonamyriconcern about teaching
and learning school mathematics” (p. 145).
Improving Preservice Teachers’ Subject Matter Knowledge

In conjunction with studies on teachers’ subject matmemledge, various
professional education organizations and others caleforms in the mathematical
education of teachers. In 1991, the National Council of fezacof Mathematics
(NCTM) released therofessional Standards for Teaching Mathematbgch included
recommendations for the kind of knowledge mathematashers should have. NCTM
emphasized the need for a deep, connected understandirgheihmatics and its
principles and concepts as well as an ability to insstudents beyond a narrow set of
algorithmic procedures. With regard to rational numbers, MGiiated that, “in setting
the view of these ideas in the curriculum, teachieosilsl be able to extend the number
systems from the whole numbers to fractions and inset¢feen rationals and real
numbers” (p. 136). ThBrofessional Standardsiso called for preservice teacher
preparation programs and inservice professional developawénities to include
research from mathematics education in their curricula

In 1995, the Interstate New Teacher Assessment and S@xpaogodrtium
(INTASC), a group of state and national education stakehs| including state
education agencies and national education organizatiorelpged a set of standards
specifically for preservice and novice teachers. TheASIT Standards echoed NCTM’s

earlier recommendations, calling for “a deep understanditigeccritical mathematical
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ideas, processes, and perspectives needed to help all saeleritgp mathematical
power” (p. 7).

Following theProfessional Standards for Teaching Mathematics (L99CTM
released another set of standards specifying what kindoowfiéage K-12 students
should have and ways in which teachers could promoteksushledge. Thélrinciples
and Standards for School Mathemat{B&CTM, 2000) divided mathematics into five
content areas: number and operations, algebra, geometmgurement, and data
analysis and probability. Information regarding ratiomaiber and fraction concepts
was contained in the number and operations contentstfaePrinciples and
Standardsdocument noted that the development of rational nutnerepts should be a
major focus at the elementary level, particularlgraides three through five where
students build a foundation for navigating between fractidesimals, and percents in
the middle grades.

In 2000, the Conference Board of the Mathematical Scse(@BMS), a
consortium of various organizations dedicated to incredsiog/ledge of the
mathematical sciences, relea3dee Mathematical Education of Teachersis set of
recommendations for preservice teachers was divided biydéeertification, with lists
of recommendations for elementary, middle, and highddeachers. CBMS
highlighted a conventional belief of many elementarg@race teachers that
“elementary school mathematics is simple and tont@aequires only prescribed facts

and computational algorithms” (p. 56).
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According toThe Mathematical Education of Teachetse primary job of
preservice teacher education programs should be to providesdhbas give elementary
preservice teachers an opportunity to learn and make cammeatithe same ways that
they are expected to transmit material to studentd Wgard to developing fraction
concepts, CBMS noted that fractions are indeed a difficuncept for elementary
students and that preservice teachers must be able to pstwagmts instruction with
fractions beyond the common part-whole relationshipdydimeg looking at fractions as
expressions of division, as points on a number lisgates, and as operators.

The most recent efforts in mathematics educaticormehave also called for
improvement and continued research in preservice tekoberedge of mathematics
(Kilpatrick, Swafford, & Findell, 2001; Ball, 2003; RAND, 2003 addition, NCTM
recently release@urriculum Focal Points: A Quest for Coherer(@006), specifying
grade-level specific knowledge at each grade level for efith five content strands.
The Focal Points suggestions for fractions for students in grades twautiindive focus
on comparing fractions using multiple models in problem sgleiontexts.

Preservice Teachers’ Pedagogical Content Knowledge of Representations

Teaching is an elaborate process that includes not oalyikg one’s subject
matter, but knowing how to communicate that subject madtstudents. Shulman
(1986) coined the term “pedagogical content knowledge” to teféhe particular form
of content knowledge that embodies the aspects of momigst germane to its
teachability” (p. 9), including the most useful represemtatand analogies to present

content, as well as student conceptions and misconceptions.



18

Pedagogical content knowledge relies heavily on a teacability to represent
knowledge to others in some form that is comprehensibleetn.tGai (2005) used the
term “pedagogical representations” to refer to the kadge of representations that
teachers and students use in their classrooms “as spre®f mathematical knowledge
that help them explain concepts, relationships, coimregtor problem-solving
processes” (p. 139). Anyone who has ever tried unsuccessfu#tach a concept
understands that the idea of such a pedagogical représematomplicated. For
example, take the fraction %, which is actually a symliepresentation that itself

representghe relationship between 2 numbers. Depending on thexdpttte fraction %
. . 1 . .
can represent % piece), 3% pieces), oq or 3 (Lamon, 2005). This and other ideas

of representation, including who represents, what iesgmted, and how it is
represented have been topics of discussion and debasthamatics education research
for 20 years.

According to Kaput (1987), “representation and symbolizadienat the heart of
the content of mathematics and are simultaneoushedteaart of cognitions associated
with mathematical activity” (p. 22). Representations atimmatics involve two worlds:
the representing world also referred to as an exterpedsentation (Goldin & Kaput,
1996) and the represented world, or internal represeniatibe mind of a learner. Also
involved in any representation of mathematics conteheisnterplay between the
representing and represented worlds. Goldin and Kaput (1996erkfe these

interactions as a learner’s interpretation of theml representation, or symbols,
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pictures, diagrams, or manipulatives, with internal repridions already held for a

concept.
. 3 .3 .
For example, in the case %f an external representation f-zr may be provided

in the form of the symbolic fraction itself, in therm of a set of four objects, three of
which are circled, or in the form of a manipulative sasla fraction strip showing a unit

whole divided into four parts with three parts shadedinfldrgarten student, when
shown the symbol fo%, having no prior experiences with formal fraction notatwill

have little interaction with such a representatiocelose they have no internal structure

for understanding formal symbols for fractions. In casty a fifth-grade student with
previous experience with formal notation, might Iookgaand have an internal

representation of a circle divided into four pieces \Bifiieces shaded or may say to
themselves “three parts out of four total parts.”

Because students’ internal representations can onlytdiprated in terms of
ways in which they represent their understanding extgrmeachers must be able to
choose representations that are appropriate to studentsht levels of understanding.
Goldin and Kaput (1996) recommended letting the type ofagdeanternal
representation guide the selection of external reptatsems to be used in instruction.
When considering the expected internal representatstundent should have, teachers
must keep in mind students’ previous experience with mathenhwaticepts as “the

premature introduction of representations can sometiraie their uselessness, and
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furthermore they may even have negative effects onifegr(Dufour, Bednarz, &
Belanger, 1987, p. 116).

Dufour, Bednarz, and Belanger (1987) pointed out difficsiléiementary
students have transitioning between the use of numbertéimepresent whole numbers
to the use of number lines to represent rational nunamelsntegers. Number lines are
initially external representations for whole numbevkich are equally spaced and
demarcated on the number line. The space between thgerimeans nothing to
students. However, when teachers introduce the numbealfaeniliar external
representation to students, but impose rational numievkat are essentially the empty
space between the whole numbers, students often carderstand that fractional
numbers can fall between whole numbers. The prematarefibe number line as a
representation for fractions could explain why eleragnstudents and secondary
students were unable to determine the infinite numbettiohed numbers between two
whole numbers (Smith, Solomon, & Carey, 2005; Vamvakatidgpsniadou, 2004).

Studies with elementary preservice teachers (Borkg &08P; Goulding,
Rowland, & Barber, 2002; Ward, Anhalt, & Vinson, 2004) havenshthe preservice
teachers to have an overall weak representationalledge and rely heavily on
algorithms and formal symbolism to represent mathemesinsepts. In an analysis of
the lesson plans of K-8 elementary preservice teaemeadled in a mathematics
methods course, Ward, Anhalt, and Vinson (2004) found treritie ipreservice
teachers’ choice of representations. Though researahgcgpated high levels of

concrete representations in the lessons, they fowhaital language and explanations
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to be the most frequently used representation with aeguént use of real world
representations and contexts. In a case study withlemeetary preservice teacher,
Borko et al (1992) found similar results in the teachabi$ity to parrot the familiar
“‘invert and multiply” algorithm, but found that after searies, she was unable to
illustrate how division of fractions worked. These studlielp to explain earlier findings
(Kieran, 1991) in which children have a tendency to detachitige for fraction
computations from meaningful representations. Accordirecan (1991), “it would
appear that fractions form a symbolic domain in whicldehts learn to operate with the
syntax and certain rules of combination” (p. 325).

Improving Preservice Teachers’ Pedagogical Content Knowledge

In order to break the cycle of algorithms detached frommmgful

representations by students, researchers have madesggaest®ns regarding teachers’
use of representations with students, including languagéptauklationships present
in representations, and use of nonstandard represestéiebert and Gaskin (2006)
addressed how the use of misleading terminology for ib@sgifractions, including
instructional terms such as “out of” (p. 397) and “ovex.”"400) can be problematic
because students do not differentiate expressions suchasubof four” or “one over
four” from whole number relationships. Thompson (1995) suggésaedhstead of
relying on an external representation to embody a spaaiérnal representation, such

as using a fraction strip partitioned into four parts witle¢ parts shaded to represent
g, teachers should consider exploring with the studemisusarelationships that they

see in the representation.
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Greeno (1997) found that students who spend most of theircmstructing
external representations specified by a teacher wgihk® see representations not as a
tool for learning, but as “ends in and of themselves” (p. B&l3uggested providing
students with the opportunity to create nonstandard repateas, such as student-
created drawings of mathematics concepts devoid of fanmathematics symbols and
terminology, because they often better serve the pudfdssping students create
immediate understanding in problem situations and reservindasthrepresentations
for purposes of communicating mathematical ideas witbrst

Results of studies of teachers’ pedagogical content ledme prompted
professional organizations and other researchers tcathprovements in the
pedagogical content knowledge of teachers, specificaliy improved and increased
use of various types of representations. Prefessional Standards for Teaching
MathematicYNCTM, 1991) caution teachers against narrowing mattiesneontent to
a set of algorithms and symbolic representations. Ireaggat with Kaput (1987) who
discussed representations as being the heart of matbenN@TM noted in the
Professional Standardsith regard to instruction that, “modeling mathematicahgles
central to the teaching of mathematics” (p. 151).

However, modeling alone is not enough. Preservice teaohest carefully
select representations that best fit both their stgdemd the mathematical content of a
lesson. According to the Conference Board of the Ma#ttieal Sciences, “future
teachers will need to connect to a wide variety of sdna, models, and

representations” (p. 56). It is the job of preservicelteaeducation to help preservice
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teachers choose representations with care, as femathematical ideas are
represented to students are “fundamental to how peoplenckenstand and use those
ideas” (NCTM, 2000, p. 67). A careful selection of represt@nts is particularly

important when working with rational numbers and fractioncepts, as fractions have
many meanings that are all too commonly represented simpsty as

Following the recommendations and previous work of Kilplkti&wvafford, and
Findell (2001), McGowen and Davis (2002), Ball (2003), Hill, Safglliand Ball
(2004), the present study sought to create a detailed pictthre fshction knowledge of
a group of EC-4 elementary preservice teachers. Therbdea much research
conducted on preservice teachers’ knowledge of ratiomabauconcepts. However,
much of it has focused on specific concepts, such asatived fractions or students’
interpretations of the infinite nature of rational nunsbdhough these topics are
important, little research has shown what elementeggervice teachers know about
various interpretations of the concept of a fractioh@w preservice teachers diagnose
and plan for instruction related to student misconceptdhise various interpretations

of fractions at the elementary level.
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CHAPTER I
METHOD

The intent of this study was to explore the spe@dlizontent knowledge (SCK)
and knowledge of content and students (KCS) related thdnamoncepts of a group of
EC-4 preservice teachers. Topics explored included EC-4 piasésachers’
knowledge of the concept of a fraction as well as tkeawledge of student
misconceptions related to work with fractions in varying pobtontexts and
interpretations. The study utilized a cross-sectionalesudesign (Creswell, 2005) to
explore the beliefs and practices of a group of EC-4epvie® teachers at one point in
time through a two-part interview.

Part one of the interview asked participants to creatseept map to represent
their understanding of the concept of a fraction. Revtdf the interview was designed
to elicit participants’ knowledge of students and conteated to student
misconceptions of fractions in various forms. In additio identifying student
misconceptions, participants were asked to identify a goatfident learning related to
the misconception and discuss instructional represengatiat could be utilized to
improve student understanding.

Theoretical Framework

This study utilized two aspects of Hill, Schilling, and Bal(2004)mathematics
knowledge for teaching explore EC-4 preservice teachers’ knowledge of tacti
concepts: specialized knowledge of content (SKC) and ladgel of students and

content (KCS). Because this study focused on presenachkdes enrolled in a
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mathematics methods course, the primary goals of wiictoancrease preservice
teachers’ knowledge of the content they will teacth #ueir knowledge of how to best
teach that content to students, the two remaining aspiectathematics knowledge for
teaching, common content knowledge and knowledge of stuaeatieaching, were not
addressed. In addition, an analysis of preservice tea&nemsledge of students and
content would require numerous field observations, whia$ keyond the scope of the

present study. Figure 1 provides a description of the study\frarke

EC-4 Preservice Teachers’ Mathematics Knowledge fachiag
Fraction Concepts

Specialized Knowledge of Knowledge of Students and
Content Content
v ]
Participant-created concept| Fraction tasks addressing
map of knowledge of term student fraction
“fraction” misconceptions of fractions

Figure 1.Study Framework for Assessing EC-4 Preservice Teachers’ Mailbemat

Knowledge for Teaching Fraction Concepts
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Study Instruments

The data collection instruments in the study includedgyaaint-created concept
maps of the term “fraction” and audio-taped interviewthwarticipants regarding their
diagnosis and instructional planning when shown studemtsawith fraction problems.

The use of concept maps as representations of learniegomereered by Novak
and Gowin (1984) as a way for learners to representuhdgrstandings related to
particular themes or concepts in science. Concept gigp$articipants an opportunity
to represent their thinking in terms of nodes as sub-thetastered around a major
theme and links that connect related themes to ondemdthough pioneered in science
education, concept maps are widely used throughout educatsomaans of helping
learners in various disciplines represent their knowle8gecifically, concept maps
have been used in mathematics education research (ChinnappanHough, O’ Rode,
Terman, & Weisglass, 2007; Williams, 1998) to representqgiaatit thinking about
mathematics concepts, such as algebra, geometry, actibiis. The maps allow
researchers to analyze the connectedness and depthi@ppat knowledge related to a
particular concept.

In the case of the present study, the major themeheagrm “fraction,” which
participants were asked to place in the center of the Tiegpnodes were considered to
be any terms circled, boxed, or provided on the concept mh@wne connecting
either to the major theme or another node. Major nagke those connecting directly to
the major theme, while minor nodes were those sephftate the major theme by one

or more other nodes.
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Since the use of concept maps in mathematics edncgasearch is relatively
new, the researcher in the present study did not agsarepants would be familiar
with concept mapping related to mathematics. To help inmnteipant familiarity with
concept mapping, the researcher provided two examplesoépbmaps to participants
on familiar topics at the beginning of each interview. Agujpe A contains an example
of the concept map template.

In part two of the interviews, participants were shat@ms adapted from the
work of Lamon (2005) that showed various types of fragbimblems answered
incorrectly by students. The purpose of these tasks wdantonstrate misconceptions
of fraction concepts related to different interpretaiohfractions, including fractions as
representations of part whole relationships, fractameperators, fractions as ratios, and
fractions as points on a number line. If participantsemly identified the student’s
thinking as erroneous, they were asked to state a learnihfpgttze student related
either to the assessment item or the student’s pattgrn. In addition, participants were
asked to discuss types of instructional representatiool,as fraction models and
contexts, they would use to help the student attain #tedstearning goal and how these
models and context would bring about change in the studémtlsng. Appendix B
contains an example of the fraction tasks.

If participants did not see the student’s misconceptsoaneerror, the researcher
presented them with the correct response of anothéerst to the same problem. The
participant was given the opportunity to create a hypotdddaarning trajectory for the

student whose thinking they believed to be incorrect. dthibtional task benefited both
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the participants and the researcher by giving particigantgportunity to challenge
their thinking regarding student misconceptions of fractamd giving the researcher an
expanded opportunity to collect data on participant thinking.

The hypothetical learning trajectory approach used in parbfithe study is an
operationalized version of the hypothetical learning ¢tajgy portion of Simon’s (1995)
mathematics teaching cycle whereby after assessinglansts thinking, teachers or
researchers identify a mathematical goal for studentileg create an instructional task
to meet that goal, and make hypotheses about how theyebstudent thinking will
progress toward the mathematical goal.

Study Participants

The participants in the study were composed of a convesgample recruited
from an accessible population of approximately 160 EC-Zpriee teachers enrolled in
ECFB 440 (Early Childhood Education Field Based), Mathemafiethods in Early
Childhood Education in the spring of 2008. The EC-4 presernamhées at a large
university in Texas enroll in the mathematics methodsseoduring their senior year in
the semester prior to their student teaching semester.

The field-based methods course is the final mathemdaiss o a sequence of 18
credit hours of mathematics required for a BacheloirScience degree in
Interdisciplinary Studies, or a EC-4 generalist educatignesde The required
mathematics coursework prior to enroliment in the fiedddal mathematics course
includes two three-hour calculus courses, two three-Hearemtary mathematics

courses, and a statistics course. The ECFB 440 coursesaoathematics teaching
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methods for all strands of the National Council ofdreais of Mathematics Standards
(2000), as well as the state mathematics standardseias Essential Knowledge and
Skills (TEKS). According to the university’s courseatay, the ECFB 440 course
“analyzes contemporary curricula; implementation ofrods relevant for active,
authentic learning and age appropriate teaching of mather@iiosing learners;
considers state and national standards related to teantdrigarning mathematics”
(Texas A&M University, 2007). The portion of the methodsrse related to fractions
instruction focuses on three main areas: the use ofigtgtnal representations,
including the use of actual and virtual manipulatives; reseamdtudent
misconceptions; and fractions instruction in problem solemgexts.

Participants were selected from the four sections ¢tEEZA0 on a voluntary
basis. Course instructors informed students about the purptse study and asked for
volunteers to participate in interviews. In additiorg thsearcher visited each ECFB 440
section to personally ask students to participate in tltysThere was no reward
offered nor any penalty connected to students' choice toipate in the study.

Interested students were asked to sign up and were corbgdieslresearcher
via e-mail or telephone for on-campus interviews. Altof twenty-eight students
signed up to participate and were contacted for intervi@ivthe twenty-eight students
who were contacted, eleven students agreed to be intediidwo students dropped out
due to scheduling conflicts. One students’ interview dataeghasiue to an audio error.
Therefore, a total of nine students participated in intervieetween the end of January

and the middle of March and the data of eight particgpantliscussed in the study
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analysis. The shortest interview was fifteen minutestae longest was one hour and
thirty minutes.
Study Design

Study participants were informed of their participatioa jproject measuring
preservice teachers’ knowledge of fractions conceptsadtmade clear that their
participation in the study would have no effect on theiirse grade or other credentials
at their program. Participants were provided with a cdrfeem with details of the
study and were informed that they may withdraw from thdysat any point. Each
interview was audio-taped by the researcher for lad@stription. In addition to the
audio data, participants’ concept maps and the resea fieéd notes were included in
the analysis.

For purposes of transcript organization and discussioticipants’ data was
coded with the letter S for “student” and a number, beggwmiith the number two and
ending in the number 12. The participant in the pilot stadhieé summer of 2007 was
assigned the code S1. Numbering was assigned as intewve@scheduled, resulting
in gaps in numbering for participants who dropped out (89S11) and for the
participant (S7) whose data was lost due to audio error.

During the first portion of the interview, participants wed independently on
the concept map portion of the interview without questigritom the researcher. The
second portion of the interview was conducted in anviger format with the researcher
asking participants open-ended questions about student meptomms regarding

fraction problems. Participants were asked to discussttiinking about the student’s
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possible misconception as well as make any writtersribiey wished regarding their
thinking.

Botha priori and emerging themes were used in the study to analyzezant
knowledge of fractionsA priori themes from previous research and assigned readings
from mathematics methods texts in the ECFB 440 coursedpcba means for analysis
of the completeness of participant concept maps. K&i(@976) sub constructs of
fractions, including fractions as representations ofreywhole relationship, as a point
on a number line, as a ratio, as division, and as aratgpewere used as a baseline for
analyzing the various understandings of fractions presguarticipants’ SCK of
fractions content. In addition, concept maps were aedlyor the presence of fraction
concepts which receive a strong focus in mathematitisoas texts, particularly types
of fractional models, fractional notation, and terntogy (Van de Walle, 2007).

Part two of the interview used the constant comparatethod of analysis
(Glaser & Strauss, 1967) to unitize data collected from et notes, audio data, and
researcher field notes to see what themes emergedHhshypothetical learning
trajectories created by study participants. Finallg,émergent themes from
participants’ creation and discussion of the hypothelgeaining trajectories were
compared to tha priori themes used to analyze the concept maps of fractieeeto
what themes, if any, were common in the EC-4 presetemehers’ SCK and KSC of

fractions.
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CHAER IV
ANALYSIS
Analysis of Preservice Teachers’ SCK Using Concept Maps

At the beginning of each interview, participants were gi@dolank concept map
following an introduction to the task by the researcAppendix A shows an example
of the concept map. The purpose of having participantseceeedncept map was to
allow them the opportunity to reflect on and constructsaalirepresentation of their
SCK of fractions before analyzing student work on thetfon tasks in part two of the
interview.

Following a pilot study of the instrument in the sumnfe2@07, the researcher
decided to provide Kieren’s (1976) sub constructs of fractionth® map to maximize
the possibility of soliciting varied interpretations oddtions from participants. Specific
types of fraction models and terminology were not praliole the concept map. It was
the researcher’s belief that due to the fact thataaticipants were required to take two
Structure of Mathematics courses prior to entering th@enaatics methods courses,
they would be somewhat familiar with common fractierminology and models. The
concept maps were analyzed for the presence or abskfnaetion sub constructs and
for types of fraction models, notations, and termingloging a spreadsheet. As use of
sub constructs, models, notation, or terminology waschfor a participant, an “x” was
placed in the spreadsheet. Any extra information wasdynto the spreadsheet
verbatim. The sub constructs provided on the map werevpate, operator, ratio, point

on a number line, and division. An overview of the datéected from participants’
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concept maps can be found in Table 1.
Table 1

Overview of Kieren’s Fraction Sub Constructs Present in Concept Maps

Kieren’'s Sub Constructs of Fractions

Part- Operator Ratio Point on a Division
whole number
line
S2 X X X X
S3 X o] o]
S4 X X X
S5 X o] X
S6 X X
S8 0
S10 X o] X X
S12 X X X

x= explicitly stated term
o= showed evidence of terms through symbols or other lgegua
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Fractions as Part Whole Relationships

Results of concept map analysis showed that the ma@drihe EC-4 preservice
teachers interviewed (five out of eight) used the padie/bub construct as a major
node on their concept map stemming directly from thedwipaction” in the middle of
the map. One patrticipant, S3, labeled the line betweenddes for fraction and “part of
a whole” with the word “is” (Figure 2), indicating thatfraction is part of a whole.
Another participant connected “part of a whole” to therdv‘definition” which was then

connected to the term fraction in the middle of thecept map.

Figure 2:Fractions Concept Map- S3
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These results lend support to previous research with tsa&hewledge of
fraction representations (CBMS, 2000; Lamon, 2001) that gastearepresentations are
those that most teachers are familiar with. Mostigpants provided this explanation of
a fraction as one of the first nodes on their conoggg with S8 being the only
participant who did not use that sub construct directlyvéi@r, S8 provided minor
nodes (Figure 3) for the numerator and denominator asbfeuof parts” and “total
number of parts” respectively, indicating her understandi a fraction as a
representation of a part whole relationship. Her usereétangular area model divided
into thirds could also be understood as a pictorial reptatsem of a part whole

relationship.

Figure 3:Fractions Concept Map- S8

Fractions as Operators
Of the eight students interviewed, none created nodedisp#gifor fractions as

operators. S3’s map contained a major node labeled “opesatiith fractions” with
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minor nodes branching from that for multiplication, diwisi addition, and subtraction
(Figure 2). Minor nodes will examples of each type ofrapen were also shown.
Though multiplication and division are part of the fumctof fractions as operators,
according to Lamon (2005), the researcher believes tisgpdiniicular student was
referring to algorithmic operations with fractions rattien to using a fractional
guantity to perform a function on another quantity. fdeson for this is because the
nodes connected to each operation contained languagasstitih and multiply” for
division, “find LCM (referring to the least common mplg) and subtract” for
subtraction, “find LCM and add” for addition, and “just mipily” for the multiply node.
The student appeared to be describing an algorithmic procksstt@n a sub construct
of the term fraction.

As a minor node on her map, S5 drew eight hearts diwidedjroups of two and
pointed to two of the hearts with an arrow labeled “¥/8"do indicate %2 operating on
the eight hearts, but used the sub construct divisiorerrithn operator as the major

node above it (Figure 4).
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representations of tmctmm and connecilons DeTWeen TErMms, SULL 4y, UUL UL IIETU LWy pJure
whale; operator, ratio, po rﬂa number line, and division. You may draw the map however you
ike., & B
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Figure 4:Fractions Concept Map- S5

Fractions as Ratios

Four out of eight study participants created concemt nodes for the ratio sub
construct. Two students, S4 and S12 (Figures 5 and 6) includedsatimajor node. S4
provided a numerical example of a ratio as “1:3”. S4’s dig®lon notation to illustrate
a ratio as one interpretation of a fraction highlights difficulties present when trying to
clarify what one means when discussing the concepfrattdon. According to Lamon

(2005), though a ratio is one form of a fraction, raicsnot always fractions. For
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example, a ratio such as ¥ can represent the numbeysfn a class to the total

number of students in a class. In this way, a ratofiaction. However, sometimes
. . . 10 .
ratios are not fractions, such as in the cas%—ofepresentlng 10 males to zero females

in a room (Lamon, 2005). In this situation, the use otivamotation would result in an
undefined fraction. Therefore, it is clear that S4 urideds at least part of the sub
construct related to ratio. Further questioning would besssry to inquire how deeply
this understanding was held.

Another (S12) simply made ratio a major node extendirggidly from the term
fraction with no examples (Figure 6). However, thidipgrant did not provide
examples for any terms on her map, therefore, a lhekample for ratio cannot

necessarily be interpreted as a lack of detailed utadheling for this sub construct.

Figure 5:Fractions Concept Map- S4
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Figure 6:Fractions Concept Map- S12

Two participants, S6 and S2, included the ratio sub conssuwct@nor node
(Figures 7 and 8). S6 provided ratio as one of two minorsxbdenching from a major
node labeled “aka” which the researcher interpretedlss kmown as.” This seemed to
indicate that S6 understood ratio and division as altemaanings for the term fraction
(Figure 7). S2’s concept map (Figure 8) showed ratio as@ made connected to two
minor nodes labeled as part and whole. The part and whota nodes branched from
major nodes labeled numerator and denominator, respgct8Zas the only
participant using the ratio sub construct that demonstiatg specific understanding of
the relationship of the numerator and denominator ofctidrato a ratio’s representation

of two quantities in relationship to one another.



Figure 7:Fractions Concept Map- S6

Figure 8:Fractions Concept Map- S2

40



41

Fractions as Points on a Number Line

Only one of the eight study participants’ concept mapsaoed a hode
addressing fractions as a point on a number line. S2 (Rgjywvided a major node
labeled “point a number line” with a minor node coneddb it explaining a fraction on
a number line as a fraction “between 0 and 1.” A fractiora number line actually
“denotes the distance of the labeled point from zevah(de Walle, 2007, p. 297) rather
than just the distance between zero and one. The datlast indicate whether S2
understood that fractional quantities greater than onlel @so be represented on a
number line. The nodes to the right of “point on a nuntihe,” and “between 0 and 1”
which S2 labeled “improper fractions” and “greater thamtfidate her understanding
of fractions as representations of quantities grebtar bne. However, there are neither
lines labeled nor any nodes indicating connections ifki@wledge between the
number line representation and improper or mixed fractions.
Fractions as Division

Six of the eight study participants used the term “aéiwnisor “divide” on their
concept maps. Two participants provided little elabora®to how they understood
division as a sub construct of fractions. S4 supplieddira division as a major node
extending from the term fraction (Figure 5), but did not glewany further nodes or
examples to indicate whether they were thinking oftioas as a form of division or that
division was an operation one could perform with fiaedi S6 provided division as one
of two nodes branching from a node labeled “aka” whichrésearcher interprets as

“also known as” with no further explanation (FigureS)2 attached nodes for
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“dividend” and “divisor” to the node labeled “divisiontibalso did not provide any
connection to fractions specifically (Figure 6).

Another group of study participants provided some elaberatiaheir thinking
regarding the division sub construct. S3 used the tenid&li rather than division on
her concept map (Figure 2). The “divide” node branched &anajor node labeled
“operations with fractions.” From there, S3 creaaddrther node containing the words
“flip and multiply”. This repetition of a familiar exptetion for the division of fractions
algorithm found to be common in preservice teachers (LubifRski, & Thomason,
1998) combined with the node “division” branching from a nadbeled “operations
with fractions” lead the researcher to believe 8@&tvas simply stating algorithms one
could perform with fractions rather than providing an eplenof the meaning of a
fraction. Similarly, S10 labeled the only node branchingnfter “division” node as
“reciprocal’ indicating that she may have been thinkirsg aif division with fractions,
as algorithmically one multiplies the dividend by thepemcal of the divisor to obtain a

guotient (Figure 9).

Figure 9:Fractions Concept Map- S10
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S5 provided a detailed example of her understanding of diMsialrawing a set
model containing eight hearts subdivided by lines into grotipsam(Figure 4) and
labeled the drawing as “1/4 of 8”. S5’'s example of divisioth fractions revealed that
though study participants were able to create concept widpthe given terms, further
guestioning may have revealed incomplete understanding tbnslaips between the
terms. This is because S5’s set model example was lg@naxample of a fraction as
an operator which, according to Lamon (2005), causes angéiseror decrease in the
number of items in a set of discrete objects” (p. 1A%)stated earlier, the researcher did
not question participants during this part of the intervigov,were participants asked to
explain their completed concept maps.

Fraction Models, Notations, and Terminology

Fraction ModelsFraction models provide an important link in the develogmen
of fraction understanding by elementary students. Asaa knowledge of different
types fraction sub constructs, it is important thatgmase teachers have various types
of fraction models as part of their specialized corkaotvledge of fractions. Analysis
in this study focused on three types of fraction modaisnoonly used at the elementary
level and seen in elementary mathematics methods &nda or region models, length
or measurement models, and set models (Van de Walle, 2007).

Area or region models are those composed of a wholevstdd into equal
parts, such as fraction circles or subdivided rectamayleguares. Length or
measurement models are those that compare lengthstt@hereas. These models

include drawn or cut fraction strips or rods and numbes igh equal divisions. Set
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models are composed discrete objects or drawings, hgttvhole being the total
number of objects in the set.

Fraction models were used by only three out of eight gpadycipants. The
models used were either set or area models. Particifdraad S5 used set models
(Figures 5 and 4). S4’s concept map contained a drawinge# tincles next to a major
node labeled “grouping” and S5 using hearts divided into fowrpgrto illustrate
division. The use of set models helps develop childrerdenstanding of real world
uses of fractions, which often involve using discrete abjether than subdividing a
singular whole into parts (Van de Walle, 2007).

Participants S4, S5, and S8 (Figures 5, 4, and 3) used arebs nibelenodel
most commonly used (Ball, 1993) to represent fractions e@nominators of thirds and

fourths. S4 and S8 used a fraction circle model and a sqatel respectively to

represent the fractio%, while S5 subdivided an octagon into four sections and shaded

three of them to shovZL. Though area models are those most commonly used, they

provide a good introduction to the notion of subdividing a whible into equal parts,
which is a central idea in elementary teachers’ wathk their students and fractions
concepts (CBMS, 2000).

Fraction NotationsPrevious studies with preservice teachers (Borko et al, 1992;
Goulding, Rowland, & Barber, 2002; Ward, Anhalt, & Vinson, 20G)ehshown
formal fraction notation to be among the most freqyamntked representations for

fraction concepts. Formal fraction notation and synsinolas conventions of the
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language of rational numbers, however, can be misleadimggudents (Kieren, 1991,
Van de Walle, 2007). For analysis of EC-4 preservice gathse of formal fraction
notation and symbolism, this study used Brizuela’s (2005hitiefa of notations as that
which refers to, “written numerals or symbols” (p. 284).

Similar to results found in previous studies with preserntgaehers and fraction
notation (Borko et al, 1992; Goulding, Rowland, & Barber, 2002rd, Anhalt, &
Vinson, 2004) participants in this study showed frequent uke il symbolism
largely unaccompanied by written or pictorial explanatiohthe notation. Five out of
eight participants used notation to represent fractionsuious forms. S5 was the only
participant who provided extensive explanations of thammg fraction notation on her
concept map (Figure 4). S5’s concept map exhibits six ingarfdde use of fraction

notation, all of which are accompanied by either a amitir pictorial explanation, such
.3 . . .
as the fractloné—1 accompanied by an illustration of an octagonal patterckidbape

subdivided into four parts with three parts shaded. In iaddi65 provided the following
written explanation: divide into fourths, color 3.

The remaining four participants using fraction notatiahs with little
connection to fraction models or terminology. S3 usedmon fraction notation
extensively, with algorithmic examples of fraction diwig subtraction, addition, and
multiplication (Figure 2). The written explanations yided were “flip and multiply” for
division of fractions, “find LCM and subtract” for subttan, “find LCM and add” for
addition, and “just multiply” for multiplication, shong mainly procedural

understanding seen in previous studies with preservice teg@wko et al, 1992;
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Lubinski, Fox, & Thomason, 1998; Ma, 1999). S3 did provide areegpion for a node
labeled specifically asg with two minor nodes containing the terms “numeratod an

“denominator” with arrows pointing to the correspondieigdr (Figure 2). S4 provided a

“1:3” under the node for ratio, but gave no explanatioitiwstration as to how 1:3 was
representative of the concept (Figure 5). S8 uisedi as a minor node emanating from a

major node containing the words “same number on top anoniveit’ (Figure 3).
Fraction TerminologyAs with notation, fraction terminology is part okth
language of mathematics that makes fractions difficulefementary students. Not only
do fractions bring different forms of notation, thieev kind of number” (CBMS, 2000)

brings a new set of vocabulary to describe what eachdijongart of a fraction
represents. For example, when an elementary studims ¢éne domain of fractions, the
whole number two can now be called a numerator, meanagt ik counting two parts
out of some whole, or a denominator, meaning that a whdlwided into two equal
parts. Study analysis focused on terms commonly used tak#esactions, including
the formal terms numerator and denominator, and inforenald such as top number
and bottom number. According to Van de Walle (2007), the iitapoe in fraction
terminology lies not in whether formal or informalininology is used, but in whether
preservice and inservice teachers are providing conceptualgctexplanations of the
terms to their students.

Six out of the eight study participants used the forerahs numerator and

denominator on their concepts map. No one appeared toeutsitis incorrectly,
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however, due to the lack of detail on some of the map&s unclear whether the terms
were clearly understood by all participants. S2, S3a68,S12 (Figures 10, 11, 12 and
13) provided numerator and denominator as major nodes orctmeept maps with

minor nodes describing the meaning of the terms. S2 and &itated the numerator to

represent a part and the denominator to represent the v8®provided the terms
- -
connected to a fractlog with arrows pointing from numerator to the letterrad &om

denominator to the letter b. Though S3 identified theembipcation of the terms, the
arrows say little about whether S3 could explain theningeof the terms conceptually.
S8 identified distinguished between the numerator asutmder of parts and the
denominator as the total number of parts. In additiomgr6@8ded another major node

specifying that the parts have to be equal.

Figure 10:Fraction Terminology- S2



Figure 11:Fraction Terminology- S3
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Figure 12:Fraction Terminology- S8
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Figure 13:Fraction Terminology- S12

Two participants, S6 and S10, differed slightly from the fatiner participants
using the terms numerator and denominator on their conwgp (Figures 14 and 15).
S6 used the terms, but provided them as minor nodes undgoranode labeled “parts.”
S6 described the terms as “top #” and “bottom #” respelgti® 10 provided major
nodes for the terms, but gave no explanation of wieetethms numerator and

denominator represent.
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Figure 15:Fraction Terminology- S10

Analysis of Preservice Teachers’ KCS Using Fraction Tasks
Following completion of the concept map, participantsangven a brief
introduction to part of Simon’s (199&)athematics teaching cyatalled the
hypothetical learning trajectoryin creating dypothetical learning trajectoryteachers
look at a student’s work to determine a learning goal forttieest based on the
diagnosis of what the student knows about a concepthees then create a plan for
learning activities or representations to help the stusiegress toward the specified

goal and hypothesize about how the student’s thinking walhgh based on the learning
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goal and chosen activities or representations (FigureSidpn’shypothetical learning
trajectory model was a good fit for part two of the present studguse it allowed
participants to construct their own thinking regarding a sttslevork, rather than be led
by the researcher to choose from a list of possible gsioels. The constructivist nature
of Simon’s model allowed the preservice teachers to reptéseir thinking regarding
fraction concepts in a similar manner to the open-endadept maps in part one of the

interviews.

Hypothetical
Learning Trajectory

Teacher’s
learning goal

‘

Teacher’s
learning goal

v

Teacher’s
learning goal

Figure 16:Hypothetical Learning Trajectory (Simon, 1995)

Participants were guided through tingothetical learning trajectorfor four

fraction tasks that were created based on the workimbln (2005) showing fraction
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problems answered incorrectly by students. The tasks shoomaghon misconceptions
for four of the five fraction sub constructs (Kierd®,76) provided for participants on

the concept map. Originally there was one task for sabltonstruct: fractions as
representations of part-whole relationships, as operasiratios, as points on a number
line, and as division or quotients. However, due to a tygggcal error in the fractions
as division task discovered after two interviews had loaened out, the fifth task was
omitted, leaving four tasks for analysis. The tasks wezated to assess participants’
knowledge of content and students (KCS) in the same aseiagpart one of the

interview to provide a means of comparing the EC-4 presetemchers’ SKC and KCS
in an open-ended manner.

Each task provided a problem given to a student and the studksmtnse to the
problem. The student responses to the tasks were crested don misconceptions
common in elementary students, such as the interfei@nehole number understanding
with fraction knowledge and difficulty with fractioneg¢presentations seen in previous
studies with elementary students (Kamii & Clark, 1995; Ma&85; Smith, Solomon,

& Clark, 2005). The following was the general format ofititerview questions:
1. What do you think about the student’s response?
2. What fraction concepts does the student need to know tostade this

problem?

3. What instructional situations and/or representations wygadduse to address the

fraction concepts you mentioned?
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4. How do you think each instructional situation or repres@n would change the
student’s thinking?

In some instances, participants were unable to idensfydent’s misconception
or could identify the existence of some sort of miseption but were unable either to
verbalize the misconception or provide a means of inglisie student move beyond
their current level of understanding. If this type op@asse occurred, participants were
provided with an alternate student’s correct explanatmhasked to analyze whether
the alternate explanation was helpful.

Participant responses were audio-taped and transcribaddtysis. Whereas the
concept map analysis focused on the responses of ediclippat individually and was
subject-based, the analysis of the fraction tasks asksliased, looking at overall
themes and trends that emerged from participant respasiseghole. Each
participant’s responses for each task were therefordio@d into one transcript for
each of the four tasks. Transcripts of participant resp®to each task were read several
times to see what possible themes emerged from thelagatasegments were bracketed
and coded with descriptive labels (Creswell, 2003) and c®thmto themes that
provided an overall description of the data. An overviethefdata collected from
participants’ responses can be found in Table 2. Intergiezgtions one and two were
collapsed for analysis, as participants often addresaddrd misconceptions right away

when asked what they thought of a student’s response.
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Overview of Emergent Themes from Fraction Tasks

Fraction Tasks

Student misconceptionSuggested
representations

Change in
thinking

Task One

Task Two

Task Three

Task Four

Equivalent fractions
misconception, bigger
number equals more,
common mistake

provide concrete
models, go over
equivalent fractions,
simplifying fractions

moving pieces
around, putting
pieces together,
concrete models
will show same
size

Reasonableness of 27 use concrete objects, pictures would

cupcakes, has process have student explain challenge
without concept, thinking, question erroneous
doesn’t understand student about 27 thinking, help
meaning of 2/3 cupcakes student

visualize/manip
ulate groups

Unsure how to solve manipulatives, show
problem myself, unsure 4 boys to 2 girls,
how to show student, cannot mention ratios
computation off yet

Smaller denominator use manipulatives, connect
does not equal smaller draw pictures, finding concepts to
fraction, does not common denominatorprocess, visual

understand representations
numerator/denominator, help clarify
whole numbers numerical
different from fractions representations,

young children
need concrete
representations
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Task One-Fractions as Representations of Part-Wholéidrelhaips

Based on the work of Kamii and Clark (1995) with fifth andisgrade students
and Lamon’s work (2001) with fourth graders, Task One shovetddent, Marcus, two
circular representations of one-half. The first cinekes subdivided into four equal
sections, with two diagonal sections shaded (see Appendikh& second circle was
subdivided into eight sections, with four sections shaMncus was asked to name the

fractional part shaded in each picture and determine eh#tl fractions named the

. - .2 4 ,
same amount. Marcus correctly identified the fractlosni andg but incorrectly

identifiedgas the larger fraction due to its larger numerator andrderator. The
student’s response was modeled after previous researchtualénts’ interpretations of
%(Kamii & Clark, 1995; Lamon, 2001), in which students were &blerrectly

identify different pictorial representations of thectian one-half, but incorrectly
identified one representation as being larger than tier diue either to the orientation
of the shaded regions or the number of subdivisions.

Participants picked up quickly on Marcus’ misconceptiohask One. The

preservice teachers were able to follow the student’srecbline of reasoning and
. . : : 4 . 2 :
diagnose his misconception th%t Is a larger amount thazn because of the difference

in the numbers representing the numerator and denomindter than the size of each
piece relative to the size of the whole. Three mdjemes emerged from the preservice

teachers’ responses to questions one and two of Task @ @ understanding of
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equivalent fractions, the misconception that a biggerbar in the numerator or
denominator equals a larger fraction, and the overalldegwn that Marcus’
misconception was a common one. Two participants, S&afdsolved Task One
themselves before looking at Marcus’ response (Figuresd.I&n Participants had the
following to say about Marcus’ work:
S2: It is the ratio that is important, not the numbepfices. He didn’t
look at the whole. The size is determined by the rbt@didn’'t look at
the bottom number.
S3: 1 follow his line of reasoning. | would say this is a pretbmmon
mistake and it's not too far fetched that he thought this.
S5: Two out of four (reading Marcus’ response out loud) becthese
second pizza has more pieces. | get that a lot. Defirthe
misconception that just because the number is bigger nieatrihiey are
getting more.
S6: Yes, well, he doesn’t understand equivalent fractiomsl, Am, he
has a misconception that just because the numeratdanger or smaller
number than the numerator of the other fraction, theg aren’t
equivalent. He’s disregarding that they don’t have #mesdenominator
and that they’re not cut into the same amount of giece
S8: Well of course it’'s kinda wrong. He’s just going by dbigger than 2.

He’s not actually looking at the actual size of theggebecause fourths
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are smaller. Or | guess he doesn’t understand equivadeibins because
these are equivalent.

S10:1 mean | can see where they got this one wrong bechildesn
have that misconception, they see the pieces andhhmkythat because

there are more of them.
Lo . 2 4 . .
S12:He got it right, I|keZ andg, but | don’t think he realizes that

they’re both half.

Name the part that is shaded in each of two identical circles. Do these fractions
name the same amount? How do you know? e

Frevch @

Figure 17:Task One- S6

Name the part that is shaded in each of two identical circles. Do these fractions
name the sanre amount? How do you know? e

Figure 18:Task One-S10
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Responses were varied as to what types of instructiepadsentations or
situations would help Marcus construct a stronger undersiguodiequivalent fractions.
Seven of the eight participants mentioned using sometooncrete or pictorial
representation, varying from simply drawing a picturenefshaded region and moving
the pieces, to using pattern blocks or dry erase boardfiptv Marcus to manipulate the
shaded areas to make it clear that the fractions dm®aeme amount.

S2:Use a concrete model so they could move around pieceletathem
compare. Color code it. It helps to lay pieces on top.

S3: ... also maybe using manipulatives because he’s saying | wauld ge
more pie if | had this oneg( picture) but you could say okay you’'d get

two whole pieces from here and four pieces from herd lpati push
them together then they're the same. Ideally I'm am3g they have
something like fraction pies or fraction circles...thindg® lthat just so
that he could see that this first one divided into foieces can also look
like the one divided into eight.

S4: | think the first thing that | would do is | would move thlsaded area
(points to% sections) to where it looked identical to the four gseand
so it would be more like this split into fours and itwablook more like
this (points betwee% andg) and show him that it would look the

same. It's almost pretty obvious. Maybe try to explaimiih a piece of
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pizza or something like that. Say | had a piece of pparhmy pizza is
this big. Let’s say | had an actual representation. Andham two pieces
of pizza but they're only this big.

S5: They need to actually stop and look at the size of kymuwv, does
this equal this and | would definitely take those patternkisilend show
that two green triangles equal the same as a rhomhlauthdtsideways
one. Yeah, but it equals that. And just because therevarpieces of
green to equal the rhombus, it doesn’t mean you are getiime than the
rhombus. So | definitely think using those pattern blocks wsludov
them that even thought there’s four green triangle oahdtwo
rhombuses, that equals the same thing.

S6: I'd probably use manipulatives and say if we have fourksl@nd |
took away two, you could see | took away half of the kdcend | would
take away four from eight.

S10: You would just have to tell them, maybe get differerbiEa pieces
and put them all together and say look this is the same@mas this is,
we just cut it down into smaller pieces. Uh huh, or gasne type of
concrete material like the overhead pie chart thingsfraction pieces,

that way you can have that, see show them, | havieode and then |

have a half piece, the same thing ha\%gs the same things as having a

1 piece
5 .
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S12:1think | would just have more pictures and just explaihim that
the circles are the same size and if you move thes¢ogether, it would
look exactly the same as this one.

Three participants said that Marcus needed to learn armef®w to reduce

fractions to lowest terms.

S3:Um...I follow his line of reasoning and | think in this casewould
have benefited from knowing how to reduce a fraction, taget them
into the same form...(follows this with suggesting the use o
manipulatives).
S10: Maybe introducing the reducing type of thing, but not as, I'm
thinking of a younger age, you know just starting third gradettio

grade.

S12:So he needs, maybe he could learn how to reduce the%} Jikikke
how to reduce fractions or if like, just looking at thetyre a little more
carefully because they're boén (follows with suggestions of needing

more visual aids).
Two participants said they would reteach equivalent frastio Marcus or
discuss fraction equivalency with him.
S6: And so what we need, um I'd probably have to go back over

equivalent fractions with him if he like if we've albalearned it and
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discuss how we take these two things (pointingjlttpieces) and I'd

probably use manipulatives and say if we have four bloo#d gook

away two, you could see | took away half of the blocks amduld take

away four from eight.

S8: 1 guess | would have him to look at the size, to make seise h

looking at the size because both these circleshareame size. To not

just look at the numbers.

With regard to how the instructional representationstoat®ons would change

Marcus’ thinking, participants discussed Marcus’ need to dp\aalaunderstanding of
the equivalence of the fractions. Those suggesting thefusoncrete manipulatives or

pictorial representations said that being able to moxshhaded pieces and change the

diagonal orientation o%would help Marcus see that the two fractions were theesa

amount. Those who suggested simplifying the fractions suggyésat Marcus would see
. R | 4 . 1

that when S|mpI|f|edE and gwould be equivalent to the fractlezn Several

participants seemed to go back and forth between thef gsaaete manipulatives and
simplifying the fractions algorithmically, often asking Mas’ grade level to determine
whether the use of manipulatives was appropriate.

S2: Helps to lay pieces on top.

S3:Um, well maybe, maybe to realize that because he’sapipliooking

at this picture and these shaded regions could béeachithfusing cause if
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they had this darker shaded region here and if they moupdmheaning

to put the fourths adjacent to one another) so thalgddme equal. So have
him make the manipulative as it is shown in the picane then say look,
you can move them around to make them look more sinmtaits the
same thing, it's not changing the number.

S4:Well | think it would change his thinking in that he would h&we
relate these two to being the same size and thistieetgame shaded area

regardless of the division. Because if my two piecqsere bigger than
1 . .
yourz piece of pie.

S5: So | definitely think using those pattern blocks would show ttiean
even though there’s four green triangles and only twobuses, that
equals the same thing.

S6: So but then they'd understand halves and because | took away

1.
halves...when you take away—za, it doesn’t matter how many there are,

a% is a% is what he needs to understand.

S10:So they can visually see that, | think that would help.
S12:Um, more pictures if he could manipulate them like makteavas
on a dry erase board, like if it was here, he coulddeaow, they really

are the same.
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Task Two- Fractions as Operators
Task two was based on Lamon’s (2005) description of adiraes an operator
as an, “increase or decrease [in] the number of iteraset of discrete objects” (p.

151). The student, Alishia, was given a real world fracsitumation in which 18
cupcakes were baked for a birthday party %rmf the cupcakes were eaten. She was

asked to determine how many cupcakes were eaten (see Appgndlishia’s response
was based on the researcher’s own experience dsmaergary teacher whose
procedural understanding of this particular sub construcfeneel with her ability to
explain this type of fraction situation to students congapt. Alishia’s response was
the incorrect use of an algorithm whereby she divided uiheber of cupcakes by the
denominator of the fraction and multiplied the resulting gubtoy the fraction
numerator. However, as students with mainly proceduralretateling often do, Alishia
used the algorithm incorrectly, dividing 18 by two and multipdyihe quotient by three
to obtain 27 as the number of cupcakes eaten.

Task Two provided a bit more of a challenge to studgigyeants than Task One.
The reason for this may have been that, based ok afipcevious studies with
elementary students’ thinking on fractions as an opertite researcher based the
student’s explanation on her own experience withlgoridhm learned in elementary
school that may not have been a common one. Becditisis, study participants took
more time to digest the student’s response. Three iiegares emerged from the
preservice teachers’ responses to questions one and twskoT Wa: the reasonableness

of Alishia’s answer of 27 cupcakes eaten, that Alishia haideess without
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understanding the concept she was working with, and a fagkderstanding of the
meaning of the fractioé. Three participants, S3, S5, and S6, solved Task Tvibean

own as they were trying to make sense of Alishia’s respfigures 19-21).

Alan baked 18 cupcakes for his daughter’ birthday party. 3 of the cupcakes were
eaten by children at the party. How many cupcakes were eaten?

Figure 19:Task Two- S3

Alishias

27 cupCakes were eaten because 1just did 18 divided by 2 times 3 like T
learned in Class. 18 divided by 2 is § and 9 times 3 Is 27, so there were 27

cupCakes eaten in all. | g 24z G\ ¥ ; - 27

= p s s ¥ \
oW 2 prups eaden (pait)

]

Figure 20:Task Two- S5
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Alan baked 18 cupcakes for his daughter’ birthday party. (é—«)of the cupcakes were

eaten by children at the party. How many cupcakes were eaten? co i =F

i 2s L L
= -

(£ » X, t=

Figure 21:Task Two- S6

Participants had the following to say about Alishia’s ust@nding of a fraction as an

operator:

S2: Doesn't understand fractions at all. Has a proces®wita concept.
S3: Okay so on this problem I think | see a line of reasorsagif they
see an add they are always going to add, a take awayeth&yays
going to take away. So they have all these words in tieaid that they

automatically think I'm going to do this. So in this caseould say she
um, saw the number or the fractiegn and maybe down the line someone

had said that a fraction means to divide it by three becheses seeing a
line and sometimes division is written with a line | $hink that was her
line of reasoning and it doesn’t really see like she hsldeno background
knowledge to even know how to approach this problem to sa&t up
fraction. It seems like all of her knowledge so faug the operations,
plus, minus, divide, and multiply. Um, because she digiven think to

set it up in a fraction form.
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S4: Well I mean she did the math correctly so that'sagrieut | think that
| would point out that her answer 27 is more than th&irii8 that were
eaten, | mean that were made. So there’s no waytheduld be eaten if
18 were made.

S5: 1 would definitely draw the 18 cupcakes because this mualbf
whack (S5 is referring to Task Two student thinking). Defipit8lo there
are 27 cupcakes eaten in all. They need to stop and thiitka wénute;
there were only 18 cupcakes to begin with. How are glogyg to eat 27?
S6: Well, she either forgot or didn’t understand that thd8, t
denominator is what we’re taking out of, we're dividingpithree
portions, so she divided by two she misunderstood th&tieidrew the
picture it needs to be cut into three parts.

S8: Well their answer doesn'’t really make sense if thegee only 18
cupcakes. (S8 write%% on paper.) Teach them to look at answer for

reasonableness. Computation is off. Reversed threevandhew a
process but had it backwards.

S10: She, | don't think that she really understands becalide fact that
she ended up with 27 cupcakes and there was only 18 to belgin wit
S12:Whoa. Okay. (laughs) Um, well she gets that fractisasame

kind of division. Just a little off.
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In order to help Alishia connect her procedural thinkingaceptual
understanding of the fractioé operating on the whole number quantity 18, four out of

eight participants again suggested the use of concret@d®bjepictorial models. More
than half, five out of eight, remarked that they wdudgjin by questioning Alishia about
the reasonableness of her answer of 27 cupcakes ettereifvere only 18 cupcakes to
begin with. Two participants mentioned having Alishia expleer process. Though
concrete models were mentioned for Task One, Task Teraex®to move most
participants in a more student-centered direction, Wthgbal of helping Alishia
challenge her own thinking rather than providing her witle@planation of her
misconception or explaining a concept. It was uncleartivisytask prompted
participants to have Alishia explain her thinking rattantprovide a process or model
for her to follow as was shown in other tasks. Peshzarticipants themselves did not
understand her solution clearly and move in a studenei@shtirection to rely on
Alishia’s explanation as a starting point for furthestruction. S3 and S5’s responses to
this part of Task Two differed from the rest of the pgrants. S3 explained how she
would show Alishia how to correctly use the algorithmsias misusing. S5 gave a
detailed example of how she would explain the concepteetthird graders in her

methods observation class.
S2: IIIustrate% of cupcakes. Three groups first then pull two. Two of six

out of three groups.
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S4: 1 mean are they allowed to have like, okay | would ginesm

manipulatives and | would break it up into, | would have 18thed I

. . . 2
would break it up into three sections and then | would kay% were

2 L
eaten so you could count ea%hand come up with six.

S6: 1 would talk to her and ask her if she understood, if she ceeldl s
would want her to go through all the steps of her thinkirtg me. So |
would ask her again and then if she would go back to thel twould be
like, oh, did they divide it into two because it's two ofithe three
cupcakes.
S8: 1 guess divide it into three and then if you take awayaf the thirds,
two of the sections then that would be how much wemne&leeds to
visualize. Pieces of a group, not just a circle.
S10:So more concrete type materials and maybe that woulchkeli
visually see.
S12:Okay. | think just maybe, | know a picture would really hatpthis
one just because then there would be no way she wouRY deetcause if
you had 18 of something and you divided it up into three sectbas,
could just see the two and be like, oh okay, that's 12.

Participant beliefs regarding how the instructioeg@lresentations or situations

would change Alishia’s thinking centered around challengimgetreneous thinking and

putting the algorithm aside, instead allowing her to visualiztiszover the meaning of
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taking two out of three parts of a discrete set of 180t4j&8 even went so far as to
recognize that Task Two required a different type of ma@dsét model rather than an
area model, to develop Alishia’s understanding.

S2: Put process aside until they can visualize.

S3: Guided manipulation for a problem like this would be excellent.

S4:1 would have 18 and then | would break it up into three sesimd
then | would say okayg were eaten so you could count ea;ciand

come up with six.

S5: So with my kids, I've see a lot of them do differenthgs and most
of the time it’s a bigger number and it doesn’'t work dtiey like to do
the boxes. They like to draw, they would draw three bdike this and
they would count 18, you know one, two, ...and they would figute
how many are in this box (S5 is referring to sharing 1&nee groups
using circles or boxes to pass out 18, but does not cefeas a particular
type of division.) and they need to know what 18 dividedhbgde would
be.

S6: So | would ask her again and then if she would go badtetowo, |

would be like, oh, did they divide it into two becausetitv® out of the
three cupcakes. So I'd make sure she understood whét theant, that

it's two out of the three.

S8: Needs to visualize pieces of a group, not just a circle.
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S10:So more concrete type materials and maybe that woulchkelj
visually see.
S12:1 know a picture would really help on this one just becluse
there would be no way she would get 27 because if you hafl 18 o
something and you divided it up into three sections, she costidge the
two and be like, oh okay, that's 12. Is that okay?

Task Three- Fractions as Ratios

Task three utilized ratios in two forms: a part-parparison of the ratio of
boys to girls in a class and a part-whole comparisaheohumber of boys in a class
compared to the total number of students in the clasa, Ah elementary student, was
asked to determine the number of male students in theitthgere were four boys for
every two girls in the class. The term ratio was purfudlgenot used in the problem as
ratios are not generally introduced formally in the eatary grades. However, the ratio
task was included because preservice elementary teakhevgledge of content and
students should extend beyond that which is expectedroéatary students
(Conference Board of the Mathematical Sciences, 200@¢tadie various
interpretations of rational numbers.

Task Three presented the greatest challenge to theyiceseachers’ own
knowledge of fractions. Lamon (2005) defines a ratio aspfaparison of any two
guantities” (p. 183) and notes that due to the varied usesiadg,rthey can be difficult to
interpret. While four participants identified that Lisas incorrectly interpreting the

ratio of boys to girls in the class, an additionairfparticipants expressed a difficulty
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solving the problem themselves. Three participants saidcthey solve the problem

themselves, but were unsure how they would explain thiglgon to a student. These

themes composed the majority of participant responséagk Three. Seven

participants, with the exception of S12, showed some anadumbrk as they tried to

solve the problem themselves and/or interpret Lisa’'sasegpion of her answer (Figures

22-27). Below are participant responses regarding theiraswisa’s understanding of

Task Three:

S2: Relationship between part whole. Doesn’'t have same inrptrt
whole. Ratio within a ratio. Two different units.

S3: (S3 creates ratio for task three and solves for x.yGi@how do you
do this problem? (as she is working it out) I’'m so not usdtht/ing to
explain my reasoning. Okay so for this one | would thir&kvEnturing
into my thought, which would be ratios which would be fiaasiratios
go hand in hand. What his problem was is thinking about b sotae
knows that there’s 24 students in the class, but wheawehat there are
four boys for every two girls...I’'m actually not followirtgs reasoning.
S4: Six groups of boys. Well, obviously wrong. Um, | regligt think |
would explain to them the way | would have to figureut.o

S5: Okay, | have to figure this one out. (S5 reads probleewaimes)
S6: Okay, | don’t know how he did it because honestly | teado it a
weird way. Um, um, | honestly don’t know where. Hewdda’t have

gone straight to dividing | don't believe (reads part obem aloud
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again) because it's not four to one. | think that’s wherenight have
made a mistake.

S8: I'm trying to remember how to do this myself. | dokrtow how to
get this answer.

S10:1t’s a ratio four to two. | honestly don’t know how bwld fix that.
S12:This one is going to take me a second to figure out. G4aght
well she gets that the top is divided into the bottamctvis good. But |

think this one is confusing because of the ratio. It @ssriused me.

There are 24 students in a class. There are 4 boys in the class for every 2 girls.
What fraction of the class are boys?

b R AT
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Figure 22:Task Three- S2

There are Z:;ihtlldeuh in a class. There are 4 boys in the class for every 2 girls.

What fraction of the class are boys? \ " !
s g A

‘ ] [n ‘A

a +~ 1 W ‘

Lisa:

5 or :;—OFtnE class Is boys because 2¢ divided into groups of ¢ boys is 6
24

2roups Of ¢ boys. Gix groups of boys is the nummerator ahd 24 Is the total
number of students in the Class.

Figure 23:Task Three- S3
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Figure 24.Task Three- S5

There are 24 students in a class. There are 4 boys in the class for every 2 girls.
What fraction of the class are boys?
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There are 24 students in a class. There are 4 boys in the class for every 2 girls.
What fraction of the ciass are boys?
) Py -

U o 'l ) o &
Figure 27:Task Three- S10

Due to the difficulty most participants had either solviagk Three themselves
or articulating how they would explain it to a studeng, $tudy provided limited
information as to what instructional representationsitoations this group of preservice
teachers would use to help a study having trouble interpretinjdns within the ratio
sub construct. Five of the eight participants were @ntbprovide any specific
representation or situation to change Lisa’s thinkirtge® participants, S4, S5, and S12,
mentioned the use of various types of concrete manipesatoszcount out four boys to
two girls to show Lisa the ratio boys to girls in assl@f 24. The participant responses of
S4, S5, and S12 are below.

S4:Um, | really just think | would explain to them the wayaduld have
to figure it out. And that is maybe have two differenocslof
manipulatives, one for boys and one for girls and litesdt there and
say four and then two and then four and then two.

S5: 1 would get, there are these little chips and | used tobelay and one
side is yellow and one side is red.

(Researcher prompts S5 with correct name for manipalatie is

describing.) Two color counters?
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Yeah, two color counters. The idea that, um six times €équals 24 is a
good idea, that’s definitely a good idea. That will helghim long run
because four plus two. The four boys plus two girls ecgialas well. So
| would take those two color counters and we would put dbwed, so
here’s four boys (Draws and says boys=red, girls=y@llnd then two
girls. Okay, so now we know four boys, 2 girls and #aals six. We
have more than six students in the class. Well, veady figured out that
six times four equals 24 so we need so again we have dyarftr every
two girls so there’s another six. Six plus six equalsQikay, we still
need 24. Okay another four boys and two girls. That'sSGlay, 12 plus
six, that’s 18. Well, we still need more because we @dedkay, so
another four boys. I'd definitely do this on the overhedile they had
their own little manipulative kind of things. Okay thagig more. That's
24. Okay, 24 students. Okay, but that’s not our answer. &kia¢
guestion? Go back and ask yourself what are they asking, Skapw
we have our 24 students right here, so count up how maipgse. one,
two, three, four, five, six, seven, eight, nine, 10, 11,182 14, 15, 16, so
we know we have 16 boys and two, four, six, eight girlkay0so how
many students do we have in the class? What’s your wiole?whole
is 24. Whole goes on the bottom. What are we

looking for? What fraction of the class are boys.rélere 16 out of 24

boys.
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S12:Um, but, I think if you had like manipulatives, like littldocks or
cubes they could kind of break it up into four boys, twtsgfour boys,
two girls.

Task Four- Fractions as Points on a Number Line

Task four asked a student to place three fract%nis; andg, on a number line

.1 7 .
between zero and one. Two fractloa&andg, were placed on the number line as

benchmarks. This task addressed two difficulties explor@demious studies with
elementary students’ understanding of ordering fractions wumber line. In a study
with elementary students, Dufour, Bednarz, and Belari@87) discussed the number
line representation for fractions as a difficult ti&éins for elementary students.
Students’ initial use of number lines as external reptasens for whole numbers
proved problematic when students were presented with theyepace between whole
numbers as a representation of an infinite numbeat@iral numbers.

In addition to difficulty with the number line as a repentation for whole
numbers, elementary students also have difficultyectlyr interpreting the meaning of
fraction denominators to order fractions. Smith, Solonamd, Carey (2005) looked at
students’ reasoning in comparing fractional denominataid@und that students often
identified a fraction as larger because the denominedsriarger. Therefore, like
students in previous studies (Dufour, Bednarz, & Belanger, 28ith, Solomon, &

Carey, 2005), the student in Task Four ordered the fractidhsesgpect to the size of
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the denominators, rather than based on the locatiore difattions with respect to zero,
one, and the benchmark fractions.

The majority of participants, seven out of eight, eotly attributed Juan’s
difficulty with ordering the fractions to his incorramderstanding of the relationship
between the numerator and denominator of a fractiamo. Jarticipants, S2 and S6,
commented specifically that Juan did not understand tagarthip between the
numerator and denominator. Five participants were moedetbtsaying that Juan was
comparing the denominators without consideration of tlaivelsize of the fraction
wholes and the number of pieces being considered inutinenator. One participant, S3,
commented about Juan’s consideration of fractions ma@f his previous experience
with whole numbers. Six participants provided some wriggrlanation of their
thinking on Task Four, most of which was related to ilatgtns of models used to
compare the fractions (Figures 28-33). Below are particigsponses about Juan’s
understanding of Task Four.

S2:Didn’t understand concept of ratio. Thirds. Fourths. Feohis a
different size.

S3: Okay so he has the problem with just taking the numbdesat
value. What he knows about numbers is that one confieielie/o and so
on, but with fractions its opposite and he doesn't reéalye that idea yet.

S4:So what he’s done is just ordered the denominators.
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S5: Three is smaller than four (emphasis on words sisafs seen this
explanation before). Okay, like | said before that pestause the
numbers are smaller, um, doesn’'t mean it's smalleryymeans.

S6: (S6 reads task aloud. Finds CD for some fractions. Spienels
solving before focusing on student reasoning.) God bless kitsse
souls. I can’'t handle this. | hate fractions! | didw@alize it until now.
Alright. He’s probably about as confused as | am. No,,llumean he
obviously just doesn’t get, it's common denominator tleatibesn’t get.
Like there are different denominators and in order to fo to place
them easier is to put them in the same denominatoyobutan’t look at
the numerator unless all, without looking at their camrdenominator
first.

S8: Yeah he doesn'’t realize that like one third is realiygbr pieces.
He’s just saying, oh three is smaller.

S10:0h, | see what he did. He automatically thinks thafuist puts the

numerators, oh, I’'m sorry, the denominators in orderdblesn’t have the
concept of% Is actually bigger. In fractions, it's kind of the opjpes

You know, the larger the denominator, the smaller thetitvn. He
doesn’t have any representation of what the fractidrat the concept is.

S12:0h, well, he’s just going by the denominator four is biggant

three so% is bigger, so um.



\
i

W\-.I‘

L I 2 T
s B

3 |3 I

R,.J A 6 -_f

1 put 2/3 before ¥ because 3 is smaller thah ¢. I put /5 after % because 5

is bigger thah 4. I put 5/6 close to 1/5 because 6 is bigger than 5 and it is
closer to 5 than it is to 8.

Figure 28:Task Four- S2
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L T T T +—8

s¥5 1 X

1 put 1/3 before ¥% because 3 is smaller than ¢. I put 1/5 after ¥ beCause 5
is bigger than ¢. ] put 5/6 Close to 1/5 because 6 is bigger than 5 and it is
closer to 5 than it is to 8.
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Figure 29:Task Four- S3
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1 put 1/3 befFore % because 3 is smaller than 4. ] put 1/5 after % pbecause 5
is bigger than . 1 put 5/6 Close to 1/5 beCause 6 is bigger than 5 and it is
closer to 5 than itis to 8.

Figure 30:Task Four- S4

Write the following fractions as they should appear on the number line below and

explain why you placed each fraction where you placed it. Two fractions, % and

% have been piaced on the number line as behchmarks t0 help you.
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1 put 2/3 before % because 3 is smaller than ¢. 1 put 1/5 after ¥ because 5
is bigger than ¢. 1 put 5/6 Close to 1/5 beCause § is bigger than 5 and it is
closer 0 5 than it is t0 8.
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Figure 31:Task Four- S5
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1 put 1/3 before % beCause 3 is smaller than 4. ] put 1/5 after ¥ because 5
is bigger than . 1 put 5/6 Close to 1/5 because 6 is bigger than 5 and it is

closer t0 5 than It is to 8.
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Figure 33:Task Four- S10
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The majority of study participants easily articulatestiuctional representations
or situations they would use to help clarify Juan’s miseption that larger fraction
denominators always result in larger fractions. Somecgaahts provided more than
one means of clarifying Juan’s thinking. Six participants ssiggethe use of picture
models, most of them circular representations otivas, such as pizzas or pies. Five of
the eight participants said they would use various typasaaipulatives, including
fraction circles, pattern blocks (suggested incorrectlgbys representation for fifths),
and fraction towers, to let Juan build the fractions@ade them on the number line.
Three participants, S5, S6, and S8, remarked that thelgwsbow Juan how to find a
common denominator of the fractions to order them emtimber line. Though S5 and
S8 mentioned the use of a common denominator, they @aivihat suggestion in
different ways. S5 suggested the use of a common denomimiago she became
confused with her own incorrect explanation of using patiocks to create fifths,
while S8 was unsure that finding a common denominator wagpao@iate strategy for
someone Juan’s age. S6 was the only study participarasinFour who did not suggest
the use of either a concrete or pictorial model, relyingadaly on the use of a common
denominator as shown in Figure 33. Participant responsesstoFour are below.

S2:Um Use pizzas with parts for number line. Have thenit dsually
. V\E’t 7
until they understand (draws on paper). 2 Fandg ...have them draw

that out too.
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S3:To help him, | would probably use some sort of manipuldiesa
circle (draws a circle) to see, you know, that this;r isnd this is% but

yet this is bigger. Like have him explore those concemdshave him
figure out why that happens and have him explain well, wiin
fractions we’re actually dividing by the bottom numbetisat would
explain...

S4:1 think that again you would need a visual model. | wouldaugkass

of water instead of a pie or a piece of pizza. (Drglass% full) And

this glass is%. And this glass isji full.

S5: So | definitely think they should be required to draw a pictore

each fraction so they need to, despite the numberftinget the number
line, start withé, and so or they could take the pattern blocks again, they

could use the pattern blocks. And | don’t know if you can esga fifth,
you can express a fifth with the green triangle, patbéscks. Pattern
blocks or picture because it's hard for them to draw aoteieture that
would show that it's bigger than another so | definitelpkhi. Um, and
use that, okay | would definitely start out with my wdahat’s an
octagon (referring to the pattern blocks) and it’s oraggah it's orange.
And um start out with that. What | did when | createxttions like that is

start with the octagon and then get the triangle. Withadt work? No
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because six triangles fit on that. So how would | emée’é Cause

they're not all the same on the bottom. The whales't that same.
Okay, that’s pretty complicated. I'm making it complicht®kay,
change these all to the same so you can see the rauarbtre top. Okay,
so what’s the common denominator? What can | muléplgf these by
to get the same denominator? That’s another way. Gahmon
denominator. And I'm always on a third grade level her¢'sbard to,
it’s hard for me to remember what'’s required in higher grades

S6: And | think they would have already learned how to find iwmm
denominators, so I'd go back through the whole process addgwe
through one by one like I did and have him do each one amdhna talk

it out with me (gives example of three times eightitd a common
. 1 7 . . . .
denominator betweeg andg). Sometimes it's easier to multiply each

other by the other denominator and so.
S8: Or | don’'t know if you would tell him to get a common dempator.
If they're too young for that?

S10:So | think again, you know concrete materials. Just shemtyou

know, | have these blocks he%.is this much amountE just because

5

the denominator is bigger doesn’t mean, you know, | shomhbimé IS
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. 1 . .
bigger than, | mean, smaller th%n So just more or less concrete visual

learning.
S12: -Picture models, manipulatives or things like that so taeyplay
around with it and look at it.

Unlike the difficulties study participants had articuigtinstructional
representations that would help the student in Task Tasaeell as ways in which
those representations or situations would help the studest,of the participants were
able to say with much more confidence how their suggest&datien would help
correct Juan’s thinking about fraction denominators. Sewewnf eight participants
mentioned that the use of concrete models or pict@aksentations would be helpful
to Juan because he could see the relative size &htti®n pieces, making problematic
his explanation of fractions with larger denominatonadpdarger fractions. S6, whose
only instructional situation centered on finding a commarodanator, did not provide
any particular explanation of why she believed the psoéfinding a common
denominator would be helpful to Juan.

Comparison of Knowledge Representation on Concept Maps and Fraction Tasks

A third purpose of the study was to look at connectionsetkiated between the
EC-4 preservice teachers’ SCK and KSC of fractions. heroivords, the researcher
wanted to seek a clearer picture of whether knowingidnagin a certain way (SCK) as
represented on the concept map affected how study partisiinterpreted student work

with fractions (KCS). There were few direct conm@as between tha priori themes



86

used to analyze the concept maps and emergent themepdrticipants’ discussion of
hypothetical learning trajectories related to the fractasks.

S2 was the only study participant whose concept map glaselored her
responses to the fraction tasks with regard to Kierefiseunstructs of fractions. Her
concept map focused the most strongly on the ratio audtrzict with five of the ten
nodes in her map connected to ratio in some way. Iiaddher responses to three of
the four fractions tasks identified students’ misconceptasns®lated to a
misunderstanding of a ratio. In the case of S2, it diapbear that her strong connection
to the meaning of fractions as a ratio had some influendepperception of student
misconceptions even on tasks that were not designed taimesisdents’ understanding
of a fraction as a ratio.

Though the remaining interviews did not exhibit strong cotioes between the
a priori and emerging themes, other connections between SKE@8df fractions
were evident in several of participants’ concept mapshgpdthetical learning
trajectories. For example, S3’'s concept map placésbagsemphasis on operations with
fractions, with nine of the fourteen nodes describing proeé#nowledge of how to
add, subtract, multiply, and divide with fractions. Likegy her comments on student
work on the fraction tasks often focused on teaching stad algorithm for “reducing
fractions” or showing a student how to work through adyamoblem to “take out what
they're asking.” In Task Three, S3 solved the raticéktbut was unable to verbalize
how she would explain the task to a student, admittirig, fiot used to having to

explain my reasoning.” It would appear that S3’s understarafifrgctions might be
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related to that of college students who, according t&€trderence Board of the
Mathematical Sciences, “see fractions only as paimatfral numbers plugged into
arithmetic procedures; hence, to them, fractions islgimpomputation with four
integers” (2001, p. 19).

S5 approached the concept map and fraction tasks aswiesbdeaching actual
students, providing a significant amount of written and detail for the concept map
and each of the fraction tasks. She made connectitwedie her methods observation
experience in a third grade classroom and the conceptssiéisicos her map and what
she saw in student misconceptions on the fraction t&8kaas the only participant who
mentioned her mathematics methods class or her ohserexperience in an
elementary school. She seemed grounded in both expesjersteg knowledge obtained
in her methods course about manipulatives, such as phtbeks and two color
counters, and knowledge of her third graders’ misconceptlong &actions to make
suggestions for the students in the fraction tasks. égponses, both on the concept map
and fraction tasks were detailed, with written, piclpaad symbolic illustrations
throughout. It is worth noting, however, that due to scheduonflicts, S5 was
interviewed closer to the midterm of the semestegers¢weeks after the early
interviews. The connectedness of her knowledge may e influenced more by
time spent in the methods and third-grade observatios tlas participants interviewed
earlier in the semester.

The concept map and fraction task responses of S8 weas detailed many of

the study participants. However, she was the only paatiwho placed any kind of
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emphasis on fractions as representations of equal-siegds. Her concept map was the
only one that contained a node specifically mentioningttieatparts have to be equal.”
This idea of fair shares was reiterated by S8 in heudsgon of student misconceptions
and instructional representations in tasks one and foenrdmg to Van de Walle
(2007), “the first goal in the development of fractishsuld be to help children
construct the idea dfactional parts of thevhole [emphasis in original] (p. 294).

After additional review of the audio, typed transcripisd written work on the
concept map and fraction task responses for particightS6, and S10, no strong
connections between the EC-4 preservice teachers’ 8GK@ES were found. However,
further analysis of interview audio and typed transcifijois) S12’s interview revealed
an affective connection regarding S12’s general feelingarmtte interview itself and
about her ability to represent her own thinking aboutifvas and produce

representations that would help students.
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CHAPTER V
CONCLUSIONS
Summary of Findings

The first research question looked at participants’ sfieethcontent knowledge
of fractions using a participant-created concept map.dfiv@eren’s sub constructs of
fractions: fractions as a representations of a padiemtelationship, fractions as
operators, fractions as ratios, and fractions as pomtsnumber line, and fractions as
division, were provided to participants on the map and usadvasans oé priori
analysis, along with fraction notation, and termimgylo

Participants in this study appeared to be most fanahdfor comfortable with
fractions as a representation of a part-whole relsiign with seven out of eight
participants including at least one node supporting this sudtre@t. The EC-4
preservice teachers studied were equally familiar withifras as a ratio and as a
representation of division. Five out of eight particisaprovided concept map nodes for
one or the other of these sub constructs. Fractions @gesator on a quantity and as a
point on a number line were the least representedaapiatations of fractions. One
participant created a node for a fraction as a poir mmmber line with one participant
specifically mentioning that she did not think of a fraitas a point on a number line.
None of the participants in the study used a fracticanagperator explicitly on their

concept map, though S5’s example related to the node ldiglesddon” represented
taking a fractional amoun%, of the whole number eight. These results are sterti

with previous research (Carraher, 1996; Lamon, 2001) whicldfpart whole
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relationships to be among the most common represergatgad by teachers to explain
the meaning of a fraction.

The second research question explored participants’ kdgeslef content and
students using student responses based on four of thelfivesstructs provided on the
concept map. Participants’ diagnoses of student misptinos and plans for instruction
were strongest on Task One, fractions as a representdita part-whole relationship.
The strength of the responses on Task One was not sugpds almost all study
participants described this fraction sub construct om togicept maps. The most
difficult task for participants, however, was not tethto the sub construct exhibited the
least on the concept maps. The EC-4 preservice tedwmithe greatest difficulty with
Task Three, fractions as ratios. Many had a diffitale solving the task themselves
and most struggled to provide a student-friendly explanatitmettask.

Tasks Two and Four elicited varied reactions from parti¢gakithough no
participants created concept map nodes for a fractian aperator, Task Two,
involving taking a fraction amount of 18 cupcakes, presentegifetlems for the EC-4
preservice teachers. On this task, participants easugddthe task and were able to
suggest various types of representations, such as piotusets of objects to explain the
concept to students. Task Four, the representationratt@oi as a point on a number
line, shown by previous research to be the most difffoulstudents to understand
(Dufour, Bednarz, & Belanger, 1987), caused one teacher t6Gag bless these kids’

souls. | can’t handle this. | hate fractions! | did&alize it until now!”
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The third research question looked at any connectiongtisied between the
concept maps and participant responses to the fraeste.tOnly one participant, S2
showed any connections related to Kieren’s sub constriitesctions. Her familiarity
with ratio heavily influenced her diagnosis of studergaonceptions on three of the
four fraction tasks. Participants S3, S5, and S8 showesistencies in their general
understanding and/or explanation of the meaning of fractimge S12 showed a
connection not in her knowledge necessarily but indek of belief in her ability to
provide helpful explanations on the concept map and drattisks. Though this finding
is not directly linked to research questions in the prestemdty, connections have been
shown between teachers’ attitudes toward mathenaiatsheir conceptual
understandings of those topics (Ma, 1999).

S3’s strongly algorithmic understanding of fractions asaestrated on her
concept map appeared in her suggested instructional representat students in
Tasks One, Two, and Three. Her suggestions for thdsg ¢astered around teaching or
reviewing a procedure, such as simplifying fractions, solviragia, or in the case of
Task Two, “working through the word problem to take outtvthay’re asking, to

realize that it is a fraction problem and it's just mof an algorithm way, just to know
that when you sayg of a number, you have to multiply the fraction.” Hepagly

procedural knowledge and infrequent use of non-algorithmic septations mirrored
findings in studies with other preservice teachers (Betkal, 1992; Lubinski, Fox, &

Thomason, 1998; Ward, Anhalt, & Vinson, 2004) where preseteaehers focused
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mostly on procedures without much explanation of why gwobedures made sense
conceptually.

The level of detail in S5’s concept map carried over hdr interpretations of
student misconceptions and instructional representati@s®nlio correct them. In
contrast with Ball's findings (1988) that many times teas’ diagnoses and chosen
instructional representational situations failed to eraieaconceptual understanding,
S5 went to great lengths to explain her own elementdigod@xperiences with
manipulatives and how her experiences in teacher prepacaturses strongly
emphasized the use of various types of representati@ssigi students in their
developing understanding of mathematics. Again, it is pestialt her interview, closer
to the midterm of the semester, provided S5 more timeitoaggreater connectedness in
her knowledge of the concept of fraction and a greafgsexe to manipulatives and
other representations to help correct students’ miscanospt

S8’s concept map, though not as detailed as some, providedlyh@mention of
the same sized shares and/or wholes. This understandiiegl caser into the
instructional representation suggested for students. lcedeof S8, it would appear that
the concept map and fraction tasks did not adequately cab&ucennectedness of her
knowledge of fractions. Though not lengthy, her thoughtipoases and careful
attention to the foundational concepts of fractionshsas the notion of fair shares,
indicated that external factors, such as a lack of fanty with the researcher or the
interview environment, impeded a fuller explanation ofdwrceptual understanding of

the fractions.
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Largely absent from the concept maps and EC-4 preseeachkdrs’ creation of
hypothetical learning trajectories for students on theibra tasks were several critical
aspects of building understanding mathematics understandingginstructional
representations as suggested by teacher education orgasizaibnas the National
Council of Teachers of Mathematics (2000). The anafgsisaled almost no suggestion
of real world contexts outside of common pizza orrpgresentations. In her work with
preservice teachers, Ball (1993) suggested that teachersakeigttb account
representational contexts that were relatable to stsd&enerally, when participants
own content knowledge on a task was weak, as in tleeafdke ratio task, their use of
representations was formulaic and rule-bound. This finslipgports the results of
previous studies with preservice teachers choices oticiginal situations and contexts
(Goulding, Rowland, & Barber, 2002; Tirosh, 2000; Ward, Anhal/idson, 2004).

Implications of Findings

The EC-4 preservice teachers SCK of fractions denetesktthe strongest
connection to the part whole sub construct, supportingubgestions of the
Conference Board of the Mathematical Science (2000) ambh£2005) that teachers
tend to focus mostly on one representation of frastidhough the purpose of the
present study was not to determine the effects of egtinesithematics or mathematics
methods course on EC-4 preservice teachers’ understasfdnagtions, both types of
courses could contribute significantly to widening presen@eehers’ views of what

fractions are and how they fit into number systengeineral.
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The findings of this study provide information for matheosamethods
instructors regarding what preservice teachers know alamioins, but also about
how they hold that knowledge. Mathematics methods instrsicain take preservice
teachers’ existing knowledge of fractions demonstratecooept maps and through
interpretations of student work and challenge and soliddy knowledge to move
beyond the part whole representation of fractions. Thaogffhematics methods
classes at this particular university were combined wilassroom observation
requirement, there was no guarantee that the preségackeers would have the
opportunity to apply their knowledge of fractions to diagr&iselent errors and chose
instructional representations to correct their thinklngact, only one participant, S5,
seemed to draw on her classroom observation expergenang the interview.

Limitations of Study

The limitations of this study are related to the daraind exposure of the
researcher to participant knowledge, scheduling during theoshegemester, and lack
of connections shown between concept maps and hypotHe#icaing trajectories
created by participants. The interviews in the study wenelucted only once per
participant during the semester and were not combined witblasgrvations of actual
instruction in methods observation classrooms. Due toeegearcher’s primary job as an
elementary educator, it was not possible to meet witticgeants more than once during
the semester to follow up or ask further questions relatétetconcept maps or

hypothetical learning trajectories. The one-time intenadso resulted in a lack of
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member-checking to determine the accuracy of the ressa chterpretation of
participant responses to interview questions.

Though the one-time interviews yielded significant amswhtdata regarding
participant knowledge of elementary fractions concepgsrésults would have been
bolstered by further questioning on the part of the reseaestd observations of the EC-
4 preservice teachers working with actual students ondratzdsks. Also, the nature of
the concept map as a construction of participants’ kivawledge would have been
more beneficial to participants if follow up and discussi@ne an additional aspect of
the study. This type of follow up with participant-createdeept maps has been shown
to enhance preservice teacher knowledge in previous reg8aitd, 1999). Again,
limited time on the part of the researcher limitedghely design to a one-time
interview.

The scheduling of the interviews, between the endrafaly and the end of
March of the spring semester may have resulted in urdanparisons of preservice
teachers at differing stages in the mathematics mettmdse. Though the researcher
attempted to schedule interviews as close together easwpossible, conflicts pushed
back some interviews significantly. This resulted in equarticipants having more
exposure particularly to knowledge of content and studkath,from the mathematics
methods course and work with students in methods field vdigem classrooms, than
those interviewed earlier in the semester.

The method of combining concept maps with hypothetieahlag trajectories as

a means of looking at connections in the specializeteobknowledge and knowledge
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of content and students revealed connections in onlyh#ie participants interviewed.
This may have been due to participants’ lack of fanitijiavith concept mapping as a
means of explaining thinking or the short duration of therurtw with no follow up. A
pre-post concept map, like that used in Bolte’s (1999) wiitthyswith preservice
teachers might have been more useful in showing @bions in the preservice teachers’
specialized content knowledge of fractions and theatedl knowledge of content and
students before and after mathematics methods instrutiefementary fractions
concepts.
Issues for Further Investigation

Though the present study provided a detailed picture of one gfd&@-4
preservice teachers’ mathematics knowledge for teachiotjoing, it would be of
interest to see how EC-4 preservice teachers’ represastat their own knowledge of
fractions and their diagnoses of student misconcepéindssuggested instructional
representations manifested themselves in classroom wrlstudents. Also, it would
be helpful to interview more participants in the premerteachers’ learning process,
such as the mathematics methods instructor and fieldwab®e teachers, to see what
connections exist between their understanding of fnrastnd that of the preservice
teachers. S5’'s repeated mention of both her mathesmagthods instructor and her
classroom observation teacher suggested an influences# itvolved in preservice
teacher education on the integration of the speciatimetent knowledge and

knowledge of content and students in preservice teachers.
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More work needs to be done with concept maps and #a¢i@n of fraction tasks
that allow preservice teachers to discuss their owrstauaent thinking and in the
determination of what instructional representationsvarst beneficial for students at the
elementary level in various contexts. The methods us#ds study would provide
valuable data to mathematics methods instructors abedtattion knowledge that
preservice teachers bring with them into a mathematitbhods course and their beliefs
about what instructional representations are meanif@fstudents. In addition,
discourse about concept maps and fraction tasks woulditemestervice teachers in
that it would provide them an opportunity to challenge themking about fractions

concepts.
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APPENDIX A
CONCEPT MAP

Before introducing new math topics in her fourth gradss;Idrs. Maciques
liked to use concept maps both to organize her own thinkiog orinstruction
and to elicit her students’ prior knowledge about concemevBis the
beginning of her concept map for a unit on fractions.

Complete a concept map describing the concept of a fractionitw additional terms
and linking words on the lines connecting terms. Possibterms and links may
include various meanings and representations of fractions andaonections between
terms, such as, but not limited topart whole, operator, ratio, point on a number line,
and divison. You may draw the map however you like.
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APPENDIX B
FRACTION TASKS
Task One: Fractions as Part Whole Relationships

Below is an example of an elementary student’s weldted to the following problem
situation involving fractions.

Name the part that is shaded in each of two identical cirek. Do these
fractions name the same amount? How do you know?

Marcus:

% iS colored ih the first CirCle and gis colored in the second CircCle.

They are hot the same Size because the second CirCle has more pieces. If
the CirCles showed the amount Of pie T was going to get from 2 pies that
are the same size, T would only get 2 pieces in the first pie, but T would
get ¢ pieces from the second pie. Four pieces Of pie is more thah 2 pieces

Of pie.
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Task Two: Fractions as Operators

Below is an example of an elementary student’s weld¢ed to the following problem
situation involving fractions.

Alan baked 18 cupcakes for his daughter’ birthday party. 2 of the

cupcakes were eaten by children at the party. How many cupcek
were eaten?

Alishia:

27 CupCakes were eaten because ] just did 18 divided by 2 times 3
like I learhed in Class. 18 divided by 2 is 9 ahd 9 times 3 is 27, SO
there were 27 CupCakes eaten in all.

18+2=9%x3=27
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Task Three: Fractions as Ratios

Below is an example of an elementary student’s weld¢ed to the following problem
situation involving fractions.

There are 24 students in a class. There are 4 boys in tHass for
every 2 girls. What fraction of the class are boys?

Lisa:

% or %OF the Class is boys becCause 2¢ divided into groups Of ¢

boys is 6 groups Of ¢ boys. Six groups of boys is the humerator and
2¢ is the total humber Of students in the Class.
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Task Four: Fractions as Points on a Number Line

Below is an example of an elementary student’s weld¢ed to the following problem
situation involving fractions.

Write the following fractions as they should appear on the numéx
line below and explain why you placed each fraction where you

placed it. Two fractions,% and % have been placed on the
nhumber line as behChmarks to help you.

1 1 5
5 3 6
Juan:
[ ? | *—0
t 2 1 !
3 - 5 6 ‘

1 put 1/3 before ¥ becCause 3 is smaller thah ¢. I put 1/5 after %
because 5 is bigger thanh ¢. ] put 5/6 Close t0 1/5 beCause 6 is bigger
thah 5 ahd it is closer to 5 thah it is to 8.
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APPENDIX C

FRACTION TASK INTERVIEW QUESTIONS
Task One: Fractions as Part Whole Relationships
1. What do you think about Marcus’ response?

= If the participant correctly identifies the student’s eoisception in
the problem, questions three through five will be asked to ghele
participant through the hypothetical learning trajectoryecyc

= If the participant incorrectly accepts the student’scomngeption as
the correct answer to the problem, the participant wilbkesented
with the correct thinking of another student to challethgefirst
student’s misconception. The participant will then desdsjuestions
three through five regarding the student whose thinking the
participant assesses to be incorrect.

2. In a class discussion, Leisha, Marcus’ classmateth@afbllowing response to
his answer. What do you think about Leisha’s respanséarcus’ answer?

But %and gare the same size beCause the CircCles are the
same size and the same amount is shaded in each cCircCle.
Even though the second cCirCle has more pieces, each piece
iS @ Smaller amount of the whole CirCle. If you think of the
CirCles as pies, the first pie is Cut into ¢ pieces and the
second pie is Cut into 8 pieces. For the second pie, You are
just cutting each of the ¢ pieces in half to make twice as
many smaller pieces. So, 1 pieCe from the first pie is the same
amount Of a whole pie as 2 pieces from the second pie.

3. What fraction concepts does the student need to know tostade this
problem?

4. What instructional situations and/or representations wygaiduse to address the
fraction concepts you mentioned?

5. Specifically, how do you think each instructional situatdy representation
might change the student’s thinking?
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Task Two: Fractions as Operators
1. What do you think about Alishia’s response?

= If the participant correctly identifies the student’s eoisception in
the problem, questions two through four will be asked to guile th
participant through the hypothetical learning trajectoryecyc

= If the participant incorrectly accepts the student’scongeption as
the correct answer to the problem, the participant wilbkesented
with the correct thinking of another student in theclaschallenge
the first student’s misconception. The participant thiin be asked
guestions two through four regarding the student whose thinkéng t
participant assesses to be incorrect.

2. In a class discussion, Sam, Alishia’s classmate, ladbllowing response to her
answer. What do you think about Sam’s response to Alshiaswer?

If % Of the CupCakes were eaten, that means 12 CupCakes

were eaten. T kKhow this beCause the denominator of the
fraction tells me that ] should divide the whole, 18, into 3
equal amounts. 18 divided into 3 equal parts gives me 6. The
humerator tells me that 2 of those three parts were eaten.
Go 1 add 6 plus 6 and get 12 CupCakes eaten. It [0OKS like
this:

0000000 0000000 OOOOOOO

eaten eaten

3. What fraction concepts does the student need to know tostade this
problem?

4. What instructional situations and/or representations wygaiduse to address the
fraction concepts you mentioned?

5. Specifically, how do you think each instructional situatdy representation
might change the student’s thinking?
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Task Three: Fractions as Ratios
1. What do you think about Lisa’s response?

Based on the participant’s response to the first queste interview will proceed
as follows:
= If the participant correctly identifies the student’s eoisception in
the problem, questions two through four will be asked to guile th
participant through the hypothetical learning trajectoryecyc
= If the participant incorrectly accepts the student’scongeption as
the correct answer to the problem, questions five andilibevasked
to give the participant an opportunity to create a hypotidaarning

2. In a class discussion, Leon, Lisa’s classmate, haébtlowing response to her
answer. What do you think about Leon’s response to Lasswer?

1If there are 2¢ Kids in the Class ahd there are ¢ boys for
every 2 girls, 1 think about it this way:

000000 o e
000000 ® Doy
000000
000000

1 ¢ boys + 2 girls = 6 students. There are ¢ groups Of 6 in 2¢.
So T make ¢ rows of 6, which is 2¢ and shade ¢ CirCles for
boys and |eave 2 Circles blanhk for girls. If 1 do this for every

row, J end up with 16 boys out Of 2¢ students, which is ;—jowr

% Of the students.

3. What fraction concepts does the student need to know tostade this
problem?

4. What instructional situations and/or representations wygaiduse to address the
fraction concepts you mentioned?

5. Specifically, how do you think each instructional situatdy representation
might change the student’s thinking?
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Task 4: Fractions as Points on a Number Line
1. What do you think about Juan’s response?

Based on the participant’s response to the first quedtie interview will
proceed as follows:
= If the participant correctly identifies the student’s eoisception in
the problem, questions two through four will be asked to guile th
participant through the hypothetical learning trajectoryecyc
= If the participant incorrectly accepts the student’scongeption as
the correct answer to the problem, questions five andilibevasked
to give the participant an opportunity to create a hypotidgarning

2. In a class discussion, Elmira, Juan’s classmate, lgafbibwing response to his

answer. What do you think about Elmira’s response to Jaas\ser?

1 would put the fractions in this order:
[

-J>|I—‘.
oo
ooI\II

1
3

gl

1 think é isS Smaller than % because if 1 have 2 candy bars that are the

same size ahd ] divide onhe into 5 pieces ahd the other onhe into ¢ pieces,
ohe Of ¢ pieces is a bigger part of the Candy bar thah one of 5 pieces. ]

used this same thinking to decide where to put%. 1 1 divide 1 candy bar

into 3 pieces, eaCch piece will be bigger than if ] divided it into ¢ pieces,
[Ye) ?13 is bigger than% . Withg , 1 think it is close tog , but I thinkitis
smaller. T drew fracCtioh strips t0 cheCk. MY fracCtion strips help me see

that gis a little bit smaller than%.
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. What fraction concepts does the student need to know tostade this
problem?

. What instructional situations and/or representations wyalduse to address the
fraction concepts you mentioned?

. Specifically, how do you think each instructional situatt representation
might change the student’s thinking?
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APPENDIX D
PARTICIPANT CONSENT FORM FOR INTERVIEWS

CONSENT FORM
Elementary Preservice Teachers’ Subject Matter and
Pedagogical Content Knowledge
of Fraction Concepts

You have been asked to participate in a research studgnoéetary preservice
teachers’ subject matter and pedagogical content knowlddggection concepts. You
were selected to be a possible participant because ytleasaudent in the course
Mathematics Methods in Early Childhood Education (ECFB Z&0)exas A&M
University. The purpose of this study is to explore hovegmace teachers understand
and represent elementary fraction concepts to studemtdi.also contribute to
fulfillment of the requirements of my Master’s theg Educational Curriculum and
Instruction.

If you agree to participate in this study, you will be asikedn interview. The
interview will take place once during the semester anddagil 30 minutes to one hour.
The interview will be audio taped. There are no riske@ated with this study. You will
not receive any compensation for participating in thisystud

This study is confidential. No real name will be includethe interviews. The records
of this study will be kept securely. No identifiers lingiyou to the study will be
included in any sort of reports that might be published.e&e records will be stored
securely and only Kim Wright will have access to treords which will be erased once
this study is completed. Your decision whether or agtarticipate will not affect your
current or future relations with the Department of Taag, Learning and Culture,
College of Education, Texas A&M University. If you dectdeparticipate, you are free
to refuse to answer any of the questions that may make younfiortable. You can
withdraw at any time without your relations with thewemnsity, job, benefits, etc., being
affected. You can contact Kim Wright, graduate studettie Department of Teaching,
Learning and Culture, by phone at (979)575-8947, or by email ariftit @tamu.edu
or kwright@bryanisd.org) with any questions about this study.

This research study has been reviewed by the Institutitedew Board- Human
Subjects in Research, Texas A&M University. For redeaelated problems or
guestions regrading subjects’ rights, you can contactngtigtutional Review Board
through Ms. Melissa Mcllhaney, IRB Program Coordina@ffice of Research
Compliance at (979)-458-4067 (mcilhaney@tamu.edu).
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Please be sure you have read the above informatiord gakstions and received
answers to your satisfaction. You will be given a cofthis consent document for
your records. By signing this document, you consent tocgaate in the study.

Signature of participant: Date:

Signature of investigator: Date:
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VITA
Name: Kimberly Boddie Wright
Address: MS 4232 TAMU, College Station, TX, 77843-4232

Email Address:  kim.boddie.wright@gmail.com

Education: B.S., Interdisciplinary Studies, Texas A&M énmsity, 2001
M.S., Curriculum and Instruction, Texas A&M Universifn08



