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ABSTRACT

Intergenerational Mobility in Earnings in Brazil Spanning Three Generations and

Optimal Investment in Electricity Generation in Texas. (August 2008)

Cassia Helena Marchon, B.A., State University of Rio de Janeiro;

M.A., University of Brasilia

Chair of Advisory Committee: Dr. Manuelita Ureta

This dissertation contains three essays. The first and second essays examine

intergenerational mobility in earnings in Brazil using a data set spanning three gen-

erations. I use data from PNAD–a nationally representative household survey in

Brazil. I build a three-generations data set consisting of 5,125 grandfather-father-

son triplets by restricting the sample to households with adult sons. The first essay

estimates some relationships between a child’s earnings and family background im-

plied by the Becker-Tomes model. I find that the estimates contradict some of its

predictions, like the negative relationship between child’s earnings and grandparent’s

earnings when controlling for parent’s earnings. I propose a modified version of the

Becker-Tomes model and find that the estimates are consistent with its predictions. I

find that family background explains 34.9% of the variation in earnings among young

males who live with their parents. If it were possible to eliminate the differences in

investment in the children’s human capital, the variation in earnings would fall by

no more than 21.1%. Additionally, if there were no differences in endowments among

children, the variation in earnings would fall by no less than 26%. The second essay

examines the evolution of the intergenerational elasticity across generations and im-

plications of marriage, education and fertility on mobility. I find that the estimate

of the intergenerational elasticity in earnings is 0.847. The elasticity of earnings be-
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tween son-in-law and father-in-law, 0.89, is approximately the same as the elasticity

between son and father, 0.9. Additionally, controlling for fathers’ percentile in the

earnings distribution, each additional sibling decreases the sons’ percentile by 1.77

percentiles. The third essay estimates an indicator of the optimal investment in elec-

tricity generation in Texas, and the associated efficiency gains. The essay presents a

method to estimate the optimal investment in each technology available to generate

electricity. The estimation considers the expected entry and exit of generation plants,

future fuel prices, different demand elasticities and a potential carbon allowance mar-

kets. Considering a carbon allowance price equal to two times the level in Europe,

the optimal investment in electricity generation in Texas is zero.
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CHAPTER I

INTRODUCTION

This dissertation contains three essays. The first and second essays examines inter-

generational mobility in earnings in Brazil. The third essay estimates an indicator

of the optimal investment in electricity generation in Texas. Below, I introduce the

three essays.

The bulk of the literature on mobility uses data on two generations to estimate

children’s earnings as a function of fathers’ earnings. Solon [34] presents a theo-

retical derivation for this relationship adding the assumption of identical children’s

endowments to the Becker-Tomes [2] model. In the first essay, I estimate some addi-

tional relationships between a child’s earnings and family background implied by the

Becker-Tomes model. I find that the estimates contradict some of its predictions. I

propose a modified version of the Becker-Tomes model and find that the estimates

are consistent with its predictions. I use data from PNAD–a nationally representative

household survey in Brazil–to build a data set spanning three generations. I find that

family background explains 34.9% of the variation in earnings among males aged 16

to 27 who live with their parents. If there were no differences in endowments among

children the variation in earnings would fall by no less than 26%. If it were possible

to eliminate differences in investment in the children’s human capital the variation in

earnings would fall by no more than 21.1%.

In the second essay I continue exploring the mobility data from PNAD. Using

data on two generations, I find that the estimate of the intergenerational elasticity in

earnings is 0.847. Controlling for father’s percentile in the earnings distribution, each

This dissertation follows the style of Journal of Economic Theory.
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additional year of schooling of the son increases his percentile by 4.35, on average. The

elasticity of earnings between son-in-law and father- in-law, 0.89, is approximately the

same as the elasticity between son and father, 0.9. Using data on three generations,

I find that the intergenerational elasticity between grandfather and grandsons, 0.47,

is about the same as the elasticity between father and grandsons, 0.46. Additionally,

controlling for fathers’ percentile in the earnings distribution, each additional sibling

decreases the sons’ percentile by 1.82 percentiles.

The third essay estimates an indicator of the investment that would occur under

competitive procurement in Texas, and the associated efficiency gains. The essay

presents a method to estimate the optimal investment in each technology available

to generate electricity. The method determines the optimal investment by applying a

similar logic that Borenstein [8] uses to find the optimal long run capacity, but takes

into consideration the current capacity. The estimation considers the expected entry

and exit of generation plants and the future fuel prices. I conclude that for demand

elasticities between -0.025 and -0.5, the investment in baseload (or coal) units that

would generate a positive social surplus for all years from 2006 to 2011, ranges from

about 12 to 37 thousand megawatts hour. Independent of the realized investment in

baseload units, it is not optimal to invest in new peak or mid-merit units from 2006 to

2011. In a given year, the associated efficiency gains lie between, approximately, 865

and 7,617 million dollars depending on the year and assumption of demand elasticity.

The equivalent per consumer figure ranges from, approximately, 43 to 380 per year.

Introduction of carbon emission costs reduces substantially the investment in coal

units that maximizes the social surplus. Considering a carbon allowance price equal

to two times that of the level in Europe, the optimal investment in coal units drops

to zero. Introduction of carbon emission costs does not transform combined cycle or

combustion turbine technologies into attractive technologies for investment.
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CHAPTER II

A TEST OF THE BECKER AND TOMES MOBILITY MODEL INVOLVING

THREE GENERATIONS

A. Introduction

Most studies of intergenerational mobility use data on two generations to estimate

children’s earnings as a function of fathers’ earnings1. Solon [34] presents a theo-

retical derivation for this relationship adding the assumption of identical children’s

endowment or that the child’s endowment is not related to the parent’s endowment

to a variant of the Becker and Tomes [2] model. (Examples of child’s endowment are

family connections, ability, race, skills, genetic characteristics and family culture.)

The Becker and Tomes model establishes additional relationships between the

child’s earnings and family background. For instance, the model predicts a nega-

tive relationship between the child’s earnings and the grandparent’s earnings when

controlling for the parent’s earnings. The model in this study yields more intuitive

predictions by modifying some assumptions of the original Becker and Tomes model.

For instance, the assumption that the child’s endowment depends on the parent’s en-

dowment is replaced by the more relaxed assumption that it depends on the parent’s

and grandparent’s endowment.

I use data on two and three generations from Pesquisa Nacional por Amostra de

Domicilios (PNAD)–a nationally representative household survey for Brazil. A three-

generations data set allows me to test the predictions established by both models–

the original and the modified version–relaxing the assumption of identical children’s

1Solon [35], Table 1, Solon [34], tables 3 and 4, and Corak [12], Appendix tables,
list articles that estimate the elasticity of child’s earnings with respect to parental
earnings. For Brazil, see Ferreira and Veloso [18] and Dunn [13].
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endowment. In addition, a three-generations data set allows me to estimate a lower-

bound for the variation in earnings explained by differences in endowments across

families, and an upperbound for the variation in earnings explained by differences in

human capital.

The mobility supplement of the 1996 PNAD provides data on 36,705 father-son

pairs. I build a three-generations data set consisting of 5,125 grandfather-father-son

triplets by restricting the sample to households with adult sons present. In Brazil

individuals live with their parents until they marry, and quit school and begin working

at an early age. There are many households with adult sons who are not at the very

beginning of their working careers. A number of statistics support this argument. In

the 1996 PNAD sample, at age 25 about 50.9% of the males lived in their parents’

house. About 47.46% of the 25-year-old males were married. Among the 25-year-old

males living with their parents only 3.74% were married. On average, males aged 20

to 35 have 6.6 years of education and began working at age 13.4.

To address potential sample selection problems, I apply the Heckman [23] esti-

mation procedure.

The estimation results are consistent with the predictions of the modified model,

but contradict some of the predictions of the Becker and Tomes model.

My estimate of the intergenerational elasticity in earnings in Brazil is about 0.84.

Dunn’s [13] estimate of the intergenerational elasticity in earnings in Brazil is 0.85

and Ferreira and Veloso’s [18] estimate is 0.58. The estimates for the U.S. range

between 0.4 and 0.5.

Estimating the main equation yielded by the modified model, I find that family

background explains 34.9% of the variation in earnings among males between the ages

of 16 and 27 who live with their parents. If it were possible to eliminate the differences

in investment in the children’s human capital, the variation in earnings would fall by
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no more than 21.1%. Additionally, if there were no differences in endowments among

children, the variation in earnings would fall by no less than 26%.

This article is organized as follows. The first part of section B presents a variant

of the Becker and Tomes model according to Solon [34]. The second part of section

B presents my modification of the Becker and Tomes model. Section C describes the

data and provides details of the estimation procedure. Section D presents the esti-

mation results for the relationships established by both the original and the modified

Becker Tomes model. Section E concludes.

B. Theoretical model

1. The Becker and Tomes model

In this section I present a variant of the Becker and Tomes [2] model presented by

Gary Solon [34] in the “Handbook of Labor Economics”. I have added some obvious

derivations because they are relevant to this paper.

Consider the following assumptions and notation. A family consists of one

child and one parent. Let yt and ct represent the parent’s lifetime earnings and

consumption, and let It+1 represent investment at time t in the child’s earning ca-

pacity at time t + 1. The parent’s budget constraint is given by yt = ct + It+1.

The child’s earnings depend on the parent’s investment according to the equation

yt+1 = (1 + r)It+1 + At+1, where r is the return to human capital investment and

At+1 represents all other determinants of the child’s earnings besides human capital

investment. Also At+1 = at+1 + ut+1, where at+1 represents the child’s endowment

of earning capacity, for instance, family connections, ability, race, skills, genetic her-

itage and family culture. The second component, ut+1, is the child’s market luck. ut

is uncorrelated with yt and at+1. The child’s endowment, at+1, is positively corre-
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lated with the parent’s endowment, at. Becker and Tomes assume an AR(1) process

where at+1 = δat + wt+1, δ ∈ [0, 1) and wt+1 is white noise. Parents know their chil-

dren’s endowment and market luck at time t. Parents maximize the utility function

u(yt+1, ct) = (1− β)ln(ct) + βln(yt+1). Consider all variables in deviation from mean

form.

At time t, parents solve the maximization problem

max{(1− β)ln(ct) + βln(yt+1)}
subject to ct = yt − It+1

yt+1 = (1 + r)It+1 + At+1.

The solution to this optimization problem is

It+1 = βyt − (1− β)

1 + r
At+1 (2.1)

Substitute the above equation in the child’s earnings equation to obtain,

yt+1 = (1 + r)βyt + βAt+1 (2.2)

Substitute At+1 by at+1 + ut+1 to obtain,

yt+1 = (1 + r)βyt + βat+1 + βut+1 (2.3)

Substitute at+1 by δat + wt+1 in equation (2.3) to obtain the child’s earnings as a

function of family background (yt, at) and child’s market and endowment luck (wt+1,

ut+1),

yt+1 = (1 + r)βyt + βδat + βwt+1 + βut+1 (2.4)

From the above derivation it is clear that, in this model, family background drives

child’s earnings through two channels. First, the child’s earnings depend on human

capital investment that depends on parent’s earnings. Second, the child’s earnings
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depend on child’s endowment that depends on parent’s endowment.

Since at and at+1 are usually unobservable variables, the focus from now on will

be on relationships predicted by the model that do not include those two variables.

The term At+1 in equation (2.2) can be eliminated solving equation (2.1) for At+1

and plugging it in equation (2.2),

yt+1 =
(1 + r)β

(1− β)
yt − (1 + r)β

(1− β)
It+1 (2.5)

Note that, ∂yt+1

∂It+1
< 0 in the above equation. Also, the coefficient on yt is equal to

the coefficient on It+1, except for the latter’s negative sign.

The model also yields a relation between child and grandparent’s earnings that

does not include endowment of earnings capacity. First, consider equation (2.4) one

period ahead,

yt+2 = (1 + r)βyt+1 + βδat+1 + βwt+2 + βut+2

Then, solve equation (2.4) for at+1 and substitute in the above equation to obtain

yt+2 = [(1 + r)β + δ]yt+1 − (1 + r)βδyt + φt+2 (2.6)

where φt+2 = β(wt+2 + ut+2 − δut+1).

Note that, in the above equation, parents’ market luck (ut+1) is related to parents’

earnings (yt+1). Becker and Tomes [3] considered the above equation in a model with

no variance in market luck. Under this assumption the model predicts a negative

relation between yt+2 and yt.

a. Assuming δ = 0 or V ar(at+1) = 0

Ignoring the possibility that children inherit part of the parent’s endowment (δ = 0)

or assuming that there is no variance in endowments (V ar(at+1) = 0), equation (2.4)
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simplifies to

yt+1 = (1 + r)βyt + εt+1 (2.7)

where εt+1 = βwt+1 + βut+1 if δ = 0 and, εt+1 = βut+1 if V ar(at+1) = 02.

Several papers estimate equation (2.7) to assess intergenerational mobility. An

interesting aspect of the above specification is that the coefficient on parent’s earnings

can be interpreted as the intergenerational correlation between parent’s earnings and

child’s earnings if the variances of earnings are the same for the parent and child

generations. Yet, the assumption that all individuals have the same endowment or

the assumption that the child’s endowment is not related to parent’s endowment can

be considered strong assumptions for an intergenerational mobility model3.

2. A Modification of the Becker and Tomes model

The variant of Becker and Tomes model previously presented yields some counter-

intuitive predictions. For instance, the model predicts that the child’s earnings are

2Equation (i) can also be obtained from equation (2.3) considering father’s earnings
as a proxy for child’ endowment.

3In the same study Solon obtained an equation equivalent to equation (2.6) consid-
ering an alternative model. He assumes that a sibling’s lifetime earnings is determined
by a family component (fi) and a sibling specific component (bij) according to the
equation yij = fi + bij. The family component can be decomposed into parent i’s
long run earnings (Xi) and the combined effect of family background characteristics
uncorrelated with parent’s earnings (zi), fi = ρXi + zi. So, the earnings of sibling j
from family i can be written as yij = ρXi + εij, where εij = zi + bij. By construc-
tion Cov(Xi, εij)=0. But, note that the assumption that Xi is not correlated to zi is
equivalent to the assumption that δ = 0 in the model presented in this subsection.

Assuming δ 6= 0 and V ar(at+1) 6= 0 equation (2.6) can be the obtained solving the
parents’ maximization problem if parents’ preferences are represented by the utility
function

u(ct, E(yt+1)) =
{

0 if E(yt+1) < βyt+1 + α
f(ct) if E(yt+1) > βyt+1 + α,

where f ′(ct) > 0. These preferences imply that parents compensate perfectly with
investments in children’s human capital any difference between the children’s endow-
ment from their own endowment.
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negatively related to grandparent’s earnings when controlling for parent’s earnings

(see equation (2.5)). Moreover, the child’s earnings are negatively related to the in-

vestment in the child’s human capital after controlling for the parent’s earnings (see

equation (2.4)). It is reasonable to imagine that those variables have a positive im-

pact on the child’s earnings. In the next two paragraphs, I explain in words how the

model in the previous section yields those predictions.

Consider two sets of child-parent-grandparent. Suppose that the two parents

have the same earnings but one grandparent is wealthier than the other. The wealthier

grandparent had more money to invest in his child than the poor grandparent, and

yet their children have the same earnings. In the model this happens because the child

of the wealthy grandparent is less endowed than the child of the poor grandfather.

In the next generation, the child of the grandparent is a parent. The parents of

the second generation of children have the same earnings to invest in their children’s

human capital. But, the grandchild of the wealthy grandparent is expected to inherit

at least part of his parent’s relatively low endowment, yielding a negative relation

between child’s and grandparent’s earnings when controlling for the parent’s earnings.

This happens because in the model the grandparent can only affect the grandchild

though the parent, but common sense would suggest that wealthy grandparents may

also have a positive direct impact on the grandchild’s earnings.

The Becker and Tomes model yields a simple compensation scheme in which

parents partially compensate for the child’s endowment (or market luck) with invest-

ment in human capital. Since the child’s earnings are positively related to the child’s

endowment (or market luck) this compensation yields a negative relationship between

the child’s earnings and investment in human capital when controlling for the parent’s

earnings. Different assumptions yields more complex compensation structures.

In fact, the data disagree with the predictions of the original Becker and Tomes
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model. In section D, I show that after controlling for the parent’s earnings, the impact

of the grandparent’s earnings on the grandchild’s earnings is positive. The same is

true for investment in human capital.

In this section I obtain more intuitive predictions by introducing a more gen-

eral assumption and replacing some assumptions by others more in accordance with

economic theory.

I modify three aspects of the previous model. First, I assume parents know their

children’s endowment but not their children’s market luck. Second, I assume that

parents’ utility function depends on their children’s consumption instead of their

children’s earnings. Third, I assume that the child’s endowment depends on the

parent’s and grandparent’s endowment according to the equation aj+2 = δaj+1 +

θaj + wj+2 for all j ∈ N.

The first assumption is reasonable if we expect that the realization of the child’s

market luck happens at the time the child reaches the job market and not before.

Solving the parents’ maximization problem under this assumption, requires an extra

assumption about the parent’s preference toward risk. Alone, the assumption that

parents do not know the child’s market luck combined with the assumption that

parents are risk neutral will not change the basic results of the previous model.

Economist believe that consumption, not income, provides utility. That is the

reason why I replace the assumption that parents’ utility depends on their children’s

earnings4 for the assumption that parents’ utility depends on children’s consumption.

It is interesting to note that, since parents’ utility depends on their children’s con-

sumption and their children’ utility depends on their grandchildren’s consumption,

4Becker and Tomes assume that parents’ utility depends on children’s quality or
economic success that is measured by the children’s wealth.
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and so on, parents’ utility indirectly depends on all their descendants consumption5.

The assumption that the child’s endowment also depends on the grandparent’s

endowment is more general. The assumption in the previous section can be reestab-

lished at any point by setting θ = 0. The advantage of a more general assumption is

that it introduces a relation between children’s and grandparents’ earnings that does

not work through parents’ earnings or endowments. If the parameters of the model

satisfy some conditions, this assumption introduces a positive relation between the

child’s and grandparent’s earnings. For specifications that do not require proxies for

the child’s endowment, this assumption requires at least three generations in order

to estimate the importance of family background in explaining variation in earnings.

At time t=0, the parent solves the maximization problem

max{(1− β)ln(c0) + βln(c1)}
subject to y0 = (1 + r)I0 + A0

c0 = y0 − I1

y1 = (1 + r)I1 + A1

c1 = y1 − I2.

As before, At = at + ut for all t ∈ N and the expected value of ut is zero.

Suppose parents are risk neutral and maximize expected values. Let the super-

script et refer to the parent’s expectation at time t. So, the parent’s maximization

problem can be written as

max
{I1}

{(1− β)ln((1 + r)I0 + A0 − I1) + βln((1 + r)I1 + a1 − Ie0
2 )} (2.8)

5One could argue that parents care about their children’s earnings because they
care about the investment in their grandchild. But it is the consumption that today’s
investment will make affordable in the future that improves utility, not the investment
per se.
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Assume that parents believe that their descendants’ preferences are the same as

their own preferences, and the future rates of return to human capital investment will

be equal to r. Then, the solution to the maximization problem (8) is

I1 = βy0 +
β(1 + r)− δ − r

r(1 + r)
a1 − θ

r(1 + r)
a0 (2.9)

Derivations appear in Appendix A.

The model predicts a relationship in which an individual’s earnings depends on

his/her family background that does not include endowment of earnings capacity as

one of the dependent variables. First, in the grandchild’s earnings equation, y2 =

(1 + r)I2 + a2 + u2, substitute a2 by δa1 + θa0 + v2 to find

y2 = (1 + r)I2 + δa1 + θa0 + v2 + u2 (2.10)

It is possible to replace the terms a1 and a0 in the above equation with functions of

I1, I2, y0 and, y1. Solve equation (2.9) for one period ahead to obtain

I2 = βy1 +
β(1 + r)− δ − r

r(1 + r)
a2 − θ

r(1 + r)
a1

Substitute a2 by δa1 + θa0 + v2 in the above equation to find

I2 = βy1 +
[β(1 + r)− δ − r]δ − θ

r(1 + r)
a1 +

β(1 + r)− δ − r

r(1 + r)
θa0 +

β(1 + r)− δ − r

r(1 + r)
v2

Use the above equation and equation (2.9) to find a1 and a0 as functions of I1, I2, y0

and, y1. Substitute those equations in (2.10) to find

y2 =
(1 + r)

[β(1 + r)− δ − r][β(1 + r)− r]− θ

[
[(β(1 + r)− r)(β(1 + r)− δ)− θ]I2

−r(β(1 + r)− r)βy1 − rθ(βy0 − I1) +
θ0

(1 + r)
v2

]
+ u2

(2.11)
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Note that ∂y2

∂I2
> 0, ∂y2

∂y1
> 0, ∂y2

∂y0
> 0 and, ∂y2

∂I1
< 0 for r < β(1 + r) < δ.

In equation (2.10), the grandchild’s earnings are a function of I2, a1 and a0. In

order to obtain equation (2.11) the terms a1 and a0 are replaced by functions of I1, I2,

y0 and, y1. The terms I1, y0 and, y1 are introduced for the first time in equation (2.10)

to capture the impact of heritage of endowment on the grandchild earnings. Therefore,

the share of variation in grandchildren’s earnings explained by variations in I1, y0

and y1 in equation (2.11) represents a lowerbound for the variation in grandchildren’s

earnings explained by variation in endowment capacity across families. Analogously,

the share of variation in grandchildren’s earnings explained by variation in I2 in

equation (2.11) represents an upperbound for the variation in grandchildren’s earnings

explained solely by variation in investment in the grandchild’s human capital.

a. Assuming V ar(at+1) = 0

Assuming that V ar(aj) = 0 for all j ∈ N, equation (2.9) simplifies to I1 = βy0.

Substitute it in the the child’s earnings equation to obtain

y1 = (1 + r)βy0 + u1 (2.12)

This equation is equivalent to equation (2.6). But, again, the assumption that all in-

dividuals have the same endowment is strong for an intergenerational mobility model.

b. Assuming θ = 0 (no skipping generations effect)

Assuming that the child’s endowment does not depend on the grandparent’s endow-

ment (θ = 0), equation (2.9) simplifies to

I1 = βy0 +
β(1 + r)− δ − r

r(1 + r)
a1 (2.13)

Substitute the above equation in the child’s earnings equation to obtain,
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y1 = (1 + r)βy0 +
β(1 + r)− δ

r
a1 + u1 (2.14)

The term a1 in the above equation can be eliminated solving equation (2.13) for a1

and plugging it in equation (2.14),

y1 = − β(1 + r)r

β(1 + r)− δ − r
y0 +

(1 + r)(β(1 + r)− δ)

β(1 + r)− δ − r
I1 + u1 (2.15)

Note that ∂y1

∂I1
> 0 and, ∂y1

∂y0
> 0 for r < β(1 + r) < δ.

A relationship between the child’s and the grandparent’s earnings can be ob-

tained. First, substitute a1 = δa0 + w1 in equation (2.14),

y1 = (1 + r)βy0 +
β(1 + r)− δ

r
δa0 +

β(1 + r)− δ

r
w1 + u1

Then, solve the above equation for one period ahead,

y2 = (1 + r)βy1 +
β(1 + r)− δ

r
δa1 +

β(1 + r)− δ

r
w2 + u2

Finally, solve equation (2.14) for a1 and substitute in the above equation to obtain,

y2 = [β(1 + r) + δ]y1 − β(1 + r)δy0 − δu1 +
β(1 + r)− δ

r
w2 + u2 (2.16)

Note that dy2

dy1
> 0 and, dy2

dy0
< 0, that is, the grandchild’s earnings are positively re-

lated to the parent’s earnings but, negatively related to the grandparent’s earnings.

Table I summarizes the assumptions and predictions of the models presented. In

section D, I estimate the four equations presented in Table I.
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Table I. Summary of assumptions and predictions of the Becker and Tomes and the

modified models

Equation Equation
number
in text

Becker and Tomes Modified Model

(i) yt+1 = γyt + εt+1 (7) & (12) Assumption Added
to the Model: δ = 0
or V ar(aj) = 0

Assumption Added
to the Model:
V ar(aj) = 0

(ii) yt+1 = η1yt+η2It+1+εt+1 (5) & (15) Predictions: ∂yt+1

∂It+1
<

0 and ∂yt+1

∂yt
= −∂yt+1

∂It+1

Assumption Added
to the Model: θ = 0.
Predictions: ∂yt+1

∂It+1
>

0 and ∂yt+1

∂yt
> 0

(iii) yt+2 = τ1yt+1+τ2yt+εt+1 (6) & (16) Assumption Added
to the Model:
V ar(ut+1) = 0. Pre-
diction: ∂yt+2

∂yt
< 0

Assumption Added
to the Model: θ = 0.
Prediction: ∂yt+2

∂yt
<

0
(iv) yt+2 = π1yt+1 + π2yt +
π3It+2 + π4It+1 + εt+1

(11) The equation is not
predicted in the
model.

for r < β(1 + r) < δ.
Predictions: ∂y2

∂I2
>

0, ∂y2

∂y1
> 0, ∂y2

∂y1
> 0

and, ∂y2

∂I1
< 0
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Table II. Selected characteristics of males aged 16 to 64

Number of Observations 96,788
Average

Monthly Earnings (reais) 580.40
(952.4)

Years of Education 5.9
(4.3)

Age Started Working 12.9
(3.8)
Percentage

Black/Mixed Race 43.9
Living in Rural Areas 20.1
Region of Residence:
Southeast 45.8
Northeast 27.0
South 15.8
Midwest 7.0
North 4.4
Aged 16 to 24 29.2
Aged 25 to 34 25.3
Aged 35 to 44 21.4
Aged 45 to 54 14.7
Aged 55 to 64 9.5
Source: 1996 PNAD.
Note: Standard deviations in parenthesis.

C. Data

The Pesquisa Nacional por Amostra de Domicilios (PNAD) is a nationally represen-

tative household survey conducted almost every year in Brazil. Survey participants

are asked about the age, /education, occupation and earnings of all members in the

household. Also, they are asked to specify the relationship of each member to the ref-

erence person in the household, allowing identification of the father, sons and brothers

for most households. Tables II and III presents some descriptive statistics for males

in the 1996 PNAD.

In Table II, note the low educational achievement (5.9 years on average) and
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Table III. Selected characteristics of males in the 1996 PNAD, by age
Percentages

Age Number
of Obser-
vations

Living with
Parents

Married Working Living with
Parents and
Married

Living with
Parents and
Working

12 3,305 99.97 0.03 4.36 0.00 4.36
13 3,496 99.94 0.06 7.18 0.00 7.15
14 3,519 99.94 0.03 12.45 0.03 12.39
15 3,492 99.71 0.14 21.05 0.06 20.85
16 3,482 99.25 0.78 31.68 0.26 31.05
17 3,226 98.17 1.77 40.67 0.65 39.03
18 3,048 95.44 3.97 47.34 1.08 43.47
19 2,883 91.47 9.02 58.20 2.43 50.78
20 2,706 85.37 14.34 64.63 2.92 51.66
21 2,495 81.48 18.48 66.77 3.37 50.06
22 2,530 71.07 28.74 74.55 4.11 47.94
23 2,404 65.43 33.69 77.04 3.74 45.26
24 2,396 56.30 41.90 79.34 3.09 39.44
25 2,244 50.89 47.46 82.26 3.74 36.50
26 2,388 45.48 53.43 82.79 3.64 32.29
27 2,308 36.83 60.10 84.10 2.38 25.52
28 2,212 30.65 67.04 87.66 2.22 22.65
29 2,164 27.45 68.76 86.92 2.22 19.45
30 2,513 24.11 71.55 86.87 1.59 16.39
31 2,265 19.91 75.89 88.52 1.59 14.04
32 2,350 19.40 77.19 88.21 1.66 13.28
33 2,358 16.96 78.29 89.31 1.06 11.87
34 2,214 14.91 81.21 90.24 0.99 10.75
35 2,152 13.75 81.83 89.41 1.12 9.53
36 2,222 12.83 82.49 90.37 0.72 8.51
37 2,115 11.11 83.88 90.54 0.57 7.85
38 2,111 9.95 84.37 89.82 0.47 6.40
Source: 1996 PNAD.



18

the early age at which Brazilians start working (age 12.9 on average). In Table III,

note that the percentage of males living with parents is high even among older males.

For instance, at age 25, 50.9% of the males are still living with their parents. The

percentage of males living with parents falls for older ages and the percentage of

married males raises with age, and the sum of those percentages yields a number

close to one for all ages. Among the males living with their parents only a small

percentage is married. The numbers suggest that most males live with their parents

until they marry.

The 1996 PNAD includes a mobility supplement with information on both the

parents of the reference person and his/her spouse. It provides information on the

parents’ education and the father’s occupation when the son was 15 years old. That

information allows estimation of equations (i) and (ii) in Table I.

Estimation of equations (iii) and (iv) requires a data set that covers at least

three generations within a family. I take advantage of two specific characteristics

of Brazil to build a data set with three generations. First, typically, sons live with

their parents until they marry. Second, individuals quit school and start working at

an early age. The first characteristic implies that it is likely that there are many

households with adult sons in the basic sample of PNAD. The second characteristic

suggests that those adult sons are not at the very beginning of their working careers.

Therefore, it is possible to build a nearly representative data set spanning three

generations for Brazil by restricting the sample to households with adult sons. For

those households, information is available on the reference person of the household

(father), the son of the reference person (son) and the father of the reference person

(grandfather)6.

6For the households in which a woman is the reference person, her spouse, if
any, is considered the father and, his father the grandfather. Only about 2% of the
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I built the three-generations data by focusing on sons aged 16 to 27 years7. The

reason for the age restriction is to exclude the extremely unusual sons. As shown in

Table III, it is somewhat common and normal for males in the selected age interval

to be working, living with parents and single8.

Sample selection problems may arise when dealing with a subsample consisting

of households with adult sons. I use Heckman’s estimation procedure to deal with

this problem. I discuss the selection equation later in this section.

Note that the mobility supplement in PNAD does not provide the earnings of

the father of the reference person (or spouse) in the household. Instead, it provides

information on the fathers’ occupation and education when the son was 15 years old.

To estimate a father’s earnings, first, I calculate the year the son was 15-year-

old and use the PNAD of that year (or the closest available year) to estimate the

earnings equation of males. I assume earnings depend on education, 46 occupation

category, experience (up to a quartic term), interaction dummies between 8 more

broad occupation categories and experience, race and, state of residency. Second, I

apply the estimated equation to the corresponding set of characteristics of the father

to estimate the father’s earnings.

Ferreira and Veloso [18] and Dunn [13] applied similar procedure. In Ferreira and

Veloso [18], the earnings equation depend on education, 6 occupational categories,

dummies for cohort and interactions for cohort-occupation and cohort-education. In

households have a married woman as the reference person.
7I discuss the results for different age intervals in section D.
8Participants of the 1996 survey are not explicitly asked about their marital status.

But, they are asked to specify the relationship of each member with the head of the
family. Married couples are identified if one member in the family is the spouse
of the head of the family. Everyone else is assumed to be single. The accuracy of
this procedure is checked for the 1995 PNAD that explicitly ask about each member
marital status. The procedure identified 64,427 of the 64,766 married males.
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Dunn [13], earnings depends on education and age (up to a quadratic term).

The mobility supplement does not inform the race or state of residence of the

father. I estimate the father’s expected earnings conditional on son’s race. For in-

stance, consider the father of a white male. I calculate the percentage of fathers in

each race group conditional on the son’s race being white. Then, I use those percent-

ages as weights to calculate the weighted average earnings. Because the incidence

of interracial marriage may differ over time, I calculate those percentages for all the

years that all the necessary information are available, the appropriate year is chosen

according to the son’s age.

The migration segment informs the number of year the individual have being

living in the current state (up to ten years), which allows identification of the state of

residence at age 15 for some males. For the remaining males, I estimate the father’s

expected earnings conditional on son’s state of birth. For instance, suppose the son

was born in Rio de Janeiro. I calculate the percentage of males in the age interval

13-17 living in each Brazilian state conditional on being born in Rio de Janeiro.

Then, I use those percentages as weights to calculate the weighted average earnings.

Because migration flows may differ over time, I calculate those percentages for all the

years that all the necessary information are available, the appropriate year is chosen

according to the son’s age9.

Note that the father of the reference person (or spouse) corresponds to the grand-

father in the data set for three generations.

9I describe in details the procedure to impute the father’s earnings in the paper
“Intergenerational mobility in earnings in Brazil with data on three generations”.
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1. Selection equation in the three-generations data set

I assume that the probability that a male lives in his parents’ house depends on age,

marital status, whether he is enrolled in school, and his father’s earnings.

P (son live with parents) = f(age, marital status, school enrollment, father’s ernings)

As shown in Table III, older males are less likely to live with their parents and few

males stay in their parents’ house after getting married. I expect that sons enrolled in

school are more likely to live with their parents and, I expect that better paid fathers

can afford having their children at home for a longer time.

Note that the fathers’ earnings in September of 1996 are available only for males

living with their parents. For both groups, males living with parents and males

that do not, the set of variables used to impute the fathers’ earnings are available.

The difference is that for a male living with his parents, I have data on the father’s

occupation and education in 1996 instead of the father’s occupation and education

when the son was 15 years old. Assuming that the father’s occupation and education

does not change while the son is aged between 15 and 27, I can impute the fathers’

earnings for both groups repeating the same procedure applied before.

The top panel of Figure 1 shows the percentage of males living with their parents

by age and marital status: the bulk of the married sons do not live with their parents,

regardless of their age. The bottom panel of Figure 1 shows there is a higher percent-

age of sons enrolled in school among the sons living with their parents than among

the ones that do not. Figure 2 shows that the fathers of sons living with parents are

better paid than the fathers of sons not living with parents, for all ages considered10.

10The general shape of Figure 1 and 2 does not change for the sample used in the
regressions.
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Fig. 1. Living arrangements of sons, by age, marital status and school enrollment

status
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Fig. 2. Average earnings of fathers by living arrangements of sons and sons’ age

One may argue that the males that succeed in the job market are more likely

to marry and leave their parents’ house, while the males that stay with their parents

have lower earnings and worse marriage perspectives. Figure 3 shows that conditional

on age, the average earnings of sons living with parents is not lower than the average

earnings of sons who have moved out. The same is true for the average earnings of

single and married males. Conditional on age, the average earnings of married males

is not higher than the average earnings of single males11.

11Figure 31 in Appendix A presents the equivalent figure for the sample used in
the regressions. There is a difference in average years of education. For sons aged 16
to 27, average years of education is 6.41 if they live with their parents; it is 5.94 if
they live by themselves. Considering only the sons who are not enrolled in school, the
averages are basically the same, 5.62 and 5.59. The averages are also similar when
considering only the sons who are enrolled in school, 7.57 and 7.46. Therefore, only
enrollment in school is kept in the selection equation. Among the sons not living
with parents the percentage of blacks or mixed race is higher than the percentage of
whites but the coefficient in the selection equation is not significant when controlling
for father’s earnings.
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Fig. 3. Average earnings of sons by living arrangements, marital status and age
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D. Estimation results

Estimation of equations (i) and (ii) requires data on at least two generations. Esti-

mation of equations (iii) and (iv) requires data on at least three generations.

The PNAD combined with the 1996 Mobility Supplement provides information

on two generations: all male heads of household (or spouse) and his father. The

subsample consisting of households with adult sons contains information on a third

generation12.

I apply OLS when dealing with the sample of all heads of household (or spouse)

and Heckman’s estimation procedure when dealing with the subsample of households

with adult sons.

I drop sons working fewer than 15 hours a week and those with no paid jobs13.

1. Estimation of equation (i): yt+1 = γyt + εt+1

a. Sample of males head of household (or spouse) and their fathers

Consider first the sample of males head of household (or spouse) and their fathers. I

restrict the sample to sons aged 16 to 64. The proxy for the son’s lifetime earnings is

his earnings in September of 1996. The fathers’ earnings are not available. I impute

their earnings at age 47 as described in the previous section.

A control for sons’ age is necessary to avoid bias of the estimate of the intergen-

12Others papers have used a three-generations data set to study intergenerational
mobility. They estimate mobility tables or the probability that an individual belongs
to a certain socioeconomic stratum as a function of parents and grandparents’ char-
acteristics. Recent papers include Erola and Moisio [15], Warren and Hauser [36]
and Biblarz et al. [6]. Peters [32] uses data from the National Longitudinal Sur-
veys to estimate the grandson’s earnings as a function of parents’ characteristics and
grandfathers’ education and finds no significant effect for the grandfathers’ education.

13The percentage of males working part time (15-39 hours) in the three generations
sample used in the regressions is not high among males living with parent (13.7%) or
for males head of the household (7.9%).
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erational elasticity. To illustrate the point, consider a society in which every son has

exactly the same lifetime earnings as his father. Because of the age difference among

sons, at any given year they are in different points of their career paths. Estimation

the intergenerational elasticity using the fathers’ earnings at age 47 and the sons’

earnings in 1996 without any control for sons’ age would yield an estimate lower than

one. To control for sons’ age, the specification includes an indicator variables for

every five-year age intervals.

Estimation results of equation (i), presented in Table IV, column (a), suggest a

highly immobile society. The intergenerational elasticity in earnings is 0.84, meaning

that a difference in earnings among fathers of 100% is perpetuated by a difference in

earnings among sons of 84%14. The estimated intergenerational elasticity range from

0.4 to 0.5 for U.S.

Dunn [13] and Ferreira and Veloso [18] also use data from PNAD and find

the intergenerational elasticity in earnings in Brazil of 0.85 and 0.58, respectively15.

Behrman et al. [4] and Ferreira and Veloso [17] use data from PNAD and find that

the correlation between parent’s and child’s education in Brazil is 0.7 and 0.79, re-

spectively.

As shown in column (b) the intergenerational elasticity increases with age. There

are two interpretations for the higher elasticity for older males. First, the intergener-

14Note that equation (i) does not have a constant term. A constant was included
in the estimations to account for the fact that average earnings of fathers and sons
are not necessarily the same. For instance, the constant is positive in a society that
experienced per capita economic growth.

15In the paper “Intergenerational mobility in earnings in Brazil with data on three
generations”, I show that most of the difference between the estimate in this paper and
in Ferreira and Veloso [18] is explained by three differences in the estimation criteria.
Fist, Ferreira and Veloso exclude the rural areas and the sons working between 15
and 39 hours a week. Second, they include indicator variables for race and region in
the regressions. Third, they estimate the fathers’ earnings ignoring the difference in
earnings across race and state.
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Table IV. OLS estimation of equation (i): yt+1 = γyt + εt+1

(A)

(a) (b) (c)
Dependent Variable: Son’s Earnings
Father’s Earnings 0.843*** 0.596*** 1.195***

(0.01) (0.03) (0.03)
Father’s Earnings*Son’s Age 25-34 0.150***

(0.03)
Father’s Earnings*Son’s Age 35-44 0.289***

(0.03)
Father’s Earnings*Son’s Age 45-54 0.371***

(0.03)
Father’s Earnings*Son’s Age 55-64 0.381***

(0.04)
Father’s Earnings*Father’s Earn. Above the Median –0.559***

(0.03)
Constant 0.795*** 2.117*** –1.040***

(0.07) (0.15) (0.16)
Fathers Earnings Above the Median 3.239***

(0.17)
Adjusted R2 0.297 0.302 0.310
N. of Observations 36,705 36,705 36,705
Note: Standard errors in parentheses. Omitted age: 16-24 years old. Coefficients of
indicator variables for age are not presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Table IV. Continued

(B)

(d) (e) (f)
Dependent Variable: Son’s Earnings
Father’s Earnings 0.755*** 0.740*** 0.724***

(0.01) (0.01) (0.01)
Father’s Earnings*Black/Mixed 0.021

(0.02)
Father’s Earnings*North –0.143***

(0.03)
Father’s Earnings*Northeast 0.194***

(0.02)
Father’s Earnings*South 0.004

(0.02)
Father’s Earnings*Midwest –0.078***

(0.02)
Father’s Earnings*Rural 0.171***

(0.02)
Constant 1.444*** 1.527*** 1.606***

(0.07) (0.09) (0.07)
Black/Mixed –0.427***

(0.09)
North 0.711***

(0.18)
Northeast –1.423***

(0.10)
South –0.083

(0.12)
Midwest 0.369***

(0.14)
Rural –1.540***

(0.12)
Adjusted R2 0.316 0.319 0.352
N. of Observations 36,705 36,705 36,705
Source: PNAD.
Note: Standard errors in parentheses. Omitted region: Southeast. Co-
efficients of indicator variables for age are not presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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ational elasticity is decreasing over time. Second, the elasticity between father’s and

son’s earnings increases over the son’s life cycle. Mayer [29] finds that for U.S. “the

strength of the relationship between parental features and the wages of sons increases

over the life cycle of the sons.” He points out that the second interpretation is con-

sistent with wage evolution models like Ben-Porath [5] and Jovanovic [28]. Haider

and Solon [21] suggest that for U.S. the son’s one-year-earnings is a better proxy

for lifetime earnings when measured in the early thirties and mid forties because the

attenuation bias associated to one-year-earnings is small in this age interval. Accord-

ing to Grawe [19], the life cycle bias when estimating the intergenerational elasticity

in lifetime earnings is likely to be reduced by observing both fathers and sons near

midlife. Dunn [13] estimate the intergenerational elasticity using sons’ earnings at

age 40 and find that the elasticity is lower for younger cohorts.

The remaining columns of Table IV show that intergenerational elasticity is

higher among the sons of males with earnings below the median than above the

median, it is higher among the sons currently living in rural than urban residencies

and, it is higher among the sons currently living in the southeast than the northeast–

a poor region in Brazil. The elasticity is not significantly different for for blacks or

individuals of mixed race than for other race groups16.

b. How bad is the selection problem?

As mentioned earlier, I can impute fathers’ earnings for both sons living with parents

and sons that do not. The difference is that for sons living with parents I have

information on the father’s occupation and education in 1996 rather than at the time

16The paper “Intergenerational mobility in earnings in Brazil with data on three
generations” provides a detailed discussion about the estimation results for equation
(i).
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the son was 15 years old.

Using the imputed father’s earnings, I can estimate the intergenerational elastic-

ity in earnings among young sons (living with parents or not) and compare the result

with the elasticity obtained using the subsample of young sons living with parents.

The results are presented in Table V.

Among the sons aged 16 to 21, the intergenerational elasticity in earnings is 0.389

for the full sample17. It is about the same for the sample of sons living with their

parents: 0.393 (OLS), 0.398 (Heckman two step), and 0.398 (Heckman maximum

likelihood).

Among the sons aged 22 to 27, the intergenerational elasticity is higher for the

full sample (0.22) than for the subsample of sons living with parents (about 0.19). I

obtain similar results applying OLS (0.185), Heckman two step (0.189) or Heckman

maximum likelihood (0.188).

The Heckman estimation is justified by the high chi-squared value for a test of

the Heckman model versus a model with no selection problem. The p-value is 0.0016.

As expected, married and older sons are less likely to live with their parents.

Sons of better paid fathers and sons enrolled in school are more likely to live with

their parents.

2. Estimation of equation (ii): yt+1 = η1yt + η2It+1 + εt+1

I use years of formal education as a proxy for investment in human capital18.

17Note that I am dealing with a young cohort and, as previously discussed, the
intergenerational elasticity is lower for younger cohorts.

18I am assuming that parents who care about quality of education also care about
years of education. So more years of formal education implies more investment in
human capital because parents invest for a longer period of time, and because parents
invested in more quality.
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Table V. Estimation of equation(i): yt+1 = γyt + εt+1 for fathers and grandsons

(a) Sons living with parents - OLS
(b) Sons living with parents - Heckman Two Step Estimation
(c) Sons living with parents - Heckman Maximum Likelihood Estimation
(d) All Sons (living or not with parents) - OLS

(a) (b) (c) (d)
Dependent Variable: Grandson’s Earnings
Father’s Earnings (Imputed) 0.393*** 0.398*** 0.398*** 0.389***

(0.018) (0.016) (0.018) (0.016)
Father’s Earnings (Imputed)*Older Coh. 0.185*** 0.189*** 0.188*** 0.220***

(0.028) (0.025) (0.028) (0.021)
Constant 2.912*** 2.869*** 2.872*** 3.007***

(0.099) (0.091) (0.100) (0.090)
Older Cohort –0.788*** –0.843*** –0.840*** –0.877***

(0.162) (0.146) (0.161) (0.119)
Selection Equation
Married –2.570*** –2.558***

(0.042) (0.042)
Age –0.157*** –0.157***

(0.007) (0.007)
Enrolled in School 0.144** 0.152**

(0.054) (0.055)
Father’s Earnings (Imputed) 0.190*** 0.186***

(0.027) (0.028)
Constant 3.474*** 3.484***

(0.184) (0.186)
R2 0.286 0.309
LR Test of Indep. Equations 12.657
N. of Observations Censored 5,125 5,125
N. of Observations 5,125 10,176 10,176 10,176
Source: 1996 PNAD.
Note: Standard errors in parentheses. Cluster: family (except for the two step
regression).
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Consider first the sample of males head of household (or spouse) and their fa-

thers. Controlling for father’s earnings, the impact of the son’s education on his own

earnings, η2 in equation (ii), is positive (see Table VI), contrary to the negative sign

predicted by the Becker and Tomes model.

The sign is also positive across cohorts, race groups, regions and rural versus

urban areas. It is also positive for the sample of sons living in their parents’ house.

I obtain equation (ii) in the (partially) modified model by assuming there is no

skipping generations effect (θ = 0). Under this assumption, the sign of the estimated

coefficient agrees with the predictions of the model. But the assumption that θ = 0

is contradicted in the estimation of equation (iii).

3. Estimation of equation (iii): yt+2 = τ1yt+1 + τ2yt + εt+1

The rest of the estimations require a three-generations data set.

To account for the fact that two sons may be at different points in their careers

in 1996 just because one is older than the other, I use an indicator variable for the

older cohort between 16 and 21 years old.

Two fathers may have different earnings in 1996 just because one is older than

the other. If all fathers were the same age when their sons were born, an indicator

variable for the sons’ age would control for the fact that not all father-son pairs are

at the same stage of their careers in 1996. Although the father’s and son’s age are

related, this is not a one to one relation. The coefficient in a regression of the sons’

age on the father’s age is 0.16 and the R2 is 0.15. To correct for the fact that not all

fathers are at the same stage of their careers in 1996 an indicator variable for son’s

cohort may not perfectly characterize the father’s cohort, I use the father earnings

minus the average earnings for his age group. The age groups for the fathers are aged

45 and younger, aged 46 to 55, and older than 55.
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Table VI. OLS estimation of equation (ii): yt+1 = η1yt + η2It+1 + εt+1

(a) (b)
Dependent Variable: Son’s Earnings
Father’s Earnings 0.334*** 0.375***

(0.008) (0.028)
Son’s Years of Education 0.120*** 0.073***

(0.001) (0.005)
Father’s Earnings*Son’s Age 25-34 –0.048

(0.031)
Father’s Earnings*Son’s Age 35-44 –0.036

(0.031)
Father’s Earnings*Son’s Age 45-54 –0.037

(0.032)
Father’s Earnings*Son’s Age 55-64 0.004

(0.038)
Son’s Education*Son’s Age 25-34 0.036***

(0.006)
Son’s Education*Son’s Age 35-44 0.049***

(0.006)
Son’s Education*Son’s Age 45-54 0.057***

(0.006)
Son’s Education*Son’s Age 55-64 0.058***

(0.006)
Constant 2.942*** 2.949***

(0.059) (0.142)
Adjusted R2 0.478 0.481
N. of Observations 36,705 36,705
Source: PNAD.
Note: Standard errors in parentheses. Omitted age: 17-24
years old. Coefficients of indicator variables for age are not
presented.
* significant at 10%, ** significant at 5%, *** significant at
1%.
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Controlling for father’s earnings, the estimated impact of the grandfather’s earn-

ings on the grandson’s earnings is positive. It is positive for all three estimations:

OLS, Heckman Two Step and Heckman Maximum Likelihood (see Table VII). It is

positive for different cohorts, race groups, regions and rural versus urban areas.

The results suggest that grandfathers with high earnings have a positive impact

on their grandsons’ earnings through a channel other than the fathers. In other words,

the grandfathers with high earnings have a direct positive impact on their grandsons’

earnings. One possibility, examined in the modified model, is that the grandfather’s

endowment directly impacts the grandson’ endowment or θ > 0.

Assuming that there is no variation in market luck, the Becker and Tomes model

predicts a negative coefficient for the grandfather’s earnings. The positive sign can

be evidence against the assumption of no variation in market luck.

Assuming that the grandson’s endowment does not directly depend on the grand-

father’s endowment (θ = 0), the (partially) modified model predicts a negative coef-

ficient for the grandfather’s earnings. I interpret the positive estimated coefficient as

evidence in favor of a less restrictive assumption or θ > 0.

4. Estimation of equation (iv): yt+2 = π1yt+1 + π2yt + π3It+2 + π4It+1 + εt+1

The signs of the estimated coefficients agree with the predictions of the (fully) modi-

fied model. They are all positive except for the coefficient on father’s education. See

Table VIII 19.

I examine whether the coefficients in equation (iv) differ across age or race groups,

among the sons of (relatively) poor and wealthy fathers, among sons currently living

19The plot of the grandfathers’ earnings versus grandsons’ earnings suggests a con-
cave relationship between the two variables. Table XXI in Appendix A presents the
results when including a quadratic term for grandfathers’ earnings in the equation.
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Table VII. Estimation of equation (iii): yt+2 = τ1yt+1 + τ2yt + εt+1

(a) OLS
(b) Heckman Two Step Estimation
(c)-(d) Heckman Maximum Likelihood Estimation

(a) (b) (c) (d)
Dependent Variable: Grandson’s Earnings
Grandfather’s Earnings 0.195*** 0.200*** 0.200*** 0.174***

(0.024) (0.018) (0.024) (0.027)
Father’s Earnings 0.331*** 0.333*** 0.333*** 0.304***

(0.013) (0.010) (0.013) (0.015)
Grand. Earnings*Older Coh. 0.062

(0.046)
Father’s Earnings*Older Coh. 0.074***

(0.025)
Constant 4.084*** 4.042*** 4.045*** 4.182***

(0.133) (0.102) (0.134) (0.149)
Older Cohort 0.368*** 0.338*** 0.339*** –0.008

(0.020) (0.020) (0.021) (0.257)
Selection Equation
Married –2.570*** –2.561*** –2.560***

(0.042) (0.035) (0.035)
Age –0.157*** –0.157*** –0.157***

(0.007) (0.004) (0.004)
Enrolled in School 0.144*** 0.155*** 0.156***

(0.054) (0.030) (0.030)
Father’s Earnings (Imputed) 0.190*** 0.174*** 0.175***

(0.027) (0.018) (0.018)
Constant 3.474*** 3.544*** 3.545***

(0.184) (0.111) (0.111)
R2 0.334
LR Test of Indep. Equations 11.729 14.476
N. of Observations Uncensored 5,125 5,125 5,125
N. of Observations 5,125 10,176 10,176 10,176
Source: PNAD.
Note: Standard errors in parentheses. Cluster: family (except for the two step
regression). Omitted age: 16-21 years old.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Table VIII. Estimation of equation (iv): yt+2 = π1yt+1 + π2yt + π3It+2 + π4It+1 + εt+1

(A)

(a) OLS
(b) Heckman Two Step Estimation
(c)-(g) Heckman Maximum Likelihood Estimation

(a) (b) (c) (d)
Dependent Variable: Grandson’s Earnings
Grandfather’s Earnings 0.146*** 0.149*** 0.149*** 0.147***

(0.023) (0.019) (0.024) (0.023)
Father’s Earnings 0.244*** 0.244*** 0.244*** 0.246***

(0.015) (0.011) (0.015) (0.015)
Son’s Years of Education 0.061*** 0.061*** 0.061*** 0.050***

(0.003) (0.003) (0.003) (0.004)
Father’s Years of Education –0.008** –0.007** –0.007** –0.010***

(0.003) (0.003) (0.003) (0.004)
Son’s Education*Older Coh. 0.023***

(0.006)
Father’s Education*Older Coh. 0.009

(0.006)
Constant 4.000*** 3.956*** 3.958*** 4.052***

(0.127) (0.103) (0.127) (0.126)
Older Cohort 0.306*** 0.268*** 0.269*** 0.065*

(0.019) (0.020) (0.020) (0.039)
Selection Equation
Married –2.570*** –2.555*** –2.552***

(0.042) (0.035) (0.035)
Age –0.157*** –0.156*** –0.157***

(0.007) (0.004) (0.004)
Enrolled in School 0.144*** 0.177*** 0.180***

(0.054) (0.031) (0.031)
Father’s Earnings (Imputed) 0.190*** 0.173*** 0.176***

(0.027) (0.018) (0.018)
Constant 3.474*** 3.531*** 3.528***

(0.184) (0.111) (0.110)
R2 0.386
LR Test of Indep. Equations 19.195 23.424
N. of Observations Uncensored 5,125 5,125 5,125
N. of Observations 5,125 10,176 10,176 10,176
Source: PNAD.
Note: Standard errors in parentheses. Cluster: family (except for the two step
regression). Omitted age: 16-21 years old.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Table VIII. Continued

(B)

(e) (f) (g)
Dependent Variable: Grandson’s Earnings
Grandfather’s Earnings 0.229*** 0.132***

(0.037) (0.024)
Father’s Earnings 0.343*** 0.233*** 0.258***

(0.028) (0.016) (0.023)
Son’s Years of Education 0.059*** 0.058*** 0.063***

(0.003) (0.003) (0.005)
Father’s Years of Education –0.004 –0.006* –0.010*

(0.004) (0.004) (0.005)
Grandfather’s Earn.*Above the Median Earn. –0.112**

(0.046)
Father’s Earn.*Above the Median Earn. –0.145***

(0.037)
Grand. Earnings*Rural 0.189**

(0.087)
Father’s Earnings*Rural 0.025

(0.035)
Average Between Maternal and 0.178***
Paternal Grandfather’s Earnings (0.043)
Constant 3.613*** 4.089*** 3.797***

(0.200) (0.132) (0.233)
Older Cohort 0.276*** 0.275*** 0.184***

(0.021) (0.020) (0.036)
Father’s Earnings Above the Median 0.556**

(0.253)
Rural –1.094**

(0.474)
Selection Equation
Married –2.555*** –2.555*** –2.446***

(0.035) (0.035) (0.053)
Age –0.156*** –0.156*** –0.184***

(0.004) (0.004) (0.006)
Enrolled in School 0.177*** 0.178*** 0.193***

(0.031) (0.031) (0.044)
Father’s Earnings (Imputed) 0.174*** 0.174*** 0.193***

(0.018) (0.018) (0.025)
Constant 3.527*** 3.527*** 3.486***

(0.111) (0.111) (0.157)
LR Test of Indep. Equations 19.359 19.529 11.661
N. of Observations Uncensored 5,125 5,125 2,025
N. of Observations 10,176 10,176 7,076
Source: PNAD.
Note: Standard errors in parentheses. Cluster: family. Omitted age: 16-21 years
old.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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in (relatively) poor versus wealthy regions or in rural versus urban areas.

At a 10% significance level, I cannot reject the hypothesis that the coefficients in

equation (iv) are the same for males living in poor versus relatively wealthy regions20.

At a 10% significance level, I reject the hypothesis that the coefficients in equation

(iv) are the same for: (1) old and young cohorts, (2) Blacks and non Blacks, (3) the

sons of poor and wealthy fathers and (4) for males living in urban versus rural areas.

For the same significance level, I cannot reject the hypothesis that the coefficients

for father’s and grandfather’s education are the same for (1) Blacks and non Blacks,

(2) the sons of poor and wealthy fathers and (3) males living in urban versus rural

areas. Also, I cannot reject the hypothesis that the coefficients for son’s and father’s

earnings are the same for (1) Blacks and non Blacks and (2) old and young cohorts.

I reject the hypothesis that the coefficients for son’s and father’s education are

the same across age groups. Also, I reject the hypothesis that the coefficients for

father’s and grandfather’s earnings are the same for (1) sons living in urban and rural

areas and (2) among the sons of poor and wealthy fathers. Columns (d), (e) and (f)

in Table VIII present the estimation results.

Replacing paternal grandfather’s earnings by an average between maternal and

paternal grandfather’s earnings I obtain the results in column (g) in Table VIII.

As explained in section B, the variation in earnings explained by variations in

yt+1, yt and It+1 in equation (iv) represent a lowerbound for the variation in earnings

explained by variation in endowment across families. Besides, the variation in earnings

explained by variation in It+2 represents an upperbound for the variation in earnings

explained by variation in human capital.

Among the sons living with their parents, about 34.9% of the variation in earnings

20I consider Northeast and North as poor region and the remaining regions as
relatively wealthy regions.
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is explained by differences in family background. If it was possible to eliminate all

variation in human capital within cohorts, the variation in the predicted earnings

would fall by no more than 60.5%. This implies that if every son had the same

human capital, the variation in earnings would drop in no more than 21.1%. If there

was no variation in endowment across families within cohorts, the variation in the

predicted earnings would fall by no less than 74.5%, implying that the variation in

sons’ earnings would be at least 26% lower.

Using the estimates in column (d), Table VIII, I calculate the percentage of the

variation in earnings explained by differences in family background for young and old

cohorts. I repeat the same procedure for sons living in rural and urban areas using

the results in column (f). The percentages are presented in Table IX.

Family background explains a higher share of the variation in earnings for older

males and males living in rural areas. The results presented in Table IX are consistent

with the results for equation (i). Family background explains 44% of the variation in

earnings among males aged 22 to 27 living with parents and 28.7% among males aged

16 to 21. It explains 35.6% of the variation in earnings among the males living in

rural areas and 29.6% of the variation in earnings among males living in urban areas.

Replacing paternal grandfather’s earnings by an average between maternal and

paternal grandfather’s earnings, I find that family background explains 40.4% of the

of the variation in earnings among males aged 16 to 27 living with parents. Elimi-

nating all the differences in endowment the variation in earnings would fall by no less

than 30.9%. Eliminating variations in investment in human capital the variation in

earnings among them would fall by no more than 24.0%
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Table IX. Drop in the variation in earnings among males aged 16 to 27 living with

parents after eliminating differences in: (a) family background, (b) human

capital, and (c) endowment (percentages)

Family
Background

Human
Capital (up-
perbound)

Endowment
(lowerbound)

Males Between 16 And 27 Years Old 34.9 21.1 26.0

Males Between 16 And 21 Years Old 28.7 14.9 23.0

Males Between 22 And 27 Years Old 44.0 29.8 30.7

Males Living In Rural Areas 35.6 18.5 27.7

Males Living In Urban Areas 29.6 17.4 22.1

Using Average Between Maternal
Paternal Grandfather’s Earnings - 40.4 24.0 30.9
Males Between 16 And 27 Years Old
Source: PNAD.
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a. Different age groups

Table X presents the Heckman estimation of equation (iv) for two different age inter-

vals: a broader interval from 12 to 40 years old, and a narrower interval from 18 to

25. For ease of comparison, the results for males aged 16 to 27 appear in the table as

well.

The estimated coefficients are stable for the three age groups, except for the

coefficient of the father’s education which is no longer significant for the narrower age

group (ages 18 to 25).

Among males aged 12 to 40 living with their parents, family background explains

about 35.3% of the variation in earnings. The percentage is 34.9% for the males aged

16 to 27 and 33.4% for those aged 18 to 25. If it was possible to eliminate all variation

in human capital within cohorts for every male aged 12 to 40, the variation in earnings

would fall by no more than 21.7%. The percentage is 21.1% for those aged 16 to 27 and

20.1% for those aged 18 to 25. If it was possible to eliminate variation in endowments

across families, the variation in earnings would fall by no less than 26.0% for those

aged 12 to 40, and those aged 16 to 27, and 25.0% for those aged 18 to 25.

E. Conclusion

I estimate several relationships established by the Becker and Tomes [2] model pre-

sented by Gary Solon [34], and the modified version of the model proposed in this

article. The relationships are listed below.

(i) yt+1 = γyt + εt+1

(ii) yt+1 = η1yt + η2It+1 + εt+1

(iii) yt+2 = τ1yt+1 + τ2yt + εt+1

(iv) yt+2 = π1yt+1 + π2yt + π3It+2 + π4It+1 + εt+1
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Table X. Heckman maximum likelihood estimation of equation (iv):

yt+2 = π1yt+1 + π2yt + π3It+2 + π4It+1 + εt+1

(a) Sons living with their parents from 13 until 38 years old
(b) Sons living with their parents from 16 until 27 years old
(c) Sons living with their parents from 18 until 25 years old

(a) (b) (c)
Dependent Variable: Grandson’s Earnings
Grandfather’s Earnings 0.141*** 0.149*** 0.120***

(0.022) (0.024) (0.026)
Father’s Earnings 0.251*** 0.244*** 0.237***

(0.014) (0.015) (0.017)
Son’s Years of Education 0.063*** 0.061*** 0.058***

(0.003) (0.003) (0.004)
Father’s Years of Education –0.007** –0.007** –0.005

(0.003) (0.003) (0.004)
Constant 3.784*** 3.958*** 4.232***

(0.117) (0.127) (0.143)
Selection Equation
Married –2.490*** –2.555*** –2.577***

(0.030) (0.035) (0.039)
Age –0.132*** –0.156*** –0.162***

(0.003) (0.004) (0.007)
Enrolled in School 0.208*** 0.177*** 0.129***

(0.027) (0.031) (0.036)
Father’s Earnings (Imputed) 0.099*** 0.173*** 0.221***

(0.016) (0.018) (0.021)
Constant 3.400*** 3.531*** 3.392***

(0.095) (0.111) (0.152)
LR Test of Indep. Equations 9.665 19.195 1.813
N. of Observations Uncensored 6,111 5,125 3,696
N. of Observations 23,180 10,176 6,901
Source: PNAD.
Note: Standard errors in parentheses. Cluster: family. Coefficients
of indicator variables for cohort of sons are not presented. In (a) the
estimation includes level dummies for the age intervals 18-22, 23-27,
28-32 and 33-38. In (b) it is 22-27. In (c) it is 22-25.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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where y represents earnings and I represents investment in human capital. The

subscript t represents generation t, t + 1, their sons and t + 2, their grandsons.

Equation (i), commonly estimated in intergenerational mobility studies, can be

obtained from the Becker and Tomes model (original and modified) adding the as-

sumption of identical children’s endowments. This is probably a strong assumption

for an intergenerational mobility model since it is reasonable to think that the chil-

dren of wealthy parents are in average wealthy not only because their parents could

afford a high investment in their human capital but also because those children in-

herit characteristics from their parents that explain why their parents are wealthy

in the first place. Those characteristics can be talent, good health, IQ, physical ap-

pearance, attitudes toward work, leisure activities that enhance their productivity at

work, family connections and family culture in general.

The estimate of the intergenerational elasticity in earnings in Brazil is about

0.84, suggesting a highly immobile society. The elasticity in earnings is higher if

the father earnings are below the the median than above median, among the sons

currently living in the northeast than in the southeast and, among the sons currently

living in rural than urban residencies.

Estimation results of equation (ii) contradict the predictions of the Becker and

Tomes model presented by Solon [34]. Controlling for parent’s earnings, the child’s

earnings are positively related to investment in the child’s human capital contrary to

the negative relationship predicted by the model.

Estimation results of equation (iii) contradict the prediction of the Becker and

Tomes model and the partially modified model. Controlling for parent’s earnings,

the child’s earnings are positively related to grandparent’s earnings contrary to the

negative relationship predicted by Becker and Tomes model and the partially modified

model. The positive sign can be interpreted as evidence against the assumption of
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no variation in market luck across individuals in the Becker and Tomes model, and

as evidence against the assumption of no skipping generation effect in the partially

modified model.

Estimation results of equation (iv) are consistent with the predictions of the

(fully) modified model and indicate that family background explains 34.9% of the

variation in earnings among males aged 16 to 27 who live with parents. Eliminating

all the differences in endowment the variation in earnings would fall by no less than

26%. If every male in Brazil living with his parents had the same investment in human

capital the variation in earnings among them would fall by no more than 21.1%.

In this article the 1996’s earnings of the father and sons are used as proxies for

lifetime earnings although the transitory component of one year earnings may be quite

large at young ages. Some males in the sample are still enrolled in school and their

earnings at this stage may not be a good proxy for their lifetime earnings21. Another

limitation is that differences in the quality of education are ignored assuming that

parents who care about years of education also care about quality of education.

21See Haider and Solon [21] for a discussion about the attenuation bias caused by
using one-year-earnings as a proxy for lifetime earnings.
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CHAPTER III

INTERGENERATIONAL MOBILITY IN EARNINGS IN BRAZIL WITH DATA

ON THREE GENERATIONS

A. Introduction

Based on per capita income one can not say Brazil is a poor country, yet, about one

third of the population is poor. Using data for several countries, Barros, Henriques

and Mendonca [1] estimate a relation between a country’s per capita income and per-

centage of the population below the poverty line. Conditional on income per capita,

this relation predicts that 8% of Brazilians would be poor. The actual percentage is

22 points higher. The high inequality in earnings is aggravated by its persistency over

the years. They find that the Gini coefficient for Brazil is around 0.6 during the years

from 1976 through 1999. In a country with high and stable inequality in earnings it

is particularly relevant to investigate the role of family background in explaining such

inequality.

This paper examines intergenerational mobility in earnings in Brazil. Using data

on two and three generations I estimate the intergenerational elasticity in earnings

across cohort, regions, race, urban versus rural residences and high-earnings versus

low-earnings fathers. I examine the evolution of the intergenerational elasticity across

generations and implications of marriage and fertility on mobility.

Ferreira and Veloso [18] use data from Pesquisa Nacional por Amostra de Domi-

cilios (PNAD) to examine intergenerational mobility in Brazil. Using the fathers’

education and fathers’ occupation (6 occupational categories) to predict the fathers’

earnings, they estimate that the intergenerational elasticity in earnings is about 0.58.

Dunn [13] uses the same data and finds a higher intergenerational elasticity in
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earnings, about 0.85. He uses the sons’ and fathers’ education to predict the sons’

and fathers’ lifetime earnings as opposed to one month earnings.

Like the two previous papers, I use data from PNAD. Here, I use the fathers’

education, fathers’ occupation (46 occupational categories) and information on race

and migration of the sons to impute the fathers’ earnings. Imputation of the fathers’

earnings without any control for father’s race and place of residence can underestimate

the earnings of fathers of better paid races and places of residence, and vice versa.

This can cause a downward bias in the estimate of the intergenerational elasticity

and lead to incorrect conclusions about the difference in mobility across races and

regions.

This paper extends the research on intergenerational mobility in Brazil by ex-

amining three generations within the same family and studying the implications of

marriage and fertility on mobility.

PNAD is a nationally representative household survey for Brazil. In the year of

1996, a mobility supplement was added to the basic questionnaire providing informa-

tion on parents’ education and father’s occupation for the head of the household and

the spouse of the head. The mobility supplement and the basic questionnaire provide

information on 36,705 father-son pairs.

Data on three generations is available restricting the sample to the households

with adult sons. In Brazil, sons tend to live in their parents’ house until they marry,

and join the labor market at early ages. As a result, there are several households

with adult sons who are not at the very beginning of their working careers.

Using data on two generations, I find that the estimate of the intergenerational

elasticity in earnings among males is about 0.847. (The estimate for the US ranges

between 0.4 and 0.5.) The estimate of intergenerational elasticity is higher for older

cohorts, starting at 0.59 for the younger cohort aged 16-24 and ending at almost one
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for the older cohorts aged 45 to 64. The estimate is higher if the father’s earnings is

below the median, 1.2, than if the father’s earnings is above the median, 0.64. The

elasticity is higher among the sons currently living in the northeast–a poor region in

Brazil that accounts for 27% of the adult males–than the southeast. It is 0.94 for

the northeast and 0.74 for the southeast. It is also higher among the sons currently

living in rural areas, 0.9, than urban areas, 0.73. The results are inconclusive about

differences in the elasticity across races.

About 51.4% of the sons whose fathers are in the lowest quartile of the earnings

distribution belong to the same quartile as their fathers. Only about 35% of the

sons whose fathers are in the lowest quartile moved up 25 percentiles or more in the

earnings distribution.

Conditional on fathers’ percentile in the earnings distribution, the average sons’

percentile increases with sons’ and parents’ educational achievements. Controlling

for father’s percentile in the earnings distribution, each year of schooling of the son

increases his percentile by 4.35, on average.

The elasticity in earnings between son-in-law and father-in-law, 0.89, is approx-

imately the same as the elasticity between son and father, 0.9.

About 78.2% of the marriages happen between families of similar earnings: the

absolute difference in percentiles between the wife’s father and husband’s father is

25 or lower. Upperward mobility through marriage happens for about 32.8% of the

married women whose father are in the lowest quartile. For them, the husband’s

percentile exceeds the father’s percentile by 25 or more.

Using data on three generations I estimate the intergenerational elasticity across

generations within the same family. I find that the intergenerational elasticity in

earnings between grandfather and grandson, 0.47, is about the same as the elasticity

between father and grandson, 0.46. The estimate of the intergenerational elasticity
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for the three generations sample is lower than the estimate for the two generations

sample. It happens because the intergenerational elasticity increases with age and

the three generations sample consist of young grandsons, aged 16 to 27. In addition,

for the cohort aged between 16 and 27, the three generations sample have a higher

concentration of younger grandsons than the two generations sample.

Number of siblings has a negative impact on son’s earnings after controlling

for father’s earnings. Consider the sons of fathers in the same percentile of the

earnings distribution, each additional sibling decreases the sons’ percentile by 1.98.

The magnitude of the impact is not significantly different for brothers compared with

sisters.

B. Data

I use data from Pesquisa Nacional por Amostra de Domicilios (PNAD)–a nationally

representative household survey for Brazil. The survey has been conducted on an

annual basis since 1976. Only the years of 1980 and 1991 were skipped.

The data contains information on the relationship between members in a house-

hold, location of the household, sex, age, education, occupation and earnings of all

members in the household.

In 1996, a mobility supplement was added to the basic questionnaire. The head

of the household and his/her spouse were asked about their parents’ education and

father’s occupation at the time they were 15 years old. I impute the father’s earn-

ings using the fathers’ occupation and education and information on sons’ race and

migration. I explain the procedure used to estimate the father’s earnings below.

The mobility supplement and information on the head of the household provide

information on two generations. Data on three generations is available restricting the
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sample to the households with adult sons.

In Brazil, typically, sons stay in their parents home until they marry. For in-

stance, consider the 25-year-old males, about 50.9% of them live in their parents house

and 47.5% of them are married. Among the ones living with parents the percentage

married drops to 3.74%. As they grow older, the percentage of married sons increases

and the percentage living with parents decreases. For all ages the two percentages add

to a number close to 1. Among the ones living with parents the percentage married

never exceeds 4%. See Table II in Chapter II. Because most sons leave their parents’

house at the age they marry, there are many households with adult sons.

Since Brazilian males drop out of school and join the labor market at an early

age, the adult sons living with parents will not be at the very beginning of their

working careers. On average, males aged 20 to 35 have 6.6 years of education and

joined the labor market at age 13.4.

The three generations data consist of households with adult sons between 16 and

27 years old. The age restriction is necessary to avoid the sons with little working

experience and the extremely unusual sons. Most of the sons will find a job, marry

and leave their parents home as they get older, the ones that do not follow this

tendency, I consider unusual sons.

Selection problems may arise when restricting the sample to the households with

adult sons. To deal with the problem I use the Heckman [23] estimation procedure.

Though, the Heckman and OLS estimates are similar.

In the sample, the percentage of sons living with parents decreases with the

son’s age. The sons living with parents tends to be single. For all ages considered,

the percentage of sons enrolled in school is higher among the sons living with parents

than the ones not living with parents. For all ages considered, the average earnings

of the father is higher among the sons living with parents than the ones not living
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with parents. Therefore, In the selection equation, the probability of a son to live

with his parents depends on son’s age, marital status, school enrollment and father’s

earnings1.

1. Estimating the earnings of the fathers of the reference person or spouse

The fathers’ earnings are imputed using a two steps estimation procedure. In the first

step, one estimates an earnings function using a sample that contains individuals’

earnings and other variables that explain earnings. In the second step, the function

is applied to the correspondent set of variables for the fathers in order to estimate

the fathers’ earnings.

In the first step regression in Ferreira and Veloso [18], log wages depend on edu-

cation, 6 occupational categories, cohort and interactions of cohort and occupation,

and cohort and education. In the first step regression in Dunn [13], log earnings

depend on education, age and age squared2.

Here, in the first step regression, log earnings depend on occupation, education,

race, state of residence in Brazil and experience3. I measure occupation at a very dis-

aggregated level, using 46 occupational categories in total4. The specification includes

1I discuss in more detail about three generations data set, its potential selection
problems and the selection equation in the Chapter II.

2Because of the low educational achievement of fathers in Brazil, to differentiate
fathers by education will, mostly, split the fathers in four educational groups. Dunn
considered three year 1982, 1988 and 1996. In 1982, 37.05% of the fathers are illiter-
ate, 21.09% are literate, 19.23% have incomplete primary and 14.76% have complete
primary. In 1988, the percentages are 38.49%, 22.87%, 16.56% and 13.59%. In 1996
the question is reformulated, 33.30% never attended school, 18.95% have incomplete
primary, 17.29% have complete primary and 13.26% incomplete middle school.

3Experience is calculated according to the formula: experience = age – 6 – years
of schooling.

4Occupational categories are available in up to three digits. I use the two dig-
its occupational category. Within the same one-digit-occupation, some two-digit-
occupation are combined if they have similar average earnings, resulting in the 46
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interaction dummies between 8, more general one-digit, occupational categories and

experience. It also includes a quartic function for work experience5. I do not allow

for interactions between education and experience6. I use total earnings from work.

Males working less than 15 hours a week are dropped from the data. Earnings are

bottom coded.

A mobility study about Brazil that ignores race and region of residence when

estimating the fathers’ earnings may lead to wrong conclusions for two reasons. First,

it may result in an estimated intergenerational elasticity in earnings that is biased

downwards. Second, it may bias the estimated difference in the elasticity across

regions or races. I explain the two issues in the following paragraphs.

On average people living in the southeastern states of Brazil are significantly bet-

ter paid than are people in the northeastern states. Suppose one estimates the fathers’

earnings using a specification that does not control for the difference in earnings across

states or regions. Most likely, it would result in an overestimate of the northeastern

fathers’ earnings and an underestimate of the southeastern fathers’ earnings. In an

extreme case of no mobility at all in Brazil, these estimated fathers’ earnings would

occupational categories mentioned.
5I examined two other specifications for work experience: a quadratic and a spline.

The quartic and the spline fit the data slightly better than does the quadratic specifi-
cation, since their adjusted-R2’s are slightly higher. Following Murphy and Welch [30],
I check for the three specifications, if the plot of the residuals against experience shows
any pattern like under/overstating of earnings at different stages of the career. The
plot shows no evidence of any pattern or that one of those three specifications is
better or worse than the others. Considering the adjusted-R2 and the residuals plots,
the quartic and the specification with splines seem to fit the data equally well. I chose
the quartic specification.

6To check if the effect of experience on an individual’s earnings depends on the
individual’s educational level, I estimated a specification with interactions between
educational dummies and experience. Figure 32 in Appendix B shows the predicted
earnings as a function of experience for different levels of education. Because the
curves seems to be parallel to each other, I dropped the interactions between education
and experience from the final specification.
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imply that, on average, the northeastern sons moved downward in the distribution of

earning compared to their fathers and the southeastern sons moved upward. Conse-

quently, the estimated coefficient of intergenerational elasticity in earnings would be

lower than the true value.

In addition, the omission of relevant variables (state/region and race) in the

first step regression may bias the estimated coefficients. As a result, the average

upward bias in the estimated northeastern father’s earnings may not represent an

equal upward movement of all imputed earnings. The same applies for the average

downward bias in the southeastern fathers’s earnings. That may cause a bias in the

estimated gap in the intergenerational elasticity in earnings across regions, misleading

the conclusions about difference in mobility across regions.

A similar argument applies for blacks and whites, since whites are better paid

than blacks in Brazil. An accurate estimation of mobility in Brazil and comparison of

mobility across races and regions requires some controls for fathers’ race and region

(or even better, state) when imputing the fathers’ earnings.

The mobility supplement provides fathers’ education and occupation, but gives

no information on the fathers’ age, race or state of residence.

Most likely a son and his father share the same race but, it is also possible that

the father belongs to a different race group. For instance, consider the father of a

black son. Among the fathers of black sons there is a high percentage of blacks, a small

percentage of whites and, so on. I estimate the earnings of a father of a black son as the

weighted average earnings of males with the same occupation, education, experience

etc. as the father in question for all race groups. The weights are the percentages of

fathers of black sons in each race group. It is possible that the incidence of interracial

marriage varies over time. To deal with that possibility, I calculate the percentage

of fathers of black sons in each race group for all years in which all the information
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is available. They are 1976, 1990, 1992, 1993, 1995 and 1996. The appropriate year

is selected according to the son’s age. The same applies for other races. Any small

race group is combined with another major group with similar average earnings (after

controlling for occupation, education, experience etc.). Table XXII in Appendix B

presents the percentages of fathers in each race group given the sons’ race, for sons

between 13 and 17 years old.

The 1996 PNAD’s questionnaire contains a migration segment with information

on place of birth, length of residence in the current state (up to ten years), and pre-

vious state of residence if any. For many males, this information allows identification

of the state of residence at age 15. As showed in Table II in Chapter II, most sons

live with their fathers at age 15. Therefore, a good proxy for the father’s state of

residence when the son was aged 15 is the son’s state of residence at that age.

For some individuals it is not possible to identify the state of residence at age

15. In that case, the state where an individual was born can help predict his father’s

state of residence. For instance, consider males aged 15 in 1976 and born in Braśılia.

The last entry in Table XXIII in Appendix B shows that a high percentage of them

are still living in the Braśılia. There is also a positive percentage of individuals living

in other places. I estimate the earnings of the father of a son who was born in the

capital and is 15 years old in 1976 as the weighted average earnings of males in all

Brazilian states with the same occupation, education, experience etc., as his father,

where the weights are the percentages presented in the last entry of Table XXIII .

Since the migratory flow can change in a 20-year interval, for each year in which all

the necessary information is available (1976-7, 1989-90, 1992-3 and 1995), I build a

table similar to Table XXIII. I select the appropriate year according to the son’s age.

I estimate the coefficients in the first step regression for each year in which the
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PNAD was conducted and the variable race is available7. The years included in the

sample are 1976, 1986-90, 1992-3, 1995 and 1996. Depending on the year in which the

son was 15 years old, the estimated equation for a given year is chosen and applied

to the set of variables for his father. For instance, if a son is 35 years old in 1996,

implying that he was 15 years old in 1976. I estimate the coefficients of the earnings

function in 1976 and apply the function to the set of variables of the father of the son

in question to estimate his father’s earnings.

I calculate the age of the father when the son was born for all PNAD’s in which

all the necessary information is available (1976, 1990, 1992, 1993, 1995 and 1996).

For all years, the average age is about the same, 32 years old. That makes the father

47 years old when the son was 15.

I use the national consumer price index (INPC) to update the nominal values.

From November 1976 until April 1979, I use the consumer price index for Rio de

Janeiro, since the INPC is not available for that period.

C. Estimation results

In this section, I use data on two generations to estimate the intergenerational elas-

ticity in earnings. I check if the elasticity differs across race groups, regions, rural

versus urban areas and earnings groups. I examine the relation between the earn-

ings distribution of the sons and the earnings distribution of their fathers and the

impact of education on mobility. Using the subsample of married males, I examine

the relation between marriage and mobility.

7Before 1996, the PNAD was conducted in the years of 1976-9, 1981-90, 1992-3 and
1995. But for the years of 1977-9, 1981 and 1983-5 the variable race is not available.
The 1982 PNAD had 3 reference months and the data does not specify the reference
month or week for each observation. In a high inflation period, earnings can differ
significantly in three months. So, I exclude 1982 from the estimations.
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Using the subsample of adults sons living with parents I examine the evolution

of the intergenerational mobility across generations within the same family and the

impact of fertility on mobility.

1. Estimation of the intergenerational elasticity in earnings

I use the two generations sample consisting of 36,705 father-son pairs to I estimate

the equation

yt+1 = η + γyt+ controls for son’s age+εt+1,

where yt+1 is the son’s log-earnings in September of 1996, yt is the imputed father’s

log-earnings, γ is the intergenerational elasticity in earnings and εt+1 is the error term.

Estimation of the above equation without controls for the son’s age can bias the

estimate of the intergenerational elasticity. For instance, consider a society consisting

of two fathers and two sons. Assume that the four are identical in permanent earnings,

education, occupation, region etc., but differ in age. Independent of the age difference

among the fathers, their imputed earnings are similar because they are imputed for

a male aged 47. But the sons’ earnings at any given year will differ since one son

has more work experience. Estimation of the above equation without controls for

son’s age would lead to the wrong conclusion that this society enjoys some degree of

mobility. To control for son’s age, the specification includes indicator variables for

every age.

Note that the above equation does not include controls for race or place of resi-

dence of the son. Like family connections, family culture, ability and skills, the two

attributes–race and place of residence–are possibly among the attributes an individ-

ual inherits from his father. Suppose an indicator variable for bad family connections

was available. The specification to estimate the intergenerational elasticity should
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not include the indicator variable because the elasticity is supposed to capture the

fact that most of the poor father-son pairs belong to families with bad connections.

The same reasoning applies to race and place of residence.

The estimated elasticity of the sons’ earnings with respect to the fathers’ earn-

ings, or the intergenerational elasticity or persistence in earnings, is 0.847. The es-

timation results are presented in Table XI, column (a). The estimates predict that

a 10% difference in earnings among fathers results in a 8.47% difference in earnings

among sons of similar age.

Other papers estimate the intergenerational elasticity for Brazil. The estimate of

the intergenerational elasticity in earnings is 0.58 in Ferreira and Veloso [18] and 0.85

in Dunn [13]8. The estimate of the correlation between parent’s and child’s education

is about 0.7 in Behrman, Gaviria and Szekely [4] and 0.79 in Ferreira and Veloso [17]9.

Because the fathers’ earnings are estimated, the OLS standard errors are incon-

sistent. Table XI presents the Murphy-Topel estimate of the standard errors–a robust

standard errors estimator for two-stage models10.

I examine whether the intergenerational mobility differs across cohorts including

interactions between fathers’ earnings and sons’ cohorts in the original specification.

8In Appendix B, I partially replicate Ferreira and Veloso estimation and I argue
that most of the difference in the estimates are explained by three differences in
estimation criteria: (1) dropping from the sample the sons working between 15 and
39 hours a week or living in rural areas, (2) inclusion of indicator variables for race
and region in the specification and (3) imputing the fathers’ earnings ignoring the
difference in earnings across race and state.

9Corak [12] and Solon [34] present a list of papers that estimate the intergen-
erational elasticity in earnings for US. Corak preferred estimate is 0.47. They also
present a list of papers that estimate the elasticity for other countries. See also
“Cross-Country Differences in Intergenerational Earnings Mobility”–Solon [35].

10Greene [20], page 508, provides an explanation of the Murphy-Topel variance es-
timator. Hardin [22] and Hole [24] present Stata commands to estimate the Murphy-
Topel variance. Ferreira and Veloso [18] and Dunn [13] estimate the bootstrap stan-
dard errors. For 200 replications, I find that the bootstrap standard errors for the
intergenerational elasticity is 0.0076.
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Table XI. OLS estimation of the intergenerational elasticity in earnings

(A)

(a) (b) (c)
Dependent Variable: Son’s Earnings
Father’s Earnings 0.847*** 0.589*** 0.643***

(0.019) (0.026) (0.013)
Father’s Earnings*Son Aged 25-34 0.170***

(0.030)
Father’s Earnings*Son Aged 35-44 0.298***

(0.033)
Father’s Earnings*Son Aged 45-54 0.377***

(0.036)
Father’s Earnings*Son Aged 55-64 0.388***

(0.041)
Father’s Earnings*Father’s Earn. 0.547***
Below the Median (0.049)
Fathers Earnings Below the Median –3.178***

(0.270)
Constant 0.698*** 2.115*** 2.033***

(0.243) (0.262) (0.229)
Adjusted R2 0.300 0.305 0.314
N. of Observations 36,705 36,705 36,705
Source: PNAD.
Note: Murphy-Topel standard errors in parentheses. Omitted cohort in
column (b): sons aged 16 to 24. In all Columns, coefficients of indicator
variables for every age of the sons are not presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Table XI. Continued

(B)

(d) (e) (f)
Dependent Variable: Son’s Earnings
Father’s Earnings 0.758*** 0.742*** 0.727***

(0.017) (0.017) (0.015)
Father’s Earnings*Black/Mixed 0.025

(0.017)
Black/Mixed –0.448***

(0.098)
Father’s Earnings*North –0.139***

(0.031)
Father’s Earnings*Northeast 0.196***

(0.021)
Father’s Earnings*South 0.008

(0.021)
Father’s Earnings*Midwest –0.076***

(0.025)
Father’s Earnings*Rural 0.175***

(0.024)
Rural –1.561***

(0.132)
Constant 1.383*** 1.459*** 1.482***

(0.236) (0.235) (0.227)
Adjusted R2 0.319 0.322 0.354
N. of Observations 36,705 36,705 36,705
Source: PNAD.
Note: Murphy-Topel standard errors in parentheses. Omitted region in
column (b): Southeast. In all Columns, coefficients of indicator variables
for every age of the sons are not presented. Coefficients of indicator
variables for regions in column (b) are not presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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As shown in column (b) the estimate of γ differs significantly across cohorts. It starts

at 0.6 for the youngest cohort aged 16 to 24 in 1996, increases continually for older

cohorts, and reaches almost the value one for the two older cohorts aged 45 to 54 and

55 to 64 in 1996.

The lower estimate of the intergenerational elasticity for younger cohorts may

indicate more mobility over time or an increasing correlation between son and father’s

earnings over the life cycle. Mayer [29] points out that an increasing correlation

between son and father’s earnings over the life cycle is consistent with some models

that examine the evolution of wages, like models of human capital accumulation (e.g.

Ben-Porath [5]) and matching or learning models (e.g. Jovanovic [28]).

Dunn [13] uses information on fathers’ education in the 1982, 1988 and 1996

PNAD to separate the age effect from the cohort effect. He finds that the intergen-

erational elasticity in earnings grows at a high rate until it reaches a maximum at

age 38 for 1982, 47 for 1988 and 51 for 1996. “At almost any age between 20 and

45, the elasticity estimated for 1982 is significantly greater than that estimated for

1988, which in is in turn great than that estimated for 1996.” He also shows that

the intergenerational elasticity estimated across cohorts using sons’ earnings at age

40, has been decreasing continually for the cohorts born in 1935 through 1975. The

elasticity for the cohort born in 1935 is 38% higher than for the cohort born in 197511.

In column (c) in Table XI, I examine whether the intergenerational elasticity in

earnings differs across earnings groups. The estimate of γ is 1.2 if the father earns

11Ferreira and Veloso [18] use the sons’ education and occupation to estimate the
sons’ wages. The son’s and father’s wages are imputed for a 40-year-old male. They
argue that the imputed wage is a measures of permanent wage. Estimating the in-
tergenerational elasticity between father’s and son’s permanent wages, they find that
“the mobility pattern of permanent wages across cohorts is similar to the observed
for son’s current wages...” The elasticity of permanent earnings decreases continually
for cohorts born after the cohort 1942/1946.
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below median earnings and 0.64 if he earns above median earnings12

I check whether mobility differs across races, regions and rural versus urban

areas. The results are presented in Table XI, columns (d), (e) and (f). I find no

evidence that mobility is different for blacks or individuals of mixed race compared

to other race groups. The estimate of γ is 0.74 among the sons currently living in the

southeast and 0.94 in the northeast–a poor region in Brazil that accounts for 27% of

males aged 16 to 64 in the 1996 PNAD.

About 12% of males aged 16 to 65 living in the southeast in 1996 were born in

the northeast. This migration flow suggests the need for caution in the interpretation

of the difference in the estimated intergenerational elasticity between northeast and

southeast. For instance, consider the sons that migrate at an age above 15. Because

the average earnings of a male with certain characteristics is higher in the southeast

than in the northeast, the immigrants probably have higher earnings in the southeast

than their fathers in the northeast. This would cause the estimated mobility in the

southeast to be higher than it would be otherwise.

Mobility is lower among the sons currently living in rural areas compared to

urban areas. The intergenerational elasticity is about 0.9 for sons in rural areas and

0.73 for urban areas.

2. Transition matrix and cumulative distributions

The transition matrix is an alternative measure of mobility. It is a table presenting

the percentage of sons in a given economic position by fathers’ economic position. For

instance, it presents the percentage of the sons of low-earnings-fathers who moved up

12Ferreira and Veloso [18] provides a detailed discussion about the non-linear pat-
tern of the intergenerational mobility in Brazil. Their graph of the mean sons’ log
wages against fathers’ log wages suggests that “persistence is stronger at the extremes
of the father’s wage distribution.”
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in the distribution of earnings.

Note that a correction for the sons’ earnings is necessary. A 16-year-old and a

64-year-old may have different earnings because they are in different points of their

career’s paths. I correct for that subtracting from the son’s earnings the average

earnings of males in the same cohort. For instance, consider a male of a certain age,

I subtract from his earnings the average earnings of males in the same age, two years

older and two years younger.

Table XII presents the percentage of sons in each quartile by fathers’ quartile.

Among the sons of fathers in the lowest quartile of the earnings distribution, about

51.4% belong to the same quartile as their fathers. Among the sons of fathers in the

highest quartile, about 56.7% belong to the same quartile as their fathers.

The percentages are not dramatically different across cohorts. Note that for each

cohort the quartiles are calculated considering the earnings distribution of the sons

in that cohort and the earnings distribution of their fathers.

The upper part of Figure 4 shows the cumulative distribution of the sons’ per-

centile by the fathers’ quartile. For a society in which the son’s percentile is not

related to his father’s quartile, the four curves would coincide. The fact that the

distribution of the sons of low-earnings-fathers is positioned far from the left of the

distribution of sons of high-earnings-fathers illustrates the low mobility in Brazilian

society. The percentage of the sons below the median is 4 times higher for the sons

of the males in the lowest quartile (75.05%) than in the highest quartile (18.45%).

The middle part of Figure 4 presents the cumulative distribution of the difference

between the father’s and the son’s percentile for the sons of fathers in the lowest quar-

tile. The horizontal axis presents the father’s percentile minus the son’s percentile.

A negative number means that the son moved up in the distribution of earnings com-

pared to his father. The figure shows that only about 35% of the sons of fathers in
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Table XII. Transition matrix of earnings: sons’ quartile by fathers’ quartile, in per-

centage

Father’s Quartile
Son’s Quartile 1◦ Quartile 2◦ Quartile 3◦ Quartile 4◦ Quartile
1◦ Quartile 51.41 31.78 15.33 6.07
2◦ Quartile 24.72 27.99 23.82 13.02
3◦ Quartile 15.30 22.37 29.28 24.18
4◦ Quartile 8.57 17.85 31.57 56.74
Son’s Age 16-24
1◦ Quartile 55.49 29.83 13.39 5.28
2◦ Quartile 22.19 26.33 20.38 12.60
3◦ Quartile 14.22 23.45 30.15 24.36
4◦ Quartile 8.10 20.39 36.08 57.76
Son’s Age 25-34
1◦ Quartile 50.02 23.77 11.38 5.44
2◦ Quartile 25.92 31.51 24.40 12.79
3◦ Quartile 16.32 26.04 32.88 25.04
4◦ Quartile 7.73 18.68 31.35 56.74
Son’s Age 35-44
1◦ Quartile 50.90 26.15 12.10 5.21
2◦ Quartile 25.84 32.48 25.13 11.23
3◦ Quartile 15.95 25.04 32.29 25.67
4◦ Quartile 7.32 16.33 30.48 57.89
Son’s Age 45-54
1◦ Quartile 47.87 29.52 13.58 5.85
2◦ Quartile 26.13 32.84 28.21 12.91
3◦ Quartile 17.42 23.75 29.09 24.61
4◦ Quartile 8.59 13.89 29.13 56.62
Son’s Age 55-64
1◦ Quartile 47.85 27.25 15.39 7.37
2◦ Quartile 27.27 35.90 23.07 15.08
3◦ Quartile 16.08 25.03 31.66 24.28
4◦ Quartile 8.81 11.82 29.89 53.27
Source: PNAD.
N ote: For each cohort the quartiles are calculated considering the earn-
ings’ distribution of the sons in that cohort and the earnings’ distribution
of their fathers. The percentages refers to sons between 16 and 64 years
old. The earnings of the sons are corrected by subtracting the average
earnings of males in the same cohort.
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Fig. 4. Cumulative distribution of the sons’ percentile by fathers’ quartile, cumulative

distribution of the difference between father’s and son’s percentile, and plot of

average sons’ percentile against fathers’ percentile
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the lowest quartile moved up 25 percentiles or more in the earnings distribution.

The bottom part of Figure 4 presents the fathers’ percentile against the average

sons’ percentile. Consider a father in the x-th percentile. The graph presents the

average percentile of the sons of fathers who belong to the percentile interval [x-

2,x+2]13.

3. Education and mobility

Figure 5 presents the fathers’ percentile against the average sons’ percentile by sons’

and parents’ educational attainment. The average sons’ percentile is calculated in the

same way as in the bottom part of Figure 4. Conditional on the fathers’ percentile,

the average sons’ percentile is higher for more educated sons than less educated sons,

for literate sons than illiterate sons, for the sons of literate parents than the sons of

illiterate parents.

I estimate the average increase in the sons’ percentile for each year of schooling

of the son, controlling for fathers’ percentile. Note that specifications in which the

sons percentile is the dependent variable, the predicted values of the sons percentile

may be a number below 1 or above 100. To avoid such predictions, I transform the

son’s percentile in a variable that can assume any real value. I estimate the equation

ln(−ln(Pt+1/100)) = β0 + β1Pt + β2Y S + ε14

where Pt+1 is the son’s percentile, Pt is the father’s percentile, Y S is years of schooling

of the son and ε is the error term.

The predicted increase in the sons’ percentile for each additional year of schooling

is

13The slope of the regression line in the graph, is 0.55 and the standard error is
0.0003.

14I replace the son’s percentile by 99 if the son’s percentile is 100
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Table XIII. OLS estimation of the elasticity in earnings between males and their fa-

thers-in-law

(a) (b) (c)
Dependent Variable: Husband’s earnings
Earnings of the Father of the Hus- 0.901***
band (0.022MT )
Earnings of the Father of the Wife 0.892***

(0.018MT )
Average between Earnings of the 1.083***
Father of the Husband and Wife (0.011)
Adjusted R2 0.330 0.332 0.394
N. of Observations 15,689 15,689 15,689
Source: 1996 PNAD.
Note: Standard errors in parenthesis. The superscript MT stands for
Murphy-Topel standard errors. In all Columns, coefficients for constant
and indicator variables for every age of the husbands are not presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.

−100β2exp(β0 + β1Pt + β2Y S)exp(−exp(β0 + β1Pt + β2Y S))

Figure 6 presents the estimated increase as a function of the fathers’ percentile.

Controlling for father’s percentile, on average, each year of schooling of the son in-

creases his percentile by 4.35.

4. Marriage and mobility

For the sample of married sons, I find that the elasticity between son-in-law’s and

father-in-law’s earnings (0.9) is approximately the same as the elasticity between son’s

and father’s earnings (0.89). See Table XIII.

The upper part of Figure 7 shows the cumulative distribution of the difference in

percentiles between the father of the wife and the father of the husband. Most of the

marriages happen between families of similar earnings. About 78.2% of the marriages

happen between families in which the difference in percentiles is 25 or lower.
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It is possible that a son moved up in the distribution of earnings before he

married a woman whose family is wealthier than his own family. This is not a marry

up example. I do not expect a similar problem for women, since in most families the

man’s earnings is the principal source of income.

The bottom-left part of Figure 7 presents the cumulative distribution of the

difference between the family’s percentile for the daughter of fathers in the lowest

quartile of the distribution of earnings. The horizontal axis presents the percentile

of the wife’s father minus the percentile of the husband’s father. A negative number

means that the wife married up. The figure shows that about 19.1% of the married

women with fathers in the lowest quartile married someone from a family at least

25 percentiles up. Among them, about 1/3 ended up with a husband in the lowest

quartile.

The bottom-right part of Figure 7 presents the cumulative distribution of the

difference in percentiles between the wife’s father and the husband’s. Again, a nega-

tive number means that the wife married up. The figure shows that about 32.8% of

the married women with fathers in the lowest quartile married someone at least 25

percentiles up. Upper mobility through marriage is a possibility among the daughters

of fathers in the lowest quartile of the distribution of earnings.

5. Subsample of sons living with parents

The subsample of adult sons living with parents contains data on three generations

allowing estimation of the intergenerational elasticity in earnings across generations

and estimation of the elasticity skipping one generation. In addition, the subsample

contains data on number of children of the wife of the head of the household allowing

estimation of the impact of fertility on mobility.
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a. Mobility across generations

I call the adult males living with parents, grandsons, the head of the household (or

spouse), fathers, and the fathers of the head of the household, grandfathers.

The 1996’s earnings of the fathers are available for the subsample of sons living

with parents but, to maintain the comparability of results across generations, I im-

pute the father’s earnings following the same procedure used to impute grandfather’s

earnings.

To account for the fact that two grandsons may be in different points in their

career’s paths in 1996 just because one is older than the other, I use an indicator

variable for the older cohort aged 16 to 21. For the fathers, I use indicator variables

for the cohorts aged 45 to 59 and 60 or older.

For the households with more than one grandson, I drop the younger grandsons

to avoid repetition of some father-grandfather pairs.

Table XIV presents the intergenerational elasticity in earnings for the pairs

grandfather-father, father-grandson and grandfather-grandson.

The intergenerational elasticity between grandfathers and fathers in Table XIV

(0.89) is higher than the coefficient in Table XI (0.84). This is expected because of

the higher concentration of older fathers in the three generations data.

The intergenerational elasticity between fathers and grandsons (0.46) is much

lower than the coefficient for the previous generation (0.89). There are two inter-

pretations of this the result. First, the intergenerational elasticity is decreasing over

time and generations. Second, the intergenerational elasticity increases during an in-

dividual’s life cycle. Under the second interpretation, the intergenerational elasticity

would be higher for the grandfather-father pairs than for the father-grandson pair

because in 1996 the fathers are older than the grandsons. Maybe it is just a matter
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Table XIV. Intergenerational mobility across generations

Grandfather and Father
OLS

Dependent Variable: Father’s Earnings in 1996
Grandfather’s Earnings (Imputed) 0.891***

(0.027)
Father’s Age 45-59 0.030

(0.034)
Father’s Age ≥60 –0.338***

(0.051)
N. of Observations 3,899

Father and Grandson
Heckman Maximum Likelihood Estimation
Father’s earnings calculated like grandfather earnings

Dependent Variable: Grandson’s Earnings in 1996
Father’s Earnings (Imputed) 0.464***

(0.014)
Son’s Age 22-27 0.262***

(0.024)
N. of Observations Uncensored 3,899

Grandfather and Grandson
Heckman Maximum Likelihood Estimation

Dependent Variable: Grandson’s Earnings in 1996
Grandfather’s Earnings (Imputed) 0.477***

(0.021)
Son’s Age 22-27 0.402***

(0.025)
N. of Observations Uncensored 3,899
Source: PNAD.
Note: Standard errors in parenthesis. Coefficients for constants are not
presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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of time until the younger generation reaches the same intergenerational elasticity in

earnings of the previous generation15.

The intergenerational elasticity between father and grandsons (0.46) is about the

same as the elasticity skipping one generation (0.47).

In Table XIV, I estimate the intergenerational elasticity in earnings between pa-

ternal grandfathers and grandsons. I can also estimate the elasticity for maternal

grandfathers. Table XV shows that the intergenerational elasticity between grand-

fathers and grandsons is higher for the maternal grandfathers (0.56) than for the

paternal grandfather (0.49). The elasticity with respect to the average earnings of

both grandfathers, 0.64, is higher than the elasticity with respect to each individual

grandfather’s earnings. In a regression with both maternal and paternal grandfa-

ther’s earnings, the elasticity for the maternal grandfather, 0.4, is higher than for the

paternal grandfather, 0.24.

b. Fertility and mobility

For all females aged 15 or older, the fertility module of the 1996 PNAD contains

information on number of biological sons and daughters living in the same and in

a different household. I use the number of children of the wife of the head of the

household minus one as a proxy for the number of siblings competing for family

resources during the son’s childhood. I do not subtract number of children by one if

the wife has no biological son living in the same household. (It is the case for 57 sons

in the sample.)

I split the sample in three groups: the sons with 2 or fewer siblings (40.67%

of the sample), sons with 3 or 4 siblings (26.82%), and son with 5 or more siblings

15I obtain similar elasticities across generations replacing the indicator variables for
age by age and age squared.
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Table XV. Intergenerational elasticity in earnings skipping one generation for paternal

and maternal grandfathers

(a) (b) (c) (d)
Heckman Maximum Likelihood Estimation
Dependent Variable: Grandson’s Earnings
Son’s Earnings
Paternal Grandfather’s Earnings 0.485*** 0.239***

(0.041) (0.046)
Maternal Grandfather’s Earnings 0.562*** 0.402***

(0.038) (0.047)
Average Between Maternal and 0.636***
Paternal Grandfather’s Earnings (0.043)
N. of Observations Uncensored 2,025 2,025 2,025 2,025
N. of Observations 7,076 7,076 7,076 7,076
Source: 1996 PNAD.
Note: Standard errors in parenthesis. Coefficients for constant and indicator vari-
ables for cohort of grandsons are not presented. Cluster: family. The selection
equation is not presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.

(32.51%)16. Figure 8 shows the average sons’ percentile against fathers’ percentile

for the three groups. Consider the fathers in the x-th percentile. The graph presents

the average percentile of the sons of males who belong to the percentile interval [x-5,

x+5]17. Conditional on fathers’ percentile, the average sons’ percentile is lower for

the sons with 5 or more siblings than the other groups. It is lower for the sons with

3 or 4 sibling than for the sons with 2 or less siblings, for most fathers’ percentile.

I estimate the average drop on sons’ percentile of each additional sibling, con-

trolling for fathers’ percentile. Because a son’s percentile is a number between 1 and

16About 2% of the sons in the sample have no sibling, 14% have one sibling, 24%
two siblings, 16% three, 10% four, 8% five, 8% six and, 16% seven or more.

17Two males may have different earnings just because they are at different points of
their career’s paths. To address the problem, I subtract from the male’s earnings the
average earnings of males in the same cohort before calculating the male’s percentile.
For instance, consider a male of a given age, I subtract from his earnings the average
earnings of males in the same age, two year older and two years younger.
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100, a transformation of the sons’ percentile is necessary. I estimate the equation

ln(−ln(Pt+1/100)) = β0 + β1Pt + β2NC + β3Ic + ε

where Pt+1 is the son’s percentile, Pt is the father’s percentile, NC is number of

siblings, Ic indicator variable for females with at least one biological child18 and ε is

the error term.

The predicted drop in sons’ percentile of each additional sibling is

−100β2exp(β0 + β1Pt + β2NC + β3Ic)exp(−exp(β0 + β1Pt + β2NC + β3Ic)).

Figure 9 presents the predicted drop as a function of the fathers’ percentile for three

groups: sons with 2 or fewer siblings, sons with 3 or 4 siblings and son with 5 or more

siblings. Controlling for fathers’ percentile, on average, each sibling decreases the

sons’ percentile by 1.98. The coefficient for brothers and sisters are not significantly

different19.

D. Conclusion

Like Ferreira and Veloso [18] and Dunn [13] I use data from PNAD to estimate the

intergenerational elasticity in earnings in Brazil. Differently from the previous papers,

I use information on the sons’ race and migration to estimate the fathers’ earnings. I

argue that omission of race and place of residence may cause a downward bias in the

estimate of the intergenerational elasticity.

Divergences may rise with respect to the proper way to estimate the fathers’

earnings and the intergenerational elasticity. I discuss some possibilities and examine

18The data include three females with no biological children and married to a male
with an adult son living in his house. I replace the son’s percentile by 99 if the son’s
percentile is 100

19Number of brothers is top coded for 6 brothers. The same for number of sisters.
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Fig. 9. Reduction in the son’s percentile for each additional sibling

changes to the conclusions in Appendix B. In Appendix B, I discuss the problems

that may rise from comparisons of the sons’ earnings in September of 1996 with the

estimated fathers’ earnings, and how the lower variance of the latter compared to the

true earnings may bias the estimated intergenerational elasticity. I suggest a possible

solution to address the problem and examine the changes in the conclusions.

One major contribution of this paper is the extension of the research on inter-

generational mobility in Brazil to three generations within the same family. I build a

nearly representative data set for three generations exploiting two characteristics of

Brazilian people. First sons tend to live in their parents’ house until they marry. Sec-

ond, Brazilians join the labor market at early ages. Those two characteristics imply

that there are several households with adult sons who are not at the very beginning

of their working careers.

This paper extends the research on intergenerational mobility in Brazil by ex-
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amining the relationship between fertility and mobility. Has the high fertility rate

among the low-earnings individuals contributed to the perpetuation of poverty? Sib-

lings may impact positively and negatively an individual earnings. For instance, they

may expand the individual’s network, the older siblings may invest in the human

capital of the young ones, they may help developing social skills during childhood,

etc. On the other hand, siblings may increase competition for scarce family resources

during childhood. I estimate the average impact of an additional sibling on the son’s

percentile using data on fertility, available for the sample of adult sons living with

parents, and applying a transformation on the sons’ percentile that corrects for the

fact that the sons’ percentile is a number between 1 and 100. I use the same cor-

rection to estimate the average impact of additional years of education on the son’s

percentile after controlling for father’s percentile.

This paper also extends the research on intergenerational mobility in Brazil by

examining the implications of marriage on mobility. The estimated elasticity in earn-

ings between fathers and sons is about the same as the elasticity between fathers-

in-law and sons-in-law. There are two possible interpretation for the similarity of

the two elasticities. First, individuals marry in the same economic class. Second the

father-in-law may be an important determinant of the individual’s earnings.
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CHAPTER IV

OPTIMAL INVESTMENT IN ELECTRICITY GENERATION IN THE TEXAS

MARKET

A. Introduction

In the last two decades, a deregulation process has been initiated in many electricity

markets around the world. One economic and political motivation for deregulation is

that a system of competitive procurement of electricity provides better incentives for

investment than the incentives created by either rate-of-return regulation or state-

owned enterprizes.

Much of the existing literature on deregulated electricity markets has focused on

the short-run inefficiencies created by imperfectly competitive electricity spot mar-

kets1. Less research has focused on the longer-run incentives for optimal investment

under competitive procurement2. This study addresses long run implications of dereg-

ulation – optimal investment in electricity generation.

The optimal investment is the investment that maximizes the social welfare. In

a perfectly competitive market, private and social incentives are perfectly aligned,

and there should be no gap between optimal and actual investment profile. Since

most electricity markets are not perfectly competitive markets, comparison between

optimal and observed investment provides a measure of how far the current system

is from its optimal or ideal path. Moreover, the efficiency gains associated to the

optimal investment provides a measure in dollars of the possible gains associated

1For example, see Wolfram [37], Borenstein, Bushnell and Wolak [7], Puller [33],
Bushnell, Mansur and Saravia [11], and Hortacsu and Puller [25].

2One paper that has studied the effects of deregulation on the efficiency of opera-
tions is Fabrizio, Rose, and Wolfram [16].
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with decisions that favor a more competitive electricity market.

There are different technologies available to generate electricity. Natural gas-

fired units include traditional single-cycle as well as new combined cycle gas turbines.

Other generating units are fueled by coal and uranium. Finally, various renewable

sources of energy include hydroelectric, wind, solar and geothermal technologies. The

existing technology mix was largely determined under a more regulated regime. This

paper estimates the change in technology mix that would occur in the long run under

competitive procurement in Texas.

This paper introduces a methodology to estimate the optimal investment in each

technology type. The method determines the optimal investment by applying a sim-

ilar logic that Borenstein [8] uses to find the optimal long run capacity, but takes in

consideration the current capacity3. The estimation procedure allows the system’s

capacity to change constantly to accommodate entry and exit of units, depending

on the unit’s schedule. Also the fuel prices change according to the expected future

prices.

After having introduced the suggested method, I estimate an indicator of the

optimal investment in electricity generation in Texas, more precisely, the subarea of

Texas which is covered by the Electric Reliability Council of Texas (ERCOT) system.

ERCOT manages the electricity market that covers about 75% of the state’s land

area, and 85% of the state’s demand (load). The ERCOT market is not a competitive

market, at least on the demand side. Most of the consumers are in the flat rate service,

meaning that they pay fixed, previously established prices in peak and off peak hours.

3Joskow and Tirole [27] also show how to find the optimal long run capacity. In
contrast to Borenstein, they make some continuity and differentiability assumptions
about the functions involved in the maximization problem.
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Assuming that energy suppliers are price takers, charging the Real Time Price (RTP)4

would implement the optimal investment. The results suggest significant efficiency

gains.

Limitations of the paper include the assumption of zero starting up costs5 and,

no uncertainty about demand or costs.

Subsection 1 reviews Borenstein’s method to find the optimal long run compo-

sition. Subsection 2 explains the method proposed in this paper. Section C presents

general aspects of the data used in this paper and the estimated marginal cost and

demand curves. Section D discusses some characteristics of the plants operating in the

ERCOT market that encourages consideration of the current composition when esti-

mating the optimal investment. Finally, Section E presents some estimation criteria

and an indicator of the optimal investment in the ERCOT market.

B. Method to find the optimal investment profile

1. Borenstein’s method: N demands and K technologies

Borenstein [8] suggests a method to find the optimal long run capacity of each tech-

nology type for any specific distribution of demand functions. Before revising the

method, I define a few terms. I call a vector of installed capacity for each technology

type the current composition. Equivalently, I call a vector of optimal capacity for

each technology type the optimal composition.

Suppose the electricity system faces different demands at different hours in a

year. Assume there are N demands where p1(q) is the highest demand; p2(q) is the

second highest demand; and so on. During αn hours in a year, the system faces

4The price that clears the market at any time.
5The cost of turning on a unit.
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demand pn(q).

Assume that the capacity of each unit is 1 megawatt (MW) and the cost function

of a unit that adopts technology i can be represented by the equation

Ci(qi) = MCiqi,

where MCi is the marginal cost of a unit that adopts technology i and qi is the

quantity produced by the unit.

The annual capital cost of building one unit of technology i is ACCi.

Suppose there are K technologies available to generate electricity. Technology 1 is

the technology associated to the highest marginal cost; technology 2 is the technology

associated to the second highest marginal cost; and so on. The order is reversed for

the capital costs, technology 1 has the lowest capital cost; technology 2 has the

second lowest capital cost; and so on. This inverse relationship between marginal

cost and fixed capital costs is consistent with technologies for electricity generation

(e.g. natural gas peaking units have a high marginal cost but low fixed cost, while

baseload coal-fired units have low marginal costs and high fixed costs).

The goal is to find the number of generators of each technology that maximizes

the total welfare. First, imagine that all the production is provided by units that

adopt the technology type associated with the highest marginal cost, technology 1.

Then, add peak units into the system, one by one, until the introduction of one more

unit would make the social surplus of the extra unit negative.

Start checking if it is socially optimal to invest in the first type-1-unit. For ease

of graphical illustration, suppose that N=4. Imagine a case like the one represented

in Figure 10. During α4 hours, the unit will generate no surplus. During α1 hours,

the unit generates a social benefit of
∫ 1

0
p1(q)dq −MC1. During α2 hours, the unit

will generate a social benefit of
∫ 1

0
p2(q)dq −MC1, and so on. In the general case, it
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Fig. 10. Borenstein’s method to find the long run optimal composition - 1 MW in

technology 1

is welfare-increasing to invest in one type-1-unit if

N∑
n=1

αnMax
{ ∫ 1

0

pn(q)dq −MC1; 0
}
≥ ACC1.

Now imagine that for the first γ1 units, the social benefit and the annual capital

cost were already compared, and it is optimal to invest in them. Now check if it is

optimal to invest in one more unit, the (γ1 + 1)th unit.

Calculate the social benefit for each demand and then add the social benefit for

every demand multiplied by the number of hours in a year that the system faces this

demand curve. For each demand curve, the social benefit generated by the extra unit

is simply the area between the marginal cost curves, before and after the introduction

of the extra type-1-unit, that lies below the demand curve.

Imagine a case like the one represented in Figure 11. During (α4 +α3) hours, the

extra unit generates no extra benefit. During α1 hours, the extra unit will generate a

social benefit of
∫ γ1+1

γ1
p1(q)dq−MC1. During α2 hours, the benefit is

∫ γ1+1

γ1
p2(q)dq−

MC1.
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Fig. 11. Borenstein’s method to find the long run optimal composition - 1+γ1 MW in

technology 1

Generalizing, for any positive integer number j, it is welfare-increasing to invest

in the (j + 1)th type-1-unit if

α1Max
{ ∫ j+1

j
p1(q)dq −MC1; 0

}
+ · · ·+

αNMax
{ ∫ j+1

j
pN(q)dq −MC1; 0

}
≥ ACC1.

Equivalently,

N∑
n=1

αnMax
{ ∫ j+1

j

pn(q)dq −MC1; 0
}
≥ ACC1.

Let CTO be the number at which it is optimal to stop adding type-1-units to the

system. When the number of type-1-units is equal to (CTO + 1), the annual capital

cost is higher than the benefit of an extra type-1-unit. Since each unit’s capacity is

1 MW, CTO is also the total capacity. Now consider the technology associated with

the second highest marginal cost, technology 2. If replacing one type-1-unit for one

type-2-unit increases the social welfare, it is optimal to replace it. Since MC1 > MC2,
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Fig. 12. Borenstein’s method to find the long run optimal composition - 1 MW in

technology 2

the type-2-unit will be operating before any type-1-unit.

Imagine a case like the one represented in Figure 12. The social benefit of replac-

ing one type-1-unit for one type-2-unit is (α1 +α2 +α3)(MC1−MC2)+
∫ 1

0
p4(q)dq−

MC2. The cost is ACC2 − ACC1. If the benefit is greater than the cost, then there

is a social gain by replacing one more type-1-unit for one type-2-unit.

Now imagine that for the first γ2 type-2-units, the social benefit and the annual

capital cost were already compared, and it is optimal to replace γ2 type-1-units with

γ2 type-2-units. Now check if it is optimal to replace, one more time, one type-1-unit

for one type-2-unit, the (γ2 + 1)th unit. Imagine a case like the one represented in

Figure 13. During (α4 +α3) hours, the replacement of one type-1-unit for one type-2-

unit generates no extra surplus. During α1 hours, the replacement generates a social

benefit of MC2 −MC1. During α2 hours, the social benefit is
∫ γ2+1

γ2
p2(q)dq −MC2.

It is welfare-increasing to replace, one more time, one type-1-unit for one type-2-unit
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Fig. 13. Borenstein’s method to find the long run optimal composition - 1+γ2 MW in

technology 2

if

α1

(
MC1 −MC2

)
+ α2

( ∫ γ2+1

γ2

p2(q)dq −MC2

)
≥ ACC2 − ACC1.

Keep replacing type-1-units for type-2-units until the benefit is greater of equal to

the additional fixed cost of type-2-units.

Repeat the procedure above for units of type 3, 4, and so on.

The trick is that replacing type-1-units for type-2-units does not change the

optimal total capacity of the system. The reason is that, at any stage of the replacing

process, the benefit and the cost of adding one extra type-1-unit to the system is

always the same. At any stage the conclusion is the same: the benefit of adding one

extra type-1-unit to the system does not pay its additional cost.

Borenstein assumes that the optimal composition contains strictly positive num-

bers of units for all technology types. In the case that the above procedure generates

an optimal composition with null units for some technology, drop this technology

from the set of possible technologies and start over again.
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One might think that today’s optimal investment in units that adopt a given

technology type can be obtained simply subtracting its current capacity from its op-

timal capacity. This is true, only if, for each technology type, the current capacity is

not greater than the optimal capacity. For purposes of today’s optimal investment,

the difference between optimal and current capacity is uninformative if for some tech-

nology, achieving the optimal capacity involves units shutting down. The following

subsection will make this point clear.

2. Technological innovation and optimal investment in the short run: simple case

Consider a very simple environment in which the electricity system faces two kinds of

demand, peak and off peak demands. Initially, there is only one technology to generate

electricity, and a new technology is introduced. Call the old technology, technology

1, and the new technology, technology 2. Suppose that the new technology is better

than the old one in the sense that it has a lower marginal cost and capital cost.

MC1 > MC2

ACC1 > ACC2

where the subscripts 1 and 2 refer to the old and new technologies.

Figure 14 represents the system’s marginal cost curve before the technological

advance. The long run optimal composition of technology types predicted by Boren-

stein implies replacement of all type-1-units for type-2-units. Imagine that the dashed

line in Figure 15 represents the system’s marginal cost curve associated to the long

run optimal composition.

In this example, the comparison between the long run optimal composition and

the current composition can not help us to find today’s optimal investment. The
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reason is that the calculation of the long run optimal composition does not consider

that all units adopting the surpassed technology were already built. Their capital

costs are already incurred at this stage; they are sunk costs.

If the goal is to find today’s optimal investment, the relevant question is: Given

the current composition, what is the optimal number of type-2-units that should be

added to the system? Figure 16 shows the system’s marginal cost for the current

composition (solid line) and the system’s marginal cost after adding one type-2-unit

(dashed line). Adding one type-2-unit to the system will shift the system’s marginal

cost curve to the right and attach a segment of lower marginal cost to the first unit.

Technology 2 is a baseload unit and will be operating before any type-1-unit.

During off peak hours, the social benefit of adding one type-2-unit to the system

is equal to MC1−MC2. During peak hours, the social benefit is equal to MC1−MC2

plus the shaded area in Figure 16. The cost of adding one type-2-unit to the system

is equal to the capital cost of type-2-units. If the benefit is greater than the cost it is

optimal to add one type-2-unit to the system.

Now repeat the same procedure for the second type-2-unit, the third type-2-

unit, and so on. The optimal solution will depend on the specific parameters of this

problem. Figure 17 represents one possible solution for this case.

Note that, differently from the long run optimal capacity, the optimal investment

in the short run does not involve complete replacement of the old units.

The reason for the optimal investment in the short run not being equal to the

difference between the long run optimal composition and the current composition is

that the optimal long run composition involves closing some units currently operating.

Not only technological innovations can lead to a violation of the condition that for

all technologies the optimal capacity is greater than its current capacity. For instance,

an unexpected increase in the price of a fuel may reduce the optimal capacity of a
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given technology type to a level below the current capacity. Also, the electricity

market in Texas is not a perfectly competitive market and The First Theorem of

Social Welfare does not necessary hold. So, it is possible that either the regulatory

authority (under the traditional regulatory regime) or profit maximizing agents (since

restructuring began) over invested in some technologies in the past.

No matter what the current composition of generators is, the method introduced

in this paper allows us to calculate today’s optimal investment in each technology

type. In the following section, I extend the method introduced in this subsection

to N demands, K technologies currently being used and L technologies qualified to

receive positive investment.

3. Optimal investment in the short run: N demands, K technologies currently

being used and L technologies qualified to receive positive investment

Assume there are N demands. p1(q) is the highest demand, p2(q) is the second highest

demand, and so on. During αn hours in a year the system faces demand pn(q). There

are K different technologies currently being used to generate electricity. Technology

1 is the technology associated to the highest marginal cost and lowest capital cost;

technology 2 is the technology associated to the second highest marginal cost and

second lowest capital cost; and so on. It is possible that some of the technologies

currently being used to generate electricity do not belong to the optimal long run

composition.

Suppose there are L technologies qualified to receive positive investments. By

qualified, I mean the technologies belonging in the optimal long run composition.

The set of qualified technologies can contain all, none or some of the technologies

currently being used. It can also contain some technologies that were not yet used

(i.e. new technologies). Let L1 be the qualified technology associated to the highest
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Fig. 18. Method to find the optimal investment in the short run - adding 1 MW of

technology L1

marginal cost and lowest capital cost among the qualified technologies; L2 be the

qualified technology associated with the second highest marginal cost and second

lowest capital cost, and so on.

For simplicity, assume that no generation unit will close or open during the

covered period.

For matters of graphical illustration, suppose that the full line in Figure 18

represents the system’s marginal cost. Also, suppose that N = 6.

Consider the qualified technology with the highest marginal cost, L1. The goal

is to check if adding one type-L1-unit to the system will generate a social surplus.

For each demand function, calculate the social benefit and then just add the social

benefit for every demand multiplied by the number of hours in a year that the system

faces each demand curve. The social benefit generated by the extra unit is simply the

area between the marginal cost curves before and after the introduction of the extra

type-L1-unit, that lies below the demand curve.

Let MCL1 in Figure 18 represents the marginal cost of type-L1-units and MCKi



92

represent the marginal cost of type-Ki-units. Adding one type-L1-unit, will shift the

segment of the system’s marginal cost curve above MCL1 to the right (dashed line in

Figure 18).

During α6 + α5 + α4 + α3 hours in a year, there is no extra benefit in adding one

type-L1-unit to the system. During α2 hours, the benefit of adding one type-L1-unit

is
∫ ∑K

k=2 ψk+1∑K
k=2 ψk

p2(q)dq −MCK2 +
(
MCK2 −MCL1

)
, where ψk is the number of units

of technology type k currently operating. During α1 hours, the benefit of adding one

type-L1-unit is

∫ ∑K
k=1 ψk+1

∑K
k=1 ψk

p1(q)dq −MCK1 +
(
MCK1 −MCK2

)
+

(
MCK2 −MCL1

)
.

It is socially optimal to invest in one type-L1-unit if the total benefit is greater

or equal to the capital cost of type-L1-units.

Add type-L1-units to the system, one by one, until the benefit is equal or smaller

to the cost. Call ψL
TO the number at which it is optimal to stop adding type-L1-units

to the system. When the number of type-L1-units is equal to ψL
TO the cost of one

extra type-L1-unit is higher than its benefit. Since each firm produces 1 MW, ψL
TO

is also the total capacity added to the system. Now consider the qualified technology

associated with the second highest marginal cost, technology L2. Now, check if

replacing one type-L1-unit for one type-L2-unit increases the social welfare, if so; it

is optimal to replace it. Since MCL1 > MCL2 the type-L2-unit will be used before

any type-L1-unit.

Consider the case illustrated in Figure 19. During α6 hours in a year, there is

no extra benefit in replace one type-L1-unit for one type-L2-unit. During α5 hours

the benefit of replacing one type-L1-unit for one type-L2-unit is
∫ ∑K

k=5 ψk+1∑K
k=5 ψk

p5(q)dq−
MCL2. During α4 hours the social benefit is

∫ ∑K
k=4 ψk+1∑K

k=4 ψk
p4(q)dq−MCK4−

(
MCK4−

MCL2

)
. During α3 hours the social benefit is

(
MCK3−MCK4

)
+

(
MCK4−MCL2

)
.
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Fig. 19. Method to find the optimal investment in the short run - at the optimal

amount of technology L1

During (α1 +α2) hours the social benefit is
(
MCL1−MCK3

)
+

(
MCK3−MCK4

)
+

(
MCK4 − MCL2

)
. The difference in cost is ACCL1 − ACCL2. If the benefit is

greater or equal to the cost there is a social gain in replace one type-L1-unit for one

type-L2-unit.

Keep replacing type-L1-units for type-L2-units until the benefit is equal or lower

than the extra capital cost of type-L2-units.

The trick is that the optimal total capacity added to the system does not change

when type-L1-units are replaced by type-L2-units. At any stage of the replacing

process, the benefit and cost of adding one more type-L1-unit to the system is always

the same. At any stage, the conclusion is the same: the benefit of adding one extra

type-L1-unit to the system does not pay its cost.

Repeat the procedure above for units of type L3, L4, and so on. The solution

is a profile of investment that specifies the optimal investment today in all types of

qualified technologies,
(
δ1, . . . , δL

)
.

So far, it was assumed that no unit will close or open in the covered year. In
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general, this assumption will not hold. In this case, when calculating the social benefit

that an extra unit will generate in a given hour of the year, one has to consider the

capacity available at that same hour.

For simplicity, it was assumed that the marginal cost of any unit is constant over

the year. The marginal cost depends on inputs prices, and those varies significantly

over the year. The solution is straightforward, when calculating the social benefit

that an extra unit will generate in a given hour of the year, one has to consider the

marginal costs in that same hour.

The above procedure works fine if the optimal investment profile consists of

strictly positive numbers of units for all Li technologies. If at some stage of the above

procedure it is not optimal to invest in some technology Li, this technology should

be dropped from the set of technologies qualified to receive positive investments, L,

and the procedure should be restarted.

Note that, under perfect competition, social and private interests are perfect

aligned. Profit maximizing agents have no incentive to invest differently from the op-

timal investment level. Nevertheless, electricity markets, usually, are not competitive

markets.

C. Data, marginal cost and demand curves

1. Data description

Data from PLATTS, an energy information service, provide information on all elec-

tricity generator units opened or planned to be opened from 1990 until 2050 in the

ERCOT system. They are 1067 units in total. For each unit, data are available on

the date it started or will start operating in the ERCOT system; if the plant is now

operating, out of service, retired or planned to be retired soon, its production capac-
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Table XVI. Basic statistics for the electricity generation units operating in Texas in

2005 

primary turbine 
mover 

primary fuel 
number of 
Plants 

total capacity           
(in MWh) 

percentages of 
total capacity 

COMBINED CYCLE Natural Gas 105 31,592.43 34.59 

STEAM Natural Gas 151 28,345.55 31.03 

STEAM Lignite (coal) 14 8,523.20 9.33 

STEAM Sub-bituminous (coal) 18 7,069.29 7.74 

GAS TURBINE Natural Gas 141 7,040.55 7.71 

NUCLEAR Uranium 8 5,138.60 5.63 

WIND Wind 35 1,700.30 1.86 

STEAM Bituminous (coal) 1 600.40 0.66 

HYDRO Water 44 423.84 0.46 

OTHERS NA 128 900.25 0.99 

 TOTAL   645 91,334.41 100.00 

 Source: PLATTS - 2005

ities in MW, the primary turbine mover used to generate electricity, the primary fuel

used by this unit, and the amount of the corresponding fuel necessary to generate

one MW of electricity (heat rate). Table XVI presents the combinations of turbine

mover and fuel observed in ERCOT, as well as, the percentage of each combination

in the total production capacity in ERCOT and some basic statistics.

The data for demand were obtained from the ERCOT website. For every day of

2005, the data provides the electricity demand for each 15 minutes interval starting

from midnight. The load duration curve for 2005 is represented in Figure 20. For any

quantity Q in the horizontal axis, the vertical axis shows the percentage of hours a

year in which the demand is equal or greater than Q.
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Fig. 20. ERCOT load in 2005



97

2. Marginal cost

The marginal cost of electricity consist of two components: the fuel cost and other

variable operating or maintenance cost. The marginal cost of a unit i is given by the

equation:

MCi = maintenance cost + heat ratei x fuel pricei

The maintenance costs are assumed to be two dollars per MW, which is an

appropriate figure for the ERCOT system.

The heat rates are unknown for about 30% of the units operating in 2005. A

missing value is replaced by the average heat rate of units with the same turbine

mover and fuel needs. The average is calculated considering the units opened two

years before, two years after and in the year that the considered unit were opened.

Another variable in the marginal cost equation is the fuel price. A high share

of the electricity generated in the ERCOT system is supplied by plants that use as

inputs coal, natural gas or uranium. According tho Ux Consulting Company, the

estimated price of uranium on March 20th was 40.506 dollars per lb.

The future prices for coal and gas was obtained at PLATTS website. It is avail-

able monthly gas price and yearly coal prices, both for Texas, until 2025. Figure 21

presents the evolution of gas and coal prices during the period.

The prices for all other fuels are not available. The fuel cost of all units with

missing heat rate and/or missing fuel price is set to zero. This makes our final results

a lower bound estimator of the optimal investment in each technology type. To deal

differently with the missing values should not change our results significantly, since

the combined production capacity of all units with missing heat rate and/or missing

fuel price do not represent a significant share of the total capacity, 2,789.1 MW out

6See http://www.uxc.com.
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Fig. 21. Gas and coal future prices
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Fig. 22. Estimated ERCOT system’s marginal cost in January 2006

of 94,571.51 MW.

The estimated marginal cost curve in January of 2006 is represented in Figure

227. Note that much more than 2,789.1 MW of generation capacity are associated

with marginal cost of about two dollars. This happens for two reasons. First, the

marginal cost of nuclear units is just slightly higher than two dollars. Second, the

heat rate of units that use water, wind or sun as a primary mover is zero.

7In 2006, the difference between Summer and Winter capacities was 2,607 MW.
Since this difference does not represent a significant percentage of total capacity, I do
not consider variations between Summer and Winter capacities.
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3. Demand curves

Like in Borenstein [8], the assumed hourly demand specification is given by the equa-

tion:

Dh(ph, p) = aAhp
ε
h + (1− a)Ahp

ε

where a represents the share of the demand in real time price (RTP), ph represents

the RTP of electricity at hour h, p represents the price charged to consumers in flat

rate service, and ε represents the elasticity of demand.

a is assumed to be equal to one percent8. The price charged to consumers on

the flat rate service used in the estimations was 14 cents per kWh of electricity9.

Following Borenstein, the cost of transmission & distribution is set equal to 4 cents

per kWh, and should be deducted from the flat rate and the RTP when estimating

the hourly demand curves. Estimations of the demand elasticity are not available.

Like in Borenstein, a wide range of possible values assumed by ε10 is considered. This

way, the final result is a range for the optimal investment in each technology type.

Knowing the real time prices and the hourly quantity demanded, the only pa-

8I did not find any data or study that estimate the percentage of consumers in the
RTP. This number was suggested by an industry analyst.

9The price considered was given by an industry analyst. This number is also con-
sistent withe the prices available at the site http://www.electricitytexas.com. For
each zip code in Texas, this site informs the electricity prices charged by some elec-
tricity providers in the corresponding area. For instance, in September, 26th of 2006,
the simple average of electricity prices were 13.98 cents per kWh in Dallas and Waco
and, 14.98 in Houston. Depending on the area, provider and payment plan; Summer
and Winter rates may differ. But the difference does not seems to be significant.
For instance, the Summer and Winter rates differ in 0.14 cents per kWh in College
Station. Depending on the plan, this difference goes from zero to 1.5 cents per kWh
for the Reliant Energy in Houston.

10The demand elasticities considered are -0.025, -0.15, -0.3 and -0.5. According
to Borenstein, the demand elasticities -0.025 and -0.15 should capture the short
run impact of RTP and are consistent with the elasticities estimated in Patrick and
Wolak [31] and Braithwait and O’Sheasy [10]. In the long run, a greater response of
consumers to price changes is expected. The demand elasticities of -0.3 and -0.5 are
intended to capture the long run impact of RTP.
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rameter left to be estimated in the demand equation is Ah. In fact, the data do not

provide information on real time prices. The RTP is estimated assuming that the

real time market is a perfectly competitive market11. For a given quantity demanded,

the RTP is set equal to the marginal cost at that quantity. Whenever a quantity

demanded is associated to a vertical segment in the marginal cost curve, the price is

set equal to the medium point in the vertical segment.

Knowing a, p,Dh, ph, one can calculate Ah for different values of elasticity. Once

Ah is calculated, it is possible to calculate the demand curves for any value of a

between zero and one. For matters of calculating consumer surplus for the optimal

investment algorithm, a can only assume the value one. This is because when calcu-

lating the social surplus, what matters is the price the consumers are willing to pay

for each MW and not the price they actually pay. So, a is set equal to one when the

optimal investment is calculated.

The marginal cost curve in January of 2006, the predicted real time prices (for

a equal to 0.01), as well as, some estimated demand curves (for a equal to 1) are

represented in Figure 23. The upper part of Figure 23 shows the estimated demand

curves assuming the demand elasticity level of -0.025, and the bottom shows the

demands for the elasticity level of -0.5. The highest and the lowest demand curves

are represented in both cases.

Before proceeding with the estimations, the following section discuss some as-

pects of the plants operating in the ERCOT market that raise concerns about es-

timations of the optimal investment that do not take in consideration the current

composition.

11Other price setting, like Cournot Model, can be considered. Nevertheless, the
result should not change significantly. Since the share of consumers in the RTP is
very small, variations in the RTP have little impact in the parameter Ah.
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Fig. 23. System’s marginal cost curve in January of 2006, and some estimated demand

curves in 2006 for a = 1 (The upper part of the graph shows the estimated

demand curves assuming the elasticity level of -0.025, and the bottom shows

the demands for the elasticity level of -0.5. the estimated RTP for a = 0.01

in January 2006 are represented by the red dots in the marginal cost curve)
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D. High versus low depreciation rate

This paper focus in optimal investment while Borenstein’s paper discuss optimal long

run capacity. Assuming that the depreciation rate is higher than a certain threshold,

today’s optimal investment is simply the optimal long run composition. Finding

evidence supporting the hypothesis of a high depreciation rate, would suggest a fast

adjustment toward the long run optimal composition. In this case, considerations of

the current capacity are unnecessary, and the optimal investment would be equal the

optimal long run capacity.

If all units in the ERCOT market last just a few years, it would suggest a pretty

high depreciation rate. The upper part of Figure 24 shows the histogram of the

age of units that already closed or have established a retirement date. The bottom

part shows the same histogram weighted by capacity. Once a capacity is installed, in

general, it will be operating for forty years. The histograms suggest a low depreciation

rate.

If the current composition consist of relatively new units, it can be an argument

in favor of the hypothesis of a high depreciation rate. Figure 25 shows how much of

the current total capacity is supplied by units built before or in the corresponding

year in the horizontal axis. For instance, more than 40% of 2005’s capacity was built

in 1980 or before. The fact that a large fraction of the 2005’s capacity is supplied by

relatively old units supports the hypothesis of a low depreciation rate.

The supply composition experienced great changes during the period covered as

shown in Figure 26. For each year in the horizontal axis, it shows the percentage

of the total capacity that year that is produced by a specific combination of turbine

and fuel type 12. For instance, in 1900, 100% of the total capacity was supplied by

12The figure is split in two parts because of the great differences in the y-axis scale
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Fig. 24. Histograms of the age of the units that already closed or have established a

retirement date (The bottom part shows the histogram weighted by capacity)
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Fig. 25. The vertical axis shows how much of 2005’s total capacity supplied by units

built before or in the corresponding year in the horizontal axis (Only the units

operating in October 2005 were considered)
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hydroelectric units. Most of the movements in the curves in Figure 26 were driven by

the addition of new capacity. Retirement explains just a tiny part of the movement.

Figure 27 and 28 show, for each combination of turbine and fuel, the evolution of the

capacity added and retired, respectively. Despite the major structural changes in the

electricity supply over the years, the adjustment seems to happen via addition of new

capacity and, seldom, via retirement of capacity.

This section presents some evidence supporting the hypothesis of a low depre-

ciation rate13; consequently a slow adjustment process toward the optimal long run

composition. Therefore, considerations of the current capacity are recommended

when estimating the optimal investment14.

E. Estimation’s procedure and results

Borenstein [8] applies the method presented in section 1 to calculated the optimal

long run capacity while, this section, apply the method presented in section 3 to

calculate the optimal investment.

across combinations over time. In a given year the the capacities shown in the figure
include the capacity of units operating, in stand by, retired, under construction, in
early development and proposed if the unit is open or planned to be open in that
year. The capacity of canceled units and planned units indefinitely postponed were
excluded.
Description of the codes in the figure: BIT (Bituminous), COL (Coal), CRUD (Crude
Oil), FO1 (Fuel Oil 1), FO2 (Fuel Oil 2), GGAS (Generic Gas), LFG (Landfill gas),
LIG (Lignite), METH (Methane), NG (Natural Gas), PC (PetCoke), RGAS (Refinery
Gas), REF (Refuse - trash), STM (Steam), SUB (Sub-Bituminous), UR (Uranium),
WAT (Water) and, WGAS (Waste Gas).

13Caution is recommended here, since it is possible that all units currently operating
belong to the composition that minimizes production costs. Maybe some of the old
units currently operating in the ERCOT market have been completely remodeled
since their inauguration; and that is the reason why they remained in the market in
the first place.

14If we assume that the optimal investment is equal to the optimal long run capacity
we will obtain an upper bound value for investment and respective efficiency gains,
most likely, extremely far from the real values.
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Fig. 26. For each year, the graph shows the percentage of total capacity in that year

that is supplied by a specific technology
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Fig. 27. Capacity added (in MW) over year by technology
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Fig. 28. Capacity retired (in MW) over year by technology
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Borenstein [8] consider three technologies in the set of optimal long run com-

position. They are: coal units, combined-cycle gas turbine, and combustion turbine

generation, representing baseload, mid-merit, and peak technologies, respectively.

Here the three technologies are considered as technologies qualified to receive positive

investments. The the annual capital cost adopted are the ones provided by Borenstein

they are 155,000, 75,000, and 50,000 dollars per MW for coal, combined-cycle, and

combustion turbine units.

The heat rates for the new combustion turbine and combined-cycle units used in

the estimations are the ones provided by Borenstein. Borenstein implicitly assumed

the heat rates to be 13,882.35 Btu/kWh for combustion turbine units and 8,000

Btu/kWh for combined-cycle units. Also, Ishii [26] using world-wide sales data from

1980 to 2001, argues that, for the latter years of his data, the heat rate of combined-

cycle turbines seems to be around 8000 Btu/kWh if capacity is limited to 50 MW.

The heat rate for the new coal units used in the estimations is an average heat rate

of coal units opened in the ERCOT market in the year of 1980 or later. That is,

10,325.68 Btu/kWh.

The estimation allow the system capacity to change whenever entry or exit of

new units are expected. A unit is expected to be operating in a given future date if

its inauguration happened or is planned to happen before that date and there is no

plan of retiring the unit before that date. Only the units under construction or in an

early development stage were considered for futures openings.

The estimation allows the fuel prices to change according to the available data

for future fuel prices.

In October of 2005, there were 36 plants out of service . Together they represent

6.027% of the total capacity in 2005. For all units, including the new ones, the
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probability of a break down, at any point in time, is also assumed to be to 6.027%15.

The future loads were estimated according to the forecasted load growth rates

presented in Report on Existing and Potential Electric System Constraints and Needs

(ERCOT, [14]). “. . . ERCOT load forecasters consider a wide range of variables such

as population, weather, land usage, general business economy, government policy,

and societal trends in terms of both historical actuals and the best predicted future

indicators available16.” The report predicts a load increase of 2.1% per year and peak

load increase of 1.6% per year until 2011. The forecasted loads are represented in

Figure 2917.

I calculate the annual surplus of adding (replacing) one unit of a given technology

type to the system in January 1st. The benefit generated by this extra unit in a given

hour of the year is calculated considering the prices of gas in that month, the price

of coal in that year, the demands at that hour and, the units operating at that date.

The annual total benefit is calculated adding the benefit generated by the unit at

each hour of the considered year, starting in the first hour of January 1st and ending

in the last hour of December 31st.

The optimal investment profile in a given year is the investment profile that

maximizes the social surplus. The social surplus is equal the summation of the present

value of the social surplus provided by the new units for all years they are expected

15Since among the units out of service there are new and old units, it was assumed
that the probability of break down is not related to the unit’s age. In other words,
once built, a new unit has the same probability of a break down as an old unit.

16Energy prices were not mentioned in the report as one of the variables in the
load forecast equation. I assumed that the price charged to consumers in the flat rate
service will remain constant for all years.

17The forecasted load is 1.6% higher than the previous year load (forecasted or
realized) plus a constant term. The constant term decreases progressively as the
peak load is approached, in a way that the total forecasted load is 2.1% higher than
the previous year load.
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Fig. 29. 2005’s load and forecasted loads from 2006 until 2011
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to be operating. Note that there is no restriction about the year the investment will

take place. The solution to the maximization problem should specify the optimal

investment in each technology for each year. Despite all the eventual difficulties

associated with this infinite intertemporal maximization problem, the solution would

still require much longer series of expected future fuel prices and load than the ones

available.

This paper does not present the the optimal investment profile. Instead, for each

year, it presents the investment profile18 that maximizes the social surplus in the

corresponding year. The procedure is repeated for all years for which data is available.

Presumably, those investment profiles is an indicator of the optimal investment. For

instance, suppose that the optimal investment in coal units for the years 2006, 2007,

2008, 2009, 2010 and 2011 are 100, 105, 95, 100, 105 and 110 MW, respectively. It

implies that if new coal units with total capacity of 95 MW start operating in 2006

they will provide positive social surplus for at least the following five years. If no

drastic changes in the parameters of the model are expected for the next years, 95

MW is probably a lowerbound indicator of the optimal investment in coal units.

In the first stage the algorithm calculates the investment in combustion turbine

units that maximizes the social surplus in a given year under the assumption that

there are no other technology available to receive positive investment. In the second

stage some of those units are replaced by combined-cycle gas units if the replacement

improves the social surplus in the corresponding year. Finally, in the third stage, some

combined-cycle gas units are replaced by coal units. Finding that the investment in a

given technology that maximizes the social surplus is zero, means that the technology

18The investment profile of a given year does not specify how much money should
be invested in each technology in that year but how many units of each technology
should be operating in January 1st of that year.
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does not belong to the set of technologies qualified to receive positive investment. In

this case, the technology should be removed from the set and, the procedure reapplied.

For four possible values of the elasticity demand and for each year from 2006

until 2011, Table XVII presents the investment in coal, combined-cycle gas turbine,

and combustion turbine units that maximizes the social surplus in the corresponding

year. For all elasticities and years considered, positive investment in combined-cycle

gas turbine or combustion turbine units generates a social loss. Only investment in

coal units can generate a positive social surplus.

It is possible that a certain investment in coal units provides positive social

surplus for all years from 2006 until 2011 although, it is not optimal to build those

units in any of those years. It can happen for two reasons. First, because the present

value of social loss in later years is larger than the positive social surplus generated

by the units. Second, it is possible that the present value of the social surplus can be

maximized delaying all or part of the investment. A more strong implication can be

inferred if a new unit of a given technology provides a social loss for all years from 2006

until 2011. That is the case of combined-cycle gas turbine and combustion turbine

technologies. If at a given date, a unit of a given technology provides a negative

surplus in the first year of its operation it implies that it is not optimal to invest in

this technology at that date. Even if in the discounted future benefit is greater than

the cost of building this unit at that date, the social surplus is maximized postponing

the investment.

In conclusion, the results presented in Table XVII imply that it is not optimal

to invest in combined-cycle gas turbine or combustion turbine units during the years

considered.

Even in the case that there are no other technology available, investment in

combustion turbine units can only generate a social loss. Obviously this technology
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Table XVII. Investment profile that maximizes social surplus in the corresponding

year and respective social surplus

year coal 
combined 
cycle 

combustion 

turbine  

social surplus per 
consumer in the 

corresponding year 

social surplus in the 
corresponding year 

  (in MWh) (in MWh) (in MWh) (in dollars) (in thousands of dollars) 

Elasticity = -0.025 

2006 14,720 0 0 133.93 2,678,631 

2007 15,532 0 0 137.72 2,754,316 

2008 14,542 0 0 113.06 2,261,274 

2009 14,011 0 0 93.72 1,874,414 

2010 12,731 0 0 63.04 1,260,757 

2011 12,327 0 0 43.26 865,225 

Elasticity = -0.15 

2006 19,636 0 0 192.57 3,851,322 

2007 20,558 0 0 195.78 3,915,623 

2008 19,772 0 0 163.52 3,270,373 

2009 19,525 0 0 138.12 2,762,433 

2010 18,254 0 0 97.98 1,959,611 

2011 17,936 0 0 70.32 1,406,461 

Elasticity = -0.3 

2006 27,173 0 0 268.64 5,372,882 

2007 28,172 0 0 271.04 5,420,770 

2008 27,408 0 0 229.42 4,588,319 

2009 27,285 0 0 197.06 3,941,107 

2010 25,936 0 0 145.83 2,916,668 

2011 25,597 0 0 109.64 2,192,742 

Elasticity = -0.5 

2006 39,065 0 0 379.71 7,594,231 

2007 40,152 0 0 380.89 7,617,804 

2008 39,622 0 0 327.96 6,559,220 

2009 39,696 0 0 287.80 5,756,021 

2010 38,038 0 0 222.93 4,458,697 

2011 37,870 0 0 177.00 3,539,981 
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does not belong to the set of technology qualified to receive positive investment.

In the next step, combustion turbine is eliminated from the set and the procedure is

reapplied. Once again, the optimal investment in combined-cycle gas units is zero and

the only technology remaining in the set of technologies qualified to receive positive

investment is the technology that uses coal as an input. Independent of the realized

investment in coal units the optimal investment in combined-cycle gas turbine or

combustion turbine units is zero. Even if new investment in coal units are not allowed,

the optimal investment in other technologies remains zero. The absence of investment

would imply that the changes in the parameters of the model, like demand increases,

should be accommodated by changes in prices.

The fact that it is not optimal to invest in combined-cycle gas turbine or com-

bustion turbine does not imply that the technologies does not belong to the optimal

long run composition. It is possible that the system has exactly the optimal level of

units for the technologies or an overinvestment happened in the past. A more opti-

mistic scenario about the future prices of gas at the time of the investment decision

might have contributed to an eventual overinvestment. Consequently, the substantial

investment in combined-cycle gas turbine units in the last years19 can be evaluated

as an overinvestment under current expectations about future fuel prices.

For each elasticity and year, the investment in coal units presented in Table

XVII is the investment that maximizes the social surplus in the corresponding year.

If additional coal units with total capacity of 12 thousand MW start operating in

2006 they will provide positive social surplus for at least the following five years, even

under the assumption of a extremely low demand elasticity of -0.025.

The elasticities -0.025 and -0.15 are intended to capture the consumers’ short

19See Figure 27
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run reaction to RTP. In the long run, a greater response is expected from consumers.

The elasticities -0.3 and -0.5 are intent to capture the long run impact of RTP.

Considering the elasticities -0.025 and -0.15, the investment in coal units that would

generate positive surplus for all considered years are about 12 and 17 thousand MW,

respectively. For the elasticities -0.3 and -0.5 a positive social surplus is obtained

for all years considered if the investment in coal units are approximately 25 and 37

thousand MW, respectively. For all years and elasticities considered, Texans can

obtain a positive social surplus investing in at least 12 thousand MW.

The optimal investment in coal units depends on several variables. First the

expected increase in demand over the years raises the benefit of investing in coal

units. The expected decrease in gas prices20 reduces the marginal cost of the gas units

currently operating making the investment in inframarginal units, like coal units, less

attractive. The expected increase in coal prices reduces the gain of replacing more

expensive units currently operating units for coal units. Entry of new units can

reduce the optimal investment in coal units. Exit of units can increase it. Those

variables affect the optimal investment in different directions. Moreover, some of

those variables does not follow a smooth or continuous pattern. Entries and exits, for

instance, represents one time change.

Despite of all the expected changes in the variables that determines the invest-

ment in coal units from 2006 until 201121, once a elasticity is selected, the investment

in coal units that maximizes the social surplus in a given year does not change drasti-

cally from one year to another. So, if no huge changes in the variables that determine

the investment in coal units is expected for the years following 2011, it is possible that

20See Figure 21.
21Specially the changes in the future fuel prices. See Figure 21.
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the figures presented in Table XVII represent a reasonable indicator of the optimal

investment in coal units at the present date.

Charging the RTP from consumers would improve the social surplus for two

reasons. First, it maximizes the social surplus given the current capacity installed.

Second, assuming that electricity suppliers are price takers, the RTP system would

induce the realization of the optimal investment. The social surplus in Table XVII

intend represent an estimative of the second impact. For each investment profile in

Table XVII, the last two columns present the associated social surplus and social

surplus per consumer obtained in the corresponding year. For the elasticities -0.3

and -0.5, efficiency gains range from approximately 2,192 to 7,617 million dollars per

year. For the same elasticities, implementation of the investment profile in Table

XVII would generate a surplus between 109 and 380 dollars per consumer a year22.

Assuming the elasticity of -0.3 the social surplus ranges from about 2,192 to 5,420

million a year depending on the year. For the elasticity of -0.5 it ranges from about

3,539 to 7,617 million.

Table XVIII presents the proposed investments after 2005. Comparison of the

results in Table XVII, suggests that some underinvestment may be occurring in the

ERCOT system; also, a tendency to invest in coal and other baseload units as the

investment profile in Table XVII would imply.

Figure 30 presents the demand curves for elasticity of -0.3 and the marginal cost

curve in January of 2006 before and after the optimal investment is realized. The

horizontal lines in Figure 30 represent the marginal cost in January of 2006 for the

three technologies qualified to receive positive investments.

22According to ERCOT annual report there are approximately 20 million consumers
in the ERCOT market.
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Table XVIII. Total capacity (in MW) of proposed and new units after 2005
Proposed
2006 2007 2010 2011 2050 Total

Steam & Lignite (coal) - - 1,720 600 - 2,320
Steam & Coal - - 550 - - 550
Wind 298 160 - - - 458
others 24 - - - - 24
Total 322 160 2,270 600 0 3,352

Early development
2006 2007 2010 2011 2050 Total

Steam & Coal - - 750 - 800 1,550
Steam & PetCoke - - - - 300 300
Gas Turb & Natural Gas 100 - - - - 100
others - - - - 20 20
Total 100 0 750 0 1,120 1,970

New units under construction
2006 2007 2010 2011 2050 Total

Combined Cycle & Natural Gas 820 - - - - 820
Steam & Natural Gas 50 - - - - 50
others - 2 - - - 2
Total 870 2 0 0 0 872
Source: PLATTS - 2005
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Fig. 30. System’s marginal cost curve in January of 2006, system’s marginal cost curve

after investing the optimal amount and some estimated demand curves. The

demand curves were estimated assuming elasticity of -0.3
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F. Carbon emission market

According to The Wall Street Journal23, “Power plants produce 39% of U.S. carbon-

dioxide [a green house gas] emissions, and four-fifths of that amount comes from

coal-fired plants. Texas is responsible for 10% of the nation’s total, more than any

other state”.

Electricity generators cause a negative externality emitting carbon-dioxide. In a

competitive market, the optimal outcome can be achieved by charging the Pigouvian

Tax from generators. In equilibrium, the Pigouvian Tax is equal to the social cost

of having an extra marginal amount of CO2 in the atmosphere. Since there is no

objective way to identify the social cost in this case, this section presents an exercise

that attempts to provide a rough indicator of the sensibility of the results presented

in Table XVII to the establishment of a carbon emission market.

The marginal cost of a gas or coal unit, already installed or considered for in-

vestment, is calculated according to the equation

MgC = original MgC +

[carbon emission factor (in tonne/Btu)] x [heat rate (in Btu/MW)]

x [carbon allowance’s price (in dollar/tonne)].

Data for 2004’s carbon emission factors are provided in the Energy Information

Administration webpage24. For natural gas, the factor is 116.97 pounds of CO2 per

million btus. The relevant factors for coal units are 205.45, 212.58 and, 215.53 pounds

of CO2 per million btus for bituminous, sub-bituminous and lignite, respectively.

As an exercise, I assume two possible price levels for carbon allowances. The

23“As Emission Restrictions Loom, Texas Utility Bets Big on Coal” by Rebecca
Smith; July, 21st of 2006.

24See http://www.eia.doe.gov/cneaf/electricity/epa/epata1p3.html. Released in
November, 2005.
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first price level is set equal to the average future price of carbon allowances in the EU

market from 2006 until 2011. That is, 18.29 �/tonne of CO2
25 or 23.44 US$/tonne of

CO2
26. The second price level is equal to the first price level multiplied by two, i.e.,

46.88 US$/tonne of CO2.

Tables XIX and XX present the investment profiles that maximizes the social

surplus in each corresponding year assuming the carbon allowances price of 23.44

and 46.88 US$/tonne of CO2, respectively. Obviously, it is not optimal to invest in

combined cycle or combustion turbine units. The results presented in the previous

section, Table XVII, imply that it is not optimal to invest in gas units even if invest-

ment in coal units is not possible. An upward shift of the marginal cost curve and

increase in the marginal cost of gas units can only reduce the social surplus associated

to an investment in those units. Therefore, the optimal investment in gas units can

not be positive after the introduction of carbon emission costs.

The investment in coal units that maximizes social surplus drops significantly

with the introduction of carbon emission costs. The corresponding social surpluses

drop even more.

For any demand curve, the social surplus of an extra coal unit is given by the

area between the marginal cost curves before and after adding the extra unit to the

system that lies below the demand curve. Consideration of carbon emission costs

causes an upward shift of the marginal cost curve. First, imagine a parallel upward

25In September, 6th of 2006, the annual future prices posted on the energy ex-
change website http://www.eex.de/index.php were 16.59, 17.08, 18.13, 18.63, 19.32
and, 19.97 �/tonne of CO2 for all years from 2006 until 2011. Those prices are
similar to the ones available in a leading platform for carbon emissions trading,
http://www.ecxeurope.com. Since the future volumes are not available, I calculated
a simple mean for all years.

26The Wall Street Journal exchange rate in the edition of September, 6th of 2006
was 1.282 US$/�.
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Table XIX. Investment profile that maximizes social surplus in the corresponding year

and respective social surplus assuming the price of carbon allowance of

23.44 US$/tonne of CO2

year coal 
combined 
cycle 

combustion 

turbine  

social surplus per 
consumer in the 

corresponding year 

social surplus in the 
corresponding year 

  (in MWh) (in MWh) (in MWh) (in dollars) (in thousands of dollars) 

Elasticity = -0.025 

2006 12,147 0 0 77.66 1,553,106 

2007 12,797 0 0 77.21 1,544,113 

2008 11,651 0 0 52.44 1,048,725 

2009 10,819 0 0 32.53 650,676 

2010 7,296 0 0 8.45 168,967 

2011 0 0 0 0.00 0 

Elasticity = -0.15 

2006 14,521 0 0 97.31 1,946,169 

2007 15,251 0 0 96.11 1,922,221 

2008 14,190 0 0 67.15 1,342,932 

2009 13,405 0 0 43.47 869,465 

2010 9,860 0 0 13.75 275,014 

2011 1,383 0 0 0.16 3,220 

Elasticity = -0.3 

2006 17,803 0 0 122.12 2,442,456 

2007 18,594 0 0 119.85 2,396,936 

2008 17,567 0 0 85.80 1,716,019 

2009 16,758 0 0 57.81 1,156,113 

2010 13,173 0 0 21.56 431,224 

2011 4,891 0 0 2.08 41,653 

Elasticity = -0.5 

2006 22,736 0 0 156.99 3,139,807 

2007 23,673 0 0 153.30 3,065,927 

2008 22,530 0 0 112.60 2,251,927 

2009 21,669 0 0 79.42 1,588,400 

2010 17,993 0 0 35.25 705,098 

2011 9,895 0 0 9.24 184,846 
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Table XX. Investment profile that maximizes social surplus in the corresponding year

and respective social surplus assuming the price of carbon allowance of

46.88 US$/tonne of CO2

year coal 
combined 
cycle 

combustion 

turbine  

social surplus per 
consumer in the 

corresponding year 

social surplus in the 
corresponding year 

  (in MWh) (in MWh) (in MWh) (in dollars) (in thousands of dollars) 

Elasticity = -0.025 

2006 9,149 0 0 30.33 606,678 

2007 9,491 0 0 26.28 525,632 

2008 5,913 0 0 5.55 110,967 

2009 0 0 0 0.00 0 

2010 0 0 0 0.00 0 

2011 0 0 0 0.00 0 

Elasticity = -0.15 

2006 10,022 0 0 33.22 664,429 

2007 10,329 0 0 28.50 570,088 

2008 6,534 0 0 6.46 129,105 

2009 0 0 0 0.00 0 

2010 0 0 0 0.00 0 

2011 0 0 0 0.00 0 

Elasticity = -0.3 

2006 11,130 0 0 36.82 736,382 

2007 11,483 0 0 31.26 625,126 

2008 7,345 0 0 7.55 151,011 

2009 0 0 0 0.00 0 

2010 0 0 0 0.00 0 

2011 0 0 0 0.00 0 

Elasticity = -0.5 

2006 12,744 0 0 41.83 836,517 

2007 13,115 0 0 35.16 703,110 

2008 8,525 0 0 9.06 181,172 

2009 0 0 0 0.00 0 

2010 0 0 0 0.00 0 

2011 0 0 0 0.00 0 
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shift. Considering or not carbon emission costs, the area between the marginal cost

curves before and after the addition of one coal unit to the system is the same but,

for each demand curve, the area between the marginal cost curves that lies below

the demand curve is smaller for the upward-shifted marginal cost curve. Therefore,

introduction of carbon emission costs reduces the social surplus of an extra coal

unit and, consequently, decreased the investment that maximizes social surplus. The

impact is even greater because the upward shift in the marginal cost curve is not

parallel. The marginal cost of coal units increased more than the marginal cost of

gas units after the introduction of carbon emission costs.

In average, over the years, the low segment of the marginal cost curve is shifting

upward because of the increase in coal’s price and; the higher segments are shifting

downward because of the decrease in gas’s price. Everything else kept constant,

this continuous increase in the low segment and decrease of the high segments of

the marginal cost curve will reduce the social surplus associated to extra coal units.

Consequently, the investment that maximizes the social surplus decreases over the

years.

The factors that contributed to make the estimated investment slightly smaller

for later years in Table XVII, have their impact magnified for higher carbon allowances

costs, causing a substantial dispersion between the investment that maximizes the

social surplus over the years considered. In particular, for the higher price of carbon

allowances, 46.88 US$/tonne of CO2, the investment that maximizes social surplus

drops to zero in the last three years considered in the estimations. This result is not

surprising. Note from Figure 30 that for most demand curves, the social surplus of

adding the first extra coal unit to the system is mainly determined by the first tall

rectangle between the marginal cost curves before and after adding the extra unit.

Besides, the social surplus of adding the first coal unit to the system is extremely



126

similar to the social surplus of adding the second coal unit to the system. In fact, the

social surplus of extra coal units does not change much until the system’s marginal

cost curve start crossing the demand curves around the point in which they are highly

concentrated. At this point, for an increasing number of demand curves, the first tall

rectangle between the two marginal cost curves, before and after the addition of one

extra coal unit, no longer lies below the demand curve. Until the system reaches

the point in which the demand curves are highly concentrated, the social surplus

associated to the first extra coal units is similar to the social surplus of the second

extra unit and, so on. Therefore, if it is welfare enhancing to invest in one extra coal

unit, it is welfare enhancing to invest in several units. That is also the reason of the

sudden drop in the investment that maximizes the social surplus from 2010 to 2011

for the lower price of carbon allowances and elasticity -0.025.

For the carbon allowance price of 23.44 US$/tonne of CO2, the investment in

coal units that generate positive social surplus for all years considered, in MW, are

zero, 1,383, 4,891 and 9,895 for the elasticities 0.025, 0.15, 0.3 and 0.5, respectively.

For the carbon allowance price of 46.88 US$/tonne of CO2, no positive investment in

coal units generates positive social surplus for all years considered is zero.

Consideration of carbon emission costs introduced a greater variability of the

results to changes in the parameters of the model. If the parameters experience

changes of the same magnitude for the years following 2011, the investment profile

that maximizes social surplus in subsequent years can be very different from the

investment profile obtained for the years from 2006 until 2011. The sensibility of the

results to changes in the parameters of the model, compromise attempts to predict

the optimal investment based on the results from 2006 until 2011. Nevertheless, one

can argue that the increase in the expected price of coal and the stabilization of

the expected price of gas after 2011 (see Figure 21) will contribute to reduce the
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investment that maximizes social surplus for a few years following 2011.

G. Conclusion

The paper presents investment profiles in electricity generation that provides positive

social surplus for every year from 2006 to 2011. During the covered period it is not

optimal to invest in combined cycle or combustion turbine units. The investment in

coal units that generate positive social surplus for all years considered ranges from

about 12 to 37 thousand MW depending on the assumption about demand elasticity.

The associated efficiency gains lie between, approximately, 43 and 177 dollars per

consumer a year. Once the social costs associated to carbon emission are considered,

the investment in coal units that maximizes social surplus drops substantially. For

the carbon allowance price of two times the level in Europe, the optimal investment

in coal units is zero. Consideration of carbon emission costs does not transform cycle

or combustion turbine technologies in attractive technologies for investment.

One limitation of the paper is that the starting up cost, the cost that each unit

faces when it is turned on, is assumed to be zero. Another limitation is that demand

and costs are assumed to be known with certainly.

Only three technologies qualified to receive positive investment are considered.

According to Borenstein [8], they represent three technology types: baseload, mid-

merit, and peak. Under this interpretation, the results presented represent the esti-

mated investments that generates positive social surplus for three classes of technol-

ogy. The most informative estimation would specify the optimal investment range

for all technologies qualified to receive positive investment. However, such detailed

result demands an estimation of the annual capital cost for all technologies qualified

to receive positive investment.
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Significant investment in coal units would most likely change the future prices

of fuels and, consequently, the optimal investment. Instead of modeling price of fuels

as a function of the investment, it was assumed that the future prices of fuel would

remain constant for all investment levels.

The cost of achieving the optimal outcome is assumed to be zero. It is possible

that the benefit of implementing the optimal investment does not pay its cost. A

perfectly competitive market implies charging the Real Time Price (RTP) from all

consumers. The society cost of adopting the RTP includes the cost of measuring

consumption in short time intervals, the consumer’s costs of constantly checking prices

and, the disutility generated by the introduction of uncertainty about future prices. If

this cost is significant, maximization of the social welfare may point to some variation

of the time-of-use (TOU)27approach that, although, does not generate the efficient

investment, is cheaper to implement.

An interesting topic for future work would be to measure the performance in

terms of efficiency of the alternative TOU rates. To estimate the magnitude of the

gap between expected and optimal investment under alternatives TOU rates; and the

welfare loss implied by this gap. In other words, what share of the social welfare

that the optimal investment would yield can be captured by adopting specific TOU

rates. If RTP is an unattainable solution or costly to implement, maximization of the

social welfare in the long run demands knowledge about the relative performance of

alternative price approaches in terms of optimal investment.

27The TOU rates consist of the pre-established rates that differ depending on the
season of the year, day of the week, and time of the day. There are many possible
rates for different TOU periods. Even imposing revenue neutrality, one is still left
with several rates. Borenstein [9] suggests some TOU rates that satisfy some extra
conditions like no cross-subsidies among consumers.
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CHAPTER V

CONCLUSION

This dissertation contains three essays. The first and second essays extend the re-

search on intergenerational mobility in Brazil to three generations within the same

family.

Using the three-generations data set to estimate the main equation yielded by

a modified version of Becker-Tomes model, I find that family background explains

34.9% of the variation in earnings among young males living with their parents. If

it were possible to eliminate the differences in investment in the children’s human

capital, the variation in earnings would fall by no more than 21.1%. Additionally,

if there were no differences in endowments among children, the variation in earnings

would fall by no less than 26%.

I examine the evolution of the intergenerational elasticity across generations. I

find that the intergenerational elasticity between grandfather and grandsons is about

the same as the elasticity between father and grandsons. This result may be driven

by the high intergenerational elasticity between grandfather and fathers (0.89) and

by the skipping generation effect. Estimation results suggest that grandfathers may

have a direct impact on their grandsons’ earnings through a channel other than the

fathers. In other words, the grandfathers with high earnings have a direct positive

impact on their grandsons’ earnings.

This study extends the research on intergenerational mobility in Brazil by exam-

ining the relationship between fertility and mobility. Controlling for fathers’ percentile

in the earnings distribution, each additional sibling has a negative impact on the sons’

percentile. Remains for future work to investigate the sources of this negative impact

and, how the magnitude of the impact relates to the fathers’ percentile and number
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of siblings.

This study extends the research on intergenerational mobility in Brazil by exam-

ining the implications of marriage on mobility. The estimated elasticity in earnings

between fathers and sons is about the same as the elasticity between fathers-in-law

and sons-in-law. Remains for future work to determine if these results express that

individuals marry in the same economic class or if father-in-law is an important de-

terminant of the sons-in-law’s earnings.

The third essay presents a method to estimate the optimal investment in each

technology available to generate electricity. I apply this method to estimate an in-

dicator of the optimal investment in electricity generation in Texas and associated

efficiency gains. The estimation considers the expected entry and exit of generation

plants, future fuel prices, different demand elasticities, expected demand and carbon

allowance prices. The method and the estimations assume no uncertainty. Remains

for future work to include uncertainty about demand and costs.
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[18] S. G. Ferreira, F. A. Veloso, Intergenerational mobility of wages in Brazil, Brazil-

ian Review of Econometrics. 26 (2006) 181-211.



133

[19] N. D. Grawe, Lifecycle bias in estimates of intergenerational earnings persistence,

Labour Economics, 13 (2006) 551-570.

[20] W. H. Greene, Econometric Analysis, fifth ed., Upper Saddle River, Prentice

Hall, New Jersey, 2003.

[21] S. Haider, G. Solon, Life-cycle variation in the association between current and

lifetime earnings, American Economic Review, 96 (2006) 1308-1320.

[22] J. W. Hardin, The robust variance estimator for two-stage models, Stata Journal,

2 (2002) 253-266.

[23] J. J. Heckman, Sample selection bias as a specification error, Econometrica, 47

(1979) 153-161.

[24] A. R. Hole, Calculating Murphy-Topel variance estimates in Stata: a simplified

procedure, National Primary Care Research and Development Centre, Centre for

Health Economics, University of York, York, 2006.

[25] A. Hortacsu, S. Puller, Understanding strategic bidding in multi-Unit auctions:

a case study of the Texas electricity spot market, RAND Journal of Economics,

39 (2008) 86-114.

[26] J. Ishii, Technology adoption and regulatory regimes: gas turbine electricity

generators from 1980 to 2001, CSEM Working Paper CSEMWP-128, University

of California Energy Institute, University of California, Berkeley, 2004.

[27] P. Joskow, J. Tirole, Reliability and competitive electricity market, Rand Journal

of Economics, 38 (2007) 60-84.

[28] B. Jovanovic, Job Matching and the Theory of Turnover. The Journal of Political

Economy, 87 (1979) 972-990.



134

[29] A. Mayer, Intergenerational relationships over the lifecycle and the determination

of wages, Journal of Applied Economics, forthcoming.

[30] K. M. Murphy, Welch, Finis, Empirical age-earnings profiles, Journal of Labor

Economics, 8 (1990) 202-229.

[31] R. H. Patrick, F. A. Wolak, Estimating the customer-level demand for electricity

under real-time market prices, NBER working paper 8213, National Bureau of

Economic Research, Cambridge, 2001.

[32] H. E. Peters, Patterns of intergenerational mobility in income and earnings, The

Review of Economics and Statistics, 74 (1992) 456-466.

[33] S. Puller, Pricing and firm conduct in California’s deregulated electricity market,

Review of Economics and Statistics, 89 (2007) 75-87.

[34] G. Solon, Intergenerational mobility in the labor market, in: O. Ashenfelter, D.

Card (Eds.), Handbook of Labor Economics, Princeton University, Princeton,

1999.

[35] G. Solon, Cross-Country Differences in Intergenerational Earnings Mobility, The

Journal of Economic Perspectives, 16 (2002) 59-66.

[36] J. R. Warren, R. M. Hauser, Social stratification across three generations: new

evidence from the Wisconsin Longitudinal Study, American Sociological Review,

62 (1997) 561-572.

[37] C. D. Wolfram, Measuring duopoly power in the British electricity spot market,

American Economic Review, 89 (1999) 805-826.



135

APPENDIX A

MATHEMATICAL DERIVATIONS FROM CHAPTER II

The child at time t=0 will be a parent at time t=1 and will solve the same

maximization problem, with the proper adjustments for time index. At t=1, the

optimal choice of I2 will depend on I1. Let I∗2 (I1) be the parent’s best response

function at t=1. For every investment made in the parent when he/she was a child

at t=0, I∗2 (I1) gives the optimal investment the parent should make in the child at

t=1. Given that I2 is a function of I1, a more convenient way of writing the equation

2.8 would be

max
{I1}

{(1− β)ln((1 + r)I0 + A0 − I1) + βln((1 + r)I1 + a1 − I∗e0
2 (I1))} (A.1)

At t=0, parent solves the maximization problem for t=1

max
{I2}

{(1− β)ln((1 + r)I1 + a1 − I2) + βln((1 + r)I2 + ae0
2 − I∗3 (I2))} (A.2)

At t=0, parent solves the maximization problem for t=2

max
{I3}

{(1− β)ln((1 + r)I2 + ae0
2 − I3) + βln((1 + r)I3 + ae0

3 − I∗4 (I3))} (A.3)

In general, at t=0 parent will solve the maximization problem for any time t ∈ N,

max
{It+2}

{(1−β)ln((1+ r)It+1 +ae0
t+1− It+2)+βln((1+ r)It+2 +ae0

t+2− I∗t+3(It+2))} (A.4)

The first order condition of this problem is

(1− β)

(1 + r)It+1 + ae0
t+1 − It+2

=
β(1 + r − I∗

′
t+3(It+2))

(1 + r)It+2 + ae0
t+2 − I∗t+3(It+2)

For every t ∈ N, the same maximization problem will be solved. So, for all t, the

solution should be the same. Consider the following guess for the solution of the



136

above equation, Ij+2 = bIj+1 + c for all j ∈ N. In particular, It+2 = bIt+1 + c and

It+3 = bIt+2 + c. Substitute the former two equations in the above equation to obtain

(1− β)

(1 + r)It+1 + ae0
t+1 − bIt+1 − c

=
β(1 + r − b)

(1 + r)(bIt+1 + c) + ae0
t+2 − bIt+2 − c

Solve for It+2 as a function of It+1 to find

It+2 =
[(1− β)(1 + r)b− β(1 + r − b)2]

(1− β)b
It+1 +

(1− β)rc + (1− β)ae0
t+2 − β(1 + r − b)(ae0

t+1 − c)

(1− β)b

According to the guess, the coefficient on It+1 should be equal to b and the second

term on the right hand side should be equal to c,

b =
[(1− β)(1 + r)b− β(1 + r − b)2]

(1− β)b

c =
(1− β)rc + (1− β)ae0

t+2 − β(1 + r − b)(ae0
t+1 − c)

(1− β)b

Solve for b and c, to find two set of solutions,

b = 1 + r and c = ae0
t+2

b = β(1+r) and c = β(1+r)
r

ae0
t+1− 1

r
ae0

t+2.

So, the guess is correct.

The first set of solutions is not an interesting case because it would imply that

average endowed parents with average market luck and average endowed children

invest all their earnings in their children.

It+2 = bIt+1 + c for the second set of solution is

It+2 = β(1 + r)It+1 +
β(1 + r)

r
ae0

t+1 −
1

r
ae0

t+2
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For t=0,

I2 = β(1 + r)I1 +
β(1 + r)

r
a1 − 1

r
ae0

2

Substitute ae0
2 by δa1 + θa0 in the above equation to find

I2 = β(1 + r)I1 − δ − β(1 + r)

r
a1 − θ

r
a0

At t=0, parent maximizes equation (A.1). Substitute the above equation in equation

(A.1) to obtain

max
{I1}

{(1−β)ln((1+r)I0 +A0−I1)+βln((1+r)(1−β)I1 +
δ + r − β(1 + r)

r
a1)+

θ

r
a0}

The first order condition of this problem is

(1− β)

(1 + r)I0 + A0 − I1

=
β(1 + r)(1− β)

(1 + r)(1− β)I1 + δ+r−β(1+r)
r

a1 + θ
r
a0

Solve for I1 to find

I1 = β((1 + r)I0 + A0) +
β(1 + r)− δ − r

r(1 + r)
a1 +

θ

r(1 + r)
a0

Equivalently,

I1 = βy0 +
β(1 + r)− δ − r

r(1 + r)
a1 +

θ

r(1 + r)
a0
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Table XXI. Estimation of equation (iv) allowing for non-linearities

(a) OLS
(b) Heckman Two Step Estimation
(c) Heckman Maximum Likelihood Estimation

(a) (b) (c)
Dependent Variable: Grandson’s Earnings
Grandfather’s Earnings 1.802*** 1.834*** 1.836***

(0.254) (0.191) (0.255)
Grandfather’s Earnings Squared –0.137*** –0.139*** –0.140***

(0.021) (0.016) (0.021)
Father’s Earnings 0.235*** 0.235*** 0.235***

(0.015) (0.011) (0.015)
Son’s Years of Education 0.059*** 0.060*** 0.060***

(0.003) (0.003) (0.003)
Father’s Years of Education –0.007** –0.006** –0.006*

(0.003) (0.003) (0.003)
Constant –0.919 –1.047* –1.051

(0.762) (0.574) (0.765)
Older Cohort 0.313*** 0.273*** 0.274***

(0.019) (0.020) (0.020)
Selection Equation
Married –2.570*** –2.553***

(0.042) (0.035)
Age –0.157*** –0.156***

(0.007) (0.004)
Enrolled in School 0.144*** 0.177***

(0.054) (0.031)
Father’s Earnings (Imputed) 0.190*** 0.175***

(0.027) (0.018)
Constant 3.474*** 3.527***

(0.184) (0.111)
R2 0.395
LR Test of Indep. Equations 21.667
N. of Observations Uncensored 5,125 5,125
N. of Observations 5,125 10,176 10,176
Source: PNAD.
Note: Standard errors in parentheses. Cluster: family (except for the
two step regression). Omitted age: 16-21 years old.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Fig. 31. Average earnings of sons by living arrangements, marital status and age
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APPENDIX B

APPENDIX FROM CHAPTER III

Table XXII. Racial distribution of fathers and sons by year (percentages)

1976
Father’s Race

Son’s Race White or Asian Black or Indian Mixed
White or Asian 87.95 1.35 10.70
Black or Indian 14.17 73.68 12.14
Mixed 17.71 7.70 74.59
Number of Observations: 3,628

1990
Father’s Race

Son’s Race White or Asian Black or Indian Mixed
White or Asian 88.49 0.56 10.95
Black or Indian 4.27 85.85 9.88
Mixed 12.92 3.49 83.58
Number of Observations: 13,017

1992
Father’s Race

Son’s Race White or Asian Black or Indian Mixed
White or Asian 86.01 0.68 13.31
Black or Indian 5.53 81.90 12.57
Mixed 14.07 4.61 81.32
Number of Observations: 13,195
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Table XXII. Continued

1993
Father’s Race

Son’s Race White or Asian Black or Indian Mixed
White or Asian 85.82 0.70 13.48
Black or Indian 4.74 82.98 12.28
Mixed 14.73 4.39 80.89
Number of Observations: 13,707

1995
Father’s Race

Son’s Race White or Asian Black or Indian Mixed
White or Asian 87.21 0.48 12.31
Black or Indian 4.06 84.63 11.31
Mixed 14.41 3.98 81.61
Number of Observations: 14,492

1996
Father’s Race

Son’s Race White or Asian Black or Indian Mixed
White or Asian 87.06 1.06 11.88
Black or Indian 6.42 81.53 12.05
Mixed 14.66 5.25 80.10
Number of Observations: 14,434
Source: PNAD.
Note: Only sons aged 13 to 17 are considered in order to
calculate the percentages.
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Other checks

Adding noise to the fathers’ earnings

Because the fathers’ earnings are estimated, the variance of the distribution of

the fathers’ earnings is probably lower for the estimated earnings than for the true

earnings. The greater dispersion of the distribution of the sons’ earnings in September

of 1996 compared to the estimated fathers’ earnings may cause an upward bias in the

estimate of the intergenerational elasticity. To address the problem, I now add noise

to the estimated fathers’ earnings. First, I collect the error terms of males in the

same experience range of the fathers in the first step regression. Second, I separate

the error terms in groups according to the male’s years of schooling. Third, for each

group, I build a new sample randomly selecting error terms with replacement from

the original sample. Last, I allocate those error terms to the fathers according to the

fathers’ years of schooling.

The estimate of the intergenerational elasticity is presented in Table XXIV.

There are some main differences between the results in Tables XI and XXIV. First,

the estimate of γ in Table XXIV, 0.429, is much lower than in Table XI, 0.847. It is

also lower across cohorts, race, region, and in rural and urban areas. The estimate of

γ is now lower if the fathers’ earnings are below the median, significantly lower for

blacks and individuals of mixed race than other race groups and significantly lower

in the south.

Dealing with zero earnings

In all estimations, I drop from the data the sons with zero earnings in September

of 1996 because zero can not be a proxy for their lifetime earnings. Similarly, I

assume the father was temporarily unemployment if he was not working at the time

his son was aged 15. Therefore, I do not consider the father’s employment status when
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Table XXIV. OLS estimation of the intergenerational elasticity in earnings after

adding noise to the fathers’ earnings

(A)

(a) (b) (c)
Dependent Variable: Son’s Earnings
Fathers’ Earnings with Noise 0.479*** 0.292*** 0.299***

(0.006) (0.020) (0.008)
Father’s Earnings*Son Aged 25-34 0.121***

(0.022)
Father’s Earnings*Son Aged 35-44 0.221***

(0.022)
Father’s Earnings*Son Aged 45-54 0.278***

(0.024)
Father’s Earnings*Son Aged 55-64 0.256***

(0.027)
Father’s Earnings*Father’s Earn. –0.058***
Below the Median (0.014)
Fathers Earnings Below the Median –0.320***

(0.076)
Constant 2.544*** 3.640*** 3.912***

(0.237) (0.262) (0.231)
N. of Observations 36,705 36,705 36,705
Source: PNAD.
Note: Standard errors in parentheses. Omitted cohort in column (b):
sons aged between 16 and 24. In all Columns, coefficients of indicator
variables for every age of the sons are not presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Table XXIV. Continued

(B)

(d) (e) (f)
Dependent Variable: Son’s Earnings
Fathers’ Earnings with Noise 0.429*** 0.405*** 0.411***

(0.007) (0.009) (0.006)
Father’s Earnings*Black/Mixed –0.048***

(0.011)
Black/Mixed –0.189***

(0.064)
Father’s Earnings*North –0.072***

(0.024)
Father’s Earnings*Northeast 0.118***

(0.014)
Father’s Earnings*South –0.042***

(0.015)
Father’s Earnings*Midwest –0.031*

(0.018)
Father’s Earnings*Rural –0.030**

(0.015)
Rural –0.574***

(0.081)
Constant 3.129*** 3.206*** 3.081***

(0.232) (0.235) (0.226)
N. of Observations 36,705 36,705 36,705
Source: PNAD.
Note: Standard errors in parentheses. Omitted region in column (b):
Southeast. In all Columns, coefficients of indicator variables for every
age of the sons are not presented. Coefficients of indicator variables for
regions in column (b) are not presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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estimating a fathers’ earnings. Now, I redo the estimations including the unemployed

sons1. I replace their zero earnings by 1, so their log-earnings are equal to zero. To

be consistent, I also replace the log-earnings of a father by zero if he was not working

at the time the son was aged 15. Because the sample has many outliers–father and

son pairs with one of them with positive earnings and the other with zero earnings–I

use median estimation which is less sensitive to outliers than OLS estimation. The

estimates are presented in Table XXV. There are three main differences between the

results in Table 2 and A5. First, the estimate of γ, 0.4, is lower than the previous

estimate, 0.847. The estimates of γ is also lower across cohorts, race, region, and in

rural and urban areas. Second, the estimate of γ differs significantly across races. It

is lower for blacks and individuals of mixed race than other race groups. Third, the

estimate of γ is no longer significantly lower in the north than in the southeast.

Appropriate age interval of the sons

According to Haider and Solon (2005), the attenuation bias caused by using one-

year-earnings as a proxy for lifetime earnings is small for sons in their early thirties

and mid forties. Their result applies to males born in US between 1931 and 1933.

I restrict the sample to males aged 31 to 45 to check if the estimates change. As

shown in Table XXVI the results are similar except that the estimate of γ tends to

be slightly higher for the restricted sample. Another difference is that the estimate

of γ is significantly higher for blacks and individuals of mixed race than other race

groups.

1A son is considered unemployed if he does not have an occupation, is not enrolled
in school and was engaged in at least one activity related to job search in the reference
week.
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Table XXV. Estimation of the intergenerational elasticity in earnings including the

observations with zero earnings of unemployed fathers and sons

(A)

(a) OLS
(b)-(f) Median Regressions

(a) (b) (c)
Dependent Variable: Son’s Earnings
Father’s Earnings 0.249*** 0.402*** 0.197***

(0.01) (0.00) (0.02)
Father’s Earnings*Son Aged 25-34 0.130***

(0.02)
Father’s Earnings*Son Aged 35-44 0.277***

(0.02)
Father’s Earnings*Son Aged 45-54 0.371***

(0.02)
Father’s Earnings*Son Aged 55-64 0.256***

(0.03)
Adjusted R2 0.068
Pseudo R2 0.056 0.059
N. of Observations 38,295 38,295 38,295
Source: PNAD.
Note: Standard errors in parenthesis. Omitted age: 16-24 years
old. In all Columns, coefficients for constant and indicator vari-
ables for age are not presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Table XXV. Continued

(B)

(d) (e) (f)
Dependent Variable: Son’s Earnings
Father’s Earnings 0.350*** 0.240*** 0.270***

(0.01) (0.01) (0.01)
Father’s Earnings*Black/Mixed –0.183***

(0.01)
Father’s Earnings*North –0.012

(0.02)
Father’s Earnings*Northest 0.235***

(0.01)
Father’s Earnings*South 0.016

(0.01)
Father’s Earnings*Midwest –0.047***

(0.02)
Father’s Earnings*Rural 0.120***

(0.02)
Pseudo R2 0.087 0.087 0.105
N. of Observations 38,295 38,295 38,295
Source: PNAD.
Note: Standard errors in parenthesis. Omitted region: Southeast.
In all columns, coefficients of indicator variables for every age of the
sons are not presented. Coefficients of indicator variables for regions
in column (e) are not presented. Coefficient of indicator variable for
rural areas in column (f) is not presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Table XXVI. OLS estimation of the intergenerational elasticity in earnings restricting

the sample to sons aged 31 to 45

(A)

(a) (b) (c)
Dependent Variable: Son’s Earnings
Father’s Earnings 0.853*** 0.806*** 0.645***

(0.024) (0.023) (0.018)
Father’s Earnings*Son Aged 25-34 0.097***

(0.021)
Father’s Earnings*Father’s Earn. 0.664***
Below the Median (0.072)
Fathers Earnings Below the Median –3.797***

(0.390)
Constant 1.104*** 1.378*** 2.454***

(0.156) (0.152) (0.117)
Adjusted R2 0.287 0.288 0.302
N. of Observations 17,861 17,861 17,861
Source: PNAD.
Note: Murphy-Topel standard errors in parenthesis. Omitted cohort in
column (b): sons aged between 31 and 37. Coefficients for indicator
variables for every age of the sons are not presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Table XXVI. Continued

(B)

(d) (e) (f)
Dependent Variable: Son’s Earnings
Father’s Earnings 0.756*** 0.763*** 0.726***

(0.021) (0.022) (0.019)
Father’s Earnings*Black/Mixed 0.063**

(0.026)
Black/Mixed –0.653***

(0.144)
Father’s Earnings*North –0.113**

(0.045)
Father’s Earnings*Northeast 0.218***

(0.029)
Father’s Earnings*South –0.046

(0.030)
Father’s Earnings*Midwest –0.085**

(0.036)
Father’s Earnings*Rural 0.282***

(0.038)
Rural –2.197***

(0.210)
Constant 1.793*** 1.724*** 1.958***

(0.141) (0.140) (0.126)
Adjusted R2 0.306 0.309 0.349
N. of Observations 17,861 17,861 17,861
Source: PNAD.
Note: Murphy-Topel standard errors in parenthesis. Omitted region in
column (b): Southeast. In all columns, coefficients of indicator variables
for every age of the sons are not presented. Coefficients of indicator
variables for regions in column (b) are not presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Fathers’ earnings imputed ignoring differences in earnings across race and

places of residence

I argue that ignoring the father’s race and state of residence when imputing

the father’s earnings may cause a downward bias in the estimated intergenerational

elasticity and lead to incorrect conclusions about the difference in mobility across races

and regions. To avoid this problem, the first step regression includes controls for race

and state when imputing the fathers’ earnings. The disadvantage of controlling for

race and state is that for many years the variable race is not available in the data

set. For the sake of comparison, I now estimate the fathers’ earnings without controls

for race and place of residence. In this case, the used PNAD’s are 1976-9, 1981-90,

1992-3, 1995 and 1996. The estimates of the intergenerational elasticity are presented

in Table XXVII. The estimated intergenerational elasticity in earnings, about 0.78,

is lower than the elasticity in Table XI, 0.847. It is also lower than in Table XI across

cohorts, race, region, in rural and urban areas, for low-earnings and high-earnings

groups. Another difference is that mobility among the sons living in the midwest is

no longer significantly different from the southeast.

Dropping the sons living in rural areas in the north and the midwest

In the early years that the PNAD was conducted, the sample is not fully rep-

resentative of the rural areas in the north and midwest. If the earnings in the areas

not fully representative are lower than in the remaining areas, the estimated fathers’

earnings in these regions may be upward biased. As shown in Table XXVIII, no sys-

tematic difference emerges after excluding the rural areas in the north and midwest

from the sample. The estimates are similar except that the estimate of γ is signifi-

cantly higher for blacks and individuals of mixed race than other race groups, for a

10% significance level.
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Table XXVII. OLS estimation of the intergenerational elasticity in earnings – fathers’

earnings imputed ignoring differences in earnings across race and state

(A)

(a) (b) (c)
Dependent Variable: Son’s Earnings
Father’s Earnings 0.777*** 0.526*** 0.633***

(0.010) (0.028) (0.009)
Father’s Earnings*Son Aged 25-34 0.162***

(0.030)
Father’s Earnings*Son Aged 35-44 0.290***

(0.031)
Father’s Earnings*Son Aged 45-54 0.377***

(0.033)
Father’s Earnings*Son Aged 55-64 0.359***

(0.039)
Father’s Earnings*Father’s Earn. 0.173***
Below The Median (0.062)
Father’s Earnings Below The Median –1.191***

(0.316)
Constant 1.092*** 2.462*** 2.021***

(0.230) (0.270) (0.229)
Adjusted R2 0.269 0.274 0.281
N. of Observations 36,705 36,705 36,705
Source: PNAD.
Note: Murphy-Topel standard errors in parenthesis. Omitted cohort in
column (b): sons aged between 16 and 24. In all columns, coefficients
for indicator variables for every age of the sons are not presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Table XXVII. Continued

(B)

(d) (e) (f)
Dependent Variable: Son’s Earnings
Father’s Earnings 0.703*** 0.679*** 0.664***

(0.010) (0.012) (0.009)
Father’s Earnings*Black/Mixed 0.000

(0.015)
Black/Mixed –0.445***

(0.087)
Father’s Earnings*North –0.103***

(0.030)
Father’s Earnings*Northeast 0.206***

(0.018)
Father’s Earnings*South 0.010

(0.019)
Father’s Earnings*Midwest 0.005

(0.023)
Father’s Earnings*Rural 0.101***

(0.025)
Rural –1.174***

(0.135)
Constant 1.769*** 1.878*** 1.831***

(0.224) (0.226) (0.220)
Adjusted R2 0.311 0.324 0.326
N. of Observations 36,705 36,705 36,705
Source: PNAD.
Note: Murphy-Topel standard errors in parenthesis. Omitted region in
column (b): Southeast. In all columns, coefficients of indicator variables
for every age of the sons are not presented. Coefficients of indicator
variables for regions in column (b) are not presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Table XXVIII. OLS estimation of the intergenerational elasticity in earnings after

dropping the rural residencies in the north and midwest

(A)

(a) (b) (c)
Dependent Variable: Son’s Earnings
Father’s Earnings 0.847*** 0.595*** 0.638***

(0.019) (0.027) (0.013)
Father’s Earnings*Son Aged 25-34 0.163***

(0.031)
Father’s Earnings*Son Aged 35-44 0.288***

(0.034)
Father’s Earnings*Son Aged 45-54 0.364***

(0.036)
Father’s Earnings*Son Aged 55-64 0.388***

(0.042)
Father’s Earnings*Father’s Earn. 0.603***
Below the Median (0.050)
Fathers Earnings Below the Median –3.473***

(0.275)
Constant 0.655*** 2.035*** 2.022***

(0.251) (0.270) (0.236)
Adjusted R2 0.302 0.306 0.316
N. of Observations 35,540 35,540 35,540
Source: PNAD.
Note: Murphy-Topel standard errors in parenthesis. Omitted cohort in
column (b): sons aged between 16 and 24. In all columns, coefficients
for indicator variables for every age of the sons are not presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Table XXVIII. Continued

(B)

(d) (e) (f)
Dependent Variable: Son’s Earnings
Father’s Earnings 0.756*** 0.742*** 0.727***

(0.017) (0.017) (0.015)
Father’s Earnings*Black/Mixed 0.034*

(0.018)
Black/Mixed –0.499***

(0.100)
Father’s Earnings*North –0.162***

(0.032)
Father’s Earnings*Northeast 0.195***

(0.021)
Father’s Earnings*South 0.008

(0.021)
Father’s Earnings*Midwest –0.145***

(0.027)
Father’s Earnings*Rural 0.196***

(0.027)
Rural –1.697***

(0.149)
Constant 1.361*** 1.375*** 1.410***

(0.243) (0.242) (0.233)
Adjusted R2 0.320 0.327 0.356
N. of Observations 35,540 35,540 35,540
Source: PNAD.
Note: Murphy-Topel standard errors in parenthesis. Omitted region in
column (b): Southeast. In all columns, coefficients of indicator variables
for every age of the sons are not presented. Coefficients of indicator
variables for regions in column (b) are not presented.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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Replication of Ferreira and Veloso (2006) results

The estimated intergenerational elasticity in earnings in this paper, 0.847, is

higher than the one estimated by Ferreira and Veloso (2006), 0.58. The conclusions

also differ with respect to mobility across race. They find that mobility is higher

among blacks and individuals of mixed race than other race groups, while the results

in this paper are inconclusive about differences in mobility across race. Depending

on the estimation criteria, my estimate of γ for blacks and individuals of mixed races

compared to other race groups is not significantly different (Tables XI and XXVII),

significantly lower (Tables XXIV and XXV) or significantly higher (Table XXVI and

XXVIII).

Differences in the sample and methods may explain the different results. First,

Ferreira and Veloso restrict the sample to males between 25 and 65 years old. Second,

they do not include race and state of residence in the specification used to impute

fathers’ earnings. Third, their sample consist of males working at least 40 hours a week

and living in urban areas. Forth, their specification includes indicator variables for

region, indicator variables for race, the son’s age and the square of son’s age. Fourth,

they use sample weights in all regressions2. Last, they considered six occupational

categories in the specification used to impute the fathers’ earnings.

Table XXIX shows how the estimate of γ changes as I adopt the same criteria

as Ferreira and Veloso. The first columns show the changes caused by each isolated

difference in estimation criteria. Most of the difference in the estimates are explained

by three differences in estimation criteria: (1) dropping from the sample the sons

working between 15 and 39 hours a week or living in rural areas, (2) inclusion of indi-

2Computation of the coefficients in a regression using sample weights is equivalent
to computation of Generalized Least Square coefficients for a heteroscedasticity case.
Since this is not the case here, sample weights should not be used in the regressions.
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Fig. 32. Male earnings depending on years of experience by educational achievement

cator variables for race and region in the specification and (3) imputing the fathers’

earnings ignoring the difference in earnings across race and state.

Column (f) replicates Ferreira and Veloso estimation criteria except for a few

differences. First, I consider 46 six occupational categories in the specification used

to estimate the fathers’ earnings while they consider 6. Second, I use the PNAD’s

1976-9, 1981-90, 1992-3, 1995 and 1996 to estimate the father’s earnings while they

use the PNAD’s 1976, 1981, 1986, and 1990. Third, they use sample weights in the

regressions. The estimate of γ in column (f), 0.594, is similar to Ferreira and Veloso

estimate, 0.58. Replicating their estimation, I also find that mobility is higher among

blacks and individuals of mixed race compared to other race groups.
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Table XXIX. Replication of Ferreira and Veloso results

Sons Aged 25 to 64
(a) No Restriction Except for the Different Age Interval
(b) Fathers’ Earnings Imputed Ignoring Differences in Earnings across Race
and State
(c) Dropping from the Sample the Sons Working from 15 to 39 Hours a Week
or Living in Rural Residencies
(d) Including Indicator Variables for Region and Race
(e) Replacing Indicator Variables for Cohorts by Son’s Age and Son’s Age
Squared and Using Sample Weights
(f) Applying all Restriction from (a) to (e)

(a) (b) (c) (d) (e) (f)
OLS Estimation
Dependent Variable: Son’s Earnings
Father’s Earn-
ings

0.866*** 0.792*** 0.743*** 0.741*** 0.896*** 0.594***

(0.020MT ) (0.010MT ) (0.014MT ) (0.016MT ) (0.000) (0.000)
Adjusted R2 0.292 0.262 0.264 0.323 0.298 0.305
Mobility across Races
Father’s Earn-
ings

0.770*** 0.713*** 0.666*** 0.744*** 0.780*** 0.606***

(0.018) (0.010) (0.013) (0.016) (0.000) (0.000)
Father’s Earn- 0.041** 0.015 –0.017 –0.011 0.075*** –

0.049***
ings*Black/Mixed (0.019MT ) (0.016MT ) (0.020MT ) (0.018MT ) (0.001) (0.001)
Adjusted R2 0.311 0.304 0.288 0.323 0.320 0.305
N. of Obs. 33,987 33,987 24,519 33,987 16,341,128 11,600,081
Source: PNAD.
Note: Standard errors in parenthesis. The superscript MT stands for Murphy-Topel
standard errors. Coefficients for constant, indicator variables for every age of the
sons in columns (a), (b), (c) and (d), age and age squared of the sons in columns
(e) and (f), indicator variable for race and region in columns (d) and (f) are not
presented. When estimating mobility across race an indicator variable for race is
included the specification.
* significant at 10%, ** significant at 5%, *** significant at 1%.
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