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ABSTRACT

Stochastic Volatility Models

with Persistent Latent Factors:

Theory and Its Applications to Asset Prices. (August 2008)

Hyoung Il Lee, B.A., Seoul National University

Chair of Advisory Committee: Dr. Joon Y. Park

We consider the stochastic volatility model with smooth transition and persistent la-

tent factors. We argue that this model has advantages over the conventional stochastic

model for the persistent volatility factor. Though the linear filtering is widely used

in the state space model, the simulation result, as well as theory, shows that it does

not work in our model. So we apply the density-based filtering method; in particular,

we develop two methods to get solutions. One is the conventional approach using

the Maximum Likelihood estimation and the other is the Bayesian approach using

Gibbs sampling. We do a simulation study to explore their characteristics, and we

apply both methods to actual macroeconomic data to extract the volatility generating

process and to compare macro fundamentals with them.

Next we extend our model into multivariate model extracting common and id-

iosyncratic volatility for multivariate processes. We think it is interesting to apply

this multivariate model into measuring time-varying uncertainty of macroeconomic

variables and studying the links to market returns via a consumption-based asset pric-

ing model. Motivated by Bansal and Yaron (2004), we extract a common volatility

factor using consumption and dividend growth, and we find that this factor predicts

post-war business cycle recessions quite well. Then, we estimate a long-run risk model

of asset prices incorporating this macroeconomic uncertainty. We find that both risk
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aversion and the intertemporal elasticity of substitution are estimated to be around

two, and our simulation results show that the model can match the first and second

moments of market return and risk-free rate, hence the equity premium.
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CHAPTER I

INTRODUCTION

Recently, stochastic volatility models have drawn much attention. It has long been

customary to use ARCH and GARCH-type processes to model volatility in many

economic and financial time series. The ARCH and GARCH-type models were quite

popular and successful. However, it is now widely recognized that volatility is not

entirely predictable and driven by a shock not perfectly correlated with the past values

of the underlying process. The conventional volatility model specifies the conditional

variance of the underlying process as an AR process in logarithm. The motivation

for taking logarithm is clear: It allows us to readily impose the required restriction

that the conditional variances should be positive.

In the chapter II, I consider a new stochastic volatility model possibly with the

leverage effect. In our model, the stochastic volatility is assumed to be generated by

a logistic transformation of an AR latent factor. The logistic function has several

desirable properties to be used in the volatility model. In particular, it may be inter-

preted as representing the volatility levels in two regimes, i.e., high and low volatility

regimes, with smooth transition between them. Indeed, there is a strong evidence

for regime shifting in volatility, as shown by So, Lam and Li (1998). Our model is

different from the usual regime switching model, which presumes an exogenous and

abrupt change in switching regimes. I believe that smooth transition is much more

realistic than discontinuous jump in modelling volatility with regime shifting.

Our stochastic volatility model with logistic volatility function and (nearly) inte-

This dissertation follows the style of Econometrica.
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grated volatility factor yields many interesting time series properties such as volatil-

ity clustering and leptokurtosis. In particular, the sample autocorrelation function

of the process does not decay at all and has a common distribution asymptotically

independent of leads and lags, yielding a very realistic pattern of volatility cluster-

ings. Moreover, the sample kurtosis of the process does not converge to a constant.

Instead it weakly converges to a distribution with support truncated on the left by the

kurtosis of the innovation. Therefore, it is expected to generated scattered numbers

that are all greater than three, the kurtosis of standard normal distribution. This is

quite consistent with common characteristics of many economic and financial data.

To statistically analyze our model, I consider two approaches: The conventional

approach using the density-based Kalman filter, and the Bayesian approach using the

Gibbs sampling. For the first approach, I numerically compute the conditional densi-

ties in the usual three steps, prediction, updating and smoothing, of the Kalman filter.

The unknown parameters are estimated by the maximum likelihood (ML) method

using the numerical likelihood function obtained in implementing the Kalman filter.

The second approach applies the standard Bayesian procedure and estimates the un-

known parameters and latent factor by their posterior means, which are computed

by simulations through Gibbs sampling. The second approach is computationally

more burdensome, but can be more readily extended to a model with multi-factors,

compared with the first approach.

I consider two illustrative empirical examples in the paper. For both examples,

our model and methodology are applied to estimate the unknown parameters and

extract the latent volatility factor. The first example studies the volatility of S&P

500 returns. The results are robust and look very interesting. In particular, the

extracted volatility factor seems to share a common trend with the detrended GDP

series over most of the sample period. The second example examines the volatility
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of dividend growth. The results appear to be quite sensible and unambiguous. The

extracted volatility factor has some obvious common trend as nominal interest rates.

Two of our approaches yield remarkably similar results on the estimation of parameter

values and the extraction of volatility factor. I find that our model and methodology

are very useful in investigating the effect of macroeconomic fundamentals on volatility

of the financial market.

In the chapter III, I try to measure time-varying uncertainty of macroeconomic

variables and studying the links to market returns via estimating a consumption-based

asset pricing model with a non-expected utility function. Time-varying macroeco-

nomic uncertainty is an important ingredient for asset valuation. Due to the na-

ture of aggregate shocks, macroeconomic uncertainty is reflected in equilibrium asset

prices because asset holders will demand some premium for bearing such undiversified

risk. However, macroeconomic uncertainty is not an observable to economists, and

therefore modelling and measuring this uncertainty is a meaningful, yet challenging

task. Furthermore, the most popular macroeconomic asset pricing models identify

consumption growth process as the link between macroeconomic variables and as-

set returns, exploiting the simple and elegant Euler equation of consumption growth

and asset returns. Alas, aggregate consumption is close to a random walk and the

size of unconditional variance of consumption growth is fairly modest to justify high

average equity premium with low and stable interest rates. These puzzles based on

consumption based asset pricing models have been one of the main research ques-

tions in finance and macroeconomics since Hansen and Singleton (1982) and Mehra

and Prescott (1985). In this paper, I tackle this issue by measuring time-varying

uncertainty of macroeconomic variables and studying the links to market returns

via estimating a consumption-based asset pricing model with a non-expected util-

ity function. As the first step, I develop a stochastic volatility model and propose an
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econometric procedure to extract common and idiosyncratic volatility for multivariate

processes. Novel features of our volatility model include a unit root common factor

and logistic volatility function. This setup allows a persistent conditional volatility

shifting between two regimes (high and low uncertainty regimes) with a smooth tran-

sition. The existence of transition period between high and low volatility regimes

implies that economic agents may dislike transition periods because of uncertainty

in regimes that they belong to. Epstein and Zin (1989) show that economic agents

prefer an earlier resolution of uncertainty if risk aversion parameter is bigger than the

reciprocal of elasticity of intertemporal substitution in case of Kreps-Porteus utility

function. Thus, together with this non-expected utility function, our volatility setup

can generate a higher risk premium even with medium level of volatility.

In terms of econometric setup, our volatility model can be regarded as a non-

linear, non-stationary state space model. There are several non-linear filtering tech-

niques in the conventional approach to solve such a stochastic volatility model with

nonlinear measurement equation. But multi-dimensionality of our problem makes

these filtering techniques much more difficult to be applied. To overcome this issue, I

use Gibbs sampling which does not suffer seriously from the curse of dimensionality,

because it utilizes univariate conditional density function. Here I develop an algo-

rithm to filter macroeconomic uncertainty based on the chapter II which studies the

univariate stochastic volatility model with a logistic function.

When I put our methods into data, since I am interested in performances of con-

sumption based asset pricing model, I extract a common and idiosyncratic volatil-

ity factors for consumption and dividend growth. I find that the common factor

delineating ‘macroeconomic uncertainty’ predicts post-war business cycle recessions

quite well. Then, I estimate a long-run risk model of asset prices incorporating this

macroeconomic uncertainty. According to our estimation, both risk aversion and the
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intertemporal elasticity of substitution are estimated around two, and our simulation

results show that the model can match the first and second moments of market return

and risk-free rate, hence explains the equity premium, the risk-free rate puzzle, and

volatility puzzle.

In the chapter IV, I try to compare the performance of the Extended Kalman

Filter (EKF) with the Density-based Nonlinear Kalman Filter (DNF). When the

functional form in the measurement equation is logistic, the EKF is more difficult

to be applied than the DNF because of integrability of the derivative of logistic

function. In other words, Kalman gain disappear as volatility factor goes to high or

low volatility regime. I show this fact by the extensive simulation. First I try to

Monte-Carlo experiments with stationary latent volatility factor and nonstationary

latent volatility factor. I see that nonstationarity makes the EKF estimation poorer

while the DNF has relatively similar results. Secondly, I change the functional form

into power function. I see the DNF’s performance better than the EKF.
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CHAPTER II

STOCHASTIC VOLATILITY MODELS

WITH SMOOTH TRANSITION REGIMES

A. Introduction

Recently, stochastic volatility models have drawn much attention. It has long been

customary to use ARCH and GARCH-type processes to model volatility in many

economic and financial time series. The ARCH and GARCH-type models were quite

popular and successful. However, it is now widely recognized that volatility is not

entirely predictable and driven by a shock not perfectly correlated with the past values

of the underlying process. The conventional volatility model specifies the conditional

variance of the underlying process as an AR process in logarithm. The motivation

for taking logarithm is clear: It allows us to readily impose the required restriction

that the conditional variances should be positive. Several authors including Jacquier,

Polson, and Rossi (1994) use this model to investigate the stochastic volatility of

stock returns.

In the paper, I consider a new stochastic volatility model possibly with the lever-

age effect. In our model, the stochastic volatility is assumed to be generated by

a logistic transformation of an AR latent factor. The logistic function has several

desirable properties to be used in the volatility model. In particular, it may be inter-

preted as representing the volatility levels in two regimes, i.e., high and low volatility

regimes, with smooth transition between them. Indeed, there is a strong evidence

for regime shifting in volatility, as shown by So, Lam and Li (1998). Our model is

different from the usual regime switching model, which presumes an exogenous and

abrupt change in switching regimes. I believe that smooth transition is much more
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realistic than discontinuous jump in modelling volatility with regime shifting.

For all economic and financial time series I investigated, the extracted volatility

factor has the AR coefficient that is extremely close to unity. For practical relevancy, it

seems evident that I need to consider our model with the volatility factor having a root

in a close proximity of the unity. In fact, the exact or near integratedness of volatility

process has been observed widely in many different contexts. In predominantly many

cases, ARCH and GARCH-type models are estimated as being very close to integrated

ARCH and GARCH-type models. The same is true in stochastic volatility models.

For instance, the estimate for the AR coefficient of the log volatility process that

Jacquier, Polson, and Rossi (1994), Jacquier, Polson, and Rossi (2004) obtained for

stock returns was around .95.

Our stochastic volatility model with logistic volatility function and (nearly) in-

tegrated volatility factor yields many interesting time series properties. The reader is

referred to Park (2002) for the details. Indeed, the process generated by our stochas-

tic volatility model has many characteristics that are consistent with what I typically

observe from many economic financial data such as volatility clustering and leptokur-

tosis. In particular, the sample autocorrelation function of the process does not decay

at all and has a common distribution asymptotically independent of leads and lags,

yielding a very realistic pattern of volatility clusterings. Moreover, the sample kur-

tosis of the process does not converge to a constant. Instead it weakly converges to

a distribution with support truncated on the left by the kurtosis of the innovation.

Therefore, it is expected to generated scattered numbers that are all greater than

three, the kurtosis of standard normal distribution. This is quite consistent with

common characteristics of many economic and financial data.

The stochastic volatility model considered previously by Jacquier, Polson, and

Rossi (1994), Jacquier, Polson, and Rossi (2004) and So, Lam, and Li (1998) may be
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viewed as the same model as ours with an exponential volatility function, in place

of a logistic volatility function. The model has several undesirable properties, espe-

cially given the strong empirical evidence for the (near) nonstationarity of volatility

factor. The exponential function is unbounded and too explosive. In the presence

of nonstationarity in volatility factor, the stochastic volatility model with an expo-

nential volatility function generates unrealistically exploding samples as the sample

size increases. Also, the model necessarily implies that the effect of a shock to the

volatility factor is amplified at an exponential rate as the level of volatility increases.

Furthermore, a positive shock to the volatility factor, both direct and indirect through

the leverage effect, always results in a larger effect on volatility level than a negative

shock.

To statistically analyze our model, I consider two approaches: The conventional

approach using the density-based Kalman filter, and the Bayesian approach using the

Gibbs sampling. For the first approach, I numerically compute the conditional densi-

ties in the usual three steps, prediction, updating and smoothing, of the Kalman filter.

The unknown parameters are estimated by the maximum likelihood (ML) method

using the numerical likelihood function obtained in implementing the Kalman filter.

See, e.g., Tanizaki (1996) for a general introduction to the density-based Kalman fil-

ter. The second approach applies the standard Bayesian procedure and estimates the

unknown parameters and latent factor by their posterior means, which are computed

by simulations through Gibbs sampling. Our Bayesian methodology is largely the

same as the one adopted by Jacquier, Polson, and Rossi (1994) and Jacquier, Polson,

and Rossi (2004). The second approach is computationally more burdensome, but

can be more readily extended to a model with multi-factors, compared with the first

approach.

I consider two illustrative empirical examples in the paper. For both examples,
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our model and methodology are applied to estimate the unknown parameters and

extract the latent volatility factor. The first example studies the volatility of S&P

500 returns. The results are robust and look very interesting. In particular, the

extracted volatility factor seems to share a common trend with the detrended GDP

series over most of the sample period. The second example examines the volatility

of dividend growth. The results appear to be quite sensible and unambiguous. The

extracted volatility factor has some obvious common trend as nominal interest rates.

Two of our approaches yield remarkably similar results on the estimation of parameter

values and the extraction of volatility factor. I find that our model and methodology

are very useful in investigating the effect of macroeconomic fundamentals on volatility

of the financial market.

The rest of the paper is organized as follows. In Section B, I introduce our

stochastic volatility model, and compares it with other existing models. In particu-

lar, I parametrically specify the volatility function as a logistic function and introduce

the leverage effect. Then I compare our model with the existing model using an ex-

ponential volatility function, especially by probing what distinctive characteristics

these two models have in contrast to each other. Sections C and D respectively in-

troduce the conventional and Bayesian approaches to statistically analyze our model.

Their algorithms are explained in detail, and some simulation results are presented

to show their performances. Empirical applications are given in Section E. I provide

the empirical results for two illustrative examples, which deal with the stock return

and dividend volatilities respectively. In particular, the extracted volatility factors

are tested to see whether they have common stochastic trends with other observable

macroeconomic variables such as detrended DGP and nominal interest rates. Section

F concludes the paper.
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B. The Model

In this section, I introduce our stochastic volatility model and make comparisons with

other existing models.

1. A Stochastic Volatility Model

I consider the nonlinear nonstationary state-space model given by

yt =
√

f(xt, β) ut,

xt+1 = α xt + vt+1,(2.1)

where I make the following assumptions:

Assumption 1: The volatility function is given by

(2.2) f(xt, β) = µ+
ν

1 + exp(−λ(xt − κ))
,

where β = (µ, ν, λ, κ)′ is a vector of unknown parameters satisfying µ > 0, ν > 0, and

λ > 0.

When I model the volatility, it is plausible to have a lowerbound because the volatility

cannot take negative value and upperbound because explosive volatility has not been

observed given the historical evidence. The parameters µ and µ + ν represent two

asymptotic levels, i.e., low volatility regime and high volatility regime, respectively.

The assumption of positivity of ν makes the logistic function upward sloping and

hence, larger volatility factor means higher volatility. This is not a restriction but for

the convenience because the latent variable will be extracted reversely when logistic

function is downward sloping. Also, since sudden change from one regime into the

other regime is not realistic I need a smooth transition period. The parameters λ and
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κ specify the transition between two regimes, i.e., the speed and the reflection point

of the transition, respectively.1

Park (2002) shows that the model with asymptotically homogeneous functions

of a integrated process has several nice statistical properties. First, the sample au-

tocorrelations of the squared processes have the same random limit for all lags i.e.,

strong persistence. Secondly, the sample kurtosis has supports truncated on the left

by the kurtosis of the innovations i.e., leptokurtosis. Since the logistic function be-

longs to the class of asymptotically homogeneous function, our model can capture the

volatility clustering and fat-tail features of financial time series.

Assumption 2: (xt) is a scalar latent volatility factor and |α| ≤ 1,

I describe the volatility factor, (xt) explicitly in the transition equation because I

am interested in the linkage between it and macro economic fundamentals. I assume

that this volatility factor is scalar so that this single factor drives the fluctuation of

stock return. The volatility factor could be either a macroeconomic fundamentals or

a mixture of some macroeconomic fundamentals. Though it is more likely and more

interesting to have unit-root or at least near-unit latent factor given the characteristics

of financial time series, I do not impose an restriction directly on α. Once I find

α ≃ 1, the process can be considered to have persistence so that it can generate

highly autocorrelated volatility or volatility clustering, which means high volatility is

followed by another high volatility, or the other way around. This model has some

advantages that I can directly compare them with a persistent time series, as which

many interesting macro time series can be characterized, without any taking difference

of both series.

1I may think X = [κ − log(2+
√

(3))

λ
, κ − log(2−

√
(3))

λ
] as transition period because

∂3f(x)
∂x3 = 0 at x = κ− log(2±

√
(3))

λ
.
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Assumption 3: (yt) is also a scalar variable but observable,

If I choose high frequency data as (yt), then I can make lower frequency volatility

factor with simple calculation. For example, when I use weekly data as (yt) I can

extract a daily volatility factor and construct a monthly or quarterly volatility factor.

Then I can easily compare it with many macro time series. Here I do not introduce

multivariate of (yt), though I may consider it as more interesting setting. Multivariate

model can be used to extract common stochastic volatility factor but I need to follow

less expensive solution in terms of computation because I am going to suffer the curse

of dimension. Taking this point into account, however, I will develop two algorithms

for this univariate model to give future research more flexibility.

Assumption 4: the error terms follows bivariate normal distribution with correla-

tion,

(2.3)







ut

vt+1






∼ iid N













0

0






,







1 ρ

ρ 1












,

The correlation parameter, ρ generates leverage effect if −1 ≤ ρ < 0. Black (1976)

has first documented leverage effect, which is a decrease in stock price or stock return

increases the debt-equity ratio of the firm, increases the risk of the stock and hence

increase the volatility of stock return. There are two ways of models with the leverage

effect. One is contemporary correlation (See Jacquier, Polson, and Rossi (2004)) and

the other is inter-temporal correlation (See Harvey and Shepard (1996)). I follows

latter because it maintain Martingale difference property as argued in Harvey and

Shepard (1996) and Yu (2005) argues that it is empirically superior to the former

when S&P500 data is used, as in this paper. The variance of (ut) and (vt) is set to

be unity for the identification of parameters. For example, if I assume the variance
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of (ut) to be multiplied by k2, then level parameters are to be divided by k2.

Assumption 5: x0 is independent of (ut) and (vt).

Assumptions 4 and 5 are standard and routinely imposed in this type of model.

2. Comparisons with the Existing Models

Now I compare the difference between our model and other exiting models. Let’s

consider a stochastic volatility model given by

yt =
√

ht ut,

log ht+1 = γ + α log ht + wt+1,(2.4)

where






ut

wt+1






∼ iid N













0

0






,







1 ρσv

ρσv σ2
v












,

This model can be transformed into the following:

yt =
√

ν exp(λxt) ut,

xt+1 = α xt + vt+1,(2.5)

where






ut

vt+1






∼ iid N













0

0






,







1 ρ

ρ 1












,

and ht = ν exp(λxt), vt = wt/σv, ν = exp(γ/(1 − α))2 and λ = σv.

Models (2.1) and (2.5) are different only up to the functional form of the volatil-

ity function. Table 1 shows the similarity of estimation results between (2.4) and

2If α = 1, then γ = 0 and ν = 1.
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Table 1.: Estimation Result with the Conventional Volatility Models.

Models α̂ σ̂v ρ̂ Data

JPR94 0.950 0.230 - CRSP weekly (’62∼’91)
SLL98a 0.963 0.212 - S&P500 weekly (’61∼’87)
SLL98b 0.472 0.272 - S&P500 weekly (’61∼’87)
JPR04 0.943 0.270 -0.460 CRSP weekly (’62∼’91)

Transformed 0.959 0.194 -0.522 S&P500 weekly (’70∼’07)

Notes: JPR94 and SLL98a estimate conventional Stochastic Volatility model and SLL98b
estimates conventional model with regime switching and JPR04 estimates conventional model
with leverage effect.

(2.5). But I argue this exponential form of volatility function does not match well

the realities. First, the conventional stochastic volatility model generates explosive

volatility eventually as the number of observation increases if the data is believed to

be generated from the conventional stochastic volatility model with persistent latent

factor which follows either unit-root or near unit-root process. In particular, when

latent factors is integrated process λ should go to zero as the number of observations

goes to infinity because exponential function amplify the nonstationarity of latent fac-

tors into volatility. It seems that the conventional stochastic volatility models do not

fit the nonstationary latent factor well and in our application I find an evidence that

the conventional stochastic volatility models do not perform well with nonstationary

latent factor.

The regime switching volatility models have come up to make up the weakness

that the conventional volatility models do not have a distinction between regimes. The

regime-switching models have been developed by So, Lam, and Li (1998) to connect

the volatility with state of the economy by regime. It is very natural to assume

that there are multiple regimes in the economy as volatility plots reveal. The main

drawback of regime-switching stochastic volatility model is that the change among the

states of the economy happens abruptly though transition probability from one regime
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Fig. 1.: Scatter Plot of the Estimated Volatility Responses and Shocks.

to the another regime is defined. And since they estimate the parameters separately

across the regime, it has more parameters to be estimated so that estimation becomes

less efficient. Moreover they have still unbounded and explosive volatility in high

volatility regime.

Secondly, the implication on the leverage effect is different in terms of the abso-

lute magnitude. The conventional stochastic volatility model implies negative shock

Table 2.: Leverage Effect Quantification Examples.

low volatility transition high volatility
case case case

(xt = −5) (xt = 0) (xt = 5)
ut = −2 ut = 2 ut = −2 ut = 2 ut = −2 ut = 2

growth rate of the volatility 25.81 -15.33 16.24 -16.24 3.31 -8.67

Notes: Smooth transition regime volatility model with µ = 0.0001, ν = 0.0011, λ = 0.4
,α = 1 and ρ = −0.5 is used. The parameters are the same as the estimated value for
S&P500 return in the section E.
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has bigger impact on the volatility than positive shock, though the their directions

are different, regardless of the current state i.e., high volatility or low volatility pe-

riod because the slope of first derivative of the exponential function is always posi-

tive. However, the stochastic volatility models with smooth transition regimes implies

asymmetric leverage effect i.e., negative shock to stock return has bigger impact on

the volatility more than positive shock to stock return during low volatility regime

while positive shock has bigger impact than negative shock to stock return during

high volatility regime because the slope of first derivative of the logistic function

changes the sign. Table 2 quantifies the magnitude of the leverage effect across

the state of the economy. When the economy enters low volatility regime due to

successive positive shock, the marginal effect of another positive shock is likely to

be smaller than that of new negative shock. Likewise when the economy enters

high volatility regime due to successive negative shock, things goes the other way

around. While another negative shock becomes chronic, a new positive shock gives

the economy a evidence of regime changing so that volatility decrease relatively big.

Figure 1 is a scatter plot of estimated growth rate of the volatility of stock return,
(

Ê[f(xt+1)|Ft+1] − Ê[f(xt)|Ft]
)

/Ê[f(xt)|Ft] and estimated shocks, ût under the con-

ventional stochastic volatility models across business cycle.3 It shows the leverage

effect and its asymmetry across the state of the economy. Left panel tells that rela-

tive importance of the positive shock to stock return during the recession while right

panel tells that relative importance of the negative shock to stock return during the

expansion. Note that So, Lam, and Li (1998) argues that high volatility period of

stock return seems strongly associated with recession and Hamilton and Lin (1996)

concludes that economic recessions are the primary factor that drives fluctuations in

3Stochastic volatility models with smooth transition regimes have similar scatter
plot.
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the volatility of stock returns.

Thirdly, the conventional stochastic volatility models are too sensitive to outliers

in the sense that they estimate the volatility high when they observe high squared

return, as argued in Jacquier, Polson, and Rossi (2004). But the stochastic volatility

models with smooth transition regimes resist to outliers because they cannot estimate

the volatility more than µ + ν even if they observe outliers. Hence the conventional

stochastic volatility models will result in a more variable sequence of estimated volatil-

ity’s than smooth transition volatility models. The sensitivity to large squared return

could make a difference in terms of forecasting performance because forecasting fu-

ture volatility is definitely related to current volatility estimation. If current shock is

not related to fundamental, then forecasting errors from the conventional stochastic

volatility models become larger than the stochastic volatility models with smooth

transition regimes. While Jacquier, Polson, and Rossi (2004) shows that fat-tailed

model of the conventional stochastic volatility models can improve the resistance to

outliers well, they need another sequence of random variable and parameter.

C. Conventional Approach Using Density-Based Filter

If I have linear state-space model, then Kalman filtering is the best and unique al-

gorithm. For a nonlinear state-space model, however, there are several algorithms,

for example, Extended Kalman filtering, Unscented Kalman filtering, and Numerical

Integration filtering, Monte-carlo filtering, Gaussian Sum filtering, Importance Sam-

pling filtering, Rejection Sampling filtering, Gibbs sampling etc. Extended Kalman

filtering and Unscented Kalman filtering are based on an approximation of either

nonlinear function to linear function or non Gaussian conditional density to Gaussian

conditional density. The approximation to linear function is not appropriate because
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the volatility function is close to flat at the extreme value which means that new

information cannot feed back to previous prediction and hence, latent factor may be

stuck to some high or low value. The approximation to density to Gaussian is not

appropriate because the error terms is logarithm of χ2(1) distribution which has fat

tail to the left, if I take squares and logs. All the remains are density-based filters.

Except for Gibbs sampling, density-based filters are implemented by maximum likeli-

hood estimation( ML estimation ). I develop ML estimation algorithm in this section

and Gibbs sampling in the next section.

1. Algorithm

The density-based nonlinear filtering algorithm is to deal with whole distribution

information instead of the first and second moments because I do not assume the

normality of the conditional density function. Other than that the basic scheme such

as the predicting, updating and smoothing steps is the same as the linear filtering.

Harvey (1990) and Tanizaki (1996) show that I can construct the predicting, up-

dating and smoothing steps using density function conditional on Ft−1 or Ft under

the assumption of independence between measurement errors and transition errors.

The dependency between them in our model, however, makes the algorithm more

complicated.

For the prediction step, I utilize the relationship

p(xt|Ft−1, θ) =

∫

p(xt, xt−1|Ft−1, θ) dxt−1

=

∫

p(xt|xt−1,Ft−1, θ)p(xt−1|Ft−1, θ) dxt−1

=

∫

p(xt|xt−1, yt−1,Ft−2, θ)p(xt−1|Ft−1, θ) dxt−1

=

∫

p(xt|xt−1, yt−1, θ)p(xt−1|Ft−1, θ) dxt−1,
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where xt|xt−1, yt−1, θ ∼ N(αxt−1+ρyt−1/f(xt−1, θ), 1−ρ2). Note that the last equality

comes from the fact that (a) I can transform vt into ρyt−1/f(xt−1)+
√

1 − ρ2ǫt where

ǫt is white noise and (b) ǫt and Ft−2 are independent.

On the other hand, the updating step relies on the relationship

p(xt|Ft, θ) = p(xt|yt,Ft−1, θ)

=
p(xt, yt|Ft−1, θ)

p(yt|Ft−1, θ)

=
p(xt, yt|Ft−1, θ)

∫

p(xt, yt|Ft−1, θ) dxt

=
p(yt|xt,Ft−1, θ)p(xt|Ft−1, θ)

∫

p(yt|xt,Ft−1, θ)p(xt|Ft−1, θ) dxt

=
p(yt|xt, θ)p(xt|Ft−1, θ)

∫

p(yt|xt, θ)p(xt|Ft−1, θ) dxt
,

where yt|xt, θ ∼ N(0, f(xt, β)). Note that the last equality comes from the fact that

ut and Ft−1 are independent.

Since log likelihood function is given by

ℓ(yn, . . . , y1|θ) =
∑

log p(yt|Ft−1, θ),

ML estimator can be defined by

θ̂ = argmax
θ∈Θ0

ℓ(yn, . . . , y1|θ)

= argmax
θ∈Θ0

n
∑

t=1

log p(yt|Ft−1, θ),(2.6)

where p(yt|Ft−1, θ) =
∫

p(yt|xt, θ) p(xt|Ft−1, θ) dxt which is available from the up-

dating step.

In general, the conditional densities here cannot be obtained analytically. The

only thing I can do is to get a numerical solution for all the conditional densities.

Tanizaki (1996) suggests several methods to reduce the burden of computation, for
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example, Numerical Integration filtering, Monte-Carlo filtering, Gaussian Sum filter-

ing, Importance Sampling filtering, Rejection Sampling filtering. Among them I think

the Numerical Integration filtering is the most straightforward and direct method.

But there is a big difference between Numerical Integration Filter of Tanizaki

(1996) and ours in terms of choice of nodes. (I need nodes to make an rectangular

for integration) For the choice of nodes Tanizaki (1996) uses random draws from

the constructed intervals by the mean and variance of the latent factors based on

Extended Kalman filtering. But what if Extended Kalman filtering works bad? In

our model Extended Kalman filtering has bigger possibility of being stuck with higher

or lower values of latent factor due to the integrability of logistic function. Once it

become stuck, so is the intervals. I choose the simple equally-divided nodes for the

fixed length of interval. Since the latent factors of unit-root or near unit-root process

can go anywhere, however, the location of the interval should adjust depending the

updated expected values of the latent factor for each time.

Now suppose that p(xt−1|Ft−1) is measured over [−c + xt−1|t−2, c + xt−1|t−2]

and has mean xt−1|t−1.
4 For the prediction step, using the change in variables, i.e.,

4In this and next paragraph θ is suppressed.
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xt−1 = z + xt−1|t−2

p(xt|Ft−1) =

∫

p(xt|xt−1, yt−1)p(xt−1|Ft−1) dxt−1

≈
∫ c+xt−1|t−2

−c+xt−1|t−2

p(xt|xt−1, yt−1)p(xt−1|Ft−1) dxt−1

=

∫ c

−c
p(xt|z + xt−1|t−2, yt−1)p(z + xt−1|t−2|Ft−1) dz

≈ h
√

2π(1 − ρ2)

m
∑

j=1

exp

(

−

[

xt − (α(zj + xt−1|t−2) + ρyt−1/
√

f(zj + xt−1|t−2))
]2

2(1 − ρ2)

)

p(zj + xt−1|t−2|Ft−1),

where c is the one-side length of interval for the conditional density function to be

measured, h is the length of each partition in the interval, j = 1, 2, · · · ,m, m = 2c/h

so that z = [−c,−c+ h, · · · , c− h].

To use the change in variables again for xt = z+ xt|t−1, I need to know the value

of xt|t−1 = αxt−1|t−1 +
∫

vtp(vt|Ft−1) dvt. The second term can be computed by using

following relationship

p(vt|Ft−1) =

∫

p(vt|xt−1, yt−1)p(xt−1|Ft−1) dxt−1

≈ h
√

2π(1 − ρ2)

m
∑

j=1

exp

(

−

[

vt − ρyt−1/
√

f(zj + xt−1|t−2)
]2

2(1 − ρ2)

)

p(zj + xt−1|t−2|Ft−1),

where vt lies in [-3,3].
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Therefore, the relation xt = z + xt|t−1 yields

p(zi + xt|t−1|Ft−1) ≈
h

√

2π(1 − ρ2)

m
∑

j=1

exp

(

−

[

zi + xt|t−1 − (α(zj + xt−1|t−2) + ρyt−1√
f(zj+xt−1|t−2)

)
]2

2(1 − ρ2)

)

p(zj + xt−1|t−2|Ft−1)

Note that (a) p(z + xt−1|t−2|Ft−1) is the density shifted from p(xt−1|Ft−1) by xt−1|t−2

(b) p(xt|Ft−1) is measured over [−c+ xt|t−1, c+ xt|t−1] and has mean xt|t−1.

For the updating step, using the change in variables, i.e., xt = z + xt|t−1

p(yt|Ft−1) =

∫

p(yt|xt)p(xt|Ft−1, θ) dxt

≈
∫ c+xt|t−1

−c+xt|t−1

p(yt|xt)p(xt|Ft−1) dxt

=

∫ c

−c
p(yt|z + xt|t−1)p(z + xt|t−1|Ft−1) dz

≈ h
m
∑

j=1

1
√

2πf(zj + xt|t−1)
exp

(

− y2
t

2f(zj + xt|t−1)

)

p(zj + xt|t−1|Ft−1)

p(zi + xt|t−1|Ft) ≈
1

√

2πf(zi + xt|t−1)
exp

(

− y2
t

2f(zi + xt|t−1)

)

p(zi + xt|t−1|Ft−1)

p(yt|Ft−1)

Note that (a) p(z + xt|t−1|Ft−1) is the density shifted from p(xt|Ft−1) by xt|t−1 (b)

p(xt|Ft) is measured over [−c+ xt|t−1, c+ xt|t−1] and has mean xt|t.

During the implementation of flexible interval method, the choice of c and h could

be important. Since the bigger c or the smaller h, the more burden of computation, I

need to choose optimally. When I choose c, bigger c does not make better result once

c is big enough to cover whole conditional densities. The rule of thumb is that I can

try several initial values and get the series of conditional densities and check whether

the conditional densities are truncated before converging to zero. Unless they die
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out before latent factors reach to ±c, then I should choose bigger c. Regarding h,

the finer h would give better result, but the marginal gain is not always bigger than

marginal pain, which is the elapsed time that I will spend. So, the rule of thumb is

that I choose big h at the beginning and smaller and smaller h until the change in

the result is negligible. In our case, with the reasonable h and c, it takes 10 minutes

usually with 2000 observations.

2. Monte-Carlo Experiments

I design the Monte-Carlo experiments as following: I use a parameter set β0 =

(1, 3, 0.3, 5) which is close to S&P500 with normalized variance and α0 = 1, ρ0 = −0.5

because I am interested in nonstationarity and leverage effect. I run 1000 iter-

ations with different realizations of random variables (ut), (vt+1). Initial guess is

(2, 2, 0.5, 0, 0.7,−0.2). I compare the number of data, n = 1000 and n = 2000 to see

whether the densities get concentrated to true value as the number of data increases.

Since estimating κ given x0 is equal to estimating x0 given κ due to the unit-root

process, I estimates x0 with κ = 0 because I want to avoid a possible interaction

between λ and κ.

As illustrated in Figure 2, as the number of data increases, all the estimates

become more concentrated to true value and the biasedness disappears for some es-

timates. Generally the estimates for µ, λ, α, ρ show faster convergence than those for

ν, x0.

D. Bayesian Approach Using Gibbs Sampling

Since I keep in mind a multivariate model in which ML estimation methods has a

difficulty due to multiple dimension, I want to develop another approach. Here I
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Fig. 2.: Densities of the Estimates with Monte-Carlo Experiments.

suggest a Bayesian approach i.e., Gibbs Sampling to solve this model. While Gibbs

Sampling method was originally introduced for image restoration by Geman and

Geman (1984), it has widely been used to solve state-space models, in particular, SV

models. See the Jacquier, Polson, and Rossi (1994), So, Lam, and Li (1998), Jacquier,

Polson, and Rossi (2004), and Geweke and Tanizaki (2001).

Basically Gibbs Sampling method view the estimation as sampling the param-

eters from the posterior density function, considering them as random numbers. I

can consider sampling from p(X, θ|Y ) instead of p(θ|Y ) where Y is observable data

and X is latent factors. This augmentation of latent factor has originally been in-

troduced by the Tanner and Wong (1987) to calculate posterior density function,

p(θ|Y ) =
∫

p(X, θ|Y ) dX. Once I sample (X, θ) sequentially from univariate density

functions conditional on all the other information, then I have p(X|Y ) =
∫

p(X, θ|Y )

as well as p(θ|Y ). The beauty of Gibbs sampling is that it is asymptotically identical
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to the sampling directly from joint density functions under mild conditions5 as proved

by Tierney (1994).

1. Algorithm

I derive joint distribution of X and Y as following:

p(X,Y |θ) = p(yn|xn, θ)
(

n−1
∏

t=1

p(yt, xt+1|xt, θ)
)

p(x1|θ)

∝
(

n
∏

t=1

f(xt, β)−
1

2

)

(1 − ρ2)−
n−1

2

exp

[

−
∑n−1

t=1 (u2
t − 2ρutvt+1 + v2

t+1)

2(1 − ρ2)

]

exp

[

−1

2
(u2

n + v2
1)

]

Then I can easily find joint posterior distribution of X and θ as following:

p(X, θ|Y ) ∝
(

n
∏

t=1

f(xt, β)−
1

2

)

(1 − ρ2)−
n−1

2

exp

[

−
∑n−1

t=1 (u2
t − 2ρutvt+1 + v2

t+1)

2(1 − ρ2)

]

exp

[

−1

2
(u2

n + v2
1)

]

p(x0)p(α)p(β)p(ρ)(2.7)

First, I derive the posterior distribution of latent volatility factor conditional on

all the other information.6 It follows readily from (3.14) that

p(xt|X\t, Y, θ) ∝ f(xt, β)−
1

2 exp

[

−u
2
t − 2ρutvt+1

2(1 − ρ2)

]

exp

[

− α2 + 1

2(1 − ρ2)

(

xt −
ρut−1 + α(xt−1 + xt+1)

α2 + 1

)2]

(2.8)

5Mild conditions are irreduciblity and aperodicity which are satisfied by our tran-
sition kernels.

6I cannot use the block sampler suggested by Carter and Kohn (1994), which
samples an entire series of latent volatility factor, since our model is nonlinear.
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for t = 2, · · · , n− 1. Here and elsewhere in the paper, I use X\t to denote (xj)j 6=t.
7

Next, I move on the posterior distribution of parameters. Here I need their

prior distributions. I assume the µ, ν and λ have Gamma distribution due to the

positiveness and x0 and α follows normal distribution and ρ has uniform distribution.

Then the posterior distributions are given by,

p(x0|X,Y, β, α, ρ) ∝
1

√

2π 1
α2+1/σ2

x0

exp

[

−α
2 + 1/σ2

x0

2

(

x0 −
αx1 + µx0

σ2
x0

α2 + 1/σ2
x0

)]

(2.9)

p(β|X,Y, x0, α, ρ) ∝
(

n
∏

t=1

f(xt, β)−
1

2

)

exp

[

−
∑n−1

t=1 (u2
t − 2ρutvt+1)

2(1 − ρ2)
− 1

2
u2
n

]

p(β)

(2.10)

p(α|X,Y, x0, β, ρ) ∝ exp

[

−
∑n−1

t=1 (v2
t+1 − 2ρutvt+1)

2(1 − ρ2)
− 1

2
v2

1

]

p(α)

(2.11)

p(ρ|X,Y, x0, β, α) ∝ (1 − ρ2)−
n−1

2 exp

[

−
∑n−1

t=1 (u2
t − 2ρutvt+1 + v2

t+1)

2(1 − ρ2)

]

p(ρ),

(2.12)

where x0 ∼ N(µx0, σ
2
x0).

If I can draw the sample directly from (2.8) ∼ (2.12), then I complete all the

algorithm for Gibbs Sampling. However, this is not the case except for (2.9) be-

7The conditional densities of the first and last latent factors are given respectively
by

p(x1|X\n, Y, θ) ∝ f(x1, β)−
1

2 exp

(

−u
2
1 − 2ρu1v2

2(1 − ρ2)

)

exp

[

−α
2 + 1 − ρ2

2(1 − ρ2)

(

x1 −
α(x2 + (1 − ρ2)x0)

α2 + 1 − ρ2

)2]

p(xn|X\n, Y, θ) ∝ f(xn, β)−
1

2 exp

(

−1

2
u2
n

)

exp

[

−(xn − ρun−1 − αxn−1)
2

2(1 − ρ2)

]
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cause of the complexity of the density function.8 Then I may rely on Metropolis-

Hastings ( MH ) sampling. The reader is referred to Chib and Greenberg (1995)

for more detail MH sampling. In MH sampling from state-space model, the choice

of proposal density function matters in terms of efficiency. Geweke and Tanizaki

(2001) shows that when I sample latent factors a density function obtained from

the transition equation is most efficient and so are priors when I sample parame-

ters. So I choose prior density functions as proposal density function for parameters

and
√
α2+1√

2π(1−ρ2)
exp

[

− α2+1
2(1−ρ2)

(

xt − ρut−1+α(xt−1+xt+1)
α2+1

)2
]

as proposal density functions

for latent factors.9

2. Simulation Study of Gibbs Sampling

Since the Gibbs sampling takes much longer time than ML estimation, I cannot do

Monte-Carlo Experiments for Gibbs sampling here. But I do several treatment test,

for example, different number of observations, different realization of error terms.

They all give similar performance. So I report one example. True parameters and

assumption on priors are shown in Table 11. I run 100000 iterations and discard first

36000 samples for burn-in period, which is determined by convergence diagnostics

suggested by Geweke (1992). Convergence Diagnostic (CD) is given by

CD =
θA − θB

√

f̂A(0)
nA

+ f̂B(0)
nB

8I can draw x0 from N

(

αx1+
µx0

σ2
x0

α2+1/σ2
x0
, 1
α2+1/σ2

x0

)

.

9For proposal density function at t=1,

√
α2+1−ρ2√
2π(1−ρ2)

exp

[

−α2+1−ρ2
2(1−ρ2)

(

x1 − α(x2+(1−ρ2)x0)
α2+1−ρ2

)2
]

and for t=n, 1√
2π(1−ρ2)

exp
(

− (xn−ρun−1−αxn−1)2

2(1−ρ2)

)

.
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Table 3.: Simulation Result with Gibbs Sampling.

Posterior Convergence
Parameters True Value Priors Mean Std. dev. Diagnostics

µ 1 G(2, 1) 1.1263 0.1793 0.9836
ν 3 G(2, 10) 2.0719 0.3761 0.8039
λ 0.3 G(2, 1

4) 0.6773 0.3260 -0.3469
α 0.99 N(0.9, 0.052) 0.9830 0.0063 -0.6327
ρ -0.5 U [−1, 1] -0.3963 0.1212 -1.8713
x0 -5 N(−5, 22) -5.2218 1.8699 -0.6374

Notes: G(a, b) denotes gamma distribution with mean ab and variance ab2 and N(a, b2)
denotes normal distribution with mean a and variance b2 and U [a, b] denotes uniform distri-
bution with support of [a, b].

where A is the set of Gibbs samples with nA iterations after burn-in period and B is

the set of Gibbs samples with last nB observations and f(0) is the spectral density at

the zero frequency with Parzen window.10 By the convention I set nA/n = 0.1 and

nB/n = 0.5 where n denotes the number of Gibbs samples after burn-in periods.11

If the sequence of Gibbs samples for a parameter is stationary, CD converges to the

standard normal distribution as the number of samples goes to the infinity. Since the

absolute value of CDs for all the parameters are less 1.96, they can be considered to

pass the stationary test.

The results of the Gibbs sampling are summarized in Table 11. It shows that all

the parameters except ν can be estimated significantly and unbiasedly, which is very

similar implication for its slow convergence as Monte-Carlo experiments in Section

C.2.

Figure 3 plots the series of extracted latent factor versus those of true latent

10In the Geweke (1992), the denominator does not have the square root term. Then
it becomes average long-run variance.

11I need nA/n+nB/n < 1, if the ratios nA/n and nB/n are fixed, to get asymptotical
independence between A and B as n goes to the infinity. See the Geweke (1992).
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Fig. 3.: True and Extracted Latent Variables from the ML Estimation.

factor. It shows that the series of extracted variables follows true series closely.

E. Empirical Applications

1. Data Description

The series I use for application are the S&P 500 index weekly return series from the

first week of December 1970 to the first week of January 2008 and monthly growth

series of the dividend from February 1959 to December 2006. S&P 500 is obtained

from website (http://finance.yahoo.com) and Dividend data from CRSP. S&P 500

weekly data is generated by Monday-to-Monday returns while dividend growth data

is generated from seasonally-adjusted real dividend series which is created using value-

weighted returns with dividend and without dividend.12 S&P500 return is in natural

numbers and dividend growth is in percentage. There are altogether 1,938 and 575

observations, respectively. Table 10 provides summary statistics for two series. In

order to make the estimation more reliable and stable, I do three treatments to the

12Real dividend = (returns with dividend - returns without dividend) * market
price index / CPI.
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Table 4.: Summary Statistics.

S&P 500
Original After treatment Dividend

Mean 0.0014 0.0000 0.0000
Max 0.1320 0.0832 8.2017
Min -0.1301 -0.1185 -12.8766

Std. Dev. 0.0214 0.0210 3.2099
Skewness -0.3724 -0.3919 -0.7182
Kurtosis 6.2128 5.1543 4.3462

Mean of |yt| 0.0161 0.0159 2.3765

data. First, I subtract the non-zero mean because non-zero mean is not consistent

with zero-mean error terms in the measurement equation. Secondly, I remove the data

which are defined as more than 6 times of standard deviations upward or downward

movement. These events may be considered as ”outliers”, which are independent of

other observations in the sample.13 Finally, I divide yt by the average of absolute value

of series. It is nothing but change in the assumption of unit variance of ut. Hence,

theoretically it changes the estimation results only up to scaling µ and ν. However, I

find sometimes that whole estimation fails with raw data. I conjecture that so small

numbers in the exponential function of normal density makes probability close to

zero.

2. Stock Returns and Volatility Factor

Our plan is following: First, I do the ML estimation with the possibility of the

stationary latent factor and correlation between errors. Secondly, if the latent factor

is found to be nonstationary, I do the ML estimation setting α = 1 or if the correlation

of errors is found to be insignificant, I do the ML estimation setting ρ = 0 or both.

13For S&P 500 series, there are 2 observations removed, which are oil shock in 1974,
black Monday in 1987. But for dividend growth series, there are no outliers.
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Table 5.: ML Estimation Results with S&P 500 Returns.

I(0) or I(1) I(1)
Parameters Leverage No leverage Leverage No leverage

ρ -0.5309* 0 -0.4773* 0
(0.0768) (0.0866)

α 0.9805* 0.9926* 1 1
(0.0105) (0.0066)

µ 0.00012* 0.00015* 0.00013 0.00013*
(0.00003) (0.00003) (0.00010) (0.00003)

ν 0.00115* 0.00136* 9202.2 40.4496
(0.00030) (0.00088) (2.09e7) (11325.9)

λ 0.4100* 0.3315* 0.2152 0.1869*
(0.1133) (0.1422) (0.1698) (0.0426)

x0 -11.2393* -16.1677 -87.8777 -74.3899
(5.3607) (7.4214) (1.05e4) (1.50e3)

Notes: parenthesis denotes standard errors and asterisk mark denotes significance at 5 per-
cent level. Bold column stands for the best estimation result.

However, I report ML estimation result with all four cases regardless of the result of

the first trial if possible. Secondly I do the Gibbs sampling with best assumption sets

chosen from ML estimation and compare it with ML estimation results. Though I try

two set of assumptions which are either setting x0 = 0 or setting κ = 0, I report the

result with setting κ = 0 because I think latter more reliable. This plan is applied to

next section also.

The Table 5 shows the ML estimation results of Dow Jones stock return with

various assumptions. All the results are estimated with setting κ = 0 because I cannot

get significant results from setting x0 = 0.14 The second column tells that latent factor

14Under the stationary latent factor case setting x0 = 0 and setting κ = 0 are not
neutral selection because the effect of the former dies out eventually but the effect of
the latter does not. However, setting κ = 0 is not weird in the sense that the mean of
the latent factor becomes the same as the reflection point and hence, I may see equal
possibility of high or low volatility regime.
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Table 6.: Gibbs Sampling Results with S&P 500 Returns.

Posterior Convergence
Parameters Priors Mean Std. dev. Diagnostics

ρ U [−1, 1] -0.4173 0.0874 -1.8114
α N(0.9, 0.052) 0.9840 0.0063 -1.7800
µ G(2, 1) 0.00014 0.00003 -0.6189
ν G(2, 10) 0.00112 0.00021 -0.3290
λ G(2, 1

4) 0.4358 0.1143 -0.8595
x0 N(−11, 22) -6.3075 1.7578 -1.1912

Notes: U [a, b] denotes uniform distribution with a support (a, b) and G(a, b) denotes gamma
distribution with mean ab and variance ab2 and N(a, b) denotes normal distribution with
mean a and variance b.

is near unit-root process though it does not have exact unit root.15 And I confirm

the leverage effect because the correlation coefficient is negative and significant as I

expected. The quantification of this leverage effect is already presented at Table 2 in

the Section B. The minimum and maximum level of volatility can be inferred from ν̂

and ν̂ + µ̂ multiplied by mean of |yt| as shown in the last column which is obtained

from the second column if I set σ = 1. So the low volatility level is
√

0.0001∗100 = 1.1

percent while the high volatility level is
√

0.0011 + 0.0001 ∗ 100 = 3.6 percent in a

week. The slope parameter, λ̂ indicates relative slow transition because it takes at

least 13 weeks to move from low volatility regime, say xt = −3 to high volatility

regime, say xt = 3 even with successive positive shock of vt = 0.5. From the third to

fifth columns indicates that more restrictions make the estimation worse. So hereafter

I use the second column.

Secondly, I run Gibbs sampling with MH algorithm. I samples 90000 iterations

and discard 32000 iterations based on convergence diagnostics as before. CD is re-

ported in the Table 6. Figure 4 shows Gibbs samples after burn-in period. CD

15t-statistic of ADF unit root test for extracted latent factor is -4.90 while the
critical value of 5 % confidence level is -2.86.
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Fig. 4.: Gibbs Samples with S&P 500 Return.

statistics and Figure 4 indicates the Gibbs sampling converges well and hence is reli-

able. Table 6 shows that the posterior mean is very close to the ML estimators. Fifth

column is the inferred posterior mean with σ = 1.

I extract the latent factors from two alternative method and find that they are

very similar and seems that they share the common stochastic component as illus-

trated in Figure 5. Straight line in the Figure 5 can be thought as a threshold for

the regime change in a rough sense. The area above the upper straight line is high

volatility period and vice versa. So I can interpret that the economy usually stays in

the low volatility regime or transition period while it have stayed in the high volatility

regime in mid-70s and around 2000 for some time and it almost entered 80s couple of

times. And recently the economy moves towards high volatility regime very rapidly.

Hereafter I are going to use the series of the latent factors or volatility factor from ML

estimation though the all the remaining results are very similar with Gibbs sampling

results.
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Fig. 5.: Volatility Factors with S&P 500 Returns.
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Figure 6 plots the estimated volatility component with parameter obtained from

ML estimation and latent factors. The discrepancy between realized volatility, |yt|

and estimated volatility E[
√

f(xt)|Ft] can be considered as the realization of error

term of N(0,1), ut. Generally, however, estimated volatility explains well the |yt|. We

also see that estimated volatility has a tendency to resist to big shocks quite well. If

large volatility is a realization of an outlier and the outlier effect will disappear at

the next period, the smooth transition regimes models in contrast to the conventional

stochastic volatility models would not be affected much so that this resistance will

increase the accuracy of forecasting volatility of the next period.

Finally, I try to link the volatility factor with some macro-economic fundamen-

tals. Figure 7 shows the relationship between monthly real expenditure on nondurable

goods and services and the volatility factor. The data is obtained from St. Louis Fed

and hp-filtered. Monthly volatility factor are obtained from simple average of weekly

data. I see that for 40 years reversed volatility factor follows the GDP series very
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closely except 1998 ∼ 2001.16 Moreover, as So, Lam, and Li (1998) and Hamilton

and Lin (1996), economic recessions defined by NBER are clearly associated with high

volatility periods. For 40 years, when the US economy suffered 5 recessions volatility

factor shows trough. And though late 80s is not defined as recession period, GDP

series sharply decreases with volatility factor.

While the volatility factor is not unit-root process, I can focus on only after 90s to

make it nonstationary. I do the Variable Addition Test of cointegration for two series

suggested by Park (1990). I add superfluous four trend in the cointegrating regression

and test the significance of the coefficients of these irrelevant regressors because they

are all zeros under the null hypothesis, which is two series are already cointegrated.

I construct the cointegrating regression with structural break to take care of reverse

relation during 1998 ∼ 2001. The test indicates two series are cointegrated.17

3. Dividend Growth and Volatility Factor

The Table 7 shows ML estimation results with several cases of the assumptions. The

second column tells that the latent factor follows clearly unit-root process. Actually

the unit root test for the extracted latent factor shows the nonstationarity.18 More-

over, I see that the correlation between the measurement error and the transition

error are big positive and significant. But this means that when the dividend growth

at current period increases the volatility of the dividend growth at the next period

is more likely to increase. The plausible explanation of this reverse leverage effect is

16At that time the economy is in good shape though the stock market becomes
volatile due to Asian currency crisis and burst of IT bubble.

17Test statistics are 3.31. Under the null hypothesis test statistics follows χ2(4).
Since the p-value of 3.31 is 0.5067 I cannot reject the null hypothesis.

18t-statistic of ADF unit root test is -2.49 while the critical value for 5 % confidence
level is -2.87.



37

Table 7.: Estimation Results with Dividend Growth.

I(0) or I(1) I(1)
Parameters Leverage No leverage Leverage No leverage

ρ 0.7228* 0 0.7228* 0
(0.0794) (0.0794)

α 1.0000 0.9948* 1 1
(n.a.) (0.0057)

µ 1.0266* 1.1911* 1.0266* 1.2329*
(0.5367) (0.7037) (0.5367) (0.6212)

ν 57.1422 40.7222* 57.1429 45.0354*
(34.8674) (15.2283) (34.8691) (19.8046)

λ 0.2751* 0.2928* 0.2751* 0.2697*
(0.0948) (0.1097) (0.0948) (0.0997)

x0 -18.5818 -15.1219 -18.5818* -15.6723*
(6.7331) (5.6189) (6.7333) (6.1586)

Notes: parenthesis denotes standard errors and asterisk mark denotes significance at 5 per-
cent level. Bold column stands for the best estimation result.
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Fig. 8.: Volatility Factors with and without Restriction.
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Table 8.: Conventional Model Estimation Results with Dividend Growth.

I(0) or I(1) I(1)
Parameters Leverage No leverage Leverage No leverage

ρ 0.7038* 0 0.6982* 0
(0.0801) (0.0749)

α 0.9935* 0.9891* 1 1
(0.0054) (0.0073)

ν 10.7966 6.2689 1.2216 1.9885
(9.6089) (3.7873) (n.a.) (234.053)

λ 0.1621* 0.1535* 0.1593* 0.1403*
(0.0283) (0.0302) (0.0268) (0.0271)

x0 -14.6614* -9.0032 -0.2370 -0.3793
(7.0245) (5.8110) (n.a.) (839.08)

Notes: Parenthesis denotes standard errors and asterisk mark denotes significance at 5
percent level.

beyond the purpose of this paper. Anyway our next candidate assumption is setting

α = 1 as shown in the fourth column. It tells that I have the same estimation result

with nonstationary assumption. The result with restrictions of ρ = 0 is presented at

third and fifth column for the comparison. I think the fourth column as the most

promising result though it has one slightly insignificant estimate because I cannot

ignore big correlation coefficient. But in terms of pattern of the latent factor series,

the stochastic volatility models with smooth transition regimes are not much sensi-

tive to this restriction as illustrated in the Figure 8. And the low volatility level is
√

1.0266 = 1.01 percent while the high volatility level is
√

54.1429 + 1.0266 = 7.42

percent in a month. The slope parameter, λ̂ indicates very slow transition because

it takes at least 20 months to move from low volatility regime, say xt = −5 to high

volatility regime, say xt = 5 even with successive positive shock of vt = 0.5.

I also try to estimate the conventional stochastic volatility model with dividend

growth data as shown in Table 8. Since I have unit-root process of latent factors
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Table 9.: Gibbs Sampling Results with Dividend Growth.

Posterior Convergence
Parameters Priors Mean Std. dev. Diagnostics

ρ U[-1,1] 0.6570 0.0873 0.1205
α 1
µ G(2, 0.1) 0.9906 0.3903 2.2556
ν G(2, 10) 42.1867 9.1226 1.5684
λ G(2, 1

4) 0.3573 0.0645 1.8240
x0 N(0, 152) -12.0517 1.7420 -3.0078

Notes: U [a, b] denotes uniform distribution with a support (a, b) and G(a, b) denotes gamma
distribution with mean ab and variance ab2 and N(a, b2) denotes normal distribution with
mean a and variance b2.

without restriction19, I impose nonstationarity. Then I do not have good estimation

results because hessian is not positive definite so that some of estimates cannot have

standard errors. I think that this is one example of the weakness of nonstationary con-

ventional volatility models which have explosive volatility eventually as the number

of observations increases.

Secondly, I run Gibbs sampling with MH algorithm. I samples 60000 iterations

and discard 24000 iterations based on convergence diagnostics which is reported in

the Table 9. Though the convergence diagnostics of posterior means of µ and x0 are

bigger than 2, Figure 9 supports the convergence of the Gibbs samples after burn-in

period. Table 9 shows that the posterior mean is comparable to the ML estimators.

In addition, each posterior mean is significant. So hereafter I use Gibbs sampling

result as our final estimation.

I extract the latent factors from two alternative method and find that they are

very similar and share the common stochastic component as illustrated in Figure 10.

Straight line can be thought as a threshold for the regime change in a rough sense.

19The t-statistic of ADF unit root test for the extracted latent factor is -2.34 while
the critical value for 5 % confidence level is -2.87.
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Fig. 9.: Gibbs Samples with Dividend Growth.

The area above the upper straight line is high volatility period and vice versa. So

I can interpret that the fundamentals which generates volatility have stayed in the

low volatility regime in 60s and moved into the transition period in 70s and entered

into high volatility regime in first-half 80s. From late 80s until now the fundamentals

have stayed in the low volatility regime.

Figure 11 plots the estimated volatility component with parameter obtained from

ML estimation and latent factors. Estimated volatility from Gibbs samples is obtained

by Monte-Carlo integration i.e.,

E[
√

f(xt)|Fn] =

∫

√

f(xt)p(xt|Fn) dxt

≈ 1

G

G
∑

i=k+1

√

f(x
(i)
t )

where x
(i)
t is the i-th sample for xt and k is the length of burnin period and G is

the total number of Gibbs samples for xt. I see that generally estimated volatility

explains well realized volatility, |yt|.
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Fig. 10.: Volatility Factor with Dividend Growth.
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Fig. 11.: Comparison between the Realized and the Estimated Volatility.
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Fig. 12.: Volatility Factor and Nominal Interest Rates.

Finally, I try to match the volatility factor with some macro-economic funda-

mentals. Figure 12 shows the relationship between monthly nominal interest rates

and the volatility factor. The interest rates data is obtained from 3-month treasury

bond at St. Louis Fed. Monthly nominal interest rates and the volatility factor seems

to share the common stochastic trend and the cointegration test confirms it.20

F. Conclusion

I construct nonlinear state-space model with persistent latent factors to investigate

the volatility factor from the return or growth data of an asset. I argue that the

stochastic volatility models with smooth transition regimes have some advantages

over the conventional models for the implication to the non-explosive volatility and

asymmetric leverage effect. Due to the nonlinearity of logistic volatility function

20The t statistic of the residual-based cointegration test is -3.31 which means the
power of reject null hypothesis is slightly weak. But the Johansen Cointegration Test
confirms the cointegration relationship. p-value with Maximum Eigenvalue is 0.0290
and with Trace 0.0104.
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and persistence of the latent factors conventional Extended Kalman filtering is not

appropriate with our model. To filter the volatility factor from data I introduce two

alternative methods, which are density-based ML estimation and Gibbs sampling.

These two methods give similar results though only density-based ML estimation

allows extensive Monte-Carlo Experiments. I find that all the parameter can be

correctly estimated from Monte-Carlo Experiments. I apply our methods to stock

return and dividend growth data and extract the volatility factor. The extracted

volatility factor explain the realized volatility quite well and moreover I can find some

fundamentals cointegrated with them. One can extend our model into multivariate

setup for extracting common stochastic trend from several data sets. Though I can

use both methods in solving the multivariate model again, I expect that density-based

ML estimation will have a limitation due to the dimension.
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CHAPTER III

MACROECONOMIC UNCERTAINTY AND ASSET PRICES:

A STOCHASTIC VOLATILITY MODEL

A. Introduction

Time-varying macroeconomic uncertainty is an important ingredient for asset valua-

tion. Due to the nature of aggregate shocks, macroeconomic uncertainty is reflected in

equilibrium asset prices because asset holders will demand some premium for bearing

such undiversified risk. However, macroeconomic uncertainty is not an observable

to economists, and therefore modelling and measuring this uncertainty is a mean-

ingful, yet challenging task. Furthermore, the most popular macroeconomic asset

pricing models identify consumption growth process as the link between macroeco-

nomic variables and asset returns, exploiting the simple and elegant Euler equation

of consumption growth and asset returns. Alas, aggregate consumption is close to a

random walk and the size of unconditional variance of consumption growth is fairly

modest to justify high average equity premium with low and stable interest rates.

These puzzles based on consumption based asset pricing models have been one of the

main research questions in finance and macroeconomics since Hansen and Singleton

(1982) and Mehra and Prescott (1985). In this paper, I tackle this issue by measur-

ing time-varying uncertainty of macroeconomic variables and studying the links to

market returns via estimating a consumption-based asset pricing model with a non-

expected utility function. As the first step, I develop a stochastic volatility model and

propose an econometric procedure to extract common and idiosyncratic volatility for

multivariate processes. Novel features of our volatility model include a unit root com-

mon factor and logistic volatility function. This setup allows a persistent conditional
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volatility shifting between two regimes (high and low uncertainty regimes) with a

smooth transition. The existence of transition period between high and low volatility

regimes implies that economic agents may dislike transition periods because of un-

certainty in regimes that they belong to. Epstein and Zin (1989) show that economic

agents prefer an earlier resolution of uncertainty if risk aversion parameter is bigger

than the reciprocal of elasticity of intertemporal substitution in case of Kreps-Porteus

utility function. Thus, together with this non-expected utility function, our volatility

setup can generate a higher risk premium even with medium level of volatility.

In terms of econometric setup, our volatility model can be regarded as a non-

linear, non-stationary state space model. There are several non-linear filtering tech-

niques in the conventional approach to solve such a stochastic volatility model with

nonlinear measurement equation. But multi-dimensionality of our problem makes

these filtering techniques much more difficult to be applied. To overcome this issue, I

use Gibbs sampling which does not suffer seriously from the curse of dimensionality,

because it utilizes univariate conditional density function. Here I develop an algo-

rithm to filter macroeconomic uncertainty based on the chapter II which studies the

univariate stochastic volatility model with a logistic function.

When I put our methods into data, since I am interested in performances of con-

sumption based asset pricing model, I extract a common and idiosyncratic volatil-

ity factors for consumption and dividend growth. I find that the common factor

delineating ‘macroeconomic uncertainty’ predicts post-war business cycle recessions

quite well. Then, I estimate a long-run risk model of asset prices incorporating this

macroeconomic uncertainty. According to our estimation, both risk aversion and the

intertemporal elasticity of substitution are estimated around two, and our simulation

results show that the model can match the first and second moments of market return

and risk-free rate, hence explains the equity premium, the risk-free rate puzzle, and
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volatility puzzle.

Our paper is related to at least two strands of literatures. First and most direct

line of literature is the long-run risks asset price models. Bansal and Yaron (2004) set

consumption and dividend growth processes to contain a small, but persistent process

as well as a stochastic volatility term and show that they can explain many stylized

facts in asset market. In their paper, they emphasize the long-run risks channel, which

is based on the common portion of conditional expectations that move slowly over

time. Mainly due to its persistence, this model can generate sufficiently high risk pre-

mium because equity price is a discounted sum of all the future dividends. However,

the role of stochastic volatility in their model is not directly related to accounting

for equity premium puzzle, risk-free rate puzzle, and volatility puzzle, but mostly for

explaining time-varying risk premium. I extend this model to include a more realistic

volatility setup to analyze how important this volatility channel is. According to

their recent empirical paper (Bansal, Kiku, and Yaron (2007), the estimates of risk

aversion and the elasticity of intertemporal substitution are around 10 to 15, and 0.5

respectively with or without a stochastic volatility setup. Our results suggest that a

more flexible and realistic stochastic volatility can substantially improve the perfor-

mance of long-run risks model, while generating sufficient size of equity premium and

its volatility, as well as low and stable interest rate. Another important asset pricing

model is the habit formation preference. For instance, Campbell and Cochrane (1999)

can generate equity premium with low and stable interest rate via time-varying risk

aversion across the state of the economy. A drawback of this approach is the aver-

age risk aversion should be very high to explain equity premium as Campbell (2002)

pointed out. Also, there exist many papers by relaxing other environment setting

while holding simple utility function assumption to address asset market behavior.

For example, the existence of heterogenous agents in the sense that some people can-
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not participate in the asset market increase the equity premium (See Constantinides,

Donalson, and Mehra (2002)) or transaction costs makes return on risk-free bond low

because it can generate utility like cash or rare disaster or event possibilities makes

equity riskier.(See Barro (2005), Rietz (1988). See Campbell (2002) for the compact

review).

The rest of the paper is organized as follows. In Section B, I develop our asset

pricing model. Then, I introduce the methodology to identify macro uncertainty in

section C. Section D shows the empirical results on equity premium. Then I conclude.

B. Asset Pricing Model

I consider a simple closed economy in which a representative agent has a Epstein-Zin-

Weil recursive preferences (Epstein and Zin (1989) and Weil (1989)) given by

Ut =

[

(1 − δ)C
1−γ
χ

t + δ(EtU
1−γ
t+1 )

1

χ

]
χ

1−γ

where χ = 1−γ
1− 1

ψ

, γ ≥ 0 is the coefficient of relative risk aversion, ψ ≥ 0 is the in-

tertemporal elasticity of substitution (IES) and 0 < δ < 1 is the time discount factor.

Compared with a power utility function, Epstein-Zin-Weil utility function allows more

flexibility because it breaks the tight link between the parameters risk aversion γ and

intertemporal substitution ψ. For instance, Epstein-Zin-Weil preference can have

both parameters are bigger than one, implying χ < 0 holds. In case of power utility

function, IES is a reciprocal of risk aversion parameter. Another useful property of

this preference function is about resolution of uncertainty. If γ > ψ−1, then economic

agents prefer earlier resolution of uncertainty. The intertemporal budget constraint

for the representative agent can be written as Wt+1 = Rw,t+1(Wt − Ct) where Wt is

the wealth and Rw,t+1 is the gross return on the portfolio of all invested wealth on
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consumption claims. Epstein and Zin use dynamic programming to derive an Euler

equation for gross return Ri,t+1 for any asset i

(3.1) 1 = Et

[

δχ
(

Ct+1

Ct

)− χ
ψ

Rχ−1
w,t+1Ri,t+1

]

From Euler equation (3.1) I have the logarithm of the intertemporal marginal rate of

substitution (IMRS)

(3.2) mt+1 = χ log δ − χ

ψ
gc,t+1 + (χ− 1)rw,t+1

where rw,t+1 = logRw,t+1 is the log return on the portfolio of all invested wealth.

Using the definition of Rw,t+1 = Ct+1+Pw,t+1

Pw,t
and applying the log linearization method

as in Campbell and Shiller (1988), I can find an approximate relationship between

unobservable (rw,t+1) and observable (zc,t+1) and (gc,t+1)

(3.3) rw,t+1 ≈ k0(z̄c) + k1(z̄c)zc,t+1 − zc,t + gc,t+1

where zc,t = log(Pc,t/Ct) is the log price-consumption ratio.1

To solve the model further I need to specify the process of (zc,t). I assume the

consumption growth, gc,t+1 and dividend growth, gd,t+1 have a long run component

and a time-varying volatility component driven by scalar processes xc,t and xd,t re-

spectively. Additionally, I assume that both of the volatility generating processes

share a scalar common volatility generating process, or I call the macroeconomic un-

certainty process, wt. That is, I extend Bansal and Yaron (2004) by making more

1Coefficients of this approximation are as follows: k0(z̄) = log(1+exp(z̄))−k1(z̄)z̄,

k1(z̄) = exp(z̄)
1+exp(z̄)

for some value z̄.
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realistic assumptions on volatility setup. Specifically, I have

gj,t+1 = µj + ηj,t +
√

fj(xj,t) ǫj,t+1(3.4)

ηj,t+1 = ρjηj,t + ϕj

√

fj(xj,t) ej,t+1(3.5)

xj,t = λj wt + νj,t(3.6)

wt = wt−1 + ut for j = c, d(3.7)

(3.8) fj(xj,t) = αj +
βj

1 + exp [−(xj,t − κj)]

where αj > 0, βj > 0.

I assume that the error terms are characterized by

(3.9)







ǫc,t

ǫd,t






∼ iid N (0,Σ) , Σ =







1 ρ

ρ 1







and (νj,t) is i.i.d. N(0, σ2
j ), (ut) and (ej,t) are i.i.d.N(0, 1). I assume that (εj,t), (et),

(ut,) and (νj,t) are mutually independent of each other except (3.9). The unit variance

of ǫj,t, ej,t, and ut is identifying restriction because αj, βj, ϕj and λj captures the

variance of error terms. Furthermore, w0 is assumed to be independent of (ut), (νj,t)

and (ǫj,t). µc+ηc,t represents the conditional expectation of consumption growth and

ηc,t is the term capturing long-run risks in consumption. Bansal and Yaron (2004)

and Hansen, Heaton, and Li (2005) showed that persistence of this process measured

by ρc plays an essential role of generating equity premium with high unconditional

volatility without increasing the first and second moments of the risk-free rate. This

channel of ‘long run risk’ is still a non-trivial part of our asset pricing model, but I

focus more on how asset returns are connected to aggregate uncertainty that varies

over time. I now explain the setup in the below.
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Our conditional volatility setup has several attractive features. First, volatility of

a macroeconomic variable is assumed to be the sum of a common factor(wt) multiplied

by its factor loading (λ), and an idiosyncratic factor (vt). Given the unobservable

nature of conditional volatility of macroeconomic variables, this strategy usually en-

ables researchers to identify factors of interest more sensibly, by exploiting common

variations yet allowing individual deviations. Second, I impose that these latent fac-

tors vary according to a logistic function (3.8), and further assume that the common

factor wt follows a random walk process. Intuitively, this implies that our volatility

can have two bounded regimes with a smooth transition and volatility is clustering

due to its persistence.2 Park (2002) shows that a model with asymptotically homoge-

neous functions of an integrated process has several nice statistical properties. First,

the sample autocorrelations of the squared processes have the same random limit for

all lags i.e., strong persistence. Secondly, the sample kurtosis has supports truncated

on the left by the kurtosis of the innovations i.e., leptokurtosis. Since the logistic

function belongs to the class of asymptotically homogeneous function, our model can

capture the volatility clustering and fat-tail features of time-series data. Lastly, the

smooth transition feature of our volatility model together with random walk common

factor provides us with some insight about macroeconomic uncertainty. There is little

doubt that high volatility regime is more uncertain than low volatility regime. How-

ever, if volatility is in between two regimes, economic agents may dislike this type of

2Note that existing models such as GARCH models cannot preclude explosive
dynamics which is not so realistic given historic evidences. The parameters αj and
αj + βj represent two asymptotic levels, i.e., low volatility regime and high volatility
regime, respectively. The assumption of positivity of βj makes the logistic function
upward sloping and hence, larger latent variable means higher volatility. This is not a
restriction but for convenience, because the latent variable will be extracted reversely
when a logistic function is downward sloping. The parameters κj and λj in the (3.6)
specify the transition between two regimes, i.e., the reflection point and the speed of
the transition, respectively.
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Knightian uncertainty, because they are not sure about which regime they will end

up with in the future. Thus, in comparison with conventional regime shifting mod-

els allowing only abrupt changes, our setup predicts that an economy with medium

level of macroeconomic volatility (i.e. in a transition mode) might request a higher

premium than otherwise, because of this additional uncertainty different than risk.

To further analyze asset pricing implications of our model, I solve the log price-

consumption ratio zc,t+1 as

(3.10) zc,t+1 ≈ A0,c + A1,cηc,t + A2,cfc(λcwt).

The relevant state variables are ηc,t and wt. The solutions for A0,c, A1,c, and A2,c are

in the Appendix A. If γ > 1 and ψ > 1, then A1,c > 0 and A2,c < 0. This means

that consumers like higher expected future growth, but does not prefer a rise in

macroeconomic volatility. In addition, I can see that when λc gets smaller, i.e. there

exists a slower speed of adjustment, the absolute value of A2,c can increase. That is,

given the traditional risk-return tradeoff relationship, the extent to which consumers

dislike volatility may become larger because of slower resolution of uncertainty.

Once all the coefficients are verified, I can derive easily the innovations in IMRS

(3.11) mt+1 − Et(mt+1) ≈ Λmǫ

√

fc(xc,t)ǫc,t+1 − Λm,e

√

fc(xc,t)ec,t+1 − Λm,u(t)ut+1

where the coefficient terms are defined in Appendix A. Here the risk sources are three

terms, labeled as short run risk ǫt+1, long run risk et+1 and common macroeconomic

uncertainty ut+1.

Next, I derive the market return. Although I solve most of our cases numerically

thus I do not resort to this approximate solution when estimating the model, I write
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down this formula with the derivation in the Appendix B for illustration purposes.

Et[rm,t+1 − rf,t] = Λm,ek1,mA1,mϕcfc,t + Λm,u(t)k1,mA2,m (Γ1fc,t + Γ2) −
1

2
V art(rm,t+1)

The first term in the right hand side is basically the contribution by long-run risks.

The main focus of our paper is the second term, how macroeconomic uncertainty

affects excess expected return for holding equity. It is noteworthy to see that the

market price of the macroeconomic uncertainty is time-varying. In fact, the time-

variability term in Λm,u(t) coincides with the uncertainty factor. Therefore, when

volatility is large, the effect on expected excess return can be bigger. Finally, I

express the risk-free rate as follows:

rf,t = − log [Et exp(mt+1)]

= − log δ +
1

ψ
Etgc,t+1 +

1 − χ

χ
Et [rw,t+1 − rf,t] −

1

2χ
V art(mt+1)(3.12)

I also derive it in terms of current value state variables.(See the further derivation

in Appendix C). With this formula (3.12), however I can see the comparative statics

more easily. The negative relation between risk-free rate and IES is clear from (3.12).

But as the risk-aversion coefficient becomes larger and hence, both the conditional

mean of risk premium on wealth and the conditional variance of IMRS increase, the

effect on the risk-free rate is not clear from (3.12) immediately because last two terms

have opposite direction. If the third term is more dominant than the fourth term,

the risk-free rates decreases and this fact is confirmed from the simulation.
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C. Identifying Macroeconomic Uncertainty

1. A Bayesian Algorithm

In this section, I propose an econometric procedure to identify macroeconomic un-

certainty process based on the model I developed in the previous section. For this

purpose, I rewrite the measurement equation (3.4) as

(3.13) yj,t+1 =
√

fj(xj,t) ǫj,t+1

where yj,t+1 = gj,t+1 − µj − ηj,t.

Note that yj,t is net of unconditional and conditional mean terms. Thus, I need

to subtract these component to identify yj,t series. To this end, I use a Hodrick-

Prescott filter to capture slow moving conditional mean process. I also experimented

with the method suggested by Bansal and Yaron (2004) and Bansal, Kiku, and Yaron

(2007) which regress consumption growth onto interest rate and price-dividend ratio,

exploiting the theoretical structure. Although both results are compatible with each

other, I find that statistical filtering seems to capture long-run components better,

especially with monthly frequency data.

Now with yj,t in hand, one can easily see that (3.13) as well as (3.5) to (3.8)

form a state space model. Thus, a simple method in the conventional approach to

this model could be an extended Kalman filtering by linearizing (3.13) after taking

squares and logs. However, the extended Kalman filtering usually generates the bias

in the estimation. The linearization and the normality assumption on error terms are

the main source of the bias. In the persistent latent variable case, additionally, the

integrability of the derivative of the logistic function makes Kalman gain disappear at

the near of lower bound or upper bound. See the chapter IV. An alternative method

is the density-based nonlinear filtering using exact density function during prediction
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steps and updating steps. I derive nonlinear filtering algorithm to this model in

Appendix D. However, this algorithm is hard to implement in terms of speed due to

multi dimensional integration. So I take the the Bayesian approach, in particular, the

Gibbs sampling which does not suffer seriously the curse of dimensionality because

it utilizes univariate conditional density function. While the Gibbs Sampling method

was originally introduced for image restoration by Geman and Geman (1984), it has

widely been used to solve state-space models, in particular, SV models. See the

Jacquier, Polson, and Rossi (1994), So, Lam, and Li (1998), Jacquier, Polson, and

Rossi (2004), and Geweke and Tanizaki (2001).

I view both the latent variables and the parameters as random variables generated

from the joint posterior density function p(L,Ψ|Y ), where Y = (y1, · · · , yn), yt =

(yc,t, yd,t), L = (X,W ), X = (x1, · · · , xn), xt = (xc,t, xd,t), W = (w1, · · · , wn) and

Ψ = (θ, ρ, λ, σ2). This augmentation of latent variable has originally been introduced

by the Tanner and Wong (1987).3 As discussed in Jacquier, Polson, and Rossi (1994),

the fact that p(L,Ψ|Y ) is proportional to conditional density of observable variables

p(Y |L,Ψ), conditional density of unobservable variables p(L|Ψ), and prior density of

parameters p(Ψ) shows that the joint posterior captures the hierarchical structure of

this model well. Our goal is to sample (L,Ψ) from the joint posterior distribution.

Once I draw the observations for (L,Ψ), I actually have samples for the parameters

generated by p(Ψ|Y ) =
∫

p(L,Ψ|Y ) dL and samples for the latent variables generated

by p(L|Y ) =
∫

p(L,Ψ|Y ) dΨ. Then I can get parameter estimation by the Monte-

3The conventional approach tries to find Ψ maximizing likelihood function p(Ψ|Y ).

And then it uses p(L|Y, Ψ̂) to get updated latent variables Lt|t or smoothed latent
variables Lt|n.



55

Carlo integration i.e.,

E[Ψ|Y ] =

∫

Ψ p(Ψ|Y ) dΨ ≈ 1

G

∑

Ψ(i)

where Ψ(i) is the i-th sample for Ψ and G is the total number of valid Gibbs samples

for Ψ. And similarly I can get the smoothed latent variables. In this model, I can

derive the joint posterior distribution as following:

p(L,Ψ|Y ) ∝ p(L, Y |Ψ)p(Ψ)

∝
(

n
∏

t=1

p(yt|xt,Ψ)p(xc,t|wt,Ψ)p(xd,t|wt,Ψ)p(wt|wt−1)

)

p(Ψ)(3.14)

Though I know the joint posterior distribution it is not easy to draw samples

from it directly. So the Gibbs sampling constructs a Markov chain of (L,Ψ) where

each step draws sample of L or Ψ from a standard posterior density conditional on

all the available information. For example, draw a latent variable from p(L|Y,Ψ) and

draw a parameter from p(Ψ|Y, L) back and forth. The beauty of the Gibbs sampling

is that it is asymptotically identical to the sampling directly from the joint posterior

distribution under mild conditions4 as proved by Tierney (1994). So our next step is

to find posterior density function of each random variables and draw a sample from

it.

First, I can derive easily the posterior distribution of each latent variable condi-

tional on all the other information from (3.14).5 See the Appendix E for details. For

4Mild conditions are irreducibility and aperiodicity which are satisfied by our tran-
sition kernels.

5By Carter and Kohn (1994) block sampler which samples X simultaneously is
more efficient than the sampler that generates the latent variables one at a time
when state space model is linear. But I cannot use block sampler here because of
nonlinearity.
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common latent factor wt,

(3.15) p(wt|X,W\t, Y,Ψ) ∝ p(xc,t|wt, λc, σ2
c )p(xd,t|wt, λd, σ2

d)p(wt+1|wt)p(wt|wt−1)

where W\t denotes the rest of the W vector other than wt. (3.15) shows that

wt|X,W\t, Y,Ψ follows a normal distribution of N (BwA
−1
w , A−1

w ) where Aw =
∑

j

λ2
j

σ2
j

+

2, Bw =
∑

j
λjxj,t
σ2
j

+ wt+1 + wt−1.
6 So it is easy to sample a common latent variable

from (3.15). But this is not the case for xj,t. The posterior density function for xj,t

can be derived as following:

(3.16) p(xj,t|X\j,t,W, Y,Ψ) ∝ p(yt|xt, θ, ρ)p(xj,t|wt, λj, σ2
j )

The complexity of (3.16) makes it impossible to draw a sample from the posterior

distribution of xj,t|X\j,t,W, Y,Ψ directly. The Metropolis-Hastings ( MH ) algorithm

is useful for such complicated distribution. MH algorithm draws a sample from a

transition kernel chosen by researcher. If this transition kernel is ideal, the distribu-

tion of the samples generated from the transition kernel is approximately the target

distribution. Since the ideal transition kernel is unknown to the researcher, MH al-

gorithm compares the probability of the new sample with that of previous sample.

If the former is higher, MH algorithm accepts the new sample as a realization from

the target distribution for sure. But if the latter is higer, MH algorithm accepts the

new sample as a realization from the target distribution with some probability7 such

6for t = n, Aw =
∑

j

λ2
j

σ2
j

+ 1 and Bw =
∑

j
λjxj,n
σ2
j

+ wn−1

7The probability of move is

α(x, y) = min

[

p(y)q(y, x)

p(x)q(x, y)
, 1

]

where x is current location and y is next location, p is the target density, q(x, y) is a
transition kernel which generates a value y when the process is at the point x.
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that nth iterate of the transition kernel converges to the target distribution. When

MH algorithm rejects the new sample, it accepts the previous sample as the new

realization. The reader is referred to Chib and Greenberg (1995) for more detail MH

algorithm. Geweke and Tanizaki (2001) shows that when I use MH algorithm to draw

the latent variables the most efficient transition kernel is a density function obtained

from the transition equation. So I choose 1√
2πσ2

j

exp

[

− (xj,t−λjwt)2
2σ2
j

]

as transition kernel

for latent variables xj,t. This kernel is independent of the previous realization.

Next, I move on the posterior distribution of parameters. Here I need their prior

distributions. I assume the α, β, σ2 and λ have Gamma distribution due to the

positiveness and κ and ρ follow normal distribution. Then the posterior distributions

can be derived as following: for Ψ1 = (θ, ρ)′

p(Ψ1|X,Y,W,Ψ\1) ∝
(

n
∏

t=1

p(yt|xt,Ψ1)

)

p(Ψ1)(3.17)

and for Ψ2 = (λ, σ2)′,

p(Ψ2|X,W, Y,Ψ\2) ∝
(

n
∏

t=1

p(xt|wt,Ψ2)

)

p(Ψ2).(3.18)

Since (3.17) and (3.18) are already so complicated, I need to rely on MH algorithm

again. Following the argument of Geweke and Tanizaki (2001) I choose the prior

distribution as the transition kernel.

2. Data and Gibbs Sampling Results

I use monthly consumption and dividend series from February 1959 to December 2006

for applying the method I developed. Consumption, nondurable goods and service

expenditure series are obtained from Fed St. Louis web site8 and dividend data from

8http://research.stlouisfed.org.
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Table 10.: Summary Statistics.

Mean Max Min Std.Dev Skewness Kurtosis

Consumption 0.0000 0.0119 -0.0144 0.0035 -0.1174 4.0933
Dividend 0.0000 0.0743 -0.1370 0.0312 -0.9544 4.7895

Table 11.: Gibbs Sampling Results.

Posterior Convergence
Parameters Priors Mean Standard errors Diagnostics

αc G(1, 2) 0.000003 0.000001 -1.526
βc G(1, 4) 0.000023 0.0000089 3.241
κc N(0, 1) -0.0554 0.9391 3.415
λc N(0.5, 1) 0.2277 0.1355 -2.840
σ2
c G(1, 2) 1.7174 0.6204 -2.225
αd G(1, 3) 0.000142 0.0000408 6.293
βd G(5, 10) 0.003522 0.0009211 0.617
κd G(0, 1) 2.0719 0.7107 -1.697
λd G(0.5, 1) 0.3605 0.1041 4.778
σ2
d G(1, 2) 0.4112 0.2118 2.478
ρ N(0, 1) -0.0258 0.0436 -0.694

Notes: G(a, b) denotes gamma distribution with mean ab and variance ab2 and N(a, b2)
denotes normal distribution with mean a and variance b2.

CRSP. Dividend growth data is generated from seasonally-adjusted real dividend

series which is created using value-weighted returns with dividend and without divi-

dend.9 There are altogether 575 observations. Table 10 provides summary statistics

for two series. As discussed earlier, I use hp-filter to subtract predictable component

of each series and I demean hp-filtered series to make conditional mean equal to zero.

I draw 120000 samples for each parameters and latent variables by Gibbs algo-

9Real dividend = (returns with dividend - returns without dividend) * market
price index / CPI.
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rithm and discard first 40000 samples, which are considered as samples in the burn-in

period. Table 11 shows most of the estimated parameters are well converged and

significant. Though βc and αd have relatively high convergence diagnostics10, their

small standard errors show that sample series are quite concentrated after burn-in

period as illustrated in Figure 13 and Figure 14. Jacquier, Polson, and Rossi (2004)

warns that one must perform careful sampling experiments to establish convergence

across a wide range of empirically relevant parameter values. Our samples show that

they wander a lot at the beginning but converge after burn-in period.

I can see the αc and βc is smaller than αd and βd due to the volatile dividend

process. While lower bound of volatility of consumption and dividend are
√
α̂c =

0.02% and
√
α̂d = 1.19%, upperbound of volatility function of consumption growth

and dividend are

√

α̂c + β̂c = 0.49% and

√

α̂d + β̂d = 6.05% in a month respectively.

λ̂c and λ̂d show each volatility generating process scale down the magnitude of macro

uncertainty. σ̂2
c is larger than σ̂2

d which implies that the signal of dividend process

is stronger than that of consumption process so that dividend volatility generating

process (xd,t) is more similar to common macro volatility generating process (wt). The

difference of all these parameters indicates that the assumption of Bansal and Yaron

(2004) that conditional volatility of dividend is a simple constant multiplication of

10Convergence Diagnostic (CD) is given by

CD =
θA − θB

√

f̂A(0)
nA

+ f̂B(0)
nB

whereA is the set of Gibbs samples with nA iterations after burn-in period andB is the
set of Gibbs samples with last nB observations and f(0) is the spectral density at the
zero frequency with Parzen window. By the convention I set nA/n = 0.1 and nB/n =
0.5 where n denotes the number of Gibbs samples after burn-in periods. Geweke
(1992) proves that if the sequence of Gibbs samples for a parameter is stationary, CD
converges to the standard normal distribution as the number of samples goes to the
infinity.
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Fig. 13.: Gibbs Samples for Parameters of Consumption Growth.
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Fig. 15.: Comparison between Volatility Generating Process.

conditional volatility of consumption may not be correct, though they have a common

features. ρ̂ shows that the correlation between short-run shocks is not big.

I also extract the latent common macroeconomic uncertainty process wt and

volatility generating process for consumption and dividend (xc,t), (xd,t) as illustrated

in Figure 15. All three volatility generating process have unit root and volatility gen-

erating process of consumption and dividend are cointegrated with common volatility

generating process.11 Straight line can be thought as a threshold for the regime change

in a rough sense.12 The area above the upper straight line is high volatility period

and vice versa. So I can interpret that the fundamentals which generates volatility

have stayed in the low volatility regime in 60s and moved into the transition period in

11ADF unit root test t-statistics are -1.2033, -1.2328 and -1.5258 respectively while
the critical value for 5 % confidence level is -2.866. Residual based cointegration
test t-statistics between wt and xc,t are -20.9900 and that of between wt and xd,t are
-4.0182 while the critical value for 5 % confidence level is -3.46.

12I may think X = [κ − log(2+
√

(3))

λ
, κ − log(2−

√
(3))

λ
] as transition period because

∂3f(x)
∂x3 = 0 at x = κ− log(2±

√
(3))

λ
.
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Fig. 16.: Realized and Estimated Volatility of Consumption and Dividend .

70s and entered into high volatility regime in first-half 80s. From late 80s until now

the fundamentals have stayed in the transition period or the low volatility regime.

Figure 16 plots the estimated volatility and realized volatility. Estimated volatil-

ity from Gibbs samples is obtained by Monte-Carlo integration i.e.,

E[fj(xj,t)|Fn] =

∫

fj(xj,t)p(xj,t|Fn) dxj,t

≈ 1

G

k+G
∑

i=k+1

fj(x
(i)
j,t) for j = c, d

where x
(i)
j,t is the i-th sample for xj,t and k is the length of burn-in period and G is

the total number of Gibbs samples for xj,t. I see from Figure 16 that generally the

estimated volatilities explains well the realized volatilities.

Finally, I try to match the macro uncertainty process with some macro-economic

fundamentals. Since the purpose of this paper is not the interpretation of the volatil-

ity generating process in a serious manner I document just the relationship that could

give a meaningful interpretation. Figure 17 shows the relationship between monthly
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Notes: The solid line stands for the common volatility generating process and the dotted
line stands for nominal interest rates of 3 month Treasury bill and shadow area stands for
the recession period.

nominal interest rates and the common volatility generating process. The interest

rates data is obtained from 3-month treasury bond at St. Louis Fed. Monthly nom-

inal interest rates and the volatility generating process seems to share the common

stochastic trend.13 And I find that recession period are well matched with peak of

common volatility generating process. Especially common volatility generating pro-

cess reaches its peak just before the entry into the 70s, 80s and recent 2001 recession,

and even 1991 mini credit crunch is predicted by a small, but conspicuous increase in

the macro uncertainty factor wt. One of the most foundational links between asset

returns and macroeconomic variables is that equity premium is higher at business

cycle troughs, reflecting risk-return tradeoffs with counter cyclical variations. Our

13Cointegration test for whole series cannot reject null hypothesis. But when I
narrow the period between 1959 and 1990, the Johansen Cointegration Test confirms
the cointegration relationship. p-value with Maximum Eigenvalue is 0.0419 and with
Trace 0.0097.
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macroeconomic uncertainty factor rises and becomes highest when recession starts,

i.e. time of highest uncertainty. Thus, I can expect that this is going to be well

connected to higher risk premium demanded by asset market participants. In the

next section, I estimate this relationship using the identified state variables.

D. Equity Premium: Estimation Results

I use Generalized Moment Method (GMM) to estimate two core preference parameter,

risk aversion coefficient γ and intertemporal elasticity of substitution ψ as Bansal,

Kiku, and Yaron (2007). GMM use only the moment condition derived from Euler

equation (3.1) without an additional assumption on the distribution. I use the GMM

code downloaded from the website.14 I use moment conditions for market, large, small,

growth and value stock and one period lagged consumption growth as instrument.

Each asset data is obtained from Fama and French data library 15 and risk-free rate is

3 month Treasury Bill rate obtained from St. Louis Fed and they are all in monthly

frequency and real terms.

I find γ is 2.111 and ψ is 2.115. Mehra and Prescott (1985) consider that a

maximal level for risk aversion is around 10. And Barro (2005) argues that the usual

view in the finance literature is between 2 and 5. In this sense, our finding for risk

aversion is very reasonable. And several papers consider that plausible ψ lies in

between 1 and 2. For example, Bansal and Yaron (2004) benchmark value is 1.5 and

Hansen and Singleton (1982) and Attanasio and Weber (1989) and Vissing-Jorgensen

(2002) estimate ψ to be well in excess of 1.5 and 1 respectively. In most studies,

however, their measurements are noisy and our case is not an exception. At least, I

14http://www.mgmt.purdue.edu/faculty/mcliff/progs.html.
15http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data-library.html.
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Table 12.: GMM Estimation Result and Moment Conditions.

GMM Parameter Estimates
Parameters Estimates Standard errors t-stat p-val

γ 2.1112 0.3798 5.56 0.0000
ψ 2.1153 41.5402 0.05 0.9594

GMM Moment Conditions
Moment Standard errors t-stat p-val

Moment 1 0.003152 0.002374 1.33 0.1843
Moment 2 0.001702 0.00106 1.61 0.1083
Moment 3 -0.001216 0.000678 -1.79 0.073
Moment 4 -0.00011 0.000262 -0.42 0.6753
Moment 5 -0.00154 0.001443 -1.07 0.2859
Moment 6 -0.000419 0.000541 -0.77 0.4385
Moment 7 0.004064 0.001317 3.09 0.002
Moment 8 0.002092 0.000778 2.69 0.0072
Moment 9 -0.000613 0.000428 -1.43 0.1515
Moment 10 -0.000029 0.000275 -0.10 0.9165

J-start = 15.81 Prob(χ2(8) > J) = 0.045

Notes: Moment condition 1-5 are Return on Small, Large, Growth, Value and Market.
And Moment condition 6-10 are orthogonality between each returns and one period lagged
consumption growth. Since I have moment conditions more than parameters, I use identity
matrix as starting weighting matrix and generate optimal weighting matrix.
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Table 13.: Model Implied Asset Returns.

γ ψ E(rf ) σ(rf ) E(rm) σ(rm) E(rm − rf )

Baseline 2.111 2.115 0.0187 0.0142 0.0880 0.1923 0.0693
Data 0.0351 0.0189 0.0860 0.1519 0.0509

Changes in γ 2.111 2.115 0.0187 0.0142 0.0880 0.1923 0.0693
3 0.0138 0.0142 0.1107 0.2853 0.0968
5 0.0043 0.0142 0.2073 0.4783 0.2030
10 -0.0142 0.0142 0.7070 0.9040 0.7212

Changes in ψ 2.111 1.5 0.0227 0.0199 0.0888 0.1732 0.0662
2.115 0.0187 0.0142 0.0880 0.1923 0.0693
2.5 0.0170 0.0120 0.0879 0.1996 0.0710
3 0.0154 0.0100 0.0888 0.2063 0.0734

confirm that our finding for IES is not far away from consensus in finance literature.

As discussed in the previous subsection, I simulate the 1000 data points series

of consumption and dividend 1000 times. I use GMM estimation results and its

by-product, all the constant terms to be used in generating process. The standard

deviations of simulated consumption and dividend process are 0.0045 and 0.0222

respectively. Since the those of actual data are 0.0036 and 0.0324, our simulated data

is plausible well. From these simulated data I have asset returns which is reported as

the baseline in Table 13. Our simulated equity premium is 6.93 % and risk free rate is

around 2 %. This is consistent with most of the empirical results and I can match the

second moments of equity premium and risk free rate as well. Even compared with

the existing calibration and empirical literature, our model seems to perform quite

well with both the risk aversion and IES around two. I conjecture that the results

come from more realistic modeling strategy of macroeconomic uncertainty.

I run the sensitivity test to understand the role of risk aversion coefficient and

IES. First I increase the risk aversion coefficient from the baseline. I see that very
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common phenomenon that more risk averse preference generates higher equity pre-

mium, too far from the actual data. Secondly I changes in IES. I vary IES between

1.5 and 3 and its effect is as I expect from the derived equations for risk free rate and

excess returns. But, differences are small.

E. Conclusion

In this paper I try to link the macroeconomic uncertainty and asset pricing because

macroeconomic uncertainty, which is time-varying but unobservable, is considered

as an important ingredient for asset pricing. First, I introduce a stochastic volatility

model with consumption and dividend process to identify macroeconomic uncertainty.

In order to capture the features of volatility in financial and macroeconomic data, I

assume the volatility function takes logistic form and unit root common factor. I

solve this model numerically with Bayesian approach to avoid the multidimensional

difficulties. I find that the extracted volatility series explains well the realized volatil-

ity series of both consumption and dividend. Also I see a counter-cyclical relation of

the extracted macroeconomic uncertainty.

And then motivated from Bansal and Yaron (2004), I combine this stochastic

volatility model with long-run risk model and Epstein-Zin-Weil preference. I find our

estimated risk-aversion coefficient and intertemporal elasticity of substitution around

two which is plausible according to the consensus in the finance literature. Bansal

and Yaron’s model with relatively high risk aversion can generate high risk premium

through the persistent long-run risk channel. However, our model produces high

risk premium even with moderate coefficient of risk aversion because it has another

channel, more realistic time-varying volatility. Furthermore, I find that the market

return is as volatile as real data and the risk-free rate is low and stable.



68

CHAPTER IV

NONLINEAR FILTERING WITH A LATENT AUTOREGRESSIVE STATE:

A NUMERICAL COMPARISON OF FOUR TECHNIQUES

A. Introduction

Filtering of an unobserved state is a well-researched topic of interest to physicists,

engineers, econometricians, and other researchers across a wide range of fields of

inquiry. The most well-known approach, developed by Kalman (1960) was designed

to handle linear state space systems. The state is assumed to be autoregressive,

and the observation of the state is assumed in such systems to be a simple linear

transformation of the state, augmented with noise.

Although linearity is a cornerstone of the Kalman filter (KF), engineers quickly

found the need to model nonlinear phenomena, such as tracking the trajectory of an

aircraft, spacecraft, etc. Early attempts to handle nonlinearity included the extended

Kalman filter (EKF) (Jazwinski (1970)), which uses linear approximations of the

nonlinearities in the observation and/or state equation. The EKF introduces bias in

both the linear approximation(s) of the nonlinear function(s) and also in the use of

linear updating of predictions of the state.

Alternative techniques aimed at mitigating the inherent biases of the EKF include

techniques that sample – either randomly or nonrandomly – from an untransformed

distribution. Once propagated through the transformation, the resulting points corre-

spond to a transformed distribution that yields information about the transformation

itself. The unknown parameters of this transformation may thus be estimated.

In this analysis, I compare such approaches for a range of prototypical nonlinear

state space models with a single autoregressive state. Specifically, I compare the KF
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and EKF to a technique that uses nonrandom sampling – the unscented Kalman filter

(UKF) (Julier and Uhlmann (1997) ;Julier, Uhlmann, and Durrant-Whyte (1993)) –

and to a technique that uses random sampling – the density-based nonlinear filter

(DNF) (Harvey and Shepard (1996);Tanizaki (1996)).

As econometricians, an autoregressive state is particularly appealing, since many

time series are assumed to follow I(0) or I(1) stochastic processes in the economic

and econometric literatures. Our focus on a univariate state precludes the potential

complication of cointegrated states in a multivariate setting. Cointegration would

substantially alter the statistical properties of all series considered and is beyond the

scope of the present analysis.

For linear models, the asymptotic distributions of parameter estimators and a

closed-form relationship between the latent series and the series of conditional esti-

mates is complicated but tractable. (See, e.g., Chang, Miller, and Park (2006).) For

nonlinear models, iterative prediction and updating create infinite-order, stochastic,

nonlinear difference equations. Asymptotic distributions of the parameter estimators

are generally intractable, and closed-form expressions are scarce. In this light, I rely

on simulations to gain insights into the relative advantages in finite samples of each of

the fours filters under alternative nonlinear specifications. I examine four aspects of

estimator performance: parameter estimation, state estimation, in-sample fit of the

model, and numerical stability of the algorithm.

Our finite sample results offer some interesting and unexpected insights. Clearly,

the linear KF cannot estimate the nonlinear parameters of the true model, and the

state is not estimated well. However, the overall in-sample fit and numerical stability

of this linear technique is surprisingly good for our nonlinear models. The three

nonlinear techniques can estimate the parameters of a well-specified model, with some

performing better with some functions and worse for others. The EKF seems to be
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the best with in-sample fit of the model, and it is the most numerically stable of the

three for most functions. However, one or both of the other two nonlinear techniques

(UKF and DNF) usually outperform the EKF at parameter and state estimation.

The DNF and UKF filters appear to work well for estimating these, although the

DNF has weaknesses when the model has parameters that are not well-identified. On

the other hand, these two are generally the least numerically stable algorithms.

Econometricians have been increasingly interested in nonlinear filtering over the

last two decades, as more and more nonlinear structural modeling applications with

latent states or time-varying parameters have presented themselves. The tool of choice

among econometricians is by far the EKF. To highlight the apparent appeal of this

technique – and the implicit demand for better nonlinear techniques – I briefly review

some macroeconometric and financial econometric analyses that have relied on the

EKF.

The EKF has been used in the econometrics literature to filter series through

a nonlinear function, similarly to the class of models I discuss below. For example,

Bijleveld, Commandeur, Koopman, and van Montfort (2007) used the EKF to model

road safety with exponential risk factors. Miller and Park (2008) used it to estimate

target zone exchange rate models with a latent economic fundamental.

This technique is also a popular technique for estimating macroeconomic models

with time-varying parameters. Grillenzoni (1993) suggested using the EKF to esti-

mate ARIMA models with ARIMA parameters. Simplification of such models may

be estimated using a linear filter. However, models that feature both time-varying

parameters and a latent state necessarily require a nonlinear technique. Bacchetta

and Gerlach (1997) employed such an approach to examine a consumption function

with a time-varying proportion of consumers with credit constraints.

Moreover, this technique is practical for models with inherently nonlinear func-
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tions and that also require filtering of time-varying parameters. For example, Tanizaki

(1993) introduced the EKF for binary choice models with time-varying parameters.

Shen, Hakes, and Brown (1999) applied this technique to estimate a binary monetary

reaction function for the Fed.

The EKF is also well-known in finance. Bolland and Connor (1997) used the EKF

when the state is assumed to have a nonlinear dynamic (artificial neural network)

structure. A number of papers (Lund (1994); Duan and Simonato (1997); Duffee

(1999); Geyer and Pichler (1999); Chen and Scott (2003); An (2007)) have used the

EKF to estimate term structure models.

As interest in the EKF continues to grow among econometricians, our numerical

comparison with alternative nonlinear filters provides timely insights into the relative

strengths and weaknesses of this filter.

The remainder of the paper is structured as follows. In the following section,

I outline a prototypical nonlinear state space model with univariate autoregressive

state. I then discuss in more detail the four filtering technique mentioned above: KF,

EKF, UKF, and DNF. I detail our simulation experiments in Section C, and I present

and discuss our numerical results in Section D.

B. Nonlinear Filtering in Theory and Practice

A general nonlinear filtering problem involves observation (or measurement) and state

(or transition) equations featuring nonlinear functions with multivariate arguments.

I consider a single, univariate state with linear autoregressive structure. Specifically,

our observation and state equations are given by

yt = g (xt, θ) + ut

xt = ρxt−1 + vt
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where






ut

vt






∼ iidN






0,

σ2 0

0 1






,

and (yt) and (xt) are scalar series with latent (xt). The restriction of the variance of

(vt) is necessary for parameter identification under some specifications. The function

g is known up to an unknown parameter vector θ. The initial condition x0 is assumed

to be independent of (ut) and (vt).

This framework may easily be generalized to take into account serial correlation in

(vt) by allowing (xt) to be multivariate. However, as discussed above, I do not consider

this case in our investigation in order to eschew complications from cointegration.

For a known parameter vector (ρ, θ, σ2), estimation of the latent series (xt) is

accomplished by estimating a series of conditional expectation of the latent series

given information made available by the observed series (yt). For an unknown pa-

rameter vector, I can implement such a filter within a numerical optimization pro-

cedure, so that the resulting filter uses parameter estimates that maximize the joint

log-likelihood of (yt). All of our simulations involve such numerical optimization.

Filtering generally proceeds in three steps: [P] one-step-ahead prediction of the

conditional density of xt, [L] conditional likelihood calculation, and [U] updating the

prediction with newly available information. If I define an increasing filtration (Ft)

as the natural filtration for (yt) – not including (xt) – then new information at time

t is given by yt − yt|Ft−1. A general outline of these steps follows:

[P] Prediction. One-step-ahead prediction of the conditional density p (xt|Ft−1)

of the state is given by

p (xt|Ft−1) =

∫

p (xt|xt−1) p (xt−1|Ft−1) dxt−1

using the assumption that (vt) is contemporaneously independent of (yt−1). In
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this model, I may more specifically write this as

(4.1) p (xt|Ft−1) = p (ρxt−1|Ft−1) + p (vt) ,

due to the linearity of the state equation and the normality of (vt).

[L] Likelihood calculation. The conditional density p (yt|Ft−1) is given by

p(yt|Ft−1) =

∫

p(yt|xt)p(xt|Ft−1)dxt

using the assumption that (ut) is contemporaneously independent of (xt). I may

more specifically write this as

(4.2) p(yt|Ft−1) = p(g (xt, θ) |Ft−1) + p (ut) ,

due to the linear separability of g (xt, θ) and ut in the observation equation and

the normality of (ut).

[U] Updating. In order to update the prediction with information available at time

t and to subsequently predict to time t + 1, I require the conditional density

p (xt|Ft). This is generally obtained from

(4.3) p (xt|Ft) = p(xt|yt,Ft−1) =
p(yt|xt)p(xt|Ft−1)

p(yt|Ft−1)
,

using, again, the assumption that (ut) is contemporaneously independent of

(xt).

This filtering strategy may be accomplished iteratively, subject to a known param-

eter vector θ, a known density of the initial state p (x0|F0), and a known (normal)

likelihood p(yt|xt).

Throughout the remainder of the paper, I adopt the following notation from the
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literature. I let

yt|• ≡ Eyt|F• and xt|• ≡ Ext|F•

denote conditional means, and

ωt|• ≡ var(xt|F•), σt|• ≡ var(yt|F•), and ξt|• ≡ cov(xt, yt|F•)

denote conditional variances and covariance.

1. Kalman Filter

In order to motivate the nonlinear filters discussed below and in order to provide

a benchmark technique, I briefly discuss the Kalman filter. When the observation

equation is linear, say,

yt = α+ βxt + ut

the Kalman filter is the most widely used technique for estimating (xt).

[P] Prediction is accomplished from (4.1) by

xt|t−1 = ρxt−1|t−1

ωt|t−1 = ρ2ωt−1|t−1 + 1

since (xt−1|t−1) and (vt) are normal.

[L] Similarly, the conditional likelihood is calculated from (4.2) using

yt|t−1 = α+ βxt|t−1

σt|t−1 = β2ωt|t−1 + σ2

since (xt|t−1) and (ut) are normal.
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[U] Slightly more complicated, updating is given by

xt|t = xt|t−1 +Kt|t−1

(

yt − yt|t−1

)

(4.4)

ωt|t = ωt|t−1 −K2
t|t−1σt|t−1

where

Kt|t−1 ≡ ξt|t−1σ
−1
t|t−1 = βωt|t−1

(

β2ωt|t−1 + σ2
)−1

is the so-called Kalman gain. Note that Kt|t−1

(

yt − yt|t−1

)

is simply an or-

thogonal projection of xt − xt|t−1 onto the space of yt − yt|t−1, which represents

new information available at time t. The linear projection optimally estimates

p(xt|yt,Ft−1), since the model is linear.

2. Extended Kalman Filter

The EKF (Jazwinski (1970)) was popularized in the statistical and econometric liter-

atures by Harvey (1990). Assuming differentiability of g, the EKF relies on a simple

Taylor-type expansion of the nonlinear function g (xt) around the “known” but un-

observable series (xt|t−1), such that

g (xt) = g
(

xt|t−1

)

+Gt|t−1

(

xt − xt|t−1

)

+ rt

where G• denotes the first derivative of g (xt) evaluated at xt = x• and rt represents

all remainder terms.

[P] Prediction is the same as for the Kalman filter, since I assume a linear state

equation.

[L] In order to evaluate the likelihood given by (4.2), I need to evaluate Eg(xt)|Ft−1
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and var (g(xt)|Ft−1). Using the above linearization, I have

Eg(xt)|Ft−1 = g
(

xt|t−1

)

+ rt|t−1

var (g(xt)|Ft−1) = G2
t|t−1ωt|t−1 + var (rt|Ft−1) + cov

(

Gt|t−1

(

xt − xt|t−1

)

, rt|Ft−1

)

The first-order EKF approximates rt with zero, so that (4.2) is characterized

by

yt|t−1 ≈ g
(

xt|t−1

)

σt|t−1 ≈ G2
t|t−1ωt|t−1 + σ2

Refined approximations of g (xt) may perform better, but require the calculation

of additional, higher-order derivatives.

[U] Updating predictions works exactly the same as for the KF, except the Kalman

gain is approximated. Note that

cov (g(xt), xt|Ft−1) = Gt|t−1ωt|t−1 + cov(rt, xt|Ft−1)

so that if rt ≈ 0, the Kalman gain may be approximated using

Kt|t−1 ≈ Gt|t−1ωt|t−1(G
2
t|t−1ωt|t−1 + σ2)−1.

In addition to the approximation bias, linear updating is no longer optimal in

the sense that linear projections do not optimally estimate p(xt|yt,Ft−1) when

the model is nonlinear. This non-optimality is a second potential source of bias.

In particular, the functional form of G(x) is integrable, Gt|t−1 goes to zero as

xt|t−1 goes to ∞ or −∞. In other words, the information of new observation,

yt is ignored. This pitfalls of EKF become more severe when latent variable

follows I(1) process.
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3. Unscented Kalman Filter

A linear transformation of a normal distribution may be identified by the mean and

variance of the untransformed and transformed (normal) distributions. For a linear

approximation of a nonlinear transformation, the mean and variance of the trans-

formed distribution may be meaningless, unless the approximation is good – i.e., if the

nonlinear function is “close” to linear. The idea of the UKF is to parsimoniously and

nonrandomly select points from the untransformed distribution, pass them through

the nonlinear function, and then use the transformed points to make inferences about

the functional parameters.

Estimation similarly proceeds in three steps. Our discussion is specific to the

model given above, with a univariate, autoregressive state. For a more general and

more detailed discussion of the UKF, the reader is referred to Julier and Uhlmann

(1997), Julier, Uhlmann, and Durrant-Whyte (1993), or Simon (2006).

[P] A set of three sigma points ξt−1,i for i = 0, 1, 2 are chosen, given by

ξt−1,0 = xt−1|t−1

ξt−1,1 = xt−1|t−1 +
√

(1 + λ)ωt−1|t−1

ξt−1,2 = xt−1|t−1 −
√

(1 + λ)ωt−1|t−1

where λ is a tuning parameter. Using

ξt,i = ξt−1,i,

the prediction equations are given by

xt|t−1 =
∑2

i=0
wiξt,i

ωt|t−1 =
∑2

i=0
wi
(

ξt,i − xt|t−1

)2
+ 1
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where

w0 = λ/ (1 + λ) and wi = 1/(2 (1 + λ)) for i = 1, 2

are weights given to the sigma points.

[L] These points are then propagated through the nonlinear function g, so that

ζt,i = g (ξt,i)

and

yt|t−1 =
∑2

i=0
wiζt,i

σt|t−1 =
∑2

i=0
wi(ζt,i − yt|t−1)

2 + σ2

are used to calculate the conditional likelihood.

[U] Updating is still linear and proceeds as above using (4.4), with

Kt|t−1 = σ−1
t|t−1

∑2

i=0
wi(ξt,i − xt|t−1)(ζt,i − yt|t−1)

as the Kalman gain. Note that, like the EKF, linear updating of the UKF is

not optimal.

4. Density-Based Nonlinear Filter

The DNF is broadly used for filters that uses the relationship of (4.1),(4.2) and (4.3)

instead of relying on approximation of nonlinear function or distribution. Since The

DNF is to deal with whole distribution information instead of the first and second

moments because I do not assume the normality of the conditional density function.

Here I denote more specifically DNF as Numerical Integration Filter with determin-

istic nodes. In Tanizaki (1996) Numerical Integration Filter uses random draws from
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the constructed intervals by the mean and variance of the latent variables based on

Extended Kalman filtering.1 I choose the simple equally-divided nodes for the fixed

length of interval. Since the latent variables of unit-root or near unit-root process

can go anywhere, however, the location of the interval should adjust depending the

updated expected values of the latent variable for each time. The reader is referred

to Tanizaki (1996) for more details and an excellent survey of nonlinear filtering

techniques.

A disadvantage is that the DNF may slow the implementation of the filter sub-

stantially. For this reason, the UKF was developed by engineers concerned with

high-speed tracking applications. For econometric applications, the speed of the filter

is not usually important.

[P] Using the change in variables, i.e., xt−1 = z + ρxt−2|t−2

p(xt|Ft−1) =

∫

p(xt|xt−1)p(xt−1|Ft−1) dxt−1

≈
∫ c+ρxt−2|t−2

−c+ρxt−2|t−2

p(xt|xt−1)p(xt−1|Ft−1) dxt−1

=

∫ c

−c
p(xt|z + ρxt−2|t−2)p(z + ρxt−2|t−2|Ft−1) dz

≈ h√
2π

m
∑

j=1

exp

(

−1

2

[

xt − ρ(zj + ρxt−2|t−2)
]2
)

p(zj + ρxt−2|t−2|Ft−1)

where c is the one-side length of interval for the conditional density function to

be measured, h is the length of each partition in the interval, j = 1, 2, · · · ,m,

m = 2c/h so that z = [−c,−c + h, · · · , c − h]. Finally the relation xt =

1But what if Extended Kalman filtering works bad? In our model Extended
Kalman filtering has bigger possibility of being stuck with higher or lower values
of latent variable due to the integrability of logistic function. Once it become stuck,
so is the intervals.
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z + ρxt−1|t−1 yields

p(zi + ρxt−1|t−1|Ft−1) ≈
h√
2π

m
∑

j=1

exp

(

−1

2

[

zi + ρxt−1|t−1 − ρ(zj + ρxt−1|t−2)
]2
)

p(zj + ρxt−2|t−2|Ft−1)

Note that p(z + ρxt−2|t−2|Ft−1) is the density shifted from p(xt−1|Ft−1) by

ρxt−2|t−2.

[L] Using the change in variables, i.e., xt = z + ρxt−1|t−1

p(yt|Ft−1) =

∫

p(yt|xt)p(xt|Ft−1) dxt

≈
∫ c+ρxt−1|t−1

−c+ρxt−1|t−1

p(yt|xt)p(xt|Ft−1) dxt

=

∫ c

−c
p(yt|z + ρxt−1|t−1)p(z + ρxt−1|t−1|Ft−1) dz

≈ h√
2π

m
∑

j=1

exp

(

−1

2

[

yt − f(zj + ρxt−1|t−1)
]2
)

p(zj + ρxt−1|t−1|Ft−1)

Note that p(z+ρxt−1|t−1|Ft−1) is the density shifted from p(xt|Ft−1) by ρxt−1|t−1.

[U] Using the change in variables, i.e., xt = z + ρxt−1|t−1

p(zi+ρxt|t−1|Ft) ≈
1√
2π

exp

(

−1

2

[

yt−f(zi+ρxt−1|t−1)
]2
)

p(zi + ρxt−1|t−1|Ft−1)

p(yt|Ft−1)

C. Experimental Design

1. Simulation

As a framework for our Monte Carlo simulations, I construct R = 1, 000 pseudo-

randomly generated samples of length n = 1, 000 four each of three different nonlinear

functions, with either ρ = 0.5 or ρ = 1.0. The different values of ρ correspond to

and are representative of I(0) and I(1) autoregressive states. Examination of both
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Table 14.: Logistic Function Parameters.

Case ρ ν α σ

ES05 0.5 0.5 2.0 1.0
EN05 1.0 0.5 2.0 1.0
ES50 0.5 5.0 2.0 1.0
EN50 1.0 5.0 2.0 1.0

of these common types of autoregressive processes is important, since the underlying

time series characteristics of the state may significantly affect both the time series

characteristics of the observed series and also of the parameter estimators.

Similarly to the target zone exchange rate model of Miller and Park (2008), I

first consider a family of logistic functions parameterized by

g (xt, θ) = ν/ (1 + exp (−αxt))

with ν, α > 0. Note that the unit variance restriction on (vt) is critical for identifying

α.

Identification of α may still be difficult – especially with integrated (xt). As

Granger and Terasvirta (1993) noted, clustering of observations near the bounds of

the logistic function should make the upper bound ν easy to identify, but the slope α

difficult. They suggest that, under empirical uncertainty about this parameter, one

should conclude that it is in fact large, suggesting a steep slope or sudden transition

between upper and lower bound. In order to try to pinpoint such an identification

problem, I consider both a relatively small value of ν (where identification of α may

be difficult), and relatively large value of ν (where identification of α may be less

difficult). Specifically, for (ρ, θ, σ2) = (ρ, ν, α, σ2), I consider four cases, which I will

refer to as cases ES05, EN05, ES50, EN50. The true parameter values for these cases

are given in Table 14.
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Table 15.: Power Function Parameters.

Case ρ β γ σ

PS05 0.5 1.0 0.5 0.02
PN05 1.0 1.0 0.5 0.02

I also consider a power function parameterized by

g (xt, θ) = βxγt

with γ > 0. Two cases considered for (ρ, θ, σ2) = (ρ, β, γ, σ2) are summarized in

Table 15.

I consider smaller σ = 0.02 simply to increase the signal-to-noise ratio in the

simulated models.

Since our true parameter value of γ is 0.5, our xt should be positive for all t.

So I can use absolute or exponential or logistic transformation for xt. Here I use

logistic transformation because absolute transformation is not one-to-one mapping

and exponential transformation has identification problem between γ and coefficient

inside exponential function. However when I use logistic transformation I reduce

the nonstationarity of transformed latent variable when original latent variable is

nonstationary.

2. Estimation

For simulations, I estimate ρ with the restriction that ρ ∈ (−1, 1). Even when ρ = 1,

I can still get the estimation results close enough to 1 due to logistic restriction. I

restrict x0 = 0 in both simulation and estimation. I restrict the variance of (vt)

to be unity in both simulation and estimation. As a result of experimentation, I set

ω0 = 0.1 for the EKF and UKF and, for the UKF, I set the tuning parameter λ = 1/3



83

and, for the DNF, I set the tuning parameter c = 5, h = 0.1. I do not smooth any of

the estimated series
(

xt|t
)

.

3. Criteria for Comparison

I compare the four filters across each of these six cases in four primary dimensions:

parameter estimation, state estimation, in-sample fit of the model, and numerical

stability.

• Parameter estimation. An obvious metric for evaluating accuracy of these

techniques is to examine parameter estimates and their standard errors. I can

only compare the EKF, UKF, and DNF using this criterion, since the KF as-

sumes an incorrect (linear) functional form.

• State estimation. I analyze the fit of the estimated state
(

xt|t
)

by examining

the distribution across simulations of

RMSEr
(

xt|t
)

=

√

n−1
∑

t

(

xt|t − xt
)2
,

the root MSE across t = 1, . . . , n for each simulation r = 1, . . . , R.

• In-sample fit of the model. I analyze the in-sample fit of the model by

examining the distribution across simulations of

RMSEr
(

yt|t−1

)

=

√

n−1
∑

t

(

yt|t−1 − yt
)2
,

the model root MSE for each simulation r. Since (xt) is not observable, com-

parisons based on the in-sample fit of the model may be quite different from

comparisons based on the parameter estimates themselves. For example, if

parameter estimates are particularly bad, it is possible that
(

xt|t
)

is still con-

structed in such a way that (g(xt|t, θ̂)) is still a good fit for (yt).
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• Numerical stability of the algorithm. Numerical stability is generally prob-

lematic in estimation of nonlinear models, and is particularly problematic in

nonlinear filtering applications. Nonlinearity may create extreme values in sim-

ulation, identification problems, and other numerical eccentricities that may

cause the algorithm to fail. In our experiments, I discard simulations in which

the algorithm fails. I use the same seed for all four techniques until I get more

than 1, 000 successful simulations for all techniques. I discard unsuccessful sim-

ulations. Then, I randomly discard successful simulations until I have exactly

1, 000 for each technique. However, the failures themselves convey information

about the numerical stability of the respective techniques. I therefore report

the percentage of successful simulations out of total simulations.

D. Experimental Results and Conclusions

Table 16 and Table 17 summarize the main results of the analysis. The odd panels

show the results for simulated I(1) states, while the even panels show those for I(0)

states. Within each panel, I first show the mean and standard deviation of param-

eter estimates across all simulations. These standard deviations are not standard

errors of a single estimate, but they may be interpreted in a roughly similar manner.

Specifically, they provide a degree of certainty (or uncertainty) about the mean of

the parameter estimates. Since I know the true values used for our simulations, I

may assess how well the estimates target these values. Below them, I display the

mean and median of RMSEr
(

xt|t
)

and RMSEr
(

yt|t−1

)

, providing a measure of the

accuracy of state estimation and of in-sample fit of the model, respectively. Finally,

stability is assessed with the percentage of the total simulations in which numerical

optimization failed.
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Table 16.: Numerical Results with Logistic Function.

EN05 DNF UKF EKF KF
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

ρ = 1.0 0.4656 0.3820 0.8216 0.3236 0.8456 0.3131 NA NA
ν = 0.5 0.6695 0.3228 0.5949 0.2976 0.5302 0.3125 NA NA
α = 2.0 9.9128 13.4138 5.0362 9.2182 1.4373 2.0734 NA NA
σ = 1.0 0.9803 0.0352 0.9932 0.0308 0.9669 0.1563 NA NA

Mean Med. Mean Med. Mean Med. Mean Med.
RMSE(x) 20.0040 17.5399 17.2164 13.7640 17.8033 14.4902 20.6737 16.3798
RMSE(y) 1.0109 1.0105 1.0082 1.0081 1.0074 1.0080 1.0081 1.0082

Stability 52.1% 57.4% 82.6% 84.0%

ES05 DNF UKF EKF KF
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

ρ = 0.5 0.2262 0.4358 0.5407 0.3924 0.4711 0.3880 NA NA
ν = 0.5 0.5061 0.0652 0.5038 0.0675 0.4996 0.0685 NA NA
α = 2.0 13.8948 14.8334 7.0522 15.5002 1.9422 2.2186 NA NA
σ = 1.0 0.9907 0.0251 1.0007 0.0254 0.9188 0.2180 NA NA

Mean Med. Mean Med. Mean Med. Mean Med.
RMSE(x) 1.1429 1.1409 1.3614 1.1629 1.3139 1.1773 4.2359 1.1673
RMSE(y) 1.0134 1.0131 1.0135 1.0138 1.0064 1.0073 1.0128 1.0126

Stability 60.8% 53.3% 75.4% 72.3%

EN50 DNF UKF EKF KF
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

ρ = 1.0 0.9854 0.0547 0.9570 0.1012 0.9845 0.0240 NA NA
ν = 5.0 4.9648 0.4326 5.5545 1.9609 4.9253 1.3327 NA NA
α = 2.0 2.8510 5.2895 1.6676 2.7398 1.0202 1.5647 NA NA
σ = 1.0 0.9928 0.0245 1.0373 0.0490 1.0339 0.0377 NA NA

Mean Med. Mean Med. Mean Med. Mean Med.
RMSE(x) 13.1901 10.3225 13.7505 9.7338 14.6859 11.2501 19.2012 15.5687
RMSE(y) 1.1318 1.1219 1.1538 1.1494 1.1143 1.1134 1.1768 1.1738

Stability 92.8% 66.8% 89.2% 93.3%

ES50 DNF UKF EKF KF
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

ρ = 0.5 0.4994 0.0414 0.5635 0.0582 0.5084 0.0492 NA NA
ν = 5.0 4.9973 0.1330 5.0539 0.1738 5.0196 0.1208 NA NA
α = 2.0 2.0142 0.1615 2.6226 0.7394 1.1446 0.0954 NA NA
σ = 1.0 0.9983 0.0484 1.1056 0.1994 1.1463 0.1068 NA NA

Mean Med. Mean Med. Mean Med. Mean Med.
RMSE(x) 0.6338 0.6328 0.7550 0.7528 0.6445 0.6431 3.7616 1.2893
RMSE(y) 1.8237 1.8243 1.8270 1.8282 1.3054 1.3044 1.8245 1.8252

Stability 100.0% 99.9% 100.0% 100.0%
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Table 17.: Numerical Results with Power Function.

PN05 DNF UKF EKF KF
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

ρ = 1.0 0.9964 0.0092 0.9984 0.0034 0.9959 0.0072 NA NA
β = 1.0 0.9995 0.0406 1.0061 0.0740 1.0677 0.1562 NA NA
γ = 0.5 0.5181 0.0720 0.5298 0.0992 0.6163 0.2225 NA NA
σ = 0.02 0.0198 0.0018 0.0194 0.0034 0.0158 0.0083 NA NA

Mean Med. Mean Med. Mean Med. Mean Med.
RMSE(x) 2.6136 1.9047 2.9852 2.3116 4.6102 2.5127 26.2282 20.3418
RMSE(y) 0.0277 0.0283 0.0270 0.0271 0.0284 0.0287 0.0384 0.0384

Stability 33.7% 63.4% 26.0% 94.4%

PS05 DNF UKF EKF KF
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

ρ = 0.5 0.4962 0.0911 0.4734 0.1054 0.4970 0.0982 NA NA
β = 1.0 1.0072 0.0628 1.7710 0.8573 1.0074 0.0676 NA NA
γ = 0.5 0.5077 0.0889 1.2212 0.5012 0.5080 0.0952 NA NA
σ = 0.02 0.0193 0.0032 0.0185 0.0040 0.0191 0.0039 NA NA

Mean Med. Mean Med. Mean Med. Mean Med.
RMSE(x) 0.7866 0.7866 0.9001 0.9001 0.7895 0.7895 1.5553 1.5553
RMSE(y) 0.0275 0.0275 0.0275 0.0275 0.0275 0.0275 0.3666 0.3747

Stability 73.0% 56.2% 94.2% 98.8%
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Obviously, since the KF is inherently misspecified, it cannot estimate the param-

eters of the nonlinear models. Among the remaining three techniques, it is somewhat

surprising to learn that there is no clear leader. As discussed above, the EKF has two

sources of bias. The UKF eliminates one source, and the DNF eliminates both. I may

therefore expect that the DNF dominates the UKF, which dominates the EKF. While

the EKF is usually dominated by one or both of the other two, it is not consistently

dominated by one of them.

The results for parameter estimates in fact depend on the functions and parame-

ters estimated. Consider first the logistic specifications with a relatively small ceiling

(EN05 and ES05). I can expect from the observation made by Granger and Terasvirta

(1993) that the slope α will be very difficult to identify. This certainly appears to be

the case, since the mean of the estimates of α are far off (except for the EKF), and

the standard deviations of the estimates are very large for all three techniques. The

uncertainty about α causes much uncertainty about ρ, with the DNF performing the

worst – in the unit root case, ρ = 1 is not even within a standard deviation of the

mean. However, all of the techniques estimate ν and σ reasonably well.

In order to avoid the identification problem (at least in these finite samples), I

also examine cases EN50 and ES50, with much larger ceilings. The slope α may be

traced out more effectively, since more observations will rest between the floor and

the ceiling of the function. Of course, this should hold more so for ES50 than EN50,

because of the strong mean reversion of an I(0) process. In the I(1) case, there is

less uncertainty than with the lower ceiling, but still evident identification problems.

The performance of the parameter estimation would be well compared if one see the

densities of the estimates. Figure 18 and Figure 19 indicates that in the any case DNF

outperforms the other filters. And in the I(1) case, EKF does not work worse because

there is the possibility that the Kalman gain disappears when the latent variables



88

−1 −0.5 0 0.5 1
0

2

4

6

8
ν̂ − ν0

 

 

−2 −1 0 1 2
0

1

2

3
α̂ − α0

−0.5 0 0.5
0

10

20
σ̂ − σ0

−0.1 −0.05 0
0

20

40

60
ρ̂ − ρ0

DNF
UKF
EKF

Fig. 18.: Densities of the EN50 Estimates with Four Filters.

stay in the extreme region.

Looking at a completely different functional form, the power function (PN05 and

PS05), the DNF slightly outperforms the other two for both I(1) and I(0) cases. This

fact is also confirmed in the Figure 20 and Figure 21. All of them appear to perform

reasonable well, except for the UKF in the stationary case. In particular, the UKF

does not estimate the power γ adequately.

Turning to state estimation, I can now consider the KF with the other three.

However, it is no surprise that estimating a state that enters into the model nonlin-

early with a technique that assumes linearity will generally not work well. Indeed,

this seems to be borne out in our results. There is an interesting exception, however,

which is EN05. Recall that this is the case in which α is the least identifiable. In large

samples, this model is approximately piecewise linear (with no slope). It is therefore

not surprising that the KF is competitive with the other techniques at estimating

the state. In fact, judging from a similar mean a lower median of the RMSE, the

KF actually does a better job than the DNF. In both cases with logistic function and

I(1) state, the UKF estimates the state most accurately, with lower mean and median
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Fig. 19.: Densities of the ES50 Estimates with Four Filters.
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Fig. 20.: Densities of the PN50 Estimates with Four Filters.
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Fig. 21.: Densities of the PS50 Estimates with Four Filters.

RMSE. However, the DNF outperforms the UKF in all of the other cases. In some

of the stationary cases, the EKF also dominates the UKF.

All four techniques – even the KF – are competitive at overall in-sample fit.

The EKF turns out to be the best at fitting logistic functions, but all three of the

nonlinear techniques fit the power function nearly equally well. The KF does not

lag far behind, and – again, in the exceptional asymptotically piecewise linear case –

outperforms the DNF in this dimension.

Finally, the numerical stability of the KF is clearly unrivaled, as it does not have

to contend with any of numerical problems that can inherently occur with nonlinear

techniques. With one exception, the EKF is almost as stable. The UKF and DNF

appear to be less stable than the KF and EKF in most cases.

Overall, the results of our numerical experiments do not favor any of the filters

over the others in every case. If parameter estimates of a well-identified nonlinear

model are needed, then the DNF appears preferable. However, if the parameters are

not well-identified, the DNF appears inferior. If the goal is to filter the state, then the

UKF appears to the best for an I(1) state, although the DNF appears to be the best
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for an I(0) state. If in-sample fit of the model is the overarching goal of estimating a

nonlinear state space model, it appears that the EKF is the best choice. Finally, for

numerical stability, the KF and EKF are best in most cases.
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CHAPTER V

CONCLUSION

We construct nonlinear state-space model with persistent latent variables to inves-

tigate the volatility generating process from the return or growth data of an asset.

We argue that a logistic function has some advantages over standard exponential

function for the non-explosive volatility and asymmetric leverage effect. Due to the

nonlinearity of logistic volatility function and persistence of the latent variables, con-

ventional Extended Kalman filtering is not appropriate with our model. To filter the

volatility generating process from data we introduce two alternative methods, which

are density-based ML estimation and Gibbs sampling. These two methods give sim-

ilar results though only density-based ML estimation allows extensive Monte-Carlo

Experiments. We find that all the parameter can be correctly estimated from Monte-

Carlo Experiments. We apply our methods to stock return and dividend growth

data and extract the volatility generating process. The extracted volatility generat-

ing process explain the realized volatility quite well and moreover we can find some

fundamentals cointegrated with them.

We extend our model into multivariate setup for extracting common stochastic

trend, in particular, we introduce a stochastic volatility model with consumption and

dividend process to identify macroeconomic uncertainty. With this extended model,

we try to link the macroeconomic uncertainty and asset pricing because macroeco-

nomic uncertainty, which is time-varying but unobservable, is considered as an im-

portant ingredient for asset pricing. We solve this model numerically with Bayesian

approach to avoid the multidimensional difficulties. We find that the extracted volatil-
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ity series explains well the realized volatility series of both consumption and dividend.

Also we see a counter-cyclical relation of the extracted macroeconomic uncertainty.

And then motivated from Bansal and Yaron (2004), we combine this stochastic

volatility model with long-run risk model and Epstein-Zin-Weil preference. We find

our estimated risk-aversion coefficient and intertemporal elasticity of substitution

around two which is plausible according to the consensus in the finance literature.

Bansal and Yaron’s model with relatively high risk aversion can generate high risk

premium through the persistent long-run risk channel. However, our model produces

high risk premium even with moderate coefficient of risk aversion because it has

another channel, more realistic time-varying volatility. Furthermore, we find that the

market return is as volatile as real data and the risk-free rate is low and stable.
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APPENDIX A

SOLUTION TO THE RETURNS ON THE ALL INVESTED WEALTH

We start from the Euler equation for the all invested wealth Rw,t+1.

Et

[

exp(χ ln δ − χ

ψ
gc,t+1 + χrw,t+1)

]

= 1

Plug in the consumption growth process gc,t+1, and approximate rw,t+1 ≈ k0,c +

k1,czc,t+1 − zc,t + gc,t+1. And we conjecture the log price-consumption ratio zc,t ≡

log
(

Pc,t
Ct

)

is dependent on the state variable ηc,t and fc,t, such that zc,t = A0,c +

A1,cηc,t + A2,cfc,t. We use fc,t to denote fc(λcwt) for short-hand notation.

Et

[

exp

(

χ ln δ + (χ− χ

ψ
)gc,t+1 + χ{k0,c + k1,czc,t+1 − zc,t}

)]

= 1

And we ignore the difference between fc(xc,t) and fc(λcwt) because xc,t and wt are

cointegrated each other and in particular, logistic transformation makes two values

similar in the high or low volatility regime at which mass will cluster asymptoti-

cally. Moreover consumption volatility moves very small range between 0.000002 and

0.000022. Following Bansal and Yaron(2004), we will verify the unknown coefficients

for zc,t process.

First, we can linearize fc,t+1 around fc,t ≈ fc,0.

fc,t+1 = αc +
βc (fc,t+1 − αc)

fc,t+1 − αc + (αc + βc − fc,t) exp(−λcut+1)

≈ αc +
βc (fc,0 − αc)

fc,0 − αc + (αc + βc − fc,0) exp(−λcut+1)

+
β2
c exp (−λcut+1)

[fc,0 − αc + (αc + βc − fc,0) exp(−λcut+1)]
2 [fc,t − fc,0]

= αc +K1 (ut+1) +K2 (ut+1) [fc (λcwt) − fc,0]
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with K1(ut+1) linearized again around ut+1 ≈ 0

K1 (ut+1) ≈
βc (fc,0 − αc)

fc,0 − αc + (αc + βc − fc,0)
+
λcβc (fc,0 − αc) (αc + βc − fc,0)

[fc,0 − αc + (αc + βc − fc,0)]
2 ut+1

= fc,0 − αc +
λc
βc

(fc,0 − αc) (αc + βc − fc,0)ut+1

and with K2 (ut+1) linearized around ut+1 ≈ 0

K2 (ut+1) ≈
β2
c

[fc,0 − αc + (αc + βc − fc,0)]
2 +

−λcβ4
c + 2λcβ

3
c (αc + βc − fc,0)

[fc,0 − αc + (αc + βc − fc,0)]
4 ut+1

= 1 +
λc
βc

(βc − 2fc,0 + 2αc)ut+1

Finally, fc,t+1 can be expressed in terms of fc,t and ut+1.

fc,t+1 ≈ fc,t +
λc
βc

(βc − 2fc,0 + 2αc) fc,tut+1

+
λc
βc

[(fc,0 − αc) (αc + βc + fc,0) − βcfc,0]ut+1

= fc,t + Γ1fc,tut+1 + Γ2ut+1(A.1)

where Γ1 = λc
βc

(βc − 2fc,0 + 2αc) and Γ2 = λc
βc

[(fc,0 − αc) (αc + βc + fc,0) − βcfc,0].

And we can linearize f 2
c,t around fc,t ≈ fc,0

(A.2) f 2
c,t ≈ f 2

c,0 + 2fc,0 (fc,t − fc,0) .

Using (3.2),(3.3), (3.10), (A.1) and (A.2) and rearranging the inside the exponential

of Euler equation (3.1) by constant, ηc,t, and fc,t we have

χ ln δ + (1 − γ)µc + χ (k0,c + (k1,c − 1)A0,c) + 0.5 (χk1,cA2,c)
2 [Γ2

2 − Γ2
1f

2
c,0

]

+ [(1 − γ) + χA1,c (k1,cρc − 1)] ηc,t

+

[

χ2k2
1,cΓ1 [Γ1fc,0 + Γ2]A

2
2,c + χ (k1,c − 1)A2,c +

1

2

[

(1 − γ)2 + (χk1,cA1,cϕc)
2]
]

fc,t



102

Then when the above equation becomes equal to zero always, coefficients A0,c,

A1,c, and A2,c can be verified as following:

A1,c =
1 − γ

χ (1 − k1,cρc)
(A.3)

A0,c =
χ ln δ + (1 − γ)µc + χk0,c + 0.5 (χk1,cA2,c)

2 [Γ2
2 − Γ2

1f
2
c,0

]

χ (1 − k1,c)
(A.4)

A2,c =
1 − k1,c ±

√

(k1,c − 1)2 − 2k2
1,cΥ

[

(1 − γ)2 + (χk1,cA1,cϕc)
2]

2χk2
1,cΥ

(A.5)

where Υ = Γ1 (Γ1fc,0 + Γ2).

And since inter-temporal marginal rate of substitution(IMRS) is,mt+1 ≡ lnMt+1 =

χ ln δ − χ
ψ
gc,t+1 + (χ− 1)rw,t+1, conditional mean of IMRS is

Et (mt+1) = χ ln δ − γµc + (χ− 1) (k0,c + (k1,c − 1)A0,c)

+ [(χ− 1) (k1,cρc − 1)A1,c] ηc,t + [(χ− 1)A2,c (k1,c − 1)] fc,t.

Then the innovations in IMRS is

(A.6) mt+1 − Et(mt+1) = Λmǫ

√

fc,tǫc,t+1 − Λm,e

√

fc,tec,t+1 − Λm,u(t)ut+1

where the prices of risk for each sources of risk are defined appropriately,

Λmǫ ≡ −γ

Λm,e ≡ (1 − χ)k1,cA1,cϕc

Λm,u(t) ≡ (1 − χ)k1,cA2,c (Γ1fc,t + Γ2)
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APPENDIX B

SOLUTION TO THE MARKET RETURN

When we log linearize log return on the market assets, Rm,t+1 = Dt+1+Pm,t+1

Pm,t+1
in a

similar way, we have

(B.1) rm,t+1 ≈ k0,m(z̄m) + k1,m(z̄m)zm,t+1 − zm,t + gd,t+1

where zd,t = log(Pd,t/Dt) is the log price-dividend ratio.

To solve the market return, we assume the process of dividend growth gd,t+1

as (3.13) and the process of long run component of dividend ηd,t+1 as similar as

consumption

(B.2) ηd,t+1 = ρdηd,t + ϕd

√

fd(xd,t)ed,t+1

We can use the method of undetermined coefficient by guessing approximately zm,t ≈

A0,m + Ac1,mηc,t + Ad1,mηd,t + A2,mfc,t. Note that the relevant state variable is ηc,t, ηd,t

and wt because dividend process also is affected by consumption. First, approximate

fd(λdwt) in terms of fc,t at fd,0

fd(λdwt) ≈ αd +
βd (fd,0 − αc)

λ exp (λκc − κd)

(fd,0 − αc)
λ exp (λκc − κd) + (αc + βc − fd,0)

λ

+
λβcβd (fd,0 − αc)

λ−1 (αc + βc − fd,0)
λ−1 exp (λκc − κd)

[

(fc,0 − αc)
λ exp (λκc − κd) + (αc + βc − fd,0)

λ
]2 (fc,t − fd,0)

= π1 + π2 (fc,t − fd,0)

where λ = λd/λc and π1 and π2 are defined appropriately.

Here we ignore the difference between fd(xd,t) and fd(λdwt) by the similar reason-

ing in the Appendix C. To derive expressions for the undetermined coefficients A0,m,
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Ac1,m, Ad1,m, and A2,m, use the Euler equation again for the market return rm,t+1:

Et

[

exp

(

χ ln δ − χ

ψ
gc,t+1 + (χ− 1) rw,t+1 + rm,t+1

)]

= 1

Expanding rw,t+1 and rm,t+1 processes, we have

Et






exp







χ ln δ − γgc,t+1 + (χ− 1) (k0,c + k1,czc,t+1 − zc,t)

+k0,m + k1,mzm,t+1 − zm,t + gd,t+1












= 1

Now we collecting terms inside the exponential by state variables ηc,t, ηd,t, fc,t and

constants. Note that though there is cross product term −γ
√

fc,t
√

fd,tρ due to the

correlation of short-run shocks, empirically both ρ and volatility are so small that

this term is negligible. As the same as in the Appendix A, we can find the coefficient

terms as following:

A0,m =
χ ln δ − γµc + µd + (χ− 1) (k0,c + k1,cA0,c − A0,c) + k0,m + 0.5H1

1 − k1m

Ac1,m =
− 1
ψ

1 − k1,mρc

Ad1,m =
1

1 − k1mρd

A2,m =
[(1 − χ) k1,cA2,ck1mΥ + 1 − k1,m] ±

√

[(1 − χ) k1,cA2,ck1mΥ + 1 − k1,m]2 − 4Υk2
1,mH2

2Υk2
1,m

where

H1 =
(

1 + (k1,mA
d
1,mϕd)

2
)

Π + ((χ− 1) k1,cA2,c + k1,mA2,m)2 (π2
2 − fc,0

)

Π = (π1 − π2fd,0)

H2 = Υ (χ− 1)2 k2
1,cA

2
2,c + (χ− 1)A2,c (k1,c − 1)

+ 0.5
[

((χ− 1) k1,cA1,c + k1,mA1,m)2 ϕ2
c +

(

(k1,mA
d
1,mϕd)

2 + γ2
)

π2

]
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Once all the coefficient are verified, we can derive easily the conditional mean

of equity premium from the fact that risk premium of any asset is negatively related

with both the conditional covariance between the return and intertemporal marginal

rate of substitution and variance of the return.

Then innovation to the return rm,t+1 is

rm,t+1 − Et (rm,t+1) = ϕd
√

fd,tǫd,t+1 + k1,mA
c
1,mϕc

√

fc,tec,t+1 + k1,mA
d
1,mϕd

√

fd,ted,t+1

+ k1,mA2,m (Γ1fc,t + Γ2)ut+1

and its conditional variance V art (rm,t+1) is

V art (rm,t+1) =
(

1 + (k1,mA
d
1,mϕd)

2
)

fd,t+(k1,mA
c
1,mϕc)

2fc,t+(k1,mA2,m (Γ1fc,t + Γ2))
2

and the risk premium for rm,t+1 is equal to,

Et[rm,t+1 − rf,t] = −Covt[mt+1 − Et(mt+1), rm,t+1 − Et(rm,t+1)] −
1

2
V art(rm,t+1)

= Λm,ek1,mA
c
1,mϕcfc,t + Λm,u(t)k1,mA2,m (Γ1fc,t + Γ2) −

1

2
V art(rm,t+1)

Now we assume the long-run component of dividend is strongly related with the

long-run component of consumption following Bansal and Yaron (2004).

ηd,t = φηc,t

Though our model does not assume such relation, this assumption is not bad for

the illustration purpose because actual data seems to share similar trend. Then we

can reduce the number of the state variable and verify undetermined coefficients as
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following:

A0,m =
[χ log δ − γµc + µd + (χ− 1) (k0,c + k1,cA0,c − A0,c) + k0,m + 0.5H3]

1 − k1,m

(B.3)

A1,m =

(

φ− ψ−1

1 − k1,mρc

)

(B.4)

A2,m =
1

2Θk2
1,m

(

(1 − k1,m) + 2 (1 − χ) k1,cA2,ck1,mΘ

−
√

[(1 − k1,m) + 2 (χ− 1) k1,cA2,ck1,mΘ]2 − 4Θk2
1,mC

)

(B.5)

where Θ = Γ1 (Γ1f0,c + Γ2) and

C = (χ− 1)A2,c (k1,c − 1) + 0.5
(

γ2 + π2 + ((χ− 1) k1,cA1,c + k1,mA1,m)2)

+ Θ (χ− 1)2 k2
1,cA

2
2,c

H3 = Π + ((χ− 1) k1,cA2,c + k1,mA2,m)2 (π2
2 − fc,0

)

Then innovation to the return rm,t+1 is

rm,t+1−Et (rm,t+1) = ϕd
√

fd,tǫd,t+1+k1,mA1,mϕc
√

fc,tec,t+1+k1,mA2,m (Γ1fc,t + Γ2)ut+1

and its conditional variance V art (rm,t+1) is

V art (rm,t+1) = ϕ2
dfd,t + k2

1,mA
2
1,mϕ

2
cfc,t + k2

1,mA
2
2,m (Γ1fc,t + Γ2)

2

and the risk premium for rm,t+1 is equal to,

Et[rm,t+1 − rf,t] = −Covt[mt+1 − Et(mt+1), rm,t+1 − Et(rm,t+1)] −
1

2
V art(rm,t+1)

= Λm,ek1,mA1,mϕcfc,t + Λm,u(t)k1,mA2,m (Γ1fc,t + Γ2) −
1

2
V art(rm,t+1)
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APPENDIX C

SOLUTION TO THE RISK-FREE RATE

The risk-free rate can be derived from the Euler equation.

rf,t = − log [Et exp(mt+1)]

= − log δ +
1

ψ
Etgc,t+1 +

1 − χ

χ
Et [rw,t+1 − rf,t] −

1

2χ
V art(mt+1)

Here we have three terms to elaborate. First, the conditional mean of consumption

growth Etgc,t+1 is simply µc + ηc,t. Secondly, the conditional mean of excess return

on the wealth Et [rw,t+1 − rf,t] is can be solved by the conditional covariance between

rw,t+1 and mt+1 and conditional variance of rw,t+1. Using the fact that rw,t+1 −

Etrw,t+1 =
√

fc,tǫt+1 + Λm,e
1−χ
√

fc,tet+1 + Λm,u(t)

1−χ ut+1 we have

Et [rw,t+1 − rf,t] = −Covt [mt+1 − Et(mt+1), rw,t+1 − Et(rw,t+1)] −
1

2
V art(rw,t+1)

=

[

γ +
Λ2
m,e

1 − χ
− 1

2

(

Λ2
m,e

(1 − χ)2
+ 1

)]

fc,t +
Λ2
m,u(t)

(1 − χ)2

(

1

2
− χ

)

Lastly, the conditional variance of IMRS is derived from (A.6)

V art(mt+1) = Λ2
m,ǫfc,t + Λ2

m,efc,t + Λ2
m,u(t)
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APPENDIX D

CONVENTIONAL DENSITY-BASED NONLINEAR FILTERING ALGORITHM

If we apply the nonlinear filtering algorithm from Tanizaki (1996), we can get

the following.

Prediction Step:

p(wt|Ft−1) =

∫

p(wt, wt−1|Ft−1) dwt−1

=

∫

p(wt|wt−1)p(wt−1|Ft−1) dwt−t

p(xc,t, xd,t|Ft−1) =

∫

p(xc,t, xd,t, wt−1|Ft−1) dwt−1

=

∫

p(xc,t, xd,t|wt−1)p(wt−1|Ft−1) dwt−t

Updating Step:

p(wt|Ft) = p(wt, gc,t, gd,t|Ft−1)/p(gc,t, gd,t|Ft−1)

= p(gc,t, gd,t|wt)p(wt|Ft−1)/p(gc,t, gd,t|Ft−1)

p(xc,t, xd,t|Ft) = p(xc,t, xd,t, gc,t, gd,t|Ft−1)/p(gc,t, gd,t|Ft−1)

= p(gc,t, gd,t|x1t, x2t)p(x1t, x2t|Ft−1)/p(gc,t, gd,t|Ft−1)

where p(gc,t, gd,t|wt) =

∫∫

p(gc,t, gd,t, xc,t, xd,t|wt) dxc,t dxd,t

=

∫∫

p(gc,t, gd,t|xc,t, xd,t)p(xc,t, xd,t|wt) dxc,t dxd,t
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APPENDIX E

GIBBS SAMPLING ALGORITHM

First, the marginal density for wt is

p(wt|Xc, Xd,W\t, Y,Ψ)

∝ p(wt, xc,t, xd,t, wt+1|wt−1,Ψ)

∝ p(xc,t, xd,t|wt, wt+1, wt−1,Ψ)p(wt+1, wt|wt−1)

= p(xc,t|wt, λc, σ2
c )p(xd,t|wt, λd, σ2

d)p(wt+1|wt)p(wt|wt−1)

We know that the marginal density of xj,t|wt follows a normal distributionN
(

λjwt, σ
2
j

)

.

And given one period past values, the density of wt+1 and wt are known. Combin-

ing the four normal densities, we have a normal distribution N(BA−1, A−1) where

A = λ2
c

σ2
c

+
λ2
d

σ2
d

+ 2 and B = λcxc,t
σ2
c

+
λdxd,t
σ2
d

+ wt+1 + wt−1.

Secondly, the marginal density for xc,t is

p(xc,t|X\c,t,W, Y,Ψ) = p(xc,t|xd,t, wt, yt,Ψ)

∝ p(xt, yt|wt,Ψ)

∝ p(yt|xt, wt,Ψ)p(xt|wt,Ψ)

∝ p(yt|xt, θ, ρ)p(xc,t|wt, λc, σ2
c )

where p(yt|xt, θ, ρ) = 1
2π
|StΣS ′

t|−
1

2 exp
(

−1
2
y′tS

−1
t Σ−1S−1

t yt
)

and

p(xc,t|wt, λc, σ2
c ) = 1√

2πσ2
c

exp
(

− (xc,t−λcwt)2
2σ2
c

)

. Similarly, we could get the marginal

density for xd,t. Here we denote St, Σ, and yt as following:

St =







√

f(xc,t) 0

0
√

f(xd,t)






Σ =







1 ρ

ρ 1






yt =







yc,t

yd,t






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Thirdly, the marginal density for θj is

p(θj|X,W, Y,Ψ\θj ) ∝ p(Y |X, θ, ρ)p(θj)

=
∏n

t=1

1

2π
|StΣS ′

t|−
1

2 exp

(

−1

2
y′tS

−1
t Σ−1S−1

t yt

)

p (θj)

and for ρ,

p(ρ|X,W, Y,Ψ\ρ) ∝ p(Y |X, θ, ρ)p (ρ)

=
∏n

t=1

1

2π
|StΣS ′

t|−
1

2 exp

(

−1

2
y′tS

−1
t Σ−1S−1

t yt

)

p (ρ)

Lastly, the marginal density for Ψ2 is

p(Ψ2k,j|X,W, Y,Ψ\2k,j) ∝ p(Xj|W,Ψ2,j)p(Ψ2k,j)

=
∏n

t=1

1
√

2πσ2
j

exp

(

−(xj,t − λjwt)
2

2σ2
j

)

p(Ψ2k,j)

where Ψ21,j = λj and Ψ22,j = σ2
j .
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