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ABSTRACT

Improvements in Communication Complexity

Using Quantum Entanglement. (August 2008)

Angad Mohandas Kamat, B. Tech., National Institute of Technology,

Warangal, India

Chair of Advisory Committee: Dr. Andreas Klappenecker

Quantum computing resources have been known to provide speed-ups in com-

putational complexity in many algorithms. The impact of these resources in commu-

nication, however, has not attracted much attention. We investigate the impact of

quantum entanglement on communication complexity. We provide a positive result,

by presenting a class of multi-party communication problems wherein the presence of

a suitable quantum entanglement lowers the classical communication complexity. We

show that, in evaluating certains function whose parameters are distributed among

various parties, the presence of prior entanglement can help in reducing the required

communication. We also present an outline of realizing the required entanglement

through optical photon quantum computing. We also suggest the possible impact of

our results on network information flow problems, by showing an instance of a lower

bound which can be broken by adding limited power to the communication model.
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CHAPTER I

INTRODUCTION

The notion of computability, as suggested by the strong Church-Turing thesis [16],

has been shaken up ever since the advent of the quantum computing model. Having

shown exponential gains in asymptotic execution times of some classical algorithms,

quantum computing has provided a new outlook for the canonical notion of efficiency.

Most importantly, quantum complexity theory has armed us with novel techniques

for answering the question of computer science, P
?
= NP .

From a complexity perspective, this thesis investigates the impact of quantum

computing on communication problems. It is observed that the presence of quan-

tum computing resources helps reduce communication required for solving certain

problems. The improvements shown thus extend the positive impact of quantum

computing to some scenarios of distributed computing.

This thesis is organized as follows. In the next chapter, we present a four-party

communication problem which shows superior communication complexity when aided

by entanglement. We then follow up with a generalization to m-party communication

problems which show similar superiority. Then, we briefly discuss implementation of

the required quantum entanglement using optical photon quantum computing. We

conclude by discussing some implications of our results on network information flow

and enlisting some future directions.

In this chapter, we first present brief introductions to quantum computing and

communication complexity. We then provide some motivation for pursuit of the

problem and summarize some of the related research. Finally, we include a section

The journal model is IEEE Transactions on Information Theory.
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that enlists the notation used in the rest of the thesis.

A. Quantum computing and entanglement

Just as any classical two-level system represents a classical bit, a two-level quantum

mechanical system can be used to represent a quantum bit (qubit for short). These

two levels of a qubit, called the basis states, are represented as |0〉 and |1〉. However,

unlike that of a classical bit, the description of a qubit includes probabilities associated

with the two states. Specifically, a qubit |a〉 may be represented as a superposition

|a〉 = a0|0〉+ a1|1〉, such that a0, a1 ∈ C, |a0|2 + |a1|2 = 1.

The probability of |a〉 being in state |i〉 is |ai|2. When measurement of a qubit is

performed, we observe either 0 or 1, depending upon their probability distribution.

Mathematically, the basis states |0〉 and |1〉 are column vectors [ 1
0 ] and [ 0

1 ] respec-

tively; the qubit |a〉 is [ a0

a1
] ∈ C

2.

When we consider the joint state of two or more bits, it can be expressed merely

by their concatenation. On the other hand, the joint state of multiple qubits is

expressed as their tensor product. For example, the joint state of |a〉 and |b〉 =

b0|0〉+ b1|1〉 is

|a〉 ⊗ |b〉 = a0b0|00〉+ a0b1|01〉+ a1b0|10〉+ a1b1|11〉.

This exponential growth in the number of basis states provides the parallelism for

gains in time complexity.

Analogous to logic gates, quantum computing has quantum gates. All operations

on qubits are linear, and can be represented as unitary1 transforms. By definition,

1A unitary matrix is one whose inverse is its conjugate transpose.
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a unitary transform preserves orthogonality of quantum states. An example is the

Hadamard transform H = 1√
2
[ 1 1
1 −1 ], which we shall encounter frequently. Clearly, its

action is

H|0〉 =
1√
2
(|0〉+ |1〉), H|1〉 =

1√
2
(|0〉 − |1〉).

In some cases, the quantum state of multiple qubits cannot be expressed as the

joint space of any individual qubits. For example, while we can express 1√
2
(|00〉+|10〉)

as 1√
2
(|0〉+ |1〉)⊗|0〉, we cannot find such a separation for 1√

2
(|01〉+ |10〉). The latter

is called an entangled state, owing to the fact that measurement of one qubit affects

the outcome of measuring the other.

With respect to our results, quantum entanglement is the important resource

that we use to exploit the correlation among measurements. We design an entangled

state that follows a specific pattern of measurement outcomes suitable to solving our

communication problem.

Readers interested in more details about quantum computation and information

are encouraged to read [10], which provides a comprehensive overview.

B. Communication complexity

Communication complexity is the study of bounds on the total communication re-

quired to perform certain distributed tasks. The general communication problem is

as follows – a system (a group of parties with communication channels connecting

them) is required to evaluate a multi-parameter function, with the parameters being

distributed among different parties. The communication complexity of the function

in the given system is the minimum number of data units (typically, bits) that need

to be sent over the communication channels in order for the function to be evaluated.

Communication complexity was formally introduced by Yao [17]. The system
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here comprised of two parties, Alice and Bob, possessing input strings x and y re-

spectively. The goal is for Alice to evaluate

f(x, y), f : {0, 1}n × {0, 1}n → {0, 1},

with the minimum possible communication. The minimum number of bits that Bob

must send to help Alice evaluate f is the communication complexity of f . It is

obvious that the communication complexity of any f is upper-bounded by n – Bob

can simply send his entire input to Alice, who then evaluates f . There are functions

which require way less communication than n. For instance, if

f(x, y) = (x+ y) mod 2,

then Bob only needs to indicate to Alice whether x is odd or even, thus requiring a

single bit of communication. However, there also exist functions, such as the equality

operation

f(x, y) = (x
?
= y),

where n bits of communication are necessary.

Despite being highly abstract, communication complexity has many applications.

It is famously used in VLSI design, where communication complexity can be linked

to circuit depth. The book [9] serves as an excellent survey of the developments in

this field.

With respect to this thesis, we consider a four-party communication setting, and

then extend it to multi-party communication problems. The goal is for one party to

evaluate a multiple-argument function. Communication complexity now accounts for

any communication that that takes place between any pair of parties.
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C. Motivation and background

Ever since Peter Shor first introduced the polynomial-time factoring algorithm [15],

most research in quantum algorithms has aggressively sought instances to prove

tremendous asymptotic gains in running times. While no result of universality has

been obtained in this direction, quantum computing resources have been able to pro-

vide speed-ups in some specific problems. Most of these gains have been confined

to algorithm development; very few other domains have been able to show similar

results. Our work explores such a gain in the domain of communication complexity.

In solving certain problems that require communication among various parties, we

observe that the availability of quantum entanglement reduces the communication

necessary to solve the problem.

Quantum entanglement has been a very useful resource offered by quantum com-

puting. The ability to exhibit the so-called “non-local” effects has given a unique

power over classical computing, especially in a distributed setting. A canonical ex-

ample of this power is shown by quantum teleportation [2], which makes use of the

famous Bell state to transfer a qubit using only classical communication.

Quantum entanglement, however, cannot be used as a medium of communication.

Whenever prior entanglement is shared among parties, there is no way that two parties

can exchange any information by merely operating upon the entangled qubits [6].

The utility of quantum entanglement in reducing communication complexity was

first shown in [5]. It presents a three-party communication protocol wherein prior

shared entanglement reduces the classical communication complexity of a certain

function by one bit. Specifically, Alice, Bob and Carol each have n-bit input strings

x, y and z, which are subject to the constraint

∀j, xj ⊕ yj ⊕ zj = 1.
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The goal is for Alice to evaluate

f(x, y, z) =
n
⊕

j=1

xjyjzj

using minimum possible communication with Bob and Carol. The authors show that

using entanglements of the form

1

2
(|001〉+ |010〉+ |100〉 − |111〉),

two bits of communication are sufficient for Alice to compute f . On the other hand,

it is shown that three bits of communication are necessary (and sufficient) in the

absence of quantum entanglement.

Similar results were shown in [3], which also explored a two-party probabilistic

communication protocol. It was shown that prior entanglement achieves a certain

probability of success with two bits of communication – something that a classical

shared random string cannot. Such a result also shows that entanglement is more

powerful than a shared random variable.

This thesis gives an extension to the results in [5], by presenting a four-party

communication protocol that computes a certain function using only three bits of

communication when aided by a specific entanglement. It is also shown that without

quantum entanglement, even four bits are insufficient to compute the same function.

The problem is the generalized to a class of m-party communication problems which

show similar gains in communication complexity – the presence of a suitable entangled

state almost halves the communication complexity. Finally, we also discuss imple-

mentation of the quantum circuits required for the entanglement and the realization

of the circuits using optical photon quantum computing.
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D. Notation

A finite field of of size 2 is denoted by F2, while F
m
2 denotes the set of m-bit strings.

For any bit string x, xi denotes its i-th bit. For any q ∈ F
m
2 , |q| =∑m

i=1 qi denotes the

Hamming weight of q, and |q|i = |q| mod i denotes the Hamming weight modulo-i.

When the set F
m
2 is clear from context, 0̂ and 1̂ represent the bit strings with all

positions 0 and 1, respectively.

The Knuth-Iverson bracket is denoted by [stmt]; it evaluates to 1 if the statement

stmt is true, and to 0 otherwise. For any boolean variable y, N0(y) = y andN1(y) = y,

respectively denoting the logical identity and negation operations.

Let I be a subset of {1, . . . ,m} of cardinality ℓ. We define a function πI : F
m
2 ×

F
ℓ
2 → F

m
2 by

πI((a1, . . . , am), (bk)k∈I) = (ai[i 6∈ I] + bi[i ∈ I])i=1,...,m,

that is, πI replaces the elements in the vector (a1, . . . , am) at positions in I by elements

of the vector (bk)k∈I . χ(I) denotes the characteristic vector of the index set I, that

is, χ(I) = ([i ∈ I])i=1,...,m ∈ F
m
2 .

If U denotes a unitary transform2 on a single qubit and c a vector in F
m
2 , then

we denote by U c the matrix U c1 ⊗ · · · ⊗ U cm .

2This is nothing but a 2× 2 unitary matrix.
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CHAPTER II

FOUR-PARTY COMMUNICATION PROBLEM

In this chapter, we introduce a four-party communication problem for the computa-

tion of a four-argument boolean function. The goal is for one of the parties to eval-

uate the function provided that the inputs satisfy a certain constraint. We perform

an analysis of the communication complexity, both with and without the availability

of prior entanglement. While the best protocol without entanglement requires 5 bits

of communication, an entanglement-assisted protocol can achieve the same goal in 3.

A. Problem description and communication model

The communication setting that we consider is comprised of four parties, connected

by communication channels in a star network. Alice, Bob, Carol and Dan have n-bit

input strings x1, x2, x3 and x4 respectively, and Alice is the hub of the network. We

shall refer to the parties as A, B, C and D (they are also enumerated 1 through 4 in

this order).

The inputs of the parties are subject to the condition

∀j, x1
j ⊕ x2

j ⊕ x3
j ⊕ x4

j = 0 (2.1)

where ⊕ represents bitwise modulo-2 addition. The goal is for Alice to evaluate

f(x1, x2, x3, x4) =
n
⊕

j=1

(x1
j · x2

j · x3
j · x4

j ∨ x1
j · x2

j · x3
j · x4

j). (2.2)

Owing to the precondition on the inputs, Alice is required to correctly evaluate f

only when the condition is satisfied.

For the sake of simplicity, we assume a star network of communication. We later
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argue that the same complexity bounds hold in a complete graph network as well.

B. Entanglement-assisted protocol

1. Protocol description

For the sake of evaluating f , we propose that the four parties share a prior quantum

entanglement of four qubits, with a total of n such entanglements for every corre-

sponding input index. Let qi
j be the j-th qubit of a party i, where j ∈ {1, . . . , n}. For

each j, the quadruplet of qubits is in the entangled state

|q1
j q

2
j q

3
j q

4
j 〉 = 1

2
√

2
(|0001〉+ |0010〉+ |0100〉+ |1000〉

−|1110〉 − |1101〉 − |1011〉 − |0111〉). (2.3)

The entire state of all qubits is |ψ〉 =
⊗n

j=1 |q1
j q

2
j q

3
j q

4
j 〉.

Armed with this prior entanglement, each party i runs the simple protocol in

Fig. 1, as a part of evaluating f . We shall call this Protocol Q.

1. for each j ∈ {1, . . . , n}, do

1.1 if xi
j = 0, apply H to qi

j

1.2 measure qi
j giving the bit si

j

2. si ←⊕n

j=1 s
i
j

Fig. 1. Protocol Q.

In protocol Q, H is the usual Hadamard transform. The measurements are

performed in the standard basis {|0〉, |1〉}. After the protocol is executed, B, C, D

send their respective bits s2, s3, s4 to A, who then computes ⊕4
i=1s

i.
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2. Correctness of the protocol

We now prove the correctness of the protocol, by beginning the the following crucial

lemma.

Lemma 1. For all j ∈ {1, . . . , n}, we have

s1
j ⊕ s2

j ⊕ s3
j ⊕ s4

j = x1
j · x2

j · x3
j · x4

j ∨ x1
j · x2

j · x3
j · x4

j .

Proof. By the condition (2.1), we observe that

x1
jx

2
jx

3
jx

4
j ∈ {0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111}. (2.4)

In other words, corresponding to a j ∈ {1, . . . , n}, a quadruplet of input bits only

contains an even number of zeros. Accordingly, (2.3) is acted upon by 0, 2 or 4

H-gates. We now perform a case-by-case analysis to complete the proof.

• Case 0. Since no H-gates are applied, measurement of state (2.3) leads to

s1
j ⊕ s2

j ⊕ s3
j ⊕ s4

j = 1 = x1
j · x2

j · x3
j · x4

j ∨ x1
j · x2

j · x3
j · x4

j .

• Case 4. This happens when we have x1
jx

2
jx

3
jx

4
j = 0000. In this case, (2.3) is

acted upon trivially:

(H ⊗H ⊗H ⊗H)|q1
j q

2
j q

3
j q

4
j 〉 = |q1

j q
2
j q

3
j q

4
j 〉.

Measurement outcome is the same as in Case 0.

• Case 2. All these cases have a common property:

x1
j · x2

j · x3
j · x4

j ∨ x1
j · x2

j · x3
j · x4

j = 0. (2.5)

Consider x1
jx

2
jx

3
jx

4
j = 0011. Here, the H-gate is applied by A and B only. Thus,
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we get

H ⊗H ⊗ I ⊗ I|q1
j q

2
j q

3
j q

4
j 〉 = 1

2
√

2
(|0000〉 − |0011〉+ |0101〉+ |0110〉

+|1001〉+ |1010〉 − |1100〉+ |1111〉).

After this transformation, any measurement outcome yields s1
j⊕s2

j⊕s3
j⊕s4

j = 0.

Thus by (2.5), the lemma is satisfied. The remaining actions can easily be

proved by symmetry to this case.

The success of the protocol is now immediate from the following theorem.

Theorem II.1. For si and xi defined above with reference to protocol Q, we have

s1 ⊕ s2 ⊕ s3 ⊕ s4 = f(x1, x2, x3, x4).

Proof.

s1 ⊕ s2 ⊕ s3 ⊕ s4 =
(

n
⊕

i=1

s1
j

)

⊕
(

n
⊕

i=1

s2
j

)

⊕
(

n
⊕

i=1

s3
j

)

⊕
(

n
⊕

i=1

s4
j

)

=
n
⊕

i=1

(

s1
j ⊕ s2

j ⊕ s3
j ⊕ s4

j

)

=
n
⊕

i=1

(

x1
j · x2

j · x3
j · x4

j ∨ x1
j · x2

j · x3
j · x4

j

)

, from Lemma 1

= f(x1, x2, x3, x4).

It may be noted that entanglement is an extra resource; yet, it does not provide

any information gain with respect to the inputs xi. The improvement in complexity

arises from intelligent use of the input preconditions. Thus, as apparent from Protocol
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Q and Theorem II.1, 3 bits of communication are sufficient, giving us an upper bound

on entanglement-assisted communication complexity.

C. Purely classical protocol

We now prove that without prior entanglement, 5 bits of communication are necessary

and sufficient for any protocol that evaluates (2.2) subject to (2.1). We complete this

proof in two steps, by showing that

• there exists a purely classical protocol using 5 bits of communication (without

any quantum entanglement resource), and

• no 4-bit classical protocol exists for solving this problem.

1. Classical protocol for upper bound

We now express f in terms of another function g, to help us design a communication

protocol. Just like f , g is a function of the type

g : {0, 1}n × {0, 1}n × {0, 1}n × {0, 1}n 7→ {0, 1}.

By expressing f in terms of g, we use the protocol for evaluating g to, in turn, evaluate

f .

Let ui be the number of zeros in the xi. Define g as

g(x1, x2, x3, x4) =

(
∑

i u
i
)

mod 4

2
. (2.6)

We must also ensure that input conditions are properly translated into this definition.

Owing to (2.1), we get the following condition on ui’s.

4
∑

i=1

ui ≡ 0 (mod 2). (2.7)
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Notice that due to input condition, the numerator of g is always even; and being a

modulo-4 number, it can be either 0 or 2. This rules out any inconsistencies (such as

fractions) in the division.

For convenience, we represent these functions as fn and gn, where n is the length

of their inputs. The following theorem shows the relation between f and g.

Theorem II.2. For any n ≥ 1 and for ui defined above,

(

4
∑

i=1

ui ≡ 0 (mod 2)

)

⇒ (fn = gn ⊕ (n mod 2)) .

Proof. We define the predicate

P (n)
def
:=

(

4
∑

i=1

ui ≡ 0 (mod 2)

)

⇒ (fn = gn ⊕ (n mod 2)) .

The truth of P (n) is shown by induction on n. P (1) can easily be proved from (2.4).

For n = 1,

f1 = x1 · x2 · x3 · x4 ∨ x1 · x2 · x3 · x4.

Also, (2.4) tells us that the total number of zeros can only be even. With precondition

satisfied, f1 evaluates to 1 if and only if the inputs are either all 0 or all 1. In these

cases, g1 evaluates as 0⊕ 1 = 1. In all other cases, g1 = 1⊕ 1 = 0, which is identical

to the behavior of f1.

By hypothesis, assume the truth of P (k). Let

Tj = x1
j · x2

j · x3
j · x4

j ∨ x1
j · x2

j · x3
j · x4

j .
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We have

fk+1 = fk ⊕ Tk+1

= gk ⊕ (k mod 2)⊕ Tk+1, by hypothesis

= gk ⊕ (k + 1 mod 2)⊕ 1⊕ Tk+1.

Owing to (2.4), we can only have the following cases.

• Tk+1 has two bits as zero. Here, Tk+1 = 0, gk+1 = gk ⊕ 1.

• Tk+1 has none or all four bits as zero. Here, Tk+1 = 1, gk+1 = gk.

Both cases confirm the truth of P (k + 1).

The 5-bit protocol now follows suite. Each of B, C and D finds its respective

ui. Since the evaluation of g involves the computation of sums modulo-4, the parties

only need to consider the two least significant bits of ui’s. Moreover, due to (2.7), it

is known that the sum of ui’s is even. The protocol now works as follows.

Any two parties send the two least significant bits of ui to A, while the

third party sends the second-least significant bit of ui. Using these bits,

A can determine g, from which f can be evaluated by Theorem II.2.

2. Proof of lower bound

We make use of Theorem II.2 in our proof of lower bound. From the theorem, we

can conclude that fn and gn have the same communication complexity1. We prove a

lower bound the communication complexity of g, which also holds for f .

1Communication complexity is a property of the function. Since the communi-
cation model does not change between computing f and g, their communication
complexities must be the same.
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Our communication problem is now reduced to this: the four parties A, B, C and

D each have a positive integer ui as their input. We need to calculate g. We have a

condition (2.7), which defines the valid set of inputs. Moreover, since we are interested

in calculating modulo-4 sum, we can discard all but the two least significant bits in

the binary representation of ui. Hence, from now on, we assume that ui ∈ {0, 1, 2, 3}.

By way of contradiction, suppose there exists a 4-bit classical protocol to evaluate

g. For optimality, each of the parties B, C, D must send one bit to A, and any one

must send another bit; A can then evaluate the function. Each party must send

something, otherwise no information about its input can be conveyed to A. Without

loss of generality, B sends two bits, and C, D send one bit each. Now, our problem is

essentially that of three-party communication, since A knows the input of B.

The bits sent by C and D can be assumed to be functions of their inputs, of the

following type.

φ : {0, 1, 2, 3} → {0, 1}.

Any φ partitions the input set into two, S0 = φ−1(0) and S1 = φ−1(1). Without loss

of generality, let 0 ∈ S0. Clearly, there exists a unique S0 for every φ, since φ can be

deduced from S0. A protocol is nothing but a combination of two such mappings φ,

one each for C and D. We denote a partitioning strategy based on the above premise

by (SC , SD), depending only on C and D.

We perform an exhaustive analysis to show that every combination of partitions

by C and D fails to convey enough information for A to evaluate g, subject to (2.7).

The basic idea is as follows.

When A knows the partitions that each input belongs to, she determines

all the input combinations of the four parties. She then determines the

values of g for each valid input combination (validity of inputs as de-
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fined by (2.7)). If all the possible function values are identical, then this

partitioning strategy yields a successful protocol; otherwise, it fails.

The following theorem covers the proof of impossibility.

Theorem II.3. There exists no partitioning strategy (SC , SD) to compute g of (2.6)

subject to condition imposed by (2.7).

Proof. Our proof strategy is as follows. First, we list all possible partitions of the

input set {0, 1, 2, 3}. We then exaustively show that for every combination of these

partitions, A does not have sufficient information to conclude about the value of g:

in every combination, there exists a pair of “conflicting” inputs which give different

function values.

There are 7 ways to partition the input set into two. Since C and D each has its

own parition, we have to examine 7× 7 = 49 combinations. By grouping, we present

5 cases.

We first list the 7 possible paritions, generated using the algorithm in [7]. The

partitions are enumerated in Table I.

Table I. Partitions of the four-element set into two.

S0 S1

p1 {0, 2, 3} {1}

p2 {0, 2} {1, 3}

p3 {0, 3} {1, 2}

p4 {0} {1, 2, 3}

p5 {0, 1, 3} {2}

p6 {0, 1} {2, 3}

p7 {0, 1, 2} {3}
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With this enumeration, we show the ambiguous inputs for every combination of

partitions. In Table II, the columns SP show the pi’s used by P ; ∗ indicates that

any pi may be used. The columns g = 0 and g = 1 show the inputs which are

indistinguishable to A; yet they give different function values.

Table II. No partitioning strategy leads to a protocol.

# SC SD g = 0 g = 1 Cases

1 ∗ p1, p2, p7 (0, 0, 0, 0) (0, 0, 0, 2) 21

2 ∗ p4, p5 (1, 0, 0, 3) (1, 0, 0, 1) 14

3 p1, p2 p3, p6 (0, 0, 0, 0) (0, 0, 2, 0) 4

4.1
p5, p6, p7

p3 (1, 0, 0, 3) (1, 0, 1, 0) 3

4.2 p6 (0, 0, 0, 0) (0, 0, 1, 1) 3

5.1
p3, p4

p3 (0, 0, 1, 3) (0, 0, 2, 0) 2

5.2 p6 (1, 0, 2, 1) (1, 0, 1, 0) 2

For the sake of completeness, we explain how our reasoning works, using one

of the cases listed in the table. Consider case 1, which says that C can follow any

partitioning strategy, while D may follow any one of p1, p2 or p7. In such a scenario,

consider the input tuple (u1, u2, u3, u4) of g to be (0, 0, 0, 0). The function value for this

input is 0. Now consider the input tuple (0, 0, 0, 2), whose function value is 1. Both

are valid sets of inputs. However, with any combination of partitions we mentioned

earlier, these inputs are indistinguishable. Thus, in light of such a protocol, A cannot

successfully arrive at the correct function value because her knowledge about the

inputs is insufficient.

In summary, for every strategy (SC , SD), there exist ambiguous values for g,

making it impossible for A to compute it.
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There exists no classical protocol in a star network to evaluate f using 4 bits of

communication. This gives us the tight bound of 5 bits on communication complexity.

3. Generalization of bounds to all network topologies

We now consider the case of a complete graph, where any party can communicate

with any other. The problem at hand is that there are three parties (A and B can

be considered as one), and two bits of communication should be able to help A

evaluate g. The graph that we used to prove the lower bound was a star network;

and communication occurred as in Fig. 2. The unlabeled arrows indicate single bit

A

B

2
??~~~~~~~
C

1

OO

D

1

``@@@@@@@

≡ AB

C

=={{{{{{{{

D

aaCCCCCCCC

Fig. 2. Communication graph for 4-bit lower bound.

of communication. We now enlist the other possible communication scenarios with

total two bits of communication among AB, C and D. They are captured in Fig. 3.

(a) AB

}}zz
zz

zz
zz

z

��
C D

(b) AB

}}{{
{{

{{
{{

{

C // D

(c) AB

}}{{
{{

{{
{{

{

C Doo

(d) AB

C

==zzzzzzzzz
// D

(e) AB

C

=={{{{{{{{{

Doo

Fig. 3. Possible communication graphs for 4-bit scenario.

From the figure, cases (a), (b) and (c) do not lead to any protocol, since A

receives no information about the inputs of C and D. These cases can be discarded
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right away. We are left with (d) and (e), where A receives one bit of communication.

In (d), C sends out two bits, and we can assume two mappings of type φ for these

two bits. Irrespective of the chosen mapping, A has no way of knowing anything about

the input of D, since it does not send any bits. Therefore, this communication is futile

as well.

We turn to (e), which is special because there exists a path from both C and D

to A. For a protocol to work, we would now require C to do some local computations

before sending a bit to A. We can assume that D sends the bit according to the

mapping φD based on its input. This arms C with more information than just her

own input, and the bit sent from C to A comes from a mapping of the type

φC : {0, 1, 2, 3} × {0, 1} → {0, 1}.

C now knows the partition to which D’s input belongs, and she can include that

information in the bit it sends to A. Such a strategy can clearly be no better than D

sending a bit directly to A.

From the above arguments, we conclude that irrespective of the nature of the

communication graph, the communication complexity of f is 5 bits.
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CHAPTER III

GENERAL MULTI-PARTY COMMUNICATION PROBLEMS

In this chapter, we construct a family of multi-party communication problems, wherein

the presence of a suitable quantum entanglement gives a communication complexity

lower than that in the purely classical case. We first present a problem description

in terms of the number of parties m and the input length n. We then explain the

action of Hadamard gates on the entanglement, as relevant to the functioning of the

entanglement-assisted protocol. Thereafter, we prove the upper and lower bounds on

communication complexity in the absence of quantum entanglement.

The parties are enumerated 1 to m, with xi denoting the input string of party i.

The inputs are of length n. Each party also has n qubits, and the j-th qubit of i-th

party is denoted by qi
j. For q ∈ F

m
2 , we define the function u : F

m
2 → {0, 1,−1} as

u(q) = |q|2(−1)[|q|4=3].

A. Problem formulation

The following clauses define the m-party communication problem, for m ≥ 4.

• Input Condition. The inputs satisfy the following constraint.

∀j,
m
⊕

i=1

xi
j = m mod 2. (3.1)

• Entanglement. The entanglment of all qubits of the same index is

|ϕ〉 =
1

(
√

2)m−1

∑

q∈F
m
2

u(q)|q〉 (3.2)

where |q1
kq

2
k . . . q

m
k 〉 is represented by |q〉.
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• Evaluation Function. Party 1 is required to evaluate

f(x1, . . . , xm) =
n
⊕

j=1

Tj, where Tj =
∨

I⊆{1,...,m}

|I|≡0 (mod 4)

(

m
∧

i=1

N[i∈I](x
i
j)

)

. (3.3)

We give an example for constructing f . For m = 5, we know that there are 6

sets I such that |I| ≡ 0 (mod 4). Each such set gives one conjunction term, and Tj

is obtained as

x1
j · x2

j · x3
j · x4

j · x5
j ∨ x1

j · x2
j · x3

j · x4
j · x5

j

∨ x1
j · x2

j · x3
j · x4

j · x5
j

∨ x1
j · x2

j · x3
j · x4

j · x5
j

∨ x1
j · x2

j · x3
j · x4

j · x5
j

∨ x1
j · x2

j · x3
j · x4

j · x5
j .

As observed, among the m variables, each conjunction contains divisible-by-4 number

of variables complemented.

For simplicity of argument, we assume a star network for communication, with

party 1 as the hub of the network. We later prove that the bound holds for all

communication topologies.

B. Entanglement-assisted protocol

With entanglement assistance, the function f is evaluated as follows. Every party

first runs Protocol Q, and all but party 1 send their si values to party 1. Finally,

party 1 computes the value of f as ⊕m
i=1s

i. Thus, an m-party protocol with prior

entanglement has a classical communication complexity of m− 1 bits.

The remainder of the section proves the correctness of this protocol.



22

1. More about the entanglement

We now unravel some facts about the entanglement (3.2). We formalize the possible

actions of Hadamard gates onto |ϕ〉, to see its impact on the functioning of the

protocol.

The following lemma shows the action of Hadamard gates on a basis state of

qubits.

Lemma 2. Let q1
k · · · qm

k = q ∈ F
m
2 . Let I ⊆ {1, . . . ,m}, |I| = ℓ. If c = χ(I), then

Hc|q1
k · · · qm

k 〉 =
1

(
√

2)ℓ

∑

b∈F
ℓ
2

(−1)
∑

i∈I qi
k
bi|πI(q, b)〉.

Now, we show some properties of a function v : F
m−ℓ
2 × F

ℓ
2 → Z, defined as

v(p, b) =
∑

r∈F
ℓ
2

u(p||r)(−1)r·b (3.4)

where || represents the concatenation operator. This function helps us determine

some actions of Hadamard gates on the entanglement (3.2).

Lemma 3. For u, v defined earlier, and for 0 ≤ ℓ ≤ m, we have

ℓ ≡ 0 (mod 4)⇒ |(p||b)|2 = 0⇔ v(p, b) = 0,

ℓ ≡ 2 (mod 4)⇒ |(p||b)|2 = 0⇔ v(p, b) 6= 0.

Proof. We can rewrite v as follows.

v(p, b) =
∑

r∈F
ℓ
2

u(p||r)(−1)r·b

=
∑

r∈F
ℓ
2

|(p||r)|4=1

(−1)r·b −
∑

r∈F
ℓ
2

|(p||r)|4=3

(−1)r·b.

The above sums can be evaluated if we determine the sizes of orthogonal and non-



23

orthogonal subspaces of b. We do this in Appendix A, for two separate cases. When

b 6∈ {0̂, 1̂}, we consult Lemma 8; otherwise, we use Lemma 9.

As per the notation in Appendix A, let B0 and B1 represent the orthogonal and

non-orthogonal sub-spaces of F ℓ
2 with respect to b. Also, Bk

i,j represents the proper

subset with the extra condition,

Bk
i,j = {r : r ∈ Bk, |r|j = i}.

We can now rewrite the above sums as follows.

v(p, b) =
∑

r∈F
ℓ
2

|(p||r)|4=1

(−1)r·b −
∑

r∈F
ℓ
2

|(p||r)|4=3

(−1)r·b

= ±
(

(|B0
w,4| − |B1

w,4|)− (|B0
w+2,4| − |B1

w+2,4|)
)

where w is determined by the Hamming weight of p. We now proceed with the proof

by a case-by-case analysis.

The following results are evident when b 6∈ {0̂, 1̂}.

1. Case ℓ ≡ 0 (mod 4). Here, we have from Lemma 8

|B0
w,4| − |B1

w,4| = 2
ℓ
2
−1(−1)

ℓ
4 cos(

w + |b|4
2

π).

By evaluating using this formula, we get the following results.

(a) (|p|2 = 0 and |b|2 = 0) or (|p|2 = 1 and |b|2 = 1)⇒ (w+ |b|4) ≡ 1 (mod 2).

This in turn means u(p||b) = 0⇒ v(p, b) = 0.

(b) (|p|2 = 1 and |b|2 = 0) or (|p|2 = 0 and |b|2 = 1)⇒ (w+ |b|4) ≡ 0 (mod 2).

By simplifying above equation, we get v(p, b) = ±2
ℓ
2 (−1)

ℓ
4 . Thus, u(p||b) 6=

0⇒ v(p, b) 6= 0.

Together, the two cases give u(p||b) = 0⇔ v(p, b) = 0.



24

2. Case ℓ ≡ 2 (mod 4). Here, we have from Lemma 8

|B0
w,4| − |B1

w,4| = 2
ℓ
2
−1(−1)

ℓ−2

4 sin(
w + |b|4

2
π).

By evaluating using this formula, we get the following results.

(a) (|p|2 = 0 and |b|2 = 0) or (|p|2 = 1 and |b|2 = 1) ⇒ (w + |b|4) ≡ 1

(mod 2). By simplifying above equation, we get v(p, b) = ±2
ℓ
2 (−1)

ℓ−2

4 .

Thus, u(p||b) = 0⇒ v(p, b) 6= 0.

(b) (|p|2 = 1 and |b|2 = 0) or (|p|2 = 0 and |b|2 = 1)⇒ (w+ |b|4) ≡ 0 (mod 2).

This in turn means u(p||b) 6= 0⇒ v(p, b) = 0.

Together, the two cases give u(p||b) = 0⇔ v(p, b) 6= 0.

If b ∈ {0̂, 1̂}, |b|2 = 0 for ℓ ≡ 0 (mod 2). The following results are now evident

from Lemma 9. We can perform a simplification of v(p, b) just as above, but this

time, the values can be obtained from (A.1).

1. Case ℓ ≡ 0 (mod 4).

(a) |p|2 = 0⇒ v(p, b) = 0. This in turn means u(p||b) = 0⇒ v(p, b) = 0.

(b) |p|2 = 1 ⇒ v(p, b) = ±(2)
ℓ
2 (−1)

ℓ
4 . This in turn means u(p||b) 6= 0 ⇒

v(p, b) 6= 0.

Together, the two cases give u(p||b) = 0⇔ v(p, b) = 0.

2. Case ℓ ≡ 2 (mod 4).

(a) |p|2 = 0 ⇒ v(p, b) = ±(2)
ℓ
2 (−1)

ℓ−2

4 . This in turn means u(p||b) = 0 ⇒

v(p, b) 6= 0.

(b) |p|2 = 1⇒ v(p, b) = 0. This in turn means u(p||b) 6= 0⇒ v(p, b) = 0.

Together, the two cases give u(p||b) = 0⇔ v(p, b) 6= 0.
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We can now ascertain the action of Hadamard gates on |ϕ〉 defined in (3.2). This

action is captured in the following theorem.

Theorem III.1. Let I ⊆ {1, . . . ,m} such that |I| = ℓ, denote the ℓ positions where

H-gates are applied on the |ϕ〉 defined in (3.2). If c = χ(I), then

ℓ ≡ 0 (mod 4)⇒ Hc|ϕ〉 =
1

(
√

2)m−1

∑

q∈F
m
2

(±|q|2)|q〉,

ℓ ≡ 2 (mod 4)⇒ Hc|ϕ〉 =
1

(
√

2)m−1

∑

q∈F
m
2

(±(1− |q|2))|q〉.

Proof. For now, we will neglect the overall amplitude factor 1
(
√

2)m−1
. We shall take it

into account at a later stage in the proof.

Hc|ϕ〉 = Hc
∑

q∈F
m
2

u(q)|q〉

=
∑

q∈F
m
2

u(q)Hc|q〉

=
∑

q



u(q)
∑

b∈F ℓ
2

(−1)
∑

i∈I qibi|πI(q, b)〉



 , by Lemma 2

=
∑

b

(

∑

q

u(q)(−1)
∑

i∈I qibi |πI(q, b)〉
)

.

Let I = {1, . . . ,m} \ I. Let p ∈ Fm−ℓ
2 and r ∈ F ℓ

2 , such that q = πI(q, r) and

q = πI(q, p). Note that u(p||r) = u(πI(πI(q, r), p)). Now the above equation becomes

Hc|ϕ〉 =
∑

b





∑

p∈F
m−ℓ
2





∑

r∈F
ℓ
2

u(p||r)(−1)r·b



 |πI(πI(q, b), p)〉





=
∑

b





∑

p∈F
m−ℓ
2

v(p, b)|πI(πI(q, b), p)〉



 .
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Since the above sum ranges over b ∈ F
ℓ
2 and p ∈ F

m−ℓ
2 , q′ = πI(πI(q, b), p) clearly

ranges over Fm
2 . Also, u(p, b) = u(q′) and v(p, b) = v(q′). We get

Hc|ϕ〉 =
∑

q′∈F
m
2

v(p, b)|q′〉.

We now account for the overall amplitude factor. After application of Hadamard

gates, a factor of 1
(
√

2)ℓ
appears. The proof of Lemma 3 tells us that after the sum-

mation is performed, a factor of ±(
√

2)ℓ appears. Thus, the two factors cancel out,

and the proper sign remains with the corresponding basis state. The proof is now

immediate from Lemma 3.

2. Proof of correctness of m-party protocol

Having determined the behavior of the entanglement with Hadamard gates, we con-

clude the proof of correctness of the m-party protocol. We start with two simple

observations that directly follow from (3.1).

Lemma 4. Among the j-th input bits {x1
j , x

2
j , . . . , x

m
j }, the number of zero-bits is

always even ∀j.

This lemma directly implies the following, as evident from the operation of Pro-

tocol Q.

Lemma 5. During the execution of Protocol Q, |ϕ〉 can only be acted upon by some

Hχ(I) such that |I| ≡ 0 (mod 2).

The following is analogous to Lemma 1, and is the fundamental result behind

the success of the protocol.

Lemma 6. For all j ∈ {1, 2, . . . , n}, we have

m
⊕

i=1

si
j = Tj.
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Proof. First off, we note that Tj evaluates to 1 if and only if exactly l ≡ 0 (mod 4)

of the xi
j’s in some conjunction are zero (see (3.3)), 1 ≤ l ≤ m.

As protocol Q executes, H-gate is applied only when a party observes a 0. By

Lemma 5, the number of H-gates (call it ℓ) applied on |ϕ〉 is always even.

The following two cases complete the proof, by Theorem III.1.

• ℓ ≡ 0 (mod 4). We know that Tj = 1. After tranformation, the amplitude of

any basis state |q′〉 is non-zero if and only if |q′|2 6= 0. Thus, any measurement

|q′〉 yields odd number of ones, giving
⊕m

i=1 s
i
j = 1 = Tj.

• ℓ ≡ 2 (mod 4). We know that Tj = 0. After tranformation, the amplitude of

any basis state |q′〉 is non-zero if and only if |q′|2 = 0. Thus, any measurement

|q′〉 yields even number of ones, giving
⊕m

i=1 s
i
j = 0 = Tj.

Notice that Lemma 6 subsumes Lemma 1 of the four-party protocol. Thus on

the lines of Theorem II.1, the correctness of the m-party protocol follows suite. We

formally state it in the following theorem.

Theorem III.2. For xi and si defined in protocol Q, we have

m
⊕

i=1

si = f(x1, . . . , xm).

C. Bounds on purely classical protocol

As in the previous chapter, we now focus on proving lower and upper bounds on

communication complexity in the absence of quantum entanglement. We observe

that in this purely classical case, communication complexity is about double of that

in the entanglement-assisted case. We follow the same technique as in the four-party

case, by expressing f in terms of another function g and proving bounds for the latter.
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1. Classical protocol for upper bound

Define ui to be the number of zeros in xi. Let

g(x1, . . . , xm) =

(
∑m

i=1 u
i
)

mod 4

2
. (3.5)

By Lemma 4, the input condition on xi’s translates to the following condition on ui’s.

m
∑

i=1

ui ≡ 0 (mod 2). (3.6)

For convenience, we represent these functions as fm,n and gm,n, where n is the length

of the inputs and m is the number of parties. The following theorem shows the

relation between f and g.

Theorem III.3. For any n ≥ 1, m ≥ 4, and for ui defined above,

(

m
∑

i=1

ui ≡ 0 (mod 2)

)

⇒ (fm,n = gm,n ⊕ (n mod 2)) .

Proof. We first define the predicate

P (n)
def
:=

(

m
∑

i=1

ui ≡ 0 (mod 2)

)

⇒ (fm,n = gm,n ⊕ (n mod 2)) .

The proof is performed by induction on n.

For P (1), fm,1 = Tj from (3.3). Owing to Lemma 4, we only need to consider

two cases such that
∑

i u
i is (a) 0 mod 4, and (b) 2 mod 4. In (a), Tj is 1 and in (b),

Tj is 0 (see Lemma 6), which in turn are the values of fm,1. In the respective cases,

gm,1 takes the values 0 and 1. Thus, gm,1 ⊕ (1 mod 2) confirm the truth of P (1).
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By hypothesis, assume the truth of P (j). We have

fm,j+1 = fm,j ⊕ Tj+1

= gm,j ⊕ (j mod 2)⊕ Tj+1, by hypothesis

= gm,j ⊕ (j + 1 mod 2)⊕ 1⊕ Tj+1

Since Tj+1 is has the same form as Tj, our analysis here is identical proving the basis.

We have the same two cases (a) and (b) for Tj+1.

• In (a), Tj+1 = 1. This means among the xi
j+1’s, there are exactly ℓ ≡ 0 (mod 4)

zero-bits. This keeps g unchanged, and gm,j+1 = gm,j.

• In (b), Tj+1 = 0. This means among the xi
j+1’s, there are exactly ℓ ≡ 2 (mod 4)

zero-bits. This causes g to flip, and gm,j+1 = gm,j ⊕ 1.

Both cases confirm the truth of P (j + 1).

This gives an upper bound of 2(m − 2) + 1 bits on communication complexity.

Each party finds its respective uP . All but two parties then send the two least

significant bits of uP to A, while remaining party sends the second-least significant

bit of uP . Using these bits, party 1 can determine g, from which f can be evaluated

by Theorem III.3.

2. Proof of lower bound

Similar to the approach in Section C of the previous chapter, we prove a lower bound

on gm,n, which holds for fm,n. We show that 2(m − 2) bits of communication are

insufficient to compute fm,n.

Using Theorem III.3, we simplify the problem in the following manner: each
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party i has a positive integer ui as input (1 ≤ i ≤ m). Party 1 needs to calculate

g defined in (3.5). Also, we have the condition on ui, defined by (3.6). This further

restricts the valid set of inputs. Moreover, as reasoned in Section C, we discard all

but two least significant bits of ui. Hence, ui ∈ {0, 1, 2, 3}.

By contradiction, let there be a 2(m− 2) bit classical protocol to evaluate (3.5).

For optimality, each party must send at least a bit to party 1. Since 2(m − 2) bits

are communicated, by pigeon-hole principle, m− 3 parties send their entire ui’s and

the remaining two parties send one bit each.

We have now necessarily reduced our problem to three-party communication, just

as in Section C of the previous chapter. From Theorem II.3, two bits are insufficient to

solve this problem. Since 2(m−3) bits have already been communicated, 2(m−3)+2 =

2(m− 2) bits are insufficient. Regarding fm,n, we now have Theorem III.4.

Theorem III.4. In a purely classical setting, the communication complexity of fm,n

(subject to input conditions (3.1)) is 2(m− 2) + 1 bits.

Along with the upper bound, we get a tight bound of 2(m − 2) + 1 bits on the

communication complexity of fm,n. This shows a clear separation between classical

and entanglement-assisted communication complexities.

Similar to the analysis in the previous chapter, we can also argue that the com-

plexity bound holds for all communication topologies among the m parties, because

we have essentially reduced our communication problem to that of three parties.
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CHAPTER IV

EXPERIMENTAL REALIZATION OF ENTANGLEMENT

We now turn to implementation details of the protocol, by specifically dealing with

formulation of the entanglement. We first obtain an outline of the implementation

using the quantum circuit model, and show how the circuit works. The circuit uses a

two-qubit gate as the building block, whose repeated utilization in a cascaded fashion

yields any general m-party entanglement as required. We then outline the realization

of the circuit using optical photon quantum computing.

A. Quantum circuit for entanglement

The entanglement constructed in the previous chapter has a structure dependent on

the Hamming weight of basis states. This hints at a cascaded structure for quantum

gates. The circuit can be implemented by repeatedly applying a building block U

shown in Fig. 4. We make use of the gates which figure frequently in universal

quantum computation, namely the controlled-NOT (C-NOT) and Hadamard gates.

The gatesX and Z are Pauli group members, representing the single-qubits operations

H

Z
=

H

ZX
= U

Fig. 4. The building block to form quantum entanglement in (3.2).

of bit-flip and phase-flip respectively.

X =







0 1

1 0






, Z =







1 0

0 −1






.
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We are only interested in creating a specific entanglement (3.2), and thus we only

consider a transformation by U that helps this goal. The action of U on the basis

state |11〉 is

U(|1〉 ⊗ |1〉) =
1√
2
(|01〉+ |10〉).

This also happens to be the entanglement for two-party case (though we do not have

a protocol for the same).

We build the three-party entanglement as in Fig. 5. As shown above, we re-

|1〉

|1〉

|1〉
U

U
= U (3)

Fig. 5. Quantum circuit for three-party entanglement in [5].

fer to an m-party circuit by U (m). The circuit for the three-party case gives the

entanglement as

U (3)(|1〉 ⊗ |1〉 ⊗ |1〉) =
1

2
(|001〉+ |010〉+ |100〉 − |111〉).

This also happens to be the entanglement in [5].

For m ≥ 3, U extends to U (m) recursively, and U (m)|1〉⊗m = |ϕ〉 of (3.2). This is

shown in Fig. 6.

We use induction to prove that the circuit actually forms the entanglement we

require in (3.2). We have already proved two base cases, for m = 2 and m = 3. Next,

we prove that whenever the circuit U (m) works, U (m+1) works as well.

Consider a basis state of |ϕ〉 (3.2),

|q〉 = u(q)|q1
j q

2
j · · · qm

j 〉,



33

|1〉

|1〉

...

|1〉

|1〉

U (m−1)

U

= U (m)

Fig. 6. The recursive application of U to form quantum entanglement in (3.2).

where q ∈ F
m
2 . We consider |q〉 for which u(q) = ±1. After U (m), the action of U is

u(q)|q1
j q

2
j · · · qm

j 〉 ⊗ |1〉
H7−→ u(q)(|q1

j q
2
j · · · qm

j 0〉 − |q1
j q

2
j · · · qm

j 1〉)
C1−X7−→ u(q)(|q1

j q
2
j · · · qm

j 0〉 − |q1
j q

2
j · · · qm

j 1〉)
C1−Z7−→ u(q)(|q1

j q
2
j · · · qm

j 0〉 − (−1)qm
j |q1

j q
2
j · · · qm

j 1〉).

Of the two basis states, the first does not undego a change in phase (it remains as

u(q)), and thus, has the proper sign as per induction hypothesis. The second one is

|q′〉 = −u(q)(−1)qm
j |q1

j q
2
j · · · qm

j 1〉.

The following two cases are possible.

• Case qm
j = 0. We get u(q′) = −u(q). This is the required result because the

Hamming weight of q1
j q

2
j · · · qm

j 1 is two more than that of q.

• Case qm
j = 1. We get u(q′) = u(q). This is the required result because the

Hamming weight of q1
j q

2
j · · · qm

j 1 is equal to that of q.

Thus, U (m+1) works as required, provided that U (m) does.
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B. Implementation by optical photon quantum computing

The optical photon has been a prominent candidate for representing a quantum bit

in the realization of quantum computing. We take up the optical photon to show

our implementation because the respective quantum circuits can be experimentally

realized using easily avaiable apparatus such as wave plates and beamsplitters. Fur-

thermore, our basic building block U has a structure which is highly amenable to

interactions of optical photons.

1. Introduction to optical photon quantum computing

Optical photons have a number of attractive properties – they are chargeless, they do

not interact very strongly with the surrounding matter, and they can be transmitted

over long distances by optical fibers without significant loss. As a consequence, they

are potentially free from decoherence. However, this strength also becomes a weakness

– photons do not interact very strongly with each other. Nevertheless, there exist

nonlinear optical media which can facilitate such operations, with the principle of

intereference being the primary vehicle for such interactions.

a. Encoding qubits into photons

There are a number of ways of representing qubits using photons. Two of the well-

known schemes are dual-rail representation and polatization encoding. While one links

the basis states to the spatial presence of photons, the other links them to polarization

components.

Light is known to have various polarization modes, which refer to the plane in

which the photons lie, perpendicular to their propagation path. Light may be hor-

izontally or vertically polarized, in reference to two perpendicular planes. In the



35

polarization mode, the basis states are represented by horizontal and vertical polar-

ization components. Specifically, we may have horizontal component represent |0〉

and the vertical component |1〉. Polarizing beamsplitters can be used to separate the

two components, as shown in the Fig. 7.

Fig. 7. A polarizing beamsplitter.

In dual-rail representation, the state of a qubit is determined by the presence

of a photon in a superposition of two paths. Quantum-mechanically, a photon is in

a superposition of two spatially separated paths, one path representing the state |0〉

and the other |1〉. Unlike polarization mode which can occur naturally, dual-rail rep-

resentation needs to be specially prepared. There are many optical setups which can

help us prepare the dual-rail encoding from polarization mode. One obvious method

is to use the polarizing beamsplitter. As apparent in Fig. 8, the polarizing beam

Fig. 8. Conversion of polarization mode to dual-rail and back.

splitter creates two paths for the two polarization components, effectively providing

a dual-rail representation. The horizontal and vertical components (|H〉 and |V 〉)
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respectively represent the basis states |0〉 and |1〉. These states become spatially sep-

arated after the action of the beamsplitter. The two slabs labeled 45o are half-wave

plates – devices used to compensate for phase shift incurred due to self-interference

of the two components at the time of merging.

b. Optical devices for implementing quantum operators

Quantum gates can be realized using some basic optical devices. The primary task

in realization is controlled generation of photons. This can be achieved through

attenuated laser output. As for operations on photons, the most commonly known

device is the mirror, used to change the propagation direction of photons.

Another device is the beamsplitter (shown in Fig. 9), which is typically fabricated

from two prisms glued together by a thin metallic base. It act by reflecting a fraction of

the incident light, and transmitting the rest. It can also be used to combine incoming

beams of light by the principle of interference. Polarizing beamsplitter is a special

case of this device, whose splitting operation relies on polarization components.

Fig. 9. A schematic depiction of a beamsplitter.

The task of introducing phase shifts can be performed by a wave plate (Fig. 10),

which alters the polarization of light by shifting the phase between the perpendicular

components. Typically, a wave plate is a birefringent1 crystal with a thickness chosen

1Birefringence is the decomposition of light based on its polarization.
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depending upon the desired phase shift to be produced. Owing to such action, wave

plates are candidates for implementing the Hadamard gate. Specifically, a half-wave

plate causes a shift of π – precisely what a Hadamard gate does.

Fig. 10. A wave plate used to shift polarization of photons.

Readers interested in more details of optical photon quantum computing can

refer to [4, 8, 13]. An excellent introduction to quantum optics and related concepts

is provided in [12].

2. Implementation of quantum entanglement

We now discuss the realization of U that was defined earlier. We realize it using

controlled-Z (C-Z) gates and Hadamard gates, which have been studied well for optical

photon quantum computing. We make use of the results stated in [11] to outline the

physical implementation.

The realization is simplified when we observe that the C-Z gate can be imple-

mented using C-NOT and Hadamard gates. Similarly, a C-NOT can be implemented

with C-Z and Hadamard gates. The circuits are shown in Fig. 11.
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Z
=

H H

=
H Z H

Fig. 11. Implementations of controlled not and phase-flip gates.

a. Realization of the C-NOT gate

In [11], the C-NOT gate is implemented for polarization encoding. However, the

internal implementation uses spatial encoding, and polarizing beamsplitters are used

for back-and-forth conversions among the two encodings.

Fig. 12 provides a schematic of the internal implementation of the C-NOT gate.

Initially, we have the control and target qubits as photons Cin and Tin respectively.

The gate internally uses spatial encoding: the paths C0, C1 denote the control qubit,

and T+, T− denote the target qubit. This spatial encoding is obtained using beam-

splitters on Cin and Tin.

Fig. 12. Schematic of an optical C-NOT gate.

Internally, the green-and-blue plates shown are beamsplitters, which perform the
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task of either splitting or interfering the incoming path(s). The plates labeled “1/2”

act as Hadamard gates2. The X on the top and bottom indicate dumped paths; they

may be used to determine whether the gate operates as expected. In the context of

this implementation, the action of the beamsplitters amounts to creating the desired

non-classical interference between photon states, resulting in the quantum mechanical

C-NOT action.

In the broad scheme of functioning, the key part of the action of this gate is that

the spatial mode encoding causes an interaction among the photons only when the

control bit is in the logical state |1〉. When in path C0, the photon does not interact

with the target, but in case of path C1, an interaction takes place. The effective

action of the interference is to cause a phase flip of the target qubit whenever the

control qubit has state |1〉. With the presence of two Hadamard gates, this effectively

becomes the C-NOT operation.

The same setup could be used to implement a C-Z gate, without the Hadamard

transforms. The schematic of such a gate would be as in Fig. 13.

Fig. 13. Schematic of an optical C-Z gate.

2The beamsplitters labelled “1/2” are only shown as a part of the schematic. In
actual implementation, Hadamard gates are implemented using half-wave plates in
polarization encoding, rather than using beamsplitters in spatial encoding.
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b. Realization of U

In our implementation, the two basis states |0〉 and |1〉may be respectively represented

by horizontal and vertical polarizations. As per the setup in [11], the Hadamard gate

can be easily realized using a half-wave plate, and the C-NOT gate effectively makes

use of Hadamard and C-Z gates. In these terms, our relevant quantum circuit for

U can be realized as in the Fig. 14. The realization of our circuit is complete with

U =
H

H Z H Z

Fig. 14. Building block U realized with H and C-Z gates.

coherent photon sources and the setup described in the preceding section. The C-

Z gate can be realized by removing the Hadamard gates (half-wave plates) in the

C-NOT realization of [11]. The Hadamard gates can be realized by merely placing

half-wave plates in the paths of photons representing our qubits. Fig. 15 depicts the

realization of our building-block, with reference to the quantum circuit in Fig. 14.

The block labeled C-Z precisely stands for Fig. 13.

Fig. 15. A schematic of realizing the two-qubit U gate.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

A. Implications to network coding

Network information flow (or network coding) has emerged as an inter-disciplinary

field from information theory, coding theory and graph theory, with the goal of maxi-

mizing information flow over a network. It does away with the conventional perspec-

tive of modeling information as a commodity. A canonical example is the butterfly

network (Fig. 16), from the seminal paper [1]. In this example, the goal is for S to

Fig. 16. Multicast transmission in the butterfly network using network coding.

send packets x and y to both T1 and T2. This can be achieved by single use of the

edges if the node C can “combine” the packets such that the Ti’s can decode x and

y successfully. If data is modeled as a commodity rather than information, C has to

transmit twice to achieve the same goal.

Through an example, we try to investigate the possible impacts of having entanglement-
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assisted communication in network coding. There have been a number of bounds

proven for various network coding settings. For instance, [14] proves a lower bound

on the packet size, for successfully performing network coding. It shows that the

multicast setting in Fig. 17 (1 source, 6 terminals) requires an alphabet size of at

least 3. This bound can be broken if we provide a little power to the network model.

Fig. 17. Multicast transmission requires an alphabet size of at least 3.

We can assume reverse carpooling available to one of the links connected to the ter-

minals. Reverse carpooling allows for a special property of the link – both connected

nodes simultaneously send a packet from each side of the link, and in turn receive a

some function of the two packets sent. Such slight power is able to break the bound

on alphabet size1, and it is now possible to transmit packets of alphabet size 2 by

network coding.

Such a power exemplifies the probable impact of providing entanglement as-

sistance to network coding. Provision of entanglement adds power to the existing

communication model, and as seen above, a slight usage of such power can lead to

overcoming bounds on communication parameters. There are several other impos-

sibility results which can be overcome by reverse carpooling; thus, they could also

1This result was discovered during the term project of the network coding course.
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provide starting points to investigate the impact of enanglement assistance.

B. Future research directions

In this thesis, we addressed the advantage of using quantum entanglement to reduce

the complexity of a certain class of communication problems among multiple parties.

We showed the reduction explicitly in case of a four-party communication problem, by

presenting a 3-bit protocol that uses entanglement to evaluate a certain function. We

also proved that in case entanglement is not present, a classical four-party protocol will

require at least 5 bits to evaluate the same function. We further presented a method

for formulating similar communication problems for m parties, m ≥ 4, showing a

scalability of the gain in communication complexity. This family of protocols depicts

a linear gap in communication complexity when aided by entanglement, as shown

by the tight bounds. Our results thus go on to show the utility of entanglement for

computation in a distributed setting. As seen in the previous section, we can look for

applications of similar protocols in network information flow.

There are a number of open problems associated with our results. For instance,

we have a certain structure of entanglement, and we varied the input condition and

evaluation function to arrive at a general protocol. One could try to observe the

result of reversing these roles. We suspect that in such a case, Protocol Q would no

longer be identical for different parties. Moreover, other types of entanglement may

be explored to help reduce classical communication complexities. Another general

direction of pursuit is exploration of super-linear gains in communication complexity,

since the gain we have shown is linear. Also, our results could be actually converted

to bandwidth gains in practical settings.

There are a number of possible ways to improve upon our protocols. For in-
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stance, we could investigate the existance of an entanglement which can be reused

for different indices of the input bit-strings, thus resulting in a total of m qubits used

instead of mn. Such approach may be investigated by increasing some of the input

preconditions and observing the impact on communication complexity. In general, an

obvious improvement would be the reduction in quantum computing resources used.

It can be seen that quantum entanglement is an additional resource, and it does not

have an analogous “resource” in the classical protocols. An optical photon quantum

computing realization of this protocol, as explained in the previous chapter, could

help account for the cost factors involved, in order to get a more stringent notion of

fairness in our comparison.
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APPENDIX A

DISTRIBUTION OF ORTHOGONAL SUBSPACES

Let B0 denote the sub-space orthogonal to b ∈ F
ℓ
2, and let B1 = F

ℓ
2 \ B0. Also, let

Bk
i,j denote the respective sets with each member r satisfying the condition |r|j = i.

Bk
i,j = {r : r ∈ Bk, |r|j = i}.

For the remainder of this section, we assume k ∈ Z2 and x ∈ Z4. It is known that

|Bk| = 2ℓ−1. We wish to determine |Bk
x,4|.

We have the following simple observation.

Lemma 7. Let b, b′ ∈ F
ℓ
2, and let r be the number of common 1’s between them.

Then, |b+ b′| = |b|+ |b′| − 2r, and b′ ⊥ b⇔ r ≡ 0 mod 2.

We know F
ℓ
2 contains

(

ℓ

k

)

vectors such that |q| = k. Thus,
∑
(

ℓ

4k+x

)

gives the

number of vectors q such that |q|4 ≡ x mod 4. We have 1

⌊ ℓ
4
⌋

∑

k=0

(

ℓ

4k + x

)

= 2ℓ−2 + 2
ℓ
2
−1 cos(

ℓ− 2x

4
π). (A.1)

When b ∈ F
ℓ
2 \ {0̂, 1̂}, we have the following arguments.

1. Consider any vector b′ ∈ B0
1,2 such that |b′|2 = 1. For any b′′ ∈ B0

0,2, b
′+b′′ ∈ B0

1,2.

Thus, |B0
0,2| = |B0

1,2| = 2ℓ−2.

2. Consider any vector b′ ∈ B1
1,2 such that |b′|2 = 1. For any b′′ ∈ B0

0,2, b
′+b′′ ∈ B1

1,2.

Also, for any b′′ ∈ B0
1,2, b

′ + b′′ ∈ B1
0,2. Thus, |B1

0,2| = |B1
1,2| = 2ℓ−2.

1We can easily prove (A.1) by the binomial expansion of (1 + i)ℓ =
∑ℓ

j=0

(

ℓ

j

)

ij

(where i =
√
−1), along with the fact that

∑
(

ℓ

2k

)

=
∑
(

ℓ

2k+1

)

= 2ℓ−1.
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3. |b|2 = 0. Clearly, b ∈ B0. Also, 1̂ ∈ B0.

(a) ℓ ≡ 0 mod 4.

i. Consider B0
1,2 as B0

1,4 ∪ B0
3,4. For any b′ ∈ B0

1,2, b
′ + 1̂ ∈ B0

1,2. But if

b′ ∈ B0
1,4, then b′ + 1̂ ∈ B0

3,4 due to the fact that ℓ ≡ 0 mod 4. Thus,

|B0
1,4| = |B0

3,4| = 2ℓ−3.

ii. Consider B1
1,2 as B1

1,4 ∪ B1
3,4. For any b′ ∈ B1

1,2, b
′ + 1̂ ∈ B1

1,2. But if

b′ ∈ B1
1,4, then b′ + 1̂ ∈ B1

3,4 due to the fact that ℓ ≡ 0 mod 4. Thus,

|B1
1,4| = |B1

3,4| = 2ℓ−3.

iii. We have the following cases.

A. |b|4 = 2. Consider B0
0,2 as B0

0,4 ∪ B0
2,4. For any b′ ∈ B0

0,2, b
′ + b ∈

B0
0,2. But if b′ ∈ B0

2,4, then b′ + b ∈ B0
0,4 by Lemma 7. Thus,

|B0
0,4| = |B0

2,4| = 2ℓ−3.

B. |b|4 = 0. Consider B1
0,2 as B1

0,4 ∪ B1
2,4. For any b′ ∈ B1

0,2, b
′ + b ∈

B1
0,2. But if b′ ∈ B1

0,4, then b′ + b ∈ B1
2,4 by Lemma 7. Thus,

|B1
0,4| = |B1

2,4| = 2ℓ−3.

(b) ℓ ≡ 2 mod 4.

i. Consider B0
0,2 as B0

0,4 ∪ B0
2,4. For any b′ ∈ B0

0,2, b
′ + 1̂ ∈ B0

0,2. But if

b′ ∈ B0
0,4, then b′ + 1̂ ∈ B0

2,4 due to the fact that ℓ ≡ 2 mod 4. Thus,

|B0
0,4| = |B0

2,4| = 2ℓ−3.

ii. Consider B1
0,2 as B1

0,4 ∪ B1
2,4. For any b′ ∈ B1

0,2, b
′ + 1̂ ∈ B1

0,2. But if

b′ ∈ B1
0,4, then b′ + 1̂ ∈ B1

2,4 due to the fact that ℓ ≡ 2 mod 4. Thus,

|B1
0,4| = |B1

2,4| = 2ℓ−3.

iii. We have the following cases.

A. |b|4 = 2. Consider B0
1,2 as B0

1,4 ∪ B0
3,4. For any b′ ∈ B0

1,2, b
′ + b ∈
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B0
1,2. But if b′ ∈ B0

1,4, then b′ + b ∈ B0
3,4 by Lemma 7. Thus,

|B0
1,4| = |B0

3,4| = 2ℓ−3.

B. |b|4 = 0. Consider B1
1,2 as B1

1,4 ∪ B1
3,4. For any b′ ∈ B1

1,2, b
′ + b ∈

B1
1,2. But if b′ ∈ B1

1,4, then b′ + b ∈ B1
3,4 by Lemma 7. Thus,

|B1
1,4| = |B1

3,4| = 2ℓ−3.

4. |b|2 = 1. Clearly, b ∈ B. Also, 1̂ ∈ B.

(a) For any b′ ∈ B0
0,2, b

′ + b ∈ B1
1,2. We have the following specific cases.

i. |b|4 = 1. For any b′ ∈ B0
0,4, b

′+b ∈ B1
1,4 by Lemma 7. Also, if b′ ∈ B0

2,4,

then b′+b ∈ B1
3,4 by Lemma 7. Thus, |B0

0,4| = |B1
1,4| and |B0

2,4| = |B1
3,4|.

ii. |b|4 = 3. For any b′ ∈ B0
0,4, b

′+b ∈ B1
3,4 by Lemma 7. Also, if b′ ∈ B0

2,4,

then b′+b ∈ B1
1,4 by Lemma 7. Thus, |B0

0,4| = |B1
3,4| and |B0

2,4| = |B1
1,4|.

(b) ℓ ≡ 0 mod 4.

i. For any b′ ∈ B0
0,4, b

′+1̂ ∈ B1
0,4; also, for any b′ ∈ B0

2,4, then b′+1̂ ∈ B1
2,4

– all due to the fact that ℓ ≡ 0 mod 4. Thus, |B0
0,4| = |B1

0,4| and

|B0
2,4| = |B1

2,4|.

ii. For any b′ ∈ B0
1,4, b

′+1̂ ∈ B1
3,4; also, for any b′ ∈ B0

3,4, then b′+1̂ ∈ B1
1,4

– all due to the fact that ℓ ≡ 0 mod 4. Thus, |B0
1,4| = |B1

3,4| and

|B0
3,4| = |B1

1,4|.

(c) ℓ ≡ 2 mod 4.

i. For any b′ ∈ B0
1,4, b

′+1̂ ∈ B1
1,4; also, for any b′ ∈ B0

3,4, then b′+1̂ ∈ B1
3,4

– all due to the fact that ℓ ≡ 2 mod 4. Thus, |B0
1,4| = |B1

1,4| and

|B0
3,4| = |B1

3,4|.

ii. For any b′ ∈ B0
0,4, b

′+1̂ ∈ B1
2,4; also, for any b′ ∈ B0

2,4, then b′+1̂ ∈ B1
0,4

– all due to the fact that ℓ ≡ 2 mod 4. Thus, |B0
0,4| = |B1

2,4| and
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|B0
2,4| = |B1

0,4|.

The above analysis gives us a system of equations for the variables |Bk
x,4|, for cases

ℓ ≡ 0 (mod 4) and ℓ ≡ 2 (mod 4). After solving with (A.1), we get the following

lemma. It puts the valued of |Bk
x,4| in a general form in terms of k and x.

Lemma 8. For b ∈ F
ℓ
2 \ {0, 1},

1. ℓ ≡ 0 mod 4⇒

|Bk
x,4| = 2ℓ−3 + 2

ℓ
2
−2(−1)

ℓ
4

(

cos(
x

2
π) + (−1)k cos(

x+ |b|4
2

π)

)

.

2. ℓ ≡ 2 mod 4⇒

|Bk
x,4| = 2ℓ−3 + 2

ℓ
2
−2(−1)

ℓ−2

4

(

sin(
x

2
π) + (−1)k sin(

x+ |b|4
2

π)

)

.

When b ∈ {0̂, 1̂}, we have the following lemma.

Lemma 9. For b ∈ {0̂, 1̂} ⊆ F
ℓ
2,

1. When b = 0̂, |B0
x,4| =

∑
(

ℓ

4k+x

)

and |B1
x,4| = 0.

2. When b = 1̂, B0
1,2 = B1

0,2 = {}, |B0
0,4| =

∑
(

ℓ

4k

)

, |B1
1,4| =

∑
(

ℓ

4k+1

)

, |B0
2,4| =

∑
(

ℓ

4k+2

)

, and |B3,4| =
∑
(

ℓ

4k+3

)

.

Proof. 1. b = 0̂. Clearly, B0 = F
ℓ
2. Result follows from (A.1).

2. b = 1̂. Since ℓ ≡ 0 mod 2, r· b = |r|2. We get B0
0,2 = {r : r ∈ F

ℓ
2, |r|2 = 0}, and

B1
1,2 = {r : r ∈ F

ℓ
2, |r|2 = 1}.
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APPENDIX B

PROGRAM FOR PROOF OF LOWER BOUND

The following is the code for two files - partition.h and lb.C; both were written to

prove that no 4-bit communication protocol exists without using quantum entangle-

ment. The file partition.h implements the partition-generating algorithm proposed

in [7]. The program in lb.C exaustively examines every combination of four partitions

from the four parties, and finds the valid inputs that result in ambiguous function

values. The code is written in C++. The expected output is the string “No protocol

can solve the current problem.”.

/* partitions.h - contains definition of the Partitions class

* The class will be used in lb.C to prove lower bound */

#ifndef __PARTITIONS_H

#define __PARTITIONS_H

#include <iostream>

#include <vector>

#define PRINT_A 1000

#define PRINT_SETS 1001

#define PRINT_NUM 1002

using namespace::std;
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class Partitions {

private:

vector <int> a;

vector <int> c;

int n, m, I, J, C, K;

int setCount;

bool started;

public:

Partitions(int nInit=0, int mInit=0);

void init();

bool getNext();

void print(int method=PRINT_A);

int ownerSetOf(int e);

};

Partitions::Partitions(int nInit, int mInit) {

if( nInit < mInit || nInit < 0 || mInit < 0 )

cout << "Error in set paramters" << endl ;

else {

n = nInit; m = mInit;

init();

}

}

void Partitions::init() {

c.clear(); a.clear();
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for(int i=0; i<m; i++) {

c.push_back(i);

a.push_back(i);

}

for(int i=m; i<n; i++)

a.push_back(0);

c.push_back(0);

I = J = 0;

started = false;

setCount = 0;

}

void Partitions::print(int method) {

if( method == PRINT_A ) {

for(int i=0; i<n; i++)

cout << a[i] << " ";

}

else if( method == PRINT_NUM ) {

cout << setCount ;

return ;

}

else {

for(int i=0; i<m; i++) {

for(int j=0; j<n; j++)

if( a[j] == i )

cout << j << " ";
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cout << "\t\t";

}

}

cout << endl;

}

int Partitions::ownerSetOf( int e ) {

if( e < 0 || e >= n )

return -1;

return a[e];

}

/* Implementation of the algorithm proposed

* by Hutchinson in 1963 (see references) */

bool Partitions::getNext() {

if(started) goto six ;

else started = true;

three:

if( c[J] == I ) J++;

else a[I] = 0;

four:

if( I == n-1 ) goto five;

else if( I < n-1 ) { I++; goto three; }
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five:

setCount++;

return true; /* A new partition set has been created */

six:

I = n-1; J = m-1;

seven:

if( c[J] == I ) { J--; goto nine; }

else goto eight;

eight:

if( a[I] < J ) goto ten;

else if( a[I] >= J ) goto nine;

nine:

I--;

if( I > 0 ) goto seven;

else if( I == 0 ) goto thirteen;

ten:

a[I]++; J++;

eleven:

if( I == n-1 ) goto five;

else if( I < n-1 ) { I++; goto twelve; }

twelve:

if( c[J] == I ) { a[I] = J; J++; goto eleven; }

else { a[I] = 0; goto eleven; }

thirteen:

C = n-1; K = m-1;

fourteen:
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if( c[K] < C ) { c[K]++; goto sixteen; }

else if( c[K] >= C ) goto fifteen;

fifteen:

C = c[K] - 1; K--;

if( K == 0 ) return false; /* No more partitions can be created */

if( K > 0 ) goto fourteen;

sixteen:

if( K == m-1 ) { I = J = 0; goto three; }

else if( K < m-1 ) { K++; goto seventeen; }

seventeen:

c[K] = c[K-1] + 1; goto sixteen;

}

#endif

/**********************************************************/

/* lb.C - program that performs exhaustive search among

* partitioning strategies to look for a protocol.

* This particular program fails to provide any protocol,

* thereby proving the lower bound. */

#include <iostream>

#include "partitions.h"
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#define INITIAL 100

#define is_valid(a,b,c,d) ( (((a)+(b)+(c)+(d))%2) == 0 )

/* Whether the four input strings are valid */

#define computeFunction(a,b,c,d) ( ( ((a)+(b)+(c)+(d))>>1 ) & 0x1 )

/* Computes the four-argument function f(xA, xB, xC, xD) */

int main() {

Partitions pBob(4,4), pCarol(4,2), pDan(4,2);

// partitions used by the three parties

// First argument to constructor gives size of the set,

// and second argument gives number of partitions to

// be created from the given set.

int originalFunctionValue[4*16], f;

// array storing (possibly) ambiguous function values

int originalFunctionArguments[4*16][3];

// arguments of original function value

int index; // control and index variables, respectively

int w, x, y, z; // inputs

bool printFlag = false ;

// flag to know whether failure needs to be printed

char in ;

cout << "Do you want me to print every failure (y/n)? " << endl ;

cin >> in ;

if( in == ’y’ ) printFlag = true;
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/* Loop over all partitions for Bob, Carol, Dan and Alice (self).

* getNext() generates the next partition. */

while( pBob.getNext() ) {

pCarol.init();

while( pCarol.getNext() ) {

pDan.init();

while( pDan.getNext() ) {

for(int i=0; i<4*16; i++)

originalFunctionValue[i] = INITIAL;

/* Running a loop representing all possible input combinations */

for(int input=0; input<256; input++) {

/* Extract inputs from the entire bit-string */

w = input & 0x3; z = (input>>2) & 0x3;

y = (input>>4) & 0x3; x = (input>>6) & 0x3;

if( is_valid(w,x,y,z) ) { // Process only valid inputs

f = computeFunction(w,x,y,z);

/* indexing by unique input of Alice and various

* partition numbers */

index = w<<4 | pBob.ownerSetOf(x)<<2

| pCarol.ownerSetOf(y)<<1

| pDan.ownerSetOf(z);

/* The first time a partition is examined */

if( originalFunctionValue[index] == INITIAL ) {

originalFunctionValue[index] = f;
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originalFunctionArguments[index][0] = x;

originalFunctionArguments[index][1] = y;

originalFunctionArguments[index][2] = z;

}

else {

if( originalFunctionValue[index] != f ) {

/* Ambiguous function value found, current

* partitioning strategy fails */

if( printFlag ) {

/* We now print what function values it failed for */

pBob.print(PRINT_NUM);

pCarol.print(PRINT_NUM);

pDan.print(PRINT_NUM);

cout << "(" << w << originalFunctionArguments[index][0]

<< originalFunctionArguments[index][1]

<< originalFunctionArguments[index][2]

<< ")(" << w << x << y << z << "); f=" << f << endl;

}

goto protocol_failure;

}

}

}

}

/* If we reach here, there exists a protocol, since no

* conflicting function values were found. */

cout << "We have a protocol. Dumping partitions:" << endl;
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pBob.print(PRINT_SETS);

pCarol.print(PRINT_SETS);

pDan.print(PRINT_SETS);

return 0; /* We already have a protocol, so abandon

* any more computations and return. */

protocol_failure:

/* Do nothing: reaching here implies current partitioning

* strategy has failed; so move on to the next one. */ ;

}

}

}

cout << "No protocol can solve the current problem." << endl;

return 0;

}
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