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ABSTRACT

Adapting a Delay-based Protocol to Heterogeneous Environments. (August 2008)

Kiran Kotla, B.E., Birla Institute of Technology and Science, Pilani, India

Co–Chairs of Advisory Committee: Dr A. L. Narasimha Reddy
Dr Riccardo Bettati

We investigate the issues in making a delay-based protocol adaptive to heteroge-

neous environments. We assess and address the problems a delay-based protocol

faces when competing with a loss-based protocol such as TCP. We investigate if noise

and variability in delay measurements in environments such as cable and ADSL access

networks impact the delay-based protocol behavior significantly. We investigate these

issues in the context of incremental deployment of a new delay-based protocol, PERT.

We propose design modifications to PERT to compete with the TCP flavor SACK.

We show through simulations and real network experiments that, with the proposed

changes, PERT experiences lower drop rates than SACK and leads to lower overall

drop rates with different mixes of PERT and SACK protocols. Delay-based protocols,

being less aggressive, have problems in fully utilizing a highspeed link while operating

alone. We show that a single PERT flow can fully utilize a high-speed, high-delay link.

We performed several experiments with diverse parameters and simulated numer-

ous scenarios using ns-2. The results from simulations indicate that PERT can adapt

to heterogeneous networks and can operate well in an environment of heterogeneous

protocols and other miscellaneous scenarios like wireless networks (in the presence of
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channel errors). We also show that proposed changes retain the desirable properties

of PERT such as low loss rates and fairness when operating alone.

To see how the protocol performs with the real-world traffic, the protocol has

also been implemented in the Linux kernel and tested through experiments on live

networks, by measuring the throughput and losses between nodes in our lab at TAMU

and different machines at diverse location across the globe on the planet-lab.

The results from simulations indicate that PERT can compete with TCP in

diverse environments and provides benefits as it is incrementally deployed. Results

from real-network experiments strengthen this claim as PERT shows similar behavior

with the real-world traffic.
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CHAPTER I

INTRODUCTION

The dominant transport layer protocol currently and for the past two decades in the

Internet has been TCP. TCP uses Additive Increase, Multiplicative Decrease win-

dow adjustment mechanism by which it adapts to diverse scenarios. The congestion

control algorithms associated with the standard TCP, like slow-start and congestion

avoidance, have been crucial to ensuring the stability of the Internet.

Congestion Protocols can be broadly categorized into two types namely conges-

tion avoidance schemes and congestion control schemes. The TCP Additive Increase

Multiplicative Decrease (AIMD) scheme coupled with Fast retransmit/recovery is

commonly referred as congestion avoidance mechanism. However, the popular and

widely used TCP congestion flavors like TCP-Newreno and TCP-SACK, detect con-

gestion only when a packet loss occurs and hence are congestion control schemes. A

typical congestion avoidance schemes predicts congestion at the router at an early

stage by actively monitoring either the RTT s of its packets or the throughput. Based

on its prediction, it judges whether to reduce its window to avoid possible packet

losses. Therefore, congestion avoidance protocols respond early to the congestion.

There are two different schools of thought concerning congestion avoidance. The

first being congestion avoidance at routers and the second being at the end-hosts. As

routers typically operate at a junction of different sources sending packets to different

destinations, they will be in a better position to judge when the congestion actu-

The journal model is IEEE Transactions on Automatic Control.
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ally builds up. Therefore, they can prevent congestion by carefully judging to drop

packets at an earlier stage (implicitly signaling congestion) or explicitly informing the

end-host about the incipient congestion through markings on packets. Such mecha-

nisms are commonly referred to be a part of Active Queue Management (AQM). [1]

and [2] are examples of AQM mechanisms.

While routers are at a better position to determine the onset of congestion, it

is often difficult to deploy the router based mechanisms, as it requires changes not

only at the routers but also at the end-hosts. Therefore, the other school of thought

assumes that the network to be a black-box and employs its own mechanisms to

detect and avoid congestion. Over time many congestion avoidance protocols like

TCP-Vegas [3] were proposed. However, such protocols are inherently vulnerable to

noise and sudden changes in the delay measurement. Furthermore, several challenges

in estimating delays accurately and other issues have resulted in skepticism in the

viability of delay-based schemes [4], [5].

Recently, Sumitha et al. identified the problem of noise vulnerability of delay-

based protocols and addressed some of these issues and proposed a delay-based

protocol congestion avoidance protocol named PERT (Probabilistic Early Response

TCP) [6]. PERT improves the delay estimation process by maintaining an Expo-

nentially Weighted Mean Average (EWMA) of the measured RTT s and deals with

remaining uncertainties through a probabilistic response to the congestion identified

by the estimated delay. PERT emulates the behavior of AQM at end hosts by re-

sponding at a higher rate at higher delays and at a lower rate at lower delays. While

PERT has been shown to be effective in reaching its goals, a number of technical

challenges remain open in its practical deployment in the real-world.
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The major issue is how delay-based protocols can compete with various versions

of loss-based protocols like TCP. Loss-based protocols keep increasing their rate until

a packet is dropped (as most versions of TCP do). On the other hand, delay-based

congestion avoidance protocols, by responding to congestion early, cede ground to

such loss-based protocols. While most delay-based protocols exhibit good properties

in a homogenous deployment, for the delay-based protocols to be deployed in the

real-world, they need to be able to operate in an environment of mixed protocol de-

ployment. This would be necessary for incremental protocol deployment.

PERT employs a good congestion prediction signal srtt0.99 and estimates the

queuing delay accurately enough to perform well in terms of queuing delays, drop

rates and intra protocol fairness in diverse scenarios. Given these nice benefits, we

performed several experiments to see how PERT behaves when it competes with loss-

based protocols like standard TCP. We found out through our experiments that, like

many proposed delay-based schemes, it loses to loss-based protocol like TCP and gets

less than 1% bandwidth share in a 50-50 mix of PERT and TCP flows.

As mentioned earlier the current dominant protocol is TCP and if a proposed

scheme does not get a reasonable bandwidth share when used in practice with other

co-existing TCP flows, it will not be adopted. It is unreasonable and impractical to

ask everyone to switch to delay-based protocols, at once, for better performance ben-

efits. Thus, any protocol is generally of practical interest only if it can coexist with

flows of dominant flavors in the Internet. Thus the major motivation to adapt PERT

to heterogeneous environments is to make it compete for a fair bandwidth share when

PERT has to co-exist with TCP in current Internet.
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PERT’s ability to compete with TCP, after modifications,should not compro-

mise its attractive properties for adoption i.e., low loss rates and low queue lengths

for individual adopters of PERT. Low Queueu lengths cannot be guaranteed in a

mixed deployment as queue lengths depend on the behavior of both PERT and TCP.

Our next aim was to provide global network wide benefits or incentives for PERT’s

deployment. As more people adopt PERT, we want to see if we could provide lower

total packet drops in the network in similar operating conditions.

We address this issue in this research. We propose and evaluate design enhance-

ments to enable the delay-based protocol, PERT to compete with flavors of TCP

like SACK. We also study what advantages and benefits may be realized as a mix of

PERT and SACK flows evolves from 100% SACK to 100% PERT. We show through

such experiments that incremental deployment of PERT provides lower overall drop

rates along with lower drop rates for the PERT flows in the mix. While some recent

protocols [7–9] have strived for coexistence with TCP, we are not aware of any work

that simultaneously deals with incremental deployability of a new protocol and fair

bandwidth sharing with TCP in mixed protocol deployment workloads.

Another issue that has been raised in the past regarding delay-based protocols

is their robustness to noise in delay measurements. This has been the primary mo-

tivation for employing the probabilistic response in PERT [6]. Further, recent work

on cable and ADSL access networks has highlighted the RTT variance of these net-

works even in the absence of congestion [10], due to their network access granting

and scheduling mechanisms. This raises the question whether delay-based congestion

protocols can function effectively when deployed in such access networks.
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We study this issue through practical deployment of the modified PERT in cable

and ADSL networks. We report on PERT’s ability to correctly gauge congestion even

in networks with widely varying access delays. We also evaluate PERT’s robustness

to measurement noise by deliberately adding noise to measured delays in simulations.

We show through these experiments that PERT can be more robust to noise in delay

compared to other delay-based protocols like FAST and Vegas.

A third issue we address is whether a delay-based protocol can be scaled to pro-

vide high utilizations when a single flow operates in high-speed, high-delay links. This

has been a topic of considerable interest lately and many new protocols have been

proposed [7,11–14]. We show that PERT can fully utilize high-speed, high-delay net-

work links and provide near zero drop rates than loss-based schemes such as [11–13].

While FAST [7], a delay-based protocol, has been designed to compete with TCP

and operate in high-speed networks, not much work has been reported on its perfor-

mance in environments of mixed protocol deployment. Our work here emphasizes

this aspect. We compare PERT’s performance with that of FAST in incremental

deployment scenarios.

We propose, analyze and evaluate design modifications for PERT to deal with

these important issues. The suggested modifications are simple to implement and are

shown to be effective through analysis, ns-2 based simulations and testing our Linux

based kernel implementation over the Internet.

We make the following significant contributions: (a) Adapted a delay-based pro-
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tocol to compete with the existing loss-based congestion protocol TCP, (b) Extensive

evaluations of mixed deployment scenarios of PERT and TCP to show that PERT

offers benefits to individual adopters while providing overall incremental benefits to

network characteristics and hence providing a path to incremental deployment. (c)

Adapted the delay-based protocol PERT to high speed networks to enable a single

flow to utilize a link fully with zero losses and (d) Retained the properties of the orig-

inal PERT when operating alone in homogenous environments (and providing nearly

zero packet losses and low queue lengths).
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CHAPTER II

A BRIEF DESCRIPTION OF PERT

Delay-based congestion control algorithms like TCP-Vegas were proposed to avoid

packet losses and keep the queue lengths at the routers low. However, delay-based

protocols can be vulnerable to the noise and sudden variations in the RTT measure-

ments. The major challenge for any delay-based protocol is to carefully judge the

congestion that is building up at the router. In an end host based congestion control,

the congestion can be classified into three different states namely low-congestion (i.e.,

when low delays are observed), high-congestion state (i.e., when higher delays are ob-

served and queue starts getting filled up) and the packet-loss state when the queue is

full and a packet loss occurs. If a delay-based flow does not use an accurate method

for determining congestion, or if the flow shares the bottleneck link with a lot of cross

traffic and flows of other flavor, then the duration of high-congestion state may bee

to short to be able to detect it. This is known as a “false negative”. On the other

hand, a protocol can be too aggressive or unreliable in predicting congestion, and as

a result may unnecessarily reduce its sending rate and face performance degradation.

This is referred to as “false positive.”

When different protocols were compared in terms of their prediction efficiency

i.e., low false positive and low false negative rates, Vegas [3] was found to have the

best prediction efficiency [6]. These results indicated that there was room to omprove

on the congestion prediction schemes employed at that time. Such experimental re-

sults guided the design of a better congestion predictor employed in PERT [6].

PERT has shown that end-host based congestion prediction can be more accu-



8

rate than previously studied. However, it is still not possible to completely eliminate

the uncertainty in the congestion prediction using RTT measurements. To address

these problems a probabilistic early response mechanism was used in PERT. PERT

emulates the behavior of AQM/ECN at the end hosts. The benefits were shown to be

similar to that of using an AQM mechanism at the router and better than the existing

delay-based schemes such as TCP-Vegas, without requiring any form of support from

the router.

PERT uses smoothed RTT measurements to decipher the state of congestion in

the flow’s path. Like other delay-based protocols, PERT presumes that the path is

congested if the observed delay is higher. However, PERT recognizes the uncertainty

in congestion prediction due to noise in measurements and burstiness of traffic. In

order to mitigate these effects, PERT employs a probabilistic response to measured

delays. PERT reduces the impact of false positives (in congestion prediction), by

using a smaller probability of response when the perceived queue length is small, and

a larger probability of response when the perceived queue length increases.

While PERT can be designed to emulate any AQM mechanism, we will focus

our attention here on a version of PERT that emulates RED [1]. The probabilistic

response of PERT is designed to be similar to that of RED. Fig. 1 shows the prob-

ability of response against the congestion detection signal, smoothed RTT. Similar

to RED, PERT defines two thresholds minthresh and maxthresh and the maximum

probability of response maxP . When the value of srtt0.99 is below the minthresh

the probability of response is 0. As the value of srtt0.99 increases beyond minthresh ,

the probability of reducing a window in response to each ack linearly increases un-

til it reaches the value maxP at maxthresh . Similar to the gentle variant of RED,
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between maxthresh and 2*maxthresh , the probability increases between maxP and

1. Beyond 2*maxthresh , the probability remains constant at 11. For the parameters

minthresh , maxthresh and maxP PERT uses fixed values of (5ms, 10ms and 0.05)

respectively. It is possible to choose these values adaptively based on network condi-

tions similar to the mechanisms suggested in [15].

Fig. 1. Probabilistic response curve used by PERT

When queue lengths are observed to be above thresholds, every ack arrival indi-

cates congestion until the queue lengths fall below the thresholds. It is not necessary

for the flow to respond to each of these indications. The impact of response may

not be seen until after an RTT. Hence, the early response to congestion is limited to

once per RTT (even when random probability may pick multiple packets in one RTT).

When operating in a homogeneous environment, PERT has been shown to uti-

lize links fully while providing delays and nearly zero packet loss rates. We propose

modifications to PERT to make it incrementally deployable in a network that is TCP
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dominated. We show through our evaluations that with the proposed modifications

PERT retains many of the original properties of low loss rates and queue lengths.
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CHAPTER III

PROPOSED APPROACH

As PERT is a delay-based approach, it responds relatively earlier than loss-based

schemes to congestion. PERT, by responding early to the congestion early, cedes

ground to loss-based schemes in claiming bandwidth. As we do not intend to change

this early response mechanism, one way that remains open to make PERT more

aggressive is to change the parameters α and β employed in the window adjustment

schemes W = W + α/W on an ack in the congestion avoidance phase and W =

(1− β) ∗W on a congestion response.

A. Throughput analysis

First in order to address the issue of PERT’s ability to compete with TCP, we carry

out a steady state throughput analysis of PERT. The steady state throughput of

a flow that follows the window adjustment schemes mentioned above is given by

1
RTT

∗
√

α
β∗p [16]. PERT’s response to congestion can be broken into two probabilities

p and p’ , where p’ corresponds to the early response probability and p corresponds to

the observed congestion loss probability. When PERT competes with SACK, SACK

only observes the congestion loss probability. It has been observed that the congestion

loss probabilities of different protocols may be different when they compete with each

other [17], but for simplicity of analysis, we assume that SACK and PERT observe

similar congestion loss probability.

1. α adjustment

PERT’s throughput is controlled by the combined early and congestion response

probabilities and is given by 1− (1− p) ∗ (1− p′) = p + p′ − p ∗ p′ . If PERT has to
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roughly get an equal share when competing with TCP, comparing the steady state

throughput equations of the two protocols [17], we will need:

βPERT ∗ (p + p′ − p ∗ p′)/αPERT = βTCP ∗ p/αTCP

Since = αTCP = 1, we get:

αPERT = βPERT ∗ (p + p′ − p ∗ p′)/(βTCP ∗ p).

Conservatively, we set βPERT = βTCP to get:

αPERT = p + p′ − p ∗ p′/p ≈ 1 + p′/p.

This steady-state throughput analysis gives us an idea of how aggressive PERT needs

to be in increasing the window in order to counter its early response behavior for it

to get an equal share of link throughput when competing with TCP. The first design

modification we make is based on this analysis. We make PERT’s window PERT

W = W + α/W , where αPERT = 1 + p′/p .

2. β adjustment

When the proactive congestion response is successful, the queue lengths are expected

to be maintained low. As a result, it is not necessary to respond with a 50% window

reduction in case of early response. In [18], the authors show that the router buffers

are set to the delay-bandwidth product of the link since the TCP flow reduces its

window by 50%. If the TCP flow were to use a factor β instead for window reduction,

then the relationship between the buffers and the window reduction factor can be

re-written as B > β
1−β

∗BDP .

When a PERT flow responds to congestion early, it takes the link a smaller

amount of time to flush the packets in the buffer than when the packet is dropped

when the buffer is full. As a result, PERT should be less aggressive in reducing

its rate if we want to keep the link utilization high with a single flow. We follow
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the analysis of [18] and modify PERT’s early response to reduce the window by

cur qdelay/(cur qdelay + max qdelay), where cur qdelay is the estimated queuing

delay at the time of early response and max qdelay is the maximum observed queueing

delay. It is observed that when cur qdelay = max qdelay, the window is reduced by a

factor of 0.5, as is the case when a packet is dropped. The window reduction factor

now varies from 0 to 0.5 depending on the observed queuing delay. As a result, the

actual value of βPERT would depend on the relative ratio of early response rate p’

and the packet loss rate p. It is noted that we assumed that βPERT conservatively

to be the same as that of βTCP earlier. We will evaluate PERT through simulations

and live experiments to observe that this assumption does not significantly affect its

fairness.

B. Detailed description

The local stability of PERT under these changes has been analyzed [19]. The analysis

shows that these changes actually improve the local stability region of PERT [19].

We omit the details here and refer you to [19] for the details of analysis.

An important consideration is to decide when PERT is operating in a homoge-

nous environment (with all the flows being PERT) or a heterogeneous environment

with competing TCP flows. While the aggressive window increase will make PERT

competitive against TCP in a mixed environment, it may increase the packet losses

and queue lengths in a homogenous environment. We use the observed queuing delays

to guide the window increase function.

When observed queue delays are high, PERT assumes that it is competing with
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a loss-based protocol such as TCP that tends to push queue lengths high. Hence, it

needs to be aggressive in increasing its window to compensate for its early response.

We use a threshold of 0.5*max observed queuing delay to conclude that PERT is

competing against TCP. Similarly, when queuing delay persistently stays below the

min thresh, PERT concludes that it is operating in an environment where link band-

width is plenty. In these two modes, PERT increases its window increase factor α

from a default of 1 to a higher value. When queuing delay is higher, its increase is

guided by a desire to compete with loss-based protocols (hence up to 1+p’/p) and

when queuing delay is low, its increase is guided by a need to fill the link bandwidth.

We can see from Fig. 1 that the third threshold was set to 2*maxthresh in the orig-

inal PERT. We now adjust it dynamically with the maximum observed queue length

as 0.65*max observed queuing delay.

Essentially, now PERT operates in three different phases. When the observed

queuing delay is less than min thresh (5ms, here), it deciphers that the bandwidth

is being under utilized and increments α linearly till it reaches a threshold of 32, to

increase its window during the congestion avoidance phase. We call this High-speed

region or mode. When the queuing delay is greater than min thresh, but less than

half the maximum observed queue length, it deciphers that it is utilizing the available

bandwidth and since the observed queuing delay is relatively small, it assumes that

all the competing flows are of the PERT flavor and decrements α till it reaches 1.

We call this safe or moderate mode. However, if the observed queuing delay is larger

than half the queue length, it deciphers that there are some flows which use a loss-

based congestion response function and increments α till it reaches αPERT = 1+p′/p.

This adaptation of α takes place at slightly longer time scales than an RTT (we used

5*RTT in our implementation). We call this compete mode. The target alpha is
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smoothly varied as the buffer transitions from one region to another region. Fig. 2

shows the variation of alpha with the estimated delay (srtt0.99).

Fig. 2. Variation of target alpha with the estimated delay

When PERT is successful in curtailing packet drops to very small number or to

zero, the alpha parameters computed by 1+p’/p either becomes too large or infin-

ity. Too large an alpha value is not practical and can result in excessive burstiness

and consequent problems of packet drops and higher queue lengths. Larger number

of packet drops results in degraded performance in terms of throughput. Increased

queue lengths result in larger queuing delays. To counter these problems, we set

αPERT = min(αmax, 1+p′/p) where αmax is a parameter chosen to control this bursti-

ness. In our simulations and emulations below, we chose αmax to equal 32. It seems

feasible to make this parameter dependent on both the observed drop rate and ob-

served queuing delays. However, such modifications will result in less intra protocol

fairness as different flows may see different RTT s and a even a slight difference in

the estimation of RTT between flows results in a significant difference of parameters
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resulting in degraded fairness among flows. We will explore this problem in the future.
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CHAPTER IV

IMPLEMENTATION ISSUES AND PARAMETER TUNING

We implemented the above modifications to PERT in ns-2 and linux kernel 2.6.18.

The major challenges we faced during the implementation of the modified PERT

were to estimate the packet drop rate p and early response rate p’. We tried several

implementations ranging from simple schemes like 1/N, where ’N’ is the number of

packets between two consecutive drops for estimating drop rate and two consecutive

early responses for estimating early response rate, to other complex schemes. Though

they were very simple to implement, they were not accurate enough for the scheme

to work well and did not yield consistent results for different experiments that we

conducted.

After a careful study of the existing mechanisms for estimating drop rates, we

came across the TFRC algorithm for estimating the packet drop rate p [20]. We

used a similar mechanism for our drop rate estimation and this yielded better and

consistent results. The TFRC packet drop estimation algorithm maintains details of

window of the last eight packet losses in the form of a window number of packets

that were successfully transmitted between two consecutive losses. All these eight

values are taken into account while estimating the overall packet loss, by giving more

weights to the recent details and lesser weights to the older details. To be precise,

the recent four losses are given a weight of ’1’ each and the last four are given weights

0.8, 0.6, 0.4 and 0.2 respectively. The overall packet loss is estimated as a mean of

all these values. Therefore, lossrate = 6
(n1+n2+n3+n4+0.8∗n5+0.6∗n6+0.4∗n7+0.2∗n8)

, which

reciprocal of the mean number of packets transferred between successive losses. We

initially set the early response rate p’, to the actual probability of early response as
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computed by the original PERT based on the estimated queuing delay. This did not

yield results as good as expected. We therefore, employed a similar method to drop

rate estimation mechanism, for estimating the early response rate of PERT p’.

Though the above scheme works well for estimating drop rate and early response

rate which are crucial for the operation of the modified PERT, the values get obsolete

when the number of drops or early responses are less and a large time elapses since

the last drop or early response. To counter this problem, we periodically update the

values of p and p’ depending on the how obsolete the values are. To be precise, when

the number of packets transmitted since last loss exceeds the mean number of packets

(computed above), then the window is moved right for the first time, in the sense the

oldest entry is flushed and the current number of packets since the last loss is set

as the first window entry. This value keeps on getting updated till the next drop

occurs, whenever the number of packets since last loss exceeds the mean number of

packets computed as above from the window of last eight entries. This gives us better

estimates of those values and yields consistent performance of the protocol.

When a single PERT flow starts on a link, it has no idea of the maximum queu-

ing delay (or the size of the buffer). This is necessary to gauge correctly the mode of

PERT’s operation (Safe vs Compete vs high-speed. We initialize maximum queuing

delay to maximum queuing delay threshold utilized in PERT. If maximum queuing

delay is initialized to zero, since PERT’s early response keeps the queuing delays low,

PERT’s window reduction stays close to 0.5 and could lead to under utilization of

the link in single flow situations.

Though the implementation of PERT is very straightforward in ns-2, this is not
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so regarding the implementation in the Linux Kernel. This is because at the kernel

level, there is no support for floating point arithmetic and we have to implement the

arithmetic on our own as our scheme has a few variables that need to be as accurate

as possible. We tried to be as accurate as possible at the Kernel level regarding the

estimation of different parameters by implementing arithmetic to provide precision

up to 6 decimals.
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CHAPTER V

EXPERIMENTAL EVALUATION IN HETEROGENEOUS PROTOCOL

ENVIRONMENTS

We have conducted extensive ns-2 based simulations and Linux kernel based experi-

ments to evaluate PERT. We attempt to make our evaluation realistic by simulating

a wide range of network parameters. For the live network experiments, we make

our evaluation realistic by choosing nodes at different countries to act as clients to

download files for longer duration from servers at our lab.

A. Simulations

For all the simulation experiments, the bottleneck buffer size is set to the bandwidth-

delay product, unless otherwise stated, with the minimum number of packets being

equal to at least twice the number of flows. All simulations are run for 400 seconds

and reported results are measured during the stable period between 100 and 300 sec-

onds. When multiple flows share a link, their start times are chosen randomly in

the range (0, 10) seconds to avoid synchronization. All the simulations follow the

topology in Fig. 3, unless otherwise mentioned.

We consider several metrics for evaluation, bandwidth share of different proto-

cols, drop rates and queue lengths at routers. In order to compare different protocols,

we also compute ”drop ratios”. Drop ratio of a protocol is defined as the drop rate

observed of that protocol divided by the drop rate of competing TCP flows. We also

study the Jain’s Fairness Index.
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Fig. 3. Topology used for ns-2 simulations

1. Varying mix

In this experiment, we vary the percentage of PERT flows in a mix of PERT and TCP

flows. This experiment is conducted to observe the impact on network and protocol

characteristics as PERT’s deployment goes from 0% to 100%. The bottleneck link

bandwidth is kept constant at 150Mbps. The end-to-end RTT of the flows is set to

60ms and the total number of flows is set to 100. For the first two experiments, the

percentage of PERT flows is varied from 0 to 100. Fig. 4 summarizes the results. We

see that the normalized queue length does not vary significantly when there is a mix

of PERT and SACK flows. However, when all the flows are of PERT, a significant

drop in the queue length is observed. The drop rate graph shows that the drop rate

of the mix reduces, though not significantly as the share of PERT flows increases.

The drop rate goes to zero when the flows are 100% PERT.

For the following experiments, the percentage of PERT flows is varied from 5 to

95, because as defined earlier, drop ratio is ratio of drop rates of PERT and SACK
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Fig. 4. Variation of drop rate and normalized queue length with percentage of PERT

flows

and to be computed, flows of both the flavors need to be competing in the experiment.

Fig. 5 shows the PERT to SACK drop ratio in the mixed environment. We see that

this ratio is always less than 1, meaning PERT always has a lower drop rate in the

mix. The second graph in Fig. 5 shows the percentage of PERT’s bandwidth share

as the share of PERT flows increases. This shows that the observed share is almost

similar to the expected (fair) bandwidth share.

Fig. 5. Variation of PERT’s bandwidth share and FAST to SACK drop ratio with

percentage of PERT flows

Results in Fig. 4 and Fig. 5 show the feasibility of the incremental deployment
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of PERT. As the mix of protocols goes from 100% SACK to 100% PERT, PERT

can coexist with TCP, sharing bandwidth nearly fairly. PERT flows can benefit from

lower drop ratios in the mixed environment, giving an incentive for the adoption

of PERT over TCP. We point out here that bandwidth incentives are easy to pro-

vide compared to the gains observed here in packet loss rates. These results show

that PERTs deployment benefits the individuals deploying PERT in an environment

of mixed protocols while enjoying the benefits of nearly zero packet losses and low

queue lengths in homogenous environments. We also observe that the drop rate is

lower in a mixed deployment environment than with 100% SACK flows. We plan to

explore more techniques for improving network characteristics globally, rather than

just for PERT flows, in the future.

In the same experiment, we calculated the mean and variance of the bandwidth

(measured once in a second) for PERT and SACK flows. Fig. 6 shows the ratio of

variance and mean of the bandwidth for PERT and SACK. We can see that, PERT

maintains a lower variance per mean even in the mix scenarios and the variance keeps

reducing as the percentage of the PERT flows increases in the mix of the flows. This

result also points to the potential benefits of incremental deployment of PERT.

An experiment with a similar setup is repeated for a mix of FAST [7]and SACK.

Fig. 7 summarizes the results. From Fig. 7, we see that though the queue lengths

decrease with the increase in the percentage of FAST flows, and FAST maintains

lower drop rate compared to that of SACK in a mixed scenario, the overall drop rate

increases with the increase in the percentage of FAST flows. Further, in the mixed

environment, FAST gets much larger share of bandwidth compared to SACK. These

results indicate that FAST’s modifications for competing against TCP may not be
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Fig. 6. Variation of the ratio variance/mean of PERTS bandwidth with percentage of

PERT flows

beneficial to both TCP and itself as it results in higher drop rates, even in a 100%

FAST environment. We explore the performance with FAST and other protocols in

mixed scenarios in later sections.

2. Variation of number of flows in a 50-50 mix of PERT and SACK

In this experiment, the bottleneck link bandwidth is set to 150Mbps and the total

number of long-term flows is varied from 20 to 1000, with 50% of PERT and 50% of

SACK flows in each case. The end-to-end RTT is 60ms. Fig. 8, shows the results.

As expected, we see that the queue length and drop rate increase with the number

of flows. We also see from Fig. 8 that the bandwidth share of PERT is low when

there is less number of flows sharing the bandwidth and that it raises and stabilizes

at 50% as the number of flows increases. This is because PERT does not operate in

the aggressive (Compete with TCP) mode all the time, when the available bandwidth

is high and the queue length stays below half the maximum queuing delay. We also

see that the Jains Fairness index varies accordingly as PERT’s bandwidth share.
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Fig. 7. Variation of normalized queue length, overall drop rate, FAST’S bandwidth

share and FAST to SACK drop ratio with percentage of PERT flows

3. Impact of bottleneck link buffer size in a 50-50 mix of PERT and SACK

In this experiment, the bottleneck link bandwidth is kept constant at 150Mbps. The

end-to-end RTT of the flows is set to 60ms and the number of flows is set to 80, with

40 flows of PERT and 40 flows of SACK. The buffer size at the bottleneck is varied

as a factor of Bandwidth-delay product from 0.25 to 4. With this setup, PERT and

SACK are compared. Fig. 9 shows the PERT to SACK Drop Ratio and the observed

PERT’s Bandwidth share. We see that the PERT’s Bandwidth share is really high

when the bottleneck buffer length is small and it loses to SACK only when there is a

very large buffer. This is because, at lower bottleneck buffer sizes, the queue length

gets larger than half the maximum length at an earlier stage and PERT operates in

aggressive (Compete) mode. We also see that PERT to SACK drop ratio stays below

1 in all cases. This shows that PERT performs very well with small buffers. PERT
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Fig. 8. Variation of normalized queue length, drop rate, PERTs bandwidth share and

Jains Fairness Index for a 50-50 scenario with number of flows

loses to SACK in the presence of larger buffers (3.5xBDP and above) because PERT

operates in the safe region and tries to reduce the queue length, while SACK does the

opposite. Moreover, it is observed that PERT stays fair to TCP over a large range of

buffer sizes, ranging from 0.5xBDP to 3xBDP.

B. Co-existence of Illinois with PERT

An experiment with a similar setup as above is repeated for a mix of PERT and

TCP-Illinois [8]. Fig. 10 summarizes the results. From Fig. 10, we see though the

overall drop rate decreases with the increase in the percentage of Illinois flows, the

drop rate at 100% PERT is far less than that of 100% Illinois. Moreover, the queue

length increases with the increase in Illinois share, which implies that the queuing

delay gets worse. Further, the drop ratio of Illinois to PERT is larger than 1 in most
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Fig. 9. Variation of PERTs bandwidth share and PERT to SACK drop ratio with

buffer size at the router

of the cases implying that PERT will see less number of packet drops compared to

Illinois. Though Illinois observes less bandwidth than expected, its parameters are

easy to be tuned to increase the share. These results indicate that PERT can co-exist

with TCP-Illinois.

C. Variation of number of flows in a 50-50 mix of PERT and Illinois

The experimental setup is similar to the above experiment, with 50% of PERT and

50% of Illinois flows in each case. Fig. 11 shows the results. As expected, we see that

the queue length and drop rate increase with the number of flows. We also see from

Fig. 11 that the PERT to Illinois drop ratio is low, implying that PERT sees lower

drop rates in the mix over a wide range of number of long term flows. Further the

bandwidth share of PERT always is also more than Illinois share. We can also see

that the queue lengths are very high as is the case when flows of Illinois flavor are in

the mix.
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Fig. 10. Variation of normalized queue length, overall drop rate, Illinois bandwidth

share and Illinois to PERT drop ratio with percentage of Illinois flows

D. PERT with non-responsive traffic

We wanted to see how PERT utilizes the link when there is intermittent non-responsive

traffic like UDP. The experimental setup has a 1Gbps bottleneck and one PERT flow

with RTT 60 ms tries to utilize the link. The duration of the simulation is about

900 seconds. The experiment starts with PERT alone utilizing the link and later

once in every 150 seconds, one UDP flow of Constant Bit Rate (CBR) shares the

link with PERT for a duration of 150 seconds. Fig. 12 shows the PERT’s bandwidth

share plotted at continuous intervals of time. We can see from the graph that PERT

quickly adjusts its bandwidth share accordingly. In the presence of non-responsive

traffic PERT reduces its sending rate. When the non-responsive flows are not present,

PERT quickly ramps up its sending rate. This shows that PERT can react to network

dynamics quickly.
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Fig. 11. Variation of drop rate, PERT to Illinois drop ratio, PERT’s bandwidth share,

normalized queue length,for a 50-50 mix of PERT and Illinois with number

of flows

E. Live network experiments

Though some protocols claim to perform well using ns-2 simulations, they often fail

in practice. To make sure this is not the case with PERT, we implemented it in

the network stack of the Linux 2.6.18 kernel and performed real-world emulations by

choosing six different clients at geographically distant locations. To reflect changes

in the diverse real-world traffic, experiments with each node were performed 10 times

and averaged. We chose to work on the network stack in the 2.6.x kernel as it is

quite sophisticated and supports several standards from the RFC s as well as features

beyond those published in RFC s or IETF Drafts aimed to provide good network

performance [21].
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Fig. 12. PERT’s bandwidth share with intermittent UDP traffic

Our test bed consists of two off-the shelf Dell Optiplex GX260 workstations with

Pentium 4 3.06GHz CPU, 1GB of RAM, Intel PRO/1000 MT gigabit NICs on to

a 33MHz/32bit PCI bus. The two computers are connected to the Internet. One

of them has the modified Linux kernel with PERT implementation and the other

has the standard Linux kernel which uses SACK over New-Reno. To see how PERT

works in the real-world traffic, we selected nodes on planet-lab across the globe, at

six physically distant countries, to act as clients. We configured the two machines in

our lab, which are in the same subnet, as servers. Data for throughput and losses

were collected. Experiments were done with 1 flow, 2 flows and 10 flows of each flavor

competing with corresponding number of flows of the other flavor. As mentioned

earlier, the experiments at each node were performed 10 times, to take into account

the frequently varying traffic, and the results presented are averaged over different

iterations. A 95% confidence interval is also shown for the results. Fig. 13 shows

the variation of throughput across different nodes in planet-lab. We observe that

throughput of both PERT and SACK are similar across different nodes, while PERT

gets a little more than that of SACK in most cases.
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Fig. 13. Variation of throughput at different nodes across the world

The bar graphs in Fig. 14 show the variation of average number of drops

at planet-lab nodes in different locations. The locations in order are China (cn),

France(fr), New Zealand(nz), Sweden(se), US (DSL modem at College Station) and

US(Cable modem at College Station) respectively. We see from the figure that num-

ber of drops for PERT is less than or equal to that of SACK in almost all the cases,

despite sharing the network links with numerous multiplexed flows, possibly using

several different flavors of TCP. This shows that PERT performs well with the real-

world traffic as well.

1. Results from cable and DSL modem hosts

Recent measurements of RTT s using Cable and DSL modem hosts [10] show that

there is a high variation in the RTT s measured from these hosts. We tested PERT by
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Fig. 14. Number of losses at different nodes across the world

setting up these types of hosts as receivers and found its effectiveness. The throughput

results were presented above, where it was shown that PERT could compete with TCP

in DSL and Cable access networks despite the RTT variability. In Fig. 15, we plot the

instantaneous RTT and Smoothed RTT (srtt0.99) over time (jiffies) using the results

from network experiments, to show that srtt0.99 is a smooth signal despite highly

varying instantaneous RTT signal. This shows that while instantaneous RTT s could

vary significantly from sample to sample, the smoothed RTT employed by PERT as

congestion signal is still effective in correctly gauging the congestion in the network.

We have carried out extensive tests in these networks to test the effectiveness of

PERT in both DSL and Cable networks and found that PERT is not affected by

instantaneous RTT variability that is inherent in these networks due to the scheduling

and access granting mechanisms employed in these networks.
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Fig. 15. Variation of instantaneous RTT and srtt0.99 in cable and DSL modem hosts

2. Coexistence with CTCP

Microsoft’s Compound TCP (CTCP) [9] has been deployed with Windows vista plat-

form. We performed similar live experiments with one of our servers running PERT

and the other running CTCP. We used the linux kernel implementation of CTCP,

distributed for research purposes, for our experiments. Similar to the experiments

with SACK, we perform experiments with 1, 5 and 10 flows of PERT and CTCP

competing with each other. The experiments were performed 10 times and the re-

sults provided are the values averaged over different iterations. A 95% confidence

interval is also shown.

Fig. 16 shows the variation of throughput across different nodes in planet-lab.

We observe that throughput of both PERT and CTCP is comparable across different

nodes.

Similarly, the bar graphs in Fig. 17 show the variation of average number of

drops at planet-lab nodes in different locations. The locations in order are China (cn),

France(fr), New Zealand(nz), Sweden(se), US (DSL modem at College Station) and
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Fig. 16. Variation of throughput at different nodes across the world

US(Cable modem at College Station) respectively. We see from the figure that number

of drops for PERT and CTCP is comparable with PERT having less number of losses

in most of the cases, despite sharing the network links with numerous multiplexed

flows, possibly using several different flavors of TCP. Both these graphs show that

PERT can co-exist with the recently deployed and possibly future dominant protocol

CTCP.
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Fig. 17. Number of losses at different nodes across the world
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CHAPTER VI

EVALUATION IN HOMOGENEOUS ENVIRONMENTS

Though our motivation for this work is to make PERT perform well in heterogeneous

environments, the essence of the protocol is lost if, it does not perform well in homo-

geneous environments comparable to its original behavior. To study the behavior of

modified PERT compared to the original PERT, we perform simulations similar to

the ones in [6]. Almost all the simulations in [6] were performed. We present only the

major results here to show that the modified PERT retains the desirable properties

of the original PERT.

A. Impact of web traffic

We performed several experiments to see if the modified version (that can coexist

with TCP) retains the properties of original PERT, when operating alone. In differ-

ent experiments, RTT s and Number of long-term flows were varied. Results show

that the properties of original PERT were retained. Experiments were also conducted

by introducing varying number of short-term web flows. The observed results closely

matched the results of the original PERT. We show some of those results here. Fig.

18 shows the results when the number of short-lived flows (web sessions) is varied

from 10 to 1000, while keeping the long-lived flows constant. As seen from Fig. 18,

as the load offered by the web traffic increases, the average link queue length remains

low and as a result negligible packet losses are observed in case of PERT. On the

other hand sack has higher queue lengths and higher drop rates.
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Fig. 18. Variation of normalized queue length and drop rate with the number of web

sessions

B. Impact of number of long term flows

In another experiment, the number of long-term PERT flows is varied from 1 to 1000,

keeping other parameters constant. Fig. 19 shows the drop rate. Also Normalized

queue length (not shown here) reaches at most 0.35 that is when there are 1000 flows

sharing 500Mbps link. On the other hand the drop rate stays at zero irrespective

of number of flows. In [6], in a similar experiment the performance of the original

PERT was compared to SACK and it was observed that SACK observes high drop

rates while PERT maintains zero loss rates. Also, we can see from Fig. 8 that in a

50-50 mix of PERT and SACK flows, the drop rate continuously raises, while PERT

maintains zero loss rates while operating in homogeneous environments.

C. Impact of round trip delays

In another experiment, the end-to-end RTT is varied in the range of 10ms to 1 sec-

ond. Fig. 20 shows the drop rate. From the figure, we see that the drop rate is

non-zero when the delay is low, this is because with flows at lower RTT s PERT ini-

tially operates in high speed mode till the observed delays stay less than 5ms and

gets easily pushed into the compete mode and operates aggressively again assuming



38

Fig. 19. Variation of drop rate with the number of long-term flows

that it is competing against loss-based protocols. We can see that the drop rate stays

consistently zero for rest of the cases.

Fig. 20. Variation of drop rate with RTT

D. Multiple bottleneck simulations

In [6], PERT was demonstrated to perform very well in a multiple bottleneck link

scenario described in the following way. The multiple bottleneck topology as shown

in Fig. 21 consists of six routers labeled R1 to R6. The links between routers have a

capacity of 150Mbps and a delay of 5ms. Each router is connected to a cloud of 20
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nodes with a link of capacity 1Gbps and delay 5ms. The nodes in each cloud send

data to the nodes in the cloud connected to the adjacent router. Also, all the nodes in

the cloud connected to router R1 also send data to the nodes in the cloud connected

to R6. Table I shows the average queue length, drop rate, utilization and Jain’s

Fairness Index of the link between each pair of routers as well as the Jain’s Fairness

Index of all the flows between each pair of routers. This is compared with the results

in [6]. It can be noted that results do not vary much and the modified PERT still

maintains low queue length and zero drop rates across all the bottleneck link queues.

Moreover, the modified PERT behaves well in terms of drop rate (0) with a Jain’s

Fairness Index of 0.92 for the flows between R1-R6 over multiple bottlenecks. The

link utilization and fairness in all other cases are comparable to the original PERT.

In fact, the utilization gets better.

Fig. 21. Topology used for comparing the performances of original and modified PERT

in a multiple bottleneck scenario
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Table I. Drop rate, queue length, utilization and Jain’s Fairness Index (JFI) of all

flows between different links

Link Drop rate Normalized queue length Utilization(Mbps) JFI

R1-R2 0 0.172138 95.2394 0.999875

R2-R3 0 0.168135 95.238 0.999872

R3-R4 0 0.17454 95.2374 0.969581

R4-R5 0 0.172938 95.2385 0.999889

R5-R6 0 0.164932 95.2385 0.99986

E. Performance at low-buffers

Original PERT operates well at low-buffers [6]. To see how the modified PERT com-

pares with the original PERT in terms of its performance at low-buffers, we conducted

the following experiment. We had 20 flows sharing a bottleneck of 100 Mbps with

an RTT of 60ms each. Buffer at the router is varied as a factor or delay-bandwidth

product from a value of 1/128 to 1/2. Fig. 22 compares the utilization of PERT

with that of original PERT. We can observe that the utilization of PERT is a little

less at very low buffers. At larger buffer, in fact, the utilization improves with the

modified PERT. It can be concluded that the performance of PERT at low buffers is

comparable to that of original PERT.

All these results track the behavior of original PERT in homogenous deployment

environment as reported earlier in [6].
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Fig. 22. Bottleneck link utilization at low-buffers

F. Performance in high-speed networks

Now that PERT performs well in a mixed flow scenario, we have performed tests to

see how PERT performs in high-speed networks with large available bandwidths. In

this experiment, the bottleneck link bandwidth is kept constant at 2.4Gbps. The end-

host link bandwidth is varied from 10Mbps to 2.4 Gbps. The end-to-end RTT of the

flows is set to 70ms and the experiment is run with a single flow. Fig. 23 summarizes

the results. It is observed that a single PERT flow can nearly fully utilize a high

speed link with zero packet losses. This may be compared to the recent proposals

for high-speed protocols [11–13] which show significantly higher packet losses (several

orders of magnitude difference) as shown in [11].

G. 4 flow convergence test

In all the earlier experiments with multiple flows, when all the flows were started

at about the same time, very good intra-protocol fairness was exhibited. We now
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Fig. 23. Variation of utilization and drop rate at different end-host link bandwidths

evaluate the convergence properties of the modified PERT when flows start and stop

at different times, dynamically changing the available link bandwidth. The first flow

is started at time 0, and allowed to reach steady state. A new flow of the same flavor

is then added every 300 seconds. The flows last for 2100, 1500, 900 and 300 seconds

respectively. Fig. 24 shows the throughput of each flow over the time. From the

graph we see that, PERT is capable of quickly increasing its sending rates and hence

ensuring the link is fully utilized. It is also observed that the flows converge to fair

share fairly quickly.

H. Robustness to noise

In this experiment, two flows with an end to end RTT of 60msshare a bottleneck

bandwidth link with bandwidth of 1 Mbps. Uniform noise is generated with mean

varying from 0 to 0.1 seconds on the delay measurements. Two experiments were

performed. In the first both the flows were prone to noise and in the second one, only

one flow is subject to noise. These experiments were repeated with FAST and SACK.

With PERT, the Link drop rate remained zero throughout and the queue lengths

were negligible. The link was almost fully utilized. Fig. 25 shows the link utilization
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Fig. 24. Variation of drop rate with RTT

for different protocols as the mean is varied, for both the experiments. This shows

that for PERT noise doesn’t impact the correct deduction of congestion significantly

and it maintains good Link utilization even at higher levels of noise.

Fig. 25. Variation of link utilization with noise
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I. Tolerance to channel errors

PERT has an inherent robustness to channel errors. PERT’s window reduction fac-

tor β depends on the queue length (srtt0.99) as mentioned earlier. When channel

errors occur, if the queue length is low, PERT responds by reducing the window by a

smaller factor on such errors thus resulting in higher throughput than that of other

TCP flavors employing a window reduction factor of 0.5. Similar approach has been

adopted in [8].

To evaluate the impact of channel errors on PERT, we considered two scenarios.

In the first experiment, a single flow shares a bottleneck bandwidth of 1Gbps and

the end to end RTT is 60ms. Random errors were induced using uniform loss model.

Fig. 26 plots the throughput against the random loss rate. As the random loss rate

increases, the link utilization of the SACK decreases drastically. PERT performs

very well compared to SACK with higher utilizations until an error rate of 10−5.

The utilization deteriorates only at higher drop rates of order 10−4. This shows

that PERT tolerates channel errors gracefully in high-speed networks. We have also

simulated an end-host wireless network of 55Mbps bandwidth and 20ms delay in a

similar configuration with a source bandwidth of 100 Mbps and 5ms delay. However,

in this case we varied the channel error rate till 10−3 and the results are shown

in the second graph of Fig. 26. As we can see, the utilization deteriorates only

at much higher drop rates of order 10−3. This shows that PERT performs well in

normal wireless scenarios as well. This can be explained as follows. As channel errors

are non-congestion errors, the queue may not be full when a channel error occurs.

Moreover, PERT is designed to yield lower queue lengths when operating alone. Thus,

we respond less on such a loss. This leads to a higher utilization compared to that of
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SACK, which always responds to a loss by a factor of 0.5.

Fig. 26. Variation of bottleneck utilization with channel error rate in high-speed and

normal wireless networks
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CHAPTER VII

MISCELLANEOUS EXPERIMENTS

We also performed several other experiments to study the performance of PERT in

miscellaneous scenarios. Each of them is described in detail and results are shown as

follows.

A. Queue occupancy distributions with different mixes of protocols

Queue occupancy distribution is defined as the frequency of number of packets en-

queued at a particular position, throughout the duration of the simulation in the

router queue starting from position ’1’ to position ’queue length’. Queue occupancy

distribution will give us an idea of how a particular protocol behaves in terms of

distributing most of the packets at different positions in the queue, whether at the

beginning of the queue (implying lower queuing delays meaning better performance)

or at the end of the queue (implying higher queuing delays) or uniformly distributes

packets throughout the queue.

We conducted experiments with our standard set up of 80 flows sharing a 150

Mbps link with an RTT of 60ms with the router buffer size set to the delay-bandwidth

product of the link. With our setup, the maximum queue length comes to 1123 pack-

ets. We performed such experiments with flows of different protocols both individ-

ually and in a mix. Fig. 27 summarizes the results for the experiments with the

same protocol. We can see from the figure that while with SACK most of the packets

are enqueued at the end of the queue, with PERT most of them are enqueued at

the beginning of the queue. We can also see that TCP-Illinois performs worse than

SACK and that FAST distributes packets uniformly across all different positions in
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the queue. Illinois’ congestion behavior seems to keep queues longer than that of

SACK as it tries to reduce window increments at higher delays. This clearly shows

that PERT performs better in terms of queuing delay.

Fig. 27. Queue occupancy distributions with different protocols

We performed similar experiments with 50-50 mixes of different protocols like

PERT-SACK, SACK-Illinois and FAST-SACK. Fig. 28 shows the results. We can

see that, in the mix, PERT behaves similar to that of SACK in terms of number of

packets queued at a particular location. This shows that PERT adapts to the scenario

when it competes with SACK. We can also see that at the beginning of the queue,

more PERT packets are enqueued compared to SACK and the end of the buffer more

SACK packets are enqueued. Regarding mixes of SACK with other protocols, we

can see that FAST clearly dominates SACK in terms of number of packets queued at

different locations and hence kills the bandwidth share of SACK. In a mix of SACK
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and Illinois, the queue occupancy seems to be somewhere between SACK and Illinois

protocols alone.

Fig. 28. Queue occupancy distributions with mixes of different protocols

B. Mixes of different protocols

We performed experiments with mixes of different protocols to see how they interact

in a mixed environment. The set up for this experiment was similar to other mix

experiments. The bottleneck link bandwidth is kept constant at 150Mbps. The end-

to-end RTT of the flows is set to 60ms and the total number of flows is set to 100.

There were 99 flows in total competing for the bottleneck, with 33 flows of each of

PERT, TCP-Illinois and TCP. Table II shows the results.

We can see that PERT performs the best among the three protocols in the mix
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Table II. Bandwidth shares and drop rates of TCP-SACK, TCP-Illinois and PERT

Protocol Bandwidth Share Drop rate

SACK 34.5888 0.00275

Illinois 21.3449 0.00311

PERT 44.0663 0.00228

Table III. Bandwidth shares and drop rates of FAST TCP, TCP-SACK, TCP-Illinois

and PERT

Protocol Bandwidth Share Drop rate

FAST 82.5992 0.00326

SACK 6.8721 0.0242

Illinois 6.5698 0.02499

PERT 3.9588 0.03598

both in terms of bandwidth share and drop rates. At the same time it is not very

unfair in terms of bandwidth share. We performed a similar experiment including

FAST-TCP [7], with 25 flows of each type in the mix. Table III shows the results.

We observe that FAST behaves selfishly both in terms of bandwidth and drop rate

gets more than 80% of the bandwidth share and forces other protocols to drop more

packets.

C. PERT with RED

We conducted experiments to see how the modified PERT behaves when RED is

used as queue management scheme at the router. In the experiment 20 flows share

a bottleneck of 100 Mbps and the RTT of the all the flows was set to 60ms. The

bottleneck buffer size was set to delay-bandwidth product. We performed similar ex-
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periments with PERT-Droptail, SACK-RED, SACK-Droptail. Table IV summarizes

the results. We can see from the table that though RED has an effect in lowering

the average queue length, the drop rate gets worse for PERT when RED is used.

This is because, PERT gets a wrong impression about the congestion at the router

and always operates in the high-speed region, where it sends many packets. because

of higher α employed in this region, PERT experiences higher packet loss rate. The

observed loss rate is higher than that of SACK with RED. Whereas, when Droptail

is applied at the router, it judges the congestion correctly and operates in the correct

region (i.e., the stable non-aggressive region) leading to zero loss rate.

Table IV. Drop rate and normalized average queue length for PERT and SACK with

different queue management schemes at the router

Scheme Normalized queue length Drop rate

PERT-RED 0.0214 0.028

PERT-Droptail 0.083 0

SACK-RED 0.016 0.012

SACK-Droptail 0.576 0.0004

D. PERT with intermittent TCP

We performed another experiment where we had 80 PERT flows start at time 0 and

share a bottleneck link of 150Mbps. We Had equal number of TCP flows start at 100

seconds and go away at 200 seconds. PERT flows stay on until 300 seconds. The

interesting observation that we made with this experiment is that though initially

PERT flows operate in the safe region (as they compete among themselves) and later

get pushed into the compete region (as the TCP flows start competing for the band-

width at 100 seconds), the flows do not get pushed back into the safe region once
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the TCP flows goes away. This is because, once the PERT flows start operating in

the aggressive (compete) mode, they contribute to the increase in the queue size and

even after TCP flows go away, they still operate in the compete region assuming that

they are competing with TCP, even when they operate alone. Table V shows the

normalized average queue length and drop rates at different points of time. We can

see that initially at 100 seconds when there are no SACK flows, the normalized queue

length is low and drop rate is 0. As SACK flows also compete for the bottleneck at

200 seconds, the drop rates and the average queue length increase. However, at 300

seconds even when SACK flows go away and PERT contends alone for the bottleneck,

the average queue length and drop rate still remain high, because PERT still operates

in the compete region as mentioned earlier.

Table V. Drop rate and normalized average queue length at the router at different

points of time in the experiment

Time(Seconds) Normalized queue length Drop rate

100 0.113 0

200 0.760 0.0196

300 0.753 0.0190

In the same experiment, to see when the PERT flows get back to the safe region

after TCP flows go away, we let each PERT flow exit at every 10 seconds. We observed

that PERT flows get back to their original operating point (i.e., safe region) when

about 65 PERT flows exit i.e., when 20% of initial number of PERT flows operate.

Similarly, to see with how many number of TCP flows it takes for PERT to enter into

high delay region, we added 1 TCP flow, every 10 seconds after initial 100 seconds

(when PERT operates alone). We observed that PERT flows enter the compete region
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when the number of TCP flows added equals about 9 flows that is 10% of TCP flows.

This means that PERT flows could tolerate up to 10% of TCP flows to get back to

safe region once the TCP flows leave.

E. CPU utilization with different congestion protocols

We performed experiments with the kernel implementation of TCP, CTCP and PERT

to measure the CPU utilization when flows of different protocols operate. One of our

machines in the lab acted as a server and a China based planet-lab machine acted as

a client. We performed experiments with different number of concurrent flows from

the client. With 1,5,10 and 25 flows from the clients, there wasn’t any significant

value for CPU utilization. However, with 50 flows the values were notable. Table VI

shows the CPU Utilization for TCP-SACK, CTCP and PERT.

Table VI. CPU utilization with different congestion protocols with 50 flows from the

client

Protocol CPU utilization Range(%)

SACK 1.5 - 3.5

CTCP 1 - 3

PERT 2 - 3.6

It can be noted from the table that with these three different protocols similar

CPU utilization is observed, while with PERT the CPU utilization is a little higher.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

In this research, we have identified the issues in adapting a delay-based protocol to

heterogeneous environments, especially in making it co-exist with flows of flavors of

dominant protocols in the Internet. We presented a rationale and design modifi-

cations for adapting the delay-based protocol PERT to work well in heterogeneous

environments. With the suggested design modifications, we also preserve its original

properties when operating alone.

While, there are some existing protocols like TCP-Illinois and Microsoft’s Com-

pound TCP (CTCP), they are loss-based and do not perform as well as PERT while

operating alone. The delay-based protocol FAST can compete with loss-based pro-

tocols. But it does not provide incentives for incremental deployment, as we show.

Further, we are not aware of any work that simultaneously deals with incremental

deployability and fair bandwidth sharing with currently dominant protocol TCP.

We hope our work provides some insights into these issues of incremental de-

ployability of new protocols especially the delay-based ones and providing incentives

(lower packet drop rates, in our case) for new protocol deployment. We support our

claims through extensive simulations of a wide number of practical scenarios in het-

erogeneous environments using ns-2. We have also tested and compared PERT with

SACK in terms of bandwidth share and packet losses, in real networks with different

access networks including campus, DSL and Cable networks to observe that instanta-

neous RTT variability didn’t impact the delay-based protocols performance and that

PERT gets higher bandwidth and lower drop rates while giving the competing flows
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a fair bandwidth share.

We observe that PERT not only co-exists with other protocols in wide range

of scenarios, but also serves as a high speed protocol in terms of its performance

in high bandwidth-delay networks and has comparable performance similar to high

speed protocols such as LTCP, while operating alone. We also observed that PERT

can tolerate channel errors more gracefully than SACK.

We have identified the problems with PERT and are aware of scenarios in which

PERT does not perform very well. We intend to fix the known issues as a part of

our future work. We also plan to investigate the issues in improving global network

characteristics as a result of incremental deployability of new delay-based protocols

such as PERT in the future.
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